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¢ invariant under topological products, products with the unit interval,

¢ suspun:lm\s. smash prodicts, join proffies, nor s it a hosotopy

m this thesis the bah:vior of ma ﬁxad ponﬂ. ’roperty (£.
category of finite, poljhedra is studied. The £.9.p. behaves very‘b.ldly 30

withTespect to many geometric constructions, for example, it is not-

inivariant: The only construction under which the £.p.p. trivially.

: behaves nicely, is the wedge' (i.e. one point m\lnn) of two spaces . Even

if one, restricts attention to yery nice spaces (e:g. simply connected
polshedra) the £.p.p. is not “presetved under twpolo[l:ll products ad
many other geometric cénstructions.’ This can be seen from: the

§lassical counter-exanples due to meu Lopéz and Bzedon -mm.,

together with many of their are d- and

in detail. - In a more restrictive setting, for example for suply
emmn:tud polyhedn satisfying the so-called Shi conditicn, the f£.p. p-- -
behaves more icely, and its\invnrime under topolegical products

can also be proved under specific lssu-pti.onx on_the cohomology of the

spues ‘involved. B & ¥ B
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INTRODUCTION

Fixed gmnt»thenry isa certain edllsction of \op;cs, some of which
. come from analysis and some from togology. /ATl these tapl:s are
concu{ed in one way or the gther with the quesém.. whlch, in its
simplest form, can be st‘at‘ed as foilows: sGiven Qﬁnctiun
£°7 X — X, What is the. nsture ahd number of points X ¢ X,

£0x)

such that

The assunmptions on .- and X vary from ptacticé‘l.ly_nona [
(e.g. X disdset, f a function) to quite strict assumptions (e.g.
X is a differentiable manifold, f a diffeonorphism). - He will turn
our attention to the case where X ista fairly ‘reasonable space (namely

a £inite polyhedron) and £ a map (i.e. & continuousgfunction). ! .

In 1912 Brower f4] proyed'his classical theoren which states that

the closed n-ball & has the £ixed point property (£.p.p:) for

contimous mappings; i.e. for every continuous £ : El—s E' a there

exists a point x; e E" . such that f(xglas Xo. | This Tesult was

extended . to compact com

subsets of certain function sphces; Binich

spaces, locally convex topological spaces, etc., by various authors.

One of the most useful and important topological results in £ixed point.

theopy is the Lefschetz £ixed point theorem which is a Statement.of - -

" n the following form (see Chapter' 1 for a detailed discussion): 'If X

i3 a reasonibly nice space; e ‘asiociates to each tontinuous nep
1 X—%X an integer' L(f); called the Lefschetz. number of £4
(desived, i Chapter *T)" such that, vhenever. -L(£).# 0, ‘theri ‘£ has”




4t ‘Tesst one fixed point. The convezse 6f the Lefschetz Fixed point - §

theorea is obviously not/true in general, which can be easily seen by

>
taking, f£or instarice, X to be any of Euler
F

iero aid £ the identity map, then the Lefschetz rusber L(f) 1is “

cqual to_the Euler chn.hur{sti:. hence, 0, but £ clearly has lots

of fixed puuxts’ Hmevar if one puts sufficient restrictions on the

tyDé of the polyhedron (e.g. a simply comnected finite polyhedron )
satisfying the so-calléd Shi condition (sce Chapter IIT for definition)), ',

it turns out that some Kind of cnnvar_s’v‘bnlso_trhe, e Y

A topological space X . is said to have the £.p.p. if every self-map

fgo X'—>X has at :least ‘one fixed point. ' The Lefschetz theurem is
P
!

. one of the most tmportant tools for stulying the £.p.p. in gemeral, and,

1n particular, the central topic of this thesis, namely the question

whether the £. p.p. is. under various ons, such as *

:crpnlogxcnl prnducu, suspensions, ‘smash prq’ducts. join products etc.
Fron the classical counter-examples due to Fadell-Lopez and Bredon, a
datai;ad description of which is included in Chapters .IV and V, it
follows that the answer is usually negative. However, under additional
‘specific assumptions ‘on the spaces some positive results can be obtained.
Most of these resulu‘ are, dio to E. Fadell. This materialhas been

compiled in this thesis, and many fine points in the proofs (e.g. in

- *
[S] aid [10]) and somé gaps'in the original pressatation sre. illed

and included ha;—qm denu

; | )
‘We first state and prove the Lefschetz fixed point theorem itself, .

together with some consequences, in. Chapter I. Then several geometric




Gonstructions (e.g. wedges, Suspensionsg smash products, join produe
mopinig cones ate.) ¥ad o dessiiption of the £:pip. In genersl

constitutes the content of Chapter -II. (In studying the f.p.p. we sre % {

@ intprested only in' the exfstence of ‘at leastione fixed point. This -
Fnores the Thteresting question about the precise number of fixed o

points or about lower bounds for this number. This is.a very difficult =
: i A s @

question which is dx/,umx in [18]).

——
It xs known that the £.p., p. beflaves very badly with fspect €a many

ample, it is not invariant under !

geometric constructions, !ur
topological products, smash pr’ ducts, join products, not even if one

Testricts attention to certain ciasses of very nice spaces, such as

(finite) or'even simply polyhedra. - Even the product |
of manifolds with £.p.p. need not have f.}p.i). as Husseini [14] has . e
shown. However; in the foilowing we ¥ill be considering only the case
of Einite polyheira. Chapter IIT  deals wich the question hether the
£pp. is under these -(See also [1];" [2! 51,

{61, [S] for the hisgpry and s general exposition of this old probles). :

In Chapter IV we discuss the two classical examples due to Fadell-
Llopez and Bredon in detail. They provide the counter-examples of:
-pxeservation of the £.p.p. under the constructions mentioned above.

In the final chapter we consider the behavior of the £.p.p. in twomore . y
(= polyhedra satisfying

restrictive categories of spaces, namely S

the Shi condition) and Sy (= simply connected polyhédra in S). In -
the ‘category S the f.p.p. is a homotopy type invariant; i.e. if ‘X
=t e
«
S~




¢

‘has £.p.p. then sy ‘space of the same homotépy type'ss X -;m"jhu‘m,'
" £ “Inthbs chapter ve alsodiscuss oxamplls due to Fadell £o Shov
that the £p.p. is not imariant under suspensions and joi:;' products in
We also exhibit a.sishly n‘m{'&’ct.a‘puymm‘ X such

that the sash product XA X fails & have f.p.b. if one choice of

<he category So.

bmpoinns used to fom X AX; while X AX retains £.p.p. ifme

 hoesss aib S b ‘point. . Tn-the. last | part ve also provﬂh:; the

% |

x,

is preserved by topological products under splchl additio

\ ;
Sumptions on the !plcu mvoyfea. r ]
% iy

P

the-thesis, some undefined
[19],.[22].

Although St e e cief-med withis

ems and notations can be found in’ the references [5];
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One of the nost celebra®®d and useful theorems of fixed point theory is !

the' Lefschetz fixed point theorem yhich associates with each self-map
El

sl g g'é“iupuxogicnl space an integer . L(f) (called the Lef€schetz®
num‘her of f). Given agspace X we dcnulc its singular homology by

5 crp 8 H @) = TH®) T 201" whero the coe£ficients are taken in a field F. 7

IE H(X) isfinite dimensional for every q ‘and all but a Finite®

number of the Hqcx), ar® trivial :then we say that .H, (X): is finitary. S5y

" A map £ 20— X induces a linear transformation £, i H_(X)= H (X)
If H,(X) isfinitary, we can define L(f), the Lefschetz riumber of £ by |

* W, %, — s 5 v

L = TN ), ; A
P RE0 s o . :

where' tr(f,)'= 0.if H (X) is trivial. The lefschetz fixed point

)
theoren is a statement of the form:: If f: X —»X.. is & map such

. that L(£).#0; then £ - hasa fixed point.

i . " Of cowrse, suh a statement is. not going to be tre without sond R 4
hyputh:ses on X.o First of all H,(X) should he finitary in order

that L(E) is defined. This assumption sbove is, however, not’

sufficiont because the Fired point free mp £ iR —» R dofined by

£60-5x + 1 has a non-zero Le Eschetz m,mn_ Tre agsption of X«

beiry compact will also not suffxce even if H, (x)¢ is ﬂmary as can

b St £xon Borsuk's nxample r 2] FI
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The first one to prove such a general thegren for all finite polthedra”

D0

iwqs H. Hop® [I13]. "This was later gencralized by S, Lefschetz to compjci

% ~

7 AR's (absolute neighbiorhood ‘retrdcts; a generaliftion of l}olﬁhedra) .
[18]. In the following we' will be interested’in the case’ nf:t‘inite SR
_ polyhedra and ve m— state’and p}ove_:he ‘theoren for this case
only.  From now on instead of writing finite poiyhedra. ve will write

) R

polyhedra. ~ v f 5 %
A —i 4

1,1. THEOREM (LEKSCHETZ FIXED POINT THEOREM). Let X' be a polyhedron

and &£7: X — X a map (continuous function):  If £ is without fixed

point, then' L(f) = 0.

PROOF: Without loss of generality, we may assume X = |L|.for some
finite simplicial complex L.: Since.|L| is a compact metric space,
if € has no fixed points, there 15 a number ¢ > 0 such that

d(x, £(x)) 2 ¢ for all x ¢ |LI\ Replacing L- by a barycentric -
subdivision 'K, if necessary, we represent X =-|Ki. by a triangulation
with mesh K < e/3. According to the simplicial a'ppr_oximation ‘theorem
£: 71K —> K| can be approximated simplicialy. by a simplicial map

g i IK'l — |KI frm:ua suhdivisiqn K' of K; "i.e.’
(1Y g=f (g is homotopic to £)

(2) For each x ¢ X, if £(x) 'and g(x) lie on a comnon simplex of

K then d(£(x), g(x)) £ €/3. 2 i

Suppose, some simplex 'S- of K 'comtains’a point y such’that -g(y)

'is'in S, then ome has .

N
e

»




Eu

Siuc= s nnd)' 8(5). are dxs]m‘nt fnr edeh 8 -.in K}

for aach q.

). < e/3 e e/3F 2e/3

Therefore,

ersect s

8(8)

s dis;

Che chnins

Censequently &g (5)

ccumng

Henr,e the nltel‘natmg sin




Jisan i

. Therefore émg-,nu,

N 'g,‘ which xinpu-s ch) o L(z)

L('S)"= L(g)' = 0,

C{msldu“ L x -
mtuwrphxsm 4in nhh dipmiun q. 'nten ung hu =

: tr(l,) = disension 'uf-vec':or spee H ('x)

P s R e Sk um (dericted by, nq(l))

i Betti vn-bsr ofi i, .

. and Z( DY Er(d,) = ):(-1)“ og m = x(x)




Tow n. Hence evevry‘\_nap f

-1)‘1»:3(6}] 4whi’r:h'is_,' in fnc;, 'gq{.ivmne’ o




X3y, His'he £,

the fouawmg we. ﬂso went ; to cnnszder geometrxc .CORSt:




o gon £ N ms pma! ha nm P

* for some (x, y) € X%




- where .

‘there e;h‘ 2.3 point p uf X with g(p) =p Since

A "» X 'is the inclusion map

g(p) f[r(p)]

.‘2.5’ DEFINITION . “Let: X Y heztwo

: ‘( ¥ Thel ot poxnt o (o wedge] Xy e deﬁn:d o be

ln other w‘ds, XV v is the. syace ol




is the cone CX .over ‘X, which clearly is always contractible. (ii) = -,

the sion SS” ‘of n-sphere S" is homeomorphic to - S™*1
suspen: sl rph

"2.7. DEFINITION. Given (based) 'spaces. X and Y, the reduced (or

smashed¥product X A'Y is definied to be the quotient space
X% Y/ X'VY, where X VY is regarded as a subspace of X.x Y. The
base point of X A Y. i3 of course the point corresponding to X'V Y.

Points of X A Y dre written in the- fal'h X A y; this denotes' ﬂle

. =quwa1ence class of (X, ¥y in X x Y.

2.8. BXMPLES. (1) ‘The, siash prioduct s"‘ A" of two sphérés of dimensions

n and n is l\omenmrphié to s“"“ (1) For the special case”.Y = st,

the smash- product XA s s is the (réduced) suspension’of %

2.9: DEFINITION. The join prodict X+ Y of two topological spaces - X

and Y is defined as & quotient spmf X x Y x.I under. the follovrng

s 20%

identifications i * (x,y; 0) '~ (6, ¥, 0) and (x,y, D~ x
for-all x, x € X and 2ll ¥, y' %Y. For any specific x<€ X, ye¥,

the _“line sngnnnt" from x to. y in X« Y is the subset

x Yl ={(x; vy, t) I 0°s’t:s 1}, obviously each point of Xey -dt.h

t =0, I lies on a unique Such.line segment,

Ry : p
2.10.° EXAMPLES. " (i) For 'Y a single point Yor the join X (yo)

The join ‘E® «'E" .of two closed balls of dimensios m-end n'is

mon‘l

homeonorphic to B (311) ‘e join s"‘ « 8" of two spheres of

diensions m-dndn’ is homeonofphic to s’ sphere STYL

. (iv)  For
the special case Y. 50 = 0-sphere (S, s;hi . the join product -

X+ 8%% sXis the ‘suspension of x.

1

) g




'4_-2.11,. DEFINITION. ‘Let -f : X~ =Y _‘ * i~
~.obtained: from the disjoint’ -

L Meuse  [x, t] o denote the points 5

/. '8£¥(£) . corresponding to

thetubion 3

be 'a '-'q;‘,’m,-pprim'éym.aei Fa gt RS =

M(£)  is the quotient space
! :
union X .1 0¥ by identifying -

(x,l)cxxx um\ f(x)eY.- F

(x,‘t) € % %I’ under the identificition :
nap: .nd ] £o'denote the potne of - ‘_ N oh
M) mmSpondmg to' Ye (thus (x. 1= [f(x)] for xex).

“Thre is ‘an inclusion-nap it X > M(): with i(x) = [x, 0] and‘an’

SN with SO0 yl. X and Y are regarded ad

" subspaces of- M(E) by means of these imbeddin}s. A Tetraction . .i-
T :M(). +Y ‘is defined by .r[x, t] = [£(x)]. for x €X and e I

“and, 'rm Syl forly €. (The sapping cylinder cin also be defined

ds ‘the subSpace of X « Y ' that includzs all line segments [x,.f(x)] _

iar x€ x ‘tognher -dth t.he points of--Y. mum the top X dn- M(f)-

is 1dent£fxod 0 a point; the resulting quotient -space cm is the

is alsova map. Since SX  hds the_‘f,.p.p




_t.%70,71. Therefore £ hulfxudpnmt If teo0or 1, deBin.
. i reflec

" map, thezefn

. lience' in this case: g(x) .= x,.i.e

'Pkoo
-3k,

506 1) = D = (alx,s c)- i) S g, e

onmp, "p by. p(x. ©) = (5, 150). Since SEpx; ¥) ds a

S8 P(x. s Wb, 19 - [ ) “whilch:inplies

“has ‘a fixed point. 0

2.13. mmm( Leq X and Y x';e“spiu_s with the fpp.“'n.a',g'x'v_v 3

llso )\Bs

XXV and,

Y ¢xvv helny.nlp. Let ‘x

5.3 *XVY beﬂ\ainclusionsand Pyt XVY - X lnd ])z:XVYQY

2

“ be ‘the pro;ectim (el i (x) = (x; yn), pl(x, y) =x lnd smllrly

for i and Pz) Consider -the follo\d.u dilgm _‘ : e

X -'n.a .2"-‘p2'f )i Y # Y. are also continuous:.

€'Y such r,hn zl(x)

I{em:e there exist: x € x,

‘l, Pi‘.‘:-‘ ) <k Teader

T lemse ) L




y = ‘(y) = pz pz(xu. yz) =y [cue I ] or

is-equal tg. pzf(x

; ya [case 2 ]

" Giveneass 11, or'




<PROOF:' “See. in [p0]

From Proposition 214 -t can be 6asily seen that'if $X

- the £.p.p., then inco. 87 - does’ notshave the




g S OweTER T S TS
MORE ON ‘THE  FIXED_POINT PROPERTY . - ~_ - -

Cmis nhlpter deals with the -questian vhet.her'ﬂ\: £.p.p. of & space is

tetlined under the vmous ‘cons mctlons discussed in l:hapter n. The '

nic projaczlve splcu. Tha usunl nthod of showmg thnt

a'space’ X "has the £ p p. is_to shuw that tha Lsflchetz numbeﬂ

LR e o for. svar,y self-mnp E iX L x. wnm coefficients are

takan in nny fhm. ue therefore, ﬁrst :anpill the, information on tha




it follows éhéz_ £ H X; 2)i is Finite then: . H, (x q) & o
Hy o Q) = Q, - therefore RE® “is’-Q-acyclic whan n"is even. Let
s »RP“ tce map, ."f " intuices. trivial hmomurpmms

RO H " @), for all 4% 0. Stics i NSRS

', (RP 5 Q ) >l Hy ®RP"; Q) is: the identhy 1somnrph15m,

mmme ‘it follows that: l.(f’ Q=10 Hence, RP" yhas the f.p

wh=n n'isTeven. .y % i k L

By thé way this result cuuld have auo been obtained from Coxollnry 1. Z

That:this result need not be.
e §£n’ 15 odd can be seen, for exanple, by noticing tha [ T

" s Qacyclic fnr n even

homeon\nrphic with”st, and taking the' anupodal nap of s

Complex praJBcthE spms cP" and quatemxom :

Wo5e2n THEOREM

rojective spuces B "both hiave: the £, P p.if n isieven:

PROOF:  Let "TP™ ba tl‘e cnmplex pra]ective spnoe or Q\e quaternwmc 2o

p‘ru)e:tlve space where| T denotes eighex the compux numburs o

the quatemmns He It is knewn thate {0 L et e ot 4 B N :
R zz) A 154 » =v_dk‘ . k

: -7 |0 7 ‘otherwise . e

Clet usH(l’P“ 2) oy T

. be the. on-zsta Whemsst: o u(k-fold cwp product) Is.

‘the. non»zero element in H‘“‘(rp“ 2 For k=d;..0m. iLet £ PR a1t

be ‘any, map. Since! rp is comnectéd, £ (1) 1 2,): 0 Let

au] where ‘s € 7, Since " ¥ -preserves cup prodicts,




L(£32,)  ds odd and, by.'the Lefschetz fixed point theorem; f has a

* fixed point. . Therefore complex projective spaces, CP" . and, quaterniomic '

projective spages - HP" " have-the £.p.p.” when 'n -is even.-

3

" S0 we see ‘that'in all these®cases choosing coefficients in Z, is,

. sufficient to conclude’ that the cven ‘dimensional projective’ spaces have v L

the £p.pi 18 was Fadell who ‘asked the' question whether coefﬁ.cients

i 7, -ave atiays suffxcxent for such a conclusion.

3.3. QUESTION, A" Does there ekist a polyhedron X' wmi {h:;

which admits a self-map £ such that L(f) fis. an even intege:

: We will now investigate the iiplicatisns of ‘an aéfirmative answer to” :
the Qu;stion Al We' will consider the following c'mgnr'y F. The
+objects. of F -are based maps’ £ : (x, ) K, xo) wheré - X iis'd
compact, simply cunnected. trinngulahle space.with ‘the f. p P A n‘?rphidsm‘.

in F_snye:f»tv,jsamnp where  © o :

& %) —E ) xp)

o .
- % 2
ST ) e )

.°is a commutative diagfhm. Notice that if ¢ ‘is an equivalence in ‘7

(ize. ¢ has an inverse) ‘then ¢ ds.a homaomcrphlsm such that Qf f 9

Using the wedge opera\‘.xon

Gy, s Y)Y — VY, Gxgoygd) L




where £ (X, xol — O xg  y) — O r,,).

* tategory F adsits a "sus"  operation. “Here we.make.use of the Theorem’

2.15 thet the wedge of two spaces with the £.p.p. also has the £.p.p.

.. 'Define a relation im F as follows

g Af nnk!mly 1;45 = g6, for some cquivalence § in P:

e £ can elsly En m-m-d 11\-: this is an eqnmun , nllxion h. B

[3.4. THEOREM:. Tig.set [F] , of equivelencé classes foms an abelian

seaigroip with zero undér the sum opsration®V. .

PROOF: cxen.ly, [£).-and, [g] € [;] uplus that . [f'v g] € [F]. _v
413 associative. By :cnsxurin; -;he -p ‘o= R viyv z(- idennty map

map on- XVYVZ], one has 1.(fveg) vh=fv (gvh).l (since

iq’zues thet (v g) YR~ £y (8 VR

J(EVigy= (g v . e for:
D-'ﬂm L ¢ such thlt olx, yn) & (yo. x) or

(y. o)' then

BT U7 bas toshow ‘that [fvg]z[gvf]

4. £y z)(x, yﬂ) - o(f(x). z(yul) * (x(y,,). f(x)) ana.

. (s(yn). £00)

Lo .. U Hew f)-#(x. Yg).= (zv t'l(yn.




e e

]
I

& e )

The zero-element corresponds to a point map Xy = x5. Hence,indeed,
[F] is’an abelian semigrowp with zero. O

3

I£ £eF, welet L(f) denote the rediced Lefshetz mumber of ¥, i.e.

o = Z( 1) Ltr(E) Feig gl et e

S:nca ve. are dnling ouly. vdth

x,. di

o - zero we h‘ve H (X)Al 2z, A,lsu lhe uurnnrphlsm nduqod b)' f on H

al idennty
L(f)

L(f) 2

5.5, THEOREM. (£ v g) = T() + T(g).

T " UPROOF: " ft’is known that' ; 5 5 T =
H(xvn -umonm. for every q.

Let X 2 xvy — - "be the natural ‘inclusicn and: retraction. Let

m;nernu;s of uq(x) b xp,x, -naofnmbe '1' T

g, Let (fv-x).‘(xp be!the sumof - and a linéar conbination of y's

‘and (£ v ‘g)_(yi) be the.sun of the Iinear combination of x's and Zbu
% 3/ =1

s
Therefore, (r(f v, -Z 24t Zb

% ot By naturality of the ‘HHagtan,’,

S 3 v‘“ i« o"ﬁ v'* (fvz);'..ﬁ xﬂhﬁ o L i
Hi& ¥y = “v(') q()%‘q() q() g

JEe

B —— :,’




one has f‘(x ) =1, (fv g). 1,060 = Ea~

:r(f,) & {aﬁ Slmilarly tr(g,)

.Ib‘

©oi=l
Cen(E 8, (e ¢ tr e,y
sums one-gets &

one has

SEeEy < t(f) ,"1i(gjv

its mmx 13

“whith tplies ih-'c ;

15t merefm by eq\mtxun ),

ahd hence; taking ‘alterriating ..
H > B

D 1]

i Algebn one knows “that for noni- n‘.gular mntrices

tr(A) = :r(v AP) Therefox‘e, tr(f )= tr(g.),

altemn ng suns_one getl “the Fesult!

n.(sx twio
muefore frpll\ Theorems X

a homnmurphxsm i

¥ 'one has

" hence,




-PROOF: * If we. let" X  dencte the reduced Euler characteristic, then -

s FR@M S, R

Fron hnqnlagy one knows '

B 1g g0 ni;y_e‘n et

otheruise,

Vi -(',uq(x)'- "4.71(5*{ Afaeret s S

;((scP") = -n._ Sincé " hiis the £.p: P. and its suspensicm scv" i1k

 be shown In cu-pm 4t Have e £:

Whm; B asserts- that- the

'nus i-pues thn, 1 i surjecuvs.l]
ey

319, COROLLARY. Hyp' thesis B, ‘impiies mah.exis:s_

% pulyhadrgn with £.p.p. which admits a.selfinap. £

L




PROOF?

. exists 3

CRe s UOLE, e

inear Algébra’.: Suppose,

hlj:l :{au U(v ®;







Therefore,

.Li‘f xg) =T g %)

. Y)'!HP(X)'H(\') o @ 100, Hm),
_pagenal - ST /
(cwpm for example. ls15 126££)"

Since in our case :nemeigxs'







Let.

'rnmfm L) = L@ L,
L) 0. 56 T.'(EJ

for (@), chodse-’ gie.F - such

one was,
L(f) = L(SB) . L(SE) £ 1 L)

Tu prove @,

e g, buéh that’ L(gl (gz) =2 ’l'hetefora,

: L(g, A 32) s L(gg - ('-(el il 2

212 DE'HN!HUS:‘ A?polyh;dm B5'S

3 d:.m %23 and m)' X[ dogs ‘mot "posses’s. iy local’ cu




‘s msaqmca of Corollrry 3;ix .we have the ol lowing:Corollary:

L(f) -0, Hence £ron Théorem. '3.14, c(x_)f_













s @ . 0, breause  S4
hnmnmphi.sm Thus 'Sq (o3 ) 7 g T

smuruly, . Sq (Es’ - Sq sl b $ 83 Sa[- N

1°E 1s2n Lt 2]-1+2(h ¢h o
scp""‘ his the f.pp

“We mow Encus our. atfention to the. spucifm axam'ple slready. I'nnnuneed

in. tha chupter!s mroductory paragragh, \!hi-:h is dne to W, ana; and'’

wh «ch will tu'm out to have vary :l.mex'estulgL c:msaq'uence.h

K Cnnsidar the: disju n{uninn of cp us
cp“ e cotplex projective spaces, md

x52 ncp‘ tibrh. cpz and

jends,

L Spxbg), mdant

2lspherss

I;lemify ‘all'x € o c CP with

e cP = e it (xys /x') € [x)%8;. Denote he  résulting

i quotisul: space by -




o -
PROOF: We first obtain the cohomology ring structure of X over the
rationals Q. We notide that H(x, S v §;) = HIX/ 8 V5, and
) 2 1 iy U PR
X/ S1 y 32 =.CP°/ CcP v 51 x SZ/ 51 v Sz V: CP"/ CP". 'Therefore

W/ 8 Vs, = Hier/ cp‘) 0 H‘!(é wsyls) v 50 1 (cp?/ cpty

s = H(cp? P 1y e u“(s )8 H“(cp eply.

sthce H(CP o BN H(CP,CP) and HZ(S)

0, therefore

0.

.v's-)

(;(,»s1 v 8y)’= - 0. S‘mlarly Lt can ba seen that # (x 8y

By conside the cquem.T of the pur X s, Vs ), orie
.

- has 3 s > » &

2 . . 2 55 Z HJ L
H’ s S, VS) —=— H°(X) = H°(S, V 83) — X, 5, Vs, =
ws vy @)= sy v sp X, 5, V5

5 Henie uzr‘)() R O vsp. (s, ).1-'“1(5_) Qe
st LN 5

- p vTh:tQﬁJrB tharn ake two generators o and s of¥ H (x) Consider

X=X 0K, where: .-xl-cp vt
12 4 R

T e e g

. Therefoxe . H‘*(x) & Hq(CP v oty ru“(s x 8y

s e e g H“(cpz) ° H“(cP

Clearly #l(x) =0 ‘wlmn q~.is o0dd: For.:q




b
il

" the ring stiucture of X is given as follows

T W= eh e nt oty u“(s:x s

ENCER T CY ﬁ*{?f)ba' H{ISZJ

- " =qegeq.: ' ’
For. q = 6, one has

H(X)nu(cp)aﬂ"m]wﬂ(s xs)

For' q'= 8, we é:;‘

From the above discussion and by G:e natura]xty ‘of the clp products,

with generator 1

, | With generators

W Q= qeqe q \w‘i_ti\-xenerﬁtérs "2 af, 'f

oG Q=@

¥
foG o= o -

Therefore the Betti nymbers o

o) =1 nnd DB(X)

X0 = X(-:r)“ 5
Y




Let i i cp“—' X be the inclusion and consider,
e nz(cp‘; Q :

: W s Q) —-uz(cp @ =Q. There 15 4 seerator

such l:hit it (A) = 8" and 1% (a) = 0. There is a retrutln‘n

X - CP daﬁngd by unding CP

b H
et onto” (x,'x,

U R

3 But 8 gunente! szcp LA r.herufqrev 13

senerates H“(cv p q) 80,75 mis bo 5ers,

~ifr(u' -b’a'

n- ol mcu-pm I.(f] nenshta um.ne ‘the: traces of £ on’




The matrix of .'£*

_.e’...mk(uua)odsz : “

Q- with respsct tothe ‘basis.

-H(X.Q)*'"(




_ point.free

rmé.uy due’to Wecken [21], in the fom proved
b ‘Shi Gen-Huia fu, P38 ) tsee also "['s].’ (s])el p

4.1. mzpnm., m' K be a

ﬂnite polyhadran such “that'no funa :

number of points separates K

ap hgﬁuepic to







t.honfon x.hn HP Vscp

has 2.5, since both [HP%. and. spt




T pmf aepands on the f-ct ‘that. X isa  finite’

15 Tocally. pathwi . (The space x

s loellly plthwise -connected if fvr lny x. ‘e X'.and' Mllhiwl'hbod i ¥




86, e use’ the Local:pathilse-conmectedness of X t6 £ind a'pathiise-

. 1., connected neighborhood V. of ‘x"' in X:.such that:.y's ¥'x

i-contdined.in’ Wy 'wheré .:T

Let (xy, ). 'andr ¢

;). be two- points

Sist

ifferent'. . ..

between’ them ‘as




*in Figerel1 “The'path T in’ V. from v
s pathuise-comecied.

to  x;

For f.he smnd case xl = xzv-
some. xt &V -wia comdersap-m T in 'V from | x*

2 proceeds as imlicl:ud inFigure 2.

case where xis.a 1ocll m point
e oSt tum pnmtoi X

x(X) x(Y) -1

" and similarly

i UL XKD = X X

i s e >

;- exists because "V,

Figures 1' and 2

x*,’ “one chooses
to. %' and

: 11iusmte' the

, but’ th- argunént lpp.liss a5 well




have ‘seer that. the fixed point property in

is not. inva imder

5 Joms, noi i, it 3

all csses t)\a connterexam‘plas are &sed -

upnn pulyhgdra which“fail to sat ;sfy the' Sh, cnnchtmn, Xt ss

therefcu nmm‘l © ‘considex the’ behavior of- the f .Bp: i pore;







iear combination of ‘x's

UL and Fi(r;) be the-sum of ‘the 1
vhore' 154 5m

G g ® Bygevere 1si s

LR 1. ¢
one has' . (xy)' = Tydulglx)

B
ik




T st TE ot is qult:rnumic proje:tive 4t spau. thensford

-every self-iiap £ - wt et T 7 ) ror 1

danate a generator in H‘(ur Adsune Fohe

PRUDF . Let,

P E At I 1.5001'

Therefore ence” “L(f) = a + a4

o 53, LEWHA. I 'sup is fhe suspension’ o’ quntem)gnic prn]ective

P2 (v) geneutn the 2 cnhol\aluxy in dimensrons

"9; nnd 13;

bbby, Simitarly; g B (v)~

0.0

2580 b +b

4. mppsmom Any space: K w V§HP l;ash'dm £

da’ﬁd\:e* the-union of, mi

Let " K-HP u SHP

e‘dge: -5

¥®'=

© 515 /PROFOSITION. -

. PROGF!. * Stnce. .x (HP*) =




_ have. the ,f PP

TX(X) * x() % x(X 0 Y)) we have to.

. :
x® uy ske®y = Pty ¢ x(s#P%) - x(D) ‘
=5-2-1=210 N : N '
REMARK: K" =~ (HP* v SHP®) x T - Has. the ‘same above mentioned properties .

5.6 PROFOSITION, The suspension’ 5K. and the join, K.

pnoo's: ssnce x(sx) = sy ). L= X0 and smmrly X0
= »;mxm, therefore x(SK) = -x(K} +2 = 0- and x(K « K) =

XK *K) 41 =

.-Sincg SK and K # K sAtisfy the Shi condition, |
hence by Theorem 4.4 both admit maps homotopic to the identity map

which are fixed point free. 0 o ¢

We therefore’ conclude

5.7. THEOREM. The £.p.p. is-not invariant under suspensions ‘and joins’

in the category ;.

Now we want to show that there’is a ‘simply commected polyhedfon X

with the £.p.p. such that the smash product. X A X = XX X/X.VX~ has
£.p.p. with one choice of base. point %) € X while it failsto have -

£.p.p. if one chooses another base point . x; € X. W will nzke use of
4

the potyhedron K.+ Hp® v -sHP®  discussed previously. I£.N = smﬁz and

X:KVN:(HP 0 sup]vsup

if thé.base point xn e

we will:show that X A fails to have £. 2P

15" chasen-distinct’ from’the whdge’ point: v, ', OR 4He. other hand; if-




the ‘wedge point v is employed to forn X AX, then X A X retains

£.p.p.

5.8. THEORBM. If xo % v, then X'AX=X xX/ x) XX u X xx; fails

to have £.p.p.

PROOF: " First we hiva o K

‘ ; x(x) -x(Kvn) <x ) ax0 F 1 Kl o

= x(HP

sm)*x(sm’)-x

2 22410,

Therefore L(L.

) Since J(K) = 1 it follows that X admitsa
map g Such that L(g) = 1. Thus, L( A g) =L(1)L(g) = -1, andwe

: /
see that- f£=1Ag is aself-map'of XA X with L(f) =0. XAX-

" is simply < and satisfies the Shi condition: (using the fact

that “x;x X u X x x, _fails'to separate X x'X). By Theorea 3.14,
it follows that there is a map ;-f such that™ g - has no fixed-points. .
Thus, X AX fails to'have £:p.p. O

¥e now shox that using the vedge point v, the smash product
SXAX =X KX/ VXXX XY

has £.p

Using v s baée point in ‘the formation of X A X gives  °

~ the result gt 5




g

uag& point v’ corresponding to v x X u X xv. Now, since £.p.p. i3
invariant |mdu wedge operation, it ~ suffices to show that the four
individual splces KAK KAN,NA K, NAN all have the £

5. 9. LEWA. up 4 ot has £, pop- Specmcany, for any

-;xd ‘thus L(', z. ) =0

operator. Then, thie basts for

" can be arranged as follows: > < ... . - -, ", 5

ixa - axplasplaxa

e b e T Nt ot

is a nomamrpmsn. Assume ‘ (ax u) = x(n P

J -.'uulus ‘(u«l’lao?u!njvol’(ﬂ’tu)-l’t(ﬂ




.'(,',r:’n + Pla x pla +Pa x0) Aexp?a s pta x pla o Phax )l

: "By similer argusents it can be seen that if 4" (Pl x @) =3, (Plaxa),

Cthen 4'0Pa x e e x @) = 2 e %t - Paixa), ang-

€ .'('-qu x Pln . Pld x p‘u) e (-pZI. *

Q{P;xu): AA(PuKﬂ]

¥l k‘n,r_henfora (uxu)u(uxuyu (nxu)u(«xu)- e

(uZXn)U(axa)-n b heace -4t *u‘.]“(ﬂ"kj;’.

AL e e o(unu)uﬂn«)xx(,-u)u(uxu)u(ux.lu_

e a o algtxah, 'nmfm it foum that e




| We notice thatapplying. P'

Pa x5 vaxstta - Plaxsa sPaxstlasa

1

s +plax sp2a -

X Sa’ Sar.x 'SP

2,:: + sp‘

_“"second ‘and thixd,columins. Using the,‘sase method as. before it follows

x5p2a




Atk thiittat i L-— 5.1/ one fimst aburus “that every

self-nap ¥ of % e 2 -

@t Anl)v(w Asnr)vxsur"lun -V(SP Asw’)




'!




hqs the froperty

every self-iup of K'A-N. ha: afsch!tj umber :




. 519, THEOREN.. I£:X belongs to.”

“X: has. propexty Fy-




‘Before proving.the’theorem we need the folloving lemd Which states

5.21..1BBA. Suppose ¥ 1 Xx ¥ —— X X ¥ is-a mepand.
% s defined by the diagran : 3

_ projections. By Corollary

i (P;;).' 7ﬂcr‘|furé ft1‘- V)= (YfP;l)‘







. is zeroiin t.hxs use,tbo. Thm E[u)E ¥):

i iE amm - h,\s trivial




Suypase % and’ e elong to, mss_

" olyhedra satisfymg the'shi: ccndxtinn), and that . the suspenslans

“in the “more,

To sssumptions
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