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ABSTRACT ' X -
% . T : N o5 Al
This thesis cohtains a systematic exposition of the
¢ i “ )\ “topology of .fibrations, including Hurewicz, Dold ‘and Serre T4
1 wice,, i ¢ \
. . fibrations and quasifibrations. The- fundamental properties L
- ; ) 5

- and the classical results due ¢o Hurewicz and Dold are # .

discussed in a detailed way. Many examples illustrate the ' g

. \:heox'y. ‘some™ of \tham ‘are used to a‘ucube properties peculiar - '

of each’ class of ﬁ'brutionu. The 'thesis eoncxuaes with a ¥

di!culslm of . gome | rscent developments. % ’l‘hase ards “~the’

Eunctiunul ‘space L!tudied by: P.iBooth, P. Heath, C. Morgan .

“R. Piccinini and its applidation to £ibred exponential iaws:
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INTRODUCTION @ N

?

Fibrations form an important class of naps_in

" geométric .and algebraié topology. In geometric topology each -

genmetxic object .(a differencuhle manifold, a-p.1. manifold,

a topological manifold, or‘a Puincaré duality ‘apace) carries

its own specific fibration (the differential bangent bundle,-

. the p.1. tangent bundlé, . the topological. tangent *bundle, ‘the -

Spivak spherical fibx:ation, respectively) containing relevant

information on the geometry. of that object.. Oné is them. )

*interested in classifying' such fibrations and in computing

algebraic invariants of the «classifying space.” In algebraic
topclaqy: the’ exact homotopy s;quencq and the serravupectra‘
sequence give powerful tools for computing algebraic
invariants of the total spage,the base or. the/ fibre of a
fibration when two of than ‘are already known. %

This thesis deals with the topology. of, fibrations,
Hurewicz; Dold and Serre. fibrations and quasifibrations. The "
material is. hrqanized into two chaptenx the first, chapter is e

devoted: to classical results apd the second to scme recent

-developmenta. Each chapter is further divided in three

sectione. A Tow |

-y -.Tnsection 1.1 we discuss preliminary notions and

_results; We start by defining the categories we will ‘deal

»
with, that is, the category of maps and map ‘pairs and the
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W category ' of maps with a ﬁxTG target space and-fibre maps o !
over that space; we then define in these categories an . -

appropxiite notion of homnt"opy. We introduce the standard

; procedure for - factcrizing any map as a homotopy ‘equivalence
followed by a ﬁbnuon, d.the modification of this -

£ conutructioﬂ when we del’.jxﬂ] £ibre ‘maps. . The section .

continues with a rt discussion on' shrinkable riaps, ‘a.class

=
- - ~qf maps introduced \by Dold(,to tackle local:to-global problems

| and with a dincuuidn o pLoperticl of cozero sets, which IR

wiu be used in the groof of the Hurewir:z unifomization

i\ (mLurem 32). The ‘section ends with & ;

result by Dold which say! Fhat for fibre faps over "nice!

. f.‘heorem in section I.

base spaces’ the pmpem} o‘f being & ﬂbu,honmtopy

equivalence is a 1oca1 cdncept (theorem 14).

section I. 2 is* aevoted to Harewicz ﬁblatiens ‘and
‘e the core of, the thesiu. | It is 4deally divided: into three ik
P parts. . In the first part s asaions some immediate W .
1 cunsequencea -of the daﬂni‘tiqn, give the maln examples of

fxbratxona and, d.lscuas <how/ lifting E\\nctiuns can charactetize
lntrilnuically flh:atlonu. In. the second part we deal with
the basic properties held fibrations; fer example, any
ﬂbration gives riae to a F"n“m;\ from the fundamental

grodpoid of the base. to the * of dcal

spaéeay any_fibre map gives ride Eo & Hatural] transfobuation »
I I baqiwaen these two functors; any. map <\mn be factorized in a ’
i g LY B \ e , W8

i ] = :
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“type. - The third part is devoted to classical results of v

" fibration assoctated to.any map, . oy

“generalizes in a different direction Hurewice fibrations.

standard Wiy as a homotopy equivalence followed by a

fibration and this-fibration has the same-fibre exact
homotopy ‘type as the original map, if that map is already a’
fibration; given a fibration on.a cylinder, the restrictions -

over. the bottom and top bases have thé same fibre homotopy

Hurewicz and Dold. The section ends with a brief

i of a new pt, that of a w-lﬂlbrutinn, where

datn partif.i.en ot btne hae. A gangrauzation{ of a bo1a's
theorem (theorems - 42 and 45) to - fibrations jis given.: The
1ntxoduction of r.hu noticn oE a x—f[brntion is mtivated by

ita ‘association to any ‘fibre map, in analogy with the ' _ Tt

\ In uctien I 3 three oth?r c!. asses of maps related

to the covering are. namely,
Dolg Eibrationl, Serre fibrations lnd q'nlaiﬂ.b!atlonl. and

their main properties discussed. Each of these classes

The. class of Dold fibrations is, in'a ctrt;in-_lmnninq.r the *
clpnute‘ of the. class. of n\;xwiéz flbrntlon-y indeed, it is
cloaad under fibre holuotopy equivalenca, unlike Hurwicl ;
ﬂbrutinns, and maps; of the ‘same nbu holno:opy type as'a
Hurewicz fibration are-Dold . fibrations. Serre-fibratiops—  ~ "
keep-that important relation between the homotopy groups of -

the total space, base space and .fibre, :given by the so-called
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exact. 1 6 ; but m to quasiﬂbrationu,

which are -defined Just as.those maps for which the homotopy

exact sequence ‘haldu, ‘it is easier to check if a map x‘u a™

. Serre fibration, since they are defined as those maps £or

« # each class are also presented. . . .

which the covering homotopy property VIth respect to all
cubes 17, n20, hclds. Exanples of maps characteristic fot'

¢ In section‘II.l we present a ‘construction,

Heat,p, c. mrgan and R. Piccxnini, wluch anocinteu .to a pair
of maps a map whose domain is, the “get, upproprlately !
‘topologized, ‘of all.maps betwéen fibres. This construction

ggneralizes the usual itapping space of ‘two spaces, . -

. topologized with the compact-open topology, It allows us to

_ 'state fibred exponential laws, generalizing the.classical .

one, when spaces ate repldced by maps and.maps. betWeen spaces

with map paifs. This functional construction has turngd out

..1to be use{pl in unifying problems in homotopy theoty (cfr.

[7]) “and for studging universal Exbrations. to .

“In dection II.2 r-spjﬁ and F-fibrations are

aiscusued.r Tthy Vere ﬂrst introduced by P.’ Nay [35] to

‘rf‘xhg. spaces for fibrationn where' fibres are

not. finite Cw-complexes', arising for example in sullivan's’ -
. proof. of the Adams conjecture, and to clasuify upherfcal
Eibratiom Oriented with ~tespect to an extxaordinaty .

q:igxnall.y due tu P. Booth andthen dev:luped jointly with P._
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" cohomology. Roughly ‘speaking, an F-space is'a map whose

“fibres-are’ constrained to lie in a fixed category F.of spaces
and p-fibre maps ‘are fibre maps whose restiicticn oy each
-fibre is in F. The notion of a fibration is then K
appropriutely adaﬁ:ed to this context, and all main propeztie\;
Neld by fibrations remain tm&or Fﬂbn(xons. We show,
‘ales, “that the functional construction, as given in section

“11.1, adapted to this context give ahaluqouu r—ribm:

exponential laws. We nelude th‘xs_sectxnn with‘two results’

" aug o’ C. Mongdn. . The former: claims’ that the functional.

construction applied 'to F-fibraticns gives a Hurewicz - b
fibration (theorem 13) and the latt‘er clainn that ‘the
converse is aluc trize, vhén the mapu cong )deted coxncxde
*(theoren 16). This last result givea a bridge 'batwe‘en the .

theory ‘of F-fibrations and the classical theory of . ¥

: . “TFibrations. mung this bridge ‘and the F-fibred gxponentiul

1aw, it’ can he’ proved that, unddr mild conditions én the

spaces “involved, the main ruulu on F—fihutlcna are quiek!.y

deducible £rom the nmlogue clasuical orég Purthern\ore, .

Booth, P. ﬂeath, K Horgan and R, Picinini have ound useful

tm%.hmzy Of ‘F-spaces and’ F-fibzations to analyze the .

ralationshipa betwaeﬂ dlfferent notinnu of unlveraali/ty fox‘ :

fibrations. R g c .

R E . In section L3 it 19 shown that me randakd

0 . pmcedure -for - iactorizing any map as a -hamotcpy equivalence




,‘es‘!entially ﬂ’ip ulgtbx‘au over Ch:.s mnad.

"ncuan of t}ne chapter. where that q\mtarlon appenrs

“section of the ‘chaptef L.

'.'.ymbox nom,

followed. by a fibration gives tize to a monad on- the _category |
of mapa over a fixed upac( and’ that fibrations are 5 -
Expresuve o

exan\ples of thta genbzu notion of a monad:én a category are

p:enentad and, also, a- mceesary diucusaion o’ Moore paths is,

Convention ¢ P

f,he taxc, "proposl.tion N". means” the N~

propouué\ in e ucuon wharc that quoe{uon pears;, (. L.

ition, in the

Mproposition M. n" rigans the N=¢h. pro

"proposition LiM. N mesns- the N-th pruposition in the.Mith’

simi!ar eonnderauene apply for

‘theorems, - 1émnas, ’cu'reuuse- * s usual, v reférs. to_the

N-th item _in the- 1bliography. To‘ ampusy mtatinn the

normnlly used to denota the'compe!lticn of

iunccio{is, will' beomitted, excepr. m cases " where n@blquity

may arise. Furthermore, the ' unitary phf_h ‘donstent of a poiok - 4
Bof a topoloqicanpace B will be d-no:ed by, b. b "
» : . E L v
o B Fan TN
. : ) o R \J
. VRl = . * : y Y N i
. 7 ;
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Y.  PRELIMINARY NOTIONS AND RESULTS
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A o 5 B a
- siven topolm;ical* spaces A and B, we denote by .
M(A B) the set of aly contlnuons funcuons (£.e. maps)

A > B‘ T'hg :sét M(A,B) topologizéd ‘with the compact-open

4 . topology will be denoted by M(A,B) of B We recall t'hat the

. : campact-open topoloqy on M{A,B) has as a subbasis the sets| of

, + the kind <, v (En > B f(K):U). where Kea. is compact amd !
., UcB 18" épen; hence a generic apen set. ot IR, B) 1 of the
3 fom\ ]«,,h)n

properties of the cnmpaut—open topologys _their prcofs can be

i k. ]
.n<x3lj,Ajj . e list)here the main g

Y 3 ST

 found .in [18; chap, xu] . . ® 'y 4 3

- ‘P:nﬂsxtion 1 The fouwmg propgmes nolg: P
(3) 8™ is Hausdpres if and unly if B da Hanudorff.

nctj.ons

o . (m Given maps fiA ».B ahd g:\n ‘e, :he‘

. | m general].y, if j 15 Hausdarff and lobally m pﬁct the
I function T: + gguf‘ is mntin\.\ous. .
. ; .

' (iu) “For’ any spaces Aand B and a

15 called tha

P svalu ion maE




(iv) 1f £:AxB » ‘c is any map then the function f aeh &

£, ec® + where £ .beB + £(a,b)cC, is eéx)tinumls and is chlled

{ “the. ad]oint of f. If B is Hausdor££ and locally compact,
,then for_ Lany map hiA .+ ¢ the function )}'r (a,b)u\:a e
h(a)(b)eC is continuous and i called the adjoint of h. v,

: & Henca, when B'is Hausdor££ and locally compact there isa
T, Toe . onB-to-Dne correspondence 'between M(AxB,C) and M(ac ),

o called the exponential coriespondence’”

F (v) The subspace of s“»conusunq of the cofistant maps:,.

o, o - opiacA s e, bed; -is canonically homeomorphic tg.B,.and for
every acA the map hes? Cpia
o ‘subapace.

oY% . B

We dendte by-Top the category.whose gbjects are

topological spaces and whose mozpmsms are continuous"’

fupctions. - The law of composition is given by the usual
v g ¥ cnmponuan of f&ncuons. -n{:p is called the catégory of

togolagical spaces and mags. d '
N Given a homotopy H:AxI + B, 'we can deﬂ.ne foreach .

. " tel the map B :azns A&t} und for avery aeh the-path
H xt:I > a(a.t):B. By propositicn 1 the funccion aeA + H, eBI

il ig continuouu nnd, since I is Hausdorff and locally compact, "

. the t1al cor a glvss a

. i . ) 2
S - cor ce between 0 AXI + B and maps A » BY.

):B isa retraction onto this. 1




a homotopy of £ if g:A 4 B is another map guch that H=g,

‘ thenH Ys called a homotopy from £ to g. If %A is any
Youbset, we say. that He ia stationary on S if H(at)=t(s,0) for
every, ac§ i wety n “pared dita, e say that H is a
‘étagiénag homotopy if it is stariontd: S A, andowe eay iat
# ds stationary at aea if it is stationary on {a). If Hg=f
and H iss gtucionaxy We also say that’'H’ is stationafy at f..
W i called semi-stationsry if (a,t) i (a,0) for evew ach
.and'0<t<1/2. Given hpm;s'to;{i‘.ea H,K:AXL + B such that H;=q,

i
H.KiAXI.» B is dofined by H.K(a,t)=H(a,2t), if-

their Erodu t
o<t /2, and H, K(a't)—l((a,zt-l)," if 1/2<tq. T The inverse :

-1t 3 B of'H is, defined by H-1(a/t)=H(ait).

L. Given apartition 7'of B, that is a collection of ‘

‘\nanwempcy subsets of B which cover B and which dfe pamuse {
disjoint, let [b] denote, for every beB, -the Fnigue elerent |
“of % dbntaining Vh., We say that a homotopy'H:AXI + B is
»~stationary if [H(a, t)]=[H(«,0)] for every aeA and tel. If -

% % werines the partition ® {in symbols w=<x'), that is :

b1 el “for every bén, then a x-stationary hémotopy is ' .

' also w'-statiomary. We observe that if = is ﬂ-ne oqarsaut .

. partition of B (i.e. n—(n}) then a x-qtationaxy homotopy is *

juac—an‘ ordinary hmnotopy. If = is the finest (or discrete)

partitionof B -(i.e. F((b}lb:ﬁ)) t‘hen a w-stationary

spy is & stationary o e detined “aar1ier. '

. Associated to the, category Top s the -category HT op

defined as follows: the objects are topelogical spaces, the

‘

SR




morphisms: are Tomotopy classes of ‘maps between topological
spaces and t‘.'ne composition of mo:prrhma is BHiven by

x—.hemomocopy class of the composite Of the representatives.™

logical spaces

l-ﬂ-op is called the eqo:v of

‘and from the cagegoricu point of . View it cait-be regarded as
the, quo;ienc cat:qory of Fop with respect to the congruence
given by the homotopy relation on maps [31;p.52].

Given a map g[ E+B and a poq,m: beB we, cau

=8} (B) the fibre of p over & (puluibly — 180 sy,

any subset cf B )wrdeﬁne ehe reattiction of p aver U to be

the map py:eeE=p~1(U) » ple)eU. if £:A + B is a map we

define the gunhack of p along f to be the map PgiEg * A
Jefined by Ef—{(a,e):AxE: £(a)=p(e)} and pf(a.e)=a. The ;

pullback p=E; » A is charace‘eriud (up to isomorphism) uy

the commitativity of the square

Lo

and the following EnivaTEAL property: given any space X and

maps gy :%,» A'and g,:X +.E such that £g,=pg,, the map

gixeX » (9)(1).92()(\)):5;15 the only map such that.gﬁpfg and

gz=p‘zg. A lifting' of the map £iA + B over piE » B is any

map ¥1A » E such that £=p¥; a 1ifting of the identity map
il

"% *

3




IB:B + B is called a section of p. .The set of all liftings

of £ over p will be depoted by L(f,p) and the get of all
J sections of p by Sec(p). Two 11ft1nqs F and- ¥ are said to be '

vertically homotopic if there is a homotopy meI + E. from 5 *

E to F such that pi is* thé homotopy stationary at f, that is,
pi(a,t)=f(a) for every aeA and teI. There is a oné-to-one cN
correspondence between liftings of £ and sectiond of pg given

by a!ancxatxng to the lifting ¥ the ssction nen’s

|

|
(a.f(a)):!: ; under this correspondence two liftings are ]
gy vertically homotopic if and Qnly df their cozrasponding L !

 Bections are vertically homotopic. .

e leen maps p:E » B and p':E' + B"" a map. Eair from
P tc p' is a co\uple (£, g ) of maps £~E +E' and g:B » B' such
that p'f=gp, that is, such that the diagram

S e £ *

w1 E ~——) _E'

p/i/ - lp,. - .

commutes. 'rhiu" is equiyalent to thé“requirement that

i : £(Fy) :Fé(b) P every belmp indeed, fran the de inition of a




every eeE.\

‘ a map pair rom P to p . The cumzo-uion of the map pair

(f.g)zp +p' nh tite map pair (£',g'):p' » p* ia the map ’

pair\ (£'£,q + p". TWo map palrs (£,9) and (f‘,q ) trom

|

/ prto p' are sa to be homotopié “if there is a homotopy

"H:ExI » E' from r«( to ' and a homotopy KiBxI > B from g to

9' witn pla=K(px,), that is, such thdt the following diagram
P : !

commutes Lo

3 <
W‘é*uuy that: (H,K) is a homotopy pdir from (f,g) to (£',g').
The map pair (f,g) is said to be a homotopy equivalencad from
p,to p' if there exists a map pair (£',g') frem p' top such
that (£'£,9'g) 1s homotopic to (1y1;) and (££%53g )\-,\&

homatopic to (1g.1g,), in which case p and o' are, pald £ .

have the 'same homotopy type.
. ° Given mapu P:E + B,.p':E' + B! and ng +'B', we ¥

call a map £:E + E' a fibre !Erelux’ving),mg from p to p'




. for f£=

e 14

over g if p'f=gp. We denote by. 'Mg(p.p') the set of all Fibre

maps from p to p' over g. Two fibre maps from p to.p' over

v

g, EM':E +E', are said to be fibre homotopic over g’ -
written £= £, A the map pain (f,g) and (£f',q) from P to p'
are homutopic by a hemotopy pair (H K) with K statio ary at
o in other words, £ 'snd £ are fibre homotopic over e
there ‘exists a homotopy HEXT > a8 fromMé‘ with
pﬂ(e,t)—-gp(e). that is, vertxcal with respect to p'. If

B=B' and o=l we will speak of fibre maps ovef B, of, fibre

homotoples overs and write A(B(p,p ) for Ml‘(p,p ) and £ae

'. JIf f._B »E' is a fibre map from p to p' over B

and g:E' > Evis a fibre map £rom p' to p over B; we say that

g is a left (riynt) fibre homotopy inverse for £ (over B) if
£ (g

of* (£g) is fibre homotopic over ). g is said to

be-p fibre homotopy inyerse for £ _(ovet B) if7it is both al
left and a right ‘fibre homotapy mverse, in whic‘h case f is
called a ﬂbre hon\otagx_«mfvalence over B and we say that p
and p' have the same: £ibre homotopy type (over B). If B is‘a
one-point space ‘the above- definitions reduce to the usual
notions of homotopy theory. . ¥
We denote by M the category whose objects are maps

between ‘topological spaces and whoss morphisms are map pairs

-as defined earlier. The law of composition is given by the

compositiBh of map pairs. M is called the category of maps
oo Vo v !




i
!

.
and map pairs and from the categorical point of view it can

be regarded as the cn_beg‘ory of the morphisms of Top. ~fer a | v
fixed topological .che"a, the category Top, has as objects

maps with target space B, as morphisms fibre maps over B as

defined earlier and composition of morphisms given by the .
ordinuy“'componuon of maps; Topy is called the category’ of .
maps oyer B and it can be reqaxded as a ot £u12) ’ -

“subcategory of M.

-Progonition 2 Given mapn Pp:E *+ B and p':E' + B, let f:E > E"

# E be fibre maps over B. If g is a left fibre .

nd. g, '
homotopy inverse’ for £ and'g' is a right fibre homotopy

idverse for £, then g and ¢' are fibre homotopic lover B and

moreover f 15 a fibre homotopy aquxvalence over B with fibre

Remark 3 1In proposition 2'the case in which B is a one-point

‘homotopy 1nverses g and g'. 4
Proof From gfa;l, and fg'=1., weideduge that

S o 5
g=glg. Eq(fg )=(g£,g Eg =g'. Hence, fg:Bfg'kBIE' and
g'f=pgf=l.. So £ is a fibre homotopy equivalerce oyer B

with £ibre homotopy inverses g and g'.

space i of particular interest and will be used in the proof
of theckems 2.42 and 2.45. : >
’ ‘ * L ' L

Proposition 4 ‘Let p:D » B and q:E » B be maps of the” same

fibre homotopy type over B. 'If LA + B is any map, then the




pullbacks of p and q along % havifthe same fibre homotopy
type over A. 2 E

\ %

Proof Let p':D' +A’and q':

and q along 1, re-pm;vexy. Let £:0 .+ z ‘be & Fibre huwtopy

homotopies from gf to 1y ny £rom fq to JB i .reupaqtiyely.

" Define £* x(a,d)m' » lg.t(d))vx“ g's(

ce)eE’ (a.g(e))nn'

H':i(a,d,e)eD'x + (.,H(‘a,c))\m‘ arid 'k’ (a,0,t JeB'xr

(a,K(e,t))iB' “THén §' ‘and % dre fibre mapq"cvatl\ and H, L=
and K' are vertical hpmo:opiés from g £, t0' 1, and ‘erom £'g' .
to 12" reupactivaly. 'l‘hh éroves that p' and q' have the-
same fibre homotopy type over A.

v . g . -
Remark 5 The pullbacks of a map p:E + B along two.homotopic

A+ B may not have the same fibre hamotdpy type

maps £'
qver A. Simple examples of this kind can be obtained by

taking A={a}, a one-point space, and f' and £' such that

‘£'(a) and £"(a) can be joined'by'a path in B, but their =

" anti-images by p have different homotopy types. We will show

in the next section that this cannot happen when p is a

fibration.’ 5 7 4
Let p:E + B and pm maps, £:E +E' a fibre

map over B, % a partition of B and q_1B *+ B/% the quotient

. A dnnote the pxllbacku of p




map determined by % We say that £ iy a =fibre homotopy
equivalence if f, régarded as_a fibre map over B/x fromg p
to q_p!, is a fibre ‘nomotopy equivalence.

. . ;

In other words, if we denote by bl the unique element’ of x
containing beb, then fEhE' is.a w-fibre homotopy
equivalence if there exist — HiEXI" » E and
K:E'XI +E' such that ) o

(1)  Cpgle')I=[p'(e')] for every e'eE's )
(i1) He=ef, H,=l; and [pi(e,£)I=(p(e]] for every e:f and tei;
(111) Ko=fg, K;=1 )

£+ and [p'K(e’ ,t)]=[p'(e")] for every e'es’

and tel.




L T the pidire Bis
- parthndd tythe
« /k«\mta'\;,ﬂm,@‘, .

We obserye that if . is the coarsest pérzizicn S B then.a
=~fibre homotopy equivalence is just a homotcpy equivalence.
For x the fineét (or discrate) partition of B (i.e. C
.%={{b}|beB)) we have the notion of a- fibre hom‘)topy_ .

equivalence. Given any mhp £:E + B and a'partition x of ‘B,

we.say that £ is'a x equivalence if' f,. reg, as a

fibre map-over B from f to 1, , “is a s~fibre homotopy T
“_ equivdlence: co h

a S . 7




In. other wordd \a-mp. fif +°B is a =homotopy equiva

C me’n ‘exist mps @B + E, H:EX + E‘and KiBXI +8 with the

fol lowing propertielx

B
(1) [tg(b)]-[b] for every chy
) (u.) H,-gf, ﬂ,=1 ana [m(e,t)]-[ﬂ-)l for every ecE and_
o
tely : ol

=1; ana [(X(B, £)1[b] e vty A £

- (idd) x,,’-:g,_'x




We observe that i x is the coarsest partitidn of B the

notion of n—homotogy equ;valence coihcides with t‘he usual

notion of homotopy nqulvalence. .

Associated te a map £¢E + E' ‘is.an mecnnnt space 4

Arlle, e Ty «(0)- £(e)), First introduced by Hurevicz in
[25])

There . are prcjection Haps pr: (e,a)sA +'eek ana_

. s
Lpra(e, a)ehe + we'l; a decomposition’ map. p: " s S -
(al0), £alsh, , -an “inclusion' map \iee€E ¥ (eirp(e)mf and'a. °
map‘?:(e,u)m v el . 1f w.,;s" -> d‘enoﬁas the - :




and the cynnder functor -xI is 1e£t adjoint‘ to the path
space functor (-)%. ¢ - a .

Inthé casé £:E +E' is a fibre map over B eom
pr +B to p':E' + B there 1a a madification of the above
cﬂnstmction, which yields Ag when B.1s a aneﬁm;nc spal:e.‘
This ds tne dpace R (5 0) e T (#(0)=e(e) ‘ana

a venical)c A .

) Rf age the maps fx(e,a)ei(f > u(1)u‘:' and.1:eeE > (e,’?‘))mf

,

;A8 a fi:st example of the usefulness of Re o therﬂ is the
fonmxng zegqxc, which will be i.mproved vy p:opeuuon 8.
Progosition 6 A ﬁhre map frE + E"over B admits a right
fibre homotopy lnvern . and on(ly if

lacticn. 2 . P o b o T - ?

Proof l:}t giE' + E be a right ﬁbu homot.opy, nwene for E
-and flet. KiE' xI + E be a varticul hamowpy tmm £g ‘o 1

1ntroduced by Dold 1n [13]. 3 A!lociated with *




Define siE' > R, i s(e )= tg(e YKy )i s dg we.l‘l defined"

since K (0)=K (e* £0)= fg(e ) .and the path K N is Ve:tlca‘l,,

furthermore, s is a* sectioh of £ because 3 i .

'il)=e'. Convermly,Alet

ectl.on of % and define giE' » E and .

Es(e! )=f(q(e )X, n) = -,(L)‘K(
§:E" Hﬁf be a
‘k B > E! R4 g(e )=pns(e 2 and K re .c)=[przs(e RICVE . -

Proof Suppose £is & f:.?r homa opy s;u:.valehce ‘over B

. and Jet' giE' +E ve a qxb:e h otopy inveme f;: £ with,

. ach path '« in B and: sI/the path dFes el » a(u-:)g)sz /i ene &

Euncticn (m:):r: Tug o LR &t so defined is\continuous

‘becausé its adjoint is ‘the map (a,t0) 8’ »zxxx + F((l-t)!)m A

< The path «

€ follmlu the pétli a fx‘Dl!l‘ a(0) to l(l-th irl




i
¢

% . . g
§:E' 5 Rg and JiRGxE: » Ry by 5(a‘)=(g(e'),¥¢?‘e"')) and
o teragy) if 0<t<l/3
Ilesa,e)=y (Hle,2-3¢), Fi(,2°38))  if 1/34e2/3
(ga(3t-2),Fga(3t-2))  if 3/3cecr

d We have that: ~

(1) F3(e")=fg(e’) and so Eg(e’) lies in the same fibre of

. e', since.f and g are £jbre.maps over

o) L) g 5 e e =(ga(n) Faell) )=5E (e, o) ana
% ali-36). . ifr0ckd/3
Ee,a,t) =Y £H(ey2-30) - 4f 1/3ct<2/3 .
L Sy . A L
. B F e : fga(3t-2) ° © Af 2/3<tal

0.3 is a homotopy from 1, to 3% and E7(e,qjt) lies in the
J : : 4 .

ibre of E(e); ¢ ot -

o .. (1) the map KiE'xI + E' ‘is’a homotopy from EFg=tg to 1,

te . _* and'K(e',t) lies in the sime fibre ofYs'.) i




] .t 2

Herce, T is a =-homotopy equivalence. ,
S . suppose now that T:iR, +E' s a n-homotopy
equivalence, so there exist naps g=g',g"):E' *:Rg
J=(3",3"):RgxI + R and L:E'xI”+ E' such that:

(i) g"(e')(1) ( =Zg(e')) and e' belong to the same fibre of
p's i .

(ii) J'(e,a,0)=g'(a(1)), J'(e,a,1)=e, J"(e.n.u)_-q“(ﬂ(l))'.,
. 3"(e,@,1)=a and all points J"(e,¢,t)(1) lie in the same ‘fibre
of a(l); . | .

§FL

s *

;
(141) Le',0)=g"(e')(1), Lle',1)=¢" and the path L, lies in
the shme fibre of e'. " :

et e s AAND




e ) B b
It follows from these properties and the definition of Rg
, that the path g"(e') lies in the same fibre of e', all ghe
patha 3'(evart) lie in the samegibre of a(l) and J'(e,a,t)
lies in the same f£ibre of e. The map g'sE' + E is a filre
+ map over B, a}nce p!'(e')=5‘fg‘(e')=p‘(9"(e')(0))’=p'(e’}}. if

we define ﬂ:(é.t):zx} + J'(e,E(e),t) eE, we have that H{is

tifuods, H(e,0)=3'(e,F(2),0)=g'E(e), H(e,1)=3" (e, F(e),1)=e

. and His vertical, Moreover the function K:E'xI » E' defined

,g)-g‘(;')(zt), if 0<t<l/2, and K(e',t)=L(e',2t-1), if
e')=fg(e'),

K(e',1)=L(e',1)=e'' and K is vertical, Hence f is a fibre

by K(e"

'1/2¢t<l, is continuous, K(el,0)=

Tomotopy equivalence over B with fibre homotopy inverse g':
h ! "

We now introduce a class of maps which was shown by

Dold in [13] to play an important‘role in local-to-global

problems. A map p:E + B is called shrinkable if it admits a
section s:B + E such that spsBlé. “Equivalently, 4w is
shfinkable if p, regarded as a fibre map over B from p to 15 ¥

is a fibre homotopy equivalence over B. +

3,




- given by B=A UA,UA3uA,, where A;={(x,sin(l/x))|0<x<k/x}, -

f# Wit e alesrste partition of B, Q*en the n:ht;tnt;t;o;;y ;y
equivalbnees p:E T B as defindd, earlier, are just thd 5
ihrtigabie "maps’. -

.Exam) g'e Let F be a ccnt’racuble space and let K:FXI + F be a
nxed defomatxon QFF ta SeF. Thed, for every space B the. *

¥ projsctian map pry:BXF + B 1g shnnkable- indeed,

sxbeB + (b, eBXF is a ucuon and 1 g KBEXL > BXF defines ai

vertidal ﬁumotopy from the identity of BXF to a»pr,.‘

It follsws frop the definition that a shn.nkable .
ap is onto. and that all of its fibres are contraccmle T

- opaces. But there are. maps where each fibre is eom-.ucuble, i

but yet the map is .not snrinkable. For-example; let B ‘e N

the subsst (the so-called "polish circle") of the

o= {0 /) |-2<y%0), Aq=((x,-2)]0€x<1 /b, By=((0,y) [-241)

and let bg=(0;1), P(B,by)={as’s a(@)=by} and pip(3,by) + 5 '

_defined by pla)=a(l); th:e‘n it can be showiisthas a1l Fibres of

..p are contractible spaces, bit p is not- ehrinkable: .
Shrinkable maps can’ be regarded 5 ‘wcontractible!

objects xn the category TwB By a "contraccib;e“ object in B

Top we meah ‘any” space E which has the same. homotopy type as a
_ one-point space (*), which is, of cullous, & EeLHIRAL ‘GoTedE

in Top'(i.e. M(E, (*}) had exactlyone’ element), Generalizing

this notion to Top; , we have, that'a "coptrdctible’ object-in.’

Topy is any map p:E » B which has the samé fibre hompcepy e

1




o5

‘only if E:R, + E' is shrinkable. %

"application of proposition 7 and ‘corollary 2.47.
. ¥

i ‘27
type over B as_the idéntity map 1,:B » B, vhich is, of
course, a termtinal cbject in Topy. g & v 3

A nice and useful relationship between fibre
homotopy equivalences and shrinkable maps is provided by the
following proposition, due to Dold [13; lemia 3.4]. " This
result will he applied in the proof of theorem 14, the main”
result of this section. .

Proposition 8 ‘Given maps p:E + B and p':E' » B, a fibre map
f:tE +E' :ovar B is a fibre homotopy .eq’ui'va_lmcg over B if and
Proof .Dold gave a very complicated proof of the -

shrinkability of ¥ when f is a fibre homotopy ’quivalence.

"Our proof of the above equivalence is an: immediaté

Since

" corollary 2.47 iiivolves the notion, of -a's-fibration, it /)

appears in section 2 because there it finds its natura¥

setting: of course the proof of corollary 2.47“ls independent

Of the result we are proving.

- We now discuss some notiong and results which will

be munxy' ‘used. in section’2, particufarly in the proof of the

» Hurewiu unuormintiun theorem. BeYore, we prove the

iollewlng result. o A w’

Lémma 9 1% :,,~...,1nrx.~ R are real-valuéd maps on a

topological space X, “then:

(1) the function fiX + R defined by £(x)=sup(£;(x). :'p(x))




\ .

is centinuous~

v . (4i) the functidn q~x + R defined by g(x)=inf{f(x),....£ (x)}
. o, e continudhs. L E *

Proof * gi’lc of all, we Observe that ‘since we are ‘dealing

w with finite sets of numbers f(x)=sup(fl(x).---.f (xYe=>

o f (u)<f(X) fcr every - .

rn and there exigts Ie(l,,..,n)

such that f(x) £ (x) 3 xlanly g(x)=1nf(f)(x),...,£ (x)}ems v

, ) g(x)<£ (x) for .every i=1,...,n m: there exists iz{l,...,n}
su¢h .that q(x) f (x).

(i) It 15 enough o prove that for every 8eR the sets

r‘(]s,+-[) ,and '-1(]-w,s[) Sre open. For the former we have
& Ay

-[)=Url(]a,+-[)~ ecanse’ soflx) o shany,

that rl(]s,

exists some ie{l,...,n} such t)]at s(fi(x)- E‘or the _latter we

have that rl(:—-fa[)=f\"q‘z--.a[) because : 1
=1 ¥ ¥
£(x)<s <=> £ (x)<s for every i=l,...,m o
, »




(ii) can be proved either independently from (i) following a
similar argument or using (i) and the observation that

inflE)(x), ..., £, (x) )==sup{-£, (x),. .., £ (x)). Indeed,

g(x)=4nf (€1 (x), o0, £ (x)) > g(x)<E (1) for every i=l,...

and there exists 1e{l,...,n) such that

g(x)=£ (x')<=>—fi(k)<-g(x) for every i=l,...,n and there

. —~
exists 1ell,...,n) such that -g(x)= £ (e ] R
~g(x)=sup(=£1(x), vei=£ (X0)e . S |
. ) !

‘In- the ‘more general case Of any meily (fj[jw) of . ’
real-'valued maps bounded above, we have only that £:xex » :
npiey (x))}eR is lower semicontinfious,” that is, £10steD) o Ty

., open for every seR. Indeed we have. the-folluwn:q

counterexample: the sequence of maps (£, [neN} defined by

o if x<0

!
+ Y nx if 0<x<l/n 1
1 . if ©l/n - i

{

i

has as its supremunm the “unction 0 on x<0 andl on %0. ./
14 - -
&Ny A A . ?

|
l
'
|
I
|
if

o 1ln 3 2 4




: similarly if (£;]3ed} is any family of ceilovilied maps /A
! .bounded below we have only that- g.x:x - §nf(f (x)}er is upper
semicon;xnuous, that is g~1(]-=,s[) is Vpen for every seRr.
Indeed we have the £ollowigg e: the of
. maps (fn'nr_N} definad by : N ~
3 o 0 1£ xc0 .
£ :XeR + -nx if 0¢xci/n ’ . [~
- 51 if x1/n .

_ has. as its infimum.the functlon 0 on X<0 and -1 on X>0.

4y 2 4

In a topolégical space X an open subset U is called i

a cozero set if there exists a continuous function
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e:x » [0,1] such that.U=c"1(J0,11); c is said to be a i
numeration of U.. Not any open set can be a cozero.set. For
example a cozero set U must be an F _-set, that is the union d
of at most countably many closed sets; in fact :

l !r‘[l/h.l] If X is a normal space then Urysohn's .

theorem mplles that U ia a cozero set if and only if it is

an F -set. In fact, let u-Uc . with C_ closed and

c,sc,_.. . and let fn:x » [0,1] be a continuous function such 1
. : < %

that £ (x)=0 for every xeX-U and £,(x)=1 for every xeC ; then

£(x)= I £ (x)/2" is well defined and continuous. Now
n=1

vzE1(30,10), because fram £(x)>0 it follows that £ (x)>0 for
some n afid hence xeU. US£-1(10,1]), becausevif xeu it
follows that xeC_ for some n and hence £, (x)=1 and so
£(x)>1/2".  From this observation we have .that in a perfectly
normal space, which is by definition a normal space where
each open set is-an F -set, any open set is a-cozero set.
‘Metric spaces are perfectly normal and in‘this case

the metric gives a canonical numeration.for each open set.

In fact let (X,d) be a metric space. We recall that for any.
subset ASX the function dpix&X + d(x,A)= 1nf(d(x.a)]asA)aR is

continuous and satisfies d (x)=0 if and only’ if xeh

[18;p.185). Hence if U is an open subset of X the map




so a nfmeration of U. -

p— ]
¢

Example: X=R and U=]a,b[. In this case \
- ) 0 if x<a or Wb 5 f
5 q‘_u(x)a x-a if a<x<(a+b)/2 //

b-x if (at+b)/2<x<b .

g
' £ .
: g e .
3
& i v ¢ . 7
A i )
| . L Su= -
. : .
'
= ~ . \“ »
. § L S b
h ' _

The next.proposition states that cozero sets behave well
. under Boolean operations and that they transfer their g ~

property to the subbasic Sets determined by thém in the path

3 - space.

‘Propoition 11 (i) ‘The intersection of finitely many cozero

sets is a cozero set;

. ) f s
(ii) the union of any locally finite family of cozero sets a -

. . "' is cozero set; 2 " %

SOSE I




(iii) 4if U is a cozero sét in X and KcI a compact; then the

subbasic open set <K,U>cX' i a cozero set. -

Proof (i) If Uj,...,U are cozero.séts with numerations
Cysee.ie, Tespectively, then c=cy°... setX » 1 is such tiat
n §
e-‘(Jo,u)ahc-i‘(Jo,u) and hence ¢ is a numeration of
i=1 % : .

Ui nly .
(u) Let U= (uj]ja!) be a locally finu:e family of cozero v

sets in X and let t,:X + I be'a fixed humeration Bf u»j, Jed.

Defife crxeX » ;uﬂc.(x)):z. G is well defined because each
¢y is Bounded in'I-.matecver At 1 conunuous because if ex
s a fixed point ana v a neighbouzhood of X meeting only an

empty or Einite ‘set of elements of u, aay (u.

then, for every xev, c(x)=sup(c (x)} eup(o 5
3

and Hence continubus on V by lemma 9.
(iii) We.can exclude the case K=0 whir:h qxves <K, u>=x . Let

c'i( +1I be'a numatutlcn of U; Uyllst construct a continuous !
= o

function »1 such that ='f0,11)=k,U>. For any zex’
we define Ec&)ainf(cu(t)'silcd(). G is well defined since for

wny @ the set {ca(t)eI|teK) is of coun'e bounded below:

* mox’enver,/lince K is compact, for any @ the set fealt) :Ilm;u)

is compact and so, “in pan:iculur, closed and hence for any a

. there éxists some toek such that c(aj=caltp). It is essy to

see®that c(a)>0 if and only if ae<K,U>; in fact, if c(a)>0 it




Fe

' S ;
fpllows that Ca(t)>0 for every teK and so a(t)eU for every .
te; conversely, if a(t)w for every teK then ca(t)’0 for
every teK and herice ()0 because-E(a)=ca(ty) for some tyeK.

Now it remains to prove that c is continuous and to this end

“4¥ ‘will be enuugh to shw ,that for any sel the set

(ud{ 1 c(a)<s) is opéh‘ and that the set (ur.x : c(u)<s) is
closed, For any tel let wt:X +X be thé evuluation’ map, atét
t. We have that ¢(w)<s if and only if theré exists some teK
auch that ca(t)ts; observing that ca(t)=cw () we get that ° .,
{aex™: _c(w)<s)=g(u€xx:\\c_@t(u)<s), which.is open. To préve:
that (eex®: S(z)<s} is closed, - consider the evaliiation map

wx!xI > X and. the closed subspace of X'xI :

(o, ) exxI: cola,t)<s); it is easy to see that

tax™: Ta) ¢s)=s(c x ), where = is the projection on Xx'. <&

4
i 18
13 < v
0 \ 0
. =
. 4
’ . .
i . )
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In fact c(a)<s <> there exists stme tek W that ‘ '
cu(a,t)-cu(t)(s <=> there exists aome tzK such that :
(a,t)E!<=) asn(csnx_ ). To conclude we have only Yo X
observe .that v'cs‘)ﬁxlxx is rlosed and ‘that 5 4s ‘a closed map
sinceql is “compact. - - L g & :
' . < am b ol .
*proposition 12 (1) u:'u:(u']n;n‘) be a covering of X,by S |
cozero, s'ev. i then there is'a: 1o:ally finite coyering . t
=0 IntN) of X by cozero sets_which' refines: us E ’
(31) | Let. (U IneN} pe’a sequence ‘of locally finite families E }
U= ljm } of cozerd isets of X such t‘hnt U-(Uj[j;J UJ v 3 }
covers x. (For convenlence we are assuming t.hat G.he eets In
are pairwise disjorit). . Then there exists a locally e1nite
) ‘refinement = lij) of by cozero sets. o, ) % i
Proof (i) Let ‘X + I be-a numeration of Uy.''For any TomS i
‘positive sel peﬂ.ne u -!x:x: cp(x)<s); u is a cozero ‘set.
~‘because the continuous functlon xeX + max{(0,8-c (x))u‘ sa, ;
numeration of it. : . E 'y \‘ . " 1
5 “ L ) .
.4 5 :
% , \
3 E = .W]O‘,S-c’) )
o T o ;




' cy(x)<i/n 'sor evéry i=1,.

: fxn!tenesa tnke xex” nd 1e(: *’1 bé ‘the

e W o P 5l/n A CRRR b
Delfir}e W0 Q 0;'% 1 W, is a cozero set because it is a
’ ! 3 : s
tinite intersection of cozero sets. Note that W ={xey :

-1} and that WU . The

sequenc&'wl,w” . covers X: ‘in fact. given xéX let U, be the

firuﬁ element ’hﬁza x. appeats, then " To show local, 3

:st elemem: uhere 2

appen—s, let nnt“ ve t‘he l,eagc integet such that 1/nn<e (x)

J 1(3’ i/nn) ’Lhen v u -'neiqhbauthcod of x




ror e )

i
|

‘sequence s-(s nlneN) covers X

v

since each Uy is a cozero

(ii) For any nev let § =) uy
. Y
set and‘u is locally Exnite, we have that each S is a

cazero set. Purthermcre, since U covers X, we have that the ™"

“We can therefore .apply (i) to §

to obtain a Yocally fhute cover (w lncu) of X by cezero sets
with W cs for eu:h n. -For each jr:! let uj hL A wheze n

| and ‘le

is the upique incegqx luch ‘that jea,

L Jed

jer <7 such that “”j“"n""ﬁ' It remains to pxm that U is’

locally finite. For 4 fixed xeX, let V be a neighbourhood of

x such tat (neN: VoW )} is finite, say (n),...,n ). For

_every Xeliieesp let VSV be a neighbourhood of x such that

v -
s

v, nu’ed). *Then (szx Yiou = " ¥

(t‘J-'
el

and observe “that (nm v' nH H)clne: VoW #J) and that

-V, nujﬂ) 1- -wty or finite. n-ﬂm v'-v,n...nv

(er : v nujtw:(jrd 3

U(j\\ : v'nujq)-u(jd R nujwyc e s Vv g
and so the set Uc.n v‘nuj*ﬁ) is finite. ‘

an open cover ‘of ‘a ‘space x,;\. called numerable if

it is laeauy tinlt- ‘and uch element of me cover is a
-

cozero set.
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3 - The proof of the following result can be found in
. "t [13;cor.3.2] and will be omitted. ‘To give it here, it would

first require a discussion of the section extension Sroperty
\ ‘. . . introduced by Dold in that -same '.pa;er. Mr.ho\:gh t;xiu N
' | propérty has some technical advantages” it will ot -be needed *

‘in this text.’ v

N .'Proposition 13 Let p:E * B pe a maps If B adnm:/a \ N
. *  numerable cover, U=(U} such that py:E; > U is shrinkable for .
- every Uell, then p is shrinkable. i ™

et ftE +E' - !

/be ‘a’ fibre map over B.. If B admits a numerable coverls= (U3} S O

such that £,:E; » Ej isa fibre homotopy equivalence over U’ :

. for every Uel, then £ is a fibre homotopyfequivalence (éver

. . s 3 . . -,

! y Proof Consider f nf > E'm we 'have that for evety U

?‘1(5')=n and so’ the restriction 'of ¥ over, B is | W
f \Ef

?;,” fu s.,_', Fiom the hypot‘hésis and propcsiuen 8 we deduce

that for every u:u the’ .up ¥ s ehrifkable. On.the other »:

hunﬂ, the open co\(er (E |UE‘I) ‘pf B ig numeraﬁle bacauue L7 is

~ . _numerable. Hence, w pmpositlon 13, ¥ is nhrlnkabJe and sp, -

by p:opositiun 8, £ ia a Eihre homotapy equs,vaxance over B. 5
,

—




properf:y (cHP) 'with respect to the sgace X if for gvery map

2. HUREWICZ FIBRATIONS

Y e e

A map p:E + B is said to have the covering homotopy

3

(£iX > E and every hométopy HiX<I + B of pf, there exi.sta a
hamdtopy HiXxI + Eoaff uftmg (;-e. covenng) H Lhat Jis

xn ot.her wards, given any commutauve diagram (J.gno:e

i

-
wxi—->H 55

we can fill the dotted arrow by a homotépy making 'the

_ enlarged diagram"tommutative. p is said to have the

property with réspect’to the couple (X,A).

if for ‘every map £:X + E and every homocopy HiXxI » B and

(ignore the doh,éd ;‘éow) -

H sAxI + E such that Hy=pf, (H )HHEIA and pf, [, =H|AxI, t‘nera
exists a lifting of H, say H:XxI + E, such that Ho=f and

In other words, given ‘any.computative diagram




i . ~ we can f£ill the dotted arrow by a nmcopy making the -
enlarged diagram commutative. . ‘e :
L4 @ - Now let GiD + X be any map. Then p is said to have . .’ N
- the covering homotopy property with respect to the map q if .
for any map pair (£,9) £rém q to p and homotopy H:XxI + B of X
g there exists a-homotopy H:DxI + E of £ such that %
ofisH(gxl;). In other words, given any commutative diasrsn
v (ignore the dotted arrow) § -
\?‘nxl -~ % B
. . q 1y P ) & Lo~
1 _pa H i -
= x/—'__‘?__\_.‘a N -I‘/
. we can fill the dotted arrow by a homotopy making the
. o ed diagram c ive. Now let A be ageubset of X and

let q,:D, + A deote the restriction of q over A.. p is said
i *

B Lt have the covering h property with respect to (g,q,)

if for every map pair (£,9) from q to p and every homotopy

H . HiXxI + B and fiysD,xI + E such that Hgmg, piy=(H|AXD)e(q,x1;)

and (i, )n-l]A, there -xucu a homotopy HiDXI + E of £ such

that ph=H{qxl} ) ana H[n xt-ﬁ In other words, given . any

commutative diagram (ignore the dotted arrow)

U ) S




L]

B

¢ we can £ill the dotted arrow by a-homotopy making the
‘enlarged diagram commutative. .
Proposition 1 For any map p:E + B the following properties
are equivalent: . '
(i). p has the CHP with respect to all spaces;

— (ii) p has the CHP with respect to allymaps;

(iii) p has the CHP with respect to all pullbacks Pgt
of p along any map £

: + B
Proof (i) =>(ii). Let q:D » A be any map and suppose given
.| the following- commutative diagram (the filled arrows are data

and the dotted arrow.unknown)

|- PR .
: 1\°"an/ i
!
| q @y p




. o

From it we can extract the commutative diagram
p—t £ s
' ~
. -
.4 g X
1o v P
- . : A
> s
il H(qxlI)
DXl ——————=——3B

The existence of H now follows from the hypothesis.

(ii) . (iii). \If p has the CHP with respect to all maps; in
particular it hal the CHP with respect to all pullbacks
.bE:Bft;x, with £:X + B any map.

(4i1) = (i). suppose given the following commutative

aiagram

F o
xr—H 53

and from ‘it co}&ldar the commutative diagram




simply a fibration, if it,has the CHP with respect to all’

AL/
v OURE

.

-
where the existence of H follows from the hypothesis. Then

H ﬁu(ux.f)uxrnxu + E solves our initial problem; indeed;

pi=pofo( (1, €) xlp)=He (py x1p)e ((Ly, £)x1p)=H (1yxl )=h and

Aoty 0)=£.

o ((Lys £)x1)eig=

A map p:E + B is called a Hurewicz fibration, or

spaces. The importance of this concépt lies in the Pact that
if PiE » B is a fibration :i\en.'e liftability up to homotopy

of a map £:X » B, that is, the existence of a map an £:X * E*

- et *;S:/\

with f=p¥, is equivalent to the strict liftability of £, that -

iis, the existenck of an ¥:X + E with f=pf.” Indeed, if p is a

~ tibration and ¥ is a lifting of £ up to homotopy and =

H:XxI + B a homotopy from pf to £, then H can be lifted to

H:XxI » E and i, gives a stpict lifting of f. He,

liftability of £ is not just a property of f but o:

homotopy class; 8o the lifting problem over a fibration can

be tackled with the tools of algebraic topology, which are

generally homotdpy invariant.
A map piE + B is called a régular fibration if for
any map £:X + E and any homotopy H:XxI + B of pf there exists
a nomotopy fiXxI + E.of £ lifting H such that il is stationary:
at every point at which H is stationary. Not all fibrations .
are regular. The first correct example of a fibration which

is not regular was found by P. Tulley in [43]; in that paper




t

“are also given sufficient conditions on the space B so that
all fibrations with base space B are regular.

Proposition 2 If p is a fibgation the followind properties
hold: '

(i) p has the covering homotopy property with respect to
all closed cofibered pairs (X,A);

(ii) p has the coVering homotopy property with respect to
all pairs (q,q), where q:D » X is a fibration and (X,A) is a
closed cofibered pair. .

Proof (i) Lf (X,A) is a cofibered pair, Xx(O}lquI is not
only a-retract of XxI, but a strong deformation retract. . In \
fact, let r:XxI + Xx{OJuAxI, be a retraction. For evéry !
(x,t)eXxI, the,map scI » r(x,ts)eXx{0} AxI is a path from
-r(x,0)=(x,0) to r(x,t) and hem:; the map saI’ »prrix, ts)eX is
.a path in X from x to pr r(x,t). Furthermore, for every
(x,t)eXxI, the map Bel + (pr,r(x,t)-t)s+tel is ;path in1
“From £ to przr(‘x,t).‘""l'hen the map D:(x,t,s)eXxIxI +
(pr,_r(x,t.){(p=1:<x,t)-€)s+t)gxxx is a'umzwﬁaﬁ{n\ .
retraction of ¥xI onto Xx{0}uAxI sinte D(x,E0)=(x,t),
D(x,t,1)=(pr r(x, t),prc(x,t))=r(x, t), D‘(x.O.u)-(x.O) and

D(a,t,s)=(a,t). 5

r 1o Z RO
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We then observe that, since (X,A) is a closed cofibered pair,
there exists:a map ¢:X + I such that A=¢"!(0). Indeed,
define ¢(x)=max|t-pr,r(x,t)|: we have that

tel .
¢(a)=max|t-pr,r(a, t)|= max|t-pr,(a,t) |=max|t-t|=0 for every

tel tel tel

acA. Furthermore if XxeX-A, since X-A is open and r is
continuous, there exists a neighbourhood V of 0eI duch that
r(X,t)eX-A for every teV: 80 $(X)#0. Using the above map
X p T wit)yq—l(o)-n, we cn; conatruct‘:_‘a map:yiXxI + I with
that §71(0)=Xx{0}uAxI putting y{x,t)=te(x). We now can appl:Y
theorem 3 of [4l] which claims that a fibration has'the -
relative lifting property. with respect to all couples such
that the subspace is-a strong deformation regract of the
ambient space and such that there exi.ut.- a function on the
ambient space into I whose zero set is the subspace. Indeed,
our previous considerations say that (XxI,Xx{0lAxI) has
these properties; so every homotopy H:XxI + B can be lifted
to MiXxI » E with prescribed restriction on X«{0JuAxI.
(ii) Giveén a map pair (£,9) from q to p and homotopies

HiXxI » B and |

At
consider H(gxl;):DxI » B. We have' that He(qxl ) s =t ioe q=

xI + E such that pﬁA=(H[AXI) (qAnI),.
9q=pf and pii,=(H|AxT) e (g, x1 )=Ho L5, oqy xl =Ho (qxlp)edp | o=
e A
He(qxl ) |D4T. For theorem 12 in [42], sinde (X,A) is'a
cotibered pair with A closed and @iD + X is a fibration,

(D‘DA) is a cofibered pair with Dy of course closed.
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-

So we can apply the previous (i) to the pair (D,DA) and data
£:D +E, He (qulhp;q +B and A, :D,<I +8 obtaining a homotopy
HiDX +.E such that pisfie (qx;), fy i =f and flax1,, as

required.

We derive some u;n.diau.conuqnex;cn of the
Qefinition of a fibration. =
Proposition 3 1 P:E +B and q:B +A are fibrations, :H;n’
their composition qpiE + A is a fibration. )

Proof LetX be any space/ f:X * E a map and WiXxI +A a
‘homotopy . of (qp) £ Since H is homotopy of qlpf) and q is a
fibration, there.exists a homotopy H"xXlI + B of, pf with gi'=H.

'




Since H' is,a homotopy of pf and p is a fibration, there

exists a homotapy A:XxI + E of £ with pH=H'. Now

.

(qp)fi=g(pH)=qH'=H and so § is a homotopy of £ lifting H, as

required.
We recall that in a category ¢ a
square
. i
- ) QUNSSE - S )
.
. P 1

= A——9 - 55

dormutative

is called -::An.olinn if for every pair of morphisms £,:X + A

and f£,:X + E such that gf,=pf,, there exists a unique

jorphisa £:X '+ D such that £,7p'f and f=g'f.

A——9 55
Proposition 4 If the . following commutative

-



. # 8 ® 4
4
T ' U
N " .
L p' B P
A— 9 B
i W/ R
7 is Cartesian and p (respectively g) is afibration, then p' =~ . - :
(Fespactively ') le'a Elbéation. sk ! ;
5 v
- Proof Let £:X » D be any map and H:XxI » A a hony;topy of !
p'E. 4 ' . ’ l
g F gy B g B B
il . & s A~ .
‘ io p' P .
= o\
E wi—H8 ya 9 5 ’ i
Since p is a fibration and gi is a homotopy of p(g'f), there
exists a homotopy H:XxI + E of g'f.with pi=gi. The ‘square on
the right is cartesian, so there exists a (unique) homotopy, &
H:XxI + D with p'H=H and g'fi=f. .~ . E i

XTI




fﬂirnt;‘dn:

i
/ N
. Proof . Indded the tative i : . Bk, }
. & 2 % e
. | 1 .y
. . . O
. N ;
. o A
’ % & N
(e 8l . R
: ig cartesfan, e _
. ", § e % S
~ Lt -f. » ps
o . g N
Corellary 6 1f 210 » X and pxn'\ B are topologlcavy -

equivalent that Lu. f.hete exist homaomorphiums g :D + E .and

giA +_ B such that. pg =gp B ‘than .p‘ 1s & fibration if and, only
ifpisa sibu;)on. ot

Proof Indaad 'hq comnutat!.vq -quud

5 o 2 Bh g' £ L) i
3 i
o i R . : “
B &g B : P.
L [ QS S—3
L4 v’ - -




" is cartesian.

ip cartesian.
Corollary 7 If p:E » B is a fibration and g:A + B any map;
then its pullback along g, pgifg + A, is a fibration. B}

Proof’ We ¥now that the commututive sqyare

E

]
.. 1
L M

E
}/ ’ |
B .

.|“|§

Proposition 8 p:E + B and qiL » C are fibrations if and only
if their cartesia? product pxq:ExL + BxC is a fibration.
proof &uppo.s: p ans q are fibrations. Let X be any space,

£:X1+ ExL a map and H:XxI + BxC a homotopy of (pxq)f. Let

£'=pr £ £'=pr, £ and H‘Spr)H. H'spr H be the components of ‘£

., respactively, that is, the compositions of £ and H
wikn the projections onto the factors: since
(Pxd)£=(p£')x(qE"), we have:that B' is & homotopy Of pf' ind.
" u :a'homotopy of qf”. Now p and'q are fibrations, so. '
chexe exiut homotopias fi':XxI + B and ﬂ"xxxx + L of £ and
£, respectively, such that pfi'=H' and gfi"=H".. Then -

H-(H‘,H") is a hometopy of £ ].Lfti.ng H, since

(pxq)u-(pa'.qn')- (H%, H" )=H.




s

|
i

Conversely, suppose that pxq is a fibration.
Choose an element ctC and _cor;sidar the restriction of gwq
over Br(c}, (pxa)y, (o)t (Pra)~1(Bxic)) + Bxic). By corollary 5
it is a fibration and furthermore we have that
(pxa)~1(Bx(c})=ExL,. It now follows that that map
p":(a,l]:Ech‘*‘p(a)sB is a fibration. Let £:X + E be any
map and H:XxI + B a homotopy of pf. Pick an element feL, and

consider the map’ £'sixeX + (£(x),2)€ExL . Then H is a

o -
- homotopy Gf p'f' and s0 there exists a homotopy H':XxI + ExL,

o g with p'fi*=H. The’composition of fi' with the projection
onto E gives the required homotopy f. A similar argument
shows that q:L »'C is a Fibration. ! .

e : \
Proposition 9 If p:E » B is a fipration, then Imp is a union
of path components of B; in particular, if B 15 patE

connected then p is ‘onto. .

Proof, 'Let 7y (B)_be the set of all‘path components of B and

let ' Indeed,

if beImp dnd P is the path component containing BY then Pen'

(Pe¥ (B): PnImp#@). We claim that Imp=P
e

and hence"B\aLJP.v Conversely, suppose bel _Jp, that is.bep
J 4 b Pen' . %

; &
o I b'ePnImp and let o be a path joining b'

to b Since piE + B is a fibration, there exists a lifting &

of a. Hence b=a(l)=pa(1), and so beImp. ., .
5 S ¥
L

Proposition 10 Let p:E + B be a fibration and let E' be a




union of path components of E. Then p'=p|E':E' + B is a )
fibration. R L i
Proof Let f:X » E' be a map and let H:XxI » B be a homotopy™

of pf. Since p is.a fibration, there exists a lifting of H 5
ﬁ:xxx.' E with fj=f. Now, for every xeX, Ex(o £(x) €E' .

Since E' is a unibn of path components of E, the.path fa‘x must

lie In E' and hence ImfcE'." So H is a lifting of H over p'.

- i

Bropositjon 11 Let p#E + B be a fibration and let- f: &E be .

-
a map. Then £ is homotopic to a map whose image is all ‘

contained in the fibre over beB if and.only'if pf is
'honvbtcpi.c to the map: constant at beB. 1 i 3
Proof Let H:XxI + B be a homotopy of pf such chn.,ﬂ(x,x);b
for every xeX. Since p is a Hurewicz fibration, there is a .
homn;:opy of £,H:XxI » E, lifting H; in particular, pi(x,1)=
H(x,1)=b and hence 'the image of fi, is contained in the fibre
over b. Conversely, if HiXxI + E is a hometopy’ of £ with
Inf, “contained in the fibre over b, then pHiXxI + B is a
homotopy from pf- to the map constarnt at DeB.

1 . .
Proposition 12 x‘lg{ma + B be'a fibration. Then the
following properties hold: -
(1) 1f e,e'cE are points lylsg in é\e samé fibre over a
point ‘beB which can be joined by a path in E whose projection :. -

is homotopic rel.l to thé constant loop at b , then'e and e'  .f
; A 7 :




"PIoof (i) Let u be a path in E joining ¢ to e' such that

2 . .
can be' joined by a path which is contained in the fibré}
(u) k8 e and” e" are points of E such that 4here exists

pat_hs in E )oming e’ and e,e”, with the same projection on

. B (80-.in particular ' and-e" lie in the same fibré); theh ‘e’

can be Jolnad by a path which is contained in''the

there exjsts.d homotopy rel: I, HiIxI » B, from the loop.pa i

to the loop Constantiat p(e)sb.

since p is a ﬂbration, ‘there exists ‘,

o 1ifting H. Now tHe I.mage of eie zentrictian of u m'

1xIyIx{1} is contained in the fibxe ‘over b of e, and e

the path o'sI » E defined by

. H0,3t)  if o<gx/a
- a'(t)=  F(@E1,1)  i£173 <:t"i/3 LN
3 A(1,-3t43) « 1€ 2/3<Eer. ‘_"

joins e to e' and its image is

A
br RN

. B S




. pry:
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(ii) -Let a,a' .be paths joining e to e' and e to e",, » E

respectively, such e}{at pa=pa’'. Ther a=!.a' is a patn” .
joining e' to e* whose projection on B is p(&~l.a')=

" (pa~1).(pa)=(pad~l.(pa)’ and hence ‘a loop homotopic rel. ! to.

the constant loop at p(g )-p(e"). Appl.ying (1), we deduce

the existence of a path joining e' to e" which is contained

in the fibré.
& '

Remark 13 .In the ‘pr'oof of (i) we could have ued the fact

eHat(1,1) 4 a closed cofibered 'pair and proposition'2 to

deduce that the map h:IxIuIx(0} + E defined by h(t,0)= u(f.).

o h(0,s)=e and h(1,s)=e' admits an extension i to Ixr lifting

H. 1In this case khe path o' is simply defined by a'(t)=
wa ~

L H(t,1). .
v . %

'’ We now present some examples of fibrations:

(1) For any pair of spaces B and F, the projection map

*F » B.is a:fibration. Indeed, let £:X + BxF be any map’

and HiXxI +'B a’homotopy of pry£. If £'iX + B and £"1X + F

_denote the components of £, then prf=f'.and so H is simply a

- homotopy of £ " Hence,. if we define fi:(x,t)eXxI +

(H(x,c),t"cx))\sxy, <then’l is a homotdpy of £ lifting H.

(1i) We recall) that a map BiE »'B, is-a fibre bundle if thez'&

,exist a space F,¢an open. covering 4UJ. of B and .
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‘homeomorphisms DU+ p-l(u)=zu such that the diagram

UE ——-)p

N

commutes. It follows ‘from example (i) and corollary 6 that
eac‘h“ map pyiEy +'U is a fibration.’ If B is a paracompact
space, it then follows from the Hurewicz Uniformization
Theorem (theorem 32) that p is u-‘exi' a fibration. There are
examples of fibre bundles over non-paracompact spaces which
are not fibrations. e 5
(i1i) For any space B the map 1:Bl » BxB defined by

2(a)=(a(0),a(1)) ‘4a a fibration. Given any map £:X + B'and a

. homotopy H:XxI + BxB of nf, we must £ind a homotopy of f,

fisXxI » BY, which is a lifting of H. If H',H":XxI + B denote

the components of H, the fact that H is a homotopy of =f

-means that £(x)(0)=#'(x,0) and £(x)(1)=H"(x,0), that is, £(x)

is a path in B with the same origin as Hj and with end point

equal to the origin of Hj.




- deduce the -existence of such a map H and so of H, but we

’

The conditions on fl mean that; for any xeX and teI, f(x,t)
must be a path in B, aqua]} to £(x) when t=0, and with inliti.al
point equal to H'(x,t) and end point equal to H"(x,t) when x
and t are generic. If we dancte by HiXxIxI‘+ B the adjoint
of i, the above conditions mean that H i st La Y ths
relations H(x,0,8)=£(x)(s), H(x,t,0)=H'(x,t) and

Hix, 6102 (x,8).

H'(xb)
s
"“%\n’
FE {x\ i
3111 A
G i .
feae) . .
) 03 b !
s .

vl Hexe) *

At this point we could invoke the fact that Xx(Ixly{0}xI) is

a retract of XxIxI (since Ixtu{O}xI'is a retract of IxI) to:




prefer to construct H explicitly. To this end, let
D ={(t,s)eIxI: 0<s<t/3}, D,={(t,8)elxI: t/3<s<~(t/3)+1} and
Dy={(t,s)eIxI: (-t/3)+1<s<l} and define H,:(xX,t,s)eXxD; +
H'(x,=3s+t)eB, H,:(x/t,8)eXxDy» £(x)(3s-t)/(3-2¢))eB and
Hy:(x,t,8) eXxDy + H"(x,3s+t-3)eB; H), H, and H3 coincide on
the intersection of their domains of definition because
H,(x.c.c/3)=x-x'(x.u)=f(x)(0)=n2(?t,t/3» and H,(x,t,1-t/3)=
£(x) (1)=H"(x,0)=Hj (x,t,1-t/3), giving rise to a map H which
satisfies the required properties. Roughly speaking, the
path fi(x,t) (f=adjoint of H) has been obtained covering first
the tract of ) from Hj(t) to HL(0) (reversing the ofiginal
versus), second covering all £(x) and then covering the tract
of Hy from HY(0) to H}(t).

As a consequence of the fact that the maps
74BY + BxB, pr :BxB + B and pr,:BxB + B are fibrations and by,
proposition'3, we get that the maps wy:acBl + a(0)cB and
w :aeB’ + a(1)eB are fibrations. It is easy to see that the
function.fracBY + a=1¢BT is a homeomorphism over B, that is,

. N

the following diagram commutes

-




As other examples along this line, we have that for any fixed

BeB the maps p:acP(B,B)={aeBl:

a(0)=B} “» a(1)eB and
p':ace' (B,B)=(asB™; a(1)=B} » a(0)cB are fibrations. Indeed,
if we consider the "inclusions"“i:beB + (B,b)eBxB and

I

i':beB » (b,b)eBxB and take the pullbacks of 7:B~ + BxB along

iand i, nespectively

p@B e @) —s' ¥ eeh e ah, —

B—23 Ba
then the maps LS and my. are Eibtat%pns and their total

I
spaces (B );={(b,a) eBxB’: a(0)=5 and a(1)=b) ana

(87),=1(p,a)eBxn:

u(0)=b and a(1)=b} are homeomorphic over
B to P(B,B) and P'(B, b), respectively, by the identifications
aeP(B, S)(—)(u(l),u)ﬂ(ﬂ ); -and acP*(B, B)<->(a(0),a) e(8® Vo

The above maps p:P(B,b) » B and p':P' (B, ‘7) +'B-are called the
'«ﬁt.i“

ecasy to see that'the function £:iacP(H,B) + o~lcp'(8,B) ia a

path fibrations asuociated to the pointed space (B,

homeomorpniam over B.

(iv) Let (2,A) bé a clpsed qcﬂ.b‘z‘ed pair with 2 locally
coripact, Hausdorff and let B bo any space. We want to show
that the map j*:B8%+ B induced by the inclysldn map jia » z




subspace of z, A is also locally compact, Hausdorff. Hence
the adjoints of £ and H, £:XxZ + B and'H:XxAxI » B, are

continuous and make the following diagram commutative (ignore

the dotted arrow)

X3

B 3 X2

59
is a fibration. Let £:X + BZ be any map and let H:XxI + B®
be a homotopy of J*f.
3
X ——Zf 5§ 5
P
2
i AR
-
4 N
.
. .
B 57 U - R,
since 2 is locally compact, Hausdorff and Ao closed




pair; indeed, if r:ZxI + Zx{0)uAxI is a retraction then
Ly xEaXxZxl + Xx(Zl(b)quI =] :Zx(O)uXxAKI is alpo a
retraction. We can then £ill the dotted arrow in the abave
diagram by a homotopy K:XxZiI + B making the enlarged d{agram
commutative. The adjoint of K, K:XxI » BZ, 'is a homotopy of
rf lifting H, whi.ch shawa that j* is'a gibzation. The
fibration 1B » BxB of example (iii) can be seen as a
particular case of this example, taking as a cofibred pair
(1,1) and identifying B! with Bxi. ' . “

(v) Let p:E » B be a fibration and let A be .a locally

compact, Hausdorff space.: Then the map p,:LeM(A,E) +

pieM(A,B) is a fibration.. Indeed, let £:X + M(A,E) be any
map and let H:XxI + M(A,B) be a homotopy of p,f, that is,
H(x,0)=(p,£)(x)= p,(£(x))=pe(£(x)). From this functional

relation ve dediice that f(x,0) (a)=(p (£(x))) (a)=p(£(x) (a))

for every aeA. So, if we consider the adjoint of £,

£:(x,a)eXxA + £(x)(a)cE, and the adjoint,of H, .
Hi(x,a,t) eXxAXI + H(x,t)(a)eB, which are Hontinuous because A
is locally compact, Hausdorff, we get that
ﬂ(x,u,u)-H(x,o)(a)-p(f(x)(a))-p(f(x.a)) (pf)(x,a),, that is,
the following diagram commutes '

e

XA ——————3E

.




i

Since p is a'fibration, there exists a homotopy of £,
HiXxAxI + E, lifting H, thak is, such that H(x,a,0)=f(x,a)
and pH(x,a,t)=H(x,a,t). If we consider the adjoint of f, say
H:XxI + M(A,E), the above relations yield fi(x,0)(a)= '
fi(x,2,0)=£(x,a)=£(x)(a) and (p= (H(x,t)))(a)=p(f(x, t)(a))=
p(f{x,a,t))=H(x,a, t)=H(x,t) (a) for every acA, and hence

fi(x,0)=£(x), and (p,H) (x,t)=p, (H(x,t))=pe(f(x,t))=H(x,t).

Unfortunately the property of being a fibration is
not preserved under fiber homotopy equivalence, as the
following simple sxample shows. Let E=Ix(0}u{0)xISII,
E'=B=I and let p:E » B be the project;en map on the first
factor and p':E' + B the identity map. ’ )

Define fibre inaps over B £iE + E' and g:E' + E by £(x,y)=x

and’ g(x)=(x,0). Then the maps H:ExI + E and K:E'xI + E' 2

’
given by H((x,y),t)=(x,ty) and-l((x.é?ﬂ are vertical o




homotopies from gf to 1, and from £g to 1., respeitively.
Heice, ip ShA 5! HAVE itie; ana ‘Eibra Howstapy Eype over B, but
p' is a fibration and p is mot a fibration, like it-is “easy
to see. ' '/

4 -l Accordir;g to the definition we have given of a \
fibration, we should check the covering homotopy property
with réspect to all spaces X; fortunately, it is-possible to
give an intrinisic characterization of a fibration. )
‘A (global) lifting function for p is a map

1

Ashy » BT such that pA=}, , that'is, such that Ale,a)(0)=e
A, i ;

N ; s
and p A(e,a)=a;o.\ is said to be regular if i(e,a) is
- stationary whenever a.is stationary; ) is said to be be _
transitive if Ae,a.8)= A(e.xx) A(A(e,u)(l) 8). The
translation map along . ma ‘is the map ., . %
Y xFﬂ(o) + Fu(l) dsfinad by Ay (e)= x(e,n)(l); "the tranalatmn

naps are said to be ,transxtxve iE Ay gPrghy-for every pair of i@

path! a and 8 such that a(1)=s(o) If U is-any aubspace of

- B and Aﬁ(U) denotes the subspace of AP given by 3

Ap(U)={(era)ehys acU}, then any section of s:EN + A over
ni,(u),' that is a map Atd (U) > 2l auth that. pam is called a..
1ifting function over U. Now we will study reu'é'tyni among
thage! chucepts? the: sltuationicanibe: snivarisar 1 o

following diagram




; :
.

A tr!\psitive Llifting functidf is regilar and has transitive

Y tramlation mps. Indeed, from the transitivity prog we

that. for every oéz Xeple))= Ale,ple) ). x(x(e.p(en(l) pla)) .

and frcm this we deduce that A(e,p(e)) must be constant. . i

'rhi. follows from th‘! general fact that if o and B are paths
satisfying t.he reiation a-aB then a must be constar’l in fact
we hava that a(t)-u(zc). if o<e<1/2, and for every, r.c[o 1] &
the uquance (t t/Z;t/A,...) c;nvetges to0.0 and so the
sequence {a(E),a(E/2),a(t/4),...} mu-r._ converge to u(O)! but.
a(E)= a(E/2)=a(/4), ... and hence a(E)=a(0). If i isi
" transitive then it has-transitive translation maps since if
and p are pathe with a(1)=8(0) then Agh Xa)=X,(A(e, @) (11)="
um,{m),a)(u-tue,u) m(s.w}).a)m)-aie.a.sm)=

(a) . ;W [ 3 %
Weynow give'an example of a regular ‘lifting

function which has not- transitive lifting maps. 'Take E=RxR,

. BeR and piE + B dbfinéd by plx,y)=x; using the continuous
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o 2 - 3
[ T _function m:aeB” + |a(1)-a(0}|eR,- we define a lifting function

n’n wET by \((x.y),a)(t)=(n(t) yétm(a))s A 18 of course
regular.‘ since m(B)=0° for every beB, but it has not

transitive translation maps.

N
We now give an example of a lifting functions which

is regular and has gransitive t:r:nnllntlon_ map¢, but it is not

transitive. Take a-'xxn, ‘B=R afa plx,y)=x; daélqe the

continuous func_r.x.on it + R ti r(a)=a(1)-d(0) and observe’

». /. that r is additive with }egpec: to the ‘product of paths, that’

) “1o, Fla.8)=r(a)+r(s) ‘Whenever a1)=3(0), since (i sr=
(:8)(1)~(a-) (0)=8(1)-a(0) and (d)e(a)m *

- 3

¢(l)-¢(0)+l(l) !(0)-!(1)—n(0)1 then define A: A by

x((x,y),u)h -ld(t).y*.tr(n)). 1 is regular, p:ncs
. Al(x,y), x)(t)- x,y) and has tnnuuva translation mp-,
= - since a_j(xiy)a(a,B(1), yér(a:8))=(8(1), y+r(aus)) nd
.3 Agh (x,y)-x (a(1), r(-))-(u(l) yfr(z)n(u))-(u(l) yﬂ-(n.a)). .
) _but is not mm.xj:-, taking for .n.pn (x,)=(0,0), ale)=t
.-and 8(t)=1-t. sSince in this case x((o 0).u.a)(t)-
((a.8)(t),0) ana x((o,o,-)(t)-(u(_c),_g) and A((1,1),8)(t)=

(8(g)1e) . ° i

- : X . ¥ f
e . AGAB), ™ N M
: > G

4 - ¥ ¥ .
g B (o) . . S5

3




" fibration. N &
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To complete the picture we now give an example of a .
1lifting function which has transitive translation maps but is’
not reg-‘uar. Tak(;_:zain E=RxR, B=R"and px,y)=x and £ix some
YeR; deﬁne Allx, y),u)(t)-(a(t) (l—t)yﬂ:y) ’n\en A has -

transitive translation maps, but it is not. regular.

g ol AAe,aY0Y, ) oL
: A i
&N 4P r
T - p - k )
. TP

Conditions on a fibration to have @ 1ifting function with
transitive translation maps were studieds Foy Schlesinger in
[37).and used by E. Brdwn'in [11]. ,

Proposition 14 (M. .L. Curtis;'W. Hurewicz) A map piE + B ip *
a (regular) fibration if and only if it -_admitl‘ a (regular)

lifting function. Wi ® * !
Proof Suppose p is a fibration. ‘Consider the projection map
Brth, » E ‘and the homotopy x-m«;xx + B given by -

H((e,a),£)=a(t). since ple)=a(0) for each (a,a)chy., we have .

that pepr)=H,. Then there exists a homotopy.of pr,, X
Hid I + E, 1ifting Hirlts adjoint, Aih, » EY, is a lifting -
function for'p, which is regular when g is a regular

i b - -
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_Suppose now that p has a lifting function Ath + E'. Let

£1X + E b any map and HiXXI + B a homotopy of pf. If HiX »

.
B denotes the djoint of H, then taking the composition *

(£,H). A o
XAy £l and its adjoint HiXxIs + E, 'we get a homotopy of

£ 1ifting H. H will be stationary at every point where H is

_stationary; if A is regular.




An unexpeected by-product of proposition 14 is the
e

following result. ( Wlhos S

Corollary 15 If p:E + B has the CHP with respect to all -
"metric spaces and E and B are also metric, then p has the CEP” . .

with respect to all spaces. . . - .

Broof If D is metric, so is BY and hence ng£Exa" is also

metric. Since p has the CHP with respect to any metric -

space and, in particular, for A_, p has a lifting function. v
’ i
- . ~ :
. s A more.general kind of lifting function will be .

N

useful when we prove the fundamental Hurewicz Uniformization
. Theorem 32, which asserts that the property of being'a S
£ibration ig a "local! property. Let R= {(e,a,8) cExpxr: : #a

a(s)=p(e)}, that‘is, KP is the foljowing pullback %

L BX[ —————3B




hers o1 =1+ B, ds the map o(e,a)=(a(a),p3,0). An exténded
. Lifting :unmm for p is the first component x:IP + ET of
some »lachion UIAP > E xI of p:;. more Elp.licltly, it is a map
Xekyoe B! such n.}_.c T(e, a,8)(s)=e and peX(e,a,s)=c. If U is
any“subspace of BT and &_(U) denotes the subspace of i, given

by 3P(u)=((a.¢,-mp\ U),- then any map X:% H0) » e such

“¥hat R(e,a,4)(s)=e ‘&nd peX(e,a,gf=a for every (e,a,s)eh, (u). »

is culled an extended liftlng function over U.

Proposition 16 Every .fibration p:E * B has an nxeended
lifting sinction, -

Proof For any path n:I + B and sc¢I define new pntm o and
S by o g(t)=als-t), if o‘u-. and o (t}=a(0), if s¢t<l, .
a®(t)=a(stt), i€ 0<t<l-s, .and c?(g)-.u), 1 1ot )

The functions (a,s)eBixr » u'cisr-und (a,8)eBTx1 + a®n! are

continuous beca

e ‘their adjoints are continuous. ,In fact 7

the adjoint of the first function is b




of (n.a):n xI +a :sI is continuous.

T a(s-t) 1if 0<t<s
(a,8,t)EB XIXI + €B .
a(0) if s<t<l

and if we consider the subspaces ;] and S, of BIXIXI defined '

By 8y=(a,8,£) cBIxIxI: 0¢t<s) anl §,={(q,s,t)eBlxIxIs seesl],

we have that they are closed, their union is B'XIXI .and the
above function restricted to S, is the comppsition
T

(a,s,t)es) » (a,8,t)eBIxIxT + (a,|s-t])eBIxI + a(|s-t|)eB,
vhich is continuous, and ‘restricted to §, is the componition

W
(a,s,t)es, + (a,s.t)l:B XIXI- + utB + c(o):B. which is
continuous. In'a uimila: manner ia proved, that the adjoint

Lat Xz Ap +E Jbe a lifting function for p. Since

Me,a;)(0)=A(e,a%) (0)=e, we can glue eher together to'get

a function T:X, + £l aekined by X(m ,a)(t)=7\(e.n Ye-t), if
0<t%s, and l(e. .:)(t)=1(_e.uv)(t-s), if s¢t<l. We claim that
X is continuous; again we- will pxeve this by taking the

adjcint of X, which is - ¥ e

Mesa )(s-t) if .D‘t<-

(e,a.l,t)eA xI ‘{ ¢E
Ae,a®) (t-a) if st L.

Let §;.and §; the subspaces of K xI defined by _
s,-((a,s,s,:):xpm 0<t<s}: and s,-((a.u.-,c)dp’u. s<tel};




e

they are cYosed and cover prx. The restriction of the above
function on §, is given by the following composition

Axl
. (e,a.s,t)es, + (e,u.sltlzipil + lesay, |sstller 1 W

) M :
(Alesag), s-t[)eE'xI » Ae,a ) (|s=t]|)cE, which is continuous:
the restriction to S, is given by the following composition

Axly

- X (e,a,s,t)eS, + (e,a,8,t)ch xI + (e.a‘,|r.—s|)mpx1 -

P
. w
(A(e,a®), [t-s|) eE™xI » E, which is also continuous.
i . s :
I .
§ v Since an extended 1ifting: function gives'rise to a 1jfting
function, by restriction, Proposition 14 shows that the converse of
t Propasition 16 is,also true. ’

Beside the "global" lifting functions for p, there

are what we can call the "end-point" lifting functiohs for p;

»

both concepts are nntcd}to each other and sometimes the

end-point liftings are a’little more convenient since we have

only to lift the end-point of the path. Given a map p:E + B,

an end-point lifting function for p is a map {:A, + E such d
L that pile,a)=a(l). For ‘each path a in B we can define the

H ) translation map along a L_-:Pu(o) *Fo1) BY &n(_a)-ue.ﬂ)- §
E ' is said to be joinable if%er.n exh.l:in a ?wmetopy 51 AplI + E

. such that -

pE((e,a), t)malt), Eole,a)me and 3, (ea)=Cle,a); ¢ is said..

regular if t(e,p(e))=e, that.is, the translation maps




. "

p! are the identities; § is- .
g ”

along constant paths b, E_tFy * P
- b
called transitive if for any ecE and paths a and § in B guch
that a(0)=p(e) and a(1)=B(0) then £(e,a.B)=E(E(e,a),B), that "
is, the translation maps along o,8 and a.B are related by
[ e
Regularity does imply joinability. In fact, if oy
~ (0<t<l) denotes the path obtained from a by putting
a (s)=a(ts), we can define a homotopy 3:AXI * E by, . ‘
% id continuous, since.it is the

e a )=t (e,a,).

restriction to AXL ‘of the following. composition

(e o, t)eExBIxT » (e,a,ft)mXBIXII A (a,u-f;)sEXB! * Elesay)eE,
where £, is the map scl - tseI.  We have that pi(e;a, t)= ¥ (\
. PE(8,a )=a, (1)=a(t), 5ole,a)=ile,a,0)=E(e,aq)=E (e,p(e))=e,
sincé € s Pegular, and I, (e a)=Z(e,a,1)=E(era;)=(e,a).
Joinability does not imply :ggu'x;ziti. For example
take E=KxR, B=R and p:tE + B given by p(x,y)=x; fix some yeR
and define £:A, + B by £((x,y), a)=(a(1),3). Then :‘5'
joinable since there exists a homotopy 1A NI > n by
2((x,y), a,t)=(a, (), (1-t)y+ty), but & is ndt redular. .
Transitivity and joinability are 1ndependonc
. concepte: i fact there are end-point 1ifting fuhctions which
are transitive and not joinable and ‘viceversa. For example,
take zumlo 1}, B=R, p(x,i)=x and &((x,1),a)=(a(1),1) ‘to
rillustraca the ﬂrst situation and s-)\xk. B=R, p(x,y)=x and
E((X.y),q)-(;-ul,wm(u)). with miaes’ + lc(l)-ﬂ(O)IﬁR. to

illustrate the second situation.
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. Transitivity and regularity are also independent concepts.

In fact the last example yields a regular but not transitive . .

end-point 1ifting function and E=RxR, B=R, p(x,y)=x and
£((x,y)va)=(a(1),§), TR fixed,. gives us a transitive but not
segilar sadspotit IiEetng function.

. © " Now we will see how global, and end-paint 1ifting
functions are related. Denote by G, the set of*all global g
lifting function for p, by T the-sst of all’ end-point-1iffing
function for p 22 by 6" and 7' the aubsets of & and T of

those regular. There is ...n'correspondence £:6 + T gending




AeG to £()) defined by £(1)(e,a)=i(e,a)(1)

and a

correspondence g:T * G sending £eT'(p) to g(%) defined by

gl&)le, a)(t)=E(e,a,)

Proposition 17 The following properties hold:

(i) EeImf if and onlf if £ is ‘Joinable;

(i1) £(X) is regular if and only if A(e,p(e))(l)=e; in~

particular £(A) is regular if A is regular:

-
Trinhabion

readlar

qlosal 1fls
funct nms“ﬁ

1
S

* dransihve

_end-point_
Bfhing funchions

(iii) £(2) is transitive if and only if A has transitive

tranafation maps.

-

'Proof (i) Let =£()) for ‘some global lifting function

Ak v EL; then if S1AXT + E denotes the Adjoint of A, we N

* have tME pi(e,a,t)malt), Fole,a)=e &nd 3,(e,a)=a(l)t(e,a)

and hence £ is joinable, ° Viceversa, if & is. a joinable

o

4

'




L} ! )
“end-point lifting function and E:A I + Ea homotopy such
that pi(e, a,t)=a(t), 5gle,a)=e and 3)(e, a)=t(e,a) then the
adjolnt of 5A:h, + EY, is such that g=£()).

(ii) and (ii) are straight£orwand.

Observation 18 If p adnits & global lifting function A such
that i(e, p(e)) (1)=e for every ecE, then gf(x)' is a regular
global 1ifting function for p. Hence we can slightly weaken
proposition 14 -saying that p is a regular fibration if and
only if it admits a (global) lifting function ) such that
‘Ale,ple)). is a loop for every ecE. © g s, 5

As a consequence of the _pmpéai:iaﬁ 17 ana
proposition 14 we tave the Eoué»:ipg result.
Proposition 19 piE » B is a fibration if and, only if it
admits a joinble end-point lifting functfon andp is a
régular £ibration if and cn‘ly if it adimits a regular
en.d-peint 1ifting function.

Thete are other characterizations of a fibration,
some of which are useful for generalizations in a ca_tegorical
framevork (cfr. [31,[251,0281,0207,0361 and [38]).  tiere we .
just mentipn ome. Recall that a commutative Square "in any

category C




i‘

i € ———3 B "

is sajd to be veak cartesian’if for’ any pair of m%:isma

£:X + 0, And £3X » Cp mich, that v v ;£ there

ists At

Last one morphism £iX: + A Buch that f=u fiand fymu, % 65,

‘mk caxtesian is’ cartesinn wd.thqut uniqueneus.

. Now,"using the. exponential,

corre-ponde‘nca .

it is

easy to see that'. a map pIE + Bis a mrati.on if'and only if

the £olloving’ commutatxve afagram in’ Top."

e

is weak cdrtesian.

Although mps in general -are not, fibrations, 'thére

is a standard procedure for factorizing a given map p:E + B

aa a hmtopy equiva!.uncu !ol;l.o\url by a; Eibnt&on.

We .




Plec)=a(l) and let uE + A, Dbe defin by'\(e)’(e,p(e))» .

where p(e) denotes the eomtant path at p(e). Thed'p=pi.

Prggnsition 20 Fo; any ngen‘ map p:E + B,, the map E:Ap + B
Tis é fibration and ‘Whe "ifflusion” map UE * A; is ashomotopy
. equivalence, - , @ :

Px‘cof Conaider the map pxl 1ExB + BxB and let T:P + ExB” be

e 4pu11baele “of the fibration v:BY + BxB along p"lB, £

ot LLe,b.o):zxaxn xu(o)=p(e) and” a(1)=b} and n(e a)eP »>

.. = (e/b)eEXB. Theh e is a fibration and hence the map

. “-g=pt,d¥:P *\B is also a fibration, being the compeske. of two

fibrations. * - ;o -

s . . R

But'q is just the map (e.b,ﬂa)s'pr'» aldreni  sisee. B=all),” anﬂ

e pqn}dem:e

Thts ;how- that prA ¥ B x- a-

.80 P is themnrphiE over B t.g A via t.h- corr

(e,ba)ep «> (alu)sA .

«£ibratfon. 2 ST .
~

1o -prove that 1:E +'A_ 'is a. homotopy aqulvalance,

P

abnudu- m mag ve (e,u)sA "ecz.. n. \n-ﬂand qu_ via
Las " .

the hemctopy Gz (e,a r.)cA xI+ (e, ap ):A 3 when LN 1. t‘he path

7




- ®

o

." defined ‘ny a (8)=a(s), if O<s<t, and o (e)=u(:), if t<a<1. G

s concinuuud‘ because the function (a,t)eBlxI +ayen’ s

continuouss, 1ndeed, ita adjoint .is

§ a(s) if O<act 7
\‘(u,t,s)‘:vB XIXT +Y (e if tea<l

whose restriction Ln ‘BIK((t‘.l)chI: 0<B<t} is the col(pposition

TN BIx((t, 8) cIx1itks<l) is ehe composition (a,t,8)eBIxiar +

(u,t):B o .

" Remark 21 Ganerally. tie mep #i¥ nota nb:e —_
 the homotopy G is nog verucax @nd'p and. 5 do 35 e nave the
same £ibre homotopy' type over.B. HoweVer, when p is a g ¢
5 fibration it is possible to find a fibre homotopy invaraelfcr
+ " 1. This is the statement of our next proposition. A ‘.
gensraunuon and’ improvement of this result will be given
Ari the next séagion 3 (propasition 3.4).
\
pr?ggnéxon 22 If piE + B is a fibration, the Eibra,map
. 1iE + A is a ﬂ.bn homotopy -quivalence over B. .
Proof Ltt AxA > B. be a lifting f‘fction for P nnd define

o6
+.E as the composition' o E

37 + B, where Wy, fa the

uvaunuon at 11 : s of courpe & ﬁbxq map over B because

pc(n.u)-p(l(e,n)(l))-n(l)-p(-.a) uc have that [l(g)-
H Sl

))(1) and the nap Hl!xlg‘ E d\nn-a as . o\

IR ; ® 7 ) ;
A (atye)eBtaaxt + (n.!):BIxI + d(s)eB and whdu restriction on




R ) % oo 5
o .  the adjdint of ‘the.composition E 4, + EL, that is,

Teti=x(e,5T2)) (t), is a-vertical homotopy £rom 1, to ¢,

.8

’ '.\(l)‘

2 C e T T e

. B - .
" . ) B
' \ X ¥ o~
C T Look*t the composition 1Z, we have that 1ig(e,a)=
] 1),p(A(e,a)(1))). A verti‘c‘ul homotopy G~x1 *

o 1z'an be congtructed as follows. "'Fof any path
- r %

aeB” and tel, let o, b the path'defined By u‘£(“&)-.;(u+t-n,)
(L.e. ag \ust the path a from ag/(0)=a(t) to a, (1)=a(1))’ n
. and define GihyxI + A, by the rule G(e,at)=(Ale,a)(t)iay).
6 is well daunad, because p(A(a,u)(t))-u('S)-nt(D)- %
continuous, ‘becadse its components are continuous, lathucq -~
the 'relations G, (e,a)=G(e, a,0)= (l(n,n)(o).uq)'

(e,a) and G, (e, a)=Gle,a,1)=(1(e,a) (1), a))=

(x(e,a)(1),p(r(e,a)(1)))=1z(a,a), and.is vartical, because
p(k(a.o)(t),u ) =a, (L)=a(1).

S XMW——‘——- "
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| . . We now dfuculs a functor associated to any
f£ibration ‘and derive‘sqoma Lwpttint conssduenaut. VLIRS Ve

B f>\'7 prove the so-called “C-lemma* (proposition 24). Let

. c=Ix1u{0}xI. ' . %

Lemma 23 ‘There exists a relative homeomorphism hi(I2,C) »
(12, q0px0). - ¥

Proof Trlangulate (xz.c) and (12 {0}x1) as 111untrated‘in

. the following pictures

A A w

Aglm)  ggloar)

Al BEOAYf

LI "‘* ) A 2. CTyohT), 5“ X,

Then . the gimplicial map HiI? + I2 detfrmined by h(A,)=B

i=1,...,6, is a relative homeomc‘rph m_between the pairs

i /' (12,C) and (12, (0}xi). More expffcitly, let

51-((t.-)=12x o<uc/3).‘nz-((c,-)=xzx t/: -<1-:}3),
Dy={(t,s)eI?: 1-t/3¢s<l), Dl-((r_,-)ulx o<-<(1-e)/3),
Dy={(t,8)c12s (1-t)l:q<(2+t0/3) and . T

| Di={(t,8)el?: (2+t)/3<-<1) and daﬂ.ne humeomorphiuml hyiD, 4

A ‘ i, hysD, + D} and hysDg + Dy by h (t.l)-(h,(l-t)/J). .

\ ‘.h,(t.-)-(t.[(1+3t)-ﬂ-2=]/(3-25)) ‘and hye)=
\' _ (3-38, (24€)/3):

[



N

* Then for every map J:XxC + E and “for evary homotopy

, LiXxIxI + B such that pI=L|XxC there axht- an extension. of g

JIXXIXI + E liitinq B 1 .
‘Proof | Let! h:(IZ,C) + (12,(0}xI) be a relative hnmaomorphism
and consider. the following commutative diagram’ (ignore.the

dotted arrbw) .

" . dlaw .
o —h ! “('vu/s . .
1 | D
B s B
_— .
- - g
Then our previous h coincides with thé map ‘obtained-by ., ~.
glueing together h,, -h, and h,v. N
' .5 S oA
. Promsition 24" {"C-lem ), Lot psE + B be a fibrntinn. %




T where 3'=3e (1p0m]0) T, L'=Le (1<) and ig(x,8)=(x,0}8).

since p''is a fibration, there exists a homotopy L of J'

1lifting L'. The composiuon J=Ll(1 xh) yields an extension
of J llfting L. S L .
” 4

ﬁ‘ We recall that the £undamental- rdupoid 1B of a
‘spade B is the category whose ohjm:cs are the poinu of B and
whose: morphisms from b-to b' are the homotopy c].aues rel.t

6f paths baving'b as origin and b' as end. c:_mfénuon 23

morphisms [al:b + b' and [aiju\" is given,
"~

[8]eLal=[a,8], where a.p denotes the usual product of unitary

paths (i.e. first a and then 8). 1B ig/a groupdid in the

usual categorical meaning, that is, every morphism is

invertable, becaupe [a~!l [al=[a(0)].

as follows. Consider the commutative. diagram’

L4 i g

Bafof ———————sE

Y ‘the rule

Given a fibration piE » B and-an ‘object n:[nn],

~.define T (b)=F,. For a morphism [al af 1B %e define- TP([a])
00




”;ince pis a £ibznt‘&on there exists a vhomotopy B:Pu(n)ﬂl + E .
" of the inclusion 117 (y) » E lifting aepr,. Restricting H to
the ‘top of the cylinder, we obtain a map BisF (0) * Fo(a)e
pefine T ([a))=[8,]. B s S -
.. .Proposition 25 For évery ﬂbuuon PiE + B, T B . HTop
defines/a covariant functor from the funaumnux ‘groupoid of
\B to the homtopy‘u.t.egosy P_Ltof)ologlcu_l spaces. e
Purthernore,  if p'iE' + B is a’fibration and £1E + E' a fibre

nusp ‘over B. hen £ gives rise to'a nncunl\ txanufa{matien e

f,'r by, defined by ¢ £(b) tbl o
Proof ye 2irst show that if aand o' are paths in B

hemowpic rel.l and H,H' Pn(o)"l + E a - ‘homotopies .of tha ¢
inclu-ion np F a(0) * E lifting the cmpo-ition
pr .a Pry ‘n'
L u(o) 'I +Band F (D)“ »> Lo .5 re-poctively: then ;
the mape n,.am‘m * By(y) ate ho.m.opxc. To this end, let

@:IxI + Bbea hunor.epy rel.t from a to o' and define the map

TiF (g)*C * E by Jle,t,0)=H(a,t)y "I(e,t,1)=H" (e;t) and

- ” s :
J(e,0,8)=e and the map LiF (g)*IxI *+ B by-L(e,t,s (t.,-)’.
Since RI=L|F a(0)*Cr We can_apply the.C-lemma.to obtain np
ext-n-ian of J 3"u(u)‘nx + E 1lifting L. Now tht map
R'Pu(o)‘l +* Pn(l) q.l.v-n by K(e,-)\-a(n,l,l) is a homtopy !:om f

H, to H{, as rnquind. ‘




fogé

. | 1 e
% law, we use again the above ob-a}vation. Indeed, if':
R}

E o) Ry
W %
H, o Ty
;
P rl
ot
K
B s l"/ M,
d
. 4 ”

7 :
It follows from the“above Oblﬁryﬂtiaﬂ that TP is

well defined; indeed; it shows that for every morphism [a] of

1B the definition of T ([al) is independent of the choice of

N
the homotqp.y H’Fa(O)XI + E of the inclusion ?9(0) % g‘lifting

: g 3 pr a-
te composition F_(q)xI 421 » B and of the choice of the
0 ; e

reprqgentative in'[a). To show that T, is a functor, that

isglit preserves the identity morphisms and the composition

[B1tb + bis the identity morphism of b, ‘then in the

“detinition of T ([B]) we can take as representativa of [f]

‘the constant path.f ana as homotopy HiF,xI » E of the ’

pr, § .
inclusion Fy, + E lifting FpxI o I+ Bithe composition

e e




T ((8])1 (Cal). i "

Pry o .
FyxI + Fy + E, which gives T ([bl)=[H,J=[1; 1, as required.
- P By
For the composition law,. let [al:b'+ b' and [B]:b' + D" be

morphisms of ns, H:F (o)xx + E a homotopy of the {nclusion

Pray @
u(o) + E lifting the composn-.ion Fa(o)xx +°'1 » B and J.a_c

KiFgo)*I » E be a h?mntapy of the' inclusion Fgo) * E

) pra B / "
'1ifting the composition EB(O)xI + I+ B. 'gh‘en define the’
map ‘"”Fu(o)"l +E by

; (e,2¢ " if octa1/2
Ste b= {x(u,(a) 2t-1) i 1/2¢¢<1

G is a ‘homotopy of the 1nclusioﬂ Fago) * B lifting the’
pr, .8 ”
composition Fy(q)xI '+ I + B.oand such that G=KH;.

Therefore T (raJo[unﬂp([q.sJ)=ra11-[x‘n,»1'-6g,1m,1-

. Now let p'iE' + B be a fibration and let fiE *E'
‘be .a fibre map over B. We must prove that for avery b,blep-
and morphism [alib + B' in M8,  the" following dlagraghin Hrop

commutes N

.

- T ([a)) . )
x ; g
b — P
i e . ogb") SR
T, (fal) Yoo . »
b — > F 5




By definition of T, and o, this is equivalent to the
following diagram in Top being:homotopy commutative
" H, ¥
F, —————————>F,

b b’ o

5

.

Bl
A Y-
p— —E,

where Hj (e)=H(e,1) for some homotopy HiFyxL + E OF the
R TR pr, a
inclusion Fy'» E lifting the composition FyxI. +. I » B and

Hi (e)=H'(e,1) for some homotopy H'tFyxI + E' ‘of the inclusion:

pry @ . .
Fp + E' lifting the composition.F{xI + I +B. Define &

! JiFgxe » B' by Jle,t,0)=£H(e,t), J(e,t,1)=R"(£(e),t) and

J(e,0,8)=f(e). Applying the C-lemma to J and

© pr, a 5 S 3 3
L:Fy xIxI < I +'B, we get an extension of J, JsFpxIxI +'E',
4 32 . 5 Tr Ve E
xyﬂg L. The, the map K:F,xI + Ff, defined by K(e,a)=’
3t4,1,8) is a homotopy from f£;,°H, to H{°f,, as required




{  Corollary 26 Let piE + B be a fibration, Then the ibres -
over poinuﬁyi‘ng in the same path component of B have the
. " same homotopy type. )
. - Proof Sinde's. is a groupoid and any functor sends
Mvezuhle morphisms tq tgyertible morphisis, it follovs ‘that
- 'rp([u])-rﬂ 1JiFy > Pb. is'an invertible morphiam dn HTop for
any path-e JGining'b to b'. This means that Hy:Fy ¥y, i e

- homotopy equivalence. . 5

Corollary 27 If piE +B and p's

' + B are fibrations and
j
£:E + E' is a fibre mﬂwer B ‘'such that £ xF_ *

_‘iaa

homotopy equivalénce for scme Yus, then fbxl’b *Fpis a
homotopy equlvalence for every b i.n the path compongnt of B
! ' 'y R
7 ¥ .
Proof Let a be'd path joining b to B. "By proposition 25 we

containing b.

» have the £ol!.w1r\g commutative diagram in Hrop

- (]
F,

as ulual, H,)finad ‘from a homogopy H:thi +E u!

i
| & o W R
l g pb«____.ar
|

i

i

: o prp’
0 i th. inclu-lcn Fp *E litting t.ho compelltion F, lI + I B
. A ama Hl is a-u.n-d from a homotopy HIPLXI + s' of the

T ' v ’
. i . e .

=

L B ® .




pr, a
.inclusion Fy E' }lfting the composition EI',XI + I +B.

since [H,], [H{] and [£_] are invertible morphisms of HTop,
- % b 3 4 ‘

we deduce that [f,] must also be invertible, that is, £, is a
homotopy equivalence. Indeéd, in any catedory a commutative

dtagran

.
with ¢-and y invertible, must have Sisvecumis, because,
L= pmy vy e Yey (v) e sl g7 0y) and =gl e
T P T e et VR U L i AR .
: N P " oy 2
Remark 28 Corqllary 27 can be proved in an independent way

"as follows. ‘Let HiFyxI » E be a homotopy of tpe inclusion

2 L pr. a R
Fp *+ E lifting the compésition FyxI '+~ + B and'let

H':F!xI + E' be a honl?.topy of the inclusion Fé + E' lifting .
B . 3 ' :

-, Ppr, - a=? . & -
the composition Péu +%1 + B. By hypothes the
3 Pre - ; W
2 COHy B . H{ . % B .
composition Fy + FE +'Pé > F{, " is’ a homotopy equivalence. ,




e

Applying the C-lemma to'the map J:F xC + E' dgfined’ by

J(e,t,0)=Hi(e,1=t), b(e,t.l)-ﬂ'(fsi-l,(e).t) (e,o.s)s

£ H,(e) and to the map Lu’bxxu + B defined by L(e,t.s)=
r

a(l-t), we get an extension of J, J: sFpXIXD + E', 11ft1ng L.

Then the map KiExI + Ej.dafined by K(e,a)-.:vhe. 8) is a R

‘homotopy from £y to Hyof de Hance £, is'a hmcr_opry

equivalqnce. ’ '3 ol 7

The next proposition improves on proposition 14 and

shows new examples of shrinkable maps. It is-an cbservation

" contained in [125p.166] \

progmicion 29 If pr +B isa fibratlon then che map

piEr '+ A is shrinkable. - .. 4 e .
Proof Le: AA z‘ be a lifting function for p, that is, a’
lectlo:\ of »:. Dutine Jiglsc + & by 3(a,t,0)ma(t), gla t‘-

x(g(g).pc)(n) and J(e,0,8)=a(0) and ‘define LiETxIXI + B by,
F L ] i 2




-

Liayt,s)=pa(t). ,Then the following' diagram (ignore the °

dotted arrow)-

e SN &

st
"4 . Baoi— L . :
conmutes . and 8o, by propositi 24, thefe, exists ‘an extension
of 3, J:eTxIx1> E, 1ifting L. The adjoint of § with. respect
to the variable ‘t gives a vertical 'hnmotopy k:eLx1 + B! from
the identity of E! to An. “Indeed, w:hava‘that K(w,0)(t)=
3(a,6,0)=3(a,£,0)=a(t), K(s,1)be)sd(a,t,i)=0(a, b 1)m0
A(a(0),pa) (t)=(Ae(d))(t), and firthermore, using the relation
PpeK(h,8)=pa, obtained by observing: that (_p'K(u,u‘))(t)n’ )
B(K(a,8) (¢))mpT(g, £, 8)aL(a,,8)mpa(t), we have that
o(K(a,8))=(K(a;8) (0) ,pK(a,8) )= (3 (8,0, 8) ,pa)= (M, 0,8) , pa)=
(9(0),pa)=s(a), that is, K i vertical. -
’ L &
We ‘now prove the Hurevicz niformizatic theordm '
stating that raps over "nicu" base spaces which are 1nca11y
. fibrations are themselves mmuon.. We first ‘rieed the
following results. = . - - } . 1
Lemia 30 Lét PIE+ B bea lnup. "1f there exists a- nunerable’
covering W-(Nk|kﬂ() of 87 guch that for each xek there is an
\hndnd ting func/tion over W, then there is A_lif\‘_tlng
i ; g

functioh for p. . - . \

-




I

* aeW, with o, (a)=e (a). e observe g'r..; Calp)=cy(@) 1f and . e i

- i N e . —

% : ) e

Ak=l(e, a;8)el ]m:w) and Let xk:ﬁ » Y be an extended -
1ifting function over wk .+ If uck is any subuet, we define

Wy

k (hence wa=a)y by.p:opo-inun L; u(u), Wy u a*

_‘cozem set. For each uck, we define a functicn e : rl RY -

By egte)= 2 ck(u), if u#g, ‘and ca(a)-oy ¢y 18 well deﬂn?x
since is locally finite and continuous. . Note that ‘¢, s 5

not in general a numeration of v'vu, because fér & givcn a it =

may happen that egled1, ‘but we still have that cu(a)w te o

5 S ! ‘
and only i€ o€ mogeover, c, colngides’,witly o if vk},

For any usk’ let A={(e,a)ehy: uw Yoo col

- Dennte by L tha,set of all ‘pnh‘s (u,x ) with uSK iz

»and Alull\“ - E a lifting fu’nct ver W «.L.is not’ empty,

becauna,' for any keK, we-have that ((k) 2N )':l., ‘where' \

x\_

lifting function 3. ] Introduce an, oxd-rhxg on b by

(uAg)¢(v,A,) 1€ and) only i€ ucv and Aglera)=x (e 0), Yor ‘any. ;

only if oeW W .. T




'

\w TV aeW Y It follows that if usw\—w o then - . )

ue

Tq check autx-ymmauy, suppose '(wia,) (v 2,) and

(v etuag): e Follows tHit u=v and 56 ¢ a(a)=c;(a) ser'

every acW, and hence A, (e,a] X, (s,u) To check traneltivity,

let” (u,xu)<(v,a Yelwia, cbsarva that, since ucver, we have

e 5 &
that wv_ﬁswv_u and wv_v_ w=a ana hance “u'"w g W H and

weuSs v W=y

(e,ﬂ)r
" thig p:oves foat (A <tw o : -

Ay (s,u)sx (e,a) and A leral=a (e.u) and hence Ay (e,u)-

—-lat We will prove now that _any chain L of L (i. e‘\\ %

. N : -3 ot Egidan)
- # o,
L (i.e. (u.l )((u,h ) for,‘evcx'y (u.x )’ in Lo ). By abuse of
nDtatlD& we writs II:L“ to mean t‘hat u ’.B t‘he fi!‘ﬂt compoment
of ‘some eIemant of Lgs: we.observe axplicitly (:hat if uﬂ

then u is the first component * of Dnly one slemen\ of Ly,

because if (u.x ) and (u,A}) ‘Delong tq Ty it, follows that- -

‘either (A, )<(u,1 ) or (u,A! )qu,a ) and in eithar case we

have that A=Al " pefine u=\ )u nhd Lot oo
i At et

{ket: m:wk) o finite, say’ (k,,

“that ‘theré-is a uel; with {k,,.
. o

'lu,‘,

“Now, ‘define’ x (-e,a)-x (e,ui)’; X




’ S

(€ g h or (23,0060, and in qlﬂ\erune # el

v A,(&a)=2 ,(e,a), gince in"the ﬂnt ‘case uzn -w o .anq in

+ .-the second case ach ,-W, o " e vam. @ prove_ ehat, |

£ . ek e is continuous. Fix & Gew_ o let vm be a

- nexghbourhood ofd -ua- that (k:ul v nNkOU) 1- ﬁnue, say

an uppar bouna

for L., that -1;, (u,x )<(u,x ) for every (un )ﬂzo- Since

v . =
n ﬁouw\ d\at CENY faz every uq.,, furtﬁemare, if '

= Lg 611008 Ehat (ktu.ncw ) mm.enu.x (e,a)= £
LS

) a).” 5 .
I i e By Zorn's ‘lemla, L has ; maximal element (n~ Age)e

i ‘that is, for every (u,x )r_x,. eicher (u,x )<(u*,2 ) or they .

z s # ate mok related. We ;uim that u'-kf Sllppo:z XeK-i* and let i
e i_' 7', ub=u*ulko). Define.a map giW _, + I by q(l)-g:‘[.(u)/c“,(u), ’
S 20 Gen.aew e AF and only if gla)40 and ack,  if and’ only it |
b I gla)tl. 3 ¥, . "k s
1 A 5 s
s 1 o 3 5} ) 'S . A ’
A




\
.
. ) . Hoalh ’ -
A:Wux'x 0<g(a)<1/3}, D‘z-(nswult 1/3¢g(a) <2/3} and .

: te Dy={ackiyys 2/35g(a)<l); D;,D; and Dy - are closed subspaces of e P
= W;H and cover it. Let Aj=tlealen yacD; ), dm1,2,3, 80 Ayihg, " ,
: fy-cover A,y and define dyihy +E by dy(e,alwe, dyih; E BY . i

! . »
(e a)=1 4 (e,a) (2g(a)- 2/3)(i.e.d, is the ‘composition :
- : . i : i
i - (\xu..prz) ” 1xg ’ ™y |
(esa)en, » (Agele,a),d)eE"xD, =+ 5 o
. o .
- (Agalera ),gla)PexT » (A4 (e,a),hlgla)))=

(hge(era),2g(a)=2/3) BT ¥ 4 4(e, a) (29(4)-2/3)4E vhere
-] n(t)=i 2t-2/3) and d;+A; + E by d,(e.n)-xu,(a,u)(g(n)).
d},d,,d, give rise to a well, defined and - continuous. function

QW+ E. Lek A ih P manany exesnasa 1ifting, function
u ko kg N d

.

: 1
for W and define Ayyih, + B! by




s S e e T

AR ]

94
\ )
- .
e, (@1 0:0)(£) i£(e,a)eh,
ot axleo) (£) ' if oceeagla)-2] T '
o0 T, Nitte,aren,
by T (dle,a),a,29(a)-2) () 1E 2g(a)-Setel, e
' 0
c g (e.n)(é) . 1f Octegla@)) - .
: (i . if (e,a)er; &
k (d(e.n).u.g(u))(c) if gla)eter) . ¢
|
" (e,a)el) then its U.fting is obtained by using ‘e extended Y |
Iifting function X, on W ; Af (eraieh thei, dewnW, i
K 4 e Vo lR,
. %o we first lift by Ages cut this lifting at the, instant
L t—Zg(a) -2/3 and the glue it fo that portion oE\the leting of
a by Ak conunenci.ng at time t=2g(a)®Z/3. v Ve :
3 ,\K.@,‘)(zsw RN g ®
. '
¥ ke . i
L " «eDd, . .
it ) ’ 1f (o,a)chy then ach,, and 8o we'first Lift a by Ayes cut .
¥ ; this 1i#fting at the instant t=g(a) and then glue it to that

.b' £ LI




i

“connect the lifting functions

iu adjoint A

portion of the lifting of « by X' commencing at time t-g(- .

when g(a)=1 we have that l“’(e,u)-lu.(c,o). So, using the '
\

extended lifting funcdan ‘x over "x . the ltfcinq function

Aye OVer W, and the r_mnerical Eunetion g, we are able to

Mg O B, and Ay on Ay in

such a way that this enlarged lifting function coincides with

& .
Age on Aygmhy and Ay on Agyohye

i ! e povcontage of o
5 A - ot b o
L‘ 5 :-x':u-.) e
: “’“"“."‘_ e
. S 3 N
' . s IS o >
¢ N
et A A A s
4p ! o=
. Avu

The eonunus.zy of AT iy is proved by checking the continuity of ..

ug
in the following five regiops B

xI''5 E and this is proved by subdividing A“'nx :




 Then'the :uncn% ax 4 Bl denned.by
! : Gt R RME) g 2 A Octcay (),
) e tﬂ(x)(t)' JuAf8, (x)<tes; (%)
: £(x)(£)= 3

£,(x) (t)

is continuous.




. Proof cun-xdu the* adjqint "of £.and the n clos

ed’ subsets of

_xx . c,-((x.t):x:n 0ctes, (x)}, Ch-((z.t.)sxxh \ R

ey (X3t (X)) df n=2,.

n-x.(""'-‘” . Now ob

to each ¢, is equal to the xe-ulcuon to "1. of the ad]oim'. .

-1, and C = ((x,t) eXxIs
e ‘that the adjoint ‘of £ restricted

_ct f“h 'l'llatafora, ‘the adjbint of £ is continnou- and so £ is

continuous.




furewicz Uniformization Theorem 32 Let p:E + B be a map and

. assume that there is’a numerable covering U=(U;| 33} guch

that each map Py, x!u ! is a (n.qun:) fibration. Then p

isa . (regular) mr.uon. ; 2
Prcﬁ \'l"he l.dln of the proo£ Ll to d-dllc. from thl given data

. ' the exilunce ‘of a numerable co_vtrlng cf,B with an extandﬂd
A (Hifting function over @ach element of“the cover,. and then to

9 . invoke Lemma 30 t'.e doduce tﬁa axiutaneo of ‘a global lifitng

£uncr4en for p. i % 8 Sy g5

. For not;atloml conveniénce l.at: z: Uj", p_fpuj,
Aj-(('e,?_);up.hn(_x)‘suj) and Ri=' (e a,8)ehyr al1) U); For |
each jed, let X;iRy E' be an extended 1ifting function for
pj, ' Such functicns do -u-t -ince, by hyponm- s, each Py is-.

a fibration. Now, for any n—tugle (3)0+++¢3,) Of.indeces of

+ J not ne-:enaruy ax-unct (n=1,2.0.)0, d.ﬁtnd
’ ‘

) ana

acl: u([(k-n/n.x/n])zujx, k=1,
ijl__.jn-(ge',a.-)zipmzﬁj‘“_3 1. j‘...j s a posero sek of

ere ™ T becmune B - =gl 1/a10; v ein <Clo-L1) /W10, >oand
: 250 N : 4

3
t is.a cozero get by proposition 1.11(iii).
,

i - each subbasic s

’ " Using the _extended Lifeing, £ sunccicm- aj ,....xj ‘over
# L

ively, we will i an

o i P
nlAil"'jn‘l over ‘fjl"‘j ce .Thi.l

P




1s. done by subdividing A}
; .

‘subsets’ K‘j‘ o gl are)ely

and defining continuous functions X 5‘“ 5
3yen ﬁ j yeeedn

tnat p(1} Y (-,..-)(c))am, L Ij (..a.-n.)-e and -

Lyl (.,utx/n)-x"‘*‘ (e,aix/a). ‘a.:c,mg
j‘...j j

prs T

,3h- i, (e.n.

3 (eiais), whajok is such, mz i
3n

-:[(k-x)/n. x/nl, v)q get. the required ¢
!unctiun - how B R




* equal tu tne cqmpouicien esn x[kﬁn,u r Bl 5 I. When it .
.

paths at cg:tain i.ntersacdan points and glue!.ng in a

< faltx1)/m) - i Oeeli1)/n,
X n"k(,t)= a(t) i RS © (k-_l)/n‘d—.(k/p .
‘ a(k/n) s 4f k/nctcl 7 i 3

0,k

n function aen® + o | eBT 45 tohinuous, Indeed, its
. adjoiru: s cuntinuouu becayse restricted on B! xlo,(k—l)/n] is;
bR

pr £ ‘p(k—ll/n
equar to'the’ compcuiticn e x[o (k—l)/n) E B_

|
réstricted o’ BE[ (k-1)/hk/n] ‘1s equal to the ::umposition .

alxui-n/n"x/n: 4 BT51 ® 1 and restricted on BLERAmAY is

4 “/n

is clea\r from che context, we will amp nin an and simply

| write ay 'ro egch triple (e,n.l)enj i we will auociate
goos i

..n. "Cutting these:

'n.paths n" E denoted by‘,f (e,a,8), h=1
*h

preuu_x‘ihad ‘manner will givé us’ the rnquind path ] b
i
—l;)' i (e,a,8). "For h=k def).ne f:(n,a,u)ﬂij (e;a/8). " This
G e . 3

udaﬂ.nition nakes sens 4

ecause “ku)‘"j and _p(a);u(‘u)=nl('(-)-’

_ We have that p(fk(e,n.S)(\;))-a(t), if te[ (k-1)/n,k/n], ana i

furthermors t.ha ' function ka 3 3.‘ + &Y ia continuous
Lons

becanse 1t 1s equal to the co#.panuon (e,u,n)tl(j i ;
e




=

- xjk . b
Aoamedy ¥ 'L For tek-1, tixgt detine ‘5:-1 (e,a,8)= .
£X(e,a,8) ((xa1)/n); the function gk_l e, t B

continuous and furthermore pdk_ (e,a,8)=p(£k(e,a,8) ((k-1)/n)=
u((x-n/n)-uk.l((x'-n/n) Now define, £_ (e,a,8)=
T (9k_1(e,u,l) oy (k-1)/n). Then p('s; 1 (e,a,8) (8))=a(t),

'.1: tt[(k-l)/n.(k -1)/n); ana qt_lxa.u.-)((k-x)/ =gk ) (ea,8)=

:“(e.n.u)((k-l)/n). The function £X_ ;1 > B s
SR TR
contlnuouu becauu it 1.- aquni m the :ampo-it.tan

¥ ‘ ¢

h
. (-.u,-)d fesd (gt_x?e,a.-),nk_x.(k-!.)/n):xjk_l =
! ing by infuction on ing values of k, we defin¥

. . £5le/a,8) for all hek-1. For hek+l we set gk(e,a,s)=
(e, a,8) (k/n) and define £, (e,,8)= ;
s (gk(e,-,-),cm,k/n) As-above :{u,x" o el is
continuous apd we have that p(¢+l(e.u.I)(t))-u(t), =
eelx/n, (1) /), and th(e,a,8) (k/m)=ghle,a,0)= 3. .

E:ﬂ(e.ﬂrl)(k/n). row by induction on
“values of h, we define (e a .-)/for all’ Wwk+t. S0 we nave
o oonks Eti :,,...,f 'Kj,--j T guch,

that p(—fk(a,u.l)(t))-ﬂ(t). if ts[(h—l)/n,h/n], ana
£ (e, a,8) (n/n)= Mx(c,n.-)}h/x»'t).

% AT :




. when k=1

35 (g5* (e, kFnd iy s /n) T, ()6 /n)=gRCe, ayk/n) and
3 o™ i g Xycles oy k/n) =ty Ces ark/n) ‘o

Applying lemma 30 to f,,.‘..,f with u,(t)-l/n.

(n-1)/n, *ve get a continuous function’ xj

defined by - E . ¥
£5eja,a)(t) 1f Oct<r/n Y

(esaie)(t)= { e a,8)(t) 1f (nd)/hian/n

<%
X
Jpeeedy

Klerars)e)  if (n-1)/ncten

1t Yemains to m&m that’ i’; Sy te,ak /n)=x"+1 el (e, ak/n)

.,n-1." This will be proved by showing that, once’

k is fixed, ££ (e.a,k/n)-fk”(e,a.k/n), for every hsl,.i.,n.

For he=k,k+] we have that £  (e,aX/n)=" .




E‘,:ﬂ'(e.u.k/n)-i3‘"1(9:(!.r-.k/ﬂ).ff,wl.k/n)-fjk (e.ckﬂ,k/n)s ¢ 5%
Sitte,ax/n). Sev assune by inducti€n on decrelling' valtes |
of h that f"(-,- k/n)=£5* (e, 0,k/n) for n<k; then ,
:g:_llmupk/n)-!h(u u.l:/n)((h—l)/n)-:‘;lﬂ(a,u k/n)((h-J—)/n)=
« g1 (&,a,k/n) and hence. S:_l(e.u x/n) =
Y (g’;l_l(..u sK/0), oy (heL)m)=

(g’; l(e.u.k/nhnh_l

T (b =) /m)= :’,;jlu,u ®my. dna
‘ : 'le:illnr u.nnu using Sedaciion anrnning values ' of n it

can be uhovn thut z“(a,u kln)-f:ﬂ(-,u k/n)” for all h>k+1..

Hl. now' study ceva.tinq pmperu.e- of the T 5 j
wesdy
For . Iny aent

| 4
e Adre

theré nxi-u some neN and an n-tuple

):J such thn. ac @ 9 j,, indeed, con-i_ﬂ'er the .

D.par éover of I given by (n (LN )ljwl, u:d Tet . ,‘ L3
p 1
¢ . !ﬂ‘~(Ujl‘)..

r‘(ui-)) be a ti.nlta\nubcoverlng with Lebe-gue L

. - humber €>0.--'Then is for every teI ﬂl/-:n ‘exists some -
: e .

ke{l,...,m} such that jt—l,z+=[n_15'o"(l!j ). If neN is such |
- %

H i t.hn; L/ni’t. éi-;n for each k=l ot e have . that 2

3 u . R .

| _ [(k-l)/l}. K/nlel (2):-1)/2!!)-*:.0 l/in)u] and"Yence  for =

' - 3 r_hou .15 some elemeot. of (j,. codnts ny ks such that .‘ 3
e k-l)[rr '/nleu"(ur), that Ln, B([(k-l)/n.k/nﬂsl’jx v

- : rhérefou uu(!Et B Let riow T -(l!)j‘mj |(j,,....j )sd 1.

n s

1uu11y ﬂ.nit- !uni!.y o(-unu:e utl o™

£




Wl

¢an be seen as follows. Let acB be a fixed path and £or‘>
t:[l) 11 lst V, be an open neiqhbouxhaod ‘uf a(t) such that
{3eT: v AU td) is unﬁe, wuch & neighbourhood dpes exist
‘since U

u([o,x

uis l.oin).ly finite. con-mcr the open coveting of

nJ) given by (vtlo«.q/n). since a([0, 1/n]) -tq,,.. 25

J,=(jea= v,n ujm-Uum Vt.kn ujom is ‘!1n‘1€‘a. In a

s

Define va<[0, 1/nJ,v,>-n...u<|:(n-1)/n,1:| v visa - o

nqigﬁbourhood‘ of. a und we ué,ll. prove that it meets at most
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o Subpose that

. ] . nV#g; then there exists some BeBY with
Vdreeedy . . 4

-5([(%‘1')/",k/nsl)gvjk Q_nd w(x-l)/n,ﬁ/n])gvk for every .

,..isn. Hence, for every hi,...,n.‘ujnvkw and so

38Ty this imgpies that (317+=+43pYed1X.0. %7, and hence the
set ((:h,,..," Ves™:.

an):J,x...xJ is fmne.,

Jree
gl . Since |nzN) 15 a sequence of. locally ‘finité

£amilies ‘of cozero sets of BI such’ that ‘the sanily

u—(u i (j,,...,; )eg = "1 covers a . owe .can‘ua'e .
jlu-j‘n néN. i,

L pmpusiuon 12 (ii) to dednc: the axistunce of a 1ocauy

finite reﬁnemnto/—(wjh.“:l I(J,..,.}j ):a ) ot By eozero

is contained i,n g ¥ and we

“sets. sxn'ce' eanh--wj 31-~~ 1

s 5
have shdwn the existence of an extended liftlng, fanction bver

- each Ty b it follows that tiere exists. an extgnded
1 = &

E ' Fifting ‘function over eich wJ X
s ® i 1

: 5 » G W g b % d $ e U e
.. The following reéult’ generalizes proposition 12(i).

" ' Proposition 33 'Let piE+ B be'a fibration:and'let £, £'iX + E

il . ‘'be, two maps nuch"thar. pts-ps' and nuch that: thgre axj,sta a




[ ) N

Proof Let K:XxIxI + B be a homotopy such that K(x,t,0)=

K(x,t,0)=pH(x,t) and K(x',t,1)=K(x,0,8)=K(x,1,8)=p£(x). -
R Since p is™y,fibration there exists a 1i£€'1ng of

K KeXxIxI + E with K(x,t,0)=H(x,t) \ v B B

4
”
The' restrictions of R to the faces Xx{0}xI,  XxIx{l} and- .
. © Xx{1}xI give vértical homotopies~because their projections on
Lo >
B are stationary at pf. 'Hence the homotopy H':XxI + E >
TmotoRY VR
23 N defined. by . i o &4 .
- ; 2 R(x,0,3t) . if octal/s
H(x,t) = E(x,:it.-l 1)  if 1/3<t<2/3.

x(x,l,-stﬂ) iF 2/3<t<l :

‘', is vertical with-Hj=f,and hi=f'.

et .. As an application of_ lemma 33, we prove the,

5 followi.ng\ prbpcuition which appears in' a Fapat by James. and.

- r'rhomqu [271."

‘Progouition 35 ‘et piz + B vea ﬂbru:ion. Then any two’

““ i 4 nactiona 8,8'1B + Eof p m—.i.ch nra homot_opic 4re also

t
|




= | vertically homotopic. .
roof tet H:BxI + E be a homotopy from s to s'. Then

spH:BxI + E is. a homotopy from & to s and moreover (spH)~!.H

18 a hoMotopy from s to s', having as projection on B the
= homotopy (pH)=}.(pH). Therefore we can apply proposition 33

to deduce the existence of a vertical homotopy from s to's'.

Given a map p:E + Bx[0,17,-let E'=p=!(Bx{i}) and
1ot piEl + be defined by pi(e)=pr, (p(e)):
Theorem 35

N have the same fibre homotopy type over B.

If p:E ».Bx[0,1] \is a €ibration, then p% and p!

Proof Let m:E:> B and piE + [0,1] be the compo'uitiur‘s of p g o
. with the projections‘naps, so that ple)=(1(e) ale)). o
. Consider the map LifxIxI » BxI defined by . ' A
P Lie,tr)=(x(e).(1-p(e)+ts) . On {e}xIx{0) and {e}x{pte)}xI ) ‘
; "1 16 onstant at_(s(e),p(e)) ‘and L maps {a)xIx{s} linearly

! ) onto {x(e)}xl(1-g)e(e), (1-a)p(e)+sl.

YeNTT

T

-s)pits
b ?

) e A @




)

)

. EXIXI %H’“ Bx1

where i';(a.'t)-(e.c 0). siice p is a fibration, there exists

~a map K:EXIxI + E’lifting L and with K(e,t, D)-e..,.(since

" pK(e,trs)=Llest, 8)=(3(e), (1-s)p(el¥ts), it followa that

S

(e, t,8)=n(e) and pK(e, t,8)=(1}8)p(e)+e5"~ Using K we *aetine

the follawing mape: XlrecE? + K(e,1,1)eE!, k“:aja!:‘ +

K(2,0,1)¢E0 and H:(e,8) gBxI > K(s,p(e),8) eB. Since

pK(e, I%1)=(n(e), (1-1)p(e)+i1)=(x(e),1) ana pk(2,0,1)=

(x(e)5(1-1) p(e)+0- 1)=(n(e),0), we have that k! and k® are’’ "

well defined fibre maps over B. Furthermore

ince

pile,s)=pK(e,p(e),s)=(n(e),(1-8)p(e)+ple)s)=(x(e),p(e) )=p(e)
akid H(e,0)=K(e, (e),0)=e, we have that H is a vertical
homotopy from 1 to the ‘ibre map h:e'tE + K(e,p(e),1) cE. We

define set Hli(e,a)eEtxr + Hle, 5)eEt ana nd el 4 nerest,

“1=0,1. S N

We claim that k! is a fibre homotopy equivalence over B with
£ibre homotopy inverSe k0. ‘To ‘this end, consider the

homotopy G:E® x:i EY.defined By G(e,s)=K(K(e,1,8),0,1).




I

Junwnnxm
L

Il\l['lll I
{11

el

k‘(e) E I

to kﬂkl N Thekefo:e ‘the product of ~the homotopieu a“ and G
is a Vertical 'homotopy £rom 13., to x%!. )\ similar argument

_ shows that 1 ds verticnlly homotcpic to. " x1xo.

Remark 35 (a) The above probf ‘is die to Dold [137prop.6.6].

The map K and n.s‘”aér vatives k¢ k!, H.and h w‘i’ii also be

used in the ptoof of the next theorem. §9. e, wish “to point

1p1 to klk®




RLUCRIOW

' R
! e
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(b) If we Were not interested in the above maps \x. k9, k!
and. H and thef uses, then the proof of theorem 35 cou}d be
shorténied as follovs (cfr,[46:p.391). Lt ig:Ed + & ana.
ij:E! + E be the inclusxon maps and cox“de: the homotopxes
Hi(e,t)eEOxI + (n(e) t.):axx ahd H': (e,\-.)u:ln ¥
(1(e),1-t)thI. Since Hy=pij anq Hy=pi, and p is a

fibration, we can find hcmotopies fi Du + E and R +E

of i, and i,, respectively, Lfting i and H'. Now define

£:80 nl and g:EL » EO by f(e)=fi(k,1) and g(e)=f'(e,1): it'-

is clear that £ and g are fibre maps over B. The mapsi*
1,.5“ + E and ip9f: B0+ E have ‘the same projection” on axL
furthetmore. the map G:EOXI » E defined by G(ert)=H(e,2t).

ocec1/2, and Gle, t)=" (e, 2e-1), i£41/2¢e41, s a ‘homotopy

from J.u :6 i gf such’ that its, projection on BxI is hamotop;c
rel. EOx! to the homotopy ‘stationary at;pig,. since T
Gle,t)=G(e,1-t)% Applying proposition 33 we deduce the

existence of a vertical Nomotopy from 1y, to gf. A similar




gy

“fibration B, we:get that 'p

. homotopy type oyer A, v

" such spaces play an 1mportam: role in local-to-global

| the class D i,

Corollary 37 Let p:E » B be a fibration. If £',£':A » B are-

homotopic maps, then the pullbacks of p along ¥' and £" have

‘the same. £ibre hdmotopy type over A.

Proof Let H:AxI » B be a  homotopy£ron £lsto £ and let, g

- mi ‘enote. the pullbﬁckM

p':E' + A, p":E" + A-and
along £', f£" and H, respectively. Applying theorem 35 to the
B ¥ 2

50 and p"=p! have the same fibre.:’

- We mow introduce a relevant class 0 of spaceé which

* includes as a ;ub—ulals the CW-complexed. As shown by Dold, -

ccnsidetutions. ‘A 'space A belungs to: D 1f it adnm:s a’
numerame cdyer U uch -that eaeh element of u can be deformed
‘in A to a point, 'Allaud in [1] calls such a upace locally

contractibg in Larg

Progoaition 38 The class 0 satisfies the following

fouowing E. Dyex and D 8. Kahn [19].

properties; : . >

(1) if R 15 a3ninated by D and Ded, ‘then Ac ; in particular

stahle under homotopy equivalence;

(i1). for any bpade AN its suspension sacd; -
(ii1) any Cw-complex is in D. ’

Ptoof (1) We racal]. thut a Ipace A is dominu.ed by a spncu'

g




BA——

D if there ex‘ilt maps £:D + A and s:A + D such that fs=1 A

5 cezam set; indasd, if cjxD +Iis'a numeration of uj then

i.e. f-admits a homotopy section. Let U={U |J:J) be a

numerable covering of D with each element dafomble 40 D/ to -
a point. We-define am open cover of A by u‘n(.-luj|js.)). ur
is.locally finite; indeed, since U is locally finite, ‘for

each 3eA thar exists a nethhourhood V of s(3) e such that
{jed: u nvau) is finite; it follwu that -'lv is'a

neighbourhcod ot a and. (jr.Jx rlujnr!vaa):(jxgx U nvw)

uinee if ar.s“l.'jnn"v, then u(n)cujnv. Each --1uj is a

cja:A,~ I is a numeration of ::“"l.vj because P
cja(a)to(-)_-(-)cujt-)au'luj. It remains to show.that each
sluy can be deformed in A to a point. For each jeJ let

szujxx + D be a.deformation of uj to a point djep_ (i.e.

K;(4,0)=a and K;(d,1)=d;) and let H:AxI '+ A a hopotopy from
{

|
{5
|

1, to fs. ‘Denote By Hy the re.!ﬂcuoé—oru to 571U, < and,
'luja + A obtained as the e
K £ - \,
+ D+ A, 80 x'j(u, )=fs(a) and )

consider the homotopy Ks &

< N axlp
composition -'lujnx »? uij

K!(a,1)=£(@;). Then the hmtopy Hy.K}is=luxi + A, obtained !
2y ﬁ - R b
by following for.the first halfe um. H, and then K}, is a
i 1

deformation of l"Uj\tu £(d Yo




it wm A7 Li3) we recau that the suspensiop.SA is|obtaihed from the
: cylinder AxT 1den¢.1£ying the botf.mn pase Ax(O) to a pomt,
- ‘'the top base, Ax{l} to another point and fopologizing it ﬁ:xth
+ the quotient topology. A -genefic point Of SA will be written
. by Cast], with sen’and teL0,1]; so [a,0J=ax{0}; [a,11=ax {1}
. and [a,t]=({(a, )}, if 0¢t<1l. We define U*3SA-{([a,0]) and
" y=<sA-{[a,1]}. U* and U~ are open sets of SA because their ,

anti-images by’ the identification map q:AxI + SA are K

Ax10,1] and Ax[0,1[, respectively. Furthérmore, U* and U™
afe cozero sets; indeed, the functions c*ila,tlesA -+ telO, 1
and c~:[a,t]esa 1—\::[0,1] are continuous becauue' their
go:;yppu%.iona with the identification map q are the maps
(a,t)eAxI + £e[0,1] and'(a,t)sAxI » 1-te(0,1], ruupactivaly,)
. and the anti-images of 10,1]. by c* and ¢~ are U* and U-,

respecéively. It remains to\prove that U*.and U~ are

U+x1 + SA

% -ty
" defoxmnble in SA to a poi.nt. To. this end,

{be the Eunction defined by KH([a, 1 8)=[a, (1-t)ert]. KF is
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5

[a,11=(a’,11=K*([a’,1],8) ; furtheriore, K*([a,t],0)=(a,t]"and =

well defined because whén t=1 we have that K*([a,1],s

: .
K*([ajtl,1)=[a,1]." Consider the following cormutative

diagram .
=7 TAX]0,1) XT ——————————3 A .
[
-y " - & .
S Crhge—K T s ., o~

where K"‘(a,t,s) =(a,(1-t)s+t) and q*:AxJ0, 11 » Ut is the

—res(’:ript:xon of q. vsu_xce ut is open, q*’is also-an

identification map [18/th.2.1,p.122) and so q*xl is an *
identification map'[18:th.4.1;p.262]. Hence Kt is a

continuous deformation of:Ut. simuarlyam proves | that
K=:([a,t],8)eU™xI » {a,(1-s)t]esA’is a ontinuous _defumae_ion

of 4% to [a,0]. ' it ) o

(iii) It is well known (‘.]‘-Aat any CW-complex X i3 paracompact o

(Miyazaki's theorm) and locally coptractible, i.e. each point

admits a " r ible open nei  LetU={u} be an

open dover bfX such that-aeach Usl ds: contractible. Then

there exists & partifion of unity (y:x + I} subordinate to\.

Hence the open cover {y='(10,1])} is a numerable cover of X .
such that each of its elements is ::ont"ra_m:iblve‘in X." (A more
elementary proof, i.e. ;‘g_rfuutnq the iaaucmﬁpgnha.a of |

cw—complexa\a, is given in .[13]). " e 5
‘ .




Theorem 39 Let p:E + B and p':E' + B be fibrations with Bel.

. 1f £1E » E' is a iibre map over B such that E :F » yb is'a |
homotopy equivalence for every beB, then f is 3 fibre <
non'm':apy equivalence over B. :

ProOf Let, U={U}+be a nuigrable cover of B such that each Ucl

can be deformed in B to '{,ip?int. We will show'thit for évery )
Ue the fibre map f:E; » Ej is a fibre homotopy equivalence g
S over U between pyiE; + Uand pjiEy » U. Tre wial é'hen'ﬁo?w
from theorem 1.14 that f is a fibre homotopy “equivalence
over B. - y . !
= ¥ Let c:UxI » B be a déformation of U toa point

byeB, that is, c(b,0)=b and c(b,1)=b, for every beU. Let

@:D + UxI and q':D' + UxI denote the fibrations obtained by

- pulling back p and p', réspectively, along c;’ so %

. D={(b,t,e) cUxIxE: p(e)=c(b, t)}, D'=((b.t.e’):ux’1ig)'; p'(e*
olb, ), alb,t,@)=(b, €) and q'(b, € e')=(b,t).  Kesping the
same notations introduged in meornm 35, we hava ‘the . - L

Eib:gtiona q":D" +u, qlml +u, q“’m‘“ U and q‘!-n‘l U

Now let £ID + D' denote the fibre map over. UxT irduced by £
and let E0:00 .+ D'0and F:p! » D'l dénote the restrictions ‘
of E. Via :the one-to—one co:respondences ecEy <= >(x>,o,e)m° (I

W g e'cz'm(b 0,8 ):n'v (b.c)emr <=2(b,1,e)éDL and

(b, &' )euxry, <= s (o, 1,6')ed't wa can ‘ldentify q° with By q? X
wif.h Pyl ql wif_‘h pr,xer + U nnd Q' with pr‘xuxi’b LU, )

. uider these 1dent_1£ieations 0 correlpondn to' and sl, to’ ",




the map (d,£)e0?xI “+ J(EK(d,t,1),0,1)ed'0 g

il J(fK(d 1,1), 0, f)=J(fk‘(d) 0, l)éj°fk"(d)=j°£‘k‘(d). Sq gl gs'"

116 ©

. Lyt ¢ %0 vin particular, ¥! is a £ibre homotopy equivalence
over U. Let K, k0, k! and h?, denote the maps associated to
a: nj~ UxI, by constructed in pioof of theoren 35, and let I
. 3%, and g" be the ccx‘reapondinq maps for q':D' + UxI.
- We want to, ihow that B is fibre hmnotop).c over U

to tHe composition JOElk1. Since the latter is a fibreé ;

homotopy equivalence over U, each factoribeing'a fibre .

Thonotopy equivalence over U, it will follow that 9, and

" hence £y is a fibre homotopy equivalence over U.. We E£irst

" observe that: B=F0 e FONI=L

B 0En0 :Uq“E“hﬂ. Now consider &

o} D 4.1:?

T It'is awvertlical homotopy from g"f"h“ to JOFIkly
o.y)=9m°(d)=q°sdhﬂm) a_aa T

- J(fx(d 0,1)0, 1)=J(t‘h"(d

fibre homotopic over u to JFlx!, as taquix‘ed.




{Fotne restrictionfy, of a fibre map £1E + E' over a point

5b“be a hcmo’capy'qulvglence £or one cholce of B in ach path

comporient of B. Ih particulat, i‘f~B ia’ pat‘h connected it—. is .

. enough to ‘know tnat ¥, is a homotopy eq\uvalence"&)r; some
beB. : o B i >
o - i \ Wt

‘Proposition 41 Let A,Be0 be path‘connect.ed and let fi3.> B

be a map such that for some ae{\ tHe loop map af: a(a,a) ¥

n(B £(a)) is a (free)- homotcpy equivalende.. Then £ is a

hcmotopy ;ﬁuivalence.

£ . .
"“followed by tne fibration Fihg+ B. THen'E is a homotop;

Proof Factorize f as the homotopy equlvalence A

equivalence 15 and.only if ¥ is ahosSeopy 'q Alenge. Now

, . T P
and ‘obServe that if the fibre.of E ovetsome beB is a

* s, éontractible gpace then, by corollary.27.and theorem 39, it




s a righ'! fibre hmxotopy

cannected and belongs to , theorem 39 tens us that £ 'u a

fibre hmtopy eqnxvalenl:e over A. Nov P-'(A.n) isa =5

contractible space and hence Té(ay a contractible space,

as required: |
. :

2
iibrations and

" ﬂbru homqtopy

verse for f. ‘sthce g is ‘also a’

19

ieft homotopy inverse for'E (1.ei ge=ly), it will follow'from

proposition 1.2 amd remark 1,3 that.g"sg and.so g' is aleo a

) hom'mpy “equivalence. , Appxyxng the same reasoning now ta.g',

we* will deduce th. .xiut,om:a of a fibrg ‘map f :E + E' over’

Y which is & ught £1re homtcpy xﬂ‘hzu for q'. Appxyxng




= .

L . ¢ ;o : ) - 18 !
1 ' . o . |
g N f£ollows thac % is a fibre homntopy equivalence (over a) and =, :
’ “ 8o, in particular, a 'hnmctopy _equivalence. Hence, it is. LI

° ~sufficient to show that the _fibre of E over some beB is a , G
‘- contractible space. 3 2 ) T

: é . Lt T, denote the, £ibre of E over b (the Gomcatisd ‘

homotopy fibre of £) and define almap d:T, + K B “ata, p)=a. -

k= Since q coxncida- w_ihh the pullback ef the fibration

p':P' (a b) ma along £, it is a thrunon and the fibre _of.q.
L

. over dEA iw Ty =((a,8)chxBLs (0)=£(a) and $(13=0}. 1f

\ br2a .
b-f(a) we have that Tf(u‘)’ & -(a]xn(n £(a)) and morecver there

a@,a —E 5 (a)xﬂ(ﬂ i(a)) .

-_— : ¢l

R ¢ Pjin.a)

e ; P




Let H:E'xI » E" be a 'humotopy from £9 to 1g,.: "x;n‘an

p* ‘His'a homotppy of pg because p H(x,o)=p £g1x)=p9(x) Lo

OBy od £ am'«z. > E ufung p'H. "Define

. ‘Now ‘the ‘homocopxe. H and £G Havd the sanle projectiun o B
becq\ua p EG-pG-p H. Hence the homntopy (fsrl H3E'x] » E',

obtained by following: Eor t‘he first half time £G in the .. ..

¥ g : reverse direction and then H, is a homotopy from £g' o T

w‘hcne projec:ion on B, i.u (p" H) l.p H )lo-w {p'H)~1.p'H is a
v ‘homotopy 'having t.he propex‘\:y that lts valua oh (x,t) and e
. (x,1-t) coincide Sales it: can be-deformed rel. Ext to.the g

. : onary at p!. cefore, by ition 33, we |

i -\ deduce the existence of \a vertical homotopy £rom £g' to l...
B T ‘ P . : X :




[ k “With a similar uqnmenc, appued now to t)m hmatapy S
O equxvaunce g e deduce - the exxseuncu of a tibre map.. “

Rehark 43 -n-.. above teenni.que for. provlng that o' isa ughc .
fibre ‘homotopy anqna for £ cannot, Ln g-non'i. be used m - [

show thnt g 1- a hft ﬂbn homotepy inyerse for f. Indned. o

we cann‘ne “apply the. above trick' to the' humotopie- JiEXT +E ¥~
: T ’
wi b from gf to 1y, and KiEXT *

G Y
'xx +E from gf to g £, ‘because ¢
their projections » and px are not g.lu‘t.d. : )




s

There is 'a more geometrical way to look at the™

Proof of theorem 42, .as suggested by L. Siebenmann in [39];

it gives an alternative proof when E and E' are.locally
compact, Hausdorff. Consider the mapping spaces M(E',E), " "
u(a",s') and M(E',B) and the maps p,:M(E',E) * M(E',B),
PLM(E',E') » H‘(E'.B)‘and £,:M(E',E) + M(s",'r-:")_ induced by p,

P' and £, fespectively. The diagram
.

~

M(E'E) —— sy E") . F

Goitmutes, -since pyf,(4)=p'fi=pt=p,(t)  for all.teM(E',E). Now

p and are fibxations and E’ and E' are locally compact, r’

Haundo:ff, 80 Py ahd Pl arel mmuana (example (v)). Let .

gém(e’ LE) Be any. homoc\apy»inver.e of £ ‘then fg ig homotopic | Ri

to iy, by some momotopy E'XI'+ E' whose: adjoint will be a = T-'
path if M(ETLE'), call it o\ . 7. = € =
B . . : < b o " )
. ¢ > wi et A w




Henca r,s and n'have the same pxo

Pﬂf. B’P-B"=Pa“'




the adjoint ‘of v defiries a. veruuu homotopy £rom fg to-
1:" o o B . = . ¢,

| Coruilagx‘ 44" Let pr +.8 be a- fumuxon.
’

- Proof “We “have alréady seen’ that a” nap p.: + B is shrinkable
. 1_{ and” only if p, regarded as S ‘fibre mp over B from p to ,

15 s fihm honbtopy, equivalence. On ‘the other, hand, T

; ‘since: p and 1, ‘are "fibyations, wa hau f£rom theorsm 42. that P

- s a fibre honm;upy .quivalance ¥ ana only if p is'a

homotepy equxva;anc..

Let p:E + B m».' map and let w be a partition.of B.

- We day that p is a x

ihnu.an ﬂ for any map £:X + E and uny

H & r-stationary nm:npy HiXxI + B O PE- there exists-a

H i ‘hmotopy ﬂ.xq - z Of £ lifting'H. We observe the following:

if =gz '. then. u * -ﬂbratim u al-o a w-fibration, -im:a a

p'..'nizion of B (e, 3=((b)[be8)) then any

) -fibratinn bet:uune in uuL. case a w-stationary

at , oY Lik- farewi

T I hosotop &
Y 'fibratidng

. Indead, if we, 1d




‘To ahcu thnt Emf

" defined because L(unﬂ:u)(o)-a(o)'f(a‘

because its a‘ujnmt 1s* the ap ey u,xm):A e .

a1l prthea wnich are s-stationary, that-is, Ta(t)1=Cal0)] ) i
for every tel, and vé'consider the subspace A of 1,
conaxsunq of all couples in A with the second _component in -
Bl, theri considerations ai\mi‘lar to those-used in proposition

14 show that p is a x=fibration if and only if-p:E} I

admits’ seetion over A%, oug motivating example of& 3

%= fibuuan xa the map £ Rg» E', for any fibre map £:E +E'

ovet B Etom Pp:E:» B to p'xE' + E. I this case t'he parciuon

L bf E' is given by ehe. fihres oE

', .that is us,(rbl’paxmp }.

4s'a n-eibratith we will comstruct a

"
section o of p!Rf - A?' over’A"., To this end, we first .

define the map L:E'IxE'Ix1 » B'F, wWhere xE

(o, )2 Txe T a(1)=5(0)), by L(u,B,s)(t)=u(2t/(2-!)): if

0<t<1—-u/2, and L(: .B,!)(t)-B(Ztﬂl-Z),‘ if 1-g/2st<l. L is Y
continuous because its adjoint is"the map . .. L. .
u(z:/(z-a)) if 0<t<1-a/2

;o (a8t ) 6B Ty -+
- € 3 a(zc+d—2) if 1-5/2«.‘1

The path L(u,B.,B) fouws ursr. :he path a and then the path
8 up to 8(s), and so L(u.B,O)=ur mopeover, 12 s arl 8. lie in . S

the gane; fuma of p', so does L(u.e.s) for every 5:1. Now 2 X :

denne nxAE »> Rﬂ by ole,a;8)(s)=(e, L(mﬁ,u)). o is. wall

if” i,a untinuouu ;,:

(a.L(m,a.n))cr(f o and: Euﬂ.harmo:e u(a,n,s)(o)r(e,n(a,s ,0))=




(e,a) and E(a(e,u,8)(s))=E(e,L(a,8,8))= L(a,8,8)(1)=B(s); 80
' o is a section of p over A:. *
-
The fiext resylt generalizes theorem 42

' + B are.w- fibratinns and .}

Theorem 45 If p;E + B and p':

¥ . @ £E 5 E' is a fibre map.over B, then f is a fibre homotopy
equivalence (over B) if and only if f is a w~fibre homotopy
« equivalence. o ) .

\Proof 'The technifue is the same as. the proof of theorem 42,

1f £ is'a £ibre hotiotopy equivalence over B, then fhere exist = -

a ﬂpre map. g:E' +. ove: B, a vertical homotopy H:ExI + E

* from gf to 1p and a veztxcalr 'homotopy K:E'xI » E' from fg to | i

Iy So, in particulir, we have t'hatx T a . "

(.u' [pale)I=lp'(e")] for every.e'ces ! 5

s (i) [pH(est)I=Cple)]. for nvery —_— ten;

g o (i11) [p'K(e',t)1=[p'(e')] far evex‘y o' eE" angl tel.

.This shows that f is.a 7-fibre homotopy equivalence. -

. N\ Nov suppose £ is a i-fibre homotopy equivalence. . o

L7 Thia means hhat there exist a map gIE + E, a homotopy .
i ’ HxExI + E from gf to 1., and a homotopy KiE'xI » E' from fg <
to 1p, such that: -
i (1) [pgle’)Ilp’ te')] for every e'cE's
| (1) [pH(e,t)}=(ple)] for every ecE and tel; 7
0 !

(141) [p'k(e’,t)]=[p'(e')] for evazy‘ e'sE' and tel.

. Because of property (411), we Tave ‘that p’K is a7

gt Lonary

‘homotopy; Eurthstmornr ‘we have that p! x(a',n)-p fg(s )=




“way a fibre map £':E » E' over B with g'f's

127
pgle’). Since p ig a r-fibration, there is a homotopy of g
GiE'XI » B lifting p'K. The map g'tE' + E defined by
g’ (e )=t G(e % 1s a fibre map over B because pg' (e')=

pG(e!,1)=p'K(e',1)=p!(e') Moreover,. we have: that £9'=lp, via

the homotopy (£6)-1.K.- The proj

Stion of -(£6)°).K on' B is *

the homotopy (p'K)=1.(p'K), which can be deformed rel. E'xl

to the homotopy -:aeionary' at.

' by.a w—scation'any ‘homotopy o
(witn respect to.the last variable) L E' xz;; + B, .si'nce k3 .

is a n-fibration, theré is a llfting fof wi;h Ln=(fG)"‘ ¥ W

Then the map J:E'xI + E' given by -, @
. * T(e',0,3¢t): .‘-if’onq/a B

© a(e,)= { Blet,3t-1,1) | if f/3<t{i/a
; Bler,1,-3es3)” ix z/3<c<1 o

is a vertical. homotopy f_:om £g' to 1 .. we can now reapply

‘the same argument to g indeed; g is a n-nbre homotopy® . .

equivalem:e via ‘the map £:E » E', the homotopy ExI + E given
B £x1p. P
by t‘hg prodict of ‘the hcmoéopies ExI + E'xI » EandH,

and the hopotopy (£6)=1.K:E'xI » E/(6r J). We get in this
gl -n.;’:i. by ¢
proposition 1 2, g" s a £ibre homotopy equivalence over B
with fibre homatopy inverse £; hanca £4s a fibre homompy
eq\ﬁvalence. -

Remark 46 If x-is the coarsest partifion of B-(i.e. 1=(B})

then the statement: of theorem 45 is just Dold's theorem 42.

r

It
i
4




The follgwing consequence of theorem 45 completes
the proof of proposition 1.8.
Corollary 47 Let p:E + B be a u-fibration. Then p is

shrinkable if and only if p is a z-homotopy equivalence. -

Proof If p is shrinkable then p admits a section s:B * E and

. (11) [pie,t)]=[p(e)] for every eck; .~ . Coe

a vertical homotopy H:EXI » E from 1, to sp. So, in
particular, the following properties hold: y

(1) . [ps(b)1=(b] for every bem; . ' i

(iii). ps is homdtopic to 1y via a 7~ -ca:ionuy ‘homotopy.. ‘.

Hence p is a w—homtopy equivalence. -
. oOn:the other hand, supposs p is a :-hmmapy

equivalence, that is? there is a map q:B + E, a homotopy

H:ExI + £ from qp to 1 and a homotopy K:BxI + B from pa o

1, such that: B ‘ E L

(i) [pa(b)1=[B] for every bes: ) -

{ii) [pH(e,t)]=[p(e)] for every ecE:

(iii). [K(b,t)]S[b] for every beB and teI.
This means that p, regarded as a fibre map over B fxau p to-
13, is.a 7-fibre homotopy equivalence. since p .nd 1y aTe
*-fibrations, we can apply theorem 45 to deduce that p is a -
fibre homotopy -qn..u.vulanca (over'B) from p to l;, that'is, p

is a shrinkable map. @ B
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g e 3. DOLD_AND SERRE FIBRATIONS. QUASIFLBRATIONS

.

We have seen in section 2 that maps of the samé

s " fibre homotopy'typé ag a Hurewicz: fibration may mot be ' .o
o B A ‘\gure‘wicz fibrations. But it vas pointed out by Dold [3] and .
Weinzweig [45] that such maps dg polses\a‘weak covering - "~
'hamotopy pxoper:} and that maps with this proyeny exhibit R

~ 777 many of the prcpertxes “held by Hurewicz fibratxons. Magre

... .. precisely a map piE + B is said to have the weak covering
homotogx property (WeHP) with resgecc to a spage X if for
every “mdp fix > E and semi-stationary homotopy H:XXI » B of

' pf t.h_ex;g exists ,a homotopy H:XxI » E of £ lifting H. p is™ !
called:a Dold fibration if it has the WCHP with respect to

all spaces. »

7o . Hirewics fibrations afe of course Dold fibrations.

. . Shrinkable maps are also Dold fibrac%Zis. To, prnve it, let

> B be a shrinkable'map, s:B »E’a-section of p and

L7 ... ! KE S E a vertical 'humécopy “from 1y to sp. - Consider any
- map £:X > E and a semi-stationary homotopy HiX*I +'B of pf.
Then H can be lifted by the homotopy H:XXI + E of’ £ given by
H(x,t)=K (£(x),2t), if 0<t<1/2, and H(x,t)=sH(x,t), if . s
1/24t<1. s | .

" An example’of a bold fibration which is not a

Hurewice fibratich is obtained by considering

Ee1x(0}y (§ }IcR2, B=1 and. letting piE + B be the projection C -

- on ‘the ‘firdt-factor.




-

'

©8 : ~

. o,0)
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p is a.shrinkable map, and hence a Dold fibration, since the

maps s:B '+ E and KiEXI-+ E, g"w'an*by s(t)=(t,0) and
K((x,y),£)=(x,y-ty), aré a sebtion of p and a vertical
homotopy from 1 to ep, respectively. To show that p is not_
& mrfﬁcx fibration, sonsidar & onsipeint che P=(*} and
the tps £:P + E and HiPxI + B defined by £#)=(0,1) and
H(*,t)=t.. Then H:is a homotopy of pf, but there-is.no
lifting H of H with Hy=f because, otherwise, the inverse
inage by i 6f the opegl set (0}x10,1]cE would be the set
{(*,0))cPxI, which is not open, contradicting the continuity
of . ] :

i The following result says that, unlike Hurewice,




SR—]

fibrations, being a Dold fibration is a property invariant

.- as 7
under’ fibre hombtopy equivalence.

Proposition I Let p:E + B and p':E' + B be maps having the

same fibre homotopy type ‘over B. Then.if p is a Dold

fibration, p' is also a Dold fibration.

"Proof Let f£iE + E' be a fibre homotopy equivalence over B

with fibre homotopy inverse g:E' + E. . Furthermore, lét :

2:X + E' be any map and let H:XxI + B be a -em-'uta_do\nary

homotopy of p'%. Consider g%:X + E;.then H is a , ~ E

semi-stationary homotopy of p(g%) because p(g%)=(pg)t=p't.

Since p is a Dold fibration, there is a homotopy H:XxI + E of

g% lifting Hv Let G:E'xI + E' be a vertical homotopy from fg

to 1p,. Define H:XxI » E' by

g G(2(x);-4t+1)
fx,t) = £ (x,2t-1/2)
Ef(x,t)_ .

if 0<t<l/4
if 1/4<e<1/2

1 1/2¢e<1

Then H is a homotopy of t lifting H; indeed,

H(x,0)=6(2(x),1)=1(x) and

Tp'c(t(x),-4t+1)

TMilx,t) = { p'(x,2e-1/2)

. - | p'fl(x,t) i
BN p'2(x)
' = k;'l.(x) o
.-, . pH(x,t)
g H(x,t). %
-

if O<E<lpg .
if 1/a<t<1/2
i€ 1/2gee1
if 0<t<l/4
if 1/4¢E<1/2°
Nf 1/2<t<1

.
|
1




a aemi—stauonag Eath ~sThere is a nntu:al map -aeBt . cu;B

Rematk 2 -The - proa! of the above proposition actuslly-shove
that a stronger esiiae holds; namely, if pliE' - B is p

dominated by a Dold fibration p:E + B (i.e., theve, exist fibre
maps £:E + E' and g:E' + B over B with £g7;1.,) then p' is a

Dold fibration, °

i . .
* Dold fibrations, like Hurewicz’ fibrations, can be ,

characterized 1nt:1nuf' Cally by lifting funcucnu. Let

By -(us s u(t)-a(O), o<t¢1/2}=a i, an’ g,lamunc of. B is caued

where n is defined by u(:)-u(o), if oq:q/z,.and
n(t)-u(zt-l), if 1/2«,51. Given a map p:E + B, let o
A‘-((e,u)cm . a(D)-p(e)).~ Then a Dold 1lifting function for

pisample - BL

uch that A(e.n)(O)-e and peile, @

that is, 1 is -a section of p: s 3 A over I«p An argunenc

similar to that u..a to prove pmpo-xuon 2.14 gives the” |

.following result. y 3 .

).Prmﬂition 3 A map p:E +'B is a Dold fibration.if ,and onxy

if p admits a Dold lifeing Eunction. 4 2 : ¥
' In ’ucticn 2 ve asuocintaﬂ to any mnp p:E + B a
Huuwic: fib:qtion pr\ +B and an "1nc1ulion mnp 1:E + A

wth p=p\ and 1 p homotopy squivnloncn !urtharmore, we

proved that if p is a fibration, then P and p' have the same

| fibre humotopy “type (o‘)ar B). We now g-n-nuu and ‘imprope

that result. - . ) - .
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Proposition 4 A'map p:E + B has the same fibre homotopy type

. over Blas its associated fibratioh p:A_ +'B if and only if p

is-a‘bold £ibratdon.
i . i Froof Supposu ) and.p' ‘have the same fibre hcmotopy type
over 'B., ‘sincers Hu:emcz Eivration is also a Dold fibration,

5 “p has, thé ssame fibre hcmot.opy type ‘am -2 ‘Dola nbnuon ana L

<P ist ;tlelf a,Dold fibration-

Convetgély, suppos ‘pdea Dold ﬂbratxon and’ let A

i S pea "Dold ufcing fum:tion fo‘r P’ anine‘ ;

t(e )=l(e.u)(1) Than 'ig a fibxe llu.\p ovet- B such; that L

N, gi=1 ) and Vel Inaeed' e h’omntopy‘ Hn(e,'t)rEaI > %

BE .
e

.o, A(e,y(e))(t)m 1; ‘a uzucax honmopy irom 15 to T1 and the”

. 'namocopy AT AP defined by K(e,u t)=(X (e, @NHe), a), if

o<c<1/2, and K(e,u.t I\(e.a)(v:),nz l), if 1/2<c<1, (here @

v 't
H . _ denotes the path.a, (s)'u(s-ﬂ:—st), follawing. o from aft) to

a(1)) is a wvertical homotopy from 1, to e »
[ el ok R

es held by Hurewicz fibrations

N femnin tein, for Dolds Eib ations. Accuau},, 'se of éhem

to staté and prove them for

that case technicalities

A smp 1fy considarably /uz_'unq 80 'the main ideas in the
pmafs uppaar 4 a cldar way. We simply point cut that, for . .
T . exunple, the fouwluq results are also valid in' the context

|
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of Dold fibrations: a Dold fibration p:E » B gives rise to a

* functor Tp:B > HTop; if p » B is another Dold fibrationm,
then any fibre map £iE + ‘i e B gives Eioe 5 8 natural
transformation w;:*rp 3 Tpii the Pibres of a Dold fibratxah’
over points lying in the same path comporent have the same
homotopy type: the pullback of a Dold fibration is a Dold

fibration and pullbacks along homotopic maps have the same

£ibre homotopy _type: ‘a map.which is, "locally" a Dold
ﬂbration}s a pola fibration; a fibre map £:E + B' over BeD
* between DGld fibrations p'E » B and p':E' + B. E\lch that fb
is a homotcpy equivalence for every bed, . is a. fibre homotopyv
equivalence‘, a fibre map. £:F » E' over B between Dold
fibrations is a fibre homotopy equivalence over B if and only
if £ i4 a homotopy equivalence.
‘.
We now introduce afother class of - ias which is

related to the covering homocopy property. A map p:B + B is
called a Serre fibration if it has the CHP with respect to

“all the cubes I", f30. The following map is an example of a
"genuipe" Sérre fibration, that is, of a Serre fibration .
“hicn fails t6Vbs a Dold’ fibration'and so, a fortiori, to be:

a Hukewic

fibzation.‘ Let B=UIx(l/n) U((t,=t) [teI}<R2, BeI

and 26t, pE B be the prqjection on. the' firet factor.
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E_ (Ol (14]2)
(O (1)

i (o).

f—

—— W]
: — N

! )

i

i P . o ) :

| The path components of E are the horizontal segments Ix(1/n
! b

and the slanting segment. To show r_hat p 15 :a Serre

ftbr&an, Let ‘€17 s E bo any map and let B: 1™, B bea

homotopy ‘of pf; then Im£flies in some path component offlE,and*

i
%
o soH can be canonically lifted to E. To show that p is“not a . '!
: Dold fihxatiqn, cnnaidet the apuce x=(l/nln=u)u(0}_ll with t‘he i{
j subspace topology and let £iX *E be “the map given by. i
! " £(x)=(0,x) and let HiXxI VB be _the Thomotopy, defined by {
} Hix,£)=0, 1€ 0¢6<1/2; and'H(x,t)=2%-1, if 1/25e<1i At ia | “ w8

impossibe to find ‘a lifting H of H with Ho=f because H mist




|
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then satisfy f)(x)=(1,x), if %#0, and #,(0)=(1,-1) and so fi,
‘cannot be continuous at x=0. '

On the othet hand it is easy td see that the Dold
Flsrutton consldeied ot beginning of this section is not a
Serre fibration.” Therefore, these two notions are
independent Sf each other. M
B The following results’ state the main gx:opegnies
held byvslerre fibrations; their proof can-be: found. in

[40 1secc. 7.2 and 7.81. 4 -

_Proposition 5' A Serre fibraw + B has the CHP with

respect to any, CW-complex.

)
@ - ~ .
Proposition 6 If p:E + B is a Serre fibration, then for
hy
every ecE and integer n>l the funttion Pi”’n(E'P{:(a)'“) *
7 (B.p(e)) induced by p is bijective ahd the sequéence of
A¢ i . Pu t 4
pointed sets "n’("p(e)'e) + no(Ece) > xo(B,ple)) is exact.
1t ;follows from proposition 6that if we consider

the exact

to the pointed p_air

(EFpe

y+e) (the horizontal line in the below diagram) /
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i, 4, s
comg(Fpgyee) * mglEie) > (E,Foyie) on (F g ee)e.
i . P.R P~l"1 '/a/::‘:;‘
% ‘:n(B,p(E))

and we define 3=0p3':n (B,p(e)) + xn_l(Fp(e),e) (n>1), e
the sequence

i, " Pa 3
..%ip(e,,e) b m(Be) ¥ a(Bip(e)) > m (Pp(gyee) e
a0 @atihed is an exact sequence of groups and homommorphisms.

alled the exact homotopy sequence of the Serre
fibratiog p. &
" Unlike Hurewicz and DSld fibrations, fibres of a

Serre fibration over points lying ;ﬁ the same path component
are not necessarily of the same homotopy type; an example is
given by the Serre fibration previously constructed taking
“the £ibres over 0 and 1. But it can be proved

(c£ri[40; cor.7.8.41] that fibrés of a Serre fibration over  #
points lying irthe same path component have the sime weak
homdtopy :x‘ge, thg:"la‘,l' there exists a map £1F, + Fy,

such
that £3:5,(Fp,e) » w(Fp £(e)) 1s an isomorphism for’ 3

eeFy and integer n>0. . .
. *: N e
L 4 . . 8 e




. A larger class of maps related to the covering
homotopy property, which includes Hurewicz, Dold and Serre \
fibrations, was introduced by Dold and Thom in-[16] and [171 /|
in connection with the study of infinite symmetric products. \
This' is’the class of quasifibrations. A map p:E + B is a

quasifibration if, for -every ecE and integer n>l, the

function p, = n(B,Fp“),e) - nn(B.p(e)) ?a bijective and the -
. . . iy Ps
- 'sequence’ of pointed séts x(F ) /e) + wn'(E.e) » wy(B,ple))

(e
is exact. Geometricul].y, theplatter condition means that, |
for every beInp and ecE, p(e) can be joined to b by a path if
and only 'if ‘e cin be joined'by a path in & to some .point in

) By . We will call a subset U of B distinguished for the fap -
-~ PIiE.+ B if the restriction of p to U, 'pU:Eu + U, is a
quasifibration. ) & .

: 7 We. have already cbserved that Serre fi\.brutions"fre’

quasifibrations ,(pr_opoi;u.inn 6); therefore, Hurewicz )

i _fibrations, which aré particular Serre fibrations, are also

quasifibrations, With an argument similar to that used to

2 |
/prove propobition 6, it can be shownthat Dold fibrations, "«

too, are quauifibtations. .

We now present a simple ekample of a qemlina

quasifibration, that is, a map which is a quaslflbration but
fails ‘to be a Dold and a Sertc Eibratiun. and so, a fortiori,
‘a Hurewicz fibration. Let

E=[0,1/21%{1 )V {1/2}x19[1/2,11x{0)cR%, B=I and let piE + B.be




the projection on the first factor.

. (0)4) sy (4(2,4)

. . (42,0) Sy (4,0
e

" 0 41z - 4

For every ecE the sequence of pointed sets
. g

7o(F (g)r@) + wolEse) + #y(B,p(e)) is exact because E is

ple
path-connected. For the function’

'p‘an(E,F ) > wn(B,P(e)), n>0, we' have that = (B,p(e))=0

ple)’®
because B is .contractible and that w,(E,F_ ) e)=0 because the.
e i,- o .
sequence _nn(E,e) o 'n(E"Pp(E)'e) *> -n_lgrp(e),,e) is e_‘xagt-
(it is a part of the long exadt sequence of the pointed pair
(E’Fﬁ(e)'e)) and E and»‘E“P(e) are contractible; hence p, is

bijective. 1t is easily seen that p fails to be a Dold and a
Serre Eibration. wo s ) o~
We écall that a filtered sphace is a pair

(Bi (s,[n>0}), where B is a topological epace and. {s In>0}"is
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s

‘aistinguished;

“(a) mg=1 hy(s )

an ascending chain SpcSe ... of closed subsets covering B

such that B has the weak topology with respect to (s,[n%0}.
The following proposition, resulting from propositions 22
2.10 and 2.15 of [17), describes a genegal method for proving
that a map is a quasifibration.

Proposition 7 Let p:E + B be a map onto a filtered space

(B, (s,[n>0}). Then each s is distingbished for p and p is a =

\
quasifibration provided -that: i

(1) 8y lnd. every open uub.nnt of sn-s*1 (n>0) s

(ii) for each w0 thére is an open subset U of §_

containing S and homotopies h:UxI + U and H:E;XI + E; such

-1
that:

=S,y 20d h,(ul;sn_lf

(b) Ho=l, and i covers W, that is, FH =h,p:

Erm
(e) Hp:E, + Eny () .u a weak homotopy equivalence for all
be. . ® B .
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S vertices of &
Sy= edfes of &
xe

he o .
1 »
Although quasifibrations do not satisfy ‘the CHP, they do

exibit a property of this kind. o

Proposition 8 Let b

+ a\,be a quasifibration. If P.is a
polyhedron,  £iP + E a map-and H:PxI + B'a homotopy of pf with

ImHcInp, then there exists a-homotopy H':PxI » B of pf,
“arbitrarily near" to H'and homotopic'rel. Px {0} to H, such

that H' can be lifted by H' with Hj=f.

The above property is called "rélévement des -

141
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homotopies homotopes” in [16]. By a polyhedron we mean a

ical space phic to the geometric realization
of some simplicial complex (cfr.[40;p.113]). For, a rigorous
definition of the expression "arbitrarily near" we refer the
reader to propositon 2.7 of [17], letting the next example
give a feeling for its meaning in a concrete situation.
Consider the “step" quasifibration-p:E + B previously-
defined. Let P=(*) be a one-point space, £1BF'» E thé map
defined by £(*)=(0,1) an H:Pxi + B the ﬁomﬁtow of p..f given
by H(* t)=t. Becaullo of the "step', H cannot. be. 1ifted: For
every €0 arbitrarily emall define the .homotopy H':PxI + B
by - g - :

[t/1-¢ if 0<t<(1-¢)/2
H'(*t) = 1/2° if (1-€)/2¢t<(1+e)/2 5

e (t-e)/1-e if (1+€)/2¢e<1

H is homotopic rel. Px{0) to ' by the homotopy K:PxIxI + B

defined as follows: e
t/1-es if 0¢t<(1-es)/2
K(*,t,8) = Y1/2 if (1-es)/2¢t<(1+e8) /2

* (t-es)/l-es 4if (l+es)/2¢t<l
e

we)fe

: B 5

45 e

KA —_— —

3 R 4
=




13
Now H'Xcan be lifted by H':PXI + E, where )
. (t/1-e.1) , if 0<t<(1-e) /2
- H'(%t) = (1/2, (1+e-2¢)/2¢) if (1—e)/2¢t<(i+e) /2
((t-€)/1-¢,0) if (1+e)/2¢t<l.

Intuitively we have modified H to stay for an e-short while |
at 1/2 and then. we have used this pause to climb the step.

@ Tt s guite easy to see that being a quasiEibration
is.a property invariant under fibre homotopy equivalence.
Hovever the pullback of a quasifibration ‘nsed‘not be a®

quasifibration as shown by the following original example.™

Take - again the

tep" quasifibration p:E + B, slightly
modified for convenience by .
E=[-1,01x(1 }u(0}x1vu[0,1Ix{(0)sR?, B=[-1,1] and p:E » B the

projection on the first factor. The map along which we pull

back is £:I » B givén by f(t)=tsin(1/t), if ©0, and £(0)=0.




S TR e——

-
D ¥
The pu){hack PetEg + 1 is illustrated in the following

picture L

RE

% .
In fact E. can be obtained by considering the map 1 xp:IE >

IxB and then taking the anti-image Qpp)=1(T,), where IcIxp
is the graph of £5 pguEg * I is then the restriction to E, of

the composition pr,(1xp)

.




-
.
The pullback pg:E, *+ I is not quasifibration because the
i, T gl

sequence of pointed sets 1, (F ),e) + -,(Bf.e) +

bele
1,(I.p le)) is not exact -for every ecE.. Indeed, I and the

fibres F are path connectéd but E_ has two
pgle)

£

- 5
path-components’, the fibre over 0 and its complement.

> -
¢ . We can summarize the relationship ‘batwden the
different kinds of fibrations we have introduced by the

following diugrim q o

quasifiiatione
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- before. Furthermore, maps SF the itype (*}xh + B, A » (*)xB

PACES AND FIBRED EXPONENTIAL LAWS

This section is devoted to generalizing. the
classxcal exponential col’respondence (proposition I.1.1(iv))
s

irr the case When-

(1) ~spaces are replaced by maps and maps between spaces are .,
replaced . by ma? pni_re (1st Fibred Exponential Cor_reapcndence,
theorem 3); . ey . -

(i1)  spaces are replaced by maps over a fixed buse space B., .,
and maps batwean lpacan are replaeed by "fibre maps over B

(#&d Fibred Exponential Correspondence, theorem 9), . = °
Convention Since we will be concex‘ncd with many maps -(and
their fibres) at the whia time, we will mncafo:th Menote the

fibre f a map biE +'B over ben by sh and not by Fy', as

\
and - {*}xA . {*'}x8, where {*} and ("') are one-point. spaces,

will be 'tucitly Ldenti(ied with ‘the lnnp A+B obtaingd by

‘identifying in the cancnical way the cot:eaponding domains

and codomalns. 7

An important role in our arguments will be played

by the following on, first intrc in [91:

'Am-eugh this construction is not ab.olucaly lndinpenlahls,

it does umpu:y _proofs notably because it u.llows us rto apply

dlrectly the classical ‘expo al: cor '\} rather

than using parual (cloud) mnp- and thoix‘ vexponential




a covariant fungtor £rom Top to itself.
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correspondence (cfr. [9;th.1.4]).
We associate to any space B a new space Bt defined

as follows: set theoretically, B*=Bu{(=), ‘where =¢B; the

topology on B* has as open sets the empty set and all sets of

the form Uu(=}, with UcB opef, This topology is well
defined; indeed, B*=Bu{=} is open, the union of any family of
open sets is an open set, stnce U(ujum =(\Ju ) v(=}, ana
jeI ja 3.
the intersection Of two open sets is an open set, since
(Uyu{=})n(U,u(=})=(U}U)u{=). The closed subsets of B* are
B* and all the ‘subsets of B which are closed in B.
Furthermobre, the topology induced on 8 by B coincides with

‘the original topdlogy on.B. If f£:B .+ B' is a map, we define

f£+:8+ > B'+ by £F(b)=f(b), if beB, and f£F(=)=='. .Since \

(£9)-1(g)=¢ ana (f")"(uu{

1)-r1(u)u(-), ve. deduce that £*

r is continuous. From the above considexationa and - from the

relation (gf)t=g+£t, we notice that this constructiongives rise to

Leét AgcA be a closed subspace and let Exl., - B be a

map.’ - We define a map FiA + Bt by E(a)=f(a), if aedg, and

- o - -
%(a)==, otherwise. F is continuous because -!(¢g)=¢ and, for -

every openwet U'=Uy(=}eB*, T 1" )=F L uule))=F V) vE 1 (o)=
£1(u) vF 1 (=)=Von gB(a-p )=V u(A-A ), ‘for ‘some open set V<A.
On tne cther hand, 4 hiA + B* is a map, we define A =h=!(B)

and 1-:A, + B by h-(a)=h(a). Then A, is & closed subspace of

A, since.B is closed in BY, and I is of course continuous.




~

- problem.
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Wi ‘eie o, DenAY; £ Sefine o SR GEECEIER,
which generalizes the usual mapping space M(D,E) with the
compact-open topology. Given maps q:D * A and p:E + B, with
q having fibres closed in D, we define a map q+p:D+E » A*B in -

the following way. The underlying set of D*E is

o el Juo ) (a0 DeE s

(a,b)ea>B (a,b)eaxB
topologized by the initial topology with respect to the

functions q'piD°E +AX8 and j:D+E » M(D,E¥) given by -
q*p(£,a,b)=(a,b) and 3(£,a,b)=F. The space D°E is called the
functional space of q and }. - il - B

Remark 1 Our definition of the space D aiffers slightly from
the definition presented in [10] because there the -authors implicitly
assimed p and’q to, be onto. " In [10] the underlying set of D'E is

defined to be M(D_,E,) and q'p is defined by 3

(a,b)eaxB .
a*p(£)=(a,b), if £eM(D_,E ). Now taking the union in this
situation can lemd to problems. For example, suppose that
A-Img.contains at least two dlltinctvp.oint_.', a and a', and
that B is not empty. Hence D,=D,i=¢ and so, for every beB,
we havé 'that “(Bl"b)‘“(Da"Bb)-(;)' where ¢ denotes the

“"empty map" (cfr..[22, p. 33]). Therefore, when we take the union

s % .
(Lj_Ju(n_,sb), ¢ will appear only once and so g+p($) is
a,b) eAxB . %

not well defined. Using the disjoint union .i'oh?._ “the




3

. hence Im(q*p)=AxImpu(A-Imq)(B-Imp). On the other haRld, we'

* comhutes

b. ¢ 3, \ e L : 5 .

Z 150
Proposition 2 Let q:D + A and p:E + B be maps with g having 3
closed, fibres. The following properties hold: .

-
(1) Im(g*p)=AxImpu(A-Imq)x(B-Imp) and AxB-Im(q*p)= . K

Imgx(B-Imp); :

(1i)  the fibre of qp over (a,b) eAXE is M(D,,B,)*((a,b)};
(iii) 4if p':E' + B' is a'map and (h,g):p + p'.a map pair, ’
then the function h,:D*E + D-Egghiven by h,(f,a,b)=

(h, f.2,9(b)) is- continuous and the following diagram ] B

A : L ooy, L.
axp ——2Ti Ty g Y .

N " 7 § .
Proof (i) .He hnva that (a,b)dm(q-p) if and only if

M(D By )*d, that is, if and only if either. xboa or D, -eb-d:

have that (a,b)fin(q+p) if and only Lf M(D,.E,)=i.that is,

if ana only ff Duv_'ind Ey=; hence AXBZIm(qep)=Ingx(8=Tmp).

I
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(ii) Set theoretically the fiber of q+p over (a,b). is
(D, Ey)x{(a,b)). Since the subspace topology induced on it
by DE coincides with the initial topology with respect to *
‘the restrictions of qwp (which now is constant) and 3, we
~have anly to sho.i that the compact-open topology k on X
M(D +E ) cgincmes with the initial topology, say © with
respect w0 the functiop jiM(D_,E,) + M(D,E¥).
Zeks This s equivalent to,‘Bhowing that. J:M(D,,E,) + M(D,E+)
B 1; gontinuous.  Te khu end it is enough to prove that' the
3 anti—image of a aubbauic ‘set <K,U'> of M(D,E*) is open in ke
v Let ] =uu( =},. vﬂth UcE. open, aml "define K #(nD and U =UnE

b
§lnce D, is closed in D/ Kr\Da i! closed 1n K and so Ka 15

compaot.’Now it ié straightforward to,see that®i=!(<k,u’s)=
(Ka,Ub>. i . 25 [
. ks We must prove that any open set of k is the anti-image

\ @
by j of someiopen set of M(D,E*). Since the operation of

i takxng the anti-image preserves interauct:.onu and unmnu. it "

. is enough tn.dheck for. a subbasic set «,U> of k. KeD, b

. compact ‘and ucr: ‘open.” Now it is straiqhtfozward to see that

«®,U>=3-1 (<K, V' >), where v'xvu(-) wn.h V some upen set of E

. such \'.'hat U-'VﬂE

7 (144) smce D*E' has’the ‘initinl"topology with n.p-cc to - N

Sihe funitions’ q*p'sDE' *A

and 3':DE' + M(D,EW), we

have that h,:D*E + D*E' is’'continuous if and only ‘if the

. .
compositions (g+p')h, and.j'h; are.continuous.’ Now the

P . P
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following diagram is commutative
(OO
M(D,E") ———>H(D,E'")
i T h, T L

DE ———3 D-E'

q-pl e iq-p'
z . AXB ——————> AXB' LI :

1

Indesd) for the Bottan square ‘we hgv; that (g+p’')h,(£,a,b)=
a*p' (ny £,2, 9(b))=(& 5(b) )=(1, xg) (a, B)=L (1,,x6) (a-p) (£, 3, B)
and for the upper' square we have that- S
“ 8 3 : My, E(d) - if deD, -
[3'n,(£,a,0)1(d)=0 3" (hy £, 4, g(b))I(A)=1 -

i - otherwise

and . X .
& hy£(a) if dep,
[(n*), 3(£,a,b)1(d)= :
othervise
Theréfore, from the equalities (g*p’ Ih,=(1,xg)(q+p) and
3'h,=(h*),j, it follows that h, is continuous. ~
: o

Theorem 3 (Fibred Exponential Correspondence I). Let

PiE * B, D » A, TiC +A and ‘giC + B be maps-with A’
vﬁuu.‘d@yﬁ and D locally compact, Hausdorff. _rn\an"emn is a
- canonical o‘ne-ﬁt)-on- correspondence 6 between fibre maps over
g from the pullback q, of g along ' to p and us{xng, of
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«(r,g):C » AXB over q+p:D*E » AxB. The correspondence

ﬂ:l‘g(qt.p) * Ll(r,q).,qp) is defined on £:D_~+E by
8(£)(e)=(£ ,r(c), g(c)), cec.

The above result can be illustrated by the diagrams

—— = DE

J e
w7

: i
1: s & (\'.‘}3 CARB
s

.3
ce——o
o

g&- We must first check that 8 is.well defined, that is,
8(f):C + D*E is ‘continuous’ for every el (qp). For )
notational convenience let £6(f). Since G*E has the initial
topology with respect to the functions q+p:D'E + A¥E and

§:D+E > M(D, z*). £ is continuous if and only if the
ccnpouiciun- (q-p)t -and jf are continuous. From"

L(arp Ble)=q p(Ble) raeple, cx(e).gle)=(x(e) gle)), we nave
that (q-p)?-(r, g) anﬂ ‘80 (q-p)f is contlnuou-. The r:nnunulty
of jf is provad in, the folloving way. Since A is Hausdorff,

we havc that D -((e,d)ccxnx r(c)-q(d) )-(rnq)"(A) (u\m is,

the dinqanﬂ.) iu clond in C¥D. :Therefore, th' tunction

FiCD » B, g1v.n by t(c,ﬂ):f(c a), if (e,d)znr . and t(e,a)-

- - ’
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otherwise, is continuous. Let F:C » M(D,E*) be the adjoint

of T. Then F is continuous and we have that

£(c,a)E () if deD

B p r(c)
[F(c)I(a)=E(c, Q)= =
'
- otherwise
and that o
v f@® e )
i y
3E(e) (@=L 3£, T (e), 9le) 1(@=F (@)=
e - othervise

Hence j£=F and so jf is continuous. )
It is straigthforward to see that 0 is injective.
Indeed, if £,£':D_ +E are distinct’ fibre maps over g, then
there is some (c,d)eD  with £(c;d)#£'(c,d); it follows that
£.$£, and so 8(£) (c)#8(£*)(c); hence 8(£)%6(£'). To prove
that 6 u lurjactive, let k=(k*,r,g):C + D*E be a lifting of

(r.q)xc + AXB; sa, av-ry cec, k"(c) is a map from D, gy

g( o note by KiCxD + E+ the adjoint of 31:, then K is

continuous and we ha‘le that

B

\ 2
’ k*(e)(a) if QeD ()

K (e, d)=[3k(c)I(a)=KF(cT(a)= !
. e ' - . otherwise
Let k'=K|B x‘D +* E‘y .thel:l X' is a fibr-e map over g from q.: to
p, since pk' (c,d)-y{(c,d)-p(k'(c)(d))-q(c)-gqr(c,d). and

lurthamore k.

k*(d), for every cec, since

s

onih S i 2k




.ki(@)=k'(c,d)=K (c,d)=k*(c)(d). Therefore 8(k')=k.

Corollary 4 Keeping the same notation and hypothesis as' in
theorem 3, we have that under the bijective correspondence
6=Mg(qr.p) + L((r,g),q*p) two fibre maps over g are fibre
homotopic over g if and only if their correéponding liftings
are vertically homotopic. i ™

Proof Let f£,f':D_+E be ﬁbre maps over g. We lmst prove

that £ and £' are fibre hcmotoplc over g if and enly if their

N corresponding liftings of (r, g). £0(f) ana P=0(f'), are ) X
. verncally homotopic. Suppose f and .f' are: fibre homotopic
over g and let H:D _XI » B be a vertical homotopy from £ co
£'. If R:CXI »A and G: cx1 » B denote” t‘he homotopies
- stationary at r and at g, respectively, and if we identify
Dy, the domain of the pullback of q along R, with D XI via
- the correspondence (e t, d)sD <> (e,4,t) €D xI, “then H can be 1

regarded as a fibre map over G fram the pullback ag ofq
_along R to p.. By theorem 3 applied to the maps p, q, R and
G, have that f=01) is a lifting of (R,G):CXI-+ AXB. Now
ﬁn(c)aﬁ(c,o)=(H(c";),n(c.o),c(o,o))Q(fc._z(c).g(c))é(c)‘ and
Riterfite )= 1) /R(ei1),6 (e 1))=(£ £(e),gle))=F (o)

hence, ‘since (R,G) is a sta'tionary homotopy, we have that f

is a vertical homotopy frem £ to £1. . . ) !
AN
Conversely, suppose that the liftings £fcspeE -
are vertically homotopic, say by K=(K*,R,G):CXI * D*E. It

follows that K is a lifting of (R,G), and, for every tel,
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K*(c,t) is a map from Dr(c) to Eq(c): in particular,
K*(c,0)=f_ and K*(c,1)=£.. Now let K'=6~!(K):D, + E.
Identifying Dp with D _xI, we have that Kjle,d)=k'(c,q,0)=
k’(c.O)(d)=fc(d)=f(c.d), l(i(c,d)=K'(c.d,l)=K"(c,l)(d)=fl':(d)=
£'(c,d) and that ﬂ(‘(c,d,t)w(_c,r.)w(c).“ Therefore K' is a

vertical homotopy from £ to f'.

Corollary'5 Let piE » B, a:D »A and r:C » A be maps with A

. Hausdor££ and.D_locally compact, Hausdorff, Then there is

B canomcal one-to-one cortespondence ¢ between map pairs
(£,9):q. > p and uftuga of TiC » A over gypiD:E * A.. The i
correspondence ¢:H(q .p) + L(r,azp) is given by : o
#(£,9) (e)=(£_/x(c), g(e)), ceC, and under this correspondence
two map pairs are homotopic if and only if their

° corresponding liftings are vertically homotopic. In
particular, map pairs from q to p are in one-to-one
correspondence with sections of qfp and two map pairs are 1 "
homotopic if and only if their corresponding [RRT——— R
N vertically homotopic. | - w

The above result can be illustrated by the’diagrama

De———~n——f——7!! J D°E
\q . . //’ i
1 " - s W8 aip |
g ¥ !
) > v N g
. CAe———Cc——f— 53 C\——“—-—)A

4
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- .
Proof We start by cbserving that M(q_,p)= .

U Jua,mixis) ana thae Lrazpe T

ged(c,B) ¢

L({r,g),q*p). Indeed, for the latter equality we
geM(c,B)

have that if h:c.’ D*E is a lifting of r over q;pﬂpr‘llq'p)y
then h is a lifting of (r,g) over g*p for g=pry(q-p)h:
conversely, if h is a lifting of (r,g):C + AxB over gep for
come geli(c,B), then (4:p)hepry(a+p)tepr (x,g)=r and 50 ficde 18
lifting of r over q;p_. For each geM(C,B), denote by
o5t (a, By » L((r,9),q+p): the gibred‘exponential :

correspondence given by theorem 3. « Defire ¢':M(q,.p) *

L(r.q;P) by 0'(f,q)=eg(f). Then ¢' is well defined; ¢' is
injectivé, since each 8  is injective and the, images of two
distinct 8 's are disjoint, and ¢' is surjective, since the
image of ¢' is the union of the images of all 0 ‘s, which is.
Uriq;p). Now, from o, )2, x(e) ale) =0 (£1=0' (£,9), ve
get that our ¢ is bijective. "
— We now prove the ‘second part-of our statement.
First observe that identifying the map q xl,:D xI * CxXI ‘with
Qg:Dy * CXI, where R:CXI + A is the homotopy stationary at r,
we can regard any homotopy pair (H,K) as a map pair from a
to p. We can then apply what we have already proved to
B A 4

deduce a bijective between

pairs
(H,K) wpd Liftings of RiCXI + & Over qrp, these latter being
vertical homotopies, since R is stationasy.  If follows that

two map pairs from q_ to p are homotopic ifrand only if their
P P2 . ! : ol
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corresponding liftings are vertically homotopic. The third
part of cur statement follows immediately fram what we have
already proved, taking C=A, =1, and identifying q"l:Dlh sc
with q:D » A.
Nesss
Corollary 6 Let p:E + B and-£,giA + B be maps with B
Hausdorff and E locally coppact, Hausdorff. Then there is a
y ?canonical one-to-one:correspondence ¢ between fibre maps
h:Eg » B over A.and liftings of (£,9)iA + BB over
. pepEcE *_;a'xs. “The corr‘equnr\dsﬂce 41 (0 ipg) .
[U(z,9),p+p) s given by o(h)(a)=(h,;£(a),g(a)) and under.
this correspondence two fibre maps are fibre homotopic over A
if and only if their corresponding liftings are vertically
homotopic. L
Proof Consider the following commutative ‘diagram (ignore the

dotted arroys)




| Indged, for every hejj (p,.p ) we have that ¥

since p_ is a pullback, the set ul;(pé,pg) of all fibres maps
hiE, > E_ over A is in one-to-one correspondence with the set
of all maps k:E; + E such that pk=gp , that is, the set
M(pgip)a This correspondence, denoted by %, associatés to
h the fibre map over g given by h'=pryh. -On the other hand,

by theorem 3, there is a bijective correspondence 8 between
the set of all fibre maps kiE * E over g and the set of all
liftings of (£,9):A + BxB over p piEE » BXB. Now; the

following dlagram commutes A S

¥
1]

tytpgpg) ———t——— Lf9) R ]

Mo (Bgrp)

Gt(h)(a)-a(h )(a)=(h',E(a}.g(a)), du('h)(a)‘(h 1 £(z

h'x(a.E’)tEf a.=,,(u)xi!ﬂn)‘ * prah(a,e) ek ) "ia equul to

g(a
af(are) eE g ‘-(u)xzf( 5 > h(a.e)w -(a)xE gla). undar the L
usual identification. This provea thut [ 1- bijective. To

prove the second part' of our statement, cbserve tiat under

the bijective - maps over A




o
]

correspond to fibre 'huqotopie up‘u over g and that, by

- ‘corollary 4, under the' biject!.ve correspondence 8, £ibré

B ‘homotopic maps over g mru-pond to vertically homotopic
-~ T :
-~ “Liftings. ; -»

Since the ordinary topological exponential

can be " in 3 cal .by

3 " the atatgmenr_ that for, ave\y 1o;a11y <ompact, “Hausdor£s space

: B.the fimctor ~xBiTop Tnp ie 18ft adjoint r the functor. - i

(- ) 1Top + Top, it is nutural to nk 32 oux ubnq §

‘ : 3 o
¢ " |+ exponential correspondence, vhithganeull um classical
: ot orie when ~ Asand B. . are one-point spaces,. can ba expreugd hy
;- tne adjoi ‘of ap te: o
O
L . Suppose ﬂxeﬂ a map q:D +A vlth ul.o-ed H.brn and /
: & S a spacd B. Consider t.he uteqorla. Top, ey "'°P5 i
i 3 -
¢ . define a @utor FiTopy . * 'l‘onE by P(r,g)-gqunr 3 B, < A
i . on objec'u (r,g)xc + AxB, and p(-)-im # Dy on -orpm-u
“mi(r,g) + (-\",g ). whexe @ is uﬁ unique map n.ung the 2
! _ following adagram munuve WA 4 o ¥ 3
; ,
[ N w
. . A x < c g
2 H ; she “ -
Py . " . &" a2 -
> . LD v ¥ - N
- .t ) 3 g - .
: ey S
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i that is, M(c,d)=(m(c),d). - e “
B o Now define a functor GiTopy + ToprB by

G(p)=q+p:D+E » AxB, on oqucts PiE ¥ B, and ) R

q(n)=q,=(f,a.b>cn~ > (nyf '“'b)‘n'."‘ on’ morph.fsml n:ip + p'.
. The continuity of n, follows from pm'pouition‘ 2(iii) applied * = !
‘to the map pair (n.ln}:p +p'. Then theorem 3 says that if A
1 - is Hausdorff and D is locallyw paset, Hausdorff, the functor

F is left adjoint to the functor G with adjunction given by*

To expre:

_the ﬂbtad uponantnl cotu-pondance al cotonary .
5 we have to thangs a little the' categoriql anolvad.

St supposi ti.xed a map'qin’s A witn cxosad ﬂ.b:e- and consider

‘the e-cegoxa.n Topj and H, the latter b bclng tha category of

maps and map pa!u. Define a functor. Pl'lopA > M by

F(:),s-qrxb 2 Ci.on ‘objects r\c + A, and F("‘)'(’“"‘)‘qz Hdper

; " on morphisms mir » r' (W is the same as apove).’ N8w define a




. ) i : AN

functor G:M + Top, by G(p)=gyp:D*E + A, an objects piE » B,
= and G(h,k)=h,: (f,a,b)eD*E » (h f,a,g(b))eDE', -on morphisms

e b Sl

- (h,k):p > p'. Then the fibred expopential correspondence of
corollory 5 says that if A is Hausdorff and D locally -
compact, Hausdorff, the functor F is left adjoint to the

functor G with adjunction ¢. . o

; ‘We now discuss a mm}ificn‘tioﬂ of the map q+p, in’
| the case g and p havé the same'target space. This B 14
' ‘ “modification turns out to be more convenient when we are

dealing with maps with the same target space B and with fibre

mips over B and historically it came before tne

" +_ construction: s it B h -
| Let @iD + B and piE + B be maps, with q having >

closed fibres. ‘Define a map (gp):(DE) + B as follows. As a
set, let (us)-LI_M(n ), and.define (qp).(t,b')c(mg) + beB; L

. then- mpoloqiu (DE) with Ln!.t!.l]. copcx gy with respect to
-

the functions. (qp) and jl(!;b)!(DB7 + ZeM(D,E*). Since the

- i P
! 5




fibres of q are closed, j is well defined.
BeliAT 7 X8 6 tHS SEELATtic OF DeE, we have changed
slightly the usual™definition of (DE) as given, for example,
in (41, replacing the union by -the disjoint union. This
circumvents the problem of the function (gp) not being well
defined. This problem arises if and only.if the set’ .
(B-Imq) n(B~Imp)=B-(ImquImp) contains at least two distinct }
points. Indeed, (q’p) is not well defined if and only if .
there exist distinct points b,b'eB with.

(B EL) M(Ey, BL, ) 40, or, equivalently, such that

=B, Ep=E}, and 7““»'5&)“" this happens if and only if b
and b' are diat_lnet points of B=(ImguImp).
~Proposition 8 Lét @:D » B and piE » B be maps with q having
closed fibres. Then: : g

(i) Im(gp)=Impu(B-Imq) and B-Im(qp)=I n(a-xmp):\

(ii) * the following square

(oE) —2 5 peE
{ap) 1 : g l 9p
LB AL . pe N A

[ | -~
. '\(\.

where A is the diagonal map and 2:(£,b)e(DE) + (£,b,b)eDE,
isicartegiani in particular, (gp):(DE) + B is 'in a canonical

LR "




M) ()5 (£ yxle)) where £ ideD

way fibre homeomorphic over B to the pullback of q+p:D*E +

B8 along & . ( '
(iii) the fibre of (gp) over bes is M(D,E, )x(b}.

Proof (1) We have that beImlgp) 'if and only if M(D,,E,)4¢ .
and this happens if and only if eitlier E ad or D, =E =¢

Therefore Im(qp)=1mpu(B-Im)n(B—Imp)=1n'p0(E-Imq). on the

other hand, bfIm(ap) if and only if M(D,,E, )= and tnis

happens if and only if D #f and E =i hence

B-Im(gp)=Imgn(B-Imp). .

(4i) It is a straightforward eonaequenc:f:om the e
definitid i

(iii) Tt follows from proposition 2(ii).
i

Given maps riC + B'and qiD * B, we define the

£ibred Eroduct of r and g to be ‘the map rng: b+ Y where D,

is the domain of the pullback of q along r and r|L=rqr. The

fibre of rnq over bes is Cn""b'

The fibred. product makes
Top, ‘a categorly' with product. - & .
B Y

Theorem 9 (Fibred Exponential Corresponderite II). 'Let

r:C +B, q:D + B and piE + B be maps with BaHausdorff and D

locally compact, Hausdor: Then there is a canonical
one-to-ong correspondence ¢ between £ibre maps £:D_ + E over

B fram £ng o P and £ibre maps over B fram T to (q_p). The

: ccrrsuyondance W MB(mq,pA *> ME(:.(qp)) is given by

e ” fi_c,d):Er(c) (in other,




words we are regarding £ as a fibre map over r from q_ to p
Furthermore, ¢.an ¢! preseyve the relation of fibre homotopy
over B. ) ’

The above resilt can'be illustrated by the diagrams ' !

% .

/ ;

-~

RS | R——

% I e By
: -

7.
Proof Consider the following commutative diagrams (ignore

. the dotted arrows)




- £1D + E over B.and sections of (gp):(DE) + B. The

By the lst fibred exponential correspondence (theorem 3),
there is a canonical bijective correspondence 6:M_(q,.p) +
L((r,r),q*p). Now, since rngerg ., we have that

us(rnq.p)-u (q,.p) and furthermore, since AF(r,l:} we have

* that L(4r,q+p)=L((r,r),q*p). By proposition s;u) the square

in the right diagram is cartesian and hence there is a
bifective correspondence x: L(Ax,q+p) + My(r,(ap)):

G \
explicitly, if hel(Ar,q-p) is given by SRR

h(e)=(n*(c),xlc),xe)), e, with h*(c)iD then

r(c) * 1‘:r(c\)‘
#(h)(e)=(h*(c),r(c)). Now the bijectiv-nc-l of ¢ lcllmu

from the observation ,;hn t=x6, uut is, %

Oxﬂn(rnq.p)"‘ (qr.p) + L(Al’,q'p) ¥+ MB(r,(qp)). ‘Indeed,

9(()(c)!(£ +x(c)). and :O(t)(c)-x(f ,r(c),r(c))-(! r(g)).
The rminmg part of the statement foldows in the usual ny
from he tavarisnce property held by 6-and =x. < e E

i y b ay
Corollary 10 Let q:D + B and p:E + B'be maps with B
Hausdorff and D locally compact, Hausdorff. Then there is a

canonical one-to-one correspondence ¢ between f£ibre maps

:c‘:zrecpcndenca ’;:M (q,p) + Sec(gp) is given by,
“6(£(B)=(£,,b). Furthernore, under thid correspondence’ two
fibre maps are ﬂbro hmtopic ovnx B 1: -and only if t.hsir
Col'!aspcnding.l‘lctlonl are vnf—:lcuuy hcmotop;c.

" . >3 !

o b vt e s s




! © Proof Apply theorem 9 tothe maps 1;:B » B, q:D + B and

p:E * B, Identifying IBnq:Dl + B with q:D + B, we have that
B .

the correspondence ¢1Mg(1;nq,p) * My(1y, (qp)) of ‘theorem, 9
coincidés with ¢:My(q,p) + Sec(qp) and.so ¢ is bijective’and
two fibre maps are fibre homotopic over B if and only if

! their corresponding sections are vertically homotopic.
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2. F-SPACES AND F-FIBRATIONS

Let F denote a category with a faithful "underlying’
space” functor F » Top. Thus each object of F is a space and
the set F(F,F') of mofphisms from F to F' in F is a subset of
M(F,F!). We ayree that F coritains with each Fe|F| the spaces
Fx{*} and ¥*}*F and the evident homeomorphisms between these
spaces and F. ' '
‘Examples (i) Let G be a fixed topological group and ‘define
F to be the categoly of right (or left) G-spaces and G-maps.
(i1). Take as F. the category of redl (or .complex) topological
vector’ lpa(‘:eu and continuocus linear transformations.

(ii1) Let F be-a fixed space and define F.to be thé' category
‘having as’ cbjects mil, sphoss, of the sane: homotopy- type astF
aild b Goephlan KU Ronetipy ejMlvalentes Betisen an
spaces. A slight modification of this example is obtained by
coneddaring spaces of the same weak homotopy type as F and
weak homotopy equivalences.

R We say that a.map'ptE » B ls'an Fispace if the
fibre E, is an object of F for every beB. Given F-spaces
4:D + A and DiE + B and maps £:D 5 E and giA + B, we say that
the couple (£,q) ‘is an' F-map pair from q to p if (f,g) is a

. + map pa%: from q to p Al:ld for every aeA the map £ama "Evg(a);

r ' 1
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is in F. We will denote by M(q,g:F) the set of all F-map
’

pairs. from q to p. In particular we have the notion of an

F-homotopy pair (H,K) as an F-map pair from gxl; to p. If

(HosK)=(£,g) we say that (H,K) is an F-homotopy of (£,g):
if, furthermore, (H;K,)=(f',g') we say that (i,K) is an
F-homotopy fram (£,q9) to (f',g').

' Given F-spaces,q:D » A and piE + B and a map
gih¢> B, we, say that a map £iD.+E is an F-fibre map froi q:
top over g if (£,g) ia an F-map pair. Me will denote by
Mq{q,p: F) the set of all such map pairs. §f s,f'.ng(q,p,-F)

we say that £ and f£' are F-fibre homotopic over g’ if there

exists ‘a homotopy H:DXI ¥E such that (H,K) is an F-homotopy
pair from (£,g) to (£'g), where K is the ho;notnpy_sta,tiohary
at g. In other words, H must satiafy the -relation
pi(d, t)=gq(d), for every deD and tel, and the map
¢+4eD, > H(d, ) eEL (a) must be in Fi fer every asA and .tel.
IfA=B and g1, we will speak of F-fibre maps over s. of
F-fibre homotopies over'B and ve will write My (q,ps F) for

My (,piF). If p:E »B~and p':E' + B ate-F-spaces, we say
B.

that the F-fibre map £:E + E' over B is an F-fibre homotopy

equivalence over B if there exists an F-fibre map g:2' » E

over B !uch that gf is F-fibre homutopic over B tc 1 and fg
is F—-ﬂbte homotopic over E tq lE’. in which case p and p'
are said t'o have the same F-f.lhre homotopy type (over B).

If B is.a one-point space, and so E and E' are
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objects'of F and f is a map in F, the above definitfons

specialize to give the notions of

F~homotopy, of F-homotopy
equivalence and of F-homotopy type. We will denote by HF the

category whose objects are the objects of F and whose

morphisns are the F-homotopy classes { £], of maps £:E +E' in
F, viexed ax moxphisms over a point; camposition of morphisms are given
by the F-homotopy class of the composition of the represematatives. HF is

called the homotopy: <category 'of F.  ° ‘ A

The next result is the analogue of theorem I.]

.14
in the context of F-spaces and F-fibre maps. .Its ‘proof can
be found in [35:thil. 51, . G aT )

Theoreml Let p:E +Band p + B be F—upaces and 166

£ E +E' be an F-fxbre map nvex e suppose there is a’

numerable cover U={u) of B auch _that £ By * Eyy s ‘an F—nbre
homotopy equivalence over U, f£or every Uel. Then '£4s an

F-fibre Fiomotopy equivalenge over B..

"We now definé the aralogue of. the notion of a

. Hurewicz fibration in the context of F-spaces. Lat‘pxa‘w B

be an F-spac. We' sdy f.hnp is an F fibrniun A 'ga.van any -
F-space q:D + A, an F-map palr (£, g) q * p and any homotbpy
KiAXI + B Of g, there exists a homotopy HiDxI o+ E of £ suph
that (H, K) is an F-hon‘mgy pa) .. In other words, .p xs an
F—fxbranon if ngen any cvmmutative diagram of the kind

(ignore the’ dotted arrow) o L o o By

H
i
|
$
i
;

|




with q an' F-space and £,:D, > E ) in F for every aca, ve-

. can £ill the dotted arrow by, a homotopy H:DXI+ E making the

enlargad diagnm commutative and such that 5 2

)xﬂ"‘(t) v E s in F, ‘for’ every (a,t)&AxI.

Hta, e Kia t)
If in  the nhove deﬂnition we consider only semi~stationary

. hmowpiu KiAx > B, we set the veaker notion of in F-Doyd

fibration.

‘Proposition 2- Every F-fibration piE + B is a Hurewicz

fibration., .

‘Proof By proposition 121 p- sa Hnn\dcz fibration if and

only if p has "the CHP with respect to.all pullbacks of b
pfxzf * % alcng any map fiX + B, ‘since the ﬂbx'e ot Bg over*
“xeX is (‘)ng(x)' we have that. P 18 an F-space. Let
KT+ B be ‘a homotopy- “of £, _Since p is an r-fnnuon, the-"

dotted afrow in tne follovlnq mucuuv- dlagram 3




can be filled by a hamt.opy HBE TS E nnking the ‘enlarges  ®

Aiagram cx-nutauva, as requu—ed

Remark 3 A sinilar result holds for F-pold fibrations.

We " now show that F-fibrations éan e cha:uterugd
intrisically. Let’piB'+§ ba an F-space’snd SinslAeE e
) usual space A=((e; @)@xaT s «(0)=ple) ). Ve say that &’ map
o g SV E' is an F-lifting fuhctiof for p if l(e.u)(ol-t.
" peAle,x)e and, for every-(e,t) es' 1, the maph,  reek (o)

Ae,a)(t)e e inF A, t-iu.called the translation ma
. Ltranslation mep

a(t)
M G at time time t.
Broposition4 An F-space e > B s an. r—sn:mxon if and

’\,

N _only if 1t'aamits an F-1ifting function., :
Proof Suppose p is an F-fibration: The mep. 'p:,-(;,u)ml; f
aes’ 'is an F-space since the fibrs over a is Eyoy < lehe

Consider the Ecuw:l.nq cmnutativo ungru\ (1gnure the Adtted
I3

rrow) ~ T il
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< - -
N pr) % .
—_—l .
) 7. £ .
/ ™ s
§ .
A %1~ L _
b
-V Py ' Pryxly . 1P H
s * .
Blx1 s

b 3¢ :
where wg ‘is" the evaluatio’n&mp at 0 and v the evaluation map.

sincd'p is an Fefibration; we can 'flll the dotted arrow by a

and such that, for every («,t)eBT X1, the. map

(e, @t eE gy x{(&,)} ~ Lle, at) By () in i Fs This. means*

that the .adjoint of'L, i, » BY, is an F-1ifting ‘function
. P

for p. & .
o - Suppose now p admits an F-lifting fundtion - v
K +ET. let @b » Ae an ‘Fspace, . (£,g)iq + p.an F-map

pair snd let K:AxI +.B I a horotopy sich that,the. £ollowing °

diagran commites'(ignore the dctted,arrow)

e

§ ; " . » W 3 +
homotogy L;AFxI + E making the enlarged diagram commutative -* -
a Gt R , B

A R T L R




y N . - =y
v .
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- - o 3 &= |
e / ) 2 e
.k e v (£,Rq) A
e’ v Consida’r.' the composition D o . T Y where ki + BT is

i 3 . -~ the ndjolnt Of the homotopy k/, Taking m‘aajoxm of this
cmpo-itlon we get a homotgpy H:DXI + E of £ Uhich makes the

~La

1 - . &bove didgram commutative.” Since Hia, t) " t-f we have

P, s that -(H,K)ig<ly +p .h an : F-map p‘i!‘, as required. . &

BRIV R ; of o et
. B - . ]

', .. 'Most o! the propertla- Jheld by Hurawia Eibratd.on-
the eontaxc of F—apacu- and F—fihration- g o

int change- in.the proofs. ° For the sake of .

% generatisu

withuut re.

completeriess we state here some of them without pzoo!

¥ .
" " Propdsition,s . (“C-lemma" for F-fibraf.ion-). Let p:E.» B be -
R

v an F-fibration®and let c=xxxu(0 )xx. alet qm +WA be an o | - .
Jrspace and let LiAxIxI + B and .mm: +E be npl,makinq tht

toll_mlinq diagram commute (ignore the “dotted nrrcnr) s,

every (a,t,s ;A-c. Then we can nu thn dctnd arrow py an

extension JiDxI x1 \,’n!d such_ that (J.L)lq{lmx 5 Y {s an Ry

pe

.




/

E-map pair.’ 3 4 : ) g
.. ¥
Given an F- fibutfm p:E +B and ‘an object be|lB|,

N

° the fundamental groupoid of a, define T (b)-E For a E i

mctphiim [a] of I ve define T plLal) a8 follows. Consider

the fellowing cumucuuva diugram (1gnnre the dotted afrow)

| . ' ) ;
1 ‘ i N
s <, ¢ BT ek »
2 e -
¥ i ; . e
T -x?l Pt R 7
" : By - : P :
: vry | :
\\ * ' o -, »

-Since p is an F-fibration, we can £fu the:dotted arrow By a .-
. . ; F

homotopy HiE (o)l + E making the enlarged diagram

z:cmmutatlvs and such -that H ‘Eu(o) + Ea(t) s in F,’ for avery

teI.  We deﬂne 1‘ ([“J)"[Hl],,-- which/is a mrphhm of HF £rom

e, g Eo(0) Bu(l)' N A

roéo-ltivn 6 For any F-fibration'pE N B, Tp:ns + HF*
: 1 i defines a cnvariant functor from the fundmantal gmupoid of
R B to the hz}m‘:opy category of F._ Fureharmora, if p'sE' + B v
is an F-fibration and fxE +BE' il an F-f£ibre nmp over B, then

| | £ gives rise to a nntural trnnl!omntlon °£""b LT defined




equivalence over B. . »

s

-
Theorem 7 - Léet p:E + BXI be.an F-fibration and define

els

1(Bx{1)). ‘Then the F-space® pl:ecE® + pr p(e)cB and
s Y 1

plieeE! » pryp(e) eB have the same F-fibre homotopy type over

‘B

a i oo o
Proposition 8 Let piE + B bé an F-fibration. Then the

p L s
‘ pullback of p along ahy map %A + B is an F-fibration;

furchemore, ie qu + B is hunct.opic to £, then pf and pq \

have the same F—ﬂhze ‘homotopy type over A. - 5

\

Theorem 9 Let p:E +B and p':E' + B:be F—ﬂbratiqpu,, where, B

belcng! to the class D (see u‘cticn 1.2). ~If £1E<* E' is a~~
F-ﬂbre p\a,p over B such that fbxzb o Eb is an F-homot.opy
‘equivalence for ave:y bta. than f is an }‘—tlbte ‘homotopy
Theorem 10 . Let piE + B be an Fspace and assune t?ei‘a is.a,

numerable covering U={U}. of B luch that the’ re ction of P

to U, pyiEy + U, s an r-ﬂ‘nncim for ‘each Vel hen § i
an r—ﬂbrauon., "

- U “

In the cuntext of Flpac“ and F-mpﬁ there are

nnalcguu of .the "~"-con|truction and of the ”xound RS
bnek-c"—comtznccion, which va described in section'}

Humuy.- let qiD + A and p1E + B be F-spaces, with q having ~




,1f £.:D

. cotreupondlng lifcinga are vdrcicuuy homotopic.

3 77
'
closed fibres. We then define the F-functional space pfeq
and p, denoted by DFE to be the space D pE=: F(Da,Eb),

> (a;D)eAxB
,tqpologized with the subspace topology induced by D-E2D:E;
the map zp: ,;;a » AXB 18 defined. taking'the resttiction of
qrp. Of course, -uincla the fibre of qzp over (a,b)eax N
F(p ,Eb) {(a,b)}, 9P, is not generally'an F-space. If,
furthermore, a mp (r;g):c + AxB la’givan and A-ds Huusdox'ft
and D locally compact, Hausdor£f, 1: is easy to sed that the
fibred \xponanual correspondence B Mg(qr.p) - L((r,g),q-p)
re-r.ncu to a bijective correepondence °F‘Mg(qr'P' F) »
L((z, 9).9zp) between f-fibre mapg -Gver s and liftings of
(r.g) over.q:p. Indeed, fely(q,,p) is an ‘F-map_if aid only
ie) * Barey 18 in F, for émry cec, xhdt is, its
adjoint 6(f) takes va?.uen in Di.E. He[lce we get the following
result. g : )
Theorem 11  (F-ribred B‘xponential' Correapondence 1. Let:

QD > A and piE ¥ B be F-spaces, (x,9)1c » AxB any mp and

let A be Hausdorff and D 1oca11y compm;, Ha\udorff. Then

the funotion 6 £ Mgy 1 F) ) L((r,g),qpp), defined by
0, (8) (e)mr, ,r(c),g(c)). is bijective and two F—-maTu over g,

are F—f{bra homotepic over g if. und only if their

with. the same

v In the case|we deal with F-spac

s ear i

WA a5 1 08



5 F_-nbrni.cm:, m;n q'p is a fibration.

“round bracket"-construction jis defined in the following way.

Let q:D + B and p:E + B be F-spaces, with q having closed

m;u", and define (DE) =| | F(D,E,), topologized with the
bes .

subspace tnpoloqy induced by (DE)2 (Dﬂ the map

I(qp) £ (DB)F +B (q iinuy not an F-lpacn) is defined taking

the restriction o « With a same argument as above, we.

get the following 'r‘uult.. g » 5 A
Theorem 12 (F-Fibyed Exponential Correspondence n) Let
qu + B and plB + B be ﬁ--paeeu, r:ic + B uny mp, and let B
L — locally compact, Hausdorff. rm{ the
function ¢ M (a ,prF) + My(x, (ap)f), -defined by \\_\__‘
vp(£)(c)=(£ ,x(c)), i bijective and two F-fibre maps ovef r
‘are_ F-fibre Momotopic. over r if and only if their

correspenling- fibre maps.over B are, fibre homotopic (over B).

- -
.
P £
L e T (DE)
4 < e ¢ wo 7|y
» 4
pa—TI ¢ —2 "5 c/_r,',

The next result .is due to C. Morgan [3§1.
Theorem 133 .Let qiD ‘ Aand piE +Bibe F-spaces, with A

Hausdorff and D locally compact; Hausdorff. If q and F are

-
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; “Proof ' We must grove that for any commutative diagram (ignore ]
I * the dotted arrow) N
Ll " - . E .
A . v
i 4 , : .
i sy I'
[ : L SN :
. - : -
i . St 4 K
| e
i 1 e ~ P // «
tl e sl ¥
| . ;
s PR (10 BEETIN- %
o . e, 5 .
i we can fill the dotted arrow by a homotopy XxI }§f D i of X
Is lifting (R,G). Let r=Rg,g=G,; then X(x)=(k*(x),r(x),g(x)), :
. * ¥ .
o where the mp.k.(x)x‘nr(‘) :Eg(x) is in F. By ;‘neul’em. 11, %
determines an F-fibre map kiD, +E over g, given by .
~ 3" R(x,d)=k*(x)(d), and the existence of the wanted homotopy is :

.
equivalent to thy existence of an F-fibre: map KiDy +E over G

©V 4 such thatK(x,0;d)k(x,@). . % . o
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They.construction of K will be achieved after intermediate
constructions. ’

Let L:IXI +I be any map such that L restficted to
Ix(0) is the identity of I.and L restricted to (0}xIuIx{l}) is
conatant at 0.° A natural example Of such a map is gt¥eh by
L(t,s)=(1-g)t; so Ll +T ;s the pa&: goigq linearly £rom 0
to 1-s and x:t.x + I is the path going iinearly from ¢ to 0. .

Ty =4 TeT

Using L define the homotopy RiXxIxI » A by R(x,t,s)=
R(xL(t,8)); in particular we have that (x,&,0)=R (x,t)i
R(x,0,8)=x(x) and R(x,t,1)=r(x). Since q is an F-fibration
 and (x2,xxf0 1) x\ alosed cofibred paif, we can’apply
‘*gmpos.u:\on 1.2f2; adapted to the context of f;_-pap"‘., to
deduce, the’ existence of a Homotopy JiDpXI + D of the .
projection of Dy on D, sich that (J,R) is an F-map pair and
3(X,0,d,8)md. If we define J Dy +D by -~

Jq(x,t,a)=7(x)t,d,1), then J(x,0,d)=q,

alj(x, t,
LF LA

)R (x,t/1)=r(x) and the maps dedg(, o) ¥

F )




-

*. (&ic) is an F-map pair: 7

181

'Jx(x.t,d):llr(x) are in F. The map J'mR + DI defined by
Jl(x,t.d)-(x.a‘ix.t 1@),t) is well defined, .eince t

\ @Il(x,t a)=R(x,t,1)=r(x), is an F-fibre .map over XxI'and

Now,

satisfies the relations J'(x,0,d)=(x,d,0). aifice p is

an F-fibration, there is a homotopy €iD\,xI + § of X such tnat
. ) e M

3y
D

NAH

¥xI A P L~

'm

4

Define K-é'.r;. Then K:D + E is an'F-fibre map over G with
K(x,0,0)=33 1 (x,0,2)=8 (x,4,0)=R(x/a), as require .

€
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D.E
¥
Keqmd ©
. ; S B
: . l;?
7 .
; o
A_xB

. By thefF-fibred expunentiul
' correspondence the-existence of
the above dotted -arrow is
‘ equivalent to the existence:of
an F-fibre map over G KXDR + E
whose restriction to D x: the

* adjoint of.k, say K .

(2,0,d):
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orouagx 14 Let q:D + B.and p:E + B be F- spaces with B

Hausdorff. and B locally compact. Hausdorff. if g and p are

. ' p-fibrations, then (gp), is'a fibration.

Proof It follows: from theoran 13 and from the fact' that the

commutative diagram
4 . .

§ * et v - s § :
¢ (B p ———————>DE . .

[COF R g ;P
ey
| B8 —————> B8

is cartesian. .

Remark 15 .The o, proposition 13- and corollazy 14
are not true. Indeed, there are maps .q:D + B and pr +B .

such that geptD°*E + B isa fibration (and-so (qp):(DE) + B

;Q also a fibration), but g and p are ot: both ‘fibrations.
. Por example, let D=[0,1/21x(0)511/2,11x(1} K2, Beg=[0,1] ana'
i ‘1‘e: QD + B be the proje’cti}on map on, the first factor and let
"BiE +B be the identity map. " To ‘simplify riotation,’ define - LA
T(6,0) ) 1£70%e<1/2, and Ex(t,1)eb, '1€'1/2¢t<1, and o o)

identify the undnr;yl.ng set of D*E with Dx!, idantifyinq the

: triple (£,t/8)eD E, where (t s)eB B and £iD (T} » (s},
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.’ with the couple (E,s‘):;:xz:. Furthermore, for every
(Tys80) D58 define the map [Eq,801:D > B* by [Eg,801(E)ms0,
if t=fy, and [En.su](i)ﬂ-‘othewise. We want to prove”that
the_initial topblogy ¥ on DXE with respéct to,arp1 (Tie) D3k »
(t,s) B8 and 3: (T,8)hxe & [E418(D,E%) coinciden with the
product, topology % and so q+p is-a fibration in spite of the
fact ‘that q is not a Fibration. .Since-w coincides with the
*initial topology with respect to g*p and since 7 is the
smallést topology making §+p amnd j.continu it follows
* that it is ef;uivuenc to sh&uing that = malaj continuous.
.o this end, let «,U'> be any subbasic set of M(D,E*). TIf
'}'-d, then <«,@=M(D,E*), i K=¢, and <«,0b=, if Kif;
therefore >the anti-image of <K,¢> by j are DXE and ¢, "
_respectively, which are opef setT TE U'ggul=), ‘with UsE B
open,. then 3~1(<K,U'>)={(%,s)eDxE: [E,8]1(K)cU"}=
(&) e EKIu{(E, 8)eDxE: EeK and sev), Jiseh 1o %pen tn
the product topology because its complement is the closed set
Kx(8<).
& e \
In spite of the above remark we have the following
result, due also to C. Morgan [35], /which, Lamong ‘other
things, ,tuths out.to be a bridge betwesn the éhaory of
F-fibrations and the classical theory of Hurewics’
" etbragions. S ) .

N P;'ogodtion 16 Let”piE + B Yo 'an F-space, Then‘p is an
0

+ F=fibrdtion if and nnl’y it pgp i.l' a tibrngion.




v

Proof If p is an F-fibration, then, by theorem 13, p#f} is a

fibration. 'Conversely, suppose pip.is'a £ibration-and let us

© prove’that p is an F-fibration. By, the universal property

. 3
\dc;;}‘ylng Egq vipx Eq/

Teld by pullbacks, it.is enough to show that ‘given a map

H

g:X » B and a howotopy K:XxI »B of g, there exists a
nomotopy H{E<I »  Of the map £:(x,eVéE, + eck much that
(H,K) ‘is an F-map pair:

o ow g

2 : : ; «
Let G:XXI + B be the homotopy stationary at.g and consider
the following diagram (ignore the dotted arxow) L +
. . i ~ 3
g )
¢ E +———— E \— —'~— —E : : |
B\ ‘ e
) g N L I ~ ‘\
G ~ 'K

hEEREY p A 3
we have that' the properties on the ..
row {




required homotopy H are qnuvuent to the k-quinunt umt
HiEg +E is-an F-£ibre map over I( with H x,o.e)-c. Now, by ;
thecren u, ane axhnnca of such an Hiis quivu.-m: to. the
axhtanee of a. homotopy xxx > xe of 1, the adjoint nf f,
1Lﬂ.1ng (G,K).  Since prp is a’ fibration, such a homotopy’

does- exist, which proyes that p is an F-£ibration.




. 3. ALGEBRAS OVER A MONAD AND. FIBRATIONS

- %

i % 2 - In this section we introduce a fundainmtal concept

e ‘of category theory, thal is, that of a monad (ur‘dua!

st.anuard construction or trigl or triad) on a, categury and

the refated.condept Of an algebra over a monad. We, show
using Moore paths \'_hat the standard convezuon of a map fo a N
ol o v nbranon, Cas presented in sectiuﬂ I.2; nges rise to'a monad

and tha!: fihrations m easentially the algebras, for that

monnd. - These- obuervations are dut, tc P, Halraiuon [M] and

J.P, May[33;p.14]. Monads (of, to be precise, t.’nexr duals

. N . v
. .- . "comonads"):were first introduced by godemen:.[u; Appendix]
\ in the.specijl context of sheaf cohomology. 'Later'Huber [zs';l
!
N . +found other applications of this concept, . in partfeular to
~

Kleisli [0] have studied thes: relationship ww. adjoint

functors. . - *

3

E b
glet c‘be a catagoxy. A mmud ‘on ¢ is a'triple

(T, \,u) where T + c is a (cov nanti fu&ctof and nlc Ly

p 00, gy TR, ‘r(x) Py Mo 2
7 5 ™~ . T e o R A
A e » 0 e - B 2 -
R i ool s, | "
[ : SW w,
T —X 5y

|

Yo: 4

1‘ .. 'homotopy theory. More recedtly” Eilenberg and-uaore [20]-ana. *.
i

|




« The'term "monad" (suggested by S. Eilenberg) is due to the
" formal resemblance Gf its definition to that of a. monofd,

_that.is a semigroup with unit; in fact a moneid may be
regarded as a set T with two functions \:(e) + T amd
BT > T such that e,e folluving diagrams commute
* (., 1 .., \)
B _‘_13_‘_1*15. i ’ -
B F .

‘ aHe: o Wo: %y, e .
3. i
§ Ci b2 A e Yo
: ey N . . .
= . w¥lp ,
5 L T —— T oy .
: i ko
¥ g , C—
e : s BT e T
< ,'l'h\xl, LE we cau v t'h! unit of the monld and |1 the”
U mul.tigucnuon. then. the above dingnml ara‘ be jntarpraced
i
| = as the left-unit law, the right-unit law and the associative
I S, 5L . P
| F *
. " « A i
Lo




. v .
law for numipucauon.‘ ctually the similarity between
monads and monoids is not only formal: if -we genaralize the
nction o & cEatnary wnos (set with an auociatlve .

' 2 multlplxcatxon and Bwoseiiad untt) o iiiskiok a mnaidﬁn 2
strict monoidai category [317p.1661, then the monade on ¢ are
just the monoids in t‘he Btl‘x!!t monoidal ear_egcry C of the
endofunctors ‘of C where' the product is given by the

‘ . .
composition of eﬁdo‘functotc. P. -Hilton in [24;p.77] credits
; e g

this observation to Bénabou.
A\ * Given a monad T=(T,1,u) on C, a f-algebra is aw .
pair (%74) where X iis an object of C and $+7(X),+ X ta:a

morphisiiof ¢ sch that the following diagrams commute

v y
x—2X* 1. 10 ——L—.»T(X) )

[ J» e By = J/vdi
) TR ., i PR
; ~ X - ) —— 5 X

X is called the underlying objector the carrier of the
T-algebra (X,4). .o

- . A moghism of T-algebras hg(x 0) + X', 9') s a

| morphism AeX * X' in C such. that the following diagram .
/ commutes ) . ' ’ .
i . ETIRE 3

[ J . »
| 5 L ‘




of a w;lqebra is a morphism of T-alqebuu and that the

composition of morphisms of T-nlgeb‘raa in a morphism of

T-algebras. So the T-algebras and their morphisms form a
category CT called the lllenbartﬂocre catagogx .
corresponding toT. .. . x e '

 Anongst T-algebras a distinguished tole is played

by the so-called free T-algebras, that is the pairs (TX,uy) ,,w."\

with X any object in(C; indeed the vrequired commutativity of
the diagrams )

T(x)__.T_(L. (%

> .
P T 2

v i@

vy Tluy) o ) ]

Sz iy
T T )2 T(X)




" nlauons‘hip has as unit e x p* T=FU and as a counit'

follows from the definition of a'momad. (TX,uy) is called
“the "free T-algebra on X. : 3 )

The name."free" is justified by the following fact:
" the "free" functor U C + & .en'ynq each object of ¢ to the

free T-algebra on it and each morphism in C to its image by

' T, is left adfoint to the .forgegful functor FiCT + €, sending

each T

algebra to its underlying cbject and each morphism of

T-algebras to itself viewed as a morphism in C. This adjoint

n:UF %1 the nnural transfomauon n 1- given by

U e)T UF (X, $)=(TX, ue) * (X, ¢)." Here.we can oonaider 4

a morphism of T-algebras because the required eang\utativity

_of the diagram & c

is part of the' définition of a T-algebra. (

N -

!




N A ;

To prove that' 1 and n satisfy .the condit{ons of

< e o i

“adjointness rsa P 801, tnat is,

¢ (i) for every Xc|C| the composition

° L Uy Ny x) o z : . N
UX). » UFU(X). * U(X) is the identity of U(X) ; e

(11); for every- (x,4)¢|CY) the gompgax'cxghl A i

. Trix,e) - PO, v
Fo) T R )T R s the mmiey of B8,

B
- ‘we have only to observe that-{i) becomes

Vx
* (TXuy), whi

of 1g the identity. £ri

y
X T(X) "' X, whin'h ig thed.dentity from t.he firsts aximkof“

< Tay T-algebr‘ We anly menuon that_ any pair’ of adjoint :

Pl functors. Fic + L5 ai 2 ith 4G gives rise o :a":monad ona

“and_ that the iohad ageociated o f.he above free shd forgetfu

(1) Por a topological’ space X the ‘cone of X, denoted by CX,
is the space ‘defined by CX=XxI/Xx{0}, that is'CX _S.s obtained - o

£rom XxI by identifying to one point the bottom base of the -
cylinder and wpologixing with the quouenc tapology For




JES——

elBisex) » c¥).
£1X +Y and

Ty CCx,81,£1eC3K + [x, stlecX. e

any\ x,t):xxj we denote by [x,t] the mrrenpondinq element of
X under t:he quotisnt map mXxI + xxl/xxw), hence [x,t] = .
((x,t)). if ©0, and [x,0]=Xx(0). 1f "£:X + Y is a continuous
function €hen £x1p X ¥ s campatlble with the -

identification process in xd ana ¥xI, giving rise to a map.

1# is easy to check that given maps

g:¥ » 7, e Have that Clgf)=c(g)C(f)-and:
Cl1y)=ly." 86 Ciop + Top ‘defines a covariant functok
(called the

cone furictor) from the catégory of topological \

.spaces to itself.’ We defipe natural e:ana'fomaciéna

].T P%c and p:c? *be\lx:)(»[x,l]scx and ]
is well defined; to check
the coritinuity consider the £ollowing diagram (1gnore the

dotted arrows) . ) 5

2~
cX
where 1it (x,8,8) KXXI + (x;8t)XxI. The furction
'+ ([x,8],£)ecX>E + [x,8t]€CK is well defined because




' ([x,0],t)=[x,03=[x',0]=n’ ([x',01,t); moreover m' is
continuous because mxly is an identification map (I is
Hausdor£E .and locally: compact) and m' (g )=, We have
that un'=n' because u, ' ([x,8],€)=ny [[x,8],t1<[x, st]=
m'([x,5],t) and hence by s continuous. Geometrically/

uygsC2X +'CX,can be seen asithe orthogonal projection of C2X

.on its base cx - . T . ~
0 — o
” 5
Y
i i ’
4 e S
SeX AR ,

- B &
It is easy to check that the diagrams

» - Do

> B
Clug) vy
. -
CXe——2 > X
" E i N
¢
. d.¥ ‘ e
: 5




*. commute. In fact for the former we have c'hm\'ux [ xitd=

&[[x t] 11=[x,t] and wCly)lx,tl= ux[[.x.ll tl=[x,t]. .For

the 1atter we have that "XC(“X)[[["“] t],u]=»x[[x.st]
. [x (st)u] and u.xucx[[[x,s] tl,ul= plx[[x,a] tu]"[x.s(tu)L

hence pxc(ux)ﬂxncxand 8o C=(C, i o») gs a.monad on Top, A’

CX.+ X a map such thatu[x, for every xeX, .and ‘such

that ¢[x,st [Q[X,s] £] for eVexy xex ‘and sptel, -

,Considering the comﬁositicn xxx » cx‘» X we see tha: the

possiblu mulupueauons oxcx *\X making X'aCralgebra.are

in oné-to-ene corresponden:a wm. \thg transitive’ contractions
D:Xx1 + X, that is ﬁl-lx, wn-conatant at some p&sint of X and:
satisfying the tranlltlvé Iyle W = w X This mpnls that
_ the ‘carrier of a C-algebra 18 a cont;‘actlbla space, bit,
because of the tramsitive rule, we view it as a ‘special

\contractible. space. As examples, 11 cones ox ate spaces,

admitting a transitive contraction e6n i.ﬂeri g*
@ ([x,8],) €51 + [x,8E]ecX. - \ Ui

| \ - x
(1) On the category Set gonsider the (covariant)’ functor

:det + Set defined by P (X)=2X=power [set of X-&id with

"+ B(£):(X) » B(Y) given by P(£)(A)=£(A) for_any function

£:1X +Y and Agx.’w‘ We define natural ‘transformations \

4 ulg, P and piB? S P by \xxiﬂ(‘i'(x}d’(x) and.

erAe 20k) +LJ/A;m(x).\ Noy let s check ‘thab P=(2,%, ) \is a
Ag (! )

B!
il 3

. 196

- C7plgebia will be a pair-(X,¢) vith X a topolcgical space and
’

S




i e

'

" (X)X and on morpht-m f1X * Y. by

_x:l
(Br=n () = and |
e b
3 b ;

“operation (multlp!ieatively denund) and a neutral el ; e

SRR i

monad: first of all'wé have that for every AcP(X) iy tp(x)(A)=
&(ana%u\ and @ (1) (A)=i (3 (A))me ({{x}:xen})=

U(g)=n, moreover we have that for every BeP?(X)

&P(&)(B)-ux((UR:Azl))-UUA ; uWL}.{A -HH \J
) P A <=> there exists A:}éd such that xeA <=> d-\';'exiit‘%“

"-AcB s Ack ‘such that ‘xck éx> there exists. AcB such that xel;{:\ fo. 5

nH HA and hence “x“p(x)‘u'“x'f‘“x)m = ‘ £ o

.A P-algebra is a paix‘ (X,4) with X a set and oxp(x)

+ X a function such that o((x))—x for every, xeX and_such that

0((0(5)]54))-0&_);\) for every ceuacuon A:P’(x) of subsets

of X. We mention a result due to E. Mapes [3‘5] whlch states ~

" that .each P—Flgnbn (X,4) is a complete semi-lattice, when

+x<y is defined by" ${x,y)=y and supA=4(A), for each AcX:

convergely, every complete semi-lattice is a P-algebra in
this way. . -

(i1ii) Fix a semigraup G, that is, a set with an associative
Consider the functor TiSet + Set. defined on objects. by

T(£): (g, x)eGX + (g.!(x))neﬂ. Natural transformations

ulg,, 7 and mT? 3T are dafined by 1gixeX + (;a.x)bG’O{ and
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s (g1 Mg2,%))e6% (GXX) + (g1 92,X)€GxX. It is easy to check

that (T,1,») is a monad on set, that is the following “

diagr.n- commute

T(1,) 2
Tm_(_x’.'r %) e—%— 1(x) o —20 iy
g : =
) N
T | - T [
. & 2 e i
00 _ P T —E— T

&

In fact.u, ‘T(X) is thﬂ c_politioﬂ (g, x)eG*X +
(e, (q.x))xcx(c(zx) + (eg,x)=(g, x)eGxX and

uygT (1g) is the composition (g:x)eG*X + (g, (e, x))eGx (GxX) »

(ge, x)=(g, x) EG*X. With regard to the second diagram we have

that uxu,”x) is’ the :mponitim )

(g1+ (92, (g;.x)))-n" (X)‘(h.gz. (g3, x))eT? (x)'l(q)gz )gz,xlzT(x)d

and that wT (k) is the composition ®

(91092, (93, 3)))T2 () +(91. (82093 X))€T2 (X)+ (5, (3,93 ), X)eT (X)
and hence “x“'r(x)'" T(nx), li?ce ﬂle multiplication in G is'-
aa-ociative. % T .
Now let us find out what thesT-algebras are. They
are couples (X, ¢) with $:GxX » X a tuncum such that the

following ‘Aagrams commute
N




Commueativity of ‘the first diagram ineans that 0(e.x)=x and

Gxx, for scme X, where the action ¢ is given by the &
miltiplicaticn in G, that is . i & .
‘« (910 (92, %))eGx (GxX) + (g g+ X)eCXX. We o\;larvnv éhat dn o ¥

e ouns fren T-algsbeas We "fres” d thi ek seme GC A '
meaning of free groups, free modules, free ngabru, etc. 1In

fact X is canonicnlxy enbeaded in GXX and for any G-set ¥

there is @ one-toione ) between (set: c) 5 .
functions £:1X + Y and"G-equivariant functions F:GxX + Y given

by F(g,x)=g.£(x). In fact % 8o defined 16 G-equivariant .

d
e
o S DN s

'
x—2X _yexx . 6x(6xX) _..__T(l)_, X 2

-
¢ H s i
’ v :
& . \ ) ." = N i
o LR e
2 @
. § .

commutntlvity of mb second’, dlagnm means Ehat -
0(9110(92.X))-'(9‘gz.x), that is, using tha nntntlnn

Grmb(g,x), e.x=x and g,-(g;-x)5(9,93)-x. Hence T-alglbras
are- just G-sets. g to—

ts of the form

The free T-algebras are those G

since Z(g;. (g, x))=B(g, 950 x)=(g,8,) - £(x)=g, + (g, - £(x))=
91+%(g5,x) and moreover if ¥ and  are G-equivariant Ehd . ¢
3 ‘e '




F| te)x=F| {e}xx then (g, x)=F(g. (e, x))=g. ‘f(a,X)"g Ele, x)=

%(g.(e,x))=E(g,x), that is-E=f. * ‘

(iv) et (£,<) be a preordered sq((i.e. < is reflexive, i
g but not necessarily antisymmetric) and let Xbe T l
5 the ‘category associated to (X,<); that s, |X|=x and o {

B : X(x,y)=k1 —(XS}' if x<y, andempty Gtherwise. It is known
v

e
t.hur_ functors + X are i.n‘ one-\:o-one cotrespandence with

s - : monotone functions t:X + X, that is t(x)(t(y) whenever x<y.
‘It is easy. to. see that for a given functor s rkeils X' therd

exiat natural trafisformations 1:1, > T 'and p: 272 ¥ 7 such that'

X
- (T)'1, p) is a monad if and only if x<t(x) and tz(x)ﬂ.(x) for
evezy x:x. In such a caa} T-algebras can be identxfieﬂ wlth

. t},e elementa xeX such that t(x)<x.

© "\ . whenX fs partially ordered (i.e. < is : . “
s  antisymmetric), then from x<t(x) and the }mnm.on'iclcy of t.it
© follows that ‘t(x) <t2(x), which, ' coribined with tz(x)<t(x). .

. . -gives c’(x) £(x). Hence, if X-is p&znauy ordered, “the

mcnads on-X are in ane—to—one wit‘h the closure
e e e ogetatnt on X (ije. x<t(x) &nd t’(x)=t(x)) Moreover if
g g 1oa T-algebraflnen fron xee(x) and e e it Lo
g '~ follows'that x=t(x). .Hence, T-algebras can be identified

. (x1
,

. wuh the elanenes of x" which are closed.  ‘Observe that tnp

this. 'case T-algebras and free T-algebras coincide.

s
. P . Pnrticu%ar examples of the. general situatignzv : -
! described above are:(a) také ¥=R with the natural ordering s




|

v . After havlng xuu.tutad the conccpt of mxmnd, we

" and t:R + R with t(x)=[x], where [x] is the least integyr -

s granter & equal, than x; in this case f-algebras can be

.menu.na"' Vith the intégers: (b) take any. topological space

((:t). (x#<)=(2%,2) ana- X33 X the closure operator =

Sas ?} in this' case T-algebra- can be 1qen:1f1ed with the
.

. cxeud oub-qtl of 'S.

‘need a.dlgz‘onion on Hoorl puthn b-for- lxp.’l.ain!.nq the

relation. betqu mnnada ang. ﬂb;utiom. A re . (oru
measurbd) path in B 1s & cmtinuous funcﬁon w:[0,x] +B*

n!hete t>07 a(0) is-

led 'the origin of a; al®) theﬂ- of a
and I the length of « and denoted by (a)! Foi:fvery beB and
relo,sf5 T, wvill -denote “the path of length r constant at b _
80" 1n pan:icular 0y ~will denota the plth of length 0
determined by b. We denote by MB the set of all Moore paths
in'B, so that MB = Us[°"]. The subsets ot consisting

ot ol paths )\nvi.ng boeB as ariqin and of all paths baving by
as -end v}u be denoted by H(B, o) and H (B by) respcctivny
The elements Of, A(B,bg)=M(B, bo)aM" (s by) are called the Moore
loops pased at by. »
we topologina HB in the: following. way. For each

~

Hoorc path ‘@ inB w- deﬂ.m its extan-lon T (u,-[ + B by
a(e)-,u(t), if u:tu(u). and u(!_:)-u(l(a)), if t.u(a)- A

" w function emmp > 80+“Cago, ol cin then'be definea by -
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S

e(a)=(3,£(a)); e is injective, since e(a)=e(f) means

( 2(a))=(F,2(B)) and so « and p have the same length and

coincide on their common domain of definition; furthermore,

Ime = ((v.r)wm '[*[0 =[ y(t)=y(£) for every t>r}., oMce we
' topologize B “L it tne compact-open topology, and PLOTE
Lo [0g=l with t??product topology we topologize MB ‘with the

xf . “initial topo: 9y with ‘respect to, e, that is, we view MB as a
" aubspace of Bl xg,er. T T :

Proposition 1. (i)' The initial wpolugy on -MB-Wwith respect
[0,:]5"3 the compact~open topology; N
o, rT

to e induces Dn ‘each B
(140 if B 1 Haundorff, then each B is a closed subspace

of MB. . 7 . & ’ £ 3
o taruos (1) We Eiut observe' that the. topology . that' =

e 1nducea on B0/ %1 coz.nc].deu with the topology 1nduced by the *

asm"] > (@ el Cagr), tnis 1s 2

function eia

consequence of the general observation that’if -£: (X,A) +.

& (¥,8) is & funetion of pam, X a’ set and Y space, and.
£0:A +B denotes the restriction of £'to' A/ then .thev

" feqetiton m A of the topSlogy induced by £ on:X ccincidea. ‘ ‘ %)

. with the tcpo].ogy ind\zced by fn» Tndeed ANE ' (U )nfo (BnU
o,

[O,r]

for, any_open set U of Y. 'SinceB

89" e can congider “just ez qun

x,( } 'is hmeomcrp‘hic to

.ot

-+ Eﬁa
, that the mpmogy induced by e on s[”"J cotietftes wm-. the i

10,71, Lot x dendte the . . -

and: prove \

1 compact—open topoloqy ion’ ‘B

f. " - compact-open topology and (&) '}d-a topology induced Dy le. ! .’

kstle) e must prove that ‘for any u;m"] oben inthe’




.’ “compact and AcBopen;  défine B
% T ) {xn[o,r]u{'z) | if £k and Knlr,e[+9 il
LK ;

com\pafft-onen topology there is some u'calo"l qpen'a'wh that - B
*u=e 1(u'), or equivalently e(U)=Imenl'. First let U be a .
subbasic set, that is U=<K,A> with Ké(o,r] compact and AcB -
open. Then e(a,A>)=(yea ™™ "Liy(t)=y(x) i£ ©r, and yKIA)=
Imen;A>"; where «,A>" denotes the corresponding subset in I~
819"l Now if v is o general open set in the compactlopen
. topology of BI*) it 11 be a unton of finite irtersection

of subbasic sets, that is UsU«j\l\j’n,.anj .Aj >; hence .
3 By

e(U<K1,Aj>n... .n«jj,aj;)—

U"«l-ﬂ )n...n(Kg ,Aj >)= (e is injective)

Ue(«xl,aj>)n. .ne(d(j .Aj ))- 3 .

U(xmn«j,ﬂ»*)n.. . n(xmn«jj,pj;’ Y

b e A 3
Urmenxd ads* o, 0
i ”1 & 2,

3
: IR [, (0 .
ImenH«;,Ar n.‘.nTKnj,An;. . as nq:lh-ad.

| = ? = e
X 27le) Let ®;A>' be a subbasic set in BL%*"L witn xefo, =l

Kn[0,r] y atherwiu ’ : # oot
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%

we'claim that e-1(<x.a‘>*)=<x',m'. To this end, we first
observe that e > (< a>*)={(aenl0r 7], a(K)eA} and that w(K)=
R(Kn[@,r])uu(Kn]r,“[)—u(Kn[D,r])uu(K«]r,-’[) Now if
Kn‘r.-[‘d and r;k, then F(Knlr, =[ )= (a(r)), otherwise, we have
that aﬂ(n_]:,-[)sa‘lxn[u,r]) since, if Knlr,=[=¢, then
alKnlr,=[)=¢' and, if Kn[r,=[# and reK, then a(Knlr,=[)=
{a(r) Jeu(Kal0,r]). Hepce '

_ . R(Kn[o,r]u(r)) if r;‘K and Knlr,=[ ¢

“(K) = {u(Kn[O.:]) otherwise
and s e (zK nst)= (“B[o,rl

+ B(K)eh )=k’ .y\> I£0U' is a
[0‘ oL .

general open set in B then

vralJadabt o ndkd a3 " ana theretore
sad oy T

et (v')= e.l:(Ud(’lj.Afm*n...n «3jzagj>*)=
Ue (<K5,A3>*n ik ad >h=
By

He (d(f,af >*)n. . .na'l(«ajmg;“_{f .

j= g

bt B mial s
| “1

which is an open set in:the cmnpnct—ogan topology of s[°"]

(4i) - For any ref0,e[ let BED'-[ &

(res®® Ty y(t)=y(0) ord wow B0 Tae? L% "L wz)) and

50 810 '}'] is clos
[o,=[_gl0, =L,
-B! 7

in s 1f 8™ 1o closed in BIO "L, Lot

yeB then there is some t'>r with y(t')#y(r). Let
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A be an open neighbourhood of y(r) and let A’ be an open

reighbourhood of y(t') with A and A' disjoint

(B is =
Hausdorff) .-

Phen <{r),a>"ac{t'),a"
2 [0,=L,
from 52207

is a neighbourhood of y disjoint

indeed, if v'e<{r},as¥ nc{t'},a* “then y'(r)ea

and y'(t)er' and hence y'(r)#y'(t') bacg’ugeA and A'

are aisjoint. -Thus BL*"l is closed n BT0:?EY

As for.the unitary path space BY, $he Moore path
space gives rige to a (\:avan\ane) functor M:iTop + 'l'op which
associates to any ‘space B its Moore path space MB and to-any
wep piB % CYine map MpiMB' + MC defined by Mp{®)eps.

‘The -
continuity, of Mp is a

of the ivity of: the
~ - ¢
following, diagram (filled arrows denote maps)

& A

¥
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R S L
P10,

Mo —— 5 al0=lqoer”

g \ ; .

| Indeed, since MC has the Iniéiu topology with ‘éepe:t to -

l Mp is conunuouu if and onl Xf e Mp is continuous. But

e Mp=(p.>t1m _[)e. which is contlnuouu,‘and 80 Mp is
continuous. . .
Although MB is not, - strictly speaking, a functicn
space (i.e. MB=Y" for saméx_ and Y) we have the following .
result. A .
Propositon 2
x;((,x,c):xxto,-[':'o’<’t<d(x))’-

Let X be any space, d:X * [0,°[ any map and

Then £or any map £iXy
function £rxeX » £(x)eMB, where £(x)ite[0,a(x)] + £(x,t)eB,
is continuous. = o ; '
Eroof'since M8 has the 1nu1a1 topo).ngy with, vhupedt 6 the
fubetion enin + L9 "Lxpo, af, the «continuity of £iX » MB is
7o prove that ef ia-

equivalent to the continuity of ef

- continuou!, et xli ={(x £) exx

© Xgq and x u:a c‘loz;ed uuhlpncel of xx[0, -[ such that
Xx[0, =[=X 4

1£°0¢t<d(x), and F(x,t)=£(x,d(x)),

Dbecause its restriction to X, is £ and its restriction to/X 3

+ B the

',v-[n t>a(x)) and, observe f_haﬁ/

UXgev Then define FiXx[0,=[ + B by F(x.t)-f(x,t 4
u t>d(x); F is_ l:ontln ous

R PPN

s s b

|
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Pn.d °pry)
is eqnal to the cdémposition (x, :):x' (x.d(x))txd

[o.=C

o

£(x,d(x))B. Let F:iX + 8 dencte the adjoint of F.

Then ef=(F,d) and so ef is continuous.
As in the context of unitary paths, we have that
the functions uumn + 2a)el6, oL, “mgiacMB + 2(0)¢B ana

LY adm ‘+ a(2(a)) eB are continuous.  In !act, 2 can'be

N e
Aidentified with the cumpoaincm MB + n[ Ex[o.-[ e re,=l,

%o with ‘th‘ composition M3 : B[°"‘['x[_o.-tp‘: 5[0.-[ x B ald
with. the ccmp&ition MB :sw';[xto:-[ o B.

The following result is the ana'quua for Moore
paths of the example '{iii) in section*l.2. Its proof can be,
found in [46;p.108]. .
Broposition 3 For any space B the map siach >
(G(O).u(l(c)):ﬂl@ is a fibration.
corouag 4 &« any space B the maps :,.um + a(D)m and
-‘,mm + a(2(a)) eB are fibrations. :

Corollary 5 For amy space 8 and byeB the maps | ag
p:aeM(B,bg) + a(2(a))eB and p':aeM’ (B,by) + .(o):g are .
fibrations vith £ibre over by egual to the Moore loop space
A(B,bg).

» . “
The next proposition is relevant to relating
. «




notions definéd using Moore paths to analogous notions

defined using.unitary paths. .
%

Proposition 6 ' There .is a canonical fibre homotopy :
equivalence over BxB between the fibration :acMB +

© (a(0),8(%(a)))eBB ‘and the fibration 7:acs’ ¥ (a(0),a(1))eBxB."

Proof  We claim that the inclusion map i:B' + MB is a fibre

homotopy equivalence over BxB. To this end, define the fibre !

map d:#B + B over BxB by d(a)(t)=a(1(a)t); d is gontinuous’
. N
becapse it is equal to the composition

e pe :
ws S 800 Lagorag o 800 huto, g 0421 & T alon1, where’ =

“me[oy el + [0, -[W 11 s 'the adjoint of the multiplxcatian ,

(r,t)ef0, =[x [9,1} + rte[0,=[ and T is given by composition
of maps. d is a left inverge for i and a right fibre s
N Qomotopy inverse io‘r i. Indeed, H:MBXI * MB, defined by
1ec;1ng H(a,t) be ;179 Moore path a:[r').(l-z(u))tu(a).:l\%
u('z(u)u/t(1LL(u))£+z(a)])za, 574 verrios) Womotopy: S the
identity of MB to the ‘composite id. The, continuity of ﬁ\\is
proved consdéring the map !
K (a,t,8)e{(a)t,s)eMBXIX[0, *[1 0<8<(1-L(a))t+s(a)} +
. u(l.(a)!/[(l-l(u))tﬁ-&(u)])#ﬂ .and then applying proposition 2,
o : . ? 5

observing’ that H=K.

Remark 7 Since BY Ja included in M3 and ImiycB

statement of propositioh 6 is equivalent to the statement
that BY is & strong deformation retract of MB via a %

‘ \ i




deformation which is vertival over BxB, that is, fixing the

end points of the paths during the deformation.

“Corollary 8 For any space B and bgeB, the fibrations
P:M(B,bg) + B and p:P(B,bg) » B have the same fibre Homotopy
type over B. Furthermore, M(B,by) is a contractible space.
and the loop spaces A(B,bo) and a(e,bo) hava the same
homotopy type. An analogoua :statement holds for the
fibrations p':M'(B, bq) + B and -p' ~p (B,by) + B. -

- BECOf The first.statement folloys “from proposition 6 and

I

.4, .since p:M(B,by) + B and p:P (B, bg) + B can be*
identified with the pullbacks of m:MB » BX3 and m:Bl+ BxB,
respectively, along the map fibeB * (bg,b)eBXB., The

remaining assertions are obvious. 4

.!\b‘
% .

. We tiow défine an adiitbion operation uiMBXMB + MB .
where MBXMB .denotes the subspace of MBXMB consisting of all
couples (a,8) such that the end Of o is equal to the origin
of P. iis defined by setting n(a,B):[0,4(a)+£(8))] + B with
B(a, ) (£)=8(£), 1£°0<tct(d), and ula, p)(£)=ple-t(a)), it
(@) <t<i(a)+2(B).. We write p(a, p)=a+p. Observe that if a, §

" and v are paths with a(i(a))=p(0) and B(A(P))=1(0) then the
abcve addition is strictly associativd, that is,
(H‘BHFM-(MV), and that iot any path ‘a we have that
6‘::(0)*"‘ - ‘uto‘x““”-u. We, now prove: that p is continuous on

MBXMB. To this end, we define an addition




| - . . o

w00 "1y, o) x (BLD;wtx[u,-L_) > 3(0‘-; x [0,=[ where
th

- Lo, =0) = 820"L

x [0,=[) denot e subspace
conMating of all couples (a,r $.q) such that a(n)=p(0)s u'
is defined by w(a,x; B,q)=(v,r+q) Where y(t)=a(t), if O<t<r,
and v(t)=B(tzr), if t>r. It is ei;sy to-'see that the
. restriction of p' to MBXMB is just p,’ of %0 be iiore precise, ¢
that u'(e(u).‘e(a))=e(u(a.a)')'y in fact both-are equal to
(v, 2(a)+2(8)) where y(t)=alt), if Octér{a),v(t)=pt-2(a)), if .
et “H(@) st <t(a)+2(B), and y(t)=BLL(E)), [if i‘u(u)h('a). Thus it o
) is n;x/fficient to prove the contifusty of u'. Now the second
component prgp' can be identified with q.e composition

» ent e
(a1 8,q) e(8E07 Lxgo, o0)x(810* *Lxt0, o0) 4 (r,4)el0,Cx[0, o[ +

{ r+qe[0, «[, which is continuous. For the first component
pryp' we observe that, since [0, is Hausdorff and locally
compact, pryp' is continuous if and only if its adjoint

4 (a1 Boar t) e(8E0 “Exgo, of) x(850 “Lxfo, =) x[0, o[+ n

S{oE) £ 0 L b ntinuous. Let v %

plt-x) if t>r
I sy=la,x; p.ast) [0<ter) and S3={(a,zr B,qrt) [£>r). Then
[0, =t T04=Cugg, ol xl0, oL By

151,55} 48 a cover of (B x[0, =[)x(B

closed sets. The-above map restricted to §) is the :

composition (a,r;B,qrt)esy>

(aripiart) (a0l x[o,-])\_(sm"»[ %[0, =0) X[Ou e lbpin, s s

[0, <L w ' h)
3 ‘/ +(ait)eB ' "tx[0,=[ + a(t)eB and restricted to S, is the ¢
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composition (a,r;B,qrt)eS; » (@ r8,ar£)e(BLO ™ x[0,00)

(810 "Lxgo, o) xf0, =L + (8, |e-z]) 8l "Cxfo, o ¥ B([e-r]) en.
+ Since Both compositions are continuous the adjoint of prp'
is continuous, as reduired. 5
In section 1.2 we saw how Hurewicz fibrations can-
be characterlzed intrinsically by the existence of a utung

function with respect to unitary paths. Now ve discuss .

-
11ft£n9 functions in the context of Moore paths: 5

For any map p:E + B 'let T, ={(e,a)cEms- a(D?p(e))
and /define p:T, p*B BY p(e,u)-uu(a)). Let puE > Ty be the
map' defined by p(a)=(a{0),pa). Then a Moore (global) 1i¥ting
function for p is a map ©: [, * ME such that (e, a)(0)=e and
potle, a)=a; in other words vis a section of p. Given a Moore
lifting function v for p, there is associaf.ed to each Moore

path « in B a translation map along «, "u'Fu(o) > Pa(l.(a))'
defined by, 1 (e)=t(e, a)(£(a)). < is said to have transitive

translation maps if for any a,BeMB with a(%(a))=(0) the
relation 7., (=<7, holds. We say that < is transitive
[33:p.288] if for any a, BeMB with a(2(a))=B(0) we have that
(e, atB)=1(e, a)tt(v(e,a)(2(a)), ). Of ‘course a transitive
1ifting function has. transitive translation maps since

1M(e)='x<e,nam(i»p));fcv(e,amu(e,«)u(an,s)lu(ﬁe)h
=v(s(e, a)(2(a)), B)(R(B))=7p( (e, u)(Hu_}))-xBxﬂ(a)‘r
Moore end-point lifting function for p is a map
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i
i
i
i

BTy #E such that pZ(e,a)=a(2(x)) and 2le,0, (q))=e. Givena

/ .
Moore end-point lifting function & for p, there is asfociated
to each Moore path a a translation map along a,

Gefined by E (e)=E(e,a). & is said !

+F

EatFa(0) " Fa(a(a)’
transitivg [33:»p.11] iffor any «,feMB such that a(1(z))=p(0)

the relation £, =808, i@.‘/ﬁg. o B .

We now study the relationship between Moore global -’ ~

1ifting functions and Moore end-point lifting functions: We K
denofe by G the set of all Moore global lifting fanctions for
P, by G'cG the subset of those with transitive translation
maps, by G'SG the subset of those which are tramsitive, by T
the set of all Meore' end-point 1ifting functions for p'and by
q

TIST the .subset of those which are transitive. There is a
function £:6 * T which alsoc;ates to' each global 1ifting
function t the end-point lifting function f('r)x(e,ﬂ):l"p >
(e, a)(2(a))eE. A ridht inverse gif + G for £ can be
constructed ln_tne following way. Let MB,={{a,t)eMBX[0, =[:
o<t<1(=‘}) and for each («,t)eMB, let @, denote the Moore path
of length t defined by “t(S)"(')‘ ‘Applying proposition 2 to
the map (a,t,8) e((a, t,8) B x[0,=[ 21 O<s<tct(a)} s als)ed- we'
have that fhe function Li(a,t)eMB, + a  eMB is continuous. =
Now define giT. %G by the xule g(E)(e, &)(t)=E(e,q.). For

every (e, a)elg glf)(e, ) is equal to the conposition 3

L 13 :
tefo, Ma)] + (a,t)eMBy » “t‘“a‘f (eyay) :rp 1 Eand| uatiagin
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9(5)(e.ﬂ)(D)=E(e,ua)=5(e,op(;))-e and pLg(&)(e, a)(t)]= |
pE(e.ut)=at(l(ut))=a(t); so g(E)le, d) is a Moore path of ' i
length i(a). Now applying proposition 2 to the continuous [
('M).L)‘

H

«
cumposition (e, a,tiel(e;at) erxo, a[:0¢t<tfa)}

(e,cx ):r -»z(e,n )& we have that for every Es‘l', glg) is

continuous and hence a ‘Moore global lifting function for p-. *

It is easy to see that fg=l, because [£g(Z)l(e, a)= :

_ o) (0,8) (2())=E(si 1y ¢ gyl Cora), and h,e;ce £ is onte, Foi

- . every G, £(7) has the ‘same translation maps as v indeed

£(7) (e)=£()(e, a)=tle, a)(ta))= 7 (e). It follows that teG -

has transitivé translation maps if and only if f(‘)l’l‘@ln
{ransitive.. £ is injective onG" indeed, if v is a

trdnsitive global lift¥ng function thga.<(e,a)(t)= .

‘nt:e, s b TCale, @ ) (6), @)1 (e )=sle, ) (6)=£(s) (e, a,) where
orse0,2(a)-t] > a(t+s)eB, which shows ‘that © is completely

- determined Ty £(1). F;)rthermore, if per 1‘; transitive Ehen'”

g(E) is a transitive global’ lifting function indaed E

K e, @) A u‘cu‘(«) o ban F ke
() (e, o+ B) ()= (e (atB) )= | © S ]

Vg Sleiath_g (q)) 1E Ad)<ter(avp) .

and

; f9(€) (e x)+a(E) (a(E) (e, a)£Ca)),8) 1t |
‘ ‘{9('5)&. a)(t) C i Ocgdtla)

g(s)(n(e,u).a(c-uan T zta)<t<z£a+a)f ) ! O
i : etz(e.a),utv,l(,,,)w_r if 2(@)stet (atp)? g s . §
‘5 Ao {5(;yu€5 y if o<t<:.(u)
i E("“:wth(ng)) 15 1(a)<t<x(c+a)
| s




Her e, 2 sl ™ b i

which shows that g( E’J(E. a+B)(t)=

Lo(6) o)+ g(€)(a(8) (e @) (4(@)), B1(£), for every tel0, a(z+)l, . -
and so g(£)(€, a+B)= [g(E) (e, a)rg(E)(g(E)(e, a)(2(a)),p].

- G 7 @

, - Con ‘L\

i R 0 e \
. We can Auimarize the above observations as follows. S
S i Proposition.9  The following properties holds A

(i) :for any Moore, end—-pox.nt leting~functxona ¢ there 2

" exists at least one Moore glcbal 1ifting fanction ‘having the

s
. wane! Eraniintd maps as & .-

s+ (41) a Mooe global lift1n3 fanction has transitive o ¥
translation maps|if and only if its associated qn_d-point

: Ltfting function is cnnsitiva- . ¥

. (144) ' gor any Moore glohal iif¢ing function wien v.
. transltive translation maps there” i.a exactly one ttunuitive

global lifting function having the same translug.on maps.
AT S s . ; D




The following nlClt is the. analogue of proposition
I.2.14 "in the context of Moore paths.
Proposition 10 A map p:E * B is a fibration if and:only if |
it admits a Moore global lifting furction or, equival;ntly, a
Moore end-point lifting "ﬁmvctlon.” . .
' . Proof Suppose p:E + R is a fibration. Let V[o =] denote the *
space obtained ‘from [0,=[ miding a point’ = and topologlzinq

g0, =) s, open if and only if either uclo, =L in

+ where AZ[0,=[. is bpen’and A2]t,=[ “for dome

t‘;>0.< 'A'h\e upuce CO,-] is homeunorph‘ic to f.l\a nnit interval

[o 13. . For examptq the llap ﬁxu[o TR umt/zc[

extended to the ciosed xnnrvu. [0;11 By d-ﬁnmg (1) h

is m‘ntlnliolll at l lzcm.lle ul.ll tan't/l-' yioldinq a

hc-'eéorphln. llo further observe thut th any “space x t.heze
is a’ naturnl map wiMXx[0,8] + X~defined by wla,t)=a(t), u:
o‘tﬂh).'nnd w(a, t)-u(l(-)), if 2(a)<t<=. -To puove tha
:entimxley of W consider the two, closed sets’
n,-(h.t):m-(o.-]x 0<tct(a)) “and nz-((- t)tnx![o,-]: e

t(a)y<t<=} which cover Mxx[0,=] ‘and cbserve that w restricted

t0/D) "is_the, on-xuun s
(8,£)ep, -5 (5, yex*Lago, of + a(6)ex and thpt w restricted

eo nl 1! the uompolitldn




fi.nd a map H-r [0, ] »:E extenamg pr ma f‘feing LI -n)e

réatricticn of H- to ((e.u t):l‘ x{_ .‘:q(a)) giveu r;ae R

by PTO
8 11.£ting funct:mn for P as requited.
Now. suppose # ie a Mqorq glcbal Iifting \fum:tian

ition 2 to s map T, v which LR Moore \;mbu

W . “for p. Let £ E be any map and let H,.xxx +B bea

homotop)' cf pf. ‘Consider. the ’fullcwing eommutat{ive dxagram, B

where H:x > a cMB/in the adjoxnt. o




Sl

q . -
. p y
Since T is the pullback of p along %o, we have the map
i (£,8):x » T, which when composed with the lifting function
< wT+ 18 takes values in E'ME.. Taking the adjoint of
ze(£) ve obtain a homotopy of £ which lifts H, as
o required: . v
) N As an application of proposition 10 we show that® .
&3 for any map—pf/: the map PeT p * B is.a fibration. To this .
! i 5 end, observe that T *={(e, n,p):zxmamaxa(o)-p(e) and i 7w :
o s .

S uu(u))-a(u)) and define £: p r by &(n,u,lﬁ)-‘a,rﬁﬂ) & is

well aefmkd because Lua)(o)—p(nL l'
. 5 . (pt.,u'przs) 3 3

- a2 equai to the map T L Where prn.: (e.uﬂp)zr +

Al TR P . = ‘

(a»e)mans and piMBXMB + M3 is-the addition of Moore ‘patns

centin\mua being

e
previously defineds furthermore § satisfies the relations

(e, B1=Ble; atBI=(a+B)(2(at)=8(2(8)), Ele,@,0_ )= - .

plesa
; '“"“"h(n(a))”"" ,““”)=(5.a) and: E(e, a, pry)
L . we -(e.co-(p\\m-(-.(cvwmue.ns.v)-cme,a 8),%).: This

S o

nhm that £ .is'a trunlitive ‘Moore end—polnt utung funct!.on

for p~ and hedc- p is a fibntion. s i

i P L T Purthemen we. hnve that the mlp ueaz~(e, ole )):r
{ o W Jisa halnatupy ‘equivalence. Indeed en.l map v.(e.u):l" > ecE
" 1a a left 1nvaru of 1 .and.a right homotopy ‘lnvetﬁe of U To

¥ prave thlu 1“:“ u.ertlon, consider ﬂi‘-t the mp




£:(a,t,s)e{(a,t,8) eMBxIx[0,=[: 0<s<f(a)t} + a(s)eB &nd apply
propodition 2 to get a homotopy £:MBXI + MB from \v to the
identity of MB;. then define H:(e,a,) el (E,f(a,:))srp
which gives a homotopy from v to the identity of T, So the
abovegnaps ::E + T and p: r"p > B give an alternative way to

factorize.a map as a homotopy equivalence followed by a
2 : e
We' are now. ready to discuss the connection-of -

fibration.

nicnads to fibrations. We will show usirg Moore paths that
the standard .procedure of ‘factorizing: any map p:E + B as the
homotopy equivalence t:E. + T, followed by the fibration

— Iz:\rp + B gives rise to a monad on Topy ahd that the algebras,

| £6¢ ‘this monad’ ave essentially fibrations with a specified
transitfve Moore end-point lifting function. We first
discLss |the situation in the context of unitary paths. :We
will see the problems that arise tfere and how the algebraic
‘behavior of Moore paths allows us to overcome these -
+ problems. . ;
Let AiTopy * Topy be the functor which associates,
to each object PiE + B’ of Top, - the map A(p)=ps, + B, that is
“ ‘M(p) (e, a)=a(l),; and to each morphism £:p » p' the morphism
A(£):A(p) + A(p') defined by K(£)(e, a)=(£(e),d). “There are
: ‘ natural transforiations v:lyey EY arid‘ wiA? 3 A detinea by’
. \Fte)-(_a.ix(_:)) 'and\p('e,a, ﬁ)=(e._>?'.‘ﬂv)r. by, 18 well-defined ’

because B(0)=A(p)(e, a)=a(l), " ¥

TR

Y




R - A
= » 29
. / 1, ' .
P e 4y
Ap)
©op 2
) . ’
B " ‘
. .o~
C & Let us see if A=(A,1,p) is a monad. re_\r the dilgrm.
i PO Trr
Mo e oy
i " ¢
| C .
\i g “P .
5\ . & Ap)
Y \
- e have éx‘.z'npA('\l,')(-.-)-»P(-.p(e).-)-(.,S(“.).J) ana
| g i G e
L g 5o () (1 218y e FTTY =, . TTD))r 80, the aiagram i not
commutative except up to homotopy. Similarly for the
diagran : ; '
o~ 4
|
'

el it NS



3 YAw) ?
A (pfy ————> A"(p)

Ayy) e

‘II
Kp) P s a

we have % "A(p)(ﬁ‘“' B Y)=u (e, a 8. Y)=(e, o. (8. ¥)) ‘and that
vy A(v Yeia, B.‘()=ll (e,u.a. v) (e, (a. B) Y) and.since’ a.(B:Y) ia 0
generally different  from (a. 8).v, we. again get commutativity:

only up. to Homotopy.

e The problem with unitary paths is that the
operation of addition does not have a strict unit, but rat’her
a homotopy um.t, and is only 'homotopy associative.

Let us now perform the same construction using

* Moore paths. Let FiTopy + 'ropB be the “functor. defined on

objects p:E + B by T'(p)=p:T +B. -and on morphlume fpr p' by

l'(f')x(e,n)vtl\ * (fle),u):l‘ ‘e Ther‘a .are natux’ul LR R

.‘trpn‘ufomation! Mlgg e ¥ T and’ yt 2.3 1 defined by

Topg

iplel=(e,0, ) and up(e.q.ﬂ=(a,n+s). uy., for .ny_p:hopﬂ

the diagrams




TS S

221

Ty 1 3 V) L2
T —E s 1 @) & ro—® e

Top "

. 2 P
) T ——0®

" commute biecause thé Moore paths of length zem are strict
units.for the addition and moreover ddition’of Moore paths
1s stricily sssoctative: Hence T=(T1;3) is & ponad on Topy-
Te following result'is”dus to P Malraison [34]. R N

Theorem 11 ‘Let T=(T, \,¥) be the monad on Top, as defined

above. Then the l-algebras are precisely the pairs (p:E+B,E)’

vhere p is a fibration and E:T, +'E is g Moore end-point \G

transitive lifting function for p.

Proof* According to the definition, the pai¥ (piE<B,Z) is a

r-algebra if £ is a morphism in Top, from I(p) to p making

the following diagrams in Topy commute

»
\ 5 )
Core—L0 e
% B l‘p E‘ 2
T —Ft  5p
g ; .
; » 2 . 5 :

Ty




222
This means that £ must be a fibre map from p to p over B
such that the following diagrams in Top commute )

1 2 G
E—2 Ty —_—

T,
 J

83

E
—_—
L &

In other words § must satisfy the relations p&(e,a)=a((a))

for every (e,u?zl?p ,.,,;(e,op(e))=e for every ecE ?nd
E(E(e, a), B)=E(e, a+B) for every 1e,¢):l"P and feMB with
8(0)=a(1(a)). These are just the requirements for a Moore
end-point transitive lifting function for p. By proposition ',

10 p is a fibration. 4
4 + %
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