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* INTRODI.I?]'IUN = 2

2 In this thesis we #ho®that seqmcnx spaces forn a.

e
Convenient {ategory nd :nn. 3ii sz tlon, ” they: Nave distim .

advav}t:ges over. olher su:h chlepnek :

The orxgjnu lnd besl known convenient category is that. nf 4

§ cumpam -gemmted spaLes, also. xnown s Hausdorﬂ' x spacu

nd 27 respec:&vety] mhe_s include the c:ugorus of -

[see :ss
»
mpo]ogicnl spaces (53] »’n

:nnvergence sp.acus- [!l]

quasi— -spaces [8 17, ZD]. ﬁlter—-‘

splces [see:.

merotopic spn-:es (26]
and 36, emeple (u)\_./ and the. cuegory

Gril1 i
timtt spu;es huerae;ompu spﬁ»}

6

12.

- Quasx zopolnpsu spaces.

convergence ‘dpaces and Grill: spaces have the au.av.mp tHat

e n.ey are ‘not ‘tdpological spaces and as Vogt says [36, p-545], "Mawy -

< tapnjogxs_ts dislike worlun; \dlﬂ!‘ﬂungs mat are nn( topological
spa::s" K 2 ,7 »J’ % ; Y =

One. problem with !he category of cn-pacuy genented spaces is |

51 of 1e

since

that it is not closed under the P

space n'é.'d not be ﬁ}nm diffxcully

the qumem m Topofa

is “that i.t is not closed u»der the fomtmn of va xuus types of

spa:es of ;nu-l naps, mcluqbng nbred mpying spaces [sn s. prop.

Clark (12, see .m 4 an%m) proposes a category o mmme

“is.3)!




i ni;hg{ be :haugm»:o be: reo:{‘vely clumsy. o

respect to all chommg maps from comact h’ausdorff spices

Jdifficuitiey uith\thls catemy are largely nesgmcm me“:;’

sh\a class of all compact. Hausdor££ spaces th deternine whether ‘or

I :
mzle sPuca isa k-splce seens raﬂ\er unreal evep though

the app:npnme'"Hausdorffness" cond)txon 1.e that k- space X

} Vaé«,uausdosz 15\;:1:D%gonll is clnsed in the K-space X
|

i
Seqnentul spaces avoxd all of’ lhege prbhlems and,; m parmular,
%
have the,ndvantuge of requ r)ng only one spmce il their. defm:nnm,

rathex thari class, of spaces, Anothex‘ advantage isthat "They are

the Spaces .m “Which ‘convergent sequences dan do ill the jobs for umch

4.
cunvergent f)lt:rs (or nets) =re usuwlly meeded" [37, P 225]

* The-nethod of this thesis is-anslogous

‘a1 than 'prakus app achés to . .

1
n‘xm~ 6‘],;agd so'is

d. ntia spaces. Clark sets up wcth:

functouhetween 'l‘ gand the categ Ty,

‘uses these functnrs to define k- spaces. Sxm)larly e defxr{e ad,oxn:

5~ to)mloglcul spaces._ He

o functors hetwun p_and the' category of sequent 1 converg:nces and
—

use ghen in definitions.and pmufs for’ sequentul spaces. " We. thereby,

in sddxtim to .

| show’ the connectwn b=tween these: tua categurle

obtain)n; results abojt sequential spaces, ‘We ;Isu use the iaeas of

the procedure is justifiable.in‘tems (of nmmat:c set theory. Also

“Clark!s paper [12, sée.”

TN

i




: defmxtum of sequentlLl 'cenvergences

3 discussion of Hausdorffnus in t}us category.

tupolog;.es. We. alsn dxscuss :‘pe sya:e m uluch xs»used in the

gy o

onvenierice and proves some results of use -

Ahlpter three.v i “ S8 O e R N e
Th praﬂf thak sequ{ential sgmées are a cnnvemen; category

cccuples mst of the th;rdv chupte’: A]su xncl‘uded in Lk)s secnnn
i

spaces. “The lzst chapte ¢ ﬁ the

- topolo, or fun;tinn spaces and a neu topo)agy on product sﬁace
P

“They. are found :n,ba ‘related by .a nrres andmg e nnennal law,
Y, : el K\ P s

B i i







- to the approach \lsed in chapters €wo and three. anl}y we dxscLss

. »
the spacT K which is basic to our whole theory. -
2 * P - b 2 * _

e

Converféntsatefries:  Stéenrod's paper (35] ntroduced he term

" "cnnve'nient ~category" aid gave condems which sucha category should

s.usfy. me c.mmons are: Y. b 5 i

fir’s: that it bt large enodgh to ‘contain all of the]
rticular-spaces arising'in practice.. Second, it must.be
. "y closed under standsrd operations, these'are the formation
A of"subspaces, product:spaces XxY, ' function spaces. {X,
- ‘deconposi tion ‘spaces, . imions of expanding sequences of
spaces, and compositions of these operations. . Third, the
: category should be snall enough so that certaif reasonible
i, - propositions about the standard operations are true. A
B ey These staté that the order of performing two uperat)ons can.
‘ be reversed We adopt “the followmg as,ust pmposltmns

[¢3] (YxZ) v

@ el iR

' {(3). "A product of. decomposition -spaces is.
3By B a.decomposition space of th.e prorluct o ]

© (4) :A product ‘of unions "is a uman o <
producEs’ . .
PR (> DY decomydsltmn space of a unién 15

a nion of; decomposi tion spac:s"‘




e

“The third condition " is

a1 1 spaces as

is no iopologymx z’r

. bﬂt
-u)
@
g8

g v’phism :

a tGFmian object

a product <x. 2 L gxC s &

a Pxfunc(ot ‘Mor

c(A *B, C) > CA, mr(B c)) >
. for au A BL C int g

- Injtial andf logie: -n;venus t,x;
gxa)B:GA and'd fanily of functions
' SR i x X Eh
£ .,3, ol .

muking (z) tme in ]metn) l33 tors 201

xt ¢ such that there'ds lnlt‘ral

et e
a’fanidy of Space:




' & . N
Initial. topologies n-va@umu universal property:

= If ‘X has the initial topology as.above'and g : W +hX isa

5 function then i

- is continuous if and on1y§§ foog: WX it
i g . : °

continuous for all ‘a “in A.
<7 CIt.is easily seen that if the universal property is satisfied .

“ by a space. x, u(m the' topology o X is|uniquely determined and

coincides vith thar déseribed a.bove {see &, p.153]. o #

- ‘rhen is -1so a."transitiVe law" for initial topolegies
9 P xsa] . e e g ey '

{ o s « i

e .1 Givena set X, a family i
g & (fn Hi & il)a €A s
2 Hoi ' . i «

of functions out of X' andfor each a~in A a family -

L e ey X Xy WE B, g
. o7 - SR
of functions out of X,. If X, has the, initial topology with

-, Tespect to (g.b}b 6 B, then the initial topologies on

“ X with

Tespect ‘to (f e
" Proof: ‘Let ki ¥ X .be a function where Y

and {g, 0f,) coincide. .

is a’topological - |

L ¢ ¥ ons i
space. Since X, ‘has the initial topology, the functions g, ofn,ok‘

_are contimious- oily if £30K is continuous. The result g

h Y4 .
follows -fron thqflmivé¥sal property. _ - -
. . ks




2,
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Given a set” X, a family (X )a 6 A of topological spaces and

a fanily

;&;»me’a , ‘ -

J - of functions then X has the final (or weak) topology with réspect
to'the (£ Ja €A if either: ’ ’ [ 3

Yy s

(a) if U-€X, then U is open if:and only if £

§ S 8 . J
©opendn X - foreach a in A ! = il A
5 or  (b). ‘the same as ‘(a) but.with 'open'‘replaged by 'closed.

This is the finest topology: that makes the £, continuous. . Some

standard examples of spdces with final topologies-are identification

spaces, tdpological sums, adjunction spaces and unions of expanding

. sequences' of subspaces. A ’
. <Final logies also haye a uni 1 property: - #
J Given a space .X ‘with the final topology with respect to. the 0',
i © family of functions {f, : )in f})f €A, then a function g from X
to any topological space Y, is continuous if and only if gof, 1 X, > Y
is continuous for each a -in A. '
4 ‘As is the case’ for initial ;opologies, if a space satisfies the
. univershl, property then its ;npo;ogy is.Gniquely determined and coincides |

with the final topology. . |

We will'neéd two'lemmas’about the combination of final

- topologies. . - . ﬁ o Tk J

Y




. Notation: Let M(X,Y) denote the set of all continuous
Horation:

functions X+ Y and MC(X,Y) . denote the same set with the compact-
open topology. ' ’
Lemia 1.2 Lc; !( be @ set with the final topelogy with

rcspcct toa fanxly of funcnuns (f L x + X)a s A’ wheré the

L Ja€ A are tapoleglcal spaceL lf X sansﬂes _the condlnon that’

For each. x € X _ there exists an- x” e ‘x ‘such nu: £,(x7) :

i a for some choice of a6 l and 1f C is a locally compact Hausdorff . .

space then XxC has the final topology with respect to the' func

(£, %1 : X,xC XxCla €A o s - - S

Proof: We ‘Show that XxC has the appropriate universal property.
E Let. ¥ be any space and g a function XxCo Y. We have. the

L . followmg commitative dxagram

£ sy Xxg —E—y ¥

us then h, is continuous since it.is the composite.

If g is conti_

o If h, s contl‘nunus we dpply the exponential law, giving that the

.2 . associated function h7 : X, +M(C,Y) is contimious. ClLarIyU

: X + {set of functions C+Y} is well-defined. Also g7(x) = h'a‘(x’)‘




where ' £,(x) = X so g”(x)' fs continuous. So we have the following

commutative diagram:

Now the .contiruity of £, ‘and the universal propeyfy of final _ '

topologies imply the continuity of g°  and hence.the continuity of
g. Therefore 'X xC has the required universal property and hence.is

a final topology in the appropriate semse.

Proposition 1.3  (Transitive law [see 9, p.96]) w
Given a set X, a family’ : . :

il

g, i % 268

of functions.into X and for each b in‘B. a family

A\
. ° ¢
: A F X BB &N

5 3
has the Final topology with respect
o ;

of functions into X .
[of functions into X,. If X, :
to (f,}a €A then the final topologies on X with Tespect %

{g,): and {gpnfqh} coincide. >




. * natural numbers, denoted by ||
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9 - g £ B . L
I
Proof Suppose h : X+ Y is a function. Then e} N
hog 0f, i X +Y i continuous for all i€ A b &8 iflend
& ab

only if h og, is :ontmuous <in® X, has. the f;\ml topnlog'y w(;th
Tespect to the {f -) 'me result follmis fram the umversdl pro‘)‘:er;y.

Cﬂu{u iy 1 -LeF»

. spaces, fenr,h Of which £ equ)pped with'an as,f({c

O relation R I£.-X" is the! tupolaglcal sum ux Ut S i m' :

equwahnca remion on X genérated by (LY )n €A, [then

R =0 AR LR - &
aea ® A .

Proof: 'n.e' underlying. sets are cléarly the samg for X/R
4nd . U X_/R :.The proposition shows that both sets have the final

tupélggy with riig/c:/m the composne funcmons "from the spaces -X_.
The: composite f

ns are the sime so t‘hE resulc follows.

] - . "
Remark : 'nns result shows that s:eem:od's £i m- test praposit:\nn
‘s true in thg category of. all topnmgxcal spaces.

‘wjll also be true

This pruposlt:m “

any topslogical style category that 18" closed under

the ‘Formation of quotients and sums. % v

The space N_:" The Alexandrov one-point cm..puciﬁcsm@ of the o

‘is used to generate a cunvergence
structure, analngous to Spamer 5. quasi-: toporogy [33].

The topology on ‘W, can be simply described as follows:

@




P ; 3
. -, S "
. X ~12- ¢
Given Ug M_,~ U is openiif either: . '
@ mgw :
or (1) <6v and X S s f’iﬁit; B ot gt B

U= {n su ln > ) u {a f)nxte slIbset of Wy

" The: equivalence of the tupulogy,defx éd by (i) and " (m) and’ the

altemat:va def:muom\uslng [1) and (ii)~ follows either from t)\e umque- &

néss of the one—pnxnt r_nmpactincatlon 13, pidéi or, frnm the next résult

U N, ‘satisfies (i1) if and n"nlx i Sebsdiisties din)7

Fus: assume .U satisfies’ (i1)..

.‘ £ o ey
ma,xm_-—U)u. Then- . {nEl ]n>n)=u Thé remaining |-

elements of U, " if: any, ' must be contaxnad in. {n en |n < ). whiéh :

| is a finite se

Q U savisties (11)‘ “ .3

Now. assume . sgtxsfles (34) 7+ Ten = 6.U-"dnd

- U) S (n smln <ng ¥ “which is a ﬁnm set. 'n{qreroye'

tl_ Sy s .fnu:a and (u) is. sausfxed.

Not: W_. can also be vxawed ds the m'dmzl spac: o+ 1 wherr

L w_is the fn-st mfmxte orrhnnl [14 P- 66. exnmplr— 5 ]. . lt is elsx y




Lo seen that ml topelogy of w4 1 ""mmcmes with that men by our !
Séeond descr1ptum Of the N, kopalugy. ¢ ;

The folloumg resulc des:nb:s a slmple cunnecuan betuee—n co'nvergr.nt
3 anuen:as dnd e space N This fa:t il be basic to our nothod nf
R e studfung seguennal spices.

Les 1.6

Fnrxtopolnpcnl pﬂce X, c_he sequence {x‘

.mm X6 X if and nnly SR the couespmmmg func:ipn £rm x
“given by £ x, =)

anll

is contxnuous

- il Proo: This follnws nrrmedxately £ron’the topolngy ot W e o

Several nther useful pmpmws are nuted here,

1s regular. as it 14 essentially a suhspace of ‘the Teal 1ine

& sabret oE K s, -open unless it mm.ams % “andits tbmplemenz\ }

is 1’nfimte A.cubser of. N,
and Jtr‘/mplemunt is, :mf' HTECE N o ) \
7 3. MXN_ s 4 first cowtable space siiice 18" cin be regarded as' a subspac:

is closed. unless it dges “not com'm

of. l X h)ch is metric and hence: ﬂrst co\mznh!a. “This wWill’ he







. ‘u_m. £o ,‘é sm_

to Spuucr's quasi-topalopcal spaces...

..relation betieen sequiences ‘(, ),‘:1 . qf,nmm.of_ S and. menbers

Cof s denoted " N sqchthit it S

- ,.

,In this section we dismss seq'nantul ,cmveumu:as. The study
of convergences was _begun by Fr&het {zo] and’ nxa up again by

Dudley: [13] .. We rewrite his d:fxmunns and proofs in a*manner analogo

This 'dll he nseiul in Dur

:study £ sequenthl spaces \!e d:fmg a conveuance su-ucture for a

‘damonstratd sume uf h; bu ic propurtiés. P

‘A convexgenc structurb S[II_. x) on | sn X

. fum:tmns I‘ > X :ntisfymg the conduions:

@ ose, X' contains. a1l cdnstlnt f\mcuuns N X
Gi) . if g N »l_ is ‘an injective map and . £ € Stl_, 0

0-

A segur_ntill conur,enu (abbreviated to convergence) is’

Ipau’ (x, S(I . X)) vhcre X is an lrhxu'lry set: and Se_, X) ,is

a cmlvergznc! structuré on x.

+ The anangmu definition “in Dudley's -paper-is tht t‘nllvﬂng. & oy

(If Siis any set,’ -sequentnl canverg:nce C on S is,'

s fw;au n,s, -cs_._

{s }, then r,'n-»:s. ?

Our definition is shl,htly more, réstrictive. than m-: of Dudley, .;

: C:n be seen from Lemma 1.6 and the t'hllmdnx at:.pw the. sequential




|
1
1 B S .

n £ :
) - ! b -16- R ]
. convergence'on the 'real line consisting of all comstant sequences together
‘ with all| subsequences of s(n) = L satisfies Dudley's axions but mot
| o5 K v
3 ! -/ *ours. | f ] g

. |
i Exan‘:gle: 1E.X isa zopnlog}:n space and sm x x’s e
] \ defined s& the set of ontinucus fum:txunS/H + Xy ther] (x sm_. X))

is a convl rgence\J lled the assuc;ated cenvergen B

“I£ X, and Yave cqpvetgences then amnccxon ®

caneal eguehnalll contintibus if- g0 £ W+ is in snl 2

fe sm x; 1t follows euslly fh-‘t a cnmposnc ‘of sequién -uy

cbnnnuous‘ functmns is szquent:lally connnuousA U B ¥ 4 ‘ -

1
.\Remark lIf X and. ¥ are topolog)qal 4paces, it is usua] to say

¥ that f X*Yis, SEquentJally continuous at a point-. x € x vif
N i

and nnly 1f for every sequer\ [x 3 in X convergmg to 'x, ‘the

=

sequence {f(x 23 ’En Y converges to_. £(x) "It follows by Lemna 1.6

that i x @Y s sequ:nnally contijuous in the ususl'sense T md

’ only if f\ 15 s=quentxally Eontinuous - b:tweenmthe converg:nces

asso

iated ‘to % nnd Y.

'The cuegory of tially ‘continuous fanmctions

: »‘uu be denotad Con.” The ise‘morphisms in.this categary are -'seg’uennal

. contintous, inverses. . LR

Woi let us.defing iritial and, final cunvérgence struétures, .

analogous €6 initial and final spaces, and prove their wiiversal.

£ . properties. | Suppose we are given a set X, ‘a family {X}a €A of




w)7s

o So 7
wX X

a ¥ b e 5

S, X) 15 the mtuHcanvugence dtructite’ on,
:i the (£} 1f/f sscﬁ

if andionly Af £,

The pair

‘then cslled an initial’ convergence No ice tha( this convergence

structuré"on x makes sequentiauy curxtmuous for

_all -a €A,

%

Proposition zu @niversal propsrty of mma1 cenverFence]

For an 1mtxal r_onvergunce X7 and any convergeﬂce Y, & fut.c:.on 5

k:Y X is sequentially contimoys it ami only if the ccmposxte

, sequennull}" cuntinuous for all @ E‘A.

[

* Proof:” IfL K. is sequ!ntully caniiuous then ﬁ ‘o ds

Celox iy >

sequentxally con muons by Emnpws).t:mn

If £ 0k is se nally cohtmuous t)\en 5 ck oh € sm X
o’um

forall hES(ﬂ, 9 So k hGS(N X)'forlll hES(I

Y)‘

+ and hence' k. is sequentxally contxnuaus. ot

T .
a1 convergences. clearly satisfyea transitives lair:

+ similar to that descnbed for tupolog;u: 1 spa:es in 1emm -

,Exsmgle 1: lf A’ is'a.subs f a cnnver,gence X, :them "R ‘can.,’




inclusion £ A> X A8 Then calted 3 5 ubccmverpnce of X,

nm:e that the mclusmn is iequentrﬂly continyous ‘and’ ma: A

ERRE R Y uruversll propert.y malogous {o- t)mt of su.bspues, i.

‘any. conyergence Yo the follmnng
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for any. convergence W and pair of functions £ W X “and

sz B W 1 (f fz) i} sequentuny conumxous if and on: 1y i
Cand £ are sequznti-lly continuous.’ R

u: x be \et,v {xJa e N o fz..uy of cmvn;mces and

xex, A and an x"Ex-suchtlut“

-each

there axm an @

;- X)' 'is-the fipal convergam:u s(rut(uru on X with

X) 1f and oflly if there exis;s an,

- og = f.‘ It is strugh:forward

X) sunsﬁes the comﬁlipn (1) for'a convnrgence
:hg:k cundxuon @i.

Let hAH-OII J:enn

injective map’ ad. £ sor, x) Then thrs exists a- g~ such that

fog=f forsou & ‘hence Fohsf, pzthS(l.X) md" el

thé Fesult follows.. The pm- S(X, SO, X). s called @ Final

ictmvergzm:e, Notice ‘that zms defuunen of the- m.vnggnce\?-ucmxe.

nakes the £} saquenuauy cmtmunus. %
¥ g

pxog'osiﬁm 2.2 (Hniversxl prvperty of fuul :onvngem:es]

h
Lec X be'a: ﬁygi convergence :nd’ Y belnny'canvergence. Rt e
f\mctmn &

*xaylisls uentially, connnuous if and ‘only if the com-

ite kui

s ssqum\hany continuous for all 4 €A,
xf X is }sbquentislly continuous r.nen k of is. |




sequentl uy tantmnous. g 3

" witversal property: . T A e

F

‘ofxanavm Xy

If kof, is sequ tinily contimuens £or ux £, then . -]

kof DhESﬂ_,Y) fnx-ll hﬁs(l X). Nwif fis(l

“then f-f Sh for,sm:hoiceof £, (end n;. so

kof=kaf oh. &S, V)’ for'al (esa_, ) -nd)lenca ks

ﬂe iple 1:. Let "X -be a cmngmu

a sur]el:uve funmm. len ‘af ve. nge Y- the £inal canverguc‘ Structyre

g uthrespe:t ‘to pi:we clll Y an 1d=nuixc-xian :onver‘ence md P

an identificition function. (}lote that whe: ,p is 4 quotient s map, this \

ion is equivalent.to r»dlay's qun:nJ [l: .488])." m mé

.u.enl case, wp is Mqunntiuly oou:muous'ud Y nds the! foltowing

fvrlcnnverlenca I andf\mct_ians f'X*l and g Y""v

such;that’ gop = £ £ is sequeltn)ly c.m‘lumnus i€ and’ nnly g

is seqnent)llly cantxruvu

Eg!" o 2 uaunnggf

Lot X and 1 -be d:s)bxnt convergence:
XU Y the final umvurgenca structore wm| respec: “to the )n:lu.dcms .

The sun of more thai o' cnnvergm\:a is

stin 1y defil b he lnc)usims are sequ&:umy contiriuous. and the

sun hls ﬂm expected \mivernl property: e j- 2 e ¥
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for a convergence W and functions f: X+ W and g : Y + W,

fUg:XUY+W is-sequentially continuous if and only if f and

g are sequentially continuous. v
One U the essential conditions for a convenient category is the
existence of an exponential law. We now define function convergences

and prove the appropriate exponential law.
oK m’ Y are convergences, let F(X,Y) be the set of |

ia1ly 3 X+ Y, To'define a convergence

structure on F(X,Y) we first define the evaluation function:

Te: F(X,Y) x XY

by e(£,x) = £(x) for £ EF(X,Y), x €X. .Then £ :X_=F(X,Y)
isin SO, F(X,Y)) if and only if eo(fok; g) € S®_, ¥) for

all g € SM_, 'X)* and for all injective maps k : N_s H_.
Lemna 2.3 SMN_, F(X,Y)) is a well-defined convergence structure.
Proof: First we check condition (i). Suppose £ : N_ » F(X,Y)
is a constant function, say f(n) =t for all n €N . Then

eo(fok, g) = tog which is in SM_, Y) since t is sequentially

donﬁmmus
To chetk condition (11), assume £ € SN, F(X, ). We have to,
show eo(foh nk, g) € S(N_, Y) for an injective map h :MW_> N_.

But hok ds just ap injective map k* : m_+ N_ and |




. R |

eo(fok; g) €S, Y) for all injective maps

"k7 M +N_ by definition so foh € SN, F(X,1)).

lemma 2.4  The evaluation map, e, is sequentially continuous.

Proof: We have to show eoh € S, Y) for all
h €SO, F(X,¥) xX). Since h € S(N, F(X,¥) xx)! )
pryoh € SOV, F(X,Y)) and pryoh €SM_, X). Since pr, on'€ sm_j,F(x,Y))«_ ’
then eo(prjohok, g) €SM,, V) for all g €S, X) andall

injective maps k : N_ +K_. In particular, then
e odpry oh, pryoh) € S®,, Y). But eo(prjoh, pryoh) = eoh sol

e is sequentially continuous.

Theorem 2.5 (Exponential Law) Let X, Y, Z be convergences. 4

There is a:sequential homeomorphism

0 : F(ZxX, Y) -»}‘:(2, F(X,Y))
| 3

which assigns to each sequentiafly contiguous map h : ZEX + Y, the

“map h7 : Z+ F(X,Y) where h?z,x) = nE) . .

Proof: First we show thaf h* is sequentihlly contimuous:if and
only if‘ h is. Note that h /tcnn be written as eo(h”x1). Now if
1! is sequentially continuous then it follows by lemma 2.4 that
h'=eo(h” x1)" is sequentially continuous. : i

Now gssume h' is-Sequentiaily ‘contimuous/ We have to check ‘thet

§ B i

h“(z) € F{X,Y). The composite | /

g . //
& form 0
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hl(z) xx
X — {2} xX —> ¥

is sequentially continuous and is h”(z)

so h7(z) €F(X, Y). ‘To

show that h” is sequentially continioys, we must show that if

a €SM,, 2), then h”oa ¢ SM, F(X,Y).

S, F(X,V)), - this will be s0 if for € SM,, X) and irjective
maps ki M_ W, eo(h”oa ok, ) €SN,
eo(m”oa ok, Q)x_-, h o (a.0k, g) s b7

So/bre have: shiown that the relation

given’by h +h” dis a bijection betiween

function 0. We have ‘to|show that

continuous. -t

Let A be any convergence.. It follows from the aboye argument

that a function £ : A - F(ZxX, Y)

6 and o)

By definition of

| )
is sequentially continuous.
FGxX; V) (2, FOGN)

the two sets. Call-‘this

are sequentially

Y). By definition of, h°,

is sequentially continuous if and

only if the assqgiated £ : Ax(ZxX) *Y

By the associativity of the product and the sbove bijection, it follws that’

£ is sequantnlly continuous if and only 1f the. l:orrespund)ng

£ r A%z 4 F(X,Y] is sequentially eorltmuons.

is sequentially continuous.

Using ‘the bijection.once

again, we find- that the sequential continuity of £7° is equivalent to’

that of £~ : A+ F(Z;F(X,Y)).

Taking A =F(ZxX, Y) and £ to be the identity map, it is

continuous.

Similarly let A =.F(ZxX, Y)

routine to verify that the associated £~

and. £~

8 so

be ‘the identity map.

8 'is sequentially

Then




! P the sequential continuity of £~ implies that of £ = 6.
: To relate gonvergences to ordinary and sequential topological |
\_ ; spaces we need to define a furctor ¢ from Top, the oxdinaxy| category
of topologigal spac‘us,'tn Con' and also a functor 't : Con > Top: -
‘The- functor - & ‘assigns to a topological space Y the comergence

* ith the inderlying set Y. I I convergence structure

DS, X) = {£ W +Y | £ i$ continuous)

as described previouslyl. . If g ¥ +.¥, ‘is continuous,

a5 77 cg 1 oY, + Y, is sequentially cdptinuous.
Lg gy rich

I o The functor X, the

respan.t. to all functions in S, 0. Jf g.:vx1 +'X, is sequentially

* continvous then . tg X, +1X, is continuous. An equivalent description
of this topology is gx.ven by Dudley -which clarifies the fact that it is
defmefby cdwergent seqimces. Rewritten.in our motation, Dudley's
desctipuon sayq that U~ is open in tX if whenqver x= £(=) €U for
some £€SM,, X) then &) €U for n suff):).ently large. .The

following proposition proves the equlvzlence of the two descriptions.

Proposition 2.6 The follawingconditions aré .equivalent on U.SX:

(1) If £(=) €U, there'exi

sts my such that £(n) €U forall)n> ng
2 (2) £1(U) “is an open subset: of W_ for all. £ € SN, X). .
" o ) P i 1 s

1

[0}

| Proof: (1) =(2) If £(=) f U, then w§F
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—open. | If £(=) €U, (1) implies that there exists an_ ny such that
nefl@ for a> hy 0 by the definition.of the topology of
N

£w s open. .
@ =) If £(=) €U, then =€ £1W) soby definitionof

the tcgolngy of W, - there exists an n €®m such thﬂt

f Yoy -(hEu |n>n)u(-ﬂm:esen o

. ! 3 T
so (1] Follows imedu\taly. GARE i b Ly
, !
Proznsition 2.7 The functor

the functor t : Con +Top ‘i.e. ‘the identity on underlying sets

deternines a natural bijection between M(EX, N and the set F(X, ¢¥),
whers > X' is & cuvergéucs, ¥ a topolpical space, imd L NH(EL ¥). the
set of all contimous ‘Smctions X <. ‘ N
Proof: Let f: X+Y bea function onthe underlying sets.
“The staterents (1) £ : tX+ Y -is continubus and (2) f: X +¢¥ “is
s_z‘qmgtiauy‘hnuouvs sre bothtequitalent 'ty

(3) -g € SO, X) implies that fog : N_» Y is continuous:

Q) is equir;alem'lo (3) because £X has the final topology with respect
toall gESM,, 0@ s nqulvzlmt to (3) beciise of the

i
definition of sequunti,ll cmtn\mty and because a function h € SO,

ifad only if h: N Y is conunuwg

Therefnre‘(l) is equivalent to (2) and the proof is complete. ”
ref qi > P :

Top +Con is right adjoint to




- k . .
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&

P Corollary 2.8 ¥ = ctcY and. tX = tctX for Y a topological
: !

space and X a conyergence.

Proof: Certainly id: tcY > teY: .is continuous. Then by the

1 > adjointness property id : ¢f » ctet ‘is sequentimy' l:dntinuaus. Alsé

éy-»v"

id'z gY > eY ! is sequent:ally contlnupus 50 by ﬂd]olntness u:l H

is corptmuoqs and since e’ is a functm-, clcY > cY is seqnent uy

' continuous. “Hence' cf

B ] i
Similarly 3x = thX. &

5 L Remarki A standkrd cata.gorll:ll style ax'gumant tells us that smco
¢ hasa left adj oint it preaerves initial tcpnlngms “For exanple, if
‘T . 1 X. and Y:" are topélogical spaces ¢(X XY) = cXxeY. Also since  t.

has a right adjoint it preserves final topologies. Forieximple if X .
is a convergence and R is an jequivalence relation on its undériying .

set, then | t(/R) = (BO/R, . o o C
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In this chapter we discuss the convenient category of sequential
spaces. We show that it satisfies Steenrod's definition of convenience
and desonstrate how it is related to CW-complexes and kspaces. We

close- nt’h 8, hruf discussion; of H-usdorfm-_-a'in this megory.

spu:u were, ed by. c. Bhkhaff (3] and- studied by
S+ P« Pranklin |[18, 19] -aid T. K. Bochme [4] (o calls them s-spaces).

our ap])roach I?' dmeum from the sbove mzntioned papers i

one is. that vle usa ‘the, ruslllts we )\av prwed on' conv-r,:ncas o bbtam

th umlﬂr xasult: for sequentlll spsces Th'

s method was. suggested
by nnalcgy with cmk's paper ‘on k- spaces [12]. ‘The “other difference is -
that W usé inttial and Flaal topoiogics to. give's more :unprehms).ve
coverage of the constructions in.the Eategory.

R-callung the fmctors t and € frn- the previous sectxun, we say
that 3 topological splce X is a sequential space (in future reférred to
as ans.spae.) if X'= teX. 3 5 P
. . e definition can also be smei using a functor s : Fop +.Top:.

‘e functor s issxp\s toa tnpolupcal space X, the space with the|

same imdexTying- Set ind the final wpuog with respect to all l:ontlnuous ¥

functions - N+ x, It usipls to edch cortinuous function © X +.Y thn

continuousfuiction 'sX » sY. with the same:action on thé underlying sets.

It is clear that' 5. and ! the ‘Same functor, so we use whichever

" s’ more convenient fn proofs. W denoge the full sitleatégory- oF S-spates
e o = i el T Py 7 i
P R AT s s

two, ays.' o




N
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If a space X has the'initial topology with Tespect to a family'bf
functions (f, i X+ X }a €A then X can b made into an initial

(‘fl) are’ then

s-space by izing it as sX.  The,
continuous, ind sX has the expecned uniyersal “property for 's-spades, *

To chéck chu we' need a preummzy 1anms

_;space.

LIF Y Cdsan S space anl X .is'any :upoxugxcal

Space, a fnction ¥ i Y4 'X is contimous if and only £ £ Y w3 |

|

4s continuous. K
g a ] . |
Dy ey corellary 2.8 we.  Jaow tm z(mx) = t[c)() and.

Proo

the result fomus
(2) see pmaf of corollary 2.8. . % “

® (3) £ fi¥o> X is cnnununus theu f 214 Y-»sX is

continuous & £/ Y »'s¥ is cantl'nuous since Y is ans-space. Given

)~ £ ¥+ X is' continuous

EoY o sX 38 cmTunuous. Then using part
since it is. tne cmnpasm idof.

5 . e
R
Propgsltln f 2 (Umvarsal prnperty of initial s- spaces): If.
Y and (X }a €A ‘are E-spaces and "X “hds ‘the standard Jmnal :npolégy

l

with Tespect. to (£, 1 X + X_Ja € A--then  f£':'Y: 5K, 1i5 continuus if
and only'if £/of is continuous for anwe A




universal. property of initial topologies.

_that for initial spaces (see lemma

‘ subsps:e

* which ve need in later proofs.

Proof: The condiéiom that f£: Y+sX and £:Y+ X are \

lcontimous are equivalent by lemma 3.1 and thedesult follows from the

Initial s-spices satisfy a transitive' lav analogous to

1)% The prosfs afe.the. sae.

B mle 1 IE A isa s’uhse/t £ an's spice’ X - then- the usual

A" dan -be nade into ‘an 5- subspace by retopexogxnng n as

sA. sh s an s-spice (hy 1emnm 31y and.sA »X s cont;nuaus
o ¢

Example 2: The ptod\lct of two S-f§ .!ces »X XZ is made ifite an

s-Space, denoted by X; XX,, by applying the function’ 5 to'the usual
product space. Note that this topology makes the.projections cont inuous
and that: the s-product has the usuzl .universal property of products.,

He‘nce thes s-preduct is the product of 5- spaces in t'he cntegorical Sense.

‘Example3: If X, Y,B are s-9paces, and-there ate maps ql Xon:

and +B then(he set XNY {(x.y)exx qu(x) ry)) can

(be s tupolapzed" as an s-subspzce of Xx_ Y. This space, ‘d foted
b3 nsv will be called thd s Fibred-product_space of X. and 'Y over- B.

It is easily verified that, X 'y, with the corresponding projec tions

to % and Y, i5the pullback of q ‘and T in the categoiy of .s-spices.

The " Following propositions ‘state’ properties-of the pfoduct, some of




s-product is the produtt for the catégory nf

- onp1ement ‘o f -
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Proposition 3.3 If X;.Y‘and Z ares-spaces and {+} isa .
singletonuspace (and hence an's-space) then the following functions
are natural hmnmemums.

(@) X Y~Yx7) (yy)*(y.X),xsx,YGV‘

L) X g ) x )

.arl\dbx >d)ox X, x»(' x), xc

O (X %, 0w = e (g 2 (G058 > a2, ex,
yGV,z"G‘L o ST &

" Proofi  These results foilnw. edsily fron the tace mc the'

-spaces

- Propsition 3:4 If X isa convergence then t(X xc R
Box M= EX K

Proof: - -First. we show that the idgntity maps t(X-x cB ) '+ i
Hox N EX XN are contimious. We Rhoy X x ¢ N'»cttx &N, iﬁ

contijnuovs s0 t(x * cﬁ ) > t(eEX A €M) S te (HK x N ) = tXox N (s

contimuous.— tX xs N+ tX x N, is continuous’by the universal: .’

property of ‘products,

‘Then we show Ehat:the identity. X x'N > £(Xx ‘¢ NJ is continuous. -

Supp.#se A s clused in :(x x ¢ N and that tx,n) “belongs to.the

e funcmn £ SxxcN] givenby  £(n) = (%)

'buongs o SM, X x¢ ",,) since .pr) G £ 15 constant, ‘hence in i

EM)Y. Terefore £

Sm,, X) e prpyof= IN, hence'u'in Sof.

is Elosed'im N, by definition of t. Since (o £ K, ngET (A)

and therefore, since N_ “is regular, m Hes-in n opers ne;ghhnurhued u




such-that TA £18) =4, S0  £@ A1 A < x ) (A= feolet’

denote the projection of - (X x U) N onto tX. We shyll sée that

B- is closed in tX.

- Let g € SM_,X). Then' (g

!

. Since. xEB we _have | (xn)e(xa)xuc(txxm)-A k4

»ﬁ = Gap Loy
:

|7 Thexsfore | geX W'Y k. 15 open in EX-XH_: and'so. A.15 closed.

there, b T R :

Corollary 3.5~ If X 4 an s -space then X G EX W

;

Proof: x'x N_ = feXx N t[cX Xt “teX WM <

."

. Now. we éonsider final’ spaces

the’ remumng stmdaﬁv\Pperatlons M o 1R T 1 1 A

‘has* the: Fimal mpoxogy with respm tora, .

. ,’piop_o’ tion 3.6 . If X
fanily of Furictions (£, : X+ )(}aa wherd"the (X, Jier” axe's! par_es




. then X is an sspaces . . 25 : 5

Picofi We have to show that the identity i : X + sX is

B continuous (the other direction was proved in lemma 3.1). The'

s * o fmctions' £ i+ X are continyous, hence so_are the finctions

LAof) té o SX Memm5.1). The xesult chen Follaws by the - o

op! t!y,ef final topolopes

m&vex g
Kn‘ly ithis X ‘his ‘the expected univarul prapertyf T f) al

tupo]ogus 1.n the cstegcry of s

oy “€a ‘a1 :opoxngles (leml 1. 3) -lso holds * for fxrml 5 topumies.
A

1 o As;ym, 1€ X ds an s-space and.p i X +Y isian identification

; 4 sap then Y * is an’s- sp-ce. . D o o
y i Bample 2: 1€ K| 2€ A} iss set of disjoint 3-spaces then
X=- Ux isan.sispace. 0 T . .
S ; ﬂle 5 1f x and Y ms-spaces and A is‘s‘closed s- sul;sp.ce 3

E of X we have " 5 S is H




AN

. continuous. It isa stmdax-d result [see 20, p.

'eﬁ is continuuus.

. ’ B S o¥ SE A
Examle 4: 1 xlg x2 gxx <. i3 expunding sequence of
: s-splces amd X = U X, then X is an3-space. g

_e_q’ We define che fummm-s'pau' N (K, \‘n By W) = M f)-

exponéntial Taw. We nnd o' pnl minary Yermas.

If £ 3N Tawis 'cm\unuum then me myping

ef cin be fal:toTed as -fqllws: |

v g
M, ) XN

f:,1/' : A

LM, ) X

MO, n»u(._,r) i

£2(g) = gof for ;su(x Yy, " Sincs’ £ ;slammnus. f‘xl.xs"

4] unt ¥ is

miinmm since N_  is a locally compict .reghlar space. -Therefore

"I X, ¥ axe sspac men

* Now 166 us, invBstigite function spices and the exponential law in

M_(X,¥) x N Y gwen by efyg,-z) -g(f(z)) is® nso connnvuus
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Flex

SX) can pe identified as sets. First we show'that the identity
M (X, Y) » F(cX, eY) is sequentially continuous. We have to show that
for all £€ é(n_. M (X, 1)), £ESM, (K, cN). Let g:E_~X
be continuous (so g € SM_, ¢X)) and h :M_ +N_ be an injective map.

* Consider the commutative diagram: . 4

> W, x X g ¥

lf!l
3 "
TR MK

R NERCTY

since f € s(m_:, %Mc(x,v)), (.f ohj x1 'is continuous. eo(lxg) is
canti;uous by the i)re\iious lemma. Therefore eo(fohxgla =
o(fof, @) ds-contimuous and £ € S(N; F(eX, -eV)) .
Now'we show “F(eX, cf) » cMi(G,Y). is séquehtially continuous.
ClLet £ESMN, F(X, en)). j’hem the composite eo (f x 1) : R x cX »
F(eX, @)}g +'cY 45 sequentially continuous. Therefore B xX » ¥
gl ‘continuous,: for t{cN_x cX) = M_x*X (proposition 3.4) and Y is

an s-space. It follows'from the &xponential law in Top that

1o

N, > M0V ,is continuous so +f € SOV, X,Y)) and the result

+ follows

LY = 'g-'(gx o).

We now see that M (X,Y) =

Theorem.3.9  (Exponential law) If X, Y, Z are S-spaces, then

there is a homeomorphism .




Bs : Ms(x xs Y, z) + Ms(¥, MS(Y, 7)) 5 "
which assigns to each continuous function F : X x_ ¥ »2 an
£7: X M (Y, 2) such that £(x,y) = £°() ().

Proof: We have 25
MS(X,Pfs(Y;Z)) = teM (GM(YZ))

LR (cX,cM (Y, 2))

. = ER (eX, ereM_(¥,2))

§ = tF(cX,F(cY,c2)) . }
using lemma 3.8. ; > S

M (X X Y,2)

Also M (X x, Y,2)

- ;_F(g&g(x xY) c2)

tF(cX xcY,cZ)

By the cxponential law for convergenices (Theorem 2.5). we have a
sequential homeomorphism ,

§ 3 FleX xgY,.¢2) + F(eXs F(cY,e0))

where @ takés a sequentfally Gontinuous function £': <X x&Y +cZ -
) S q a - - -
to a function " £7 : cX +.F(cY,c2) where f£(x,y) = £7(x)(y) as, ~

required, So we set o, =t0 and the proof is complete.

The éxponential law is:the key property amongst Steenrod's test

ms; for once it is satisfied.three of the four others follow

|

i propositior
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+

as corollaries (for (1) see corollary 3.15 belok, (3) see corollary i .
5,31 balowiand (4) see corollary 3.12 below). '

| .
Let X be a final s-space with Tespect to
(¢,)a€A" from a family of i.lspa‘ces‘

Proposition 3.10
maps ¥, Ja€A which satisfies
the conditiqn that for each x € X_ there exists an ,x” '€ X

such-
that £,(x7) =

- for some choice ‘of ag A " Then for any s-space Y .
Y. has, the' final mpnlagy with rcspect to the, Finctions

(f *x1: X xs\(+xxsv).

Xx

Proof: The proof is formally the same as Lemma 1.1. We notice
that the locally compact Hausdotff condition is no longer necessary
omy

“Corollary 3.11 If p: X+ A and q: Y+ B are identification
maps then pXxg.-: X % Y > A HeB is ‘again an identification map.

Proof: We can factor pxq as ‘(I;xq)o(pxly), thus pxq is
the composite of two identifications. The result follows from lemma 1.2.

Corollary,3.12 'If X|is the disjoint union of a family of-

spaces (ans €A ‘then X x_ Y is homeomorphicto () (X, X

).
Proof: By the proposition X x_ Y [has-the final topology with
respect to the functions. (i, x1 : xa ¥ Y > X XX where the ij Y, R
are ‘the inclusions . X, + X. U(X %

and’ X x Y have the same
underlymg set and the same mpnlggy, so the result- follows. |
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Proposition 3.13 Let Y be an initial s-space with respect
tomaps (£, :Y Y Ja€A. ‘Then for any s-space X, M;(X,Y] has
the initial topology with respect to the induced maps =

8 =
)+ M (Y))a€A where £,(N) = £ ok, h €M (X,Y).

. Proof: - We check the universal property. Let W be any

s:space then g i W+ M (X,Y) 1is continuous if and only if the assoc:

W x X > Y is continuous. Since -Y_ is an initial -

jated . g*
“s-space, the cotinuity of g” is equivalent“to the contipuity of

Wx_ XY forall a€A  Applying the exponential law

£08" : : : .
o again, f£,0g" is continuous if and only if the Corresponding function
(£, 087" W M_(X.Y)) is continuous. It is easily checked that
. Erlc f
“ . R
- (f,087)" = £ 0g hence thé universal property is satisfied and sthe
[ :
result follows.
) Corollary 3.14 If Y is an s-subspace of Z, then M_(X,Y)
| is an s-subspace of M (X,2). . ) }
Proof: The map induced by.the inclusion is just the irclusion
again. The result follows immediately from the proposition.
Corollary 3.15 If X, Y, Z are s-spaces then there is a e
2 homeomorphism i ¢
& T MLOGY x Z) > MU(X,Y) 25 M (Y,2) 4 5 L

which takes £ € M_(X,Y x, 2) to (prjof, pr,of) €M (L,Y) 4 M (X2):




1

to that of ‘ha® and-the.Tesult follows.

_30-
Z) has the initial

_Proof: By the proposition M (X,Y x,

topology with respect to. pry : M (XY x, 2) +M_(X,Y) and 4. B

pr, t MJ(X,Y % 2) + M_(X,2). The product M_(X,Y) x_ M_(X,2) has
K
the initial topology with respect to the projections pry(i = 1,2)%

It is easy to check that pr; o¢ = pr; 'and pryo ¢ %= pr; so

¢~and -¢7' are continugus and the. résult follows. .
‘Proposition 3.46 _If X.is-a fingl s-space With respeit to
maps {f, : X » X}aeh_theri for any s space Y, "M, (X,¥) " has the .. -

. 4nitial topology with respect to-the induced maps:

. ) . * X
1€, + M OLY) M (X, ,Y))a€N Where £ () =hof, for all hi€ Mi(X,

Proof: To chieck the universal property lef W' be aryl s-space
and g W +M(X,Y) * gipimeEAon, « He want te show. g 48 éontinuous if
and only, 1f b < £ og : W M(X,Y) is continuous For all a G A,
50 we apply the exponential 1aw to each function and get the following

commutative diagram:, .

. g
Wox, X——> Y

] AT
+ . a

o Wox_ X - t

. s Xa v

A i

Now by proposition 3:10 W x, X has the final topology with respect

to the functions: {1xf,}acA ¥o the continuity of g” is equivalent
a0 S X A

o
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. Corollary 3.17 1f X JX," is the disjoint topological sui.
of two s-spaces then for any s-space Y, M (X, U X,, ). is hoteo-
_ morphic to MU (X),Y) % M(X,,Y).  The tesult also holds for a family

X, )a€A of ‘_q_—sj;a:es.

' Camuag 3.18 If P:X*B isah menuﬁcauon and .Y is
an ssspace’ then B M BY) M KY) - ds éssentially an inclusion

i My (a Y) is 1

‘to the corr ndi g, subspace in!

RN .us(x,v)L i et
2, . T g !
We_have shown that our category Seq satisfies several bzstlc

Boers U .
requirenents for convenience. Now let us consider whether there are

enough useful spaces in Seq for it to 'beof practical value.

Proposition 3.19 If X is a.first countable space (e.g. any
metrizable space or any differentiable manifold) then- X -is an

s-space.

"Proof: Wé haye only xo show that’ id : X  sX is-contifiuous. '

Since X is first countable “id  is continuous if and only if it is

sequentially continuous [see 30,p.131]: To check séquential continuity

Tetall that it is sufficient to-check cid : cX »csX is sequentially,

continuous. Bt gX

ctcX - by corollary 2.8 so “id ‘is séquentially

continuous and the result follows. ' -

Proposition 3.20 - If' K is a CW-compléx them K is an s-space.

N




" uncourifable urdmal [see 14, ex.5, p.66].

n

-4 ‘Qﬂ

Proof: K has.the final topology with respect to the union of
the expanding sequence of its skeletons, so we only have to show that the

n-skeletons; K", are s-spaces for all n. We do this inductively.

is  discrete ‘space hence first countable and .therefore an s-space.

assune. KXY s s»spuce = [UE ] Ut
: ©

GF 5-spaces and so X

UE “is:a sum

is an-adjunceion’ of 5= splces and hencz an

space

,(see pmposxtmn. 6-and sxaiples feuowmg )l

" Next we see the relluons}np af m to the category £ k-spaces. |

R’rogosi:icn 3.21, (hused on propus:uon 1.5 in Vogt [36])

X is an's-space, then X is a'k-space. ° -

Proof: Let’ UG X be a subset such that "]('u) is open for
all maps £:C+X where C. is compact Heusdnrff. Theén in particular:

£7W) s 'open for all contintous fun\ctmns £ B X Hence U

is open hox and therefore - X isa kespace. p B
On the other hand, not all k-synces, or.even all compact
Hnusdorff spaces, are s-spaces. S. P. Franklin [us] gives the example

2
of the ordinal syace 9+1=0 {0} where Q i the first

+1 is compact [
since it has a Complet! ordﬂ»ml;msy/fseg 34,

that it is a kispace. The set {a} is open in s

'.69]. Tt follows

1) since’ for

any continuois function £ :N_+a+ 1, £(n) € la) for all n'€®,

(see proposition.2.6). However (@) is not open in'. '+ 1 since its -
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complement is open, 50 0+ 1 is not an s-space. Seq'is therefore

a proper subcategory of the category of k-spaces. .
Hausdorffness in Seq: It is standard that, in the context of

the )s\;lal _éa:aggry of topological spaces, a space <X fis Hausdor£f if

| and only. i£ the diagonal is. closed in X'x ¥ [ses. for .x.’mpxe, 9, p.5s).

Pox.a sepmmnn axion in Seq wé propose a weakened version of this

' -ccmditlon i the dingonll is, clnsed 1“ ‘)( x5 Xt Thls tu’ms out 'to -

o he equiv.ulent to thn prapany :hn convergent sequancus 1n X ﬁuvl

unique limits so i

aces with this property will be :lllad unique’

0 1amit sp We'will now show the ‘equivalence of the two properties and

demonstrate some basic facts about unique limit spaces. : il

Definition: For a topological space X, a subsqt F of X ‘is

sequentially closed if and only if mo sequence in F converges to a

. ‘ “Point mnot in F. i % S

Lemma 3.22 ‘A subset F of. X is sequentially closed if and

only if# F- is closed in sX.

Proof: Assume ‘F is closed:insX. Let {x) be a'sequence in

F with limit x £ F. Then there is a continuous function h i B+ X i
.such’that h(n) = X, forall mEW, h(=) = x. Also = ¢ Pe)
so n iR . is open inow, hence .F _is not closed in. sX.".By this

cont.rld)cticm e see’ that x€F and F is sequentiaily closed. ', i

Assume P is sequent1-ny closéd and suppose  F is mot ‘elosed

3 b ’
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in' sX.' Then h'l(l-‘] is not closed in N_' for some continuous

function h: N +X. il

.o WIE) s an infinite sibset of M
_not containing =. .Therefore F containg a sequence converging to
apoint not in F. ‘This is a.contradiction so F mist b closed An
sX. B g 3 v »

Proposition 3.23 ~ The following -are equivaléntifor

" topological

space Xz

- i) convergent sequences in ‘X *havé unigue limits,
i1) by is a closed subset of - ¥ X
Y2 Proof: 1) =>ii) Assume that if lim's = s and lims = s°

133 5n 3% °n

then s =s”. If (xn),= ((s“.sn)} is a ‘sequence in- & then its

limit (s,5) 3 in 8y so &y is sequentially closed in- X x X.

By lemma 3.22 A is ¢losed in s(X x X) %X x  X.

"§1) =>1i) Assume 4, is.closedin X'x_ X. ‘By lemma 3.22 ' &
: % s X

s ‘then

is sequentially closed ‘in X x X If ,l‘i‘xg TS and, 'le S

{(s,,5,)} s & sequence in "y 'so its limit . (s,s7), is i &y Hence

s=s

¢ and X has upiqué sequential limits.

Proposition 3.24' Let' X ‘have the initial topology with respect
to a family of functions {f,f X » X }aGA ‘where the {X;} "are unique
limit spaces and the 'fallnwing\:nridition is satisfied: if ‘%, X € X “

and £.() = £,(x7) forall 4 €A then 'x='x". Then X is a unique

limit space. e J St P, e 8 5
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is closed in (X x| U x V). But (X x )UK x V) is
. closed fn (X x, X)UAY X, V) U (X % V) (¥ % X) vhich g5

homeonorphic to (X UY) x| (XU/¥) and the result follows.

. o e oy
Proposition 3.27 If. Y is a unique limit space and X is
an s-space, M (X,Y) is a unique limit space. - "

Suppose (£} -is.a of

00f:

X = £(x) =

oty 'Bm

X Y. converging pointwise to £ and -£771
| £200.for.all x €X. Then since Y ‘is a'unique limit space and

(fn(zg)) is-aysequence in Y, . f(x) = £7(x) for all x € X. Hence

© £ £7° and, the result follows.
! v . -




a4 . B
: . |
Proof: Suppose im(x) = x and -;.m(x") = x”, then

lin £,0x) = £,(x) and lin £05) = £,(x) for all s € A

Since the (X)) are unique limit spaces £,(x) = £,(x7) so x

X is 2 ynique limit, space.’
We do mot have a result of the same"generality as pmposﬂ.ion 3.24
"for final topologies, or even for identification' spaces. This is
pexhips nmy to be expéited as fnYhe category of all spaces the ‘
5 .. o condgitions for the quotient of Haukdorfe spaces 5 be: Hausdoxff Jee |
rather untidy [see 14, 7.140).. We do, Wouever, hive the £o11owing

useful property.

Proposition 3.25 If R. is an'equivalence relation on 4 unique

] .
limit space X, and R is'closed as a subset of X x X, then X/R

is a unique limit Space. .

Proof: If p : X+ X/R denotes the quotient map then

Pxp: XXX (X/R) X, (X/R) is a quotient map. (corollary 3.11).
. S 'Then 'A X/H .is closed in ¥/R x_ X/R because @xp Y WR) = R

1M closed and p X p is an identification map.

There is also a result for topological sums.

Proposition 3.26 If X and Y are disjoint unique limit spaces,
P

., .then thefr ropalogical sum X is a unique linit space.

Proo:

: The diagonal & y ,y" is the same set as a Xl)A y which
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+ Some, clused subspace A of /X, ' Sucha part:ml map is called a_paré map

mpology in which ‘C is closed in "Y' 'if and only if C 3 Y¥or. ¢ is

-47-.
7 . |

We will now establiéh the existtnce of a fibied exponential law

in the category of s-spaces over a fixed unique limit .space, using a

method analogous to. that used for k-spaces in Booth and Brown [8].

“tial space topology on the fJbred mappmg space oz and prove’a

fibred exponencu 1aw fox s-splc B

IA clused domai partial map From X to v Jisa map A > Y for

The sek: P(X,Y) of ‘a11 pare mps X + Y can bé giver a coupxct-upen.

tcpulogy. i.e. the tupolngy given by a subbasis of sets of the form

. W(K,U) = (f € R(X,Y) | £(X) gu)

: .
for all com‘pact subsets KC X and open subsets U S Y -(where £(K)

means K (\ domaln £). . “

To define the carrespcnd)ng sequentul space,Adencted P (X, ,"

use- the, space 1"’.' which 15 the set YU {w). (vhere W & Y) ‘with the

- closed ini Y. Then" P (X,¥)" is P(X,Y) . topslogizéd in such a, way um‘ ‘

we havé 'a homeomorphism A : M. (x ¥ +p, 500 ¥) where A(f) f gt

for EEM X, . A -

neo}em 4.1 (Exponential:law. for Parc Maps). .Let X, Y, Z be®
s-spaces; then ‘there .is a homeomorphism : y

R T e




~ A G ; oAb

‘P(Xx v, Z;»M(X P (Y;2) )

which assigns to each parc-map £ : X % Y +Z a contifiuous function

.- £ X Ps(Y,Z) such n;a: £(x,):= f‘(x’)(y)".

T prbofs - Fivet ve_ chéck that "0’ is’a well de ined bijetuun 7 S

), tha continnity of f ) 1s/equ valent to thL

i s
For £ O oY,

connnu::y of A7 (f) x x Y sz by dat'nu ion of the topclogy on "

LY, z). Ly xs cam:xnuous 1f and only if ts. exponentiﬂ

5 correspmaenc, g XM Y i connnuous ~“—~Then g is cnnt)nunus' t, E

1 ‘and only- i

A¢g - is Egnhinucus and B2 ¢ ug '15- easify .se_en to b?

8(f) so we can. conclude that £ s -continuous if and only if '0(f)

is tontintions and ‘that- 0 -is well-déﬁ ed. ey T B e

To seé that” 0 and. 671 are tontinuous-ler £ - a fungtion from o -

an arhnrary 5 space A to P (x L p Z). Then by defmxtmn of the

aif : copnlugy on P (X X ;Y 2) £ Ta: eonbiiious. 5 and only ).f 5 B Gy

Lot i a M (X% Y, s )) is :ontmucus

that ‘the c_on:;nuity_ of " oz‘ s equlvalent to' the connmm:y of

f T E A R X)X v”-» sz'“"'wheze f‘ s the expnnenf.)al corr:spn‘ndent ¥y

of ¥ f. \Usmg the _exponential lsw once again f’\ is :ont pucus €7 N

and. only if £ A xoX M Orf 2

1 desinitioniof P (¥,2) and Théoren ‘g

& “ f" is équ:\valent to that'of. £ L A+ M (x/ X (! z

Now et A =P (X % y 2) and £ibe mudencicy " ‘Since- . f i
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# continucus, £ is continuous. But £~ = 6 so 6. is continuous.

Similarly, let A ~gf (X, P((Y,2)) and let £~ be the identity.

o7} is contimuous. . .

We now consider|a ¢ category we will call Seq; where B is some
fixed s-space. * The objects of this :atégorx are s-spaces over B, i.e.

continuous functions’ X+B,q:Y > where X, Y are s-spaces.
PiE b 57

The morphisms P » § are continuous functiops h :.X»Y where goh =

The product in. this category is the s-fibred product projection
Pl 4 : X MY > B which takcs a piir (x,y) € XFT Y to e
(see ‘example 3 following propas_man 3.2).

The exponential law we Will prove for Seqy ifvolves ‘two mapping
spaces: First we have M_(p,q) = sM_(p,q), where M (p,q) is the
set of all maps p > q with the compact-open topology. We also “have
» fibred mapping space . (12), " defined as follows: given maps’

\q:Y—*B and T :Z+B then for each bEB, let Yb-,"(b),

Zb= (b)‘ Then = (YZ) 15 the set UM( ). Let .

(a) + (92) + B be defined by (qr) (f) *b for all £€ (Y2,

Assume that ' B is T so each ﬁbre, Yb' is t)osed . Then ‘there is

afunction §: (¥2) + P(1,2) which sends a map Y, +Z, to'the parc
wap Y 2 ‘wbh the same donath and values. Now e define the
[

modiffed compact-open topology on (YZ) as the initial topology with

respect to the twd fimctions i and (qr). Finally we define

Oz) = 502). - ¥ .

a)

N




-50-

To use our result on parc naps we need X 1Y to be closed
subspace of X x_ Y. We therefore jassune that B if a unique limit

space (hence (pnq)'lnE =X MY |is closed in X x Y for all

DX a, q: Y B). \
Now we can, prove an expm.mm la for. Seqy end itlcan conclude

that it is a cartesian closed category. -

Theorem 4.2  (Fibred Exponential Law). Let X, Y, Z be s-spaces,

B a unique limit space and p : X —‘»,s, q:Y+Bir:zZ continuous

functions. Then there is a homeomoxphism

¢ M (P Mg q 1) M, (ar)
which assigns to each map £ :p M1 q+ 1 over B amap £ :p>+ (ar)
over B such that. £(x,) = £°(x) (). - &

is well-defined.

Proof: The main part of the proof is to show, b
e % .
B

First dssune £ : X M Y+ 2 is continuous over We have ta check
that £°: X > (Y2)_ is a function over B. £°(x) is the map

yor E(x,y). Now y’G\%m since y.6 4 () # a (p(0) and

-f:(x,y),c %,y since Tof-pm,a %o x"(p(x))v =l g A =

£(ty). , Therefore £7(x) is @ function Yoy > 2,0 .n'a\?ence p

(ar) of” =p so f£° isa function over B.

N
Now we show that £° : X[+ (YZ) is continuous and hence conclude

that zt same function X + (¥2) ﬁ connmraus by lemma 3.1. (YZ) has.

the initial topqlcgy with respect to i and (qra so we have to,show




-s1s

(ar) of” and iof are continuous. (qr) of'= p and hence is
continuous. 1io0f” = 8(F) where f is the partial map
X x Y +2 corresponding to £ and "8 is the exponential function
for_parc maps (Theorem 4.1). Hence iof” is continuous (note that
ve need the fact that X Fg ¥ is.closed in X x ¥). ° ’ H

Assure £7 ¢ X' (¥2), |i3.a map over B. Then the cortesponding. .
function f : )('r\.s Yoz takes  (x,y)0) f‘(x)\‘(y), where“‘f‘(xi(ﬂ [}
2 6/ o= P M q-and £ is a function over B. ?Ie‘v‘mr.:ice
that iof”: X P (¥,2) is continuous and so 0t o) isa
continucus parc mag. X x_ ¥ + Z. But £=6l(i0f) " as functions, so
f is continuous “\ ’ *

That ¢ and ¢ are continuous follows by an‘argument similar
to the one for'parc maps. Let ", e any. s-space. Then a funttion
i K M XY, 2) is continuous if and onl.y'if AP (X x]Y, )
is continuous, Since X M Y. isflosed in X x Y. By the exponential law

for parc maps and the associativity of the product, tfe continuity of £

equivalent to that of its exponential correspondent
£ 1 (Ax X Y, > 2. Using the exporiential law again, £ gs e
continious £ and only 1f £ A *g X+ P (¥,Z) is continuous. Using’
the deginition of the topology on o7y we soe that the continuity
of £~ is equivalent to the continuity of iof”: AQS X2 omg A
final applicatitn of the exponential law in Seq yields the Tesult that

i0f is continuous if and only if h = (io£7)* : A+ M (X,(¥2)))
is continuous. It is easily verified that h(A)€ M_(p, (ar)) " and so
’ - .




_s2-
we can Tegard h as a mp A + M (p, (ar))-

Now let (A =M (p N, q, 1) The continuity of the  LmMERty
inplies the continuity of h. It can easily be checked that h = 4.
Similarly, letting ‘A = M,(p, (qr)), we have proved the continuity of
it ' ’ ' :

Remarks:

1. If B is'a single point, the fibred exponehtial law reduces to the
usval exponential Taw, since (XMl Y becomes X x Y and (YZ), ;

becones  M_(Y,2). ’ i
2. 1f X=B and p =1 then Theorem 4.2 gives.a bijeitive =
correspondence between maps . 1y + (qr) and 1riq+T or'in other words,
between sectionsto (4r) andmaps q+ r. This result has various
applications in algebraic topology” (see for example' [7] . ~

We can use the fibred exponential law to obtain a- result on

final topologies similar to proposition 3.13, :

Proposition 4.3 let B be a unique limit space and also a final
5-space with respect to a family of maps {p,
is any s-space and £ :

Xa +B}a€A which satisfies

the condition of proposition 3.10. If ¥ Y8

is amap then Y has the final topology with respect to the induced
S :

projections pg i X, hs Y >

Proof: We have to show that given-an s-space W, and a function




\ 3
g *'Y+W, g is continuous if h = gopy is continuous.
: : : i
Using thése functions and the easily verified fact that Y is

homeonorphic to - B ns'v (by & map "y} (£(v),y)) we can form the

following commutative diagram for each a €

X .Y h” = (£0_ph)
alls 's Pa
ol \

BX W

Noting that we have the projection map B x W + B, ' we see that
this last diagranm is a diagram of maps over ‘B so we can use Vhe fibred
i " .

= c exponential law to cbtain the following diagran: e

Now B has-the finil topology with Tespect to the (pl) and the

-argument of proposition 3.13 assures us that g~ .is well-defined so the

continuity of h” implies that of g and hence of g and the reshlt

follows. ' .

Corotlary-4.4 If p » X+ B is an identification map and - -

: A+ B is amap then the induced projection Pei X M A>A is

an identification map.
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R i
Proof: The result follows immediately from the proposition.

Gorollary 4.5 If p:X > B is an identification nap and
A< then p|pl®) : p(A) 4 is en identification map.

proof: | This follows from the fict that p l(A) is homeonorphid

to XM A since 'hm‘. satisfy the same uniyersal property. of -

pulibacks.

n_a
s
A
This corollary arises, for example, in the theory of principal

bundles.
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Working in the category of all topological spaces, we can define
>
a convergent sequence-open topology on the set of continuous functions

Y+2Z s gllws: -

This topology has a subbasis cOvsisting of sets

W(£,0) = .Yozlhof(ﬂ)c U} for £::M_+Y' continuous ind

"U-an open subset of % el

We denote this function space by. M_(1,2). S

This funcunn spice topology has been studied in. [Zl]where it s
[

(4) " it is proper, f.e., if £ : Xx Y »2 is continuous then the .

* pointed out :m- i

|
associated £%: X +M_(Y,2) is contirvous (proposition 2), but

() it is not admissible, i.e., if g7 :X + N (¥,2) is continuous
then it does-not necessarily follow that the associated function

§: XxY 2 is continuous (proposition 3)s- |

)fw‘ similar results hold for. the compact-open topology, and it
" is shown in [10] that {€ X, Y, Z are Hausdorff and the product -
topology on- X x Y is replaced by another closely related topology,
then proper and admissible conditions 'hold." In this chapter we
lst:blish-. analogous results for the convergent s:quem-.:»ape‘n topoldgy.
We also show that if X and Y ‘aré sequential spaces then ournew
pmduct, XFY, colncides with the 5- product X x Y. This leads to
an ‘alternati iption of the s-functi

space and an-altemative
—proof of the exponential law for s-spaces.

: -




'
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Our new product topology in Top 35 similar to R. Brown's

x -~ , P
** in his paper on product topologies [11]. We define X < Y

to hgve the final topology witherespect to all functions
Iyx £1Xox il__—» Xx Y ; where f£:N_ Y iscontinuous, and all

inclusions {x).x Y+ X'x Y:for all x€X.

[+ Lema 5. ' The evaluation map, ‘¢, iS continuousas a fnction

Mcs X,Y) % X+ Y.

Proof: By the universal property of thé final ‘topology on
M. (X,Y) % X, we'have to show thét {£} X + Y is continuous for
“all fe Mc's(x;n‘ This is immediate since e(f,x) = f(x) and £ is

continuous.

w: » 5 Lo

We also have to show'that e :'M_ (X,Y) xN_ Y is “continuous

£
for * £:M X contifuous. Let U be an open subset of Y and

e . ! X e,
let (gm) €e l(U). Then, since M_ is Tegular, there exists an

open neighbourhood Y of n @ N_ such that V& £ 1g ). vow

(£/V)®) =h(N)) - for the correct choite of 'h as.follws:

Case 1: V = (o} U {vl,\?z,v S35 h(a) = £0v), h(=) E

Case Z: V= {a}U {v),V5s

=£0vy) foﬁ i<,
h(3) ='£(=) for i>m.
: ) -
Case '3: ¥ = s - ees Vods ¥y £ o5 hQ) = £0vy) for i<
h(i) = £(v,) for iz m ’ : ="




h is continuous in

N (X.Y). Hence (g,m) € W(h,V) x V whichis openin M _(X,Y) xR

so ef' is continuos

" Proposition5.2 A functiof

and only if the corresponding function £°': X + L

cotinuous (whers

Prnuf. S
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each case so

us.

£(xy) = £(x
e

W(h,U) is a subbasic open set for

[

).()-

e

" =
£: X XY+ Z7is continuous if

(¥,2). is

; .
#X> M (Y,2) s continuous.then . 1

XX Y——:UR'(Y,Z)_” g $i cont

Fxl

tinwous and by the

1 emll\ri

XxY T (x ¥) X Y5 7 is cdtinuos. But this g composite

is the required function £ 50

Let W(g,l) bea subbasic open set for M_(Y,

"0 is open

in X. If k

contimutus and therefore k™ L(U)

Let x.€ (f)

I(N)A'_Then

. £ is continuous.

= f1xg): X xH,

2). We.prove

+ Z then k is

is open in . X x K_

Ix}mgC K'l(u)

compact, theru exists an Open set ve X such that

Since M_ s

x €V and’

VxmM ck” 1) (a standaxdresult on compact spaces, see [27], p.142].

“This implies that

X€V C (£)

1w so #7M

is open.

So now we have part of the usual. expénential law. To get the..

rest we need an associative product. [see 28, Theorem 10]: ~ Unfortunately

it is not clear that the. product defined above is’ usocfativl It can

“ be seen that the identity XX (¥ X2Z) » (XX Y) X Z is continuous as

follows:




X% (Y X2) has the final topology with Tespect to the maps
1x £ :X xlll_*X;[Y;Z),bv_ihere f :m_*y?z is continuous,
5 and the inclusions 1x1 xZ: 3 = (¥ > z)ak PN Hence,
/ using Lemna 1.3, it has the final topblogy with respect to the composite

- functions; : -

(x)x(y,}xz ) . 7
»

I On the ofher hand (X TY) ¥ Z has the £inal topology with |
respect to maps 1 xf: (XFY) XN+ (X¥Y) Xz, with £ N »2

continuops, and the inclusions. £x} x {y)} x Z-into (XXY) XZ.

| - .
Hence it has the final topology iYlustrated bslw.[{:’
X x N xN_

i ) / 1y Xexh i
i%1yxh .

CoxP Y xm — =5 (XXY) X2

' Tei'x1,
clx} x {y} x 2
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So id : XX (Y X2Z) > (XXY) ¥Z is continuous since
1xa -
Xx Il-—l X x§ is i and the

of the diagram below gives the cnnt)mnty of id.

%8 s
‘xxn—ﬂxxm <N, o

11*63) l“f*s 2T 7
'\, Xx(‘{xz)—-—ﬁ(XxY)xZ :

ol | ; :
The obvious approach’ to dttempting to prove’ e cantinvity: of

i oo = % # . ol
(XX Y) XZ > X% (Y X2Z) would be to find a continuous f\mct&tm

XXM xW_"+XxN_ that makes the diagramcommite.  There is.
apparently no such flmctumfsn we leave this question unanswered.

'rherefors ve' cannot prove-a complete exponential law only’ the
5

2k ” : I 3 E -
Theorem. 5.3 The bijgction 63 M_, (M (¥,2)) > M (XTXY,2) .

is continuous. ‘ : i 5 .

By proposition 5,2 the continuity of the identity map

i 5 M OGME002)) Mo (RN (Y,2))  dmplies the continuity of the

cimespondmg function 1471 o M (YD) T (62). Jusing -

the sane rgsult,  the cmnnmy of id” 1mpl1es the continpity of.
14 : (Mcs(x,ucs(v,zn X X.%Y > 7. In the dissussion ar assac:at;wuy 1

ve 'Saw that the continiity of M 0GM(1,2)) % X%+ 2 follows

from ‘that of 14”7 A final appllc:tion of ptopusltion 5.2 yields the & 4




MELER SR ER LA S contxmmus. Then e clieck am

Tesult that id~: M_ (N (Y,2)) + M (X X Y,2) is continbous.

Tt is easily checked that © = id*“~ and hence is continuous:

Using ssquenuul s}mus it turns out Lhat the bijection s @ " oy

_honeonorphism, This is becausé ths pmduct shove coxnudes with .the !

product’ in. Seq md hem:e is. assouanve. 5

; pmg'omi}m sl E x_, y ai-e i-siuces then XX ¥ = Xx] Y.

TE X is n s- space t'he‘n X K18, an. J~space

Proof:

(corullary 3.5) and s, gas the Emn topology. ¥ith Tespect .to an maps
fron n.. 1 Y is-an's- space then  {x} x Y has the final topology

with fespect to all maps 1. x £ {x} xM_ » (x} x Y. Then by

composition of final topologies X-% Y has: the fxna] ‘topology with

Tespect to all maps (£,8) : N_+X xY and all mnps

'
{x} xW -+ XxY. | A &

1 %.8)

. Now to'see that XX ¥ = Xxg Y. we First showthat. the identi;y _
140X F YK XY ds continious.e . o (£,9) 3 N+ X Xs"{,‘xi !

E cm\hnuaus since X x_ y is an s-space and i‘}o a, x’g) S
©0eN_ S Kx Y i) contihuous since these naps are just special cases:

of maps. W, +. X x; Y. “'So by ;he uru.versal property of £inal topologies

@ X X Yo X XY iscontinunus.’ xdu(

0 LN SX XY is gl

: 14 continudus becatse of the £u\al topolégy on LE YiiSo id:X ¥

XX Y is conginuous <and the two products’ coincide.
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F + ~T’is not hard to check that, the function space in  Seq: can

be redefined & MO ) and the proaf e exponmtml law-

i goes throsgh.  Lemai:S:1 comms the Proof of the first- 1em 5o

o needed and the' second lemmn depe od only on the first i t'he

‘,sM (X Y) M (XY

e

‘-PruEnsition‘SJS For . 'sequent a1 spnces Y, 2 S 032) = M0,2)
v,2)). )

LT (recdll (M(Y,3) = sH

* Proofi We kiow that for an arbitrary g-space ¥, hft

XX ¥ > 2'is continuous 1 and onlydf X+ sM_ (Y,2)- is continuous

and’also’if and only if X > M (¥,2). s Gontinuous.; Let

X ’iucs(r,z).ime:{' iwi (Y,z)-,is‘_v»z ‘is continuous so

M (Y, 2) % M(1,2) s continuous:, S.\milarly M) > OF z)

. 15 Contapbus; Herge. the ‘tiwo functmn spaces coingide,’ “In the

lanwage of. category theory, ﬂns is Jusb a parucuhr case of the :

_result that Tight s.djmnts are umque, AT ]
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