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The Fentiting Tout Bapdred eighty quuuon- are % 3 S

certain con-uucuon- such as subspacés,

3 ) P a SPBCO.
|
studied {n det;il and the ansyers to all but lavem o! t
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e
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1961) and D.

: v
& On the basis of results by S.T. Hu (28,
1964), we are able tofconclude that most of

Gottlieb (23, ‘
those thirey p!n{pe:tieu are not honotcpy properties But the

majority are uaeopy pxnpezueu.
fix, our terminology, a defipition of ‘each 0

Jological pfspezbie' considered i given in

In order ‘to

. of the zhxzéy to.
.
7 Chapter. 0. " . .
\' I ! ) ) = s
! "‘ . In Chapter the ;éllo‘vihg‘typan ;! properties for h L
/ topslogical spachs are definade hersditary, closed L
FaN

/ . h!.teditaxy, opan hueditaty, retractive, p:ajcctiv-,.
homotopy and llDLBpY tn,poloqh:il properties. Tvu theorems
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trom Hu, Gottlieb's theorem on eloud hendltazy and

isotopy pt,cpenlea and the -proof thah plth connectedneu is

“a homotopy property ire given and e show that, for any
— :

topological property, P, the following implications hold:

Hu{adleiry' =)ra)ncuva 2 projective .

Hereditary 3 closed heredinxy and open hereduuy

Hereditary =} isotopy
Closed leéreditary =» not’ isotopy S not homotopy

; o
Homotopy 3 {sotopy : /

=) not closed hereditary

Ch

Hnot hereditary. { )
® g, |

chupeer 2 gives the definitions’ of contin\le\lu,.cpen .

continnous, closed eontinuu\l!, divisible, " conemccwe and
N e . :
open topological propertiés as well as Gottlieb's nesults'.
. \ §
on ‘open, homotopy and isotopy topological properties and we

show that the following implications, for any topological

Hdopesty, B, uodi . _( )
continuous P divisible Hretractive P projective
Divisible $ open continuous and cl)sgd continuous

N Continuous: x)concracnva- v
Open hananuy and open coneinuona .}open
Open and not nareainry 2 not 1goeopy P not homot‘opy.

Homotopy and open continuous P not open hereditary.

In Chapter 3 the-invariance undex finite, countable,

copt™
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of ‘a space are conmidered, 3nd the following implications( - v _
hold: . d o W 2* .
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3 rinitely productive.
< % N z

For completene

, Chapter 4 contains the proofs of

some basic statements which were found in the literature

without proof. Saveral counterexamples are also’given, as
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CHAPTER 0
DEFINITIONS' OF FROPERTIES = . -

In’ chh chapter we l:ouec: the definitions af bul(c

properhiea for the convenience of the reader,and to fix our

tezminolngy.

o L 0e1i pefindtioni™ . . )
A topolodical space (X,T) is a To-space if for any a,bE€X.
. Jan open set UeT s.t. either: a&U, bdU. ors afU, b&U.

0.2: Definition: -

A copelngicnl space (X,T) is a ¥ --pce ir lor any u,,pex.

Hopen sets U,Ye&T s.t. a@U, bG&V and agdv, b¢U . X

0.3: Definition:

" ~ g
A topological upaco (x T) is a ;-—agnca if for any a,beX, o
: ‘30pen sets u,ve’r s.t. a0, b&V and UNV = I'N
0.4r Definition: . it
9  5iai) . K 5 / »
[ =
Ao, A bopologh:al space (X,T) }u a 'rgL-ugu:a if fof any -,bex,
) 3 open sets U, VET 8. t. aeu, bev und TNV = ¢. ) G

*0.5: Definition:

¢ ¥ A topological space (X,T) is a Ta-space if'A is a closed




set in X and. b&X svt. bgA; then 3 open sets U,VE T &.t.

ACU, bEV and UMV = #.

0.6: Definition:
A topological space (X,T) is a Tg-space if A is a closed
set in X and bEX s.t. b¢A, then B a continuous function

£1X —>[0,1] s.t. £(A)=0 and £({b})=1. g -

0.7: Definition:
A topological .space.(X,T) is a Ty-space if A,B are disjoint
closed sets in X, then 3 open sets U,V & T s.t. ACU, BCV,

.«

and UMV = g,

0.8: Definitionx

A topological space (X,T) is a Tg-space if A and B are

‘separated sets in X (i.e..AinB = ANE = §), then 3 U,ve T

s.t. ACU, BCV, and UMV = f. £

0.9: Definition:

A topdlogical spa'ce is a regular space if it is T and Ty

0.10: Definition:
A topological space is a completely regular 'space if it is

T,and T’VA.' B




0.11: Definitiont

A ‘topological space is a normal space if it

.0.12: Definitiony . s

A topological space is a completely normal space if it is

T and T_. . 5 .
1 5 ‘

~ £
0.13: pefinition:

A topological space X is a comnmected space if and only if'
it has”’no nontrivial separation, i.e. if U,V are non-empty

open sets in X s.t. UUV = X, then GM\V = ;
Al

@ oE
0.14: Definition:

A’ topological l‘ﬁc

only one path component, i.e. X is path-connected & for
any tvo points a;b&X,3 a path p:I—>X s.t. p(0)=a and

p(1)=b. o

0.15: Definition:

A topological.space X is a locally ‘connoctld space if forw~ -
every point p&X and £6r every neighbourhood U of p, 3 a
connected ::-xgnnonrhooa VCU of p.

‘| ‘

0.161 Definition: , A

A topological space X is (a totally di ted space if

for each pair of points p,qeX, 3 a dlsconnection ULV of X

. 71




vith p€U and q€V.(UU V is a disconnection of X4=bU { f,

Vi, UNV =fFanda tUV = X.)

0.17: Definition: " .
~
A topological space X is a compact space if and only if

every open cover of X has a finite subcover.

0.18: Definition:

A topolagical space X is a LindelOf space if and only if
every open cover of X has a countable subcover.

0.19: Definitions .

‘A topological space X is a locally compact space if for -

‘every point peX, p has at least one compact neighbourhood
in.x. 4

0.20: Definition: )
A topological space X is a countably compact space if and

ohly if each countable open cover of X has a finite
e 1
subcover. ‘e

’ — ~
0.21: Definition:

A topological space X is a gnrucdng‘ac[ space if and only if
it is T, and every open cover 'of X has a locilly finite .

open refinement, i.e. a refinement which is a locally

finite open cover of X.




N
0.22: Definition:

A topological space X is a separable space if and only if

ft contains a countable subset which.is dense in X. - %
o ; .

0.23: Definition:

A topological space X is a second:countable ignca 1£<and
only 1f\{ts topology has a countable basis. .

0.24: Definition: - .

A topological space X is a Yirst countable space if and

only if it Has a countable local basis at each of its |
% \ - A

points.. ) - . . 1

0.25; Definition:

x . . Ve
‘A topological space X is a discrete space if every subset
N .

of X is .open. . 4 . %

' N E ~ N

0.26: Definition:

A togological space X is an indiscrete space if the only

‘- open sets are g una(rﬂ ' ‘ R
- i B ¥

s - - <
0.27: Definitions .

> J » . l’,‘)
A topological space X 1s a metrizable space if and only if .

3 a metrie d:X—pR vhich induces th& tepology of X.




"0.281 ‘Derinition:

o

*

A topological space X has'the fixed point property if every
continusus function £1X=X is s.t. £(x)=x for at least
xXEX.

0.29: Definition:

A topolog(cll epage X is a contractible space if it has the
same homotopy type as a singleton peln:.

0.30: Definition: ;

A topological space X is a mcaixx; contractible space if
for every point peX and \po: every ﬂy’/\murhoud U of pex
3a neighbcurhnod vcu of p vhich is contractible in u.

1




CHAPTER 1 . : Hg
, i
HEREDITARY, ISOTOPY AND HOMOTOPY PROPERTIES

This chapter will present theorems by Hu'(28) and

Gottlieb (23) which allow ts to conclude that sixteen of
the thirty properties defified in Chapter 0 are hereditary
properties, .and hence are hutopy piopoxtiu,ibut are not

homotopy properties. Seven otler 'properties,-baing closed

‘héreditary properties, are not isotopys and hence not

homotopy properties. Counterexampids; to show that these

seven properties are not hareginry proparn . viu’bu
given in chlptez 4. Three further propsnin are homotopy

properties, and hence are 1=of.opy properties, bub lte not

©tlosed hereditary, and ‘thus” not hereditary’ pzopaxtlun. The

remaining’ four pxope!tlel, for vhich a conclu!icn v“;h ,;

respect to hereditary, hométopy, and isotopy properties
cannot be .dffewn from the theorems presented in this chapter,

vill be considered in Chapters. 2 and 4.

3

1.1: Definitjon: 3 = |

| .
Property P of topological spaces is a here ltary property
if and only u/p is lnherihed by b 2

every space of a space
vh!cp has B. - C .,

1.2: Definition:

Property P of topological, spaces

(1]




property if and only if P is inherited by every closed

dubspace of a

v

1.3: Definition:

Property P of

property if and only if P is inherited by every open

subspace of a

1.4: Definition:

space which has P.

a5
topological spaces is an open hereditary

space vﬁch has P.

A map f£:X —>Y from a given space X into a given space Y is

said to be a homotopy_e: asuivalen:e if and only if there

exiate at map gi1Y—> X from Y 1nco X such that the cnmpossﬂ

maps gullx—?

uenuey maps

X and’ fogiY—»¥ are homotopic to the

on X and Y respectivily. That u, there exist

homotoples HiXxI——yX and Ki¥xI—>Y, where I i the closed

unit interval,

such that

H(x,0) = 1.(x), W¥'xex
H(x,1) = gf(x), NxeX
K(y,0) = 1,(y), 4YeY
K(y,1) ="fg(y), NMyeY

In this case,

»
‘equivalence.

t.Definition: |

Property P of
and only 4f P

the map giY—>X is algo a homotopy
v

topological spaces is ‘a homotopy propert 4 if
16 “inherited by every space that is

(12}~




5

homotopically equivalent to a space which ha

-
1.61. Definition: ¥ = 5
. A - .
A map is a continuous hun_:tiun. .
R 3
147: Definitién: : \ e 5

“If £1 X—7Y is an injective map from a space X into ¥ &
space Y vnlch defines a houcmorphun from X onto !(x).

yhen £ is an xnbedding of X into Y.

'1.a.’ Definition: . ¥y PN
" A _homotopy h‘_x X—%1, (t'e 1), 18 lald to be an_fsotopy if,
for each t § I, hy 'is an imbedding. Tvo ;mb“adding-‘l.

¥ .

g1 X—5Y are said to be isotoplc if there exists an isotopy

. hys X—¥Y, (e & I), such that no = £ and hy = g.

1mbedﬂing £:.X—>Y 1 sald to be an uuca“ equivalence if

there exists an imbedding gi Y—»X uuch that the cosposbtec

imbeddings g o £ and f o g are isotopic to the idtrntl\ey
imbeddings on X and Y reapectlvely. Tvo topological spaces
© X ahd Y are said .to be isutoglcallx eguivalent f in sysboi,

X'ﬁ Y) if there exists an isotopy univl!encl £ X-—bY.

‘The xeneion = amohg topological spaces is obviously an

equivalence relation.(28, page 168).

1:9: nenninom 3

Property P of topological spaces is an lotogx property -if i

VA

' o Doriey o~




onto A 5
L)

", 1:12: Definition:

’
isotopically equivalent to a space vhich has P.
) e
) . . : .
Hence the follpwifig implication holds trivially:
P is a homotopy property % P is an isotopy property.

1.10: Definition:

1f A is a subspace of the topological space X and r:X—3A

1s a contimuous omto function such that roi = 1,, where i

is the incluéion’map i: A—3X,then A is called a retract of _
: S

X ‘and the rnncexoq)rxx—-)’n is called a retraction of X

1.11: Definition:
Property P of topological spaces ik a rétractive property
if and only if P is inherited by e‘try retract of a space

which has P.

Property P of topological spaces ’.§ a projective property
A P prejective propert
if and only if P is preserved by every projection of an

arbitrary product space which has P. " g

since every factor space, X, vhex\;( is from some
arbitrary index fet A (not necessarily finite or ¥

countably), obtained from a projection map, p, om a

e ' 141




s o 1
. 5 \
Let X be a space which does not have P. Consider the cone,

topexoqlcal dpace X onto the factor-space, is a retract of

on ‘map

X, 1.e. p o i = 1ﬁ. whére i is. the incl

i
i .‘-—yx. .and every zatrnct, “open subspace, and closed

Gibkpaas L lnb-chc of'X, the iouovxng impilications for

any topologicai pznpeny hold trivi 117

Hsndir.ary u}retrlcttvc ép:ojcctivn
i
Heredlbnr? <> open hereditary

Horadltnr& > closed hereditary
i f . i 4
\ :

1.13: Theorem: (Hh'Y heenm/(za, page 170))
1 P s a closed pegeunry topological property such n-t

\

every llngleton space| has P and th{t there exists a space X

vhich aehu nuc have P, then P is not-a homotopy property.

: |
Proof: v s R4

| . . 3
CX, over X which is the quotient space obtained by X T

N B

identifying the top, X x $03, of the cylinder, X x I, to a .
i ¥ %

single point, v, called the vertex of CX. X 'is homeomorphic

vith the bottom, X x 11}, of CX since the fnclusion map,

1 X—3X x {1'§an continuous  and bijective, the projection, %

pr X x LF —rx 1s coné\lnuoua,ana p=ilxx 313 ds 2,

closed nxbspu.ce of CX since X ig a closed subspace of X, LI
1'5 1: a closed subsplce of T and the Cartesiad product of
closed sets s closed. Since P is a closed hereditary s
property which X does not have, it follows that CX cannot

have P. Consider the inclusion‘map, jt v-——)ux,,ani the

[1s]) N 43




W

projection map, qi CX—>v, which is a constant map.
Claimi § is a homotopy equivalence, that is, § o qeor 1 dnd
G0l .NowgqgoJ =1l =¥qgo =1, and

j o q = constant map, c: CX—>v € CX. Claim: there exists

a homotopy, hy: ecx —>» cX, such that h, cognects h, = c with

LREE Consider hy Gk,s) = (x/st), ¥ s,t e I. -

Now h, (%,8) = c(x,8) = (x,0) = v . /

And h (x,8) = 1}, (x,s) = (x.,8), ¥ 8 €I.
So CX and the nnguton space; 4v} . have the same hun’oéopy
type. Hence CX is contractible. Since the s;ngxe‘ton a!ﬂce,
§vi, has P and CX does not have P, P is not a homotopy
p!ﬂpetty. % . ]

A contrapositive statemenf of Hu's theorem can rll'ueﬂ

in order to conclude that homotopy properties are not

“closed hereditary properties. ° =

‘1.141 Theorem:(Corollary 4o Hu's Theorem) B

If P is a homotopy topological praperty such that every
singleton space has.P and that there exists a space, X,

which does not.have P, then P.is not a closed hereditary

property and hence not a.héreditary property. 4
- .
1.15: Theorem:
“Hereditary properties.are isotopy properties.
[16] -
- g : g
’

/
/




Proof: (28, page 171)

Let P be any hereditary ‘topological property of ‘spat

Assume that f: X=—>Y is an isotopy eyulvalence and that
B the space, X, has the probperty P. It uuleu to prove that’
Y also has P. By definition of an isotopy equivalence ¥ .

thie extats R imbedding, g: Y—»X, such that the

compgsed imbeddings, g o f and £o g, are isotopic_to the
[ identity imbeddings on X and Y resPectively. The 1!!!01 aly),
- B <

is a subspace of X. Since P is haudlnxy, :hh l-puel nut

e g(Y) has ™. As an mn.aung, g is a’ no--o-ozphu- of Y onto *

- | g(Y). since P is'a topological property.and g(Y) has P, it

follows that Y also has P. ¢
-

Since the singleton‘ space has all the. properties

. defined in Chapter 0 and for each property there exist

spaces for which that peru:y fails, then Hu's chaor- can

be applied to the properties in Chapter 0 vhemever -

r

*1.16X Theorem:

"Being hath connected" is a homotopy property.

Proof: 5

Let f: X—>Y be a homotopy equivalence with homotopy
inverse gi Y—3X and let X be path connected. Let

Y,¢ ¥, € Y. We shall show that 3 a path ot 1 I—3Y s.t.’
=(0) =y, ande(1) =y, L Let Ki ¥ x IT—37Y be a homotopy |

17y .




o from f o g to 1y ei.e., K(y,0) =t o g(y) and

K(y.1) -Sly(y),¥y € Y. Let I —>X be a path s.t.’ for

= . - -
any x,.x, € X,ple) = x, = g(y,) and p(1) = x = gy ).

| & .
Define o (t) = (‘K(y,» 1-3t), o<t < 1/3
& f o p(3t-1), 1/3'<t < 2/3

K(Y,, 3t-2),72/3 2 ¢ =1

oL (t) 1a well .defined:

K (1/3) = R(y5,0) = £ o glrg) )
. S «(1/3) = £ 0 plo) =t o 5(yy)
L. «%(2/3) = £ o p(1) = £ o gly,)
el S (2/3) = Ry, ,0) = f o grM .
~ - singe K(y,t), 0= t % 1, and f o p are continuous maps and

ot is continuous since ok (0) = y_ and <t (1) = ¥, , =< is

indeed a path in Y connecting y, vith y, , as required.

[18]




Hence Y is path connected and. "being path connected’ is a

homotopy property and hence’ nue a closed hereditary

Property ‘and net a v.’uauu, property. 2 7 : s

1.17: ﬂ\aoum(z:, page 5627 -

= Y Let P be avclaged h.tndl:uxy topological pmp-ny vhich : .
holds on some spack X and on X x I,vheré I is cn- closed .
/ unit intervai. Let S.be a subspace of X which does not have,

«

. Then P is not an isotopy property.

- Proofi . . .

Let ¥ = §(x,8)/ 0% t < 1 or x& S} be’ a.oubspace of X x I.

Y doea not possess P since s xUF={(x,1)/ . x¢e s cro

tn Y ang 8 x5 1 homeomorphic: to S 'which does not have P.0 [ .

‘Y is ua:opienuy ‘equivalent to X x I alnce _the mape

i1 Y—2% x'1 s.t. 1(xX7e) = (x,t) and

‘- j:r X x 1-=9Y s.t.. J(x,t) = (x,t/2) ' . "

are imbeddings since { is the inclusion map of Y inte X,

J(x x 1) = §x,t)/ 0% t < &, xe YC X§ is the inclusion

i " map.of X x I into Y and incluaion maps are imbeddings..The
p b mips hgr X x I—>X x I s.t. bg(xt) = (k. (1#8)t/2) and .
kgt Y—>Y T Eebe kg(at) =(x (1ea)e/2) wrd
. isotoples sifice hy = 1 o j and nl‘ =l : L

ko =3 61 and k, =

and 1,j are imbeddings. Since X x I has P and Y

i have P, P is not an isotopy property.

[19] ~




"
! Since the closed unit interval is Ty, normal, compact,
Linde18¢, locally compact, countably compict and
paracompact, the Tychomoff plank, T, has all of those
properties and contains a ulf);space which does not have any
of those properties, except for local compactness, and ’
rd 1 has al1 of those properties, and since I x I is
locaily compact but’thevationals are not whe above

theorem can be used to conclude that none of those

- i
properties are isotopy properties.

"l‘able II indicates lvl\lch properties of cﬁapcer 0, that
can be dur‘lved\ from these t!’l‘enxnnu. are or are not
nenati-:y, closed hereditary, open hereditary, reetagtizg,
projective, ‘homotopy and isotopy seapertion: The mx* in ’
. indicates that the proof of invariance of that
property is elther given in this palfr or referenced in the

literature. The "+" indicates that the invariance is
. .

implied by the "x" #n the same line. The '"-" indicates that,
e . S
as a result of Hu's and Gottlieb's theorems, non-invariance

is implied by the *"x* in the same line.

- [20]




+ Table II

HEREDITARY, HOMOTOPY' AND ISOTOPY PROPERTIES

Closed hereditary & not hereditary % not isotopy
Hereditary = closed hereditary 3 not ho-ntopy
Hereditary = open hereditary
Hereditary = retractive = projective
_Hereditary = isotopy - Homotopy = isotopy
Homotopy = not closed heréditary 3 not hereditary >
"x* indicates proof
of invariance is either N
given in this paper, or ul
found in the literature| |5 h Reference to
m+" indicates the 3| 8
invariance is implied NEEAM proof of "x".
"x" in the same line. ul e ol > -
g "-* indicates the B8] Mnla 8 s o -
non-invariance is 215l 2l8] 8|8 & - en stands for
implied by "x" in the o| w| a[&| = ol 5| completelry
same line. sl ol 8¢l 2|88 normai.
Property H| 0| O] pd| Al | H) .
P - ¥ Ax[+ =+ ]+ -1
LT x|+ 4, p.79 N
P x|+ - 7, p.55
afz. x|+ - .2
3 D “Ix]+ - 30, p-
1% x|+ = £ B:
4 E3 = LB 2
[e]Ts - X[+ ]+ r I+ - ]% ¥ ps
| Régular v 3 B o o S e . pe
ompletely zegnlar x|+ [+ [+ I+ =]+ D
ormal x -1-1_30, p.
ompletsly BorEal 3 N T )
onnected -1= x]+] 44, p.229 .
ath_connected -1z x]+]_1.1%
ocally connected_ x -4
otally di a x|+ |+ ]+ ]+ 5
ompact x L P
indelB? x -1= + P:
ocally-compact. x. -1= P
ountably. comynch x. =f= + P:158
ar x ol +_P:148
eparable x 1 p-258
econd countable x|+ |+ ]+ +1-1+1°30, p.78 [
irst_countable x|+ {+ |+ ]+ -]+ 4, p.59_1
iscrete 3 I N N Y
ndiscrete 3 I
etrizable x|+ |+ +]+]=]+]"27, p.98
| 28 | Fixed point g
25 | Contractible - x]+]" 27, p.53
30 | Locally contractible x a.

[21]




CHAPTER 2

OPEN, ISOTOPY AND HOMOTOPY PROPERTIES

This chapter will present theorems by Gottlieb(23)
which allov us to conclude that "being locally connected®
and "being separable are not lsotopy properties and hencep
not hémotopy properties. Furthermore, "being locally

contractible” is not a homotopy property. Also,

dness, path dness and contractibility,
vhich were found‘'to be not closed hereditary properties,
are not open hereditary properties either.

2:11 Definition:

Propdrty P of topological spaces is a continuous_property
i1f and only if P is preserved by every onto map.

2.2: pefinition: 7

Property P of topological spaces is an open continuous

property if and only if P is preserved by every open, onto

map. -

2.3: Definition:

Property P of topological spaces is a closed c

property if and only if P is preserved ,by every closed,

onto map.

[22) -




2.4: Definition:

A map f: X—7Y from a topoloqicll -pnc- x onto ‘a i

topological space Y is a guotient ..2 u -na only if o0& ‘v

is open in Y vhenever £ (0)c x is op-n in X.

" . . [ Y

2.5: Definttion: ;
Property P of topological spaces is a divisible property if

and only if P is preserved by every quotient map.

2.61 Definition: » y

Property P of topological spaces is a contractiwe propert:

if and only if whenever T/,T are topologies on 2 'space- X,

_m/c T and (x,T) has P,then (X,T!) also has P.

2.7: Definition:
Préperty P of topological spaces is an open property if and
only if P is preserved by every open map and inherited by

every open subspace of a space which has P. .

2.8: Theorem: e, %,

Every retraction is a quotient map.

Proof:.

Let r: X—3A be a rnbr;ction from a cnpoioglc-l space X
onto a retract A of X. Now r is continuous and ontos We
un:omucmzamﬁuocainuulﬁnmmwu :

£'(6) € x 15 opéh in X. Assume “hat r'(0) c X is open in X.

[23)




Define a relation ~ on X s.t. ¥ X,y & X, X yd
r(x) = r(y). Clearly, ~/ is an equivalence relation.

Let pt X—> X/~ be the quotient map from X onto the
topological space X/w , where X/~ is given the quotiedt
topology by p defined by p(x) = [x], wdte J
[x] = {_y& X/ r(y) =‘~2(X)}

Then the map q: X/~s —> A, defined by q([x]) = r(x) for

[x]-€ X/ns ' 1is well defined because q o p(x) = r(x).
Since r is onto, then q is onto. We shall show that'g is

1-1. Assume that r(a) = r(b) where'r(a),r(b)E&A. Then by

definition’ of q, q([al) = q([b]). .

Therefore [a] = fy e X/ ¥(y) = r(a)} '
’ = $yex/ x(y) = x(n)}
= [b]

Hence q is 1-1. Since q is 1-1 and onto, g;is bijective

and q o q°

»
1, . Now, since p is a quotient map,

-t -
r (o) = pI(O') C. X is open in X implies that it 7

o/ ='¢'(0) € X/~ 15 open in X/as. Since q is bijective and .
continuous it is open, and q(0') = g-o-q~'(0) = 0 C A is
open in A. Therefore r is a quotient map and every

retraction is a quotient map. % 3

2.9: Theorem: y

If X is-a non-empty set and T/,T are topologies on X
s.t. T/ T, then the euncuon f" (x.'r) ——->(x,'r’) is a . - N

continuous function.

i . [24] s ’ B




' Proof: A ‘ﬁ R
since T'c 7, an open set 0 T/ Ih open i T. Hence,
13(0) © (X,1) 15 open 1h (X,T) ‘Whenever 0C (X,T/) 1z open
! = 3 A

in (x,7!). Therefore 1 48 a continuous function.

2.10: Theorem:

Every open, onto map is a quotient map. N

Proof: (55 , page 103 )

1 2.11i Théorem; . — . Y N
Every closed, onto map is a guotient map:.

5 . . ) A

Proof: (55 , page 103 ) . ) el

Since projdctive maps are retfactions and since

retracb:onl, open, onto maps and closed, onto maps are -
quotient maps, and quotient maps are continuous functions,
"and since, whenever a topological space is contractive, a
continuous funckion can be defined from the space with
topology T to the space with a coarser topology 1:’, the
folloving implications for any topological property, P,

. - hold triviaily: ' ' E '

’ Continuous = divisible Hrstractive = projective

. . ' “ Connn\l;ut = opsn’ continuous

Continuous = closed continuous . .

g 4 Continuous = contractive

[25] $ ) ‘




B .
Divisible =>open contiguous and closed continuous

2.12: Theoremi(Gottlieb's Theorem (23, page 564))

' Any open property P is not an isotopy property if there

exists a space X and a subspace S such that X x I posse

. P but S does-not.

Proof:
Let S and X be chosen as in the hypothesis. Consider -the
subspace Y of X x I such that

¥ = §(x6)/ 0t < 3/4 oxrx& s} ..

Now S x (3/4, 1) is open relative to Y-and Jould have P Af
Y had"P..But S x (3/4 ,1] is also a product space and since

ge of an open projection

s is the 1 p from S x (3/4 ,11,
we see that S would have P if S x (3/4 ,1] had P. Since s 1,
does not have P, S x'(3/4 ,1] does not have P and hence, -
since-P is open hereditary, Y does not possess P. The fact
that Y is uuzopicauf equivalent to X x I can be shown by

taking the same maps 1,j,hs,a}:a k_ as ye take in theorem

s
+ 1.17. Thus the Sheorem is proven.

» RN

24(3. rﬁ.o:-m(ﬁ, page 565)

Let P be '-n opgn,pzop-ny‘ such that X has P implies X x I
. has P. Then P is an isotopy property if and only if P is

hereditary: .

[26]




Proof:

If P is ha}adieary, it lu an isotopy propcrty by thnorn

1.15. If P 1; not heraauuy. there exists a space X ' N

~ enjoying P vith a subspace S not possessing P. Since X x I

. has P, all the conditions of the preceding theorem are

satisfied and o P is not an isotopy property.
. N N T
2.14: Theorem:(23, page 564) o i
open properties are not homotopy properties.’ : .
’ N ’ i .
Proof:

Let P be ‘an open property. The singleton apace-§¥} must _ 4

have ¥, for, there exists a space X with P and ‘the' constant

map ¢ X —>§v} 18 open’ Let 5 be a space vichout' P, 8 x 3,
‘vhare‘d is the -open unit interval, cannot have P Sinee

S =T (S x 7), vhere'TF ia the projection of S x I onto S.
since T 1e an open map, S without P implies that.§ x J

does not possess P. Comsider C(S), the come over S. S x J

is homeomorphic tu’an open subset of C(S), so C(S) does not
possess P since P is open. Since C(S‘) ~i! homotopically

equivalent to v}, P cannot be a homotopy property. ¢
9 .

Gottlieb used the method of proof of the above theorem

to arrive at a more gnnsrll result.

N 2.15: Theorem:(23, page 564)

%, Let P be a property sugh that (i) the singleton space i)‘l

s . 1271 . .




P, P is not a homotopy property.

has P, (11) P is an open hereditary property, and (11i)
auch that there exists a space § where S x J does not _
possess P, vhelre J is the open unit ineexvaf. Then P is " “’I
not a homotopy property. N '
_Procfr

fet P be an open hereditary property such that the

singleton space {v} has P. Let'§ be a space where S x J

does’ not possess-P. S x J is homeomorphic to an open subset

of c(S), the coné over S., fdanie c(s) does not possess P. . - &

Since C(S) is homotopically equivalent to 2v§, and iv% nas

Since X = Comb &pace (41, paq; 187) is not Joc'aiLya . i
connected, it is mot locally contractible. Then § x J 18 ‘
not locally contractible and the above theorem can be used |
to prove that "being locally contractible" is not a r
hnn‘otopy property. . ™~

'
l\cantrlpuuitlva statement to theorem 2.15 will be /
used in order to conclude that homotopy properties are not j‘

open hereditary properties and is stated as a corollary. .
)

2.16: Theorem:(Corollary to theorem 2.15)

Let P be a homotopy property such that the singleton space § =

v} has P and_such that there exists a space S where § x J

does not possess P. Then P is not an open ‘hereditary.

‘ 1281
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property.

Remark: -

The assumption that § x J does

necessary, as the following example shows:
The singleton space v}, the open unit interval J and

the cone c(%v}) = I, the closed unit interval, are locally "

not possess P is, in

fact,

contractible. Iv8 x J is an open subspace of c(iv}) and

vt x 7 {s locally contract{bie. "Being locally

contractible" is an open hereditary pmop-nyv. Rence c(iv})
is locally .contractible. G(Lv}) and 1v} are homotopically
equivalent . Theré&fore "being locally contractible" would be "

a homotopy property,which is not so.

2

Table III indicates which prap_areias\a! Chapter 0 are
continuous, divisible, retrictive, projective, open ’
continuous, closed continuous, and/or contractive
properties. ‘;ha "x" and/or "+" in a line indicate that the
proof of invarignce of that property is either given in
_this papef or referemced in the.literature and a reference

to the proof is given in the last column of the table. The

"+" indicates
the same line

of the table.

Table IV

that the invariance is implied by the "x* in.

by one of the implications stated at the top .

indicates that, by wsing theorem 2.12, two of

(291
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the thirty properties defined in Chapter 0 are not isotopy
ptoperties and hence not homotopy properties. Also.three of

the pra‘perti:u are not open hereditary and hence not

hereditary p\ropartles.“l‘he table alsé indicates that, by

_using theorem 2.16, £hree of the properties are not open
properties. The table also indicates which of the

properties are open continuous properties and which are

open properties. The "x®:and/or ave, Fnia dine 1nd1ca€:hn

the proof of invariance of that property is either gl¥en in

this paper or referenced in the literature and a xgl'e‘rence»

" to the proof is given in the. last' column of the table..'The <
"+% and/or "@" in a line indicates vthah the invariance is )
implied b¥ e ip the same 1line by ome Gf the implications
stated at the top. ﬂf' the ‘table‘. ;’lfhe "#" in a line indicates \‘/
that the invariance is either impiied by "x* and "#r in the
same line or implied by "+% and "+" in the same line by

one bethe implications stated at the top of the table.
(Note: "@" in a line does mnot imply anything whereas "+" in
a line may help to imply "#" in the same line) The ":" 4n a
_iine indicates that, 23 2 resyit of theorems 2.12, 213,

2.14, 2.15 and 2.16, the non invariance is implied by "#" or




,Table IIXI "

COII’I‘IIIUOUS 'PROPERTIES

Continuons % divisible = retractive =yprojective
__Continuous = open continuous & .closed contihuous
Continuous =» contractive - -
Divisible = open continuous & closed Continuous . ;
P 5 5
*x" & *+ indicate that
the proof of invariance a Reference to
is either given in this B
paper or found in the 13is proof of
literature. Bl
o of |ol ol 238 rxranaren. |
w+n indicates.that the | 8| 8| >f > 2ol y
proof of invariance is 8| a| #f»l o ) T2 indicates
Amplied by "x". i b B e 4 _ that .
Bl wt| bl af 0l o reference to
% o |BEISE 22lE  preot ie tn
~ _ Property = |10 ALR] 00 O} OO v Table:II.
o : 5 x [+ |- T2
L F3 S I ) 73T,p133
2. x_|+ 5
‘T2z 2 x |+
s x |+
8Y2 PN x |+ 2
s S x [+ | ¥ |x-4.9- %-21,p247
5 x |+ | |* [x-T2 *-24,p81
egular x|+ T2/ 3
ompletely rugular x_|+ T2
ormal Jxle | 1* ] [x-4.10__*-41,p24]
ompletely normal 3 o O ) *-a.11
onnected x|+ |+ [+ |* [+ [+ |27,p78 _~
ath connected x|+ |+ |+ |+ |+ [+ 127,p85
bcally connected x|+ |+ [+ {+-| |56,p200
otaliy di ted . x|+ T2
ompact x|z |+ J+ [+ |+ [+ |27, p62
indels? x|+ |+ [+ ]+ |+ ]+ |24, pas B
ocally compact x |+ % x-3,p19_*-56,p13]
ountably compact x|+ |+ |+ [+ ]+ |+ ]30,p158 =
ar t x|+ [ [*] [x-4.12 +-15,p16Y
eparable x|+ |+ [+ ]+ [+ |+ 24, p4
econd countable x [+ J* |- x-T2 *-1%,p173
irst countable x [+ ]* -T2 #-41,p259
iscrete x [+ [+ ]+ ]+ 1,p128
ndiscrete ' x[+ |+ |+ 1+ ]+ [+ 3 N
etrizable x |+
ixed point x [+ +p20
ontractible x|+ 1p25
ocally contractible x 1+ ,p26
[31] i L




-
Table IV
opeW, IS0TOPY AND HOMOTOPY PROPERTIES 4
Open hereditary & open continuous = open
oped % nog homotopy Homotopy = isotopy
Homotopy = not open Open hereditary =hnot homotopy
= not open hereditary &/or not open~centinuous -
- Open_and_not_hereditary = not isotopy =>not homotopy
"x"&"+" indicate proof of Reference to !
Hnvariance is either'given .
fin this paper or found in 5 proof of
\ X khe iiterature. @ ' w
P+ngm@rindicate invariance| |43 "x" and "en.
4 He implied by "x*. o 3
h#* indicates invariance |»f%|3
e impiied by "x"&"*" or |H[®|4 N ‘T24T3 indicate
A, »#lalo| |als  that reference
-n indicates that non- 2141 ° |8]8 to proof is in .
finvariance is. implied by |8 5[5 §)3|s| Table II or R
. [#" oxrimxn. e e Table III. .
i Property - i
* o x|+ = 7 < \
1 NEIES - . P
2 x|+ = X
N 2t x|+ T
3 x|+ = v * ¢
e, x|+ -]e
. 7] Ta - z -
3 x|+ —le T2
| Regular. x|+ —le T2
omplgtely regular x|+ -le T2 5
ormal
5 ompletely normal x|+ =) T2 BN
[13 | Connected N “=1*1-1xle *-T3__x-T2
ath_connected = =1x e $-T3 _ x-T2
ocally connected x|+ [#]-]- -T2__*-13
\ otally disconnected |x|+ 18 2
Compact = & 3__
indeldf * B 3
ocally compact [ T3
. ountably, D T3 % N
aracompact i %
eparable “TEl=1= x-T2__*-
- econd countable x[+]*Ta]" x-T2 - %=
irst_countable x[+[*]#] -l x-T2__+_
iscrete X * - x-T2__*- .
ndiscrete R x ¥ = x-T2  #- .
[ 27 | Metrizable x|+ - T2 g
Fixed point - ! ]
Confgactible -= x[® T2
. . Locally contractible x - T2

[32]




E Seasag

v CHAPTER 3

PRODUCTIVE AND EXPANSIVE PROPERTIBS & N

N s .
In this chapter ve wiil conclude that fourteen of ‘the
progerties defined in Chapter 0 are grbun:uy pmancnv.

prapezuu. elehtaun are countably p:udncelva prop-nu

" and tventy-one are finitely pzoaucuv- properti

u-c aix
of the' properties are expangive‘prapaniu, 1.'e. are’
preserved vndex‘ refinements of nu npnluglcu -uu:euu “of

a space. c. S
3.1: Definition: X

Property P of topological spaces is an arhitrarily
productive property 15 and only if P is inherited by an
uacountable product of spaces all of vhich have P.
3.2+ pefinition:

Propez:y P of topological Epice! is a counnbxx product

property if and only ¥f P is inherited by a countable

product of spaces all of which have P.

3.3: Definition:

Property P of topological spaces is'a fimitely producti

property if and only if P is inherited by a finite prodagct

of spaces all of which have P.

(331




3.4: Definition:
Property P of topological spaces is a expansive property if
and only if whenever T',T are topologies on a space X,
v/C T and (x,T/) has P, then, (X,T) also has P.
T

Sln:f a finite product can be viewed as a special case
of a countable product and a countable product can be
vieved as a special case of an arbitrary ézoaﬁee, the
following implications for any topolug;caf property, P,
hold trivialily: ’

Arhltrar;x, productive = countably productive

% finitely productive

Table V indicates which properties of cnaékez\o are
arbitrarily productiva, countably productive, finitely
“productive and/or expansive properties. The "x" and the
*** in a 1line indicate that the proof of invariance of
that property is either glve; in this paper or referenced
in the literature. The "+" In a line indicates that the

invariance is implied by the "x" in the same line.

[34)




Table V # - -
. PRODUCTIVE AND EXPANSIVE PROPERTIRS
Arbitrarily productiye > countably productive =
D finitely productive ..

"x" & *#* indicate that
the prodf of invariance
is either given in this
paper or found in the
literature.

Reference to

®
H
- ol
3l pte
of wif >
A e Bt
o| Ul ¥
o| a| bl
MEE proof of
w4n indicates that the |2 2|3
proof of invariance is ey i nx" and mew
implied by "xv. MERE
e
s|a| A -
4| w| 9|
S| 5| 8| =
M
“Property % 8t &
<| 0| w
B3 x |3 [+]7]"x-30,p86__*-49,p
| x|+ ¥+ x-4.14 *-49,p
2 x[+ 1% %1 "x227,p56__*-49,p
i x[+]+]*] x-4.15 +-49,p =]
) x|+]*] ] 30,p86
2% x|+ ]+] ] 30.p8s.
#
3
egular__ T x|+ ]* 24,p80
ompletely regular x|+ ]+ 30,p86
ormal
ompletely normal
onnected x|+ ]+ 27,p79
Path_conngcted x x|+ 27,p85
ocally connected x| ]"41,pl86
otally disconngcted |x |+ [+[*]| x-56,p210 *+-4.19
ompact x|+ ]+ 27,p64
inde18f B s
ocally compack. % 30,p86_or_pl6s
ountably compact 8 -
ar t
eparable x]+ 41,p258
econd_counbable. MESE 30,p
irst_countable __~ x|+ 24,p
iscrete x]*]"x-4. Y P T I
26_| Indiscrete x|+ ]+ 4.17
- [27 Metrizable x|+ 27,p98
28 [\Fixed point
29 | Contractible o 27,p50
30 | Locally contractible . 4.18
[351] o




CHAPTER 4

APPENDIX ON SOME BASIC THEOREMS AND COUNTEREXAMPLES

.
For completeness, this chapter contains the proofs

of 'a fev basic facts for which we could find no explicit
proof in the literature. A number of counterexamples are .
also given, in order to complete the four tables of

counterexamples found at the end of the chapter.
4.1: Theorem:
Every uu7bapl:e of a T,-space is a T,-space.

Proof:

Let (Y,’r,’) be a subspace’of the T,-space (X,T). s

[0l

Let a,be Y © X s.t. a # b.ﬁsince (x,T) is-a w,,(?a.m‘\,\_a
an open set U & T s.t. either: a €U, b @ Wor: a ¢ U,
beu. P \
By the definition of subspace, Y MU is a ry-opeﬂ\ée:.
Hence, elther: a€ Y, a€ U=ya € YO\U
bEY, bgU=bbEYTMU '
ar: a e Y, ad u=pagrmv
., B&Y, b€ U=»b & YMU

Therefore (Y,T,) is a T -space

! ~

4.21 Theorem:

Every lnblpncn\‘ of & Ty epace 1s a T, -space,

[36]



> Proof:

Let (1.‘!1) be 2 lnhlplcc» of the Toyg-8pace (x,7).

Let 2a,b&€ YC X s.t. a 4 b. Since (x.\!) 1e s 1'”1-"“-.3
open sets U,VE T s.t. a6 U, b &V and 0 AV = g
By the definition“of -?b-p-u. YOuo -&vﬁ'v are 'l'y—opln, ¢
sets. Hence, a€ Y, a€ U=pae€ YMU

bEe Y, hs‘ v=br€ YMV
e YA NEFTAN CENH NENT = TNEAH

=YOp
L =

thus, (T D) N (TOYV) = £. SR

Therefore (Y,T,) is a T, -space. ' g
¢ . S % ‘l) E i

S | %
4.3:Theoren: / o ‘\’
.

Every subspace of a completely nnxll’e- fs a compietely

- ndrmal space.
Ll/. Proof: i
d Since a completely normal space is a g-2p cf/\znn 11,
.. every subspace of a Tg-space is a Tg-space and every

subspace of 2 T -space is a T -space, then every subspace

of a completely normal space is a completely normal,space.
H

. '
g B 4.41 Theorem: ; .

N
Every open subspace 0f a locally connected spice is a

locally connected space.

[37)




Proof: .
Let (X,7) be a locally connected space. Let (Y,Ty) be an
open subspace of [X,T). Let p & Y be arbitrary. Since Y is
a neighbourhood of p in X and (X,T) is a lecally connected
space, 3 a neighbourhood V u{ p vhich 1s Gonpacted and
VC Y. Therefore (Y.Ty) s a locally connected space.

- F
4.5: Theorem: . .
Every subspace.of a totally discomnected apace\la a totally

disconnected space..

Proof: C\

Let ' (X,Y) be a totally discomnected space. Let (y,'r:/) be a
lu.b;plca of.(X,T). Let a,b & YC X 8.t. a # b. '
§iate (X,%) 16T Fovwity atecenesesd, S W dleesanssiton
UUV of X vith a U and b & V. .

By the definition of subspace, Y('\‘U and Y(\V are Ty-open
sets. :

Hence, TUV = X= (YA U U (XM V) =Y (U UV,

= YO X
. - =v." ]
. \ * '
TNV = A= (XA A (YAVY) = YOL(UAY) = YO F

. LY
ae Y, a€U=pa€eYNU=>YMNU{§
bEY, b& v:—)be.xﬂvﬁ-ynv £9 .

Therefore (YM U)\ (YMV) is a disconnection of Y vwith

a€ YU and b € YM V. Therefore (Y.T:') is a totally \

(38

t
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disconnected space.
~

4.6: Theore

1

Every dubspace of a discrete space is a discrete space.
Proof:
Let (X,T) be a discrete space. Let (Y,7y) be a subspace of

(x,T). Since (X,T) is discrete, every subset of.X

open set and T = set of all subsets of X.
=fA: A 1872 subset of X¢.

' By the definition of subspace, YM A, ¥ A-& T, is Ty-open. o

N
Hence, Ty -{fr\n: YO A e 2 subset of ¥
& N w wati o Wil aubsete of Y. s N
N T{aeze{‘of’e (¥.1) 1s atscrete. ‘ o, 3 2%
v al7: Theorem: # ) TR
Evary subspace of an indiscrets space ls‘an indiscrets )
™ |,p|¢. . N ‘.
Proof: = P ? ~
Let (X,T) be an indiscrete space. Let (!,'ry) be a subs
of (X,T). Since (X,T) is indiscrete, T = {4,x3. &
N By t\h- definition of subspace, Y & and ¥ MX are the '
* Monly Ty-open sets. But YN =gana YOIX = 1. / ; ) o
B nehce Ty = 14,7, Thererore (y,r‘y)“u tnadacre; i
3 5 -
o 5




4.8: Theorem: L z
Every open ‘subspace of a locally”contractible space is a

localIy contractible space.

Proof:

Let (Y,ry) be an open subspace of the loclll’. contractible
space (X,T) aqg let x & Y be any point. Since Y is a
neighbourhood of x in X and (X,T) is locally contractible,
3 a néighbourhood U of x in X such that U C", and o is

contractible in Y. Therefore (Y,’ry) is locally contractible.

4.9: Theorem:

Every retract of a T, -space is a T -spate

+ *
(Note: In our definition of 1‘* paces, 'r.l,--pacu ok not

assumed to be -r,_.) v

Proof:
Let X be = Ty-space. Let £iX—3A bh.a retraction from X
onto the retract A of X. Let M,N C A X be dufcin,
cloled sets. Since X is a Ty-space, 3 open sets U,VC X s.bt.
UMV = £ and ¥ C U, NC.V. Since A is a retract of X,
AU and AMV are disjoint, open sets in A and

MCA, MC U =N AMU, NC A, NC V=NCAMV |

Hence A is a Ty-space. S

4.10: Theorem:

"Being-a normal space" is a retractive property.

’ (401 . .



. continuous property. .

G R

Proof: ™

Since a normal space is T, and T, and since "being Ty ana

s
*being T\ are retractive properties, then "being a normal

space® is a retracti property. i

4.11: Theorem:

"Being a completely normal space” is a closed continuous
\ .

property. 3 . N

Proof:

since a completely normal space’ls T and T, and since

"being Tg" and "being T " are closed continuous properties,

then "being a completely normal space® is a closed -
il

\
4.12: Theorem: - . N

Every retract of a paracompact space is a paracompact space.

Proof:

'since a paracompact space is a T,-space and "being
paracompact” is a closed heredftary property and since

every retract of a T-_L-lpﬂce is closed/(29, page 18), then
every retract of a paracompact space is a,paracompact space. L

E .

4.13: Theorem: «

‘#Being an indiscrete space"” is a continuous property.

“ 5 -

ra11 ) o




“subsets U and V of X such that a. € U, b:
& Ja Je

Proof: H K3
Clearly, a run'éuon from an indiscrete space X onto a

topological space Y can only be continuous if Y is also
indiscrete, therefore "being an indiscrete space” is a

continuous property.

4.14 Theorem:

The arbitrary product of T -spaces is a T, -space.

Proof: . .

Let {x; 11 e 1} be a collection of T, -spaces.

Let X =.TT X; be the product space.

Let p = La;il € I> and g = {by1i e I). be distinct
points in X. Then p and q must differ in at least one ~
coordinate space, say X. , i.e. ai, F bj .

Je V

By hypothesis, is'a T -space, hence there exist open

X, .
€ V and

'jn¢ v, bj.¢ u.
By the definition .of thé product space, the projection

Tg 1 x——»x_-‘P is continuous.

Accordingly, T\'&‘

-t =1 * ol
» e T ol ae vl andp g W:I:(v]. a ¢ T,ol.

Hence X is also a T -space.

-
[U] and .n:iu[‘” are open sets of X and

4.15: Theorem:

Thi = ] - .
e arbitrary product ?' 'ra/"spacaa is a Tﬂyz space
. N ~

1421
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o - ‘ 5
_ Accordingly, ‘T[. (U] and '\'F (-v) are disjoint opén sets in X

Proof: y B e ‘.

Let zx- e x} be a eou-cuon of Ty sepac

x = ‘L’J Xy be the product: space.

et p = Laite IS ana g = vyl € 1) be atstinct
points in X.

Then p and g must differ in at least one coordinate space;

sy Xy teenn B . i .
By hypothesis, xj, tea 'ra/ --p-c., hence ‘there” exist
disjoint open sats U and v, in xJ sucH that '5“ e v, A

b:‘é Vand\ﬂﬂvnﬂ 3 7 » -

By the definition of the product(space, the projection _‘ ¥

T[». X —rxj, s continuous. e

o
such that p e THu], 7 € Tg‘[vl-ua
f(u] ﬂ vl < ﬂ RO Rak A3 .

= T\:‘,[u nv] . ) >
a = -“'i‘:[n
o = =g -
Hence Tj,(0) ﬂ‘\'\;[vl =g .- -

Therefore X is’also a T, -space.
17';:.

4.16: Theorem:

The finite product of discrete spaces is aldiscrete space.

Proof: .

Without loss of generality, let X and Y be discrete spaces. .

Let Z = X x Y = {(x,,)/ xXEX, YE 1} be the product space.

[431



Let Zx‘

By the definition of product space, the projections

p1 Z—>X and q: Z—>Y are continuous. Let Ix§ and Jy,

be any singleton open sets in X and Y respectively. Then
9"({:{,3) - {(xi,y,)....(ﬂ,yj)“..g ana
q"l(Zys'g) = 0y g )een(xpay ) e} are open sets tn z ane
5 (fx3) N (4} = Jxgox)I8 te any open singieton set
in Z. Hence Z is a discrete space.

, .
4.17: Theorem: ¥
The arbitrary product of indiscrete spaces is an indiscrete
epica. s o
Proof: - "

t €1} bvea collection of indiscrete spaces.

Let X = T X; be the product space.
By the definition of product space’, the ’projeccion

'\TL: X —¥X{ is an open map. .

Hence # = TIL(f) and X = TN (X) are open sets of X.

UC X ig open in X implies that TTL(U)C X; is, open in X;
and T (0) = g or X¢.

Therefore U .must be g or X and X is an indiscrete space.
4.181 Theorem:

®Being locally contractible® is a finitely productive

property.




Proof: (Based on proof of theorem 10.35 in 41, page 186)

L*e $x3. 1= 1,2,...,0, be a finitesfamily of locally

. : i
. 5
contractible topological spaces. Let @; be a contractible .. o

i basie of X;
Then §B, x B, x...x B/ 'Bied ! N} tsa 4
E ‘cont¢ractible basis of the product space. . v

4.19: Theotem: . .

Total discon a is an ive property.

Proof: ! .

Let X be a non-empty set and let T/,T be tovologies on X

< 'such that T T and (x,T/) is totally disconnected. Since
the identity map 1g¢ (X,T/)—>(X,7) is a closed map, than
. any set,A that is closed in T is also closed in T. Also
tr ae 17 1a closea in 2!, then X - A_is open in T/ and
v et

also in T since 1y is also an open map. Hence, (X,T) is a

& totally disconnected spadw. X
. 4.20: Theorem:
"Being distrete" is an expansive property. -
Proof: / . . : o
Let X be a set and T/, T be topologies on X such that /\ :
: o 1'C 7 and (X, 7!) la discrete: Then T! = T and hence *
(X, 1) is also disczete. Thus "be df{scrote" is
: expansive property. ' 4
B H ;
- [4s]




4.211 Counterexamples:

. © The fixed point property 1a'not closed hereditary.

\

Let X = [0,1] and ¥ = Lo§U L.
Y with the discrete subspace topology is a closed subspace
of X. It is vell known by the Brouwer fixed point theorem

Y does not have the

that X has the fix‘ed point propert
. fixed painc. property, since the \continuous function

£1 Y—3Y s.t. £(0) = 1 and £(1) = 0 is such that for any

ye vy, £(y) fy. : % . o

4.22: Counterexamplej )

The fixed point prﬁpErcy is not open heceditary. J Y

Let X = [0,1] and ¥ = (0,1). 7

Y 15 an open-subspace of X. X has the fixed point property.

Y does not have the fixed point property, since the

A L e

coptinuous function £1 Y—>Y s.t. f(y) = y/2 is such that

for any ye& Y, £(y) # v.
% 4.231 Counterexample: -

"Being locally contractible" is not closed hereditary.

Let/X = [0,1] and Y = the Cantor et(49, page 57).

is locally contractible (26, page 191).

Y is a closed subspace of X and Y is not locally connected
. . | g
since it ig totally separated\ Hence Y.is Tn locally

contractible. .
5 -

[46)




4.24: Cqunterexample:

Completely mormal, ’rf and Tz,/l‘ua not open continuocus

topological properties.

Let X be the union of the lines y = 0 and y = 1 in ¥ with

the usual topology. Let Y be the quotient space of X

obtained by identifying each point (x,0), for x p 0, with

the corresponding point (x,1). The resulting projection map

piX—>Y is continuous and open,'but p(0,0) and p(0,1) a

distinct points of Y.vhiEh do not have disjoint

neighbourhoods. Hence Y u not T, and thus not Tafp T,

und

b

completely normal but X po!!as!al all of those proplztlcl.

(56, page 88) example 13.9(b))

4.25: Counterexample: ¥

Total disconnectedness is mot an open continuous

topological property.
<

The rationals, Q, with the usual topology is a totally

disconnected topological space (41, page 177). The sat

.13 wien tne 1nduc:e'2e topology is not a fotally

disconnected tnpolngicnl space. Let a/b € Q be in lowest

-terms where b# O and define a/b to be odd ‘if a is an odd

integer and even if a is an even 1nteqtr\ Let £1 Q—70,1%

be defined Buch that

if a/b is even g

f(a/p) = (o,
.

1

’ it a/b is oadd

1471 N
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_4.27: Counterexample:

Then £ 1s continuous since 10,1} is indiscrete and f is

open since the image of any open sef in @ has to e the sef

»
$0.1} or g.

r
4.261 Counterexample: N

LPURL not a closed continuous topological property-

(56, page 87; example 13.9(a)) is an example of a closed

continous mage of a Tpy -space Which is not a T,y-space.

¥ 0 - ‘
The fixed point property and "being contractible” are not
closed continuous properties and hence not divisible

properties. . ) .

S {
Let X = [0,1] and r'_s’., 2 .
It is well known -that [0,1] is contractible and has the
fixed point property and s/ is not contractible and does
not have the fixed point property. The map £1 X—3¥ s.t.

£(x) = (cos 2Wx, sin 2mx) is a closed map (37, page 101).

4.281 Counteroxamples

It propesty P s a oo T4 'r‘_‘. Tygy Tegular, completely
regular, normal, completely normad, totally disconnected,
u.ent"'ur metrizable topological propéerty, then P is not

a contractive property.

Let X be a finite set with at least two points and T/,T be

[48]
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the indiscrete and discrete fopologies on X respectively.
. T'C T. Then, by (49, pages 170-171), (X,T) has 2ll of the

above properties and'(X,T/) has nome of those. - s &

4.29: Counterexample: % ¢ .

If propersy P ds a Ty, Ty. T, Tg oor p'rl:p!plch

topological property, them P is not ontractive property.

Let X be an uncountable set . Let T be the dllcf.tlf -
topotogy on X. Let T/ be the countable complement tppology

4 :
on x. T!c T. Then, by (49, pages 170-171), (X,T) has a1l

of the abpve properties and (x.r")?a none of tho

4.30: Counterexample:
The fixed point property is not a contractive or expansive

topological property.

[0,1] with the usual topolody has the fixed point property

but if it is given the Giscraie ur AR8 indiscrete topology
it does not, have the fixed point property for let .
x[oll]—-—';[u,l] be the function such that
flx) =(x+% , 0% x5} ' s

x5 ka4 x <:l

0. , x=1
Then f is continuous if the domain is discrete or the range

is indiscrete and f(x) # x for any x & (0,1].

1491
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4.31: Counterexample:
_"Being locdlly contractible” is not a contractive

topological property.

The se€ of rationals, Q, with the usual topology is not
locally connected and hence, not locally contractible. @

vith the discrete topol}q{ is locally contractible.

4.321 Counterexample:

The fixed point property is not an isotopy property and
o

hence not a homobotproperty‘

[0,1]+is isotopic to (0,1).(28, page 191; proposition 3.3)
[0,1] has the fixed point property and (0,1) does not.

4.33: Counterexample:

"Being locally Egy*cihle" is not an isotopy property.

(22, page '44)
Let X be the set of all points in the plane composing the
square i(;{,y) /o< x<1, 0%y=1? .
Let Y = XU §(x,y) / 12y%2, x is rational and 0<x=1j.
X is locally contractible-and Y is not locally conmtractible
as any picture will show. X is isotopically equivalent to. Y:
define )
£1 x——;h (x,y)—>(x,y) -
gr Y—>X1 (x,¥)—>(x,y/2)
het X —¥X: (x,¥)—(x,y/(2-t))
[50)




kyt XY—>Yr (x,y)—>(x/y/(2-t))

HE X x IT—bXe (x,708)—¥hy (x,3) = (xo3/(2-8))

Ki Y x I—3T1 (x,7,8)=rk (x,y) = (x,¥/N2-¢))
Now all functions defined above adre continuous since
Pt R* x 1 —R* x 1. (x.v.t)-—)(x.y/(:-t‘)) 18 continuous
since T, o P an¢ T[ o P are both continuous vhete T,

and T\’ are the projections of R——)l’(. Then £, g, and

L
kg are imbeddings since they are clearly 1-1 and sgen on?
their images. By inapsccion fo.g=Kkand 1y =k,
~gof=nhgand 1 = h.. hence X and Y are hanoc‘opicllly
équivalent. &
4.34: Counterexample: 4 .
"B_a(ng locally contractible” is not a countably px,uducélvc
topological property.

The Cantor set is not locally cqntxuctlbls since it is not
CUGHRILY COREERECR ERA 1 LQuNNe einbEBIE product of
" locally contractible lpaca;\> {o,z}",vn&?e/u,z'ﬁ 18 given
the discrete topology, is homeomorphic to the Cantor set)
AN ' '
4.35: Counterexample: "
-"Being contractible® is not an expansive topological

property. P : ’ ' {

\

The nc, R, of reals, with the usual eopoxaqmn

ccntrlctlhle but with the dhcretn topo.lcgy is nao.

[51] .




H
i
1

connected hence, not contractible.

4.361 Counterexample: .

*Being locally contractible® is not an expansive

topological property.

. The set, R, of\reals, with the usual topology, is locally

contractible but Whth the indiscrete zannnuunauoku)
extension of R, which is finer than the.usual topology on R;
is not locally connected and hence is not, locally

contractible. N
Table VI indicates the properties which are not

hereditary and not closed hereditary and /or not opén

hereditary properties. The "=" in a line indicates that a

counterexample is either given in this paper or referenced

in the literature. The "-* in a line indicates the

invariance is implied by the "=" in the same line, due to
¢

the contrapositive statements of the following:

Hereditary =)ckosed hereditary & open hereditary.

Table VII indicates the propertles\vhich are not
continuous, not divisible and not opgn continuous and/or
%

not closed continuous properties. The "=" in a line

indicates that a counterexample is either given in this

‘" in a ldine’

.paper or' referenced in the literature. The

indicat

the non-invariance is implied by the "=" in the

3 - .[52]




same line due to the cenu.punu/ stat
o folloving:
Continuous % divisible

v 2 open continuous & closed continuous.

Table VIIT indicates the properties vhich ara mot
continuous and not contractive properties as well as those
which afe not isotopy and mot homotopy properties. The *="

. < in a line indicates that a couhterexample is either given . -

in this paper or referenced in the literature. The "-*~ia_a

line indicates the non-invariance is implied by the e tn
_ . the same line, due to the contrapositive utncam;nti of the’
f:llovlngx
Continuous =) contractive. “
Homotopy = isotopy '
/ L Table ;’} indicates the properties which are not
arbitrarily productive, not countably productive and/or not
+ ;
finitely productive properties as well as those which are
not expansive properties. The "#" and/or "=" in a line \
. indicate that a counterexample is either given in this
paper or referenced in’ the literature. The "-" h; a line -
fndicates that the non-invariance is implied by the "=* in
i) aaEe Xiie) diia,. the Contraposltive Ntatsmant /of Ehe
following: Arbitrarily pr;‘iln‘cclva = countably productive

. = finftely productive.
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3 Table VI : .

COUNTEREXAMPLES FOR NON-HEREDITARY PROPERTIES ™

_Not cloped hereditary. not hereditary
Not open hereditary #not hereditary
"=* indicates. that a N
counterexample is either Reference to
given in this paper or
found in the literature.|’|,]
W N stands for
ok normal.
w- indicates that the s
non-invariance of the ol CH stands for
property is implikd by- |3]4[3 closed hereditary.
LELIN e LIS L3
Alol3| on stands for
b+ i open hereditary. -
Property solg| e G
=|olo
o
' = g
2
2y, '
3
30
3 =1 15]"41,p253 (Ty 15 N)
$ N .
egular
ompletely regular
ormal 1 1=]"31,p253_(N 35 _Ty)
ompletely normal
cted b
ath connected N
ocd11y connected =1= 41,p185 -
otally disconnected B
ompagt 2 -1 1= . p271-273
inde18f 1T 1= .p271-273
ocally compact. = . p280 =
ountably compact -1 1= .p271-273
aracompact. I I= .p162
eparable . 1= . p50
econd_countable
irst_countable
iscrete
ndiscrete
etrizable 3
ixed point =1=]= ),Cll-ll.Zl OH-4.22
ontractible < 2
ocally contractible |-|= 4.23
5 [54]




/\

s %Y = Table VII

COUNTEREXAKPLES FOR NON-CONTINUOUS PROPERTIES

Hot closed continugus P not divisible $ not continuous
Not open continuous 3 not divisible D not continuous

"=" indicates that a
counterexample is either

given in this paper or 8 Reference to "=,
found in the literature. HE
m-" indicates that the S.E oC stands for
non-invariance of the o [38 open continuous.
- property is impiied by |3l8|%|S ?
LELH . salel, cc stands for-
-l 1 . closed
’ FNEH continuoua.
Property a8 ~
° =[=[=[=[ec s _cc-a1,p138
1 == _[41,p198 N
2 2 -[=[=[=[oc-41,p198 1,p254]
'at, =1-]=]=]0c-4.24 =26
3 -1-Esl'=[oc-41,p208 1,p254
3, A-[£]=]0oc-41,p243 1,p254
3 =1=¥=| _[41,p254
“I==T3.24
eguiar -|=]=]0c-41,p208___cc-41,p254
ompletely regular -1-I=]=[oc-41,p243 _ cc-41,p254
ormal ) —-[=[_[41.p254
ompletely normal “I=I=[[4a.24
Connected ]
ath _connected 7
ocally connected T
otally disconnected |-|- 4.25 7
' 7
inde1Bf
ocally compact 1= [=[56.p133 O
ountably compact \
aracompact J=1=][=["[58.p133
. eparable :
econd_countable =1=]"[=[34,p104
irst_countable -1=] [=[34,p104
iscrete
ndiscrete
etrizable - 1=]=[=[0c-50,p697
1xed_point v 1= [= 2
ontractible = I= €C-4.27

ocally contractible




N Table VIII
COUNTEREXAMPLES FOR NON-CONTRACTIVE AND NON-HOMOTOPY

PROPERTIES

Not contractive = not continuous R N
Not_isotopy = not homotopy. .
“=v g " indicate

that a counterexample 3 /
16 either given in \

this paper or found v

in the literature. . Reference to

s_ngmen indicate that w=v and ngn.
the non-invariance of
the property~is '
impllied by "=r&¥gn
respectively.

Continuocus
Contractive
Hogotopy
Isotopy.

Property

©
v
v
>
»

5
egular -
ompletely regular -
ormal =
ompletely normal -
onnected & .
ath connected
ocally connected -l= . 41,pl85
otally di ted |[-|= 4.28

ke
v
wfulwlofofolofululafuln

ocally compact, -[= 41,p280
ountably E . 5
ar! t -[= 4.29 ¥
eparable )
econd countable -
irst _countable -
lscrete =
ndiscrete
Metrizable -l= 4.28
Fixed point =¥ =-2.30 %-4.32
| 29] Contractible
30] Locally contractible |-|=|*|#| =-4.31 ¥-4.33

1,p273
41,p273
4.28

N [56)




it
"

covﬁTkRBxAxP‘!}ss’!on NON-PRODUCTIVE AND NON-EXPANSIVE

Table IX-

PROPERTIES N

Not finitely productive =% not countably productive
>

not arbitrarily prodpctive
“$n,2nd "= indicate LR
that. a .counterexample is [&[p|w
either given 'in this o '
paper or found in the | v|® b
1iterature. . HEH X
i Malg \Reference.to
"-v indicates that the o Al N
non-invariance of the Axe "§% and "an
property is.implied by | 87| %3
nen, l's| o) @
5 8l 8| ot a
ol -l @
Property ' 48] 8 o N
<| Of nf @
S
\
1
2tz i 2
3 49,p88-89.
s, 49,p88-89 g
3 “[=1= 41,p254 %#-49,p868-89 |
L4 olelw =-24,p8 #-49,p88-89
egular 49,p88-89 >
ompletely regular 49,p88-89 =
ormal -1=1= =-41,p254 #-49,pB6-89
ompletely normal -=1= =-2%,p80__#-49,p88-89
onnected _ .49,p41-43
ath _connected 49,p41-43 B
ocally connected -l= =-41,p186 #-41,p185
otally disconnected
Compact "41,p271-27
indelBf == =6 #-41,p271-273
ocally compact -I= =-49,p121 #-41,p280
ountably compact == L p192 $-41,p271-3 |
aracompact -1=1= P #-49,p88-89 |
eparable = L p123 _#-41,p271-
econd countable +p123 #-41,p271~
irst_countable = =-49,p123 #-41,p271-
fscrete -l= 49,p12 Z
ndiscrete 49,p41-42
etrizable = =-30,p100 ¥-49,p86-89
ixed point -[=[= 12,p977 #-4.30
ontractible -4.35,
ocally eontractible |-|= ~4.36
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