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ABSTRACT

Let us consider the following symmetric monoidal closed categories:

(i) 5, the category of sets under the action of a commutative
monoid M; in short, a category of M-sets;

(i1) g, the category of G-sets, where G is an abelian group;

=

(iii) My, the category of moduloids over a commutative semiring
(a moduloid is basically a monoid acted on by a semiring);
(iv) Mody,thecategory of modules over a commutative ring K;

(V) Wp.the category of vector spaces over a field F.

Let ¢ be an arbitrary closed category. We are concerned with the
following question:

What conditions have to be imposed on € to ensure that it can be
embedded (in some canonical way) into one or more of the above categories?

The basic category theory needed in this thesis is provided in
chapters I and II. In chapter I we have provided the details of how, in a
category with biproducts, the set hom(A,B) can be given the structure of
a commutative monoid (under addition). Chapter II gives a summary of the
standard definitions and results leading up to the concept of a symmetric
monoidal closed category.

Since the properties of categories (i) and (iii) are not so well known,
these categories are discussed in some detail in chapters III and IV. It
is shown that each of the categories is in fact a symmetric monoidal closed
category.

In chapter V we answer our original question by establishing five

embedding theorems.
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Each of these theorems gives sufficient conditions for a closed category
to be embeddable in one of the above categories. Fairly elementary
examples are given to illustrate each of the theorems.

In the appendix a detailed example is given to show that these embeddings

are not, in general, full embeddings.
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CHAPTER ONE

CATEGORIES AND BIPRODUCTS

It is well known that in an Abelian category the set hom(A,B) of
morphisms from A to B can be enriched with an Abelian group structure.
In this chapter we will provide some basic category theory and show, by
a fairly standard argument, that in a category with biproducts, the set

hom(A,B) can be given the structure of a commutative monoid.

1. (Categories
Definition 1.1
A category C consists of
(i) a class of objects A,B,C ... ;
(ii) for each pair (A,B) of objects a set hom(A,B) the elements of which
are called morphisms from A to B of (, with domain A and codomain
B. (We write x:A—>»B or A—X3B for each x € hom(A,B)
(iii) for each triple (A,B,C) of objects a function
hom(A,B) x hom(B,C)—>hom(A,C)
called composition of morphisms;
these data being subject to the two axioms
(1) If xe hom(A,B), y € hom(B,C), 2z € hom(C,D) then
zo(y o x) = (z o y)ox
(2) For each object A there exists an element lAehom(A,A)
called an identity morphism such that if x& hom(A,B) then

xol,=x; 1

A pO X=X



ark: The morphism 1, whose existence is required by (2) is uniquely
defined; because if 1j is a second morphism with the same

property then 13o 1,= 11 =1

A A

During the course of this thesis we will frequently refer to the
following categories:

8, the category of all sets;

S,, the categery of pointed sets;

S", the category of sets under the action of a commutative
monoid M;

Sg» the category of sets under the action of an Abelian group G;

Mody, the category of modules over a commutative ring K;

M,  the of moduloids over a ive semiring K
(the terms moduloid and semiring will be defined in chapter 4);
ap

VF’ the category of vector spaces over a field F.

Because the above categories have objects with underlying sets, that
is there is a faithful functor C—>5, they are more specifically referred
to as concrete categories. However, it can be easily shown that every

is a .

A category C' is a subcategory of C under the following conditions
(1) ob c&C Ob C
(2) homg, (A,B) € hom,(A,B) for all (A,B) € C' x C'
(3) the composition of any two morphisms in (' is the same as
their composition in C

(4) 1, is the same in (' as in ¢ for all AEC

If furthermore hom,(A,B) = hom,(A,B) for all (A,B)€ C' xC' we



say that C' is a full subcategory of C. For example, the category of

Abelian groups is a full subcategory of the category of all groups.

Definition 1.2
For every category C we define the dual category C* as follows:
(i) Obec*= {A* | A€ODbC}
(ii) Mor ¢* = {x* | x€Mor C} where x* oy*= (yo x)*
That is the objects of C* are the same as the objects of C and a

morphism A—3B in C* is a morphism B—>A in C.

Definition 1.3

For each pair of categories C,C', there exists a product category
C x C'. Anobject of this product is an ordered pair (A,A') of objects
of C and C' respectively; a morphism (A,A')—>(B,B') with the
indicated domain and codomain is an ordered pair (f,f') of morphisms
£:A— B, £':A'—>B'. The composite of morphisms is defined term-wise;
Thus (f,f') as above and a second such ordered pair (g,g'): (B,B')—(D,D')

have the composite (g,g') o (£,£') = (go £, g' o £'): (A,A')—>(D,D').

Definition 1.4

A morphism x:A—B is invertible (is an isomorphism) in C iff

there is a morphism x':B—3A in C with both X' o x=1, and xo x' =

A familiar argument shows that if such a morphism exists, it is unique;

hence it is usually written x' = x"L. Two objects A and B are equivalent

(i.e. isomorphic) in € if there is an invertible morphism x:A—>B.
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