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If p: X + B is a principal G-bundle, an automorphism
of p is an equivariant map of X to itself over B. The
set Q(p) of all such automorphisms inherits, in a natu-
ral way, a topological group structure. Similarly we can
define, for a fibre bundle pF: XXGF + B, the group }(pF)

of automorphisms of pF

and, under suitable conditions,
this is also a topological group. The purpose of this
thesis is to obtain information on the homotopy properties
of 9(p) and ;(pF). This is accomplished by using
known relations between two bundles in order to determine
corresponding relations between their groups of automor-
phisms.

Having shown that ﬁ(pF) is, algebraically, a quo-
tient of ?(p) classified by the subgroup of G which
acts trivially on F, we prove that such classification is
often also topological. Moreover if h: G - K is a topo-

= is the bundle induced from

logical group morphism and p
p by h, there is a homomorphism H:: g(p) - Q(ph),

with image g(ph), which is a fibration if h is oy
an n-equivalence if h has similar properties. This gen-

erates information on the fibre bundle problem and also on



= I¥i =
the effect of an enlargement of the structure group of p
on g(p). Several computations are given, especially
when the structure group is a classical group.

The already known relation between 4(p) and the
space mlap(B,BG;k), where k is a classifying map for
p, is then interpreted as a natural transformation con-
necting Hg and the map induced by h, in the obvious
way, between the corresponding loop spaces. We also out-
line a theory analogous to that of the main body of the
thesis; in it a change of the base space replaces the
change of the structure group or fibre.

Finally, we give a non-standard construction of fibre
bundles and associated principal bundles which leads to a
simple proof of the equivalence between the categories of
principal G-bundles over a space B and of fibre bundles

over B with fibre an effective G-space F.
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If p: X+ B is a principal G-bundle, then an auto-
morphism of p is an equivariant map of X onto itself
over B, The set of all such automorphisms can be given
the structure of a topological group and will be denoted
by q(p). Similarly if p': XxcF + B is the fibre
bundle associated to p and with fibre a G-space F, an
automorphism of pF is a map of the form foI:xxGF - XxGF,
where f is an automorphism of p. The space of all
automorphisms of pF is denoted by }(pF). It has a
group structure and, under suitable conditions, it is a

topological group.

In recent years several authors have obtained results
concerning the homotopy properties of q(p) and }(pF),
the interest in such matters being increased by the
occurrence of the group Q(p) within the context of the
"'gauge theories" of theoretical physics. Even without
this, however, the topological properties involved are
sufficiently interesting to justify a detailed study and

this thesis examines only these mathematical aspects.

What seems to be the first work on the subject was



carried out by I.M. James ([J] page 47) who, identifying
G(p) with a certain subspace of the mapping space
Map(X,G), showed, for example, that if G is abelian
then G(P) is homeomorphic to Map(B,G).

D.H. Gottlieb used a different approach (see, e.g.,
[Goll, [Go2]), showing that when p is numerable, ?(p)
has the same weak homotopy type as the space of loops on
the mapping space Map(B,BG;k), where k: B » BG is a
classifying map for p. He also looked at the space
}(pF) ([Go2] prop. 6.1), but only in the case in which
the fibre F is effective.

New proofs of modified forms of Gottlieb's result,
obtained within the context of a general theory of
fibrations, have been obtained by C.Morgan ([Mo] chapter 3)
and P.Booth, P.Heath, C.Morgan and R.Piccinini ([BHMP1]
and [BHMP2]) together with some computations of 'i( i(p))
in particular cases.

Other work has also been done for the cases where

p carries a differentiable structure (see, e.g., [CMI1).

One feature of the methods used by these authors is
that they provide information about ?(p) on the basis
of data concerning only the bundle p. A distinguishing

element of the approach used in this thesis is that we



start off with known relations between a pair of bundles,
p and q; for _instance q might be obtained from p

by an enlargement of the structure group, or, alternatively,
q is a fibre bundle and p is the principal bundle to
which it is associated. We then construct homomorphisms
of topological groups between the corresponding groups of
automorphisms and may, in suitable circumstances, use them
to transform data about g(p) into data about g(q),

or }(q), and vice versa. For example,we are able to
use the computations of wi( G(p)) given in [Mol in the
case where p is a principal U-bundle over a sphere to
compute many homotopy groups of q(q) in the case where
the base space of q is a sphere and the structure group

one of U(n), SU(n), SU or GL(n,C).

A basic technical tool used is a homeomorphism that
exists between s(p) and the space of sections of a
certain functional bundle (p p)G associated to the
principal G-bundle p. This homeomorphism, and its
analogue for ?(pF), reduce the study of the topology of
i(p) and of }(pF) to that of a more familiar type of
space and allows us to view the homomorphisms between
automorphisms groups, that we have referred to, as being

induced by certain maps between the total spaces of



appropriate functional bundles. Now these inducing maps
are frequently locally trivial and this facilitates
various proofs. Another important point is the fact that
the relevant homomorphisms are natural with respect to the
weak homotopy equivalences of Gottlieb, thus they
correspond, in a strong sense, to induced maps between

loop spaces on the corresponding mapping spaces.

The thesis is structured as follows. After a brief
description of the convenient category of topological
spaces used, chapter 1) contains an exposition of the
definitions and properties of principal and fibre bundles
that are needed later. Also we introduce the functional
bundle construction used and derive a few of its
properties.

In the first part of chapter 2) g(p) and }(pF)
are defined and some of their features analyzed. Certain
normal subgroups of G(p), determined by subgroups of G,
are described: they will be seen to play a basic role
later., Also the homeomorphism between q(p) and the
space of sections to the functional bundle (p p)G is
described, as well as its restrictions to these relevant
subgroups. This is used immediately to provide a
generalization of the already mentioned result of James.

The analogous homeomorphism for }(pp) is also discussed.
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In the later part of the chapter we describe how a
G-space F and a topological group morphism h: G + K
determine, respectively, continuous homomorphisms

F, F h, h

Iy 9(P) + }(P ) and Iy s(p) + 9(p ), where p
is the principal K-bundle determined by p and h. In

h

the special case where h is the inclusion of a subgroup
in a group, ph is the principal bundle obtained from p
by the corresponding enlargement of the structure group;
this leads to several applications later. Using the
homomorphism r; we prove that }(pF) is, algebraically,
a quotient group of g(p), the kernel being determined

by the subgroup of G which acts trivially on F. This
classification, under suitable conditions, is also valid
topologically. We also show that the space }(pF), in
favourable circumstances and for a convenient choice of

h, can be identified with the image of the homomorphism

h

np mentioned before. In the last section we show that

if p is a principal (G1
s isomorphic, as a topological group, to the product

X...XGn)-bundle, then %(p)

-

e(Pl)x...x ?(pn), where Py is a corresponding Gi-bundle
Ci=1,...;n).

The homomorphism n:

can become a (Hurewicz or Serre)
fibration, provided h has similar properties. This
idea is formalized and exploited in chapter 3), where

different situations, leading to different kinds of
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fibrations, are analyzed. One consequence is that, under
suitable conditions, we are able to identify é(pF)

with a subgroup of the group of complete path components
of g(ph), where h is chosen as before. Thus the
study of the homotopy groups of the spaces ?(pF)
reduces, except in dimension zero, to the study of the
same problem for groups of automorphisms of principal
bundles. Another important homotopy property of h is
shown to be reflected by the induced homomorphism n?;
namely if h induces isomorphisms of homotopy groups in
a range of dimensions, then so does n:, even though the
two ranges, depending on the dimension of the space B,
may be different. The results of this chapter can be
considered as central to the thesis, in that they provide
the means of obtaining most of our applications and main
theoretical results.

In chapter 4 we use functional bundles to outline
the proof of a strenghtened version of Gottlieb's result.
The method in question is taken from [BHMP2] and is used
also to prove a key result of this chapter: the homo-
morphism n: corresponds, in a natural fashion, to the
map 2(h,)p,between the corresponding loop spaces of
mapping spaces, induced by h_: BG > BK. Putting this in

categorical terms, there is a natural isomorphism between
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the functor which associates to h the homomorphism n:

and the functor which associates to h the H-map n(h,)B
An important consequence of these results is that, in
suitable conditions, ;(pF) can be identified, up to weak
homotopy equivalence, or even homotopy equivalence, with
the H-space consisting of a group of path components of a
loop space on a certain mapping space.

The results of chapters 3 and 4 are applied in
chapter 5, where we compute a variety of homotopy groups
of the groups Q(p). Some of the cases for which this
is done have been mentioned previously and results for
orthogonal groups, analogous to those described before for
unitary groups, are given. We also obtain conditions
under which g(pF) can be identified with the corre-
sponding group g{ph) rather than with a proper
subgroup of its group of path components.

The work is completed by two appendices. The first
one outlines a theory analogous to that of the main part
of the thesis, in which the technique of inducing a
principal bundle ph from p by means of a homomorphism
h is replaced by the familiar method of inducing a
principal bundle Ps from p by means of a map f
between the base spaces. The homomorphisms between bundle

automorphism groups obtained with this approach have



properties that are often analogous to those described
earlier.

In the second appendix we give another application
of functional bundles. Namely, we show that associated
principal and fibre bundles can be obtained one from the
other as associated functional bundles. This construction
has the advantage of symmetry and of providing, in the
case of an effective fibre F, a simple proof of the
equivalence between the category of principal G-bundles
over a space B and the category of fibre bundles with

fibre F, and structure group G, over B,
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BASTIC DEFINITIONS




The spaces analyzed in this thesis are spaces of maps
and it is well known that several interesting properties
of such spaces are valid only under certain condi-
tions. If one works in the category ZTop of all topolo-
gical spaces, this means stating such conditions each
time they are needed, with the consequent loss of sim-
plicity in the exposition.

In order to avoid this complication we shall make two
basic assumptions which will be adhered to throughout the
thesis, without being recalled. These assumptions do not
rule out any of the interesting cases that one meets in
practice (e.g., CW-complexes, manifolds etc.) and allow
us to use those needed properties without any problem.
Clearly, there are alternative assumptions which can be
made to serve the same purpose and we are certain that the
reader will easily be able to determine how to maintain
the validity of our results under those different

conditions.

The first and main assumption is as follows.

ASSUMPTION 1 We shall work within the convenient

category X of k-spaces.
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This category (see [V1) is a full subcategory of Top,
the objects of which are topological spaces having the
final topology with respect to all incoming maps from
compact Hausdorff spaces. There is a functor

K: Zop + X
right adjoint to the inclusion functor, which assigns to
each topological space X its '"k-ification'", that is,
the same underlying set retopologized with the final to-
pology with respect to all maps from compact Hausdorff
spaces to X.

With this in mind, we now begin to give some defini-
tions and results which will often be used in this thesis
without being explicitely quoted. All the proofs will be
omitted, but can easily be obtained or found in the

literature.

A space is an object of the category X.

A subspace U of a space X is a subset of X
endowed with the "k-ification" of the relative topology.
Notice that if U is closed or open in X, then the sub-

space topology and the relative topology coincide.

Given two spaces X and Y, the produet XxY is

the "k-ification" of the usual cartesian product in ZTop.
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A map 1is a morphism in X. The notation
£ X'> X & M- g
means that f is a map (or, sometimes, just a function)
from X to Y, which associates to the typical element
xeX the element yeY. For a space X, the identity map

on X will be denoted by ly , or simply by 1 , whenever

no confusion arises.

The initial topology on a space X with respect
to a family of outgoing maps can be defined as in Top

(see [Brl, page 153)

The notion of final topology , and, in particular,
of quotient space , coincide with the analogous construc-
tions in Top ([Br] section 4.2), since the functor K
preserves colimits. We shall often use the fact that, if
iy
X has the final (or, in this case, weak) topology

X is a space and {U is an open cover of X, then

with respect to the inclusions ({j: Uj + X}jeJ'

Given two spaces X and Y, the set map(X,Y)
consists of all maps from X to Y. When endowed with
the "k-ification" of the compact open topology ([Br] page
155), it becomes a mapping space , denoted by Map(X,Y).

Notice that for each compact subspace C of X and each
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open subspace U of Y, the set
((C,U)) = {feMap(X,Y)|£(C)<U}

which is subbasic for the compact open topology, is still
open in Map(X,Y).

The following theorem will often be referred to as
the ezponential law and constitutes one of the main

advantages of working in the category X.

THEOREM Given spaces X, Y and Z there is a homeo-
morphism

&: Map(XxY,Z) + Map(X,Map(Y,Z))
defined by the relation o(f)(z)(y) = f(z,y).

Denoting by f£+g the composite of the maps g: X + Y

and f: Y » Z, we then have:

COROLLARY  For any spaces X, Y and Z, the following
functions are continuous:
ev: Map(X,Y)xX + Y: (f,x) ~+ f(z)
c: Map(Y,Z)xMap(X,Y) -+ Map(X,Z): (f,g) ~+ f-g

If p: X+ B is a map and U (resp., b) is a
subset (element) of B, then X|U (X|b) will denote
the subspace p (U) (p *(3)) of X.
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If p: X+ B is a map, a sgection of p is a map
s: B+ X such that p-*s = lB' The subspace of Map(B,X)
consisting of all sections of p will be denoted by
sec(p). When p is a bundle or a fibration we shall
also say that X is the total space and B the base
space of p.

The results which we are now going to quote require
the condition that certain spaces be Hausdorff. Since
they will be used quite frequently in the thesis, our

second assumption will be as follows.

ASSUMPTION 2  All basic spaces that we shall consider,
that is, all spaces not obtained from others through some
construction of sort, are assumed to be Hausdorff. More-
over, all quotient spaces that we shall consider are

assumed to be Hausdorff.

This hypothesis, as we shall see, forces all the
spaces that we shall construct to be Hausdorff, a condi-
tion perhaps excessive, but which will greatly simplify
the exposition. We also like to notice that a Hausdorff
k-space is also "compactly generated", that is, a subspace

of such a space X is closed if and only if its inter-
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section with each compact subspace of X is closed.

If p: X+ B and q: Y » B are two maps with the
same range space, a map f: X » Y is over B if q-f = p.
In this case the subspace of Map(X,Y) consisting of
maps over B will be denoted by M(p,q). Also, for a
given map feM(p,q) and a given subspace U of B, the

notation £|U will denote the restriction of £ to X|U.

The following result is one of those which depend

mainly on the fact that B is assumed to be Hausdorff.

LEMMA  Given maps p: X+ B and q: Y + B, then M(p,q)

is closed in Map(X,Y).

Still in the same situation, the pullback of p
and q 1is the (closed) subspace XnY of XxY defined
by:

XaY = {(z,y)|p(=) = a(y)}
and there exist maps:
Py’ XnY » Y (z,%) vy
qp: XaY + X: (z,y) ~ =
paq: XnY + B: (z,y) ~ p(x)
and the "universal property'" described by the following

theorem.
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THEOREM Given a space Z and two maps f: Z - X and
g: Z » Y such that p<f = q-g, the map

(£,8): Z » XaY: 3 > (£(2),8(3))
is the unique element in the intersection of M(f,qp)

with M(g,pq).

In general a commutative diagram of maps of the form
'
WPy

ar | la

X ——P %R

is a pullback diagram if the corresponding "universal
property" holds; that is, if for any space Z and any two
maps f: Z > X and g: Z - Y such that pef = q-g, there

is a unique map h: Z + W such that q'+h=f and p'-h=g.

A topological group is a space G which has also
a multiplicative group structure such that the multipli-
cation and inverse functions:

M: GXG > G: (g,9') v* g¢'
iz G+ G: g vr gt

are both continuous. If G is a topological group and
H is a closed subspace of G which is also an algebraic
subgroup of G, we shall say that H is a topologiecal
subgroup of G, or that H is a subgroup of the topo-
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logical group G. When another expression will be used,
this will refer to a situation different from the one

just described and clearly identifiable from the context.
The notion of a normal subgroup will always refer to the
algebraic meaning of the word and will never carry any

topological significance.

A continuous homomorphism h: G + K between topolo-
gical groups will often be referred to as a topological
group morphism. An isomorphism of topological groups

is a morphism which is also a homeomorphism.

We conclude this introductory chapter with a few

remarks on the notation.

First of all, we shall quite often consider collec-
tions of sets (e.g. open covers of a space) whose
indexing set has no relevance at all in the discussion.

In those cases the indexing set will be omitted complete-
1y, in order to simplify the notation, and only the
typical element of the collection, enclosed in curly
brackets, will identify the collection. So, for instance,
{U} will stand for {Uj)ij whenever no confusion arises.

The use of curly brackets to describe sets, like
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G = {g|geG}

will be clearly distinguishable from the context.

The symbol ~ will denote a topological homeo-
morphism and the symbol ~ an algebraic isomorphism. If
X and Y are spaces, the notation X n~ Y indicates that
X and Y are homotopy equivalent, while if f and g
are maps, f n g means that f and g are homotopic.
The symbol // will signal the end of a proof, or, when
appearing at the end of the statement of a result, that

the proof is omitted because of its simplicity.

When quoting a piece of literature, an abbreviation
in square brackets will identify the paper or book quoted,
according to the list presented, in alphabetical order,
at the end of the thesis and will be followed by the
exact location, within that work, of the needed result
(notice that such convention has already been used in
this chapter). So, for instance, [Hus] th. 3.2 page 42
will refer to theorem 3.2, on page 42, of the book by

D. Husemoller on "Fibre bundles".

For any other symbols or terms used, we refer the

reader to the general literature.
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1) G-SPACES AND G-MAPS

Let X be a space and G a topological group with
unit e. We say that X is a right G-space if there
is a map p: XxG + X, called the aetion of G on X,
such that:

1) for every zeX, p(z,e) = z,

2) for every zeX and every g,g'eG, p(z,99")=p(p(z,9),9").

Similarly we say that X is a left G-space if
there is a map A: GxX + X, also called the action of G
on X, such that:

1) for every xeX, A(e,z) = =z,

2) for every zeX and every g,g'¢G, A(gg’,z)=A(g,A(g’,z)).

Usually we shall denote the element p(x,g) (resp.
A(g,z)) as =zg (gz). Also, for a given subset UcX
and a given geG, Ug (gU) will denote the set
{zg|zeU} ({gz|zeU}). There is a bijective correspondence
between left and right actions; namely, given a right
action p and a left action X of G on X, we say
that p and A are associated if for any =zeX and
geG A(g,z) = plz,g~ ). Properties enjoyed by a given

action have a corresponding analogue for its associated
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action. So whenever that analogy is evident we shall
only discuss the case of interest to us, but we shall

be more specific when significant differences will arise.

1.1 EXAMPLES

a) Let G be a topological group and let H be a
subgroup of G. Then multiplication defines both a
right and left action of H on G. However the two

actions are not associated in general.

b) Let E be the closed interval [-1,1]1 and S° be
the discrete group {1,-1}. Then the map
A: SOE + E: (a,t) ~* at

makes E into a left So-space.

c) Let h: G+ K be a topological group morphism.
Then there is a left action A(h) of G on K defined
by the relation

1152 A(h) (g,%k) = h(g)k

Similarly we get a right action p(h) by letting

p(h) (k,9) = k(h(g)). In general A(h), p(h) and their
associated actions determine four distinct actions of

G on K. However we shall only use A(h).
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Notice that for a given left G-space X and a
given geG the restriction of the action A to {g}xX
determines a homeomorphism

gt 2 Xia X3 % v ge
which will be said to be an action map. In fact

using an exponentisl law we can associate to A a map
13 M: G > Map(X,X): g v g*

Its image, i.e. the subspace of Map(X,X) consisting

of action maps, will be denoted by M, (X,X).

1.4 PROPOSITION Let A: GxX = X be a left action.
Then MX(X,X) has a group structure, given by map
composition, with respect to which A*: G -+ M)‘ (X,X)

is a continuous epimorphism.

PROOF It suffices to notice that,for each geG,

(g"%)* is the inverse of g* .//

The kernel of X is a subgroup of the topological
group G; it will be referred to as the kernel of the
aetion A and will be denoted by Kr, or Kry
according to whether it will be more important to

specify the action or the G-space. The quotient G/er
will often be denoted by QX'
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In examples 1.1 a) and 1.1 b) the kernel of the action
is trivial, while in example 1.1 c) xrx(h) coincides

with the kernel of h.

The analogous construction for the case in which X
is a right G-space gives rise to a map p*: G » Mp(X,X)
which is not a homomorphism, but has the property that
tor any g,g'¢G p*(gg9') = p*(g')p*(g). Hence it is
still true that p* is injective if and only if its

kernel, Krp , is trivial.

1.5 DEFINITION Let v be a (left or right) action
of G on X. Then X is said to be effective if
v is injective, free if vt (e) is the only map in
Mv(X,X) that has a fixed point (or points), admissible

if v is an identification map.

In example 1.1 a) G is a free H-space and we
shall show later that it is also admissible; in example
1.1 b) E is effective but not free, since
(-1)4(0) = 0 = (1)#(0); in example 1.1 c) K being
effective and K being free are both equivalent to h
being injective. It is easy to construct examples of
G-spaces which are free but not admissible, however if

X is admissible then Mv(x,X), being a quotient group
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of G, is itself a topological group. If X is a free

G-space then it is also effective, while if it is not

effective then the action v of G induces an action
V' XxQy + X: (z,gKr ) A zg

(and similarly for left G-spaces) with respect to which

X becomes an effective Qy-space. Finally we notice

that if G is compact then any G-space is admissible.

1.6 DEFINITION Amap f: X+ Y between right G-spaces

is a G-map if,for every zxeX and gsG,f(zg)-f(x)g.

The notion of G-map can be easily extended to the
case in which X and Y are left spaces ( f(gz)=gf(z) )
or one is a left and the other a right G-space
( f(zg)=g"'f(z) or £(gz)=f(z)g~> ), but these are used
less frequently. If X and Y are G-spaces the subspace
of Map(X,Y) consisting of G-maps will be denoted by
MG(X,Y). In the particular case when X =Y = G the
notation MG(G,G) will refer to the right action of G

on itself determined by multiplication.

1.7 LEMMA Let X and Y be two G-spaces. Then

MG(X,Y) is closed in Map(X,Y).

PROOF If X and Y are right G-spaces, let feMap(X,Y)
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and suppose that,for given =zeX and geG, f(zg) = f(x)g.
Choose open sets U and V in Y such that f£(z)geU,
f(zg)eV and UaV = ¢ . Then (({z},Ug™1)) n (({zg},V))
is open in Map(X,Y), contains £, but no G-maps, Thus
the complement of M;(X,Y) 1is open and this proves the

claim. The other cases can be treated in the same way.//

If X is a right G-space, we can also consider, for
each zeX, the restriction of the action p to {z}xG.
this gives rise to a map

@y 26+ Xt g arzg
which, considering G as a right G-space, is a G-map.

In fact we can associate to the action p a map

1.8 P, : X+ Map(G,X): = v =z,

and it is easy to see that the image of p, is M;(G,X).

1.9 LEMMA For every G-space X, the map p,: X » MG(G,XJ

is a homeomorphism,

PROOF Evaluation at e provides an inverse for o, .//
In the case of a left action generated by a topologi-

cal group morphism h: G + K (example 1.1 c)), every
element of MA(h) (K,K) is also an element of MK(K,K).
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1.10 PROPOSITION If h: G+ K is a topological group
morphism and u: KxK -+ K is the multiplication, then
MX(h) (K,K) éoim:ides with the subspace u, (h(G)) of

M (K,K) and is closed in Map(K,K) if h(G) is closed in K.

PROOF  For any keK u,(k) is left multiplication by k,
so it is in Ml(h) (K,K) if and only if k is in the
image of h. Lemmas 1.7 and 1.9 prove that if
h(G) is closed in K then Ml,(h) (K,K) is closed
in Map(K,K).//

1.11 COROLLARY For any normal subgroup H of a
topological group G the quotient group G/H is an
admissible G-space with respect to the left action A(m)

generated by the canonical projection w: G + G/H.

PROOF We only need to notice that in this case the map
A(m)*: G » Mx(")(G/H,G/H) is, up to homeomorphism, the

canonical projection itself.//

1.12 COROLLARY Let H be a subgroup of the topologi-
cal group G. Then G is an admissible left H-space
with respect to the action A(1) generated by the

inclusion 1: H >+ G.

PROOF Again the map A(1)*: H » MA(‘)(G,G) is, up to
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homeomorphism, the identity on H.//

§ 2) PRINCIPAL G-BUNDLES

If X 1is a right G-space there is an equivalence
relation 0 on X obtained setting z0y if, and only
if, there exists an element geG such that y = zg.

The equivalence class of an element xzeX will be called
the orbit of &« and denoted by =zG. Consequently the
quotient space of X determined by 0 will be called
the orbit space of X and denoted by X/G,

m: X + X/G being the canonical projection. When, in
particular, X is free there is a function t from

the space XnX, obtained as a pullback of = with

itself, to G, defined by

1.13 1t XaX + G: (z,zg) ~ g

1.14 DEFINITION The function <t described by 1.13

is called the translation function for X and if it

is continuous X is said to be a prineipal G-space.

1.15 DEFINITION A map p: X + B is said to be

locally trivial with fibre F if there exists an open
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cover {U} of B and, for each Ue{U}, a homeomorphism
oyt UxF -+ p'i(U) such that the composite p-ou is the
projection on U. 1In this case the cover {U} will be

said to be a locally trivial cover for p, each by

will be a local homeomorphism and the collection

{(U,ou)) a locally trivial structure for p.

Notice that for any topological group G and any
space B the product BxG is a free right G-space,
the action being:

1xp: BxGxG + BxG: (b,g,9') ~» (b,99")

With this in mind we can now define the basic

objects of our study.

1.16 DEFINITION A map p: X+ B is said to be a
(right) prineipal G-bundle if X is a right G-space,
p is locally trivial with fibre G and the local

homeomorphisms are all G-maps.

The analogous notion of left principal G-bundle
is rarely considered in the literature. We shall never
use it and hence the word "right" will be omitted

from now on.
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1.17 EXAMPLES

a) Let B be a space and G a topological group.
Then the projection pr: BxG + B is a principal
G-bundle with only one local homemorphism, given by
the identity map. We shall call this a product
principal G-bundle.

b) If H is a subgroup of the topological group G
and G has a local section at H ([Sw] def. 4.12),
the projection w: G - G/H is a principal H-bundle

(use, for instance, [Sw] th. 4,13).
The following result justifies the terminology used.

1.18 PROPOSITION If p: X+ B is a principal G-bundle,
then X is a principal G-space and B is homeomorphic

to X/G.

PROOF Let {(U,¢U)} be the locally trivial structure
for p and assume that there exist zxeX and geG such
that xzg = z. Then there must exist Ue{U} and aeG

so that p(z)eU and oﬁl(z) = (p(z),a). But now we have
(p(=),a) = o5 (=) = o' (=g) = o5 (=)g = (p(=),ag)

thus implying that g = ¢. This means that X is free
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and hence has a translation function t. Using the
fact that for any Ue{U}
(XnX) |U & (X|U)A(X|U) & UxGXG
we obtain, for each Ue{U}, a commutative diagram

xaxyju Y., ¢
x] {1

UxGx6 —2% - @

where o(b,g,9') = g_lg'. The obvious continuity of o
proves the local, and hence global, continuity of the
translation function. To prove the second part we
observe that by hypothesis p is surjective and open
and so it is an identification. Using again the local
homeomorphisms one can easily see that two points of

X have the same image under p if and only if they
are in the same orbit. Combining these two facts it is
immediate to obtain the homeomorphism between B and

X/6G. //

The following definition will allow us to consider

some categories whose objects are principal bundles.

1.19 DEFINITION Given a principal G-bundle p: X + B
and a principal G'-bundle p‘: X' » B', a prineipal
bundle morphism from p to p' is a triple (f,f.,h)
where f: X - X' and f,: B » B' are maps, h: G - G'
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is a topological group morphism and the following

diagrams are commutative:

Ry 6 —P o+ X
vl [ ¢ oa} I
B Lo, @ X'xg 2 xr

The category of principal bundles and principal
bundle morphisms, denoted by P , can now be defined
using the obvious composites and identities. We shall
be interested mainly in some of its subcategories.
Namely, for a given space B we shall denote by PB
the subcategory of P consisting of principal bundles
over B and morphisms of the form (f,lB,h). Also,
given a topological group G, PG will denote the
subcategory of P consisting of principal G-bundles
and morphisms of the form (f,f,,lG). Finally Pg
will denote the intersection of PB and PG; in this
category a morphism is a G-map f: X + X' over B

and will often be denoted by £f: p + p'.

1.20 THEOREM Every morphism of PG

B is an isomorphism.

PROOF See [Hus] th. 3.2 page 42.//

1.21 DEFINITION An object of Pg is said to be
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trivial if it is isomorphic to the product principal

G-bundle over B.

1.22 PROPOSITION Given a principal G-bundle p: X =+ B
the following statements are equivalent:

a) p is trivial,

b) sec(p) is not empty,

c) MG(x,G) is not empty.

PROOF The map

s: B » BxG: b » (b,e)
provides a section to the product principal G-bundle
over B and this suffices to prove that a) implies b).
Now if sesec(p) and BnX denotes the pullback of the
identity on B with p, the composite

x LB L) Sy AL ezt g
is an element of MG(X,G) and therefore b) implies «c).
Finally if f:MG(X,G) the map (p,f): X + BxG is a
morphism in Pg. By theorem 1.20 this proves that

c) implies a).//

We shall now describe two standard constructions
which enable us to produce new principal bundles using

the pullback construction.
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1.23 PROPOSITION Let p: X » B be a principal G-bundle
and f: A+ B be a map. Then the map Pgi AnX » A is

a principal G-bundle.

PROOF See [Hus] prop. 4.1 page 43.//

1.24 DEFINITION Let p: X + B be a principal G-bundle
and p': X' » B a principal G'-bundle. Then the map

pap': XnX' » B is called the Whitney sum of p and p'.

1.25 PROPOSITION The Whitney sum pnp': XaX' - B of
a principal G-bundle p: X - B and a principal G'-bundle

p': X' » B is a principal (GxG')-bundle.

PROOF  The map

pap’: (XaX')x(GxG') = XaX': (z,z',9,9') ~* (zg,z'g’)
is a well defined action of GxG' on XnX'. Let now
{(U,¢)} and {(U,¢)} be the locally trivial structures
for p and p' respectively. (We can assume, without
loss of generality, that the locally trivial covers
coincide) Then,for each U([U), the map
oyRdg: UXGXG! + (XnX') Uz (byg,g") > (0y(5,0),0((bsg ")
defines the local homeomorphism needed to complete

the proof.//



§ 3) FIBRE BUNDLES

Let p: X + B be a principal G-bundle and let
F be a left G-space. Then there is a right action
of G on XxF defined by the relation
(z,¥)g = (29,9 %)
and we can consider the resulting orbit space,

denoted by XxcF, and the projection

1.26 pF: XxgF » B: (2,5)6 > p(=)
An element (z,y)G of Xx.F will be denoted by

[z,y] whenever no confusion arises.

1.27 DEFINITION A fibre bundle associated to the

principal G-bundle p: X - B and with fibre F is a
pair (q,h) in which q: Y + B is a map and

h: Y » XxGF is a homeomorphism over B,

We will usually consider fibre bundles of the form
(pF,l), where 1 is the identity on XXGF, and they
will be denoted simply by pF. Even in other cases the
homeomorphism h will, for simplicity of exposition,
be ignored.

Since for any space B (BXG)XGF ~ BxF, it follows

that a locally trivial structure {(U,oUJ) foxr 'p
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induces a locally trivial structure ((U,oﬁ)) on pF

in which the locally trivial cover is unchanged and,
for a given Ue{U} the local homeomorphism og is

given by
1,28 4f: UXE » (XxgF) [Uz (b,y) > Coy(b,e) syl

Hence for each beB the fibre (pFJ'l(b) is homeo-
morphic to F.

Let now f: p + p' be a morphism in pg. where
p: X+ B and p': X' > B, Then the map fx1: XxF + X'xF
induces a map

£F. XxgF + X'xcF: [2,5] v [£(z),y]

1.29 DEFINITION Let (q,h) and (q',h') be fibre
bundles with fibre F associated to the principal
G-bundles p and p' respectively., If f: p + p'
is a morphism in Pg the map (h')'l-fF-h is said

to be a fibre bundle morphism.

1.30 PROPOSITION Given a space B, a topological
group G and a left G-space F there is a category
p;(c) whose objects are all fibre bundles associated
to objects of Pg and with fibre F and whose

morphisms are fibre bundle morphisms. Moreover there
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is a functor rF: Pg + Fg(G) defined by setting

B
TVilp) = pF and rF(f) = fF‘//
It is also possible to construct, in a similar

way, a category FF(G) associated to PG, but it

will not be used in this thesis.

§ 4) PRINCIPAL BUNDLES INDUCED BY A

TOPOLOGICAL ‘GROUP MORPHISM

Every principal G-bundle p: X + B is a fibre
bundle associated to itself with fibre G, since,
viewing G as a left G-space with respect to its
multiplication, XxGG is canonically homeomorphic
to X ([Hus] cor., 1.2 page 70). The converse is not
true in general, that is, not every fibre bundle is a
principal bundle, since not every left G-space is
a topological group. However the following definition
gives rise to an important exception which will be

used extensively.

1.31 DEFINITION Let p: X » B be a principal G-bundle
and h: G » K a topological group morphism. The fibre

bundle pK: XXGK + B, obtained with respect to the
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action A(h), is said to be <induced from p by h. In
h

this case we shall use the notation p': Xx,K + B.
This different notation will be extended in the’
obvious way to local homeomorphisms, fibre bundle
morphisms and so on; it is justified by the fact that
the action of G on K depends mostly on h and

by the following result.

1.32 THEOREM Let p: X -+ B be a principal G-bundle
and h: G+ K a topological group morphism. Then the
map ph: xxhK + B is a principal K-bundle, the
action being:

h

Pt (Xx K)xK -+ X*hK: ([z,k1,k') ~*> [z,kk']

PROOF  The function ph is continuous since Xx;K
is a quotient of XxK and K is a topological group.
Moreover the local homeomorphisms for ph, as given in
1.28, are of the form

o UXK » (X, K) [Us (3,k) > [oy(ye) k]
and therefore are K-maps. So by definition 1.16 ph

is a principal K-bundle.//

We also observe that the translation function for

ph is given by:
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1.33 1 (X K)AXxK) > Ki ([z,k],l2g,k"]) k"t h(g) k!

1.34 THEOREM ‘Given a space B and a topological group

morphism h: G » K there is a functor nh: Pg - Pg

h

defined by Hh(p) = p  and nh(f) = £ for objects and

morphisms respectively.

PROOF  We only need to prove that for any morphism £
of Pg the map £h is a K-map, since identities and
composites are clearly preserved. To that end notice
that for any L:,k]eXihK and k'eK, if f(z) = zg
we have

h h

£ (Lz,klk’) = £ [z,kk’] = [xg,kk’'] =

= [z2g,klk’ = fh([:c,k])k'

thus proving the claim.//

1.34 EXAMPLE Let H be a normal subgroup of the topo-
logical group G and consider the canonical projection
wm: G » G/H., In this case Xx“(G/H) ~ X/H, where the
action of H on X is just the restriction of the
action of G (fHus] th. 1.1 page 70). The homeomorphism
is obtained associating to an element [m,gH]sXx"(G/H)
the element =zgHeX/H. For simplicity of notation we
shall often consider X/H as the total space of p".

Notice that if H is not normal in G the homogeneous
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space G/H is still a left G-space, so we can define

p%/H but this will be only a fibre bundle.

1.35 DEFINITION Let p: X » B be a principal G-bundle
and 1: G + K an inclusion. Then the principal K-bundle
p' is said to be an extension of p and p is said

to be a restriction of p'.

1.36 PROPOSITION Let p: X » B be a principal G-bundle
and h: G » K a topological group morphism. If p is

trivial or h is trivial then ph is trivial.

PROOF  Using theorem 1.20 we see that the map

T (BxG)xhK + BxK: [(b,g),k]1 ~ (b,h(g)k)
proves the claim in the case where p is trivial,
while the map

t': XxpK + BxK: [z,k] =+ (p(z),k)
proves it in the case where h is trivial.//

Given a principal G-bundle p: X + B and a topo-

logical group morphism h: G + K there is a map

V-37 j(h): X » XXhK: xz v [x,el

1.38 LEMMA  For each Ue{U} there is a commutative
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diagram d
xju MU (X4 K) |U
h
by l l by
1xh

UxG ——————  UxK
and hence if h(G) 1is closed in K then j(h)(X) is

closed in XxhK and if h is an inclusion then so is j(h).//

1.39 LEMMA Let p: X » B be a principal G-bundle
and q: Y > B a principal K-bundle. Then q is
isomorphic, in Pg, to ph, for some topological group
morphism h: G » K, if and only if there exists, in

Pp, @ morphism from p to q of the form (£f,h).

PROOF  If such a morphism exists, then the function
£': XK > Yo [2,k] v+ £(2)k

is well defined and continuous and, being a K-map over

B, defines an isomorphism, in Pﬁ, between ph and q.

Conversely, let f£f': XxhK + Y be an isomorphism in P§

between ph and q. Then the pair (f,h), where

£ = f'+j(h), is a morphism in Py, as proved by the

commutativity of the diagram
xxg A(h)x1 | (Xx, K) X6 £'%h , yex

oy | Joy

) ek LB 2y

which can be easily verified.//
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1.40 PROPOSITION Let p: X+ B be a principal K-bundle
and h: G » K a topological group morphism, If there

exists a principal G-bundle q: Y + B such that qh is

pK/h(G)

isomorphic to p then the fibre bundle has

a section.

PROOF  We can assume, without loss of generality, that
q: Y+ B is such that qh = p. Then the composite
y JM) , x T, x/n(e)
is constant on each fibre of q and hence defines a map
s: B+ X/h(G): b o [j(h)(q™1(2))]
which is the required section of PK/h(G)'//

In general proposition 1.40 does not have a converse.
The following counterexample uses some results which
will be mentioned only in a later chapter, but which can
be easily found in the literature. Since the real line
R is contractible, every principal R-bundle over s?
is trivial. The Hopf bundle n: CL (see, e.8.,
[Sp] 2.7.6) is a non trivial principal s'-bundle and
therefore, by proposition 1.36, it cannot be induced
from any principal R-bundle by the projection =: R » Grks

pK/h(G)

Nevertheless the fibre bundle in this case

SE/SE 2
is n , which is the identity on S and hence

has a section.
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When h is an inclusion, however, such converse

can be obtained, as proved in [Hus] th,2.3 page 71.

The following result will provide a converse to

proposition 1.25.

t 41 PROPOSITION Let p: X+ B be a principal
(GleQ)-bundle. Then denoting by ni: 6ixG2 » Gi
(i=1,2) the canonical projections, p 1is isomorphic
to the Whitney sum p"11p"2.
PROOF  The universal property of pullbacks ensures
that the projections ei: X » X/Gi induce a map
£: X » (X/6)nX/6Y): = v (262,26Y)
Now for any =zeX, gleGl, g2sG2 we have
£(z(g",0%)) = (z(g",92)6%,2(s,g7)6") =
= (z(g",e))6%,z(e" 026" =
= (=6%,26") (¢%,9?)
so f is a (GIXG2)-map over B and hence an

"1 172
isomorphism between p and p np .//

1.42 COROLLARY A principal G-bundle p: X > B is
isomorphic to the Whitney sum of a principal H-bundle
and a principal H'-bundle if and only if G is

isomorphic to HxH',//
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We conclude this section by mentioning a result

whose proof can be easily obtained.

1.43 PROPOSITION Let p: X - B be a principal G-bundle
and let h: G+ G', h': G' » G'* be topological group

P h.h* : h'+h
morphisms. Then (p) is 1somorphic to p

in 2§".//

1.44 COROLLARY Let p: X - B be a principal G-bundle,
h: G + K a topological group morphism with kernel H
and h': G/H + K the induced monomorphism. Then

Xx K and X/Hxh,K are canonically homeomorphic over B.//

5) FUNCTIONAL BUNDLES

We now recall a construction of Booth and Brown
which will be heavily used in this thesis.

Let X and Y be topological spaces. We denote
by P(X,Y) the space of maps having a closed subspace
of X as domain and Y as range. Its topology is_
the "k-ification" of the topology having as a subbasis
all sets of the form ((C,U)), where C 1is a compact
subspace of X, U is an open subspace of Y and

((C,U)) = {£eP(X,Y)| ¥ze(Cndom(£)), £(x)eU}
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We draw the reader's attention to the fact that the
“empty map" ¢: ¢ » Y also belongs to P(X,Y).
If we have two maps p: X+ B and q: Y + B we

can define a set

1.45 (X Y) = v map(X|b,Y|d)
beB

and two functions

(P q): (XY) +B: (a: X[b » Y|b) ~ b
ji (X Y) > P(X,Y): (a: X|b + Y|p) ~ i,-a

where ib: Y|b = Y is the inclusion, The initial topo-
logy on (X Y) with respect to (p q) and j is
called the modified compact-open topology (CBB1] def.
2.1).

1.47 DEFINITION The space (X Y) 1is said to be the
functional space associated to p and q and the map
(p q) the funetional bundle associated to p and q.

The result concerning functional bundles which we

shall mostly use is as follows,

1.48 THEOREM Let p: X+ B and q: Y » B be maps.

Then there is a homeomorphism &: M(p,q) + sec(p q)
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between the space of maps from X to Y over B and
the space of sections to (p q), defined by
o(H)(5) = £p7 (1)

PROOF  see [BB1] cor. 3.7 and th. 7.3.//

In the cases in which we are interested, the maps
p and q are locally trivial and a significant
simplification occurs. In fact, suppose that p and q
have fibres F and G respectively and locally trivial
structures ((U,¢U)} and ((U"”U” respectively (again
it is easily arranged, by restriction, that the two struc-
tures have a common locally trivial cover). Then, for

each Ue{U}, there is a map
: -» H ofe -1
1.49  xyt UxMap(F,G) + (X Y)|U: (b,£) ~» Yus £ Sup
d h icti f
where ‘U,b an *U,b are the restrictions o Qu

and ¥ to {b}xF and {b}xG respectively.
U

1.50 PROPOSITION  All the maps x; are homeomorphisms
and hence (p q) is a locally trivial map with fibre

Map(F,G) and locally trivial structure {(U,XU)}.

PROOF see [BB2] th. 2.1 and remark 8.2.//

We notice that this proposition is very important
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also because we want to work with Hausdorff spaces.

In tact (X Y) in general is not Hausdorff (see [BBl1]
section 5), but if p and q are locally trivial then
proposition 1.50 together with the Hausdorffness of G
proves that (X Y) is Hausdorff.

In the remainder of this thesis we shall be
interested mainly in two particular cases of this
construction, First of all let p: X + B and
p': X' + B be principal G-bundles. Then we can
consider the subspace (X X')G of (X X') consisting
of G-maps. Since the local homeomorphisms for (p p')
are given by the maps

Xyi UxMap(G,6) + (X X')|U: (b,£) > °l'l,b'f"l_1:b
it follows that y,(b,f) is a G-map if and only if
ngG(G,G). Using lemma 1.9 we can therefore state

the following proposition.

1.51 PROPOSITION The restriction (p p')G of (pp")
to (X x')G is a locally trivial map with fibre G,
each local homeomorphism Xy being defined by the
relation  xy(b,g)(¢,(b,g")) = ¢((b,9g9').//

1.52 COROLLARY The subspace (X X' is closed
in (X X%).//

Jg
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A similar construction can now be done for fibre
bundles. Let p: X+ B and p': X' + B be principal
G-bundles and let F be a left G-space. Then we can
associate to the fibre bundles pF and p'F the
functional bundle (pF p'F) and observe that its

local homeomorphisms are of the form
Xyt UMap(F,F) » (XxcF X'xGF)[U
and are defined by the relation
1.53 Xy (s E) oy (b,e) ,y1 = Loj(b,e),£y) 1.

Define now a function

1.54 ¥ (X X')g + (XxgF X'xgF)

by setting ¥'(a)lz,y] = [a(z),y]

1.55 LEMMA The function YF is well defined and

continuous.

PROOF For each Ue{U} the diagram
F
& x)glt Y (xxcF XtxcR) (U

F
Xy I 1 Xy
uxG LA . yxmap(F,F)
is commutative, since for any (b,g)eUxG and yeF

¥F Gy (8,9)) 10y (5,0) s3] = [85(5,) 8] = [ 85(b,e),y) =



= 49 1=

= xg(b,g‘)tou(b,eJ,yJ. This is sufficient to prove

the claim.//

The diagram used in the last proof also illustrates
the fact that an element xg(b,f) is in the image of
‘PF if and only if f is an action map. We shall
denote such image by (XXGF X'!GF))‘ , since locally

it consists of action maps.

1.56 PROPOSITION The restriction (pF 'p'F)A of
eF prf) to (XxcF X'x.F), is a locally trivial
map with fibre M, (F,F).77

The maps (p p')G and (pF p'F)A will play a

fundamental role in the following chapters.
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CHAPTER 2

HOMOMORPHISMS BETWEEN
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§ 1) AUTOMORPHISMS OF PRINCIPAL G-BUNDLES

Given an object p: X = B of Pg we can consider,

with the usual categorical notation, the set Pg(p,p)

of all endomorphisms of p in Pg. Since, by theorem
1.20, Pg is a groupoid, Pg(p,p) is a group under map
composition; for simplicity we shall denote it by (“,(p)
and its elements will be called the automorphisms of p,
so that 9(p) will be referred to as the group of auto-
morphisms of p. We can also give a topology to e(p)
by regarding it as a subspace of Map(X,X).

2.1 LEMMA Q(p) is a closed subspace of Map(X,X).

PROOF We know already that M(p,p) and MG(X,X) are
closed in Map(X,X), so we only need to notice that

@(P) = M(p,p) n Mg(X,X).//

2.2 PROPOSITION g(p) is a topological group.

PROOF Since we are in a convenient category, composition
of maps is a continuous operation. To prove that the
function

i Q) > G £ £

is continuous we use the fact that X 1is a principal
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G-space and that for each fe 9(p) and zeX we have
z = f(z) t(f(=z),z)
so that £ 1(z) = = t(£f(2),z). This means that the map
I ?(p] + Xt (2,£) v 2 t(£(z),2) = £ 1(z)
is continuous, as a composite of continuous functions. A
simple application of the exponential law can now complete

the proof.//

It is easy to verify that if p and p' are iso-
morphic objects of Pg then q(p) and 9(p') are iso-
morphic topological groups. Also it is easily seen that
if p is trivial then G(p) is homeomorphic to the
space Map(B,G). The same result holds when G is
abelian ([J] page 47); we shall obtain both results as
particular cases of a more general theorem. The situation
is more complicated in general and, as we shall see in
chapter 4, there are cases in which G(p) and Map(B,G)

even have different homotopy groups in certain dimensions.

The following result shows that when the space B is
not path connected the problem of studying Q(p) reduces
to the study of the groups 9(p5) where the pj's are
the restrictions of p over the various path components

of B. Thus from now on we can assume, without loss of
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generality, that B is path connected.

2.3 THEOREM Let p: X+ B be a principal G-bundle and

assume that B = j:J Bj, where each Bj is one path

component of B. Let Pyi xj - Bj be the restriction of

p over Bj' Then g(p) and T ?(pj) are isomorphic
jed

topological groups.

PROOF By proposition 1.23 each pj is a principal
G-bundle and it is clear that the function

s ;r‘(p) - jr‘(J g(pj): £ oA (f|xj) = £}

is a well defined group isomorphism, Its continuity
follows, using an exponential law, from the continuity of
the maps

e;: q,(p)*xi * X3 (£,2) > £(=)

To check the continuity of n~%

notice that each X;,
being the inverse image of an open set of B, is open in
X. Hence the continuity of the composite

jI:J 9(pj):xi - i,(pi)xxi -+ Xi: ({fj},:) s fi(:c)

for each ieJ, proves the continuity of the function

e: ng (pj)xx + X: ({fj}.z) L fi(:)

where :exi. This, again together with an exponential

law, suffices to justify the claim.//
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§ 2) SOME SUBGROUPS OF G (p)

Let H be a subgroup of G and define a

subset @(p;H) of f(p) by setting
(t‘(p;H) = {fe 5.(p)|(¥:tsx) 7(z,f(x))eH}

In other words,while every element of s(p) is required
to keep every point of X within its G-orbit, an element
of ‘i‘,(p;H) is required to keep any point within its
H-orbit. So, for instance, G(P;{e}) = 1y, 9(13;6) = 9(?)
and if HcKeG then S,(p;H)c i(p;l(): s(p). Therefore a
filtration

(e)CH15H2= ...CanG
gives rise to a filtration

Iy G (o) GpsHy)e ..c GlpsH )< g(p)

2.4 DEFINITION Let H be a subgroup of the group G.
The normal core of H in G, denoted by C(H,G), is the
subgroup of G defined by

=1
CH,6) = ,lg9

Hg

It is easy to see that C(H,G) is a normal subgroup
of G, indeed it is the largest normal subgroup of G

contained in H (compare, for example, [Stl page 42).
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2.5 PROPOSITION Let p: X » B be a principal G-bundle.
Then for any subgroup H of G, G(p;H) and S(p;C(H,G))

coincide.

PROOF Since C(H,G)cH, s(p;C(H,G))c g(p;H). On the
other hand, if fcs(p;H), zeX and 1t(z,f(x)) = n, for each
geG there exists #h'’eH such that f£(zg) = zgh'. But
£(zg) = f(z)g = zhg so that gh' = hg, and hence hegHg 1.
Given the arbitrary choice of g and z, this proves that

fce(p;C(H,G)), as we wanted.//

2.6 THEOREM For any subgroup H of G,G(p;H) is a
normal subgroup of @(p) and if H is closed in G, then

s(p;H) is closed in g(p)_

PROOF First of all, if H is closed in G, the subspace
of Map(X,X) consisting of maps which move each point of
X within its H-orbit is closed in Map(X,X), hence Q(p;H),
which is its intersection with Q(p), is closed in ?(p).
G(p;}l) is certainly a subgroup of 6’“’)’ so we only have
to check its normality. To that end let fz@(p),
0(“'(p;H), zeX be arbitrary and suppose that f(z) = zg
and ¢(xzg) = zgh for some geG and heH. Then
£7le9e£(x) = £ 44 (2g) = £ (zgh) = =g 'gh = zh

which means that t(z,f '+¢+f(z))eH. By the arbitrary
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choice of f, ¢ and =z it follows that g,(p;H) is
pormal in S,(p).//

2.7 LEMMA If H is abelian then so is (",(p;HJ.

PROOF  Let £, f'¢ G(p;H) and =zeX. Then £(z) = zh
and f'(z) = zh' for some h,h’'e¢H and we have
fof'(z) = £(xh') = zhh'
f'ef(z) = £'(zh) = zh'h
This, by the hypothesis on H, proves the claim.//

§ 3) RELATIONS BETWEEN g,(p) AND (p P)g

We shall now reduce the study of ﬁ(p) to that of
the space of sections to the functional bundle (p Plg
and the study of f.(p;H) to that of the space of sections
to a suitable restriction (p p)G;H of (p p)G‘ This is
useful because it identifies the group in question with
spaces of a relatively familiar type and this opens up

new avenues for their study.

Let p: X + B be a principal G-bundle. Then for each
subgroup H of G we can define a subspace

x X)g;g ©f (X X)g by considering only maps which keep
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each point in their domain within its H-orbit. Recall
that if ((U,¢U)) is the locally trivial structure for p,
then the associated local homemorphisms for (p p)G, as

defined in proposition 1.51, are denoted by {yy}.

2.8 PROPOSITION The restriction (p p)G'H of (p p)G to
e H
(x X)G'H has the locally trivial structure ((U,xU,H)),
H H
where x;;.y is the restriction of Xy to UxC(H,G). Moreover
H

if H is closed in G, then (X X)G~H is closed in (X X)G.
H

PROOF If H is closed in G, C(H,G), as intersection of
closed subspaces, is closed in G, so it will be sufficient
to prove the first part of the proposition. To that end
notice that for any (b,g)eUxG and g'<G

Xy (5:9) by (b,g")) = dy(b,gg")
So if xu(b,g)e(x X)G;H' for any g'eG there is an  heH
such that gg' = g'h and this implies that geC(H,G) and
hence that (X X)G;Hlu c xy(UxC(H,G)). Vice versa if
geC(H,G), for any g'’¢G g = g'n(g’) for some heH.
Therefore gg' = g'h and xy(B,g) e (X X)G;H‘ This

completes the proof.//

2.9 THEOREM For any subgroup H of G there is a

homeomorphism &: (“,(p;H) + sec(p p)g.y defined by the
H

relation #(£)(») = £|p 1(»).
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PROOF  The homeomorphism described here is obtained by
suitably restricting the homeomorphism

® : M(p,p) + sec(p p)
of theorem 1,48.//

2.10 COROLLARY There is a homeomorphism

¢ : §(p) + sec(p P)g
defined by setting &(£)(») = £]p (»).

PROOF Take H = G in theorem 2.9.//

Clearly corollary 2.10 can be proved independently

from theorem 2.9, by a direct application of theorem 1.48.

As a first application we prove the already mentioned
generalization of the homeomorphism which occurs in some

particular cases between g,(p) and Map(B,G).

2.11 THEOREM Let p: X + B be a principal G-bundle,
with respect to the action p: XxG » X, and let H be a
normal subgroup of G. If there is a left
action A: HxX +» X such that
a) X is a principal H-space with respect to 1;
b) For any zeX, geG and heH
A(h,p(x,9)) = p(A(R,2),9)
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or, with our usual notation, #h(zg) = (hz)g;

c) Two points of X are in the same H-orbit with
respect to p if and only if they are in the
same H-orbit with respect to A;

then ?(p;H) is homeomorphic to Map(B,H).

PROOF  Define a left action n of H on (X x)G;H
by setting

n: Hx(X X)G;H + (X X)G;H: (h,a) A~ ha
where ha has the same domain as o« and is defined by
(ha) (z) = h(a(x)). To prove that n is well defined
first notice that using condition b) we have, for any
geG,

(ha) (zg) = h(a(zg)) = h(a(z)g) = (ha(z))g = (ha)(z)g
so that ha is a G-map. Moreover if a(z) = zh', where
h'eH, denoting by 1 the translation function for p we
have

ha(z) = hzh' = z1(x,hz)h’
Now condition c) implies that t1(x,hx) exists and is in
H, so that hae(X X)G;H “
To prove the continuity of n notice that for each Ue{U},
beU, h,h'¢H and geG
hxy B2k ") (8y(b,g)) = Chxy,u(5,5") (y(B,6))g =
= (hoy(2,h"))g = oy(b,n"Ih"g = ¢y(b,h'h") =
= xy,n'h") (6y(B,9))
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where h" = r(ou(b,h'),hou(b.h')) also exists and is in

H by condition c¢). This means that locally n becomes
n|U: HxUxH =+ UxH: (h,b,h') ~> (b,h'r(ou(b,h'),h¢u(b,h')))

which is continuous, being the composite of continuous
functions, and therefore n itself is continuous.

It is now easy to see that, because of condition a),

(x X)G;H is a free left H-space. Moreover for any Ue{U},

beU, h,h'eH the following relation is valid:

1'(OU(b.h),OU(b.h'))xU(b.h) = Xu(b.h’)

where t' is the translation function for ). Thus the

continuity of <t',again assured by condition a), implies

that the translation function for n is locally, and

hence globally, continuous. Therefore (X x)G;H is

a principal left H-space and (p p)G;H is, up to homeo-

morphism, the projection onto its orbit space. Since

(p p)G;H has a section, determined by the identity auto-

morphism of p, it follows, by [Hus] cor.8.3 page 48,

that there is a homeomorphism over B between (X x)G;H

and HxB and hence that sec(p p)G;H and Map(B,H) are

homeomorphic. Theorem 2.9 can now be used to complete the

proof.//

We remark that if H is not normal one can apply the
theorem to C(H,G) and obtain conditions ensuring that

g,(p;H) and Map(B,C(H,G)) are homeomorphic.
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2.12 COROLLARY Let p: X+ B be a principal G-bundle
and let H be a normal topological subgroup of G. If
one of the following conditions is satisfied then g(p;H)
and Map(B,H) are homeomorphic:

a) H is contained in the centre of G;

b) p is trivial;

c) X 1is a topological group having G and H as normal

subgroups and the action is given by group multiplication.

PROOF  In these cases we can define left actions of H on
X by, respectively,

a) n(h,x) = zh;

b) n(xr,(5,9)) = (b,hg);

c) n(h,z) = hz.

It is easy to see that each of these actions satisfies the

conditions of theorem 2.11.//

2.13 COROLLARY Let p: X+ B be a principal G-bundle.
If one of the following conditions is satisfied then
g(p) is homeomorphic to Map(B,G):

a) G is abelian;

b) p is trivial;

c) X is a topological group having G as a normal

subgroup.//
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Once again we remark that cases a) and b) of
corollary 2.13 had been analyzed in [J], while case «c¢)

was proved by a different method in [Mo], page 95.

2.14 COROLLARY Let p: X -+ B be a principal G-bundle
and H a normal subgroup of G. If p and
H satisfy the conditions of theorem 2.11, then for any
map f: A -+ B the space Map(A,H) is homeomorphic to
g (pf;H), where Pg! AnX + A is the induced principal
G-bundle.

PROOF  The principal left action of H on X induces a
principal left action of H on AnX which also satisfies

the conditions of the theorem.//

REMARK: In view of the result of corollary 2.14, one may
be led to analyze, for a given topological group G, the

possibility of the existence of a left action of the type
described in theorem 2.11 on the total space of Milnor's

universal G-bundle (see Chapter 4 or [Mi2]). It is easy
to verify, however, that such an action exists only under
the same general assumptions of corollary 2.12 and cannot

be constructed in general.
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§ 4) AUTOMORPHISMS OF FIBRE BUNDLES

Let p: X » B be a principal G-bundle and F a left
G-space. Then the fibre bundle pF: XxGF + B is an
object of the category Fg(G), so we can consider the set
#E(6) (0¥ ,p¥) of all endomorphisms of pf in FG(G).
Because of theorem 1.20 and definition 1.29, Fg(G) is a
groupoid and hence Fg(G)(pF,pF) is a group with respect
to map composition. In analogy with the definitions of
section 1), we shall denote this group by 3(PF), call it
the group of automorhisms of pF and call each of its
elements an gutomorphism of pF. We can give a topology
to §(pF) by viewing it as a subspace of the space
Map(anF,XxGF) and we shall see later that in many
favourable cases this topology makes !(pF) into a topo-
logical group.

It is clear that if (q,h) is any other fibre bundle
associated to p and with fibre F, the group of auto-
morphisms of (q,h) is isomorphic as a group and homeo-
morphic as a space to §(pF) and hence we shall restrict
our attention to fibre bundles of the form pF.

Still in analogy with what has been done for principal
G-bundles, g(pF) is easily shown to be homeomorphic to a

space of sections of a certain functional bundle. Recall
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that, if A denotes the action of G on F, there is a
map WF: x )()G > (XxGF XXGF)). over B (see 1.54) and
this induces a map

2.18 \l'g: sec(p p)G - sec(pF pF)A: s A YF-s

2.16 THEOREM There is a homeomorphism

F
of: 305 » sec,0F 1),
where secp(pF pF))‘ is the image of Yg and @F is

defined by the relation oF £y ) = fFI{b)-

PROOF Since (XxGF )(xGF)x is a subspace of the space

(XXGF XXGF) = secp(pF p]:)A is a subspace of sec;(pF pF),
so we only have to check that the image of G(pF) under
the homeomorphism ¢: M(pF,pF) - sec(pF pF) of theorem

1.48 is secp(pF pF))‘. But this is an easy consequence of
the definitions of a fibre bundle morphism and of the map

v/

We notice that the homeomorphism defined in theorem
2.16 will be a fundamental tool in the rest of the thesis.
Later on we shall give examples in which the map 75 is
not surjective and conditions which ensure that it is
surjective. Now we are going to use theorem 2.16 to give

a condition for }(pF) to be a topological group.
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2.17 PROPOSITION Let p: X + B be a principal G-bundle
and F a left G-space with respect to the action ).

I MX(F,F) is a topological group then so is }(pF].

PROOF  Since we are in a convenient category, map
composition is a continuous operation, so the only problem
is to show that the map
i: 305 » JohH: £F w2

is continuous. To that end notice that the function

it (XxgF XxgF)y » (XxgF XxgF),: a a» o™
is continuous, since locally it is just the product of the
identity on an open set of B with the map

iy: My(F,F) + M, (F,F): g*ns (*) !

which, by hypothesis, is continuous. This implies that
the function

C S secp(pF pF)A - secp(pF pF)A: s v+ jtes
is continuous and, by theorem 2.16, this suffices to

complete the proof.//

2.18 COROLLARY Let p: X - B be a principal G-bundle
and F a left G-space with respect to the action . If
one of the following conditions is satisfied, then }(pF)
is a topological group:

a) F is admissible (see 1.5);

b) F 1is a topological group and A = A(h) is induced
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by a topological group morphism h: G + F.

PROOF In case a) Hl(F,F) is a quotient group of G,
while in case b) MX(F,F) is, up to homeomorphism, a
subgroup and a subspace of F. So in both cases MX(F,F)

is a topological group.//

§ 5) HOMOMORPHISMS INDUCED BY THE

FIBRE BUNDLE CONSTRUCTION

Let G be a topological group and F a left G-space.

Then. the functor T: Pg - P;(G) defined in proposition

1.30 determines, for each principal G-bundle p: X + B,

by restriction, a homomorphism

2.19 rf,: g(p) - 4oF): £ £F L

2.20 LEMMA The diagram
F
T
Gy SR Yo'}
(3 Lk i
L
sec(p p)g —E— secP(PF PFJ;‘

is commutative and therefore the homomorphism r; is

continuous.
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PROOF The result is an immediate consequence of the

definition of the maps which form the diagram.//

2.21 THEOREM Let p: X - B be a principal G-bundle
and F a left G-space with respect to the action A.

Then rﬁ: G(p) ke 5(pF) is a continuous epimorphism

with kernel q(p;er).

F

P
continuous by lemma 2,20. To determine its kernel, let

PROOF T is a group epimorphism by definition and is

fzKer(r:), zeX and £(z) = xzg. Then, for any yeF,
we have
P:(f)[x.y] = [f(z),y]1 = [z,y]

and this means that (zg,y) and (z,y) are in the same
orbit and hence that y = gy. Since x and y are
arbitrary, it follows that Ker(ri) c Q(p;xrx).
Conversely, if fe i(p;KrA), for each [z,y] ¢ XxGF
there is an heKr, so that

Tg(f)[:.y] = [f(x),y] = [zh,y] = [z,hy] = [z,y]

and hence ?(p;KrA) c Ker(r:).//

The kernel of any action of a topological group G
is always a normal topological subgroup of G and, vice-

versa, for any normal topological subgroup H of G, the
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quotient group G/H is a G-space (corollary 1.11), the
kernel of the corresponding action being H. This gives

us a canonical way of choosing a fibre bundle associated

to a given principal G-bundle and to a particular kernel.
Therefore, in view of theorem 2.21, the problem of

studying the groups }(pF) can be reduced to the study of
examples belonging to a particular family, as described in

the following corollary.

2.22 COROLLARY Let p: X+ B be a principal G-bundle,
F a left G-space, Krp the kernel of the action of G on
F and w: G » QF the canonical projection. Then ?(pF)

is isomorphic, as a group, to }(p").//

We shall now look for conditions which will make the
classification provided by corollary 2.22 also valid topo-
logically. To that end let F and F' be left G-spaces,
the actions being A and A' respectively, and suppose
that er = KrA,. There is then a unique bijection

t: MA(F,F) - MA,(F',F') such that the diagram

AL L M, (E,F)

2.23 b & 1 l t

x'. . 1
6 22 MuFFY)

is commutative.
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2.24 LEMMA If the function t: MA(F,F) + Mx.(F',F')
is continuous, for each principal G-bundle p: X.+ B
there is a continuous bijection t,: (XxgF XxgF), =+

- (XxGF' XXGF')}\, making the diagram

F
(X X)g —F—— (xgF XxgF),

11 lt.

'

(X X)g —E—— (XxgF' XxgF')y,
commutative. In particular if t is a homeomorphism,

then so is t,.

PROOF In order for the given diagram to be commutative

t

, has to be defined by the relation

'
t, (F @) = ¥F' @)

and by the hypothesis on the kernels this can be done.

Then locally the diagram becomes

kG — 22V UXM, (F,F)

11 1 1xt

1xA

UxG UM, , (F',F')

thus showing the continuity of t,. If t is a homeo-
morphism, by reversing the given argument we can prove

that t, is also a homeomorphism.//

2.25 COROLLARY Given any two admissible left G-spaces
such that the kernels of the respective actions coincide,

for any principal G-bundle p: X + B the map
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;S (XIGF xxGF)x - (XXGF' X‘GF')A' is a homeomorphism.

PROOF In this case A* and A’* are identifications

and therefore t is a homeomorphism.//

Recall, as an example, that if G is compact, any
G-space is admissible.

The last two results are useful because they enable
us to derive analogous statements for the groups of auto-
morphisms; in particular our next result is a kind of
uniqueness theorem for }(pF). showing that it depends

only on p and the kernel of the action.

2.26 THEOREM Let p: X + B be a principal G-bundle
and assume that F and F' are left G-spaces such that

KrF = KrF,. Then there is a commutative diagram

F
T
Gy —2—— 35

1] F' |t
Rl gat
§®) Yo'
where t,, is a bijection which is continuous (resp., a
homeomorphism) if t: MX(F,F) - MX(F',F') is continuous

(resp., a homeomorphism).

PROOF  Under the given hypothesis, the map t, of lemma

2.24 is a continuous bijection over B, thus inducing a
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map t): sec(pF pF)x > sec(pF' pF')A, such that

t;-!§ = !;'. Now, restricting the map t! to the space
secp(pF pF)A and using theorem 2.16, we obtain the desired
map t,,. If t is a homeomorphism, one can use the same
argument, applied to t !, to prove that t,, is a

homeomorphism.//

2.27 COROLLARY Let p: X+ B be a principal G-bundle
and F a left G-space.Then there is a commutative diagram
r1l
G —2— oM
1 1 oF l Lo
F

¢ —L— %0
where w: G + Qp is the canonical projection and t,,
is a continuous bijection or, if F 1is admissible,

a homeomorphism.

PROOF This follows from corollary 1.11 and theorem 2.26.//

REMARK: For a given fibre bundle pF: XKGF + B, the group
} (PF) depends on p in an essential way. For example,
by proposition 1.43 (or [Hus] th.3.1 page 72), we can see
that if the principal G-bundle p: X + B associated to

pF has a restriction q: Y + B to KrF, then xxGF and

YxKr F are homeomorphic over B. However, if IrF = G,
4
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3@ ~ f/fasrry = 0, but 365 = f@1/Gwixrp

is not trivial in general.

§ 6) HOMOMORPHISMS INDUCED BY A

TOPOLOGICAL GROUP MORPHISM

Given a principal G-bundle p: X + B and a topolo-
gical group morphism h: G - K, we can obtain, by

h. .6

restricting the functor I Pp P§ described in theorem

1.34, a group homomorphism
h, h, . h
2.28 I g(p) + Q@ £ £
Since for each fee(p), H;(f) = r:(f), we can expect to

obtain for H: many of the results which are valid for

h

rp. The following proposition clarifies this relation.

2.29 PROPOSITION Let p: X = B be a principal G-bundle
and h: G + K a topological group morphism. Then

(XxhK xxhK)A(h) is a subset of (xth XxhK)K,(closed
if h(G) is closed in K) contains (XxhK x’hK)K;h(G) and

coincides with it if h(G) is normal in K.

PROOF  We only need to notice that locally

(XxhK XxhK)x(h) corresponds to UxMx(h)(K,K) & Uxh(G),
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by proposition 1.10, while (Xxhl( XxhK)K corresponds
to UxK and (xxhl( x'hK)K;h(G) corresponds to
UxC(h(G);K).//

We can now use the same tecniques as in section 5)

to obtain:

2.30 THEOREM The function n;‘: s(p) - e(ph) is a
continuous homomorphism with kernel t",(p;l(er(h)) and
image }(ph). Moreover if h(G) is normal in K, then
M < §e"hE).

PROOF  The continuity of ng

is ensured by the continuity
of Yh: x X)G - (Xxhl( xxhx). The fact that its image is
'} (ph) is obvious. The last statement is obtained using
proposition 2.29 and the fact that an element of ’}(ph)
corresponds to a section of (ph ph)x(h) and an element

of i’,(ph;h(c)) corresponds to a section of (p" ph)x;h(G).//

So when h(G) is normal in K, q(ph;h(G))
corresponds to the space of all sections of (p}l ph)x(h)
while }(ph) consists of those sections which can be
lifted to a section of (p p)g. It is therefore natural
to look for conditions under which these two spaces coincide.

The following proposition, which is proved without assuming
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that h(G) is normal in K, will give us a first answer.

2.31 PROPOSITION If 1: G+ K is an inclusion, then
ACEDICE TCPE

PROOF Working locally it is easy to see that, under the

s T
given hypothesis, the map ¥ : (X X)G - (Xx‘K xle)x(‘)

is a homeomorphism. Since (Xx‘K XX‘K)K_G is contained
in (X< K XxK)y ), every element of (i(p‘;c)
determines an element of sec(p' p‘)K~G and hence of

H
sec(p‘ P‘)A(|)' The fact that ¥' is a homeomorphism

suffices to complete the proof.//

2.32 COROLLARY Let p: X + B be a principal G-bundle
and 1: G + K an inclusion of a normal

subgroup. Then J(p') = ?(P‘;G)-//

An immediate application of this result allows us to
obtain, in a particular case, a stronger version of

corollary 2.27 (cf. [Go2] prop. 6.1).

2.33 THEOREM Let p: X + B be a principal G-bundle and
F an admissible and effective left G-space. Then ?(pF)

is homeomorphic to G(p).

PROOF By corollary 2.27, (%) = %(p"), but in this
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case m is the identity on G, so by corollary 2.32,

105 Y o - g0 = G/

The next result is central to our theory; it describes
the way in which the enlargement of the structure group of
a principal bundle has the effect of enlarging the

corresponding group of automorphisms.

2.34 THEOREM Let p: X + B be a principal G-bundle
and 1: G + K an inclusion of a topological subgroup.
Then H;: g(p) > g(p‘) is also an inclusion of a topo-
logical subgroup; moreover if G is normal in K,

1 A X
Hp(e(p)) %(P 36).

PROOF  Under the given hypothesis the map

vt

(X )()G - (Xx‘K x:lx)x

is also an inclusion of a closed subspace and hence so is

the induced map !;: sec(p p)G - sec(pl P‘)K‘ The second

part follows easily from the fact that K is an effective
and admissible G-space (corollary 1.12), corollary 2.32

and theorem 2.33.//

Because of corollaries 2.22 and 2.27, the case in
which the morphism h is the projection w: G + G/H of

G onto one of its quotient groups will be basic to our
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study of the groups of automorphisms of fibre bundles. In
this situation Xx'G/H is canonically homeomorphic to
X/H and (X/H x/H)X(") = (X/H x/H)G/H. Hence from the

previous results we get:

2.35 THEOREM Let H be a normal topological subgroup

of G, v: G+ G/H be the canonical projection and p:X + B
a principal G-bundle. Then n;: s(p) - G(p') is a
continuous homomorphism with kernel ?(p;H) and image

1" .//

2.36 COROLLARY Let H be a normal topological subgroup
of G, w: G+~ G/H be the projection and p: X + B be a
principal G-bundle admitting a restriction to a principal
H-bundle q: Y + B. Then there is a continuous homo-
morphism T, : ;(p) + Map(B,G/H) with kernel isomorphic
to §(a).

PROOF  In this case p" is trivial and Q(p;H) = ?(q).//
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§7) THE _GROUP OF AUTOMORPHISMS

OF A WHITNEY SUM

Let p: X + B be a principal G-bundle and p':X' - B
a principal G'-bundle. We shall now look for the relation
existing among Q(p), q(p') and f(pnp'), where pnap'
denotes the Whitney sum of p and p' (definition 1.24).

First of all we notice that for any £ ﬁ(p) and
fle g(p'), the map

faf': XoX' + XoX': (z,z') v (£(z),f'(="))

is an element of f(pnp'). With this in mind we can now

prove the following result (cf. [BHMP1] th.S5).

2.37 THEOREM The function
h: G)x §(') » §pap'): (£,£') s £nf!

is a topological group isomorphism.

PROOF It follows immediately from the definition that h
is a well defined monomorphism of groups. To prove that it
is surjective, let ge f(p"p') and p'p: XnX' + X be the
projection. Consider now the function

f: X » X: 2 A p'p-g(z,:')
where z'eX' is any point such that (z,z') ¢ XnX'. To
check that f is well defined notice that, if (z,z')

and (z,z”) are both in XnX', then z” = z'g' for some
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g'eG', so, if g(z,z') = (y,y'), we have

P'ye8(=,2g’) = p'prgllz,z’) (e,9")) = ' ((y,p")(esg")) =
=P, #w'g’) =y = p'prelEe) .

The continuity of f follows from the fact that p'p is

an identification, being locally trivial (proposition 1.23).

Moreover f is a G-map over B by definition and hence

fe f(p). In a similar way we can define a map f'e f(p')

such that h(f,f') = g, thus proving the surjectivity of

h. The continuity of h follows easily from that of

ev x ev: g(p)xxx 9(p')xx' + XaX':
(f,2,£",2') ~ (£(2),f'(2"))

and an exponential law. To prove the continuity of h'i,
define a function over B:

hy: (XaX' XaX')gq0 > (X X)g
by setting h,(a)(z) = p'p'u(x,z’), where, as before,
(z,z')e XnX'. This function is well defined for the same
reasons which make h ! well defined. Moreover, for each

U in the common locally trivial cover of p and p', the

diagram
(XnX'  XaX')gyq, JU —H0lY X X)glu
xgrxy | b
UxGxG"' — P UxG

where pr denotes the projection, is commutative,thus
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proving the continuity of h,. In the same way we can
construct a map ha: (XaX' XaX')g.eoy + (X' X')g, and
hence a map
hyz: (XaX' XnX‘)GxG. + (X X)G e EXS X0
:a v (hy(e),hs(a))

3

over B. In turn h,, determines a map
h, : Map(B, (XaX' x“x')GxG') o
- Map(B, (X X)G) x Map(B, (X' X')G,)
whose restriction to the respective spaces of sections

makes the following diagram commutative

sec(pap' PAp') gy e secp P)g * sec(p' p')g,
o | |

Gomy —2 . 6w x Gon

and therefore proves the continuity of h >.//

2.38 COROLLARY Let p: X -+ B be a principal GxG'-bundle.
Then i(p) is isomorphic, as a topological group, to
6(p')x§(P"'), where w: GxG' + G and n': GxG' + G'

are the projections.
PROOF It follows from proposition 1.41.//
2.39 COROLLARY If p: X+ B is a principal GxG'-bundle,

then @(p) is isomorphic, as a topological group, to
§ (0:6)x §(p;6").
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PROOF It is easy to verify that, under the isomorphism
of corollary 2.38, G(p") corresponds to i(p;G') and

'
Ge") to Gmi6).//

2.40 COROLLARY Let p: X+ B be a principal G-bundle
and assume that G is isomorphic, as a topological group,
to GixGpx ... xGn. Then
g(p) ~ g(p’”)x Gp™x L..x §(p"n)
~ ﬁ(P;Gx)" f(p;Gz)x 5ot f(p;Gn)
where 5 is the projection from G onto the product

of all its factors except the i-th.//

We close this section noticing that its results may
give rise to a simplification of the general problem of
computing ﬁ(p) in those cases in which the structure
group of p can be expressed as a product of groups
having "nice'" topological properties (e.g. compact groups

or classical groups).
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CHAPTER 3

AUTOMORPHISMS

ss=zsz=z




In this chapter we shall analyze the homotopy lifting
properties (see, e.g., [Sp] page 66) of the maps r§
and H: defined in chapter 2, in order to obtain informa-
tion on the homotopy groups of the groups of automorphisms
involved. The abbreviation HLP will stand for "homotopy
lifting property' and, with the usual terminology, a map is
a GSerre fibration if it has the HLP for all CW-complexes

or a Hurewicz fibration if it has the HLP for all spaces.

§ 1) BASIC TOOLS

The results of this chapter will rely basically on
a well known result of A. Dold ([D] th. 4.8) which we

now recall.

3.1 THEOREM If q: Y+ Z is a map having the HLP
over every set of a) a numerable cover, resp. b) an
open cover of Z, then q has the HLP for a) all

spaces, resp. b) all paracompact spaces.//

In particular we obtain:
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3.2 COROLLARY If q: Y+ Z is locally trivial then
it has the HLP for all paracompact spaces and so, in
particular, it is a Serre fibration. Moreover, if the
locally trivial cover of B is numerable, them q is

a Hurewicz fibration.//

We shall say that a space X is pericompact if
XxY is paracompact whenever Y is paracompact. It is
well known that a compact space is pericompact and it

is clear that a pericompact space is paracompact.

3.3 PROPOSITION If q: Y + Z is a map having the HLP
for all paracompact spaces and B is pericompact, then

the induced map q,: Map(B,Y) + Map(B,Z): f > q-f

has the HLP for all paracompact spaces. If q: Y + Z

is a Hurewicz fibration and B is any space, then

qa: Map(B,Y) + Map(B,Z) is a Hurewicz fibration.

PROOF Using an exponential law, we can associate to

each diagram of the form

A0} ——= o Map(BY)

| | oo

axt —F . Maps,2)

where I is the unit interval [0,1], a diagram
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£

AxBx{0} ———— Y
| la
Fr
AXBXI  ————— I

Now the existence of a lifting for F' is guaranteed
by theorem 3.1,in the first case,and by the hypothesis
in the second case. Using again an exponential law, we

can therefore obtain the required lifting of F.//

3.4 COROLLARY Let p: X+ B and q: Y » B be maps

and f: X + Y be a map over B. Then

a) if f has the HLP for all paracompact spaces and
B is pericompact, then f,: sec(p) + sec(q) has
the HLP for all paracompact spaces,

b) if £ is a Hurewicz fibration, then £, :sec(p) +

+ sec(q) is a Hurewicz fibration.

PROOF The diagram

sec(p) —— Map(B,X)

£odl T %,

sec(q) —— Map(B,Y)

is a pullback and this suffices to prove the claim.//
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§ 2) THE  HLP FOR THE MAP r

3.5 DEFINITION If p: X+ B is a principal G-bundle or
a fibre bundle, we say that p 1is numerable if its

locally trivial cover is numerable.

We can now apply the results of the previous section

to our problem in the following way.

3.6 PROPOSITION Let p: X+ B be a principal G-bundle,

F a left G-space and ¥': (X X); » (XxcF XxcF), the

map defined in 1.54. Then we have:

a) if M:G » M (F,F) is locally trivial, then ¥ is
locally trivial;

b) if A*:G > M,(F,F) is a Hurewicz fibration, then ¥©
has the HLP for all paracompact spaces;

c) 1f MiG = MA(F,F) is a Hurewicz fibration and p

is numerable, then WF is a Hurewicz fibration.

PROOF We know that for each U in the locally trivial

cover for p, there is a commutative diagram
VF u
(x x)G|U (XxF XxGF)A|U

w ] |

o . UxM, (F,F)
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where and xI are local homeomorphisms., So, if
Xy Xy ,

{V} is the locally trivial cover for a*, !F

has a
locally trivial structure whose cover is given by

b (UxV) | UelU}, VeV
thus proving case a). Case b) follows directly from
theorem 3.1 and case c¢) from the same theorem and the
observation that, if {U} is a numerable cover of B,
then {UXMX(F,F)) is a numerable cover of (X*GF XlGF)A

(CD] page 226).//

With the hope of making the exposition less cumber-
some, we now state two conditions, denoted by Cl1) and
C2), which will be often quoted later. So, for a given
principal G-bundle p: X + B and a left G-space F,

we say that the pair (p,F) satisfies:

€I) if X*: G = NX(F,F) is locally trivial and B is
pericompact;
€2) A€ X476+ MA(F,F) is a Hurewicz fibration and p

is numerable.
Combining proposition 3.6 and corollary 3.4 we can

obtain the following result.

3.7 LEMHA Let p: X+ B be a principal G-bundle and
F a left G-space. If (p,F) satisfies C1) then the
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map ?;: sec(p p)G * sec(pF pF)A has the HLP for all
paracompact spaces; if (p,F) satisfies C2), then Y§

is a Hurewicz fibration.//

The next theorem follows from the fact that if a
map q: Y - A has the HLP for a certain class of
spaces, then so does the map q: Y » q(Y); it will

prove very useful in the study of the homotopy of g(pF).

3.8 THEOREM Let p: X+ B be a principal G-bundle and
F a left G-space. If (p,F) satisfies Cl), the map
r;: i(p) - 4(pF) has the HLP for all paracompact
spaces, so, in particular, it is a Serre fibration. If

(p,F) satisfies C2), them T

b is a Hurewicz fibration.//

3.9 COROLLARY In the situation of theorem 3.8, if
(p,F) satisfies Cl) or C(C2), there is a long exact
sequence

e 1 (G (KT » T (G + mFoFy

* 1 (GiKe) + o+ 7 (§)) + 7, (JOFY) + 0
where KrF is the kernel of X*,//

These results raise the problem of finding conditions

under which a G-space F can give rise to pairs (p,F)
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satisfying Cl) or C2); i.e. of determining the
respective conditions under which A* is either locally
trivial or a fibration. This problem can be completely
solved for C1) by solving it just for the quotient
groups of G. In fact if the map A* is locally trivial,
then it is an identification. This means that F must
be admissible and MA(F,F) homeomorphic to QF' There-

fore we have the following result.

3.10 LEMMA A left G-space F can give rise to a pair
(p,F) satisfying Cl1) if and only if one of the fol-
lowing conditions is satisfied:

a) F is admissible and G has a local section at KrF;
b) A*: G » MA(F,F) is a principal KrF-bundle.//

Notice that G satisfies condition a) of the
lemma when, for instance, G n Krp x @ or G is a
Lie group or KrF is a compact Lie group ([St] page 33).
Also, if F is effective, conditions a) and b) are
both equivalent to the requirement for F to be admis-
sible.

In the case of C2), F 1is not necessarily forced
to be admissible, but the existence of a commutative

diagram:
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Bl Qe

o

G L_.MA(F,F)

where w is the canonical projection and t is the
continuous bijection obtained from 2.23 and corollary
1.11, implies that A* is a fibration only if = is

such. Hence:

3.11 LEMMA  Let F be a left G-space. If w: G » Qg
is not a Hurewicz fibration, F cannot give rise to a
pair (p,F) satisfying C2); moreover, if F is admis-
sible, then it can give rise to such a pair if and only

if Qg can.//

Lemmas 3.10 and 3.11 provide another example of a
context in which properties of the groups of automorphisms
of fibre bundles are determined by properties of the

structure group G and of its normal subgroups.

§ 3) THE HLP FOR THE MAP n:

The results of section 2) are clearly valid also in

the special case in which the fibre bundle is, in fact,
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a principal bundle induced by a topological group morphism.
In this case, however, we can use the same techniques to
obtain information on the HLP for the map n:, that is,
to relate gtp) and q(ph). Moreover this will give

us some extra .information about the groups S(pF).

We have seen that if h: G » K is a topological
group morphism, then the map A(h) : G » ux(h)(x,x) is,
up to homeomorphism, the restriction of h to
h: G+ h(G) (proposition 1.10). Moreover if p: X + B
is a principal G-bundle, for each U in the locally

trivial cover for p, the diagram

h
X 0l o (K Xxy ), [U A (Xxp K XxK) U

al
| % | |
uxe —1%h | usnee) —1X L uxx
where the maps denoted by j are inclusions, is commu-
tative (propositions 1,56 and 2.29). Now, in analogy
with conditions Cl) and C2), we shall say that a pair
(p,h), where p: X+ B is a principal G-bundle and

h: G+ K is a topological group morphism, satisfies:

C1') if h: G+ K is locally trivial and B is
pericompact;
C2') if h: G+ K is a Hurewicz fibration and p is

numerable.
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Now, using the same technique as in section 2), we

can prove the following result.

3.12 THEOREM Let p: X -+ B be a principal G-bundle
and h: G » K a topological group morphism. If the pair
(p,h) satisfies CL'), then 1D OB §o™ has the
HLP for all paracompact spaces; if (p,h) satisfies

C2'), then H; is a Hurewicz fibration.//

3.13 COROLLARY Given p and h as in theorem 3.12,
if (p,h) satisfies Cl') or C2'), there is a long

exact sequence of homotopy groups
coor TG RiKer () + 13 (§ (@) » T (§M) »
g 1 (§(sKer())) » oo T (§(0)) > 7 (§ (™)

generated by the fibration H:.//

The following standard result will provide a link

between theorem 3.8 and theorem 3.12.

3.14 LEMMA Let q: Y = A be a map having the HLP for
the singleton space. Then the image of q consists of
a set of complete path components of A. If, in

particular, q is a topological group morphism, then it
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induces a homomorphism between the groups of path

components of Y and A.//

3.15 PROPOSITION Let p: X -+ B be a principal G-bundle
and h: G - K a topological group morphism. If (p,h)
satisfies Cl1') or C2'), then Q(ph) consists of a

group of complete path components of %(ph).

PROOF  Under the given hypothesis the map
H:: q(p) > q(ph) has the HLP for the singleton
space, is a topological group morphism and its image

is S(ph). By lemma 3.14 the result follows.//

Notice that if (p,h) satisfies Cl1') or C2'),
then h(G) consists of a group of path components of K.
However there are cases in which h(G) does not have
this property, but still the restriction h: G + h(G)
satisfies Cl') or C2'). We are now going to see how
our results can be generalized to these cases.

To that end, let G, = h™*(C(h(6),K) and let us

say that the pair (p,h) satisfies:

C1™), 4£ Mg Gh + C(h(G),K) is locally trivial and B
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is pericompact;
e2") £ A Gh + C(h(G) ,K) is a Hurewicz fibration and

P is numerable.

Now, applying the usual technique to the restriction

o x Xy, + (K X Bgin )

we can obtain the following result.

3.16 PROPOSITION If (p,h) satisfies C1"), then the
N h

restriction np: Q(p;Gh) - G(ph;h(c)) has the HLP

for all paracompact spaces; if (p,h) satisfies C2"),

then such restriction is a Hurewicz fibration with fibre

@(p;xer(h)).//

A result corresponding to corollary 3.13 can also
be obtained. Notice that if h(G) is normal in K, then
conditions C1'") and C2") simplify, since, in this

case, Gh = G.
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§ 4) RELATING FIBRE AND PRINCIPAL

BUNDLE AUTOMORPHISMS GROUPS

In corollary 2.27 we have seen how to reduce the
problem of studying the spaces }(pF) to the problem
of studying the topological groups }(p’), where
w: G+ QF is the canonical projection. Now, using that
relation and some of the results of this chapter, we are
going to relate, in some particular cases, the space
3(pF) with the topological groups i(p'), thus
reducing the study of the group of automorphisms of a
fibre bundle to that of the group of automorphisms of a

principal bundle.

3.17 THEOREM Let p: X+ B be a principal G-bundle,
F a left G-space and w: G » QF the canonical projection.
If the pair (p,F) satisfies C1), then the map

te: 30N+ 10D
of corollary 2.27 defines a homeomorphism,between }(PF)
and a space consisting of a group of complete path
components of 9(p'), which is also a topological group
isomorphism. If (p,F) satisfies C2), them t,, is

a weak homotopy equivalence between these two spaces.

PROOF The first part of the theorem can be verified by



= 95 =

combining lemma 3.10, corollary 2.27 and proposition
3.15 applied to the pair (p,7). To prove the second
part, notice that, by lemma 3.11, the pair (p,QF) also
satisfies C2), if (p,F) does, and hence the maps

i §@) + 305 and 1 ) » 30T are both

Hurewicz fibrations. So the commutative diagram

ul
§ 3xrp) — £ p) . S TE S

i R

§oixry) —§ ) —2— 05

generates an exact ladder of homotopy groups in all
dimensions, except, possibly, for the lack of a group
structure on Io( }(pp)). Applying the "five lemma"
to this ladder we can prove that t,, induces iso-
morphisms of homotopy groups in all positive dimensions.
Finally, combining the facts that t,, is a bijection
and that r: is a fibration, one can easily check that

also m (t,,) is a bijection.//

3.18 COROLLARY Let p: X = B be a principal G-bundle,

F a left G-space and 7: G + QF the canonical projection.
If the pair (p,F) satisfies Cl) or C2), then

7 (3 ~ 7,(F3(") for all i20. Moreover
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(6 ") 1>0

n (oM -
* n (§ @)

U
Ker(no(rp))

if the same condition holds.//

[
[
o

As an illustration, let p: BxG - B be a trivial
principal G-bundle and F a left G-space such that the
pair (p,F) satisfies C2) (e.g., let G be a compact
Lie group and B a CW-complex). Then p': BxQF + B
is also trivial and the morphism n;: g p) » ?(p")
reduces to the map:

n, : Map(B,G) + Map (B,Qp) : f A wof
which is a fibration by proposition 3.3. So we have,
for any i>0,

7, (3 (F) ~ 7, (Map(B,Qp))

On the other hand, ﬂo(Map(B,G)) is just the set [B,G]
of free homotopy classes of maps from B to G and
wo(r;) is defined by assigning to each class [fle[B,G]
the class [n-f]e[B,QF]‘ Hence we can describe
Ker(no(r;)) as corresponding to the set of all homotopy
classes of maps [fle¢[B,G] such that w-f is null-
homotopic. Also, in this case, no( g(pF)) corresponds
to the image of the function 10(1,): [B,G] » [B,QF],

so that n; is surjective if and only if no(n‘) is,



- 97 -

This enables us to give examples for which such condition
is satisfied (e.g., G = QFXKrF) as well as examples in
which it is not. In fact, if G is the real line R and
](rF is the subgroup of integers, QF is the circle s!
and clearly the function m,: [SI,R] 9 [51,51] is not
surjective.

In chapter 5 we shall examine other conditions

sufficient to ensure the surjectivity of H:.

§ 5) RECOGNIZING n-EQUIVALENCES BETWEEN

AUTOMORPHISM GROUPS OF PRINCIPAL BUNDLES

In what follows we shall use the following definition

of an n-equivalence (cf. [Sw] def. 3.17).

3.19 DEFINITION Amap f: X+ Y is said to be an
n-equivalence , Osnse, if, for all z¢X, the induced
function ni(f): wi(X,:) > wi(Y,f(z)) is a bijection

for 0O<i<n and, if n<=, a surjection for i=n.

So, in particular, the concepts of «-equivalence
and of weak homotopy equivalence coincide.

We now recall two lemmas which will be used to show
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that, under suitable conditions, if h: G + K is a topo-
logical group morphism which is an n-equivalence, then
the induced homomorphism n:: 9(p) - ;(ph) is also
an equivalence in a certain range of dimensions.

In the first of them, due to P. Heath, p: E + B
will be a map having the HLP for the spaces s" and
Sn’tl, n20, b will be the base point of B and
j: F=p ') + E the inclusion. Also, if z is an
element of F, then z will denote the path component

of z in F and gz the path component of =z in E.

3.20 LEMMA Let z, yem (F). Then =, (3)(z) = v (j)(y)
if and only if there is a loop A: I » g3y, B, based at
b, such that, if A: I » E is a path completing the
commutative diagram

(0}—=—E

then A(1) = y.

PROOF See [H] cor. 3.11.//

We now use lemma 3,20 to prove the following

needed result.



= @9 =

3.21 THEOREM Let p: E+ B and p': E' + B be two
(Serre or Hurewicz) fibrations over a path connected

space B. If f: E~+ E' is a map over B such that,
for each beB, the restriction f£|b: p *(3) + (p') ()

is an n-equivalence, then f is an n-equivalence.

PROOF Let x be any element of E, p =p(z), z' =f(z),
F=pY(b) and F' = (p')"1(b). Then, using "diagram
chasing" techniques on the homotopy ladder generated by
p, p' and f, it is easy to prove that ni(f) is
injective for 1sis(n-1) and surjective for 1<is<n.
The hypothesis on B guarantees the surjectivity of
mo(f), so we only have to check that, if n>0, "o(f) is
injective. To that end, let y, z¢E be such that, with
the same notation of lemma 3.20,
£W) - £()

Since B is path connected, there must exist two elements
v, weF such that

TG)@ =y and m (D@ =z
Now we have

TGN E®) = £0) = £() = 7 (3") (EW))
so that we can use lemma 3.20 and find a loop A: I + B
satisfying the property described there for f(») and
f(w). Since lemma 3.20 does not depend on the choice of
the lifting of A, we can choose this lifting to be £-A,
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where A: I - E is a path completing the commutative

diagram
{0}—"——‘;5
Fa."]s
kb |

I —
With this choice the lemma states that
"o(f]b)(l\sl)) = £oA(1) = fw) = “°(f|b)(g)

and the bijectivity of no(flb) implies that A(1) = w.
This means, since A(0) = p, that we can apply the same
lemma to the fibration p and the path components v
and w and obtain

T, @) = 7, (5) @
thus proving that no(f) is injective, as we wanted. The

arbitrary choice of ze¢E completes the proof.//

The second lemma is a result given in [Mo] (lemma

3.1.7).

3.22 LEMMA Let p: E+ B and p': E' + B be Hurewicz
fibrations over a CW-complex B and let f: E > E' be
a map over B which is an n-equivalence, n finite or
infinite. If both sec(p) and sec(p') are non empty
and dim(B) = msn, then f induces a map

fe: sec(p) + sec(p'): s A+ fes

which is an (n-m)-equivalence. In the case n = =, the
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map f, is an w=-equivalence and there is no condition

on the dimension of B.//

We can now state and prove the main result of this

section.

3.23 THEOREM Let p: X+ B be a principal G-bundle
and h: G + K a topological group morphism. If h is
an n-equivalence and B is a path connected CW-complex
of dimension msn, then n:: ?(p) + %(Ph) is an
(n-m)-equivalence. In the case n = =, H: is an
=-equivalence and there is no restriction on the

dimension of B.

PROOF  Since B is a CW-complex, both (p p)G and

(ph ph)K are, by theorem 3.1, Hurewicz fibrations and,

by corollary 2.10, both have a section, corresponding to
the identity automorphisms of p and ph Tespectively.
The hypotheses on h and B allow us to use theorem 3.21
and claim that the map ¥": (X X)g » (Xx;K Xx;K), is

an n-equivalence. Now lemma 3.22 implies that the induced
map W;: sec(p p)G - sec(ph ph)x is an (n-m)-equivalence.
This, together with lemma 2.20, suffices to prove the

claim.//
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CHAPTER 4

APPROXIMATING GROUPS

OF BUNDLE AUTOMORPHISMS
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All the results of chapter 3 have been obtained
under the hypothesis that the bundles considered were
numerable. In this case, however, one can use a different
approach to study the homotopy properties of the groups
of bundle automorphisms. This approach was originally
developed, for principal bundles, by D.H.Gottlieb in [Gol]
and [Go2], where he constructed, for a given numerable
principal G-bundle p: X - B, a Serre fibration ¢
having as base space the path component Map(B,BG;k) of
Map(B,BG) containing a classifying map k: B » BG for p
and, as fibre, a space homeomorphic to Q(p). By showing
that the total space of ¢ is "essentially contractible",
Gottlieb deduced the existence of a weak homotopy equiv-
alence between ﬂMap(B,BG;k) and ?(p).

When B is a CW-complex, one can use functional
bundles to refine this result and obtain a Hurewicz
fibration with a contractible total space, Map(B,BG;k)
as base space and sec(p p)G as fibre, thus deriving a
homotopy equivalence between nMap(B,BG;k) and %(p).

It is this second method, proposed in [Mol] and
[BHMP2], that we shall recall and use, together with our

previous results, to obtain further properties of the
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homotopy equivalence in question and to generalize it to
the case in which we consider spaces of fibre bundle
automorphisms.

The first two sections will be devoted to some

needed background material.

5 1) THE MILNOR CONSTRUCTION

In [Mi2] J.Milnor showed that, given a topological
group G, there exists a numerable principal G-bundle
PGt Eg ~ BG which classifies numerable principal G-bundles,

in the sense of the following theorem.

4.1 THEOREM Given a numerable principal G-bundle
p: X » B, there exists a map k: B + BG’ called a classi-
fying map for p, and a G-map k': X + EG such that the
diagram

kl

X ——=—— F

G

Pl IPG

B —m— BG
is a pullback diagram. Moreover, two numerable principal
G-bundles over B are isomorphic if and only if their

respective classifying maps are homotopic.//
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We remind the reader that Eg is the contractible
space obtained as a join of a countable number of copies
of G. Therefore an element of EG is an equivalence
class of sequences of the form (tigi)ieN' where N is
the set of natural numbers, ti(I 4 gieG ; :iso for at
most a finite number of indices, the sum of all the ti
equals 1 and the equivalence relation is obtained

” Yo 1
identifying two sequences (tigi) and (ti

g{) if ty=t!
for every ieN and, for each ieN such that tiso, 9i=9{'
(For the details of the topology see [Hus] page 53, or
[Mi2]) Denoting the equivalence class of a sequence
(tigi)ieN by {tigi), the action of G on E, is

oGt EGXG > EG: it

1gi},a) v {t;g;al}

The space B; is then the orbit space of Eg, its numer-
able cover {Ug) is determined by setting, for each jeN,
0.2 u§ = (39,36 | t520)

and the local homeomorphisms are given by

G
j

o3 4S: u?xc » EGIU?:({tigi}G,a) e {t9;071a}

J

The numerable principal G-bundle PGt EG - BG will
be referred to as Milnor's universal G-bundle
Given a topological group morphism h: G + K, there

are maps
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h*: Eg + Ep: {tigi} hed {tih(gi))

hy: BG -+ BK: {tigi)G A {tih(gi))G

such that, for any ieN and beug, the diagram

h

G —— K

G K
$i,p l l¢i,h.(b)
E h

.5 [y el «

TR

B ____EL___» B

G K

is commutative. If h: G + G' and h': G' + G" are two
topological group morphisms, then h'#<h* = (h'+h)* and
h'!+h, = (h'+h),. Moreover for any erG and geG,

b* (zg) = M (z)h(g).

5. 2) THE HOMOTOPY SEQUENCE OF A FIBRATION

Let p: X + B be a Hurewicz fibration, 1: F +» X
be the inclusion of the fibre over the base point beB
and zeF be the base point of both F and X. Moreover,
let PB be the space of paths in B, starting at p, and
ev: PB + B:g ~+ 2(1)

be the usual evaluation fibration ([Sp] cor. 2.8.8).
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Consider now the commutative diagram

F ————————————* X

i,

] J PBnX——-—»X
ev,
P
{p} ————————l-—» B l P
A o, )
PB B
ev
where both the front and back squares are pullback diagrams
and, denoting by ¢, the constant path at b,
j: F + PBaX: y a» (cb,y)
Since PB is contractible, the map c, defined by
c(p) = c,, is a homotopy equivalence, as well as the
identities on X and B. By [BrH] th. 1.2, it follows
that also j is a homotopy equivalence and we can

consider the maps

Y: QB + PBaX: 2+ (2,z)
4.6
8 j"ley: QB » PBaX » F

where j! is the homotopy inverse of j.

Using this construction it is possible to obtain a

sequence of maps

8
vess 0B -9P. gy Pip. A, x Py B

which we shall call the homotopy sequence of the fibration

p (cf. [CJ]) and which can be used to derive the exact

sequence of homotopy groups of a fibration. However, we
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are now only interested in the map Gp and, in particular,

in the following two results related to it.

4.7 LEMMA If p: X » B is a Hurewicz fibration and X

is contractible, then Gp is a homotopy equivalence.

PROOF The map evp is a fibration, since ev 1is, and
Y is the inclusion of its fibre. So, by easy standard

arguments, the result follows.//

4.8 PROPOSITION If, in the commutative diagram
F_flb | g
1 1 1 5

£

X ——— X!

vl e

B—2E& B

p and p' are Hurewicz fibrations, 1 and 1' are the
inclusions of the fibres and the horizontal maps are base

point preserving, then the diagram

a8 —38 . op
6pl l 6p'
o LD Gip

is homotopy commutative.
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PROOF  Define a map
r: PBaX + PB'aX': (2,z) v+ (g+2,f(x))
and observe that, if » and b' denote the base points
of B and B' respectively, we have, for any =zeF,
Tej(2) = 1(c,,x) = (gec,,f(2)) = (¢p,,E(x)) = j'+£(x)

1 3

Therefore (j') ler ~ (£]p)+j™" , where, as in 4.6, j~

and (j')”! denote the homotopy inverses of j and j'.
Using this fact we obtain
8,000 = (3" 7Ty e0g = G1)°
£|b)+68
= (f|p) P

1 1

erey & (£]B)+j ey =

thus proving the claim.//

Notice that the map j 1, and hence sp, are defined
only up to homotopy. However this will not affect the

discussion of the following sections.

§ 3) RELATING GROUPS OF PRINCIPAL BUNDLE

AUTOMORPHISMS AND LOOP SPACES

Let p: X > B be a numerable principal G-bundle and
kl

Bg
P J 1 Pg

G



=1 110w=

be a pullback diagram, so that k is a classifying map
for p. We can now construct the functional space

(X*BG BXEG)G associated to the principal G-bundles
px1: XxB; + BxBi: (z,b) v+ (p(z),b)

1xps: BXEg + BxBo: (b,z) ~+ (b,pg(2))
and we shall denote the projection (px1 lxpG)G simply
by P*Pg- Since both p and pg are locally trivial
over numerable covers, then so is P*Pg and hence, by
theorem 3.1, it is a Hurewicz fibration with fibre G.
By proposition 3.3, the induced map
(p-pG)B: Map(B,(XxBG BxEG)G) > Mlp(B,B!BG)
is a Hurewicz fibration, as well as the map P*,Pg»
obtained composing P*Pg with the projection on B.
Since the diagram
sec(p*,pg) ———————— Map(B,(XxB; BxEg)o)
.| | oy
Map(B,BG) ~ {IB}xMap(B,BG) _ Map(B,BXBG)
in which the horizontal maps are inclusions and ¢ is
the obvious restriction of (pth)B, is a pullback diagram,
it follows that ¢ is also a Hurewicz fibration.
Notice that an element scsec(p-ipc) is in 0-1(k) if

and only if it lands in (p-pG)'i(In(ln,k)), where

(lB,k): B + BxBG: b v (b,k(3))
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Using the fact that Im(lB,k) is homeomorphic to B
and working locally as done in the previous chapters (it
may be necessary to refine the covers), it is easy to see

that the function
it (X X)g > (pepg) "t (Im(1y,K))
defined, for a given ae(p p)&l(b). by the relation

j(e) (=,k(B)) = (b,k'(a(2)))

is a homeomorphism over B and hence that the induced map

4.9 jp: sec(p Pg > @ 1K) : s A+ jes

is a homeomorphism.

4.10 THEOREM Let p: X + B be a principal G-bundle
over a CW-complex B. Then the space sec(p-lpG) is

contractible.

PROOF  The map P*,Pg is a Hurewicz fibration and, using
[BB2]1 th. 1.1 and the fact that, for every principal
G-bundle q: Y = B, the map

f: (BxG Y)g + Y: a v~ a((pr p)G(u),a)
where pr: BxG -+ B is the projection, is a homeomorphism
over B, it is easy to see that the fibre of p*,p; is
homeomorphic to EG and hence homotopy equivalent to a
CW-complex. Since B is a CW-complex, by [Scl th.2 we

have that also the total space of P*,Pg has the homotopy
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type of a CW-complex and so that P*,Pg is a homotopy

equivalence. This implies that the induced fibration
(p*,pg)p: Map(B,(X*B; BxEg);) + Map(B,B)

is a homotopy equivalence and that its fibre, sec(p-lpc),

is contractible.//

Theorem 4,10 says, in particular, that sec(p.lpc)
is path connected and, since Q'i(k) = @, it follows that

the image of ¢ is Map(B,BG;k) and that
L scc(ptipc) ¥ Map(B,BG;k)

is a Hurewicz fibration with fibre sec(p p)G ~ g(p).

4.11 THEOREM Let p: X+ B be a principal G-bundle
over a CW-complex B. Then there is a homotopy equiva-
lence GP: aMap (B,B;;k) + g(p) which is also an

H-homomorphism.

PROOF  The map 6p is obtained applying lemma 4.7 to the
fibration o: sec(p'ipG) + Map(B,BG;k) and using the
homeomorphism between sec(p p)G and s(p), as described
in corollary 2,10. For the last statement see [BHMP2],
th. 4.2.//

We have seen in chapter 2 that, in favourable
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circumstances, q(p) is homeomorphic to Map(B,G)
and we also claimed there that this is not always so. We
are now ready to give a counterexample.

In [Mil] J.Milnor proved that for any simplicial
complex B, it is possible to construct a topological
group G and a numerable principal G-bundle p: E -+ B
which is universal, having a contractible total space.

So let p: EY + s* be the principal G-bundle constructed
in that way and let G be its structure group., If
Pyt s*ag* + s* is the numerable principal G-bundle
induced from p by a map k: s% o 5% of degree n,

then, by theorem 4.11,

(G ~ 7, (aMap(s*,5%5K)) ~ w (Map(s”,5* 1K)
The last group is isomorphic by [K], lemma 3.10, to

zzulnl' 2y
and so it depends on the degree of k. This means that,
taking maps of different degrees, we obtain principal
bundles with the same base space and structure group, but
with groups of automorphisms having different homotopy
groups in dimension 2. Hence ?(pk) can be homeomorphic
to Map(B,G) only for one of these bundles, clearly the
trivial one, induced by the constant map. This shows that
the problem of computing eip) in the general case is

non trivial.
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Notice that one can use this same construction
and some more of the results contained in [K] to give

other counterexamples.

§ 4) LOOP SPACES AND HOMOMORPHISMS BETWEEN

GROUPS OF AUTOMORPHISMS

4,12 LEMMA Let p: X - B be a numerable principal
G-bundle classified by the map k: B » B; and let
h: G » K be a topological group morphism. Then the map

hoek: B+ By is a classifying map for ph.

PROOF  Under the given hypothesis, there are pullback

diagrams
k' 1
X —— Eg B, —— B¢
Pl 1PG “1 lpx
By B B — ek, By

where q = (pk)h‘-k and q' = (h‘-k)pK. Now the composite

f: XxK L&. EGxK bt x

P
3 K
EKXK —_— E](
has the property that for each geG, =zeX and keK,
£(2g,h(g) %) = h*(k'(2))h(g)h(g) 'k = h* (k' (2))k = £(z,k)
and hence defines a map

(ha*k)': X%, K + E : [z,k] v~ h* (k'(z))%k
h K
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which is a K-map and is such that Py* (hy °k)' = h, k- ph.

Therefore there is a unique map f' completing the

diagram
Xxhl( (h, k)
£ 5
q
N BnEy Ex
P
qQ Px
B hk g

and this is a K-map and hence an isomorphism in Pg
between ph and q. This means that the four outer maps
in the diagram form a pullback diagram and hence that

hy*k is a classifying map for ph.//

4,13 COROLLARY Under the conditions of lemma 4.12, there
. 4 ’ . h
is a homotopy equivalence 6(ph). nMap(B,BK,h*-k) > 9(p )

PROOF  Apply theorem 4.11 to the principal K-bundle ph.//

Since the map h, induces, by composition, a map
Q(h, )B: nMap(B,BG;k) > nMap(B,BK;h, +k)
it is natural to ask what properties the diagram

8
@ap(B,B5k) —E— G (p)

a(h,)g l e l n:
Wap (B,By;h, +k) (), ﬁ«(ph)
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has and, in particular, whether it is homotopy commutative,
in which case nﬁ and “(h‘)B can be identified up to
homotopy. By proposition 4.8 and lemma 2,20, it will be
sufficient to show that there exists a base point preserv-

ing map V¥, completing the diagram

h
k&
sec(p p)g —L— secp" p™),
ip l l ip
¥y h
41y sec(p* Pg) — — — — — sec(p *, py)
il I
(h)g

Map(B,B;;k) ————— Map(B,By;h, -k)

Notice that the base points in sec(p p)G and
sec(ph ph)K are the sections corresponding to the respec-
tive identities, so the base points in sec(p*lpG) and
Sec(phtlpK] will be defined, respectively, by the rela-
tions:

s(p) (=z,k(»)) = (b,k'(2))
sh(b)([x,e],h4'k(b)) = (b, (h,*k) "' ([=,e]))

for any beB and zeX. In this way all the already
existing maps in diagram 4.14 are base point preserving.

Let us therefore define a function

L & (XxBG BxEG)G -+ ((XxhK)XBK BXEK)K
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by setting, for a given (b,c)eB!BG and a given G-map

a: p lp)x{e} » (bIxpgtle),
= h,-1 =1 X
¥(a): (p7) " (B)x{h,(e)} + {b}xpy” (h, (c)):

(Cz,k1,h, (e)) > (B,h* (a(=))k)
(we identify the given a with the corresponding map
a: p i) » Pél(c) ). In other words, ¥(a) is obtained
by composing axly with a suitable restriction of
h le and with the action of K on Ex and then
quotienting out the action of G. By the definition of
h*, this makes Y¥(a) properly defined and continuous.
Moreover, since ¥(a) preserves the action of K, ¥
itself is well defined. Notice also that

@ )Y = (pepg)+ (1xh,)

so, in particular, as a map from P*,Pg to ph'1pK’ ¥
is over B. It is also easy to see that,for any Ug
in the standard numerable cover for pg, h.(Ug) is
contained in the corresponding U?, so that to prove the
continuity of ¥ it will be sufficient to prove the

continuity of each of the restrictions
wluxuS: (XxB. BxE.).|UxUS » ((Xx, K)xB, BxE.). |Uxu¥
i’ G G’G i h k KK i

where U is in the numerable cover for p and ieN.



L

4.15 LEMMA For any Ue{U} and ieN, the diagram
et X
(XxBg  BXER) o|UxU; ———=— ((Xx,K)XBy BxE,),|UxU;
h
Xu,i Xu,i

UxUSx6 R

uxu¥xk

where Xy i and Xﬁ ; are the local homeomorphisms for
B ’

P*pg and p *Py Tespectively, is commutative.

PROOF £ ((p,¢U)} is the locally trivial structure
for p, it follows by 1.49 that, for any (b,c,g)¢Uxu§xc
and ac€G,
Xy, 1 (Bs229) by (5,a) 1) = (5,45 (c,ga))
and hence, using the commutativity of diagram 4.5,
1OV x5 (B,0,0)) (Loy(5,0) KT B, (0)) =
= (5.1 (xg,; (5,0,0) (0 (5,0))0) =
= B, (50,0000 = (6,05, () ,n(e))0)
On the other hand
O, 5+ (1xhy xh) (5,2,9)) (Loy (b ,e) k1 b, (e)) =
= (), 1 (320 (2 ,1(@))) (o (B ,€) KT b, (0)) =
= (5,05 (2),h(9)0)) = (.5 (h, (e),h(g))R)

and this proves the result.//
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4.16 PROPOSITION The function Y is continuous and
therefore induces a continuous function
h
¥, : sec(px,pg) + sec(p *,py)
which is base point preserving and completes the diagram

4.14.

PROOF  The continuity of ¢ follows from lemma 4.15.
Moreover if S‘SEC(p'sz) is the base point, then for

any beB,
7, () () : M) 1(B)xh, -k(5)} » (B}xpgl(h, -k(p)):

(Lz,k1,h, «k(B)) a+ (b,h* (k' (2))k)
and, since h*t+k'(xz) = (h,k)'([z,el), it follows that

h

¥,(8) = 5", that is, that V¥, is base point preserving.

*
A similar analysis proves the commutativity of the lower
square of diagram 4.14. The commutativity of the upper

square follows from that of the diagram

h
X X)g — (K XKy

3 |+

¥
(XxBg BxEQ)q —— ((Xx;K)XBy BxE.)y

which can be easily checked.//

We can now summarize these results in a theorem.
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4.17 THEOREM Given a principal G-bundle p: X + B
over a CW-complex classified by a map k: B » BG and a
topological group morphism h: G + K, there exists a

diagram, commutative up to homotopy

s
aMap (B,B3k) ——E— stp)

alh,)g l J n:
s, h
QMap (B, By 3h, k) D=5 PO gtph)

where 5p and 6(ph) are H-homotopy equivalences.

PROOF  Proposition 4.16 and proposition 4.8 ensure the
existence of a commutative diagram
8
aMap (B,Bg3k) ——P—— sec(p p)g
T
nMap(B,BK;h,-k) —(&» sec(ph ph)K

which, together with lemma 2,20, proves the claim.//

We can now combine the results of this section with
theorem 3.17 to obtain the following generalization, to

the group of fibre bundle automorphisms, of theorem 4.11.

k.18 THEOREM Let p: X+ B be a principal G-bundle

over a CW-complex B, F a left G-space and w: G = QF
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the canonical projection. If k: B » BG is a classifying
map for p and the map A*: G » MA(F,F) is a Hurewicz
fibration, then 4(pF) is weakly homotopy equivalent to

the subspace of QMap(B,B, ;m, +k) consisting of the group

Q

of path components in the image of the homomorphism
To(R(n)g): 7o (AMap(B,BG;K)) + 7, (AMap (B, By i, k)

Moreover, if F is admissible such a correspondence is a

homotopy equivalence.

PROOF Under the given hypotheses, we can combine theorem
3.17 and theorem 4.17, applied to the projection w, to

obtain the result.//

§ 5) SOME CATEGORICAL CONSIDERATIONS

Given a CW-complex B, let us define a category Py
as follows. The objects are pairs of the form (p,k),
where p 1is a principal G-bundle over B, for some
topological group G, and k: B + BG is a classifying
map for p. Given two ohjects (p,k) and (p',k') in
PWy such that p is an object of Pg and p' of P§,
the morphisms from (p,k) to (p',k') are those pairs
(f,h) which are morphisms in Py from p to p' and

are such that k' = h, +k.
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Composites and identities can now be obtained as in
PB (definition 1.19) and these ensure that PHy is a
well defined category.

Let now 7Gr be the category of topological groups

and define a functor

9” PNy + TGr
by setting, for an object (p,k),
Gww = G
and,for a morphism (f,h) from (p,k) to (p',k'),

§(f h) = fnn ¢ Gp) - g(p )~ g',(p )

where f* is the natural isomorphism induced by the map

1 XK > X' C2,kdne £(2)K

To be sure that 9 is well defined we only have to show
that it respects composition of morphisms, since it is
obvious that it preserves identities. But if (f,h) and
(f',h') are two composable morphisms, then we have that
GUE N (£,0)) = G(E' £, m) s given by
ph'*h
G £ S GoM' ) L G

while g(f-,h')- Q(f,h) is given by

%(p) —P—-'S(P ) —»Stp ) —P—- 4{’( At e g(p")



128 -~

and, by the definitions of the various maps involved,
it is easy to see that they are equal and hence that
% is a functor.

Let now H be the category of H-groups and
H-homomorphisms, as defined in [Sp] page 35, and define

a functor

Q PW. *

) B

by setting, for an object (p,k) of PVB,
23(p,k) = oMap(B,B;;k)
and, for a morphism (f,h) from (p,k) to (p',h, k),
2 (£,h) = a(h,)p: aMap(B,B;;k) + aMap(B,By;h, «k)
It is then easy to see, using standard results about loop
spaces, that Qg is a well defined functor.

Notice that if we had chosen, as morphisms in Py
from (p,k) to (p',k'), pairs (f,h) satisfying only
the condition k' ~ h +k, the functor 2y could not
have been properly defined, since there is no canonical
choice of a path from k' to he+k in Map (B,By k'),
in general.

Finally, let Hh be the homotopy category of #,
that is, the category having the same objects as # and,
as morphisms, homotopy classes of morphisms of Z. We

then have two obvious "projection'" functors:
P
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J B * Bh
J' : TGr + Hh

and we are now ready for the main result of this section.

4.19 THEOREM There exists a natural isomorphism

§: gy 3 Jre§
defined by the relation
8(p,k) = [8,) : aMap(B,Bg;k) + g(p)

PROOF By theorem 4.11, & is well defined and &(p,k)
is an isomorphism for every object (p,k) of PVB, so
we only have to check the naturality of &. To that end,
notice that, by theorem 4.17, given a morphism (£f,h)

from (p,k) to (p',k'), the diagram

8
aMap (B,B;k) —EB—— & (p)

a(hy)y J ln:
P
QMap (B, By shy k) — 2 ﬁr(ph)

is homotopy commutative. Now the same techniques used in
the proof of that theorem can be applied to the homeo-
morphism £M': Xx K + X': [z,kln> £(z)k to obtain a
homeomorphism from sec(ph'ipK) to sec(p"1pk) which
is over the identity on Map(B,BK;h,-k] and therefore

induces a homotopy commutative diagram
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. h
QMap (B,By 3, -k) —@) . %(ph)
'l | «
[
aMap (B,Bysh, k) —E—— G (p")

which, together with the previous one shows the naturality

of &.//
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CHAPTER 5

APPLICAT I ONS AND




- 127 -

In this chapter we shall give a few computations
based on results obtained earlier in the thesis. There
is, of course, no claim of completeness for such compu-
tations, neither with respect to cases analyzed,nor to
techniques used.

Throughout the chapter we shall assume that the
base space of the bundles considered is a path connected
CW-complex, and thus that the bundles themselves are
numerable.

In the first two sections we consider the effect on
Q(p) of enlarging the structure group of p, say H,
into a larger group G. In the first section we consider
cases where H is a normal subgroup of G, in the second
one cases where the inclusion 1: H+ G is an n-equiva-

lence, for some value of n.

§ 1) EXTENSIONS: NORMAL SUBGROUP CASE

Let p: X+ B be a principal H-bundle, 1: H =+ G
be the inclusion of H as a normal subgroup of a larger

topological group G and assume that the canonical
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projection w: G » Q=G/H 1is a Hurewicz fibration. In the
light of the results of chapters 1,2 and 3, it is clear
that this is a particularly favourable situation. In
fact, letting q = p‘, by proposition 3.15, there is a
topological group morphism

1 G@ + G
which is also a Hurewicz fibration with image 4(q")
and, by theorem 2.34, with fibre @(p). Since we1 is
trivial, by propositions 1.36 and 1.43, q' is trivial
and so, by corollary 2.13, §(q") x Map(B,Q).
By corollary 3,13, we obtain a long exact sequence of

homotopy groups

v 1 (G + T (§(a)) » 7y (Map(B,Q)) » 7wy ) (G(p))
+ 7,(¢(@) = = (Map(B,Q))
from which we may extract information in several cases.
One simple case is when, for two given integers n and
m, ni(Map(B,Q)) = 0 for n<ism. In fact this implies
immediately that
w ( f(p)) v §a) for n<i«m,
while Im(H;): 'n( €(p)) - 'n( ?(q)) is surjective and
nn_l(nl‘)): LD §(@) is injective (this
last statement being meaningful only if n>0).

This situation occurs, for instance, when Q = Sl,
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or a torus, and we let n =2 and m = o, This can be
easily seen using the exact homotopy sequence of the
evaluation fibration
ev: Map(B,SY) » S :f ~s £(p)
where beB is the base point, In fact, in this case,
both the base space, Sl, and the fibre, the space
Map‘(B,Si) of based maps, have vanishing homotopy groups
in all dimensions bigger than 1 and so w, (Map(B,5%))=0
for i22. Moreover
7, (Map, (8,51)) ~ rB,as11, ~ 0
7, (Map, (B,5")) ~ [B,5'3, ~ H'(B)
so that, if we assume that B is simply connected, we
obtain the following extra data:
ni(Map(B,Si)) aZ
no(Map(B,si)) )
which allow us to establish, for Q = (S*)®, the follow-

ing exact sequence:

0> 7 (§) » 7 (§@) » 2"+ n (§p) =
> mp(g@) > 0.

As an application we obtain:

5.1 THEOREM Let p: X - B be a principal SU(n)-bundle,

where 1l<nsw, and let 1: SU(n) - U(n) be the inclusion.
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Then, for all i22,

T (G @) ~ T (4"
and, moreover, if B is simply connected, the sequence
0+ 1 (@) +m(§®) »2+7(§®) + 7 (k)0

is exact.

PROOF We only need to notice that U(n) is a Lie group
and so the projection w: U(n) + U(n)/SU(n) ~ s! isa

fibration.//

Theorem 5.1 tells us that the problem of computing
the higher homotopy groups of Q(p) for p a principal
SU(n)-bundle over a CW-complex can be solved by solving
the same problem for principal U(n)-bundles,

When n = =, the classifying spaces BU and BSU
are H-groups (cf. [Sw] page 213) and this implies, as
shown in [Mo], th. 3.3.4, that, for a principal SU-bundle
P, ?(p) is homotopy equivalent to Map(B,SU) and
;(pl) is homotopy equivalent to Map(B,U). In partic-
ular, if B = S", we can use [K], th. 2.2, to obtain

T (Gp)) ~ wi(SU) @ my, (SU)

T (§(EY) v T V) 8 Ty, ()
(for the details, see [Mo] page 92). Since for i22
wi(U) ~ wi(SU), we get, for this particular case, an

alternative verification of the general result of the
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theorem.

An even more convenient situation occurs when Q
is a discrete group, since, in this case, Map(B,Q) ~Q
and hence wi(Map(B,Q)) =0 for i>0 and
no(Map(B,Q)) ~ Q. The isomorphism

1 (@) v (')
then holds for ix1.

We give two examples of this situation.

5.2 THEOREM Let p: X + B be a principal SO(n)-bundle,
lsnge, and 1: SO(n) + O(n) be the inclusion. Then, for
iz1, w( Q,(p)) v ( Q(p‘)) and the function

1!0(1'[;): LN q_(p)) > mo( %(p‘)) is a monomorphism.

PROOF Again, we only need to notice that the projection

m: 0(n) + O(n)/SO(n) ~ Z, is a fibration.//

As for theorem 5.1, this theorem also reduces
the study of the higher homotopy groups, and of the
fundamental group, of %(p) for principal SO(n)-bundles
to the same problem for principal O(n)-bundles. Moreover,
for n = @ we can again use the H-group structure of BO
and BSO and obtain, for an SO-bundle over a sphere Sm,

the following isomorphisms:
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7, (§(p)) ~ 7;(S0) @ m;, (S0)
704" ~ 73(0) @ 7y, (0)

which confirm the result of theorem 5.2.

i+m

For the second example, let G be a compact, con-
nected Lie group, T a maximal torus of G and NT its
normalizer. It is well known that the quotient NT/T is
a finite discrete group ([Hus] page 172) called the

Weyl grou of G. So we have:

5.3 THEOREM Let p: X+ B be a principal T-bundle

and let 1: T » N, be the inclusion. Then wi(s,(p‘))

;4
is trivial for i>1; moreover if B is simply connected,
'1(40")) ~ 2", where n = dim(T), and xo(g,(p‘)) is

finite.

PROOF  Since T is abelian, by corollary 2.13,
@(p) & Map(B,T) and so m,( G(p)) ~ (wi(Matp(B.Sl)))n =0
for i>1. Now, using the isomorphism between ui( q.(p))
and ni( ';(p‘)) we can prove the first part of the
theorem. Moreover we have seen earlier that, if B is
simply connected, 7, (Map(B,5')) ~ Z and w (Map(B,s%))
is trivial, so, in this case, we obtain an exact sequence:
0+ 2"+ 7, (G(") » 0+ 0+ 7 (§(p")) » NJ/T

which proves the second part.//
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In the proof of theorem 5.3 the computations of
™ ( %(pl)] were simplified by the fact that the group
T is abelian and hence 9(p) was detectable. This

suggests the following generalization:

5.4 THEOREM Let p: X+ B be a principal G-bundle and
let H be a normal abelian subgroup of G
such that the projection w: G + Q=G/H 1is a Hurewicz
fibration. If p has a restriction to a principal
H-bundle q and wi(Map(B,H)) = 0 for n<ism, then

m;( G(p)) ~ ﬂi(Map(B,G)) for n<i<m and the function

ﬂm(]'lg): um(g(p)) > m,(Map(B,Q)) is injective.

PROOF  The long exact sequence generated by the map
n;: g(p) + Map(B,Q) and the homeomorphism between
?(q) and Map(B,H) show that ni( ?(p)) ~ ﬂi(Map(B,Q])
for n<i<m and that nm(H;) is injective. However, in
our situation there is a fibration

m,: Map(B,G) + Map(B,Q): f a»> m-f
whose fibre is clearly Map(B,H). Now the hypothesis on

Map(B,H) allows us to complete the proof.//

5.5 COROLLARY Let p: X > B be a principal G-bundle
and let H be a normal abelian subgroup of G

which is either a) discrete, or b) a torus (or a union
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of tori)., If the projection =: G = G/H 1is a Hurewicz
fibration and p admits a restriction to a principal
H-bundle, then u’i(s(p)) ~ w;(Map(B,6)) for a) izl,
or b) i=22.//

Notice that if G is connected, any discrete normal
subgroup is abelian ([P] th. 15) and that, if G is
compact and finite dimensional, then its center is a
torus (or a union of tori) and hence corollary 5.5 can

be applied.

§ 2) EXTENSIONS: n-EQUIVALENCE CASE

In this section we shall analyze some cases in

which theorem 3.23 may be applied.

5.6 THEOREM Let p: X+ B be a principal U(n)-bundle,
where 0Osns~, and assume that dim(B)=ms<2n. If
1: U(n) -+ U(n+q) denotes the inclusion, for q20, then

v, e & X s
I f(P) + ﬁ(p ) is a (2n-m)-equivalence.

PROOF In this case the inclusion 1 is a (2n)-equiva-

lence and the result follows from theorem 3.23.//
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Theorem 5.6 remains valid if we consider SU(n)

rather than U(n).

5.7 THEOREM Let p: X+ B be a principal O(n)-bundle,
where 0Osns<e, and assume that dim(B)=m<(n-1). If
1: O(n) + O(n+q) denotes the inclusion, for gq20, then

n;: g(p) % G(p‘) is an (n-m-1)-equivalence.

PROOF We only need to notice that in this case the

inclusion 1 is an (n-1)-equivalence.//

Also for theorem 5.7,the same result holds if we

consider SO(n) rather than O(n).

Theorems 5.6 and 5.7, together with the results of
section 1, allow us to compile the following list of
values for the homotopy groups of q(p) in the case
in which p: X » s™ isa principal bundle over a sphere

with a classical group G as structure group.

1), G=Wi, . EE5E 5 a1
T (G@) ~ T (U) @ 1y, (V)

2) G = SU s R ) . m21
Wi(%(l’)) v (SU) @ w, . (SU)
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3) G = U(n) 3 I'sms 2n . 0 <iz< 2n-m-1

T (G v owy (V) @ wy, (V) A

~ ﬂi(U(n)) ® “i#m(u(n))

4) G = SU(n) B l1<mz< 2n - 0<ic< 2n-m-1
m;( g(p)) ~ i (SU) @ m;, (SU) ~

wi(SU(n)) I 4 (SU(n))

i+m
5) G=0 5 i=20 s W2l
T (§@)) ~ 1y (0) @ 7y, (0)

6) G = SO 3 1 =0 % m21

10§ @) ~ 7, (S0) @ my, . (SO)

i+m
7) G =0(n) » 1 sm <=1 » 0<is<n-m-2
ms( g,(p)) v (0) @ my, (0)

1+m

v i (0m) @ 7y, (0(n)

8) G = S0(n) P ls<mzc<n-1 . 0<ic<n-m-2
m ( %(p)) ~ m;(S0) @ ;. (S0) ~
'wi(SO(n)) ® ﬁi’m(SO(n))
It is only to be expected, now, that the strong
relation existing between U(n) and GL(n,C) or between
0(n) and GL(n,R) will give rise to a similarly strong

relation between corresponding groups of bundle auto-
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morphisms, as the following theorem shows.

5.8 THEOREM Let p: X + B be a principal O(n)-bundle
(resp., U(n)-bundle) and let 1: O(n) + GL(n,R) (resp.,
1: U(n) » GL(n,C) ) be the inclusion. Then the map

n;: g(p) - G(p‘) is a weak homotopy equivalence;
moreover if B is compact, then n; is a homotopy

equivalence.

PROOF  The first part of the theorem can be proved as in

theorem 5.7, The second part follows from the fact that,

under the given hypotheses, g(P) and Q(Pl) have

the homotopy type of a CW-complex (see [BHMP2] th.4,7).//

The following result, given in [Hoc], page 180 th.3.1,

allows us to give a more general version of theorem 5.8.

5.9 PROPOSITION Let G be a connected Lie group. Then
G contains a maximal compact subgroup H which is a

strong deformation retract of G.//

5.10 THEOREM Let p: X * B be a principal G-bundle,
where G is a connected Lie group and H be a maximal
compact subgroup of G which is a strong deformation

retract of G, If p admits a restriction q to H,
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then G(q) and G(p) are weakly homotopy equivalent;
moreover if B is compact, then they are homotopy equiva-

lent.//

5§ 3) IDENTIFYING GROUPS OF FIBRE BUNDLE

AUTOMORPHISMS WITH GROUPS OF PRINCIPAL

BUNDLE _AUTOMORPHISMS

In view of theorem 3.17 and corollary 3.18, it is
clear that the results of sections 1 and 2 can give rise,
under suitable conditions, to analogous statements
concerning the groups of automorphisms of fibre bundles.
Since these derived results can be obtained very easily,
we shall not list them. Instead, we shall analyze
the only point which is not clarified by theorem 3.17,
that is, the relation between the path components of the
spaces g(pF) and g(p") considered there.

To that end, let p: X = B be a principal G-bundle,
F a left G-space with respect to the action A and
assume that the map A*: G MA(F,F) is a Hurewicz
fibration. Since we are assuming that B is a CW-complex,
we can use theorem 3.17 and obtain a weak homotopy equiva-

lence between ;(pp) and }(p'), where w: G+ Qp is
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the canonical projection. Moreover we know that, in
these conditions, the map H;: g(p) > g(p") is also
a Hurewicz fibration, so that }(p“) is a group of
complete path components of e(p") and the map H; is
surjective if and only if "u(n;) is.

With this in mind we can prove the following results.

5.11 PROPOSITION Let p: X+ B be a principal G-bundle
over a CW-complex B of dimension n and let H be an
(n-1) -connected normal subgroup of G. If the
projection w: G » G/H is a Hurewicz fibration, then
Feh = Gon.

PROOF  Since m 1is a topological group epimorphism, the
condition on H and lemma 3,14 imply that = is an
n-equivalence. By theorem 3.23, n;: g(p) * G(p“)

is a 0-equivalence, that is, it induces a surjection
between path components. This is exactly the condition

we need and so the claim is proved.//

5.12 COROLLARY Let p: X > B be a principal G-bundle
over a CW-complex B of dimension n and F a left
G-space such that the pair (p,F) satisfies C2). If
KrF is (n-1)-connected, then there is a bijective map

tiat s(p") -+ }(pF], where m: G + Qp is the projection,



- 140 -
which is a weak homotopy equivalence; moreover, if F

is admissible, then t,, is a homeomorphism.//

A similar result can be obtained using the following
generalization of [Spl, th. 7.8.12, as given in [Bol,

page 334.

5.13 LEMMA Let B be a based, n-connected, CW-complex

and Pi? X

g B be fibrations with fibres Fi (i=1,2).

Let f£: X1 - X2 be a base point preserving map over B
such that f£|b: F, » F2 induces isomorphisms of homotopy
groups in all dimensions bigger than, or equal to, n.
Then f induces a bijection £, : [sec(pi)] - [sec(pz)].
where [sec(pi)] denotes the set of based homotopy

classes of base point preserving sections of Pi'//

5.14 THEOREM Let p: X » B be a principal G-bundle
over an n-connected CW-complex B and let H be a

normal subgroup of G such that ﬂi(H) =0
for i2(n-1) and w: G + G/H is a Hurewicz fibration.

Then %™ = (}(P')-

PROOF Fix a base point beB and, given s:sec(p" p“)G/H.

let s(b) be the base point of (X/H x/H)G/H. Since,

w

in this case, ¥ : (X X)G + (X/H X/H)G/H is surjective,

we can select a point in (¥") I(s(#)) as base point for
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(X X)G. We can now apply lemma 5.13 to the fibrations
(p p)G and (p"I p")G/H and find a section s' of
(p p)G such that ¥".s' ~ s. This means, as we need,
that xo(?;): 1°(sec(p p)G) - uo(sec(p' p')G/H) is
surjective and hence ?(p') = g(p').//

5.15 COROLLARY Let p: X+ B be a principal G-bundle
over an n-connected CW-complex B and F a left G-space
such that the pair (p,F) satisfies C2). If wi(KtF)=0
for i2(n-1) and w: G » QF denotes the projection,

then there is a continuous bijection t,,: g(p’ ) » g(pF)
which is a weak homotopy equivalence; moreover if F is

admissible, then t,, is a homeomorphism.//
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APPENDIX A
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Throughout the thesis we have been concerned with the
problem of looking at how the groups of principal bundle
automorphisms are affected by a change in the structure
group, assuming that this change is induced by a topolo-
gical group morphism; i.e., if p: X + B is a principal
G-bundle and h: G + K is a topological group morphism,
then what relations exist between g(p) and g(ph) ?

There is now an analogous question which can be
analyzed, that is, how are the groups of principal bundle
automorphisms affected by a change of the base space
induced by a continuous function? More specifically, if
p: X » B is a principal G-bundle, h: A+ B a map and
Pyt AnX + A the induced principal G-bundle, what rela-
tions exist between g(p) and  G(p,) ?

Answering this question in full falls outside the
scope of this thesis, however we now outline the way in
which the techniques that we have used in the main body
of the thesis can be applied to this question in order to
obtain similar results. The details of the proofs will
be omitted, as they will find a better location in a
separate and more complete treatment elsewhere.

We like to point out that a partial approach to this
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question has been described in [Mo]l , in the case where

h is the inclusion of a base point, and in [Go2] and
[BHMP2], where the authors give a generalization, to the
relative case, of the relation, described in chapter 4,
between 9 (p) and loop spaces on mapping spaces. We
shall see later that the relative groups obtained there
play a role analogous to that played by the groups ;(p;H)

in the main portion of the thesis.

First of all, the following analogue of theorem 1.34

can be easily verified.

A.1 THEOREM Let G be a topological group and
h: A+ B a map. Then, there is an induced functor

G

Py > Pg defined, for principal G-bundles p: X + B

Ilh:
and p': X' + B and morphisms f from p to p', by
the relations

T (P) = py H I (£) = 1x£
where

1xf: AnX + AnX': (a,z) > (a,f(z)) .//

A technique similar to that of theorem 2.37 gives

rise to the following result.
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A.2 THEOREM Let p: X » B be a principal G-bundle and
h: A+ B be a map. Then there is an induced continuous
homomorphism
e G~ Glop)
defined by the relation
1P (£) (a,2) = (a,£(x)) .//

We notice that if h is an inclusion, then nﬁ
has the effect of restricting an automorphism of p to
the inverse image of A,

g is not surjective

As in the case of ﬂ;,the map I
in general and its kernel can be described in terms of
subspaces of B, in a fashion similar to that of theorem

2.30.

A.3 DEFINITION Let p: X+ B be a principal G-bundle
and let U be a subspace of B. Then f(p/U) will
denote the subgroup of Q(p) consisting of those auto-

morphisms which fix all points =zeX such that p(z)eU.

If U = {b}, where b is the base point of B,
g(p/U) is just the group qi(p) of [Mol. In view
of the ongoing analogy, the following results will not

be surprising.
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A.4 THEOREM Let p: X > B be a principal G-bundle
and U a subspace of B. Then g (p/U) is a normal
topological subgroup of G(p) and coincides with
@(p/ﬁ), where U is the closure of U in B.//

A.5 THEOREM Let p: X + B be a principal G-bundle and
h: A+ B a map. Then the kernel of the homomorphism
g G » Gy s Ge/imm).//

The spaces 9(1;) . @(ph) and g(p/u) can all be
viewed as spaces of sections to functional bundles, as

described in the following theorem.

A.6 THEOREM Let p:X - B be a principal G-bundle,

h: A+ B be amap and U be a subspace of B. Then
Q(p) is homeomorphic to sec(p p)j, while g(p/u)

is homeomorphic to the subspace of sec(p P)G consisting
of those sections s such that, for every beU, s(b)

is the identity map on (p p)(_;i(b). Moreover, since,

by [BB2] th. 1.1 and 8.2, (AnX AnX)G and Aa(X X)G
are homeomorphic over B, Q(Ph) is homeomorphic to

sec(((p P)g)y)-//

The map !g: sec(p plg > set:():ah ph)G corresponding
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to the homomorphism ]Ig: g(p) - 9(ph) can now be
defined using the universal property of pullbacks and the
reader will notice that the fibre of this map between
spaces of sections is the subspace of sec(p p)G corre-
sponding, according to theorem A.6, to 9(p/im(h)).
However, in contrast with the map !:. the map !g is
not directly induced , in general, by a map between the
total spaces of the functional bundles in question.

The next step is to determine conditions under
which the map lI;’l is a fibration. This, as one would

expect, requires some condition on h.

A.7 THEOREM Let p: X - B be a principal G-bundle
and h: A+ B be a closed cofibration. Then the map
ﬂﬁ: G(p) - f(ph) is a fibration and hence maps q,(p)
onto a group of complete path components of %(ph).//

The naturality, in this context, of the weak homotopy
equivalence between nMap(B,BG;k) and §(p) is described

in the following result.

A.8 THEOREM Let p: X - B be a numerable principal
G-bundle classified by the map k: B -+ Bg and let

h: A+ B be a map. Then there exists a homotopy commu-
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tative diagram

aMap (B,B;;k) : ¢®
ah+ l l P
Sn
aMap (A,Bg;k+h) ¢y

where & and éh are the H-weak homotopy equivalences

described in chapter 4.//

This result can conceivably be formulated in categor-
ical terms as stating the existence of a natural isomor-
phism between two functors.

Finally, the following observation indicates a way
of connecting the main theory of the thesis with the one

we have just described.

A.9 THEOREM Let p: X » B be a principal G-bundle,
h: G - K a topological group morphism and f:A + B
a map. Then (ph)f and (pf)h are isomorphic
objects of 2K.//

The connection between the two theories may prove
fruitful both for its theoretical aspects and for its

applications.
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In chapter 1, proposition 1.30, we have seen how to
construct a functor rF: Pg - F;(G) when we are given
a space B, a topological group G and a left G-space F.
Still in chapter 1, section 5, we have seen how to use
the functional construction to obtain information on the
group of automorphisms of a principal or fibre bundle.

In this appendix we shall use that functional con-

struction to obtain a functor eF: Pg > pg(c), naturally

B

equivalent to I, and, whenever F is admissible and

effective, another functor EF: F:(G) > Pg such that

of.zF ana zF.of

-0 are naturally equivalent to the re-
spective identity functors.

We like to notice that the construction on which
the functor EF is based was first suggested, even
though in a less rigorous form, in [St], page 39, while
in [BB2], example 3.3, functional bundles were explicit-
ly indicated as an effective formal way to obtain asso-
ciated principal bundles. However the symmetric con-
struction, used here to define the functor BF, was never
considered in the original papers of Booth and Brown,
and we notice that its basic idea reminds us of the
Ehresmann-Feldbau definition of a bundle (see, e.g.,

[St1, def. 5.2).
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5§ 1) FIBRE BUNDLES

First of all recall that, given a right G-space X
and a left G-space F, we can consider the notion of a
"G-map" f: X + F, by requiring that, for every ze¢X and
geG, f(zg) = g '£(z) (see the comment following defini-
tion 1.6).

If p: X+ B is a principal G-bundle, F a left
G-space and t: BxF - B the projection, we can form the
functional bundle (p t): (X BxF) + B and, if ((U,ou))
is the locally trivial structure for p, then ((U,XU)}
is a locally trivial structure for (p t), where

xy: UxMap(G,F) + (X BxF) |U
is defined by the relation
xy(8,£) (4y(2,9)) = (2,£(g))
Let us now consider the restriction (p t)G of (p t)
to the subspace (X B!F)G of (X BxF) consisting of
G-maps. Then it is easy to see, using the homeomorphism
between MG(G,F) and F described in lemma 1.9, that
(p t); has a locally trivial structure given by
((U,XU)}, where, with a little abuse of notation,
Xy: UXF > (X BxF)c|U
is defined by the relation

Xy B,¥) (y(5,9)) = (B,g™1y)
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B.1 THEOREM Given a principal G-bundle p: X + B and
a left G-space F, there is a homeomorphism

ng (X BXE)g » XxcF
over B, defined, for a given a: p 1(b) + {b}xFaF,
by the relation T:(u) = [z,a(x)], where =z is any
point in p 1(»). Therefore the pair ((p t)g» TE) is

a fibre bundle with fibre F associated to p.

PROOF If =z and y are two points in p 1(»), then

y = zg for some geG and hence

[y,a(y)] = [zg,a(xg)] = [zg,g ta(z)] = [z,a(z)]
proving that T; is well defined. Moreover,for each
Ue{U}, there is a commutative diagram

¥y
My .
(X BxF)|U XxF|U

Xy ] I’S
1

Uxf ——=——— UxF

F

which proves that TP is a homeomorphism. The last

statement follows from definition 1.27.//

Let now f be a morphism in Pg from the principal
bundle p: X - B to the principal bundle p': X' + B
and define a function

£4: (X BxF)g » (X' BxF)g: a a> ac(£71]p)
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where b = (p t)G(a). Since Pg is a groupoid, this
can be done; moreover the commutativity of the diagram

(X BxF)g S AN BxF)

F F
. T
B.2 P l l Tp'
£F ,
XxGF —_— X'x_.F

G
ensures that f* is a homeomorphism and so, by defini-

tion 1.29, that it is a fibre bundle morphism.

B.3 THEOREM Given a space B, a topological group G
and a left G-space F, there is a functor
G
GF: PB > Fg(G)
defined by of(p) = (p t); and oF(£) = £, which is
naturally isomorphic to the functor I‘F defined in

proposition 1.30.

PROOF  The functorial properties of eF

can be easily
verified. Since, for every fibre bundle (q,h) asso-
ciated to a principal bundle p, the map h is a
morphism in F;(G) from (q,h) to (pF,l), diagram B.2
proves that there is a natural isomorphism TF: eF 3 PF
determined, for each object p of Pg, by setting

Fp) = T:.//
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REMARK : It is possible to retrieve most, if not all,
of the general theory of fibre bundles by using the
functor oF to define a fibre bundle and then applying
the results of [BB1] and [BB2]. For instance, [BB1]
th. 1.1, plus the natural homeomorphism between An(BxF)
and AnF for any map k: A + B, prove [Hus] cor. 6.4
page 46. Also [BB1] cor 3.7, plus the obvious homeo-
morphism between (X BxG)G and X, imply the fact that
a principal G-bundle is trivial if and only if it has a

section, etc.

§ 2) ASSOCIATED PRINCIPAL BUNDLES

We now give a construction,similar to the one of
section 1, in order to obtain a principal bundle asso-
ciated to a given fibre bundle.

So, let q: Y + B and h: Y » XxcF be such that
(q,h) is a fibre bundle with fibre F associated to
the principal G-bundle p: X + B and consider the
functional bundle (t q): (BxF Y) -+ B, where t: BxF » B
is the projection. Again, if {(U,¢§)) is the locally
trivial structure for q, then (t q) has a locally

trivial structure {(U,xg)), where
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)(5: UxMap (F,F) = (BxF Y)|U
is defined by the relation
X (5, (6,y) = ¢5(5,£())
Consider now the restriction (t q)x of (t q) to the
subspace (BxF Y)A of (BxF Y) consisting of maps of

the form P

y,5°9"

where g* is an action map, beUe{U} and QS » is
»

the restriction of 05 to {b}xF. Then we have:

B.4 LEMMA  For each Ue{U}, xy(UxM,(F,F)) = (t @)} (V).

PROOF If (» .g'):UKMA(F,F), then, by definition,
F F F -
xy(2:6*) = 8y 5°g%, hence x;(UxMy (F,F)) < (t @)} (V).
To prove the other inclusion, let beU, Ve{U} be an open
set containing » and ¢5 b-g‘ be an element of
»
(t q)il(b). We can now write
F gt = F . F -1. F -
by ,p°9 %u,» (Ou,b) LS
and it is easy to verify that the composite
F -1__F
“U,b) %5
is an action map, say a«*. Therefore we have
F eg* = F - * F
L %u,p (ag)* e xy(UxM, (F,F))

thus proving the claim.//



- 160 -

So, with another useful abuse of notation, we can
say that the local homeomorphisms for (BxF Y)x are
given by the maps:

Xb: UXM, (F,F) » (BxF Y),|U
where xﬁ(b,g‘) = 05 b-g‘. If F is admissible, then
B
M, (F,F) is homeomorphic to Qp=G/Kr; (definition 1.5)
and hence we can write the local homeomorphisms as
xf,z UxQp + (BxF Y),|U

where XS(b,gKrF) = oﬁ,b-g‘.

B.5 THEOREM If F is admissible, then (t q)A is

a principal Qp-bundle.

PROOF Define an action of QF on (BxF Y)A by
F
vi (BxF Y),xQp + (BxF Y),: (4 ,+g* ,akrp) *> &y .- (ga)*
This action is clearly well defined; it is continuous
because, for each Ue{U}, the composite
uxMy (F,F)x6 XX yuy, (B, )M, (F,F) LS uxh, (F,F)
is continuous. Moreover the XE are clearly QF-naps,

so, by definition, (t Q)A is a principal QF-bundle.//

Recall now that (q,h) is associated to the prin-

cipal G-bundle p: X + B and that, by corollary 1.44,
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X!GF is naturally homeomorphic to (X/KrF)*GF. Then
the following proposition will show that gq can also

be considered as a fibre bundle associated to (t Q)A'

B.6 PROPOSITION If F is admissible and w: G » Qe
is the canonical projection, then the principal QF-hun-
dles (t q)A: (BxF Y)A‘ B and p': x/KrF + B are
isomorphic.
PROOF Define, for each Ue{U}, a map

F

Sy: (X/Krp)|U » (BxF Y),|U

as the composite

(O X
sp: (X/krp) [U —2 s uxq—2 (BxF Y), |U

Each of these maps is a QF-honeomorphisn over U, so if
we can glue them together, we shall obtain the desired
isomorphism sF. (X/KrF) + (BxF Y)A’ To see that this
is indeed possible, observe that, for any U and V in

{U} such that UaV = @, we have a diagram:

.‘l
UaV)xQ ——— (X/Krp) | (UaV)
F =%
Xy l - l (o)
vV

(BxF  Y), | (UnV) (UnV)*Qg

in which, for any (b,gKrF) € (Unv)xQF, we have:
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O e BoaKrg) = () oy 4oet) =
= O Ry, 0 ) ey et =
Fy-1.F =1 *
= O IOy, (837, 0y 5 () %) =
= (5, (g7 0y () gKrp)

while
Ty-1 % & =% .
(4y) "oy (B,0KrE) = (b, (831, 0y ,(9))Krp)
Since the maps ‘U are G-maps, it follows that the
diagram is commutative and hence that the isomorphism

sF exists.//

If F is effective, the kernel KrF is trivial
and we are able to identify Qe with G, thus obtaining

the following result.

B.7 PROPOSITION Let p: X+ B and p': X' » B
be two principal G-bundles, F an admissible and effec-

tive left G-space and fF = rF(f) a morphism in Fg(G)

F

from p to p'F. Then the function

ff: (BxF Y)x + (BxF Y')‘: a f:-u
where b = (t q)x(u) and f; = fFlb, is a morphism of

the category Pg.
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PROOF  To show that ff is well defined, let
a = 05 b'a. and notice that, since we are assuming
»
Y= X*GF and Y' = x'tGF, for every yeF,
F
£3e0p,5 @) = [£-4y(b,e) 4]
So, if fe¢,(b,e) = ¢j(b,g), then
F__F
£505,,() = To5(5,e) .0y = &%, o* @)
where g does not depend on y. Hence
F
fb.u = ‘!'J},:b'("“)‘
is an element of (BxF Y')x. Since ff works by
composition on the left, it preserves the action of G,
so, to prove that it is a morphism of Pg, we only have

to prove its continuity. But this follows at once from

the commutativity of the diagram

fF
(BxF Y)A —_ (BxF Y')X
sF I I oiF
X -—f———b X!

which can be verified considering that, by a previous

remark , for an element ¢U(b,¢)sX, we have
€15 y(6,0)) = £ay ) = 05,0 =
WFras F
= 8" (85(b,g)) = S' (£o0y(b,e))

and, moreover, that all the maps in the diagram are G-maps.//
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B.8 THEOREM If F is an admissible and effective left
l;: P:(G) - P(B; defined,

for a given object (q,h) and a given morphism

G-space, there exists a functor =

(h‘)-l-fF-h from (q,h) to (q',h'), by the relations:
Fa,m =t @),
L =B <
FemyFn = e,
where h, and (h‘),'1 are the maps induced in the

obvious way between the corresponding functional spaces.

PROOF We have seen that EF determines a well defined
function between objects and.it follows from proposition
B.7 that it is well defined also for morphisms. Its

functoriality can be easily verified.//

B.9 THEOREM If F is an admissible and effective

left G-space, then the composites EF-OF and GF-EF
are naturally isomorphic to the respective identity

functors and so the categories Pg and Fg(GJ are

equivalent.
PROOF Define a natural isomorphism A: 1 3 EF-eF
by setting, for a given object p: X + B of Pg,

SF byt
A(p): X —— (BxF )(xcl:)A SRS (BxF (X Bxl-‘)(;)x

where (T:);1 is induced in the usual way by (Tg)'l.
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Since (T:):1 works by composition on the left and the
action of G on (BxF Y)x by composition on the right,
it follows that [T;);1 , and hence A(p), are G-maps
and, in particular, A(p) is an isomorphism. The
naturality of A follows from the commutativity of the

diagram
Fy-1
F (T))
X <& (BxF XxGF)A_L‘A (BXF (X BxF)

£ l £ j l (£,
sF iy
X'—=—»(BxF X'xgF), —PB "7, (BxF (X' BXF)

6

6
which can be derived from our earlier results.
Similar considerations on the natural isomorphism

v: eF-EF 3 1, defined by setting, for a given object (q,h)

T
V(a,h): ((BxF Y), BxF), —E 5 FxY),x.F  —

(sF)'lxsl -1
XxgF Y

where r = (t q)l, complete the proof of the theorem.//
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