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biomnued to those in less, mounhuwﬁ terrain. While the nature of the . .

in the sensor data and may be useful for classification in high relief terrain.

i .; ' : Abstra.ct

Landsat Thematic Mapper (TM) images, “if ‘analysed’ properly. ean . -
pronde land scientists with valusble terrain information. In high reliel®

dlphl ificati ies to date have béen relatively low ) .

topographic effect on Landsat TM data is not fully” unden_tood, itis expected that
low accutacy may be attributed, in-part, to the lack of an lppn;priaté expression .
of tqpogr.sphy in the Landsat image data set. This study was dmgnsd to

investigate the mﬂuence ol various surface cover and lopo;nphxc plumeters on 5
the . spectral response my Esred by the_ TM sensor and show thnl a data set:

Tain - descriptors can provide

of

= L

which can ‘be-incorporated in terrain analysis of mountainous regions.- A second

bjective -was to i ig! ’ the i p! Y m TM “terrain clumﬁcntlnn
accuracy that could. be achieved for a ir ‘afea in the” Yukon
if an ancillary wpognphlc data set was mcorporn\‘,ed in the andlysis‘as a Iognc;l

’ hnnnel in a discriminant lype clmlf ier. B ’ 5
Correlation p du —Were ',.‘ d to naticall analyse the ,
relatlonshlpthetwnn TM spectral response mmﬂlmt of
zermm Bivariate apd muluple ! i it were i d to show
that land and hic ch istics of the land are linked and

that “the parameters of both these ,cumponel‘:ls have -an effect on TM d'nu..
Canonical correlation coefficients were.interpreted to méan that the variance in
the sensor data set was not Iully  explained hy' the variance in euhet the surface’
cover, topographi¢ or cpmblned data sets. This sugzested that addluonnl

may be ined in the graphic variables whlch is'not. gt_mlnm('d

Two supervised classification schemcs‘\verc used to investigate the

improvement in (e‘rﬁxln.c\luss’iﬁcnﬁon accuracy that was possible by incorporating
~ ¢

hy.. These ions conform to the general- principles of the
. \



-

'landscape approach’ and were based on ninel biophysical classes studied in the
field ;nd i;. metric aerial’ phofography. -The) first classification examined the

istical imp: in classification accuracy that‘was pamble by augmenting
spectu] TM data with elevation; slope, aspect, relief, and percent vegetation
cover measured at 672 plxell in the field. Discrimil f were d
based on the TM data alone and mtegnted with the other terrain descriptors in
several combinations. Classification accuracy was tested using 102 pixels which
had not been used in the deriyation of the functions. The results show that
overall :Iya‘ssiﬁcstion accuracy improved from about 64% when the‘I;'M data were
used alone to 79% when eler ation alone was added and up-to ﬁ§% when the

dditional hic field d riptors were used. " Accuracy was 100% when the i

percent surfm cover vnmblu were included:

. The’ se(ond cluslﬁcmon scheme examined the spnhal |mpn:t of
b in 'h-” ssification. — This involved s~ maximum-

hkehhood clmlﬁenhon and mappmg of the entire study-area using the'TM data.
nlone and, subsequently, the spectral plus topographic descriptors extracted from
an interpolated digital elevntwn ‘model (DEM) for. all pixels in the study area.
_ . Mapping accuracy was-55.8% when-the TM-data—were—usedsloneand 77:6%

when topography was incorporated. These results provide evidence that-TM-and —t
topographic data sets derived from a DEM can be integrated “in terrain %
classification to improve the accuracy of results in biih relief environments.
. v % ) . »
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Chapter 1

Introduction

1.1. Introduction

Accurate and up to date earth surface or terrain information is a

\. the surface affects the practical use of the land. Foresters, ecologists, engineers,

common requirement of scientists in a wide rang¢of disciplines sigee"the nature of
\
d with land-related ivities each use

éeogrnphers, and éihers

+ infgrmation about ce;tx’ain land attributes in daily deciston making and planning.

{ Information re‘quifameuls include measurement of attributes which describe the
surface cover types and morphometry. More speciﬁc&lly‘, the attributes mlay .
escribe the vegetation type and composi!it;u at a site or the topography ‘in the

form of slope, aspect or elevation.

Traditionally, aerial photographs and ground surveys have been the
main sources of terrain data. Aerial photographs are rr:mnuallly intorpmlcd}villl
the assistance of field knowledge to nleasure the -associated surface attributes
(Webster and Beckett, 1970). This uppmnci; is, highly. ‘dependent on” an
experienced interpreter who is trained to recognize.important terrain attributes
Itor\n speci[icl application. Consequently, thergr,arev;‘:rob'lcms in_acquiring terrain

data associated with subjectivity, reliability, and repeatability.

Since 1972, "Landsat satellites have orbited the ecarth and sensors on
board the' satellites have.acquired imag’ea of the surface (Freded and Gordon,
1083). The two pr\imary sen:sors on board the Landsat satellites are the
Multispectral Scanner (MSS) and the Thematic Mapper (TM). The MSS was the

“ initial sensor lounched on the fifst of the Landsat series. Subsequently, it has




’ been employed on-all the Landsats in the ‘series (five in"total to, date).i On %
n Ot 8
Landsats 4 and §, the more advanced TM accompanied-the MSS,

The Landsat imagu recorded by these sensors are d{gitul represenluliouc
of earth reflectance in different regions. of the elr:ntmmngnehc j)ectnlm All
ferrain Teat\lres in an area sensed at a gl"‘ven point in mne as well as the

atmosphere contribute 'to-the signal recorded at- the sntelme level, (Rohmove.

1979, 1981).

- useful information that j is valuable for resource managers | and uther Isnd-relnted

specialists,

The operanonal use of Landsat data in ‘terrain’ annly'e;ls hus been
demonstrated in a wxde range of. npphcnuons (Conner and Mooneyhan, 1085]
Probably the most benehcml appllca]lon in‘ terms ‘of resource management is
terrain clagsi fication: “Tliis involves the delineation of earth surface regigns thnl

are slmllar accordmg to certain aunbutes and may mcorporate slmllarmes m

iTai:le 1-1: Landsat Thematic Mgpper'l}ands

| Band | Wavelength(sm) - Colour,

1 0.45-0.52 - Blue/Greeri
"2 0.52-0.60 Green

3 0.63-0.64 . Rd -
4 0.76-0.90 Near Inffared
5. 1.55-1.75 Near-mid Infrared
6" 10.40:12.50 “Thermal
7 - 2.08-2.35

soxls or geomorp

¢

j Midaje,lnrmmd

involveg the'd

spectrnl aunbutsuwl the surface or unique spectral slgnntures of dnmren! land
cover types. The ability to measure specific atmhutes will depend on the degre@
of correlation between the 'attributes and the vnlues‘ recorded by Lnndsat
Subsequemly'lhe success of terrain clnssllxcnnons sing Lnndsnt data.will depend

| data,

“The regions of _the spectrum - reco;ded by each Landsat TM are
presenged in-Table 1-1. If nnalysed properly, these data’ may be cémrted into -

-

When applied to "Landsat
p of fules baséd on the v




on the nature of these relationships and the ability of the sensor to record the
necessary information ie. the ability of the sensor data to act as suitnf)le
surrogates for the terrain attributes deemed necessary for the classification by the
resource manager.
% >

In relatively low reliel regions, the terrain attributes which influence
spectral response are primarily those. related to land cover (Colwell, 1983).

Different vegetation and soils attributes reflect varying amounts of ennrgy

th h the P! and ly have different spectral
response curves. These differences in clectromagnetic encrgy are recorded by -
Landsat sensors. The Landsat measurements can, therefore, be used as surrogates
for mapping the distribution of vegetation types. Results of this type of analysis
in areas of low relief have generally been successfu] (Kan and Weber, 1078; Mayer
et al., 1979)

In regions of high relief, topographic variability, in wddition to_land
cover attributes, is known to influénce the data recorded by Landsat sensors
(Colwell, 1083; Holben afid Justice, 1981, 1080; Ju;ﬁce, 1978). Holben and
Jusiice, 1981 defined: this topographic effect as the variation in radiance from-
inclined surfaces compared to the radiance from a horizontal surface as a function
of the orientation of tlie surface to the light source and sensor position.
Numerous researchers have tested and- quantified this effect in Landsat data:
Holben' and Justice (1980) showed that a range of fifty pixel values were
‘associsted wih a singlé land cover type on a high solar -elevation Landsat MSS
irfiage; Stobr and West (1085) and Dave and Bernstein{1982) pfovided evidence.

that variations in MSS data for a single cover type could be partially attributed

to changes in'the slope and orientation. Sisce the effect can cause a

wide range of pixel values to be recorded for a singie lan; " ver type, Siedel et al.

(1982) suggested that if pixels for a given cover type overlap with values for other

- land_cover types, pixels in the overlap regions may be .incorrectly dlassified,

Limited success in- terrain classification of high reliel regions suggests that'

.. topography acts as a source of inconsistency .in the data and thus may| be a source




of error in terrain cladsification. In other words, in mountain enyironments, high
topographic variability makes Landsat data less suitable as surrogate measures of
terrain. i .

Early research in improving classification accuracy

on
developing an understanding of nature of tl)@ topographic effect on Landsat data.
The main objectives focussed around determining the offects that: various
,topogmphic-re]utéd parameters have on the remotely sensed data.’ This was
necessary in order to determme il the spcclrnl data could be cmplnyod to
effectively monitor cover types Knowledge of the environmental vnrnhlvs which
" influence spectral response will improve the ability to interprét cover type
glassifications'u well as provide information which will holp’lo determine the

most effective way to combine variables in the classification procedure.

Numerous attempts have becn made to remove or reduce this sBurce of

_ error by’ ing the data l‘or hic effects. This h is smzable for

certain applications where the surface céver charagcter is of- primary importance.

"However, often in i regions, ° lhe h i churﬁter of the

terrain is imporfant to- the resource manager und consequently geomorphometnc
attributes may be necessnry as clnsslhcauon criteria.  For example, when
classification extends beyond the slmple separation of land in tcrms of a' single

h

terrain ibute such as jon, the is often referred to as an

Integrated or Bi ical h. Landscape classes or_terrain classes are

defined as regions with similar patterns of land forin, vegetation, and soils. In

this application, the removal of founding topographic inf jon in the

Landsat data set is still an important operational problem in high relief terrain
analysis, bu% a more direct ai)p?csch is to consider the 'mpugra;‘whic information
together with spectral information.

s | .
The basic idea js to improve' classification accuracies in high relie

terrain by the integration of two- different d/nn sets: (i) spectral response from

satellites and (ii) topography derived from digital elevation models (DEM).- This




concept applies not only for Landsat spectral response; other types of imagery can
benefit [rom the use of topography, for example, RADAR (Ilinse et al., 1988) and
Systeme Pour 1'Obsecrvation de la Terre (SPOT) (Joifes et al., 1088) imagery.

DEMs are similar to "Landsat spectral images in that they are
quantitative representations of the earth surface; however, each number in the
model rvprescnls terrain clevauons at kno\vn positions rather than spectral
mlunsmes (Burrough, 1986). Such models can be generated independently from
ground survey (Brinker and Wolf, 1084), topographic maps (Collins, 1975), aerial
photogrnph\x (Crawley, 1974), or most recently, stereo space imagery (Cooper et
al,, 1985), The application of DEM data in digital terrain classification has been
praposed and attempted for MSS data by Hutchinson (1978) Robinove (1981) and
Franklin (1987); but no similar effort has been documented using the Landsat
Thematic—Mapper —imagery in a subarctic environment, althmngh several
researchers (for example, Walsh, 1987) have pomted out the value of this

approach for TM.

1.2. Statement of the ‘-Object,ives :

The main objective of this research is to determine whether or not a

data set composed of topographic terrain descriptors, canprovide additional

information and lead to imp: € d classi ion results if i with spectral
data acquired by Landsat TM in a hl’gﬁ relief region. -
The first step in achieving this objective is to d lly if in

fact additional information is available from the topographic data'set This -*
requires a systematic analysis of the relationships between spectral data acquired
by Landsat TM dnd the topographic copr’:ponent of terrain in the [egi‘on selected
for this study. The following tasks are necessary:

(i) measure jon and hi ib ata

random selection of sites within the study area,

(ii) extract the spectral m}mlée st each of these sites from the Landsat




image containing the study area,” . -

(ifi) perform correlation analysis bc!)\cen the spcctml data and ground.
variables measured at each site. ~
- 7

The-mext step is to ine the statistical imp! in land:

or terrain classification accuracy that can be achieved by integrating s;{ectrsl :;nd

topographic data. The statistical analysis will be based on a discriminant )

l‘uncuonﬁenved fﬂ)l?a(l) spectral data alone, (i) topographic data alone, and (iil) 4

both spectral and topographic data based on sites visited in the field. The

difference if any between i, ii, and iii in terms of classification accuracy will

provide evidence/ for the hypothesis that, in this region and in this application, *

spectral data must be analysed in copjunction with topograply. ’
Fiuilly, a spatial analysis of the integration of spectral and topographic: | N

data in the form of a map product is needed. The spatial :nnlysu will be_bgsed -

on the entire study area and will involve: Y 3

~~(i) digitization of contours of topographic map of study area, interpn]ation . ‘ s

of an elevation grid, and creation of a digital elevation model (DEM); . o

(i) extrsctxun of geomorphometric terrain attributes, elevation, slope,
nsped. and relief from the DEM using available software;

(iii) resampling of topographic DEM data and speetnl data to UTM
coordinates; .

(iv) performing supetvised classification of the study area using spectral
data alone, DEM data alone, and the integrated spectral and DEM data set
using & maximum likelihood classifier;

(v) determining the differences between each classification in terms of
the spatial effects of integrating the DEM data set and the practical use of
the classifications.



1.3. Thesis Organization

This thesis is divided into seven chapters. The first chapter introduces
the subject of terrain classification using data acquired by the Landsat €ies of
satellites.  Specifically, it describes the {;oblefn of obtainipg acculate

classifications in regions with high relief terrain- -
The sécondjh\z\pter provides a review of previous studies that have (i)
investigated the effects of topography on the data and (ii) attempted to improve

aceuracy rates in mountainous terrain. E

v Chapter three describes the ‘methodology of this expenmeut mcludlng
details of the acquisition and nrgamt:\uon of gre *?i{i data, spectral data, and
topographic data employed in this }-esenxch. S

.
Chapter four and chapter five expl'aip the statistical analysis performed

on the data. +In chapter four, the relationships between terrain attributes and the'

spectral data are investigated through Various types of correlation analysis. In
_chapter five, statistical classifications and accuracy assessments are presented
based on the speétral data alone, the topographic data alone, and the intégrnted

data sets.- s

d tod

Chapter six cotitains a detailed of Ithé mali
process based on the individual and integfated data sets. Maps are included to
reveal the spatial distribution of the. effects of topography on multispectral

classification.

. In the final chapter the conclusions nnﬂ recommendations that drise
from the research are disoussed.

N




Chapfer 2 " P
Related Research

\

2.1. Introduction . . o P

— Landsat data have been \xsed for classification of Lermn in many regions -

of the Earth. In high relief envi however, lassificati taci usmg% &

multispectral Lnndsat data have bgen poor. and résults been less than satisfactory,

! For example, Franklm and LeDrew (198411) perl'ormed land cover clnsufcntlon in”
! the Southwest Yukor using Landsat MSS data and achfeved dn nccln-scy level of .
: \ nly 58 percent; Fleming and Hoffer (1979) mapped forest types in the San Juan A,
|\ Mountains with 49 percent. accuracy. In relatively flat terrain, corréﬂpunding .
| accuracies for forest typé mapping using MSS data were 91 percent (Mayer et al,;
.1979); landcover mapping in a lowland region of England and Wales using TM
» imagery was 4/‘md to be 93 pécenl by Deane et al. (1985). These classification -
results suggest that low levels.of accuracy obtained in digital clasgiﬁcul}on of

'mountainous regions may be largely a result of the influence of topography.
e

Improving the accuracy of urram clmll‘lcahqmusngLandsnt data has—
been an important subject ‘in remobe sensmg research. General uuempts to
7 lmpmve classification résults' have fovolved: (i) lmprovemen!ls in sensor design
(Khorram «¢t al, 1087), (ii) better radiometric correction “of images prior- to
analysis (A.hem, 19/5, Abern et al, 1987) , (iii) removing the effectgnof the

ph and _top h througlf histicated  radi i libratfon of
{ satellite data (Robinove, 1982; Moulton, 1988), (|v) the )Lve!p]}rhent‘ of more
histicated classification algorith 6) more soph d p methods

i, for the data such as the nxtrnctlon of texture (an in and. Peddle, 1987;

" Haralick et al., 1973) or topographlc information (Cooper et al, 1985; Wang et




., 1984) from digital images to be incorporated in the classification procedure,
and (vi) the use of multitemporal and ancillary data sets (Franklin et al., 1087
Cibula and Nyquist, 1987; Grégory and Moore, 1086; and Sacterwlnte, 1984).

More specifically, attempts to improve classu’lcanon accuracy which
focnssed particularly on high relief terrain requ’red an understanding of the
topographic. variables that influence thé data acquired by Landsat.” Initial

research focussed on devkping this Once the

&
d

parameters which i; ced the data 'were d image jon models

were developed which.could be employed to remove the effects of topography
prior to classification. But in some lications, p d or

Knd welassificati b

was idered an important component that

must in ﬁome way be mco orated into the’ clasalhcauon process. The low levels

of accuracy obtained in digital classification of high relief regions may bewa fesu[t
of the lack of an ad description of “the top hic of .the

landscape. Rather than rer}xoving the effects of topography, some Qesearchers felt
that tl:e‘intektation of ancillary topographic m?mtion \wifh the spectral
itable approach. Again,

response acquired by Landsat sensors. would be a more

Lr— ding of the relationships between envi 1 variables and the

spectral response was necessary to determine which variables were important as
ancillary mformahon upon which to discriminate the de cover classes of

interest.

2.2.,Nature of the Topographic Effect
" -

Initial studies that investigated the nature of the ;elationship hgzwet;n
topographic varisbles and Landsat ‘dats focussed on the use of Multispectral
.._S_v,c'a‘,njm (MSS) data. For example, Justice (1978) showed that it was possible to
determine_ the principﬂal ground properties affecting MSS sensor response by

correlating field { of ground propertjes to itative sensor data.

Results in a Mediterranean study ares indicated that the ground properties
describing the vegetation composition at a site had the greatest effect on sensor.
. J 7 .

¥
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" analysed. In another - study, “Franklin and LeDrew (1984a) -examined the -

data. The jonships between hological variabl , such- as elevation, slope,
and incidence, and sensor data were weak but stntistica]ly significant for the data™

relationship- between spectral tesponse patterns and surface gmmnrphologws]
attributes for a high relief region in the Yukon. Geomorph

varigbles in the form 'of elevation, slope, aspect relief, and condexity w re
exh‘ﬂ:tcd from a digital elevation model:and were correlated with Lnndsﬂ Mss v

_dxta Ruults indicated that by was an independent source of

information which could be used with MSS data t.o/ilnpr‘o\"a‘clu!iﬁcltian ‘af
landscape units.. Similarly, Walsh (1087) investigated the variability of MSS
spectral response in relation to smpd and site ‘ch_aracteristica nnd'coqcluded that

" DEMs should be included in the analysis of “all spectral response patterns of -,

- mountainous regions.. ) ‘. N

. T OmY £ .
For this research, data acquired by the more advanced TM sensor were'

-available. The Thematic Mapper (TM) sensor acqmres Yerrain spectral response

data with imp: d spatial and dio i ion (Toll, 1985; Enge] 1983;
Freden‘ and Gordor, 1983; Chavez et al., 1983) compared to thf data obtained by
the Multispectral Scanner (MSS). While each MSS pixel represents a ground area =
of approximately 60 x 80 meters, the more recent TM sensor ‘acquires data over

areas 30x30 meters. The MSS semsor acquires data in four bands of the

P ‘Elentromngnehe spectrum; the TM sensor records seven bands of dntn including a

thermal band. The different spatial and spectrnl charactznshcs of MSS and T™
daza are suspected to show\dxﬂ'erent or varymg wpographlc effects for two main ?

reasons: (i) topography affects different regions of the. spectrum by vnrynpg

" amounts (Justice et al., 1981) and (ii) in’ complex environments slopes may vﬁry

considerably over relatively small regions, ther’el’oré, pixel values representing -
smaller sampling units may have a much higher-degree of-variability. 9

N q &
Karaska et al. (1086) investigated the impact of envi 1 variables

~on the spectral response of land cover recorded by the more advanced TM sunsor

The spectral response of X%h of the seven TM channels was statistically mu.-d



against collected ground data on eleven environmental varisbles including slope,

aspect, and surface roughness. Step-wise multiple regressioh#alysis indicated.

that the percentage of trees and shrubs were most important in influencing the..

spectral response and that as the percentage ol’ trees and shrubs increased, the

more the effects of the other varisbles were obscured. - Environmental variables

related to geomorphology were found to have little, effect on the data because

very little change in elevation or topographic relief was present in_ the area

investigated. A similar study by Hall-Konyves (1987) investigated the

relntic:nsliip between various topographic parameters and Landsat TM and MSS £y

data'in an'drea of gently undulating terrain. Il{ a Tinear correlatizn analysis and

anilysis of variance, calculated incidence_angle_values and values’of'slope aspect.

and magnitude were integrai.ed:witl; MSS and TM data on a pixel by pixel basis. \.
© The results indicated that. the re]uti&nship between topographic parameters and ;

the Landsat data wére wesk for cultivatdd fields and—forest areas. It was

concluded that"ihe topographic effect in such an’ area was of little iri\yortancé.

# .
Few studies have.investigated the influence of topographic parameters

- . .onT™™ dat%in mountainous terrain where the I:\Ie
o " expected a.priori to be much greater. This is in part because TM data have only -

cts- of topography can be

been available since 1982 and most studies with TM data to date have been

performed in relatively -flat areas, for example, in agricultural applications.

Purthermore, methods to fully i g the relationships between
ground variables and Landsat data had to be established in relatively simple areas
before attempting such an analysis in a more complex mountainous environment.

Based on knowledge that topographic param’e‘ters influence spectral
response in high relief regions, two basic approaches have been taken in attempts
to improve the el’:;ssiﬁc;;tion of Landsat data in such areas.” These have involved
either (i) elimination or reduction of the topographic effect on O;he data using
" band ratioing or image correction techniques and (ii) integration of topographic s

information with spectral data to provide additional information upon’ which to

discriminate terrain classes. These are discussed in- the next two sections.




By ’ -
2.3, Reducing the Infl of T by on Landsat Digital -
c1mmution“~ S

A very slmpl\nd stmghtforwnd tuhmque used’ to reduce tha
topographic effect on‘ Landsat data which requires no ancillary data is band
ratioing. Band ratlomg involves the creation of new channels of data by dividing
each pixel vnlue in one“ spectral band by the corresponding pixel value.in another
band [Rlcbards, 1988; Bernstem, 1078). The effects of topognphy are assumed to
be multlphmwe nnd b]{ ratioing the bands the mnltlphcntwa terfns should cancel- *
out (Woodcock, 1982 Holeu and Justlce, 1081). One majm dlsndvnnuge of this

|
approach is that it red‘“ces the dimensionality of the | data and ‘often removes

““valusble i ion related to the brightness of pix

Holben and Jus#idvj (1081) examined band ratioing of data acquired by a

ground based radiometer |and showed that Vhile this techmqus did not reduea the

copcgmphm effect oh lh,e\ dnﬁ enflrely, it did reduce the effect up to 83 peréent
for specific slopes and sol‘:‘n’ elevation angles, It was expectéd, hqwevar, that band

ratioing of Landsat data would be less successful as a result of sensor calibration
I

and quantization effects | (Holben and. Justice, 1981). Justice et a)c (1981)
examined the effect of the band raticing techniue on Landsat MSS data and’

_found this expectation true; ratioing bands qnly slightly reduced the topographic

effect.

After identifying the terrain parameters which affect multispectral

respoiise, résearch ipted to reduce the topographic effect inherent in MSS
data by developing image correction models and applying correction‘ nlgorithm? to
the data (Kawata et al., 1985; Teillet et al., 1982). Kawata et al. (1985) proposed
a simple radiometric correction method which removes both atmospheric and
topographic effects from remote sensing data and applied it to a ;nount.ninous
site. Somesuccess was achieved for a Landsat band 7 image; however, in regions
illuminati hic effect was not removed. Justice et

‘where was poor, the

al. (1981) examined three models as methods of preprocessing Landsat MSS data

v
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for the hic effect: a Lambertian image’ ion model; a modified
Lambertian model; and &’ non-Lamb model. The Lambertian model is based : /

on the assumption that the surface being sensed scatters light equally in a}l’
directions and models radiance from the surface by the cosine of the mcldence
angle (the angle between the surface normal and the .ar beam). This model'
was found to increase the eﬂec of topography due to the 'mpphcablhty/ot the
reflectance ch ristics ofy

Lambertian assumption to model the

the woodland surface® (Justice et al, 1981, p.228). Th(-e modified L,almbertiaK L

model pro&u:ed higher variances than those found in the raw La/dsat data)

While the non-Lambertian model did decrease the topogmp.hic effect in this area,
it -must-be-evaluated-in-an area-~with-a greater diversity of cover types before it
can be applied in a more complex region. Smith etal. (1980) also’ evaluated the
Lambertian assumption for Landsat MSS data ‘and found that the Landsat
response for ponderosa pine fé)r incidence angles between 30 and 80 degrees ind
for exitance angles between 10 and % tregrees does not- follow the Lmerﬁan

law. % -

E >
Cavayas (1987) examined the modelling and corrbctiun of the

topogmphxc effect on'satellité image radiometry in a forestry context by using a

ectional reflectance (BRF) model to correct two images acquired under

difffrent suh elevation and azimuth anglcs and comparing the reflectance

terrain model was used to derive slope and aspect parameters which were
required as input to the BRF model. His results demonstrate that the analysis of
multidate satellite images in conjunction with a dig(ml terrain model can provide
the means foma -more thorough understanding of the lopogl:aphic effect problem
and pérmit the classification of forest covers with an accuracy comparable to or

better than that of forest cover mai)s obiained by photo interpretation.

estimated for each Landsat MSS band 7 ‘ona pixel hy pixel basis. ‘A digital



2.4. Data Integration

Other ‘studies have attempted to iml;l-bve terrain classification by

incorporating ancillary data in/dig'ital classificati (Peddle‘\' 1087; Franklin et al,,

- 1987, 1088; Richards, 1986; Shasby and' Carney lQS@, H\ltchmsﬂ 1082;
= Al zBtrahler et al., 1980), Hutchinson (1982) described several wayt in which
’T;ﬁclllary data nnd Landsat™dMta can be comhmed i the classlﬁcstmn process,

f Oue method, preclassi fication scene utrnhfcca@n involves division ol‘ the study .
area into strata based on some ecriterion such s topographic data prior to the

/ lmplementatmn of a classifier. In this way aach stratum may be processed
- separately and it is posslhle to dnfferenng&e _objects which are, spectral]y mmllur
. Another‘n;;h;d of integration involves paatclau-flcalwn sorling in whlch a
large number of spectral classes are produced and then merged mtq groups whnch
répresent object classes. Problem spe@rn] classes are ass|gned to the nppropnate
ob]ect elas§es using the ancillary topogmphlc data set A thitd method of
mteg‘rahon. termed the logical channel approach by Szmhlex et al. (1978),
mvolves increasing” the num1>cr of observunon channels during the elassifier

A operations. - .

Woodcock et al. (1980) stra::;?,\n high relief. region in Northern’
California into naturl regions based on-Elevation and aspect prior to classifying
the entire scene. Then, they used Landgat data and texture data to classify each

natural region into height and density homogencous forest ‘classes. Although a

quantitative evaluation of the accuracy of the final classification was not

s
provided, qualitative assessment showed that the classificafion was similar to one

produce by photointerpretation. '

The logxtal channel npproach was_used by Strahler et al. (1078) and

forest cover ifi ies were imp| d by 27 percent When clevation

was the additional channel. Similarly, Franklin and Le?rew (1084b) improved
classification -accuracies from 58 percent when the claséification was based on-

spectral data alone to 87 percent when geomorphometric terzain descriptors were

e

5

W
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included as Exdditional channels during%ﬂiﬁer opagations. Fleming and Hoffer
(®79) improved classificatior accuracies by 19 percent by incorporating

topographic data during the classifier op/emtions.

Bonner et al. (1982) used the p i ion refi iniqueand

improved overall classification accuracies from 54 to 73. perceit when elevation
decision rules were developed for each class and pixels were reclassified with

specific elevation breakpoints for each computer class.

Previous studies which used’ Landsat data in c]assificaﬁon‘ of a
mountainous environment have all shown significant im&)rovernents in
classification accuracy when topographic data-were integrated, _at some stage in
thie Mlassification process. These studies have all been performed on Landsat MSS

. data and, in each case, the)ﬁéthod was based on an lntlfmnte kno\vledge of the
relnhonsh:ps between terrain variables, such as slcpe, aspec! and elevation and
the spectml response patterps..No similar classifigation improvements have been
performed on the more receél TM data. This is partly because the relationship
pélween topographic variables and Landsat TM data is not yet fully known.

¢

2.5. Summary

Bmd on knowledge of the paramelers that influence multispectral data,
‘models have been developed nnd used ‘to correct m\'We data for topographic
effects. Use of such models has obtained limited suv‘:cess in improving classification
error rates with digital Lnndsat dnls in part as'a result of the dlmcu]ty’ of
accurately modelling topographic el’fects in high relief terram The* nnhlre of the
relationship between topographic “variables and MSS data in high relief
environments has provided a rationale for the integration of spectral and ancillary
topog‘rnphxc data in the classification process. Classification accuracies Werew.
lmproved cons:dembly in all cases where wpographlc data was incorporated with
Landsat MSS data either he&ore, during orafter the application of {; classification

algorithm to the data.




ot

The relauons p be!ween mpogrnphlc vnmbles and Landsnt ™ dm *
have -beep investigated on’ in' regions of relatively Jow relief. Topo.graphm
effécts have consequently been found to be weak or lnsngmlmnt Ths &Mfect of
various environmental variables on TM data has yet to be determmed ot a'high
‘reliel region -and is the first stage of: this" reseprch Further. since  these

relationships are nal!et i ood, classificati which § T d both :FM

spectral data and -(dpogruphlc data have not been perl‘ormnd in o' high ‘relief
environment where topography is an important component of the Inndscnpe The

second stage of this research will be to (i) develop dn appropriate methodélogy for ©

data mtegmmn based on the relnnonshlps identified in stage: 1 and “(iipto 5
. perform Jntegrated.daﬁlﬁbmon to determine the lovel‘af lmpmvemen_L lhx\_t ehn
. be achieved if both spectral and tqpogriphic data sets are employed.- o

\

-




Chapter 3 A
Methodology ‘

3.1. Introduction

In this chapter, the methodo;ogy and data employed in the Yul.(on study
are described in two distinct sections. The first investigates the relationships
between and among terrain vmnbles and s?nsor variables,  The methods
employed- here are modelled llter those used by Franklln and LeDrew (1984a) and
Justice (1078) in their studies. of MSS data. The analysis employs correlation

pro;:ednrzs wh’ieh are discussed in full in chapter 4‘(see also Thorndike, 1978 and B

-Clnrké, 1075). Analysis. was performed using the Statistical Analysis System
«(SAS) (Helwig and Kathryn, 1979). 3
» .

The second part of the methodology involves terrain classification which

req\ures an under ding,of the t ips between variables examined in

section one. Two' “types o! classification are performed. The Tirst type is based on
the ion of discrimi functi (Klecka, 1080) using SAS and is

an examination of the isti p! in

accuracy that can be achieved by integrating data sets:(see Franklin and Lei)rev(
1984b).  The sec‘on:i classification procedure’ involves a spatial analysis and
mnppmg of the complete sludy ‘area using a Bnyesun Maximum_ Likelihood
Clnsslﬁcanon algorithm available on an ARIES Imnge analysis system (DIPIX,
1087) . This classification exm‘unes the spatial -impact of mcorporatmg

topography in classification. .

*Both classification procedures employ a. supervised training approach.
This approach requires that an operator select areas in the digital image which

.
\
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'repiuenl the terrain classes of interest to the }mlge analysis or ultimate map -

user. It is essential that the operator has some knowledge about the study arca

. elther obtained through field investigation or !hrough the analysis of aerial

yhotoguphs topographic maps, or any other data sources that are available.

_ Unlike an unsupervised training approach where classes are defined based on the
 statistical structute of the digital data sets and which requires little operator

'
input,. known -ml‘ormmon can be input to the analysis. Further, since urmn
classes are defined a priori to the ication of the classificati and

based on known ground i jon when the pervised “ is lg!o]fted,
the resnlhng classes will be of L\ntergst to the map user. If an unsupervised

s sppronch is used, this is not always the ‘case; statistical divisions or chnten in the

',tiirain A.nnlysii icati and was
o .t

data set do not always conespond exa.ctly with the chsses one wishes to

Snperv_med lassification is d to be & more powerful test of -

q! ploy

d in this regearch.

The classification scheme developed for both the discriminant and

Erelihand I d or Land: one in whmh classes

analysis is an
. are defined in tenm of similarities in surface cover and morphometry Conceph
involved in this approach are discussed by Christian (1058) . Bastedo et al. (1884)

h Toaical

describe a simijar

as an h to resource surveys (see

" also: Christisnfand Stewart, 1068; Mabbutt, 1968; Hutchinsoh, 1978; Robinove,
. 1979, 1981). This cln.ml’lcuuon scheme is particularly suitable for the Yukon

envix:oﬁment ‘where lew detailed surveys have. been carried out. In such areas a
: l‘nsft and accurate reconnaissance, sul;vey as providéd by the digital classifications

can be used to select areas with potential far’ development of a particular land-use
(Bastedo nnd Theberge, 1983) . More detailed surveys can then be performed
o.nly. in selected areas. In high relief enviroﬁmenu, "both unr;hrxe cover and
topogrnp!lic anruteriatica influence the utili}y of the land. The intepnted or

provides i

on both of these components and

¢

!nrl.her .shows inter between them the area. This is
valuable information to the lnnd manager who must cosider all aspects of the

terrain when determining the qpnm-l potential and utility for a region. It shiould
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be kept in mind, however, that the incorporation of topographic information in =
terrain analysis of high reliel environments may also be important for improving

results in more specific classification apphcauons, for example mapping

I, geomorphological, or glacial land: classes and that data
inl.egl:ation is not limited to classifications based on the land PP h
The results of the discrimi lassifications are p d in chapter §

as clasaification accuracy and inlerpretation accuracy after Franklin (1987,

p.63). Classification accuracy is a measure of the ability of the discriminant
functions to separate the the pixels us‘ed to generate the functions. Interpretation
accuracy is calculated using an independent test sample and measures the
capability-of-the-discriminant functions to separate the terrain classes of interest
in the study area. In this study, two sets of training hd test pixels (bn‘ach
extracted randomly from thé field data) are used to generate and test the

di functi Two-groups were used to ensure that the pixels selected

adequatel'y represgnted the data set as a whole.

The results of the spatial analysis are p.resented in chapter 8. For

purposes, of the ir likelihood ificati are

documented as mapping accuracy where mapping accuracy is a measure of the
agreement between classes identified on the digital map proa‘uct and those
identified in the field. In this analysis, mapping accuracy is calculated using 774
pixels known from ground survey.

3.2. Study Area

The study area, located in the‘Kl\mne Ranges of the Southwest Yukon
(Figure 3-1), was selected for several reasons: (i) cloud free TM data and aerial
photography were available; (ii) the area con%n.ins high variability conditions with
simple landscape components; (iii) it is close to an area of previous research from
which this study ¢an gain experience; and (iv) it is easily accessible by the Alaska
‘Highway which runs through the Northeast section and a cart track that permits

vehicle access to the interior.

s
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The study site (Figure 3—‘45)‘ covers an area of approximately 250 square
kilometres. Located in the Kluane Game Sanctuary, North d&Kluane National
Park, the area is of iderabl 1 imp . Bounded )o ~the
Southwest by the St. Elias Mountaifs and to the I\io,rtheast by the Shakwak

‘Trench, it is situated between two major fault systems, the 'Duke River and
Denali, and is cheracterized by Gugboniferous, Permian, and Triassic volcanic and
sedlmenzary rocks (Theberge, 1980). The range of relief is greater than 1250
metres with a minimum elevation of 750 metres and a maximum greater than

2000 metres above sea level.

During a previous field seml;, it was noted that a considerable range of

veg_égatiou communities was present in the area which was intricately linked to

J topogrnphy and landform. While the topography of the area is complex,
composed o[ vanable slopes, upects and rélief, the ecology is relatively simple,
thus simplifying the n:lenuhcauon of terfain units thnt are consistent in terms of

Iand{om}, vegetation, aAnd_ soils.

3.3/ Data Acquisitibn

Two distinct groupé of data were ieqﬁired for the stidy. The first gmulp i

contains information for only a random selection of sites in the-study area and
includes: (i) TM data consisting of a value f;ﬁr each TM band at each site, and (i)
ground data derived directly from field measurements. The ground dafa consists
, of; (i) topographic data\oud (ii) surface cover in terms of a percentage of complete
cover. All of these data were used to investigate the: effect of various temun
properties on, reflectance data recorded by TM, and to mvesugate the
impmvemen’t in terrain classification accuracy that can be achieved by

integrating TM sensor and topographic data. ”

/
The second group of data sets is comprised of (i) TM data for the entire
study area and (ii) topographic data for each pixel in the study area derived from

a digital elevation model. These two data sets were used to investigate the spatial

'éfrects of incorporating ancillary topographic data in terrain classification of the |

y
2 7 ) T 7
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complete study area". A diagram illustrating the various data sets apd the
procedures in which they are employed is presented in figure 3-3.
P

Spectral Data:

L LA ible tape ining Landsat TM data of the study
area was obtained from the Canada Centre for Remote Sensing (CCRS). The

P

image was acquired 31 July, 1985 with a sun elevation of 44 degrees and azimuth

150. A subscene of 550 x 550 pixels which represents the study area was extracted

“from the\mage tapes using an ARIES I system at NORDCO Limited. A colour

composite (baé‘s 5, 4.and 3) showmg most of .the study area is presented in

Figure 3-4. In actual fact, the image area is square; however, as a result of

; photographic reproduction, a strip at the top and bottom of the image area is not

shown. Refer to Figure 3-2 for the complete image area. ”
. - %
The spectral data were used in two ways: (i) as a complete set, i.e. each
plxe] in the study area’contained 7 values corresponding to the seven TM bands
and (i) a subset was extracted whereby only values which corresponded to the'

pixels in the field sites: were contained in the data set. These values were

.extracted from the camplete set by determining.the line and pixel value of the

center pixel of each site visited in the field. This was acc&mplished using a task
on the ARIES III s;stem which registers Landsatai to UTM dil

After thé line and pixel coordinates were known for the center pixel of each site,
a program, OUTWDW.! FOR._ (see’ Appendix A) was wrmen to extract the pixel

with the given line and pixel coordinates and the surroundlng eight neighbours for

each site. «

dround Data: F

Field data collection at specific sites was required to obtain information

regarding the ground variables which may influence spectral response. A random

. selection of sites was necessary to ensure that an unbiased representation of the

study area was obtained. Justice (1978) discussed several types of random
sampling schemes. A purely fandom sample would have been difficult to excente
in p'raclice and it would have taken too long to guih‘cr"thc neegssary  field
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observations. A systematic strategy was adopted so sites could Be visited in an
orderly fashion. A disadvantage with a purely systemAtic sample in which sample
sites are selected at regularly spaced grid intervals is that the regularity of the
sampling may coincide with regularities in (the terrain (as caused by aligned
cuestas and strike vales) (Townshend and Justice, 1081, p.42). Consequently an
. unaligned systematic sample was adopted. Insfead of selecting a random sample
within each square of a constant grid, however, the X or Y coordinate was the
constant element. A random series of X (easting) and Y (northing) coordinates
was generated and each X was paired with each Y to generate 4 series of X/Y

coordinate pairs. This ificati implified both ati of pthe random

sites and location of the sites in the field. At the same time; it preservgd the
randominess requir;zd for future stntist‘icz\l analysis.
= ’ S
A sample site of larger than one pixel was requiréd to permit accurate
ground location in terms of Umversnl Trxz-;sv?e Mercator (UTM) coordmates
(Justlca and Townshend 1981). Therel’ore, an’areal sample was taken at each site
which comprised a 3 x (3 pixel window and represented 8100 square métres on the |
ground. This was within the guidelines suggested by Justice and Town;hend
(1981) regarding” minimum sampling unit for MSS data. Ground ’data were
collected at 100 sites-for a totgl of 900 pixels.u This sample was believed to
adequately represent the variability in the study area Eccording to Hammond and
" McCullagh (1980).

- The, ground characteristics recorded were chosen to quantitatively '

describe the morphometry and surface cover.at.each site. For some areas, it may

beoarguéd that adequate surface information could be obtained through the

interpretation of large scale aerial photog-raphy,nnd topognf)hic mn); sheets. Th a

complex environment, particularly the study ‘area for this research, the high

variability of terrain made field measurement of ground properties essential if ihe
~ exact nuture of the effect of topognphy was tobe determined.
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The surface cover varisbles were recorded at each site hy‘ an
interdisciplinary field team in the summer of 1987. They included the percent

cover of i moss, herb, and non-

vegetated cover and were measured-in terms of percent coverage at each site as -

viewed from diectly above the site. Percentages were estimated in 5%
increments, for example, 5%, 10%, or 15% coverage and so on.

The topographic variables recorded at each_site were selected with

reference to the general system of ge y described by Evans (1077
and used in cun;uncuon with MSS data by Franklin (1987) to discriminate parcels
of land from nd]ncent terrain in a study area in the Ruby Range, Southwest
Yukon. Evans :

d general
and snalysis of those characteristics of landform that. are applicable to ‘any
continuous rough surface.. The landform characteristics include elevation, slope,
aspect, relief, and convexity. = .

Elevation is the height above sep-level of the site. In this study, elevation
for & particular site was read from a 1:50,000 scale topographic map of the region.

Slope is the rate of change of altitude with distance and is calealated 2s
the first (vertical) derivative of eleyation. In this study, slopes were measured at
each site from the center of the middle pixel to the center of each surrounding
pixel. Based on these slopes an average slope plane was then calculated for the
site (Appendix A). ' Each pixel was then given the average slope value in
subsequent analysis. :

X

Slope has a dirgetional component known as aspect which, is the first

horizontal derivative of elevation. Aspect measured by Evans (1972) in degrees as

the direction the ground faces, unfortunately , is not a metric; for example, 10

degrees is closer to 350 degrees than 40 degrees. As a result an alternative way of

expressing aspect was requi‘red for this analysis. The approach taken in this

study ‘was adopted from Justice (1978) who complited incidence values as a
0

as the field of measurement”



function of aspect, slope, solar elevation, and solar azimuth. In this form, aspect.
could be incorporated in ‘the necessary quantitative statistical analysis. The

following formula was used to compute the incidence values:

. inc = cos(a) + sin(a) col(B) cos(6)

where a is slope, 8 is sun elevation, and 4 is the difference between terrain aspect

'o'ﬁi&.compus and the solar azimuth. .
- -

Evans (1972) also included convexity in his general system of
geomorphometry. He defined convexity as the rate of change of slope relative to _
aspect and caleulated it as the second derivative of elevation plus the first
derivative of slope. Convexity was not incorporated in’ the research because it
was believed that convexity measures would provide little addition information
over an area 30 meters square which represents the size of each TM pixel. *
Franklin (1984b) used con\"exity measures in similar analysis based on MSS data
which is comprised of larger size pixelsv(ﬂ()xso) meters and found only slight

improvements in analysis results when convexity was employed.

Digital Elevation Model Data:

Ground data collection made hic data ilable only for a

selection of sites in the study area. If the entire study region was to be mapped it
would Be necessary to acquire topographic data for every pixel. Tlerefore, &
Digital Elevation Model (DEM) of the study was created and the necessary,

geomorphometric terrain variables were extracted from it for the entire area,

Creation of a digital elevation model of the area involved two maiﬁ/
stages: (i) manual digitizing the contours of a recent 1:50,000 scale National
Topographic Series (NTS) sheet of the area and (ii) creation of a regularly spaced

grid of elev: s by manipulating the digitized data. Digitization was performed

‘using a Gentian Hi-State precision coordinate digifizer. A hand held cursor was
used to record the location of X-Y coordinates while Z values were entered from
he keyboard by the operator. Points were digitized along contours at the

¥ =




discretion of the operator. A geneml vie of 6 pomtg tjmes the distance ’

. between contour intervals was followed in most cases except in urens \vhcre

contours were widely spaced and a greater number of points was- req\lired T At
élevations less than 5000 feet, every“contour was digitized; 5000 ‘feet and above,
every second contour was digitized depending on the loseness of contéur spacing.
In areas where contours were extremely close, “the degree of operntor error would"
reduc_e any lmprovemenl. "that could be achleved by dlgmzmg nddmonnl contours.

* Greation of the eleummgnd from the Aigitized contours wu done
using the Surface I Graphncs System (Sampson, 1978). This mvolved cnlculaung

at grid nodes Gver the digitized data using a two phase

loeal fit algonth:{: In the l‘mt phlss, a welghted trend surface was fit fo each:

point based-on an average projected:slopes d-for ir nearest

" (Peddle, 1987) where n i equal to eight. In the second phe.se, a distande wughted
average slope is calculated fo each grid, point using the trend surface equations,
develpped in-phase one. A grid size of 550 X 550 grid pouﬁs wu\gelccted to
correspond to-the TM snb-lmage of the study area. The resultmg DEM is
“presented in Figure 3-5. .

Severn;l sources of ‘error are inherent in this approach and must be

identified. An obvious source of human error results from the manual technique

used to, digitize contours and the subjectivity iivolved in selecting pofnts to'

record A.loug a contour line. Extreme care nnd eheckmg procedures were adapted
in, order to minimize the human error source. An Jmpor'/anl systematlc error
‘exists in areas that are particularly flat. "In sucb areas there are large gaps’
between contour lines. These areas often lack sufficient data'input to murpolm

values for the extremely fine elevation grid requiréd here. In order to mjpimize

problems that result from limited data, additional contours were interpolated by~

- thie operator between widely spaced contours and input to the digitized data sc.
o
While this did eliminate the problem of mlSslllg data values, it resulted in.an
o
arul‘ncm}'camponcnt in the model, for example, the stepdlke appearance in FIK\I!’?

T o "y

’
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The artificial steps-can be leduced to a certain degne by running a
smoothing algorithm :through t‘ne model (Hnll Konyv:s. 1087). The slgorithm
employed on the DEM for .the .Yukon study area used a filter and a cubic
convolution resampler to,average ‘values within a 5x5- window successively
throughout, the image. The resulting smoothed DEM issikown in figure 3-8.

. .

S(‘)l'lwarev is ;'v‘ldely available to extract geomorphometric terrain
descnpﬂ)rs in the form of elevation, slope, incidence, rellef and convexity from
DEMs (Col!ms und Moon, 1981; Franklin and Peddle, ¥987) and to produce
separate images whnch can be registered to the spectral data acquired by Landsat.
The calculation of these variables is dlscussed in detail by Peddle (1981), Frew
(1984) discusses i 1mage reglslratwn procedures in detail. -

i, In this analysxs, the mﬁ.wurg developed by Peddie (1987) was emploxed
Lt extract raster slope, and mcldence. (u function of aspect) images from the
smoothed Yukon DEM (F|gure 3-6). These images are represented in Figures 37 °
and 3-8, respectively. On zbe slope i lmﬂge, light tones represent aréas’ with steep
slopes and dark'tones repxesent relatively flat areas. Light tones on the incidence s
image Arapresenf, ‘areas with high incidence values which are caleulated as a
* function of slopé, aspect, solst elevation, and solsr azimuth.
, 3 . s )
. It i; ubvions from wisual observation of Figures 3-7 and 3-8 that artifacts
lmve been mtroduced mm the slope fnd incidence images (for example, the linear -
feutumyon Flguré 3-7 whlch appear to follow the digitized contour lines and the
step-hke patterns on lhe relatively flat areas of Figure 3-8). These artifacts are a
result of the systematic errors-identified in the creation of the DEM." While steps
were taken to minimize these problemis as descr_ibed previously, they could not be
fully e]ir}ninatedn "The slope and incidence images that are provided were

.considered to be'the best imations 'of slope and' incidence that could be

acquiréd given the limitations of: the manual technique for creating the DEM.
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3.4. Summary

The study area in the Southéygt Yukon is c’hnmcterized by three data
sets: (i) spectral TM data for seven bands, (u) ground data acquired through ﬂleld
survey, and (iii) data extracted from a DEM." Site data consists of spectral dnta
and ground data’for’ 774 pixels visited dnnng tlle field season. Each of these
pixels has a set & values which correspond to each TM band, clevation, slope,
incidence, relief, and the percent cover of the various vegetation types.
Continuous data for the whole study area consists of TM values and topographic
data (elevation, slope, and incidence) derived from the DEM. In the next two
chapters, various subsets of thnse data sets are entployed-inthe umﬂ'sns in order
d if an’i d duta set ¢ d of digital T™ and topographic
data could be employ‘ed to improve terrain ‘clnsslﬁcnuon in o high relicf

environment and the level of improvement that dould be achieved.

to




I Ch‘apter 4

Relationships Among Ground Variables
and TM Spectral Response

, 4.1. Introduction ’ - v
An und ding of the statistical relationships among ground-variables

and Landsat TM bands is necéssary if TM data are to be used effectively for

terrain.analysis and classification. For example, an understanding of the nature of

. these relationships can provide insight into how certain terrain properties may be
used to improve degcription and/or discrimination in the classification process.
Statistical relationships between variables strongly inﬂueﬁce classifier operations.
Weak or moderate correlations betweer terrain properties and TM data may
suggest that the associated terrain variables contain new information and if
included as ancillary information in the classification process, may improve
discriminating power; strong correlations suggest data redundancy; zero
correlations suggest complete independence. Other reasons for examining the
statistical relationships between the'ground variables and sensor data are that a
rigorous analysis of the environmental factors that are capable of significantly
altefing spectral response can be used to guide field work (Walsh, 1987) or
generate new variables w)ﬁch reduce redundancies and contain aspects of both
dgts sets (Fylnklin, 1987).

In this chapter, the results of correlation analysis performed among .
various ground’” Variables and digital data acquired by the Landsat Thematic
t
Mapper sensor are presented. Thfee types of linear models are studied in order to

~fully examine between iables: (i) Bivari analysis, ‘w\hich

describes the relationships  between - each individual  variable; (i)




Multivariste/}egression analysis, which identifies the relan:onships between sets of -
ground variables and each TM band; and (iii) Canonical- correlation analysis,
which reveals relationships between sets of ground variables and the set of seven
TM bands. i : ;

The various statistical procedures were performed on a computer system
for data analysis called SAS. (Statistical Analysis System) (SAS Institute Inc.,
1985)./ Three sets of data were input to SAS statistical procedures: (i) surface
cover data which includes the percent cover of the dilferent vegetation variables
and the percent non-vegetated cover recorded for the \nine pixels associated ‘with

each site, (u) t phi vdntx ! ,' of the Iur hi \vanablcs

and (m) sensor datn consisting: of the seven Landsat values recorded by the .
Themahc Mapper. for “the pixels corresponding to each site. Each data set

(elevamm slt;yy nc)dence, and relief) derived from llensurements at each site,

consists of 774 data’ values for each vunable Descriptive statistics for each
variable are presented in Tables 4-1. ’

4.2. Bivariate Correlation

Bivariate Correlation is technique which is used to investigate the
relationship between two variables’ (Thomdike, 1078) In_the first stage of this
analysis, bivariate correlation is performed among the various terrain pfropernes'

Arecorded at euch site_ and Landsat TM sensor bands. This is an attempt to
understand the terrain properties or attributes that are capable of contributing
signiﬁc!int variance to TM data. This stidy attempts to document these
relationships for a particular area in the Yukon and gain insight into t\hp Inctdrs’
iﬂectiug remote sensing image analysis in that area.

Results:
The bivariate relationships between each TM band and the topographic
and land cover parameters nfeasured at each site are presented in Table 4-2.

Correlati ients (r) were d, using the Pearson Product Mofnent

Correlation statistic. The square of the correlation coefficient, known as the




;\lele 4-1: Descriptive Statistics for Ground and Sensor Variables

“Variable (unit) | Mean | Std.Dev | Minimum [Maximum [ StdError | Sum | Variance | C.V.
Band 1 (DN) 70.27 7.10 .50.00 \ 111.00° | 0.26 54390.00 50.40 | 10.10
Band 2 (DN) 20.09 4.87 19.00 52.00- [-0.18 22514.00 2360 | 1673
Band 3 (DN) 28.62 7.08 16.00 60.00 | 025 22153.00 49.90 | 2468
Band 4 (DN) | 6341 | 1604 19.00 121.00- (-0.61 40076.00 | 28688 | 26.71
Band 5 (DN) | - 7601 | 2142 23.00 138300 [ 077 58833.00 |  458.95 | 28.184
Band 6 (DN) | 122.20 8.41 104.00 138.00 0.23 04584.00 4110 | 525
Band 7 (DN) 2826 | 9.32 8.00 7400|034 | | 2187600 86.82 | 3297

| elgvatinn (m) |1244.44 |317.48 794.00 1865.00 |11.41 063193.00 | 100791.25 | 25.51

slope (deg) 1650 | 13.12 000 |* 5100 | 047 - 1277100 | 172.22 | 7053
incidence (deg) | 095 0.19 0.35 123 | 001 73175 | 004 | 1084
relief (m) 3000 | 14.93 0.00 5899 | 054  |.2321523 | 22200 | 49.79
coniferous (%) | 20.09 | 24.62 0.00 8000 | 089" 16245.00 | 605.91 (117.28
deciduous (%) 25.35 24.04 0.00 80.00 088 19620.00 577.05 | 04.84
non-veg (%) 855 | 2121 |: 0.00 10000 -[ 0.78 £ 6615.00 | - 449.02 [248.19
herb (%) 31.40 24.24 0.00 9500 | 0.87 24300.00 587.77 | 717.22.
moss (%) a7z | 1831 0.00 8000 | 0.48 177.08 | 96.99

10620.00




coefficient of determmstmn is a ditect measure of the proporuon of the variance

explained by the linear correlation. A T-test is used to determme whethef or not

each ion is signifi Correlation coeffici are not idered to be

significant for probabﬂity values greater than .01.

Results of correlations between the topographic variables recorded at-a

site suggest that elevation and slope are the most strongly related with a

correlation coefficient of 0.52 which is moderate. This relationship satisfies the *

4
general rule of increasing slope Qngle wnlh increasing " elevation in areas whlch
have heen modified by glacial_erosion (Funklm and LeDrew, 1984a). Other

significant correlations were identified between slope and relief (0.20). Sighificant. .
correlations betweén these two variables were also identified by Franklin and - *

LeDrew (1984a).who suggested that this may be & function of the possibility of '

high relief values in areas of high slope even if the slopes are smooth when relief is

measured as the variance in

ing slope with i ing elevation

may partially explain a si between elevation and relief. Slope
is the only variable with which incidence is significantly correlated. A negative
correlation coeﬂim’ent (-0.34) suggests that steeper slopes have low incidence
values and thus tend to face in the direction op/posice direct solar illumination

when the satellite image was acquired.

Significant correlations between elevation and percentage-coniferous
(-0.73), herbaceous (0.55) and -non-vegetated (0.28) surfaces illustrate a strong

itudinal

control on ¥ ion as perceived during field investigation. A
negative correlation between coniferous cover and elevation is explained by-the
fact that spruce trees occur predominantly in the valleys and on alluvial plains at
relatively low elevations in the study area. Moderate positive correlation between
herbaceous cover and elevation is due to the increase in herbaceous cover at

higher elevations where tree growth is

between non-vegetated surface cover and elevation is in part a lunctlon of the
moderate positive correlation with slope. This is explained by the tendency for

areas which lack vegetation to occur on steep slopes which, as expressed in thte




Table 4-2: Bivariate Relationships

Variable Band1 | Band2 | Band3 | Band4 | Band5 | Band6 | Band7
Band 1 1.00
Band 2 0.94 1.00
Bénd 3 0.95 0.97 1.00
Band 4 0.33 0.50 0.42 1.00
Band 5 0.5 0.71 0.69 0.80 1.00¢
> Band 8 0.47 0.53 0.50 0.50 0.64 1.00
Band 7 0.78 0.84 0.84 0.56° 0.90 0.84 1.00
elevation 040" *[  0.50 0.53 0.49 0.58 i 0.52
slope 016 0.21 0.20 0.20 0.17 -0.14 0.21
incidence 039 « 042 | 0.30 038 | 037 0.50 0.39
relief 0.33 0.33 0.34 6.12 0.24 0.19 0.31
coniferous -0.20 20.35 0.35 -0.35 -0.40 v 0.36
deciduous z 8 g * 0.24< . * 0.10 *
non-veg 0.28 0.25 0.30 L4 0.21 & 0.37
herb 0.14 0.22 x 0.23 0.31 0.32 3 0.23
moss -0.29 -0.32 -0.28 -0.27 -0.30 -0.38 -0.31

' - denotes correlation riot significant at 0.01 level of confidence i

ov
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discussion of topographic intercorrelations, are more Iikély to occur at higher
- | 2
elevations. Coniferous cover is also moderate];@_porrelatedfwith slope (-0.47). This

is a function of the general distribution f coniferous trees at low. elevations on

relatively gentle slopes. A negative moderate correlation (-0.40) between‘
incidénce . value and percentage moss cover recorded at a site suggests that
proportions of moss are higher on slopes with low inciderice values. During the «
field investigation, it was -noted that northward facing slopes had viéihly larger
percentages of moss vegetanon This is explained by the hardy characteristics of
moss requiring generally less amounts of insolation than other herbaceous types of

vegetation which are common at similar, altitudes in the stuay area,

Al signifi lationships between p etation variables and

TM spectral 1esponse are weak with the exception of perc\ent coniferous ‘cover

* with Band 5 which is moderate (-0:40). Gorrelations involving the coniferous

variable are negative with all spectral bands and .are generally stronger than the

other vegetation variables ranging from 029 to 0.40. High proportions of

if getation are d with low spectral response due to the high

absorption characteristics of black spruce which is the dominate coniferous species *
in the area. Percentage deciduous cover is significantly correlated only with_
Band 4 of the spectral bands and the correlation coefficient is weak ((')AZSV)A This
is probably due to-the wide range of deciduous species that occur in the area.
These species include poplar, willow, alder, and.dwarf birch all of which have
varying spectral characteristics. Similar results were achieved by Justice, 1978

between percentage deciduous vegetation and MSS data.

The correlations between the herbaceous and moss vegetation variables
and the spectral variables are all significant, generally ranging from 0.20 to 0.31

with large proportions of herbaceous cover associated with high spectral response

values and ]nrge i of moss " d with relatively low speetral

response. These correlations are explmned by ‘the nhsorptlon characteristics of

daminating rofl b

moss and the ics of herbaccous cover”in all

spectral bands. All carrclanons bet\veen the proportion of non-vegetated cover




variable .and ‘spectral bands are weak with the exceptm of Band 4‘ which is

insignificant. . -

" A significant correlation' was identified bet.w‘een'the vegetation variable
representing peféent mdss cover and the thermal chmuel -cqmred by " the
Thernatic Mapper (Band 6). A negative correlation cdelﬁclent of -0.38" may bes
functxa" of the thermal properties of moss but is “latgely determined by the

d

of this i 'f.yper P

on northward slopes with low

s incidence values. ‘This was ‘noted in the field survey and su;g@ted previousl}""in‘

the bivariate correlation between incidence And the peréent moss vegetation cover

: vanablé No other conelstmg\/?tween vegetation and Band 6 were sxgmncnnt

with the exception of deciduous cover which was very weak (0.10).

0 . . .
Signilicant -correlations exist between topographic variables and. TM

spectral response. In particular? elevation is d 3} lated with all
spectral bands. 'Correlnlibu coefficients range from' Q.40 to 0.58. This may be

explained largely as a consequence of the significant correlations between

elevation and vegetation cover at a site and especially as a result of %he:strong -

correlation between elevation and percentage coniferous cover as discussed in a
previous section. The strongest correlation exists between elevation and Band §
which is consistent with results obtained by Franklin and LeDrew (1984a) with
MSS Band 7 which is an equivalent “infrared wavelongth The fact that
correlations between topographic variables “and spcctra! roeponse are sxgmnmmly
higher than those between vegelntnon cover and :poclr'\l r(‘\ponw suggest that the
influence of topography on TM spectral response is\in part, independent of
surface cover. This is further demonstrated by considering the correlations
between incidence and TM spectral bands. Incidence ;s consistently weak-
moderately correlated with spectral response with coefficients ranging from ©0.30
to 0.42. This may be explained as a function of direct solar illumination on
southward facing slopes resulting in higher spectral reflectance from the surface
but is also a function of the vegetation cover with rcluti;ely high reflectance
characteristics. Slope and relief are weakly and positively corre]nt'ed with all
spectral TM bands. 5




# 4

A moderate correlation (0.50) exists between the thermal TM band and
incidenee. This is a result of direct solar ilumination on southward facing slopes
as well as the thermal properties of vegetation species that occur on these slopes

in contrast to indirect illumination and vegetation on opposite northward slopes.
r
Discussion:
The correlation among topographic variables recorded at each site
. : " = o he
indicate the degree to which each variable contributes to the ovérall topographic
i

variables are

character of the region. All
at least one of the other topographic variables.- Since the correlations are
generally weak and at best moderate, this may support the'hypolhesis that each
not only contains information, but that each contains 'unique’ information. We
have the important work of Evans, 1080 to indieate the uniqueness of each of

these variables.

_Significant olationships between the variables and surface

cover variables furthger support the importance of topographic variables in

explainirfg variance in land cover. For example, a direct link between the surface
S b

cover and topography, could suggest an altitudinal control on vegetation. This

information is important in that it supports an approach to terrain analysis and

classification that incarporates both surface cover and morphometry, namely the

integratedsor biophysical approach discussed in the Introduction to‘this thesis

icant Telationships exist between percent surface

The fact that signi

cover variables and TM rcipnnswdlmtes that there is information. related to |

stirface cover contained in the T™M dmn This is because the percent cover of a
given surface cover type is in part an indicator of the type of vegetation. For
cxam'ple, it the percent cdver is 1009, the vegetation described by this

measurement cannot be black spruce because black spruce does not occur at

100% coverage. Oq the other hand, it may represent the'percentage herbaceous'

cdver in a open meadow field. Significant relationships between percent cover

and MSS spcctr"u‘l response were also identified by Justice (1978).

correlated to




S

C : tly, other information may

e > ¥ F g

Although the relationships b{ween percent cover are significant, they

are.weak because percent cover is only a partial indicator of vegetation type,

) to the TM response and may be
necessary to record during field investigations for example, soils-and topographic
characteristics. Only then can the reflectance values .be tully explnined and
mterpretam:ns made on how spectral response can be used to identify different
surface cover+ types or dlfferent landsMpes that contam vegetation
characteristics as components.

T!iese relationships indicate that topography has a direct influence on
. the remotely sensed TM imagé data. Further investigation is required in ordcr ta
mske firm con?igsnons as to whether or not the topographic element conlnmed in

‘the TM data set is-a source of noise and confusion or if can be used lo

dlscnmmani opogr hic-ch istics within land: classes.

Summarx.
The preceding bivariate correlation analysis revealed that: there are

“significant relationships between surface cover variables and topographic variables -
in this area of the Yukon. This can be interpreted as evidence that an analysis

PP h that iders both. hic and surface cover characteristics i "

approprmte for this, high relief environment, namely, m} mlcgnlcd approach.

Furthermore, this information can improve future field work_in high relief terrain

‘because it provides evidence that topographic variables must be-included in the

* field* analysis. It is also shown that each topographic variable measured

+(elevation, slope;incidence, and relief) is unique since in no’ case does the variance

* in one topogra‘piyic variable fully explain the variance in another topographic

variable. And riﬁally, the bivariate, co;relation coefficients revealed that each =
topographi¢ variable contains variance that is unique from the sensor variables,
Relationships between each of the sensor variables and each of the topographic

variables are weak to moderate at best.

While this nnnlysi§ indicnu.:s the uniqleness of individuak variables
(leading to the'conclusion that each individual variable should be incorporated in




46

terrain analysis) these correlations should be interpreted cautiously. For.example,
the analysis does not indicate how topographic variables jointly contribute 1o
spectral response. Since terrain analysis such as classification considers numerous
variables simultaneously in a discrimination process, the question of how the set
of fopographic variables jointly contribute to spectral response must be
investigated. This is done in the next section using multiple regression and
correlation. '

4.3. Multiple Regression ‘Analysis

Regression analysis is a techni used for\ ining the relationshi

between one variable and a combination of two or moréjother variables that are
considered simultaneously. (Thorndike, 1078)." In genergl, this approach permils
an analysis of the relative inipact of each input quiablez}'\vhich can be interpreted
in physical terms as use fulness (Walsh, 1987); for exariple, in a classifier. In this
research, regression analysis was performed in order to examine the relationships
between euch TM-band and 'the set of (i) surface cover varinble;, (ii) the st of
topographic-variables, and (iii) the combined set of surface cover and topographic
variables (all ground variables). In many ways this analysis can be ‘scen to
complement and confirm the earlier bivariate analysis and the canonical analysis
.of the“entire data sets discussed in the following section. Here we discliss only the
complete model using all available descriptors to the importance of variability in
topographic and land cover conditions affecting the recorded TM brightness

values: .

A 1l d ding of the infl of ground variables on each

individual TM band is importa}n because in some situations not all‘ TM bands
may be ’avnilnble or necessary for the analysis. In this case, knowledge of the;e
relationships may indicate the optimal selection or combination of bands. Many
previous investigations-(for-example, Justice, 1978) used regression "techniqus to

examine relationships between ground variables and MSS spectral response. This

analysis will provide a basis for comparison of relationships in this study with * -

*those in other environments.
-
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Results: ’ \) (j B

Results of the regression analysis are presented in Table 4-3(a-c).

47

Correlation measures were calculated using the method of least squares
to fit general linear models. Correlations n’re expressed in terms of the multipl’e’
coefficient of determination (rg) which deseribes.the amount of variance jn the
dependent variable (TM band) explained by the independent set of variables. P
tests determined that the overall correlations were significant at the .01 level of
confidence in each case. T-values identify whether or not the contribution from
each independent variable is significant. :

’a

Results suggest weak relationships between “the surface cover #nriables
when considered as.a _group and the sensor data for each TM band Table Al—.’!(n)
For example, the 1% ranges between 0.16 for Band 6 and 0.29 for Band 7 and wnh
the exception of Band 6, the amount of variance explained by each variable
increases progressively with band wavelength. These results snégcst ﬂml the

bands which record reflectance in the longer wavelength portion of the spectrum

(TM bands 4-7) may contain more information relating to percent surface cover o

than TM bands 1-3. These results support previous studies which investigated
the information content of TM data and found that bands 7, §, and 4 were the

optimal combination for general surface cover mappiag (Horler, 1986).

Relationships between toﬁogrnphic variables and sensor data (4-3b) are
moderate for all TM Bands with r? always greater than or”c‘qunl to 0.2 (Band 8)
and the most significant correlation with Band & (r =0. 48). Band 2 and Band 3
each had currelatmmu ot 12 = 0.45. These results are consistent. with
previous studies which have |dent\ﬁed slgmﬁcant topographic effects in remotely
sensed data of mountainous’ terrain and they support the bivariate results
dlscussed eerher (Hall-] Konyves, 1087; Dottavio, 1981).

The relationships between all ground variables and the kenmr dats
‘Table 4-3(c) are always greater than or equal to ? =032 (Bnnd 6) with a
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Table 43, continued
(c) All Ground Variables vs Sensor Band

Buadi. =

imtercept | 9.20 5 Intercept | 45.31
<levation | 007 EE 000 | [“elevation | 000
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= 37

ol
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maximum r2'= 0.50 for Band 7, r2 = 0.48'for Band 3'and r? = 0.47 for Band 2.
These results indicate that the r? value improves little. when surface cover is

added beyond topographic variables alone.

Discussion:

variables d at a site and
each TM band was significantly stronger than the corresponding influence of the

i‘he bined influence of

surface cover percentages for all TM bands. Modernte relationships between the R
ground variables and sensor data, at best, sugguts that the variance |n TM bands
is not fully acconnted for by all the ground variables measured at ench site. The
remaining variance is possibly a function of surface type. - Walsh (Xﬂ ]{:ared

" nominal vanable.s such as soil type info a regression model using’ a technique

which employs dummy variables and obtained significantly higher oveu(
correlations than models which did not employ these variables. More importantly,

it provides' support for t/he notion that there is variance in surface cover and |
topography that is not ct;ntained in any of the TM bands alone.

The most important results of this regression technique, in nddit‘ion to
supporting the bivariate analysis, are:‘(i) the same topographic el'f.ect on the
spectral data (roughly 50% exp‘lanav,ion) was identified as in the literature for =
mountainous areas; (i) no improvement {or little) was found when surface cover
was added; and (iii) there was less correlation when surface cover was afalysed on
the spectral data. This‘ means that topo’graphy influences spectraLr ponse to a
very large degree; therefore, we must either reduce the topographic effect, if only
surfﬂcé cover is needed or integrate antillary topographic information in

land: biophvsical classifi

or

where topography is critical.  Also,

topography explains much of the variance in surface cover so where spectral

is not unique, hy can help or assist in separating that parcel of
land from others. ’




* Results:

4.4. Canonical Analysis

A canonical correlation analysis is a general form of regression in which

the structural relationships between two data scts can be studied (Clarke, 1975).

D -

I bivariate relati or

This is different from
the combined effect of one data set on a single variable. In the context of this
study, structural canonical analysis has been done to identify common patterns in
the various data sets which can be interpreted in terms of the common landscape

components linking-the; two data sets.

Vectors are extracted from each set .of vnriai:lw to represent the
maximum variance within the sets and at the same time to maximize the
correlation or shared variance between the two sets. The first set of vectors
extracted is referred to as the first canonical vector pair. The secondcanonical
vector pajr is extractéd to represent maximum variance that remains. after the
first vectors have been removed. In essence, canonical correlation is a summary
nnnlysi’s used to describe shared variance between two data sets. -

s E « ~- ® i

In this research canonical analysis is used to summarize the variance
shared between the following sets of variables: (i) the set of surface cover
variables and the set of seven Landsat TM bands, (ii) the set of topographic
variables and the set of TM bands, and (iii) the-combined set of surface cover and
topographic variables and the set of TM bands. The common 'variance extracted
in these three analysis ‘can be interpreted as representing the amount of

informatjon contained i(the TM data set that describes the percent surface cover

of the landst the hic character of the landscape, and the
landscape system' defined in terms of surface cover and morphometry,

respectively. o

The results of the canonical correlation analysis are prcsen\ed in Table

4-4(a-c). Correlation /are exp d as ical correlation coefficients

(R). The square of the canonical correlation coefficient, the canonical coefficient

)




. s horx v
of determination, describes the amount of variance sharéd by the two data sets.

Overall correlations are significant at the .01 level of confidence based on F-tests ,

of significance. 2
i

“Table 4-4(a) sun}mgrizes the results of the canonical correlation analysis

applied. to the set surface cover variables ana the set of TM sensor variables. -

Two _significant vector pairs were extracted. The first pair had a canonical

correlation coefficient of R, = .68. Of these, the vector u{tr";;te.dvhoh\ the

_ sensor data set expluined 44 percent of the variance: in )jnnd 7, 36 percent of the

variance .in Ban}/a’, 36 percent in Band 3 and less than 30 percent in the
remaining bands., Only 2 percent of the variance in the thermal band (Band 6)
Fvas accounted for. At the same time, the sensor vectol accounted for 36 percent
of, the variance |; perceat coniferous cover, 18 percent in non-vegetaced cover,
and 13 percent in the herbaceous data. The variable extracted from the percent

ace cover dita set explains 74 pércent of th_e variance in pércent coniferous
covgr, 37 percent in non-vegetated cover, nd 27 percent in herhs\c\e'ous cover
whtile simultaneously accounting for 20 percent of the variance in all of the TM
bands, excluding th‘e thel‘l!lll channel (Band 6).

The second orlhogonal vector paif (R =.51) extmcted is composed
pnmnnly of vanance remaining from Band 4 on the sensor side. The sensor
vector accounts for 87 percent of this remnmmg vanance (after the first vector/
pair has been extracted) and at most 20 percent of the remaining variance in the
other bands.

Table 4-4(b) contains results of the canonical correlation” apalysis

4 ‘
between the set of topographic variables and the set of TM sensor variables. The
lati fficient R, = .80.

first pair of | vectors d have a

The vector extracted from the sensor data explained 52% of the variance in Band

§, 50% of the variance in Band 3, 40% of the variance in Band 7, and less than
45% in the, remaining bands with only 1% of the variance in the thermal band
accounted for. The same Vector explained 6% of the variahee in elevation, 1273

o o ‘ ’ /0

\
7

i
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Table 4-4: Results of Canonical Correlation
(a) T™ Sensor/Surface Cover
First Vector Pair R =68,  F=23752"
Sensor r T, Surf Cov )
Band [ AT .33 i -.86
Bahd 2 .54 .37 i -.16
Band 3 60 41 non-veg | .61
Band 4 .34 .24 . herb [ .52
Band 5 | - .60 41 = - moss -.04
Band 6 -13 -.00 3
Band 7 .66 45 E
. . '
) Second (Orthogonal) Vector Pair R, = .51, F == 2428 g
v Sensor b2 O A Surf Cov EEER S , -
Band 1 | .21 11 coni =21 .
Band 2/| 35 .18 decidu -.33
Bandg,| 2% 13 Hon-veg 230 .
4Band4 | 82 43 herb 25
Band 5 A5 .23 moss - -.20
Band 6 82 ] a7
Band 7 .15 .08 N
= Canonical Correlation Coefficient
r = Correlation between the variable and the.canonical vector
composed of a linear function of variables from the same
same datd set. . ‘e
s 1, = Correlation between the variable and thegeanonical vector
y composed of a linear function of variables from the other .
data set.
5 ’ 7.
- (




Table 4-4, continued
- (b) T Sensor/Topography

« ~
First Vector Pair R, = .80, F =50.88 .
Sensor T T, Topo T [
and 1 |~ .56 .45 | elevation 99 .80
Band 2 67 .54 slope 44 .35
Band 3 71 .57 incid: 21 17
Band 4. 85 53 reliel .26 21
Band 5 72 .83 i .
Band 6 .10 .08
Band 7 .70 57
Second (Orthogonal) Vector Pair R, = .60, F = 31.58
Sensor’ T T, Topo T Ty
Band 1 61 37, elevation | -.11 ~07
Band 2 .62 .38 slope -.03 -02
Band 3 .54 .33 incidence .83 .51
Band 4 .40 .24 reliel .35 221
Band § .39 24
Band 6 .82 .50
Band 7 54 .33

Canonical Correlation Coefficient

Correlation between the variable and the canonical vector

composed of a linear function of variables from the same

data set.

r, = Correlation between the variable and the canonical vector *

composed of a linear function of variables from the other

data set.




56

Table 4-4, continued
(¢) TM Sensor/Topography + Surface Cover

First Vector Pair R = 81, F = 36.60
ﬁcnsor T T Top+Sur T T,
Band 1 |58 7 elevation | 08 80 ! !
Band 2 60 56 slope ET 36
g Band 3 73 .59 incidence | —20 17 "
N Band 4 .62 .50 relief .27 22 . &
Band § 18 .63 i =74 -.61 1
& Band 6 .10 © .08 decidi .01 or .
. ” Band 7 73 .50 . non-veg | . .36 .20
herb 52 42 s
moss T -.18 =13
2
diga Second (Orthogonal) Vector Pair R = 63, F=2258
Sensor r r, Top+Sur
Band [ .55 .35 elevation
Band 2 .37 slope
Band 3 .31 incidence
Band 4 .32 relief
Band § .26 i
Band 6 52 decid
Band 7 .29 non-veg &
i herb
) 'moss

R, = Canonical Correlatipn Coefficient .

+r = Correlation between thg variable and the canonical vector .
composed of a linear fun¥ion of variables from the same : y
data set. *

r, = Correlation between the variable and the canonical vector
composed of a linear function of variables from the other.

. : data set.




.- variance primarily from variance in the thermal channel. Of the remaining

of the variance in slope, 7% of the variance in relief, and 4% of the variance in

incidence. On the other side of the -correlation, the vector extracted from the
topographic data set e:gplm;rimuily variance in elevation (08%).. It also
accounted for 19% of the variance in slope and 4% and 7% of the variaicé in
-incidence and relief respectively. The same vector accounted Tof 40% of the
varianee fn Band 5 and at least 20% of the variance in all other bands sxcept the
thermal band for which less than 1% of the variance was 3plnined. The

or@l}ogonél vector pair extracted from the remaining variance had a correlation

~

- x
coefficient Rc = .60. The vector extracted from the sensor data “contained

variance in Band 6 after the first vector had been extrnct‘.e‘d, 87% was explained
by the second vector. At least 15% ofthe remaining variance in the spectral
bands was also .explained by thid.vector; 26% of the iemaining variance in

id, and 12% of the ining variance in relief. |

Table 4-de contains results of the canonical correlntion analysis between
the set of topog’raphxc and surface cover variables and the set of TM sensor
variables. When the topographic and surface cover variables are considered as a
group, the overall™correlation coefficient for the first vector pair extracted is R,
= .81 From the sensor variables; ‘again the first vector extrgcted explains
variance primarily in the spectral bands while for the ‘second vectyr extracted,
‘where the overall correlation §oeﬂ'icient is R: = .83, the thermal channel is best

«represented. From the ground data set .composed of both the topographic and
sur!uc‘e cover variables, elevation contributes the gr‘eMest variance (64%) to the
first vector. The setond vector also represents the greatest amount.of variatice in
a topographic vnriable,-nam:ly. incidence, for which 84% of the remaining
variatiée is accounted for. - ’

Discussion:
- Results of the canonical analysis between the surface cover variables and

»fhe sensor data _indicate '.lm‘!. 6nly "40% of the variance in the two data’ sets is

sha}ed. Therefore, terrain components other than percent surface cover of the

™~
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.various surface covér types influences TM response in mountainous terrain. The
previous bivariate correlation and multiple regression analyses indicate that

topographic variables make up an important component. il

The canonical analysis between the the set of tbpographic variables and
-
sensor data reveal a common variance of 84%. This supports and confirms the

earlier.statistics and shows the potential importance of the ancillary topographic

data set for applications such as terrain classification. If the two data sets shared *

exactly the same variance, no new inforation could be provided by inclusion of |
the topographic data set and using eitﬁer-da}a set for classification shou!d
. produce the same results. Since, however, the topographic data set ‘contains large
‘amounts_o! variance nqt Tepresented in the sensof‘dgu; this data set may be u‘seé
‘*io complemen_n the sensa} dpmf The conclusion that arises from these results
supports the ‘main’ hypothesis of this thesis, that the incorl;?yation of ancillary

topographic: data in the analysis of TM data sho‘xld’{mprove{ classification res\:glts
of landscape units' defined in terms of landform' and surface cover.” - This

hypothesis ill be tested in the next two chapters wheré combined data sets will

be used in i ication p - . Lo

Results'of the ca‘nonjcal analysis between the set of sensor variables the
the combined set of topographic and surface cover variables shows that the

relationship between the ground variables and sensor data does not improve when

surface cover variables are included in th‘model over when wpog-iai)hir. variables
are employed alone. This indicates that the percent surface cover data ‘set
contains little variance that is no{ already contained in the to/pqgrnphic and
sensor dafa sets combined. Band 5 and Band 6 are the dominate variables for the
mi‘f and second vectors extracted from the sensor data réspectively. Elevation
and incidence are dominant from the ground variable side regardless of whether
or not the surface cover data are included. Since little new information is
provided by the addition .of the surface cover variables, the data set composed of

the sensor data and the topographic data’set should contain sufficient information

disers d described in terms of ‘geomorphometry

to ‘classes

among

and percent cover of the various vegetation types.
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Summary: s
The preceding canonical, analysis reveals that the sensor data set
containls variance that is also contained in the surface cover data set. Since,

however,-this.common variance is relatively smg\ll, this suggests that the sensor

data. do not contain sufficient information to discriminate among-terrain classes

described in terms ol the percent cover of thq various surface cover types.
Secondly,, the sensor “data set contains variance that is also contmned in the
topogmphm duta set. Although the amount of variance shared is greater than the
amount shared between the sensor and surface cover sets, thé common variance is

|
not 100%. Consequently, the ‘sensor da_fia does not contain sufficient information

: to discriminate among terrain classes' defined in terms of elevation, slope,

|

incidence and_relief. On the other‘hand, this alio means that the topographic
data set contxms vnmnce not provided by the sensor dntn. Finally, when the
common variance between the sensor ., data set and the combined surface cover
and bopographlc data sets is exammed ‘the addition of the surface cover dutn does
not. increase the shared vamnce by a significant amount over that which was
obtained whe.q the topographm data were used in the canonical model with the
sensor ‘data alone.

One interpretation based on these results is.that the sensor data alone’

do-not. @ip_snffjcient information to discriminate betweeh terrain classes
defined “in &{:m‘s of (i) pertent of the various surface cover types, or (ii):
topographic cﬁE}zue?iécics. It is theréfore probable, that the sensor data would
not be suitable for di’s’criminnling among classes defined in terms of a combination
of these in the integrated spproach. This hypothesis which applies to
mountainous- terrain, is supported by the fact that accuracy levels of terrain
classifications reported in tl’le literature by others using Landsat data alone in
high relief terrain were poor. Further, the results discussed here show that

ddits 1 : 2. PO hi.

variance if in and surface cover data sets which

.may be used to add discriminatory pp’wer if integrated with the sensor data for

‘terrain A minimal imp in overall lation when surface

cover vnrinbles were added to the topographic data.set suggests that little or no




additional information is contained in the surface cover=data set ‘that is_not
already contained in the combined sensor and topographic data set. This l(;ads to
the conclusion that an integrated sensor and topographic -data set should be
employed in terrain classification in regions such as this having high topographic
variability. Further, an ancillary topographic d:.:la set is ‘thore readily available
since it can be derived from a digital elevation nodel relatively easily. An
ancillary data set conﬁxining,p&rcent cover values is impossible to acquire for the

entire study area since it would have to be measured in the field for every pixel.

;1.5. Chapter Summary . :

There are significant relationships between the various ground cover
values measured in the field or derived from field measufements (elevation, slope
mcldence, and relxef) and data recordegl by the Landsat Thematic Mapper. These

| b p d as ot [

suggest that the land cover and

hic ch isties of the landscape are linked and ‘that parameters of

both these components have an effect on TM data. A multiple regression analysis
sh vwed this link, and by examining the effect of the set gt topographic variables
and the: set of surface cover va}iables on .each TM band, indicated that neither
the variance in the surface cover "nor the variance in the topography was fully
explained by any TM band alone. The sensor variables were also considered as a
set and the common varisnces between the sets of TM bands, topographic
" variables, and surface cover variables were examined. Canonical correlation
coefficients were interpreted to mean that the variance in the sensor data set was
not fully explained by the vamnce in either the surlace cover, topographic, or
combined data sets. This suggests t%& dditional inf¢ ation may be ined
in the ground variables which is not contained in the sensor data and may be

useful for improvinig analysis results in high relief terrain. -

Obtaini i data

/
the slirfnce cover throughout an

area of an appreciable size is virtually impossible, thel*:fore, an ancillary surface

| . < .
cover data set cannot be obtained. However, since it is a relatively simple
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procedure to acquire topographic data for the complete study area from an

elevation model, the inclusion of an ancillary topographic data set in terrain

analysis is d. The ical lation results further support the use of
topogmphic"d;t:; as sncillary data since there was little improvement in the
overall correlation coefficient when the 'additional surface cover data was
employed in the model over when the topographic data alone was used with the
TM. The incorporation of ancillary data sets in the classification of TM data is

examined in the next two chapters in order to determine the level of imp
that can be achieved by integrating data sets, particularly, TM sensor data and

topography.




Chapter 5

Terrain Classification I: Discriminant
Analysis of Site Data

5.1. Introduction

In this chapter, linear discriminant analysis, one form of classification
based on statistical analysis of site data, is used to investigate the power of
variables for correctly classifying'the site data. The discriminant procedure uses
information for pixels about which the class is known to generate discriminant
functions. These functions can then b used to classify the original training pixels
(used to generate the functions) or additional pixels for which the class in which
they belong is known. One output of the discriminant analysis is a contingency
table which identifies the class in which the pixel belongs according to the field
data and the one in which it was assigned using the discriminant functions. ‘[n
this way, the efficiency of discriminant functions and the power of variables used
to develop these discriminant functions for correctly classifying the site data can

be assessed.

‘The first step was to develop a classification scheme for the Yukon study |

area. Based on the and regression analysis in the previous
chapter which showed a direct link between surface cover and geomorphometry
in the study area, an integrated classification approach was selected for this
rcsemch:‘ Classes are defined in terms of landform, vegetation, and to a lesser
degree soils cimmcteristics. This approach is similar to that émployed by Parks
Canada in Kluane National Park adjacent to thig study area and is a recognized
systematic terrain classification system (Christian, 1958; Christian and Stewart,
1968; "Robinove, 1079; Bastedo and Theberge, 1083; Franklin, 1987; Satterwhite '
et al,, 1084) that is eminently suited for applications using remosely sensed data.
. . .
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Table 5-1 outlines the clusil‘icntion scheme whichA was developed’ based
on the various terrain types 1dennﬁed m’ the field and. repmented by the site
data. Note that the exact dmcnpuon of each terrain class depends on subjective
decisions made by the researcher and may vary depending on the experience of
the fesearcher and/or the ultimdte use of the classification. However,'similnr
classesrwould have been chosen for any biophysical landscape clmiﬁclliOl‘L The
correlation analysis indicated that s single land cover or vegetation classification
would be unsuctessful: The results point to an integrated classification because

the TM data contain information about vegetation and landform.  Since,

N however, there is a lot of topogrnphi{c variance not explored or contained. in the -

TM data, it i3 necessary to input raphic inf jon derived ind dently.

Topography helps to explain the vegétatiun so that in areas that are not

-spectrally unique, topography will help'separate the differences. It is récognized

thbt in similar envlronments recent research has focussed on derivation of DEMs

from the TM data themselves; but this approach was™ not available without .

* extensive software development for use in the study reported here.

The 774 pixels used in the preceding correlation analysis and for which
ground variables had been measured in the field were assigned to one of the

terrain classes. From these data, a random subset was selected for generating the

discrimi fi i The ining pixels were kept for testing the functions.
‘This procedure was repeated tiice in order to ensure that the trainirig and test
pixels adequately represented the variance in the data sets. In ench‘case,» ni;xe
sets of functions were generated based on: (i) the FM data alone, (ii) the
topographic data alone, (iii) TM + elevation, (iv) TM + slope, (v) TM +
incidence, (vi) TM + relief, (vii) TM + eleyation; slope, and incidence, (viii) TM
+ all topographic variables, (&) TM + all ground variables measured in the field.

In ing the discrimi functions, each class is characterized in

terms of their mean vector and covariance matrices. In doing so, normality is

assumed. According to Swain and Davis (1978) this is a reasonable assumption

for remote sensing such as classification in that classifiers desighed




Table 5-1: Landscape Classes - Southwest Yukon Stndy Site

[Class Name Dscnplmn
T Forest/Plain = > 40 percent tree_cover;|
[black spruce dominant; occurs on|
jalluvial plains at elevations < 1000 m|
- jand slopes <\80 degrees; medlum
ldrainage
7 ‘Organic Terram - peat bog, < 10% tree
coverage; stressed black spruce due toj
[poor drainsge; dominance of grass and|
‘ pedge; occnn on alluvial plains; slopes]
{ : < 6 de A
3 Upland Shrub - W iwarl
uhlnbl dominate the ve‘euﬂcn. 0. l-am
heigh®] occurs on mountain slopes 5-40{
2 [degrees; drainage is good
4 ‘Alpine Meadow = grasses and sedge dominate;}
fmountain slopes at elevations, 1400-1800)
jm; wuth!u.m[ slopes; well drained
5 Alpine Tundra ryoid mat consisting of
fmosses And lichen; occurs  onf
[northfacing mountain  slopes  at}
» felevations> 1100 ‘'m; wery|
omo” :neous; good drainage \
[ Mountain Ridge < top ‘of mount: ridges;|
levations > 1600° m; mosses; ymu
‘ d sedge < 0.1m het;l:t
¢ Exposed Hillslope
soil; undy and brown in eolouv, Ppatches
fof ‘sedge and low shrubs; slopes >’ 30)
. Idegrees; elevations > 1400m .
8 Valley Foreat ‘on ‘lower mountain|
plopes at elevations > 1000 m; 10-30)
’ degrees; > 30% tres coverage; good|
rainsge
[ Deciduous Shrub = dominance _of _deciduous)
- C [vegetstion; balsam poplar and willow;
‘ ree height ‘> 3m; oceurs in ‘stream|
i - lbeds; slopes are variable -
10 Tmmature Spruce Forest = < 20% black spruce
fcoversge; tree height < 10m; stunted|
. [due' to poor drainage; slopes < 15|
ey
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for remote sensing applicatiqns afe found to be robust. In other : words
classification accuracy is not very sensitive even to'moderately severe jolations of
this assumption. (see also Tom and Miller, 1984), ’ ’
5.2. Classification Accuracy .
Tables 5-2 and 5-3:provide summaries of the classification accuracy of
discfiminant Iunction; generated using the two test groups. ‘Note that classes 2
r >

_ and 7 are excluded from the mean accuracies for the overall clmilie;lions.&’l‘hese

classes did not contain a sufficient number of known pixels from.the field data to"

accurately represent:thése classes (see Curran and Williamson , 1985). . For the
same reason, all |;ixels helonking to these classesfwere used in the generation of
the functidns and no pixels were nssigned to the test. group. It was decided to
ST LAt CaneNions FAlkeF \aW 0 sasvifide ability, of the
functions to represenl the classes so that the functions could be zested The
weighted mean given is a measure of the overall accuracy wnh a weight applied
based on the number of pixels contained in each class. It is worthwhile
- mentioning that these representations?ol accuracy rely on the assumption that
known pixels were ac’curately identified in the field. Consequently the' tables
represent: the level of agreement bethen the field classmcnnon of pixels and the

assignment of a pixel to a class by the dls:nmmnnt hmetmns

Table §-2a shows the percent classification accuracy based-on functions

generated using the TM data alone, topographic data alone, and various
combinations of data:-sets for the—first “group of training. pixels.” Confidence
intervals for selected functions are presented in Appendix B. Confidence intervals
indicate the degree of confidence which can be placed on each classification based
on the ﬁ;nmber of sample used in the analysis. Note that the confidence intervals
for the test data set are greater, consequently a greater range of accuracies are

possible for the classifications based on the test data. -

When the TM data are used alone, overall accuracy is only 066.5%.
Classes 3 and 9 are poorly defined classes w:th accuracies less than 50%. Classes




Table 5-3:  Summary of Classification Accuracy - Percent” Classified Accurately in Class
(a) Test Group 1 ; 672 training pixels

™ [Topography]  TM+ TM+ TM+ TM+ TM+Topo TM+ T™M+
[class | e alone elevation slope incidence | reliel ~relief__|Topograpl ground
1 798 30.3 95.0 83.8 788 828 87.9 8090 080
2 718 1000 " 889 100.0 100.0 100.0 100.0 100.0 100.0
3 20 76.0 547 453 56.0 440 709 96.0 100.0
4 743 1000 788 943 886 014 086 100.0 — 1000
5 . 50.3 833 574 704 85.2 722 944 100.0 100.0
8 88.4 100.0 895, 80.5 92.1 80.5 100.0 100.0 100.0
T 70.4 1000 100.0 100.0 100.0 778 100.0 100.0 100.0
8 [ 867 1000 | 933 933 933 933 100.0 100.0 100.0
9 428 85.2 556 574 40.7 » 837 00.7. 08.3 100.0
10 788 939 88 879 (28] B3 047 (%] 1000
6.5 83.6 754 7 774 783 _ 92.1 97.5 90.8

652 80.8 J48 757 76.0 731 - 803 06.0 907

- (b) Test Group 1 ; 102 test pixels * ' 5 .

_TM__ [Topography] TM+ T™M+ T™+ TM+Topo T™M+

cl alone alone elevation slope incidence i ground
T 833 333 8890 044 7. 160.0

3 143 66.7 429 T 429 1000—|
4 727 1000 90.9. 90.9 -100.0
5 55.8 88.7 88.7 55.8 100.0
[ 571 1000 100.0 714 100.0
8 833 1000 100.0 1000 100.0
[] 55.6 88 55.8 55.6 X X 100.0
10 05 05 85.7 005 X X 100.0
‘mean 64.1 81 788 75.2 D K X 100.0
w.mean] ~ 627 8. 755 745 67.8 725 873 08.0 100.0
* - denotes Dot sig ntat 0.01 level of 0

** - excludes classes 2 and 7~
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1, 8, and 10 have accuracies greater than 78%. Note that these classes are defined

largely on the basis of forest conditions. -When the topographic data are used

alone, overall accuracy increases to 83.6%. All classes improved except class™ for
which accuracy was reduced to 30.3%. Class 3 remains the poorest defined of all

classes but tbe accuracy has increased from 42.0% to 76.0%.

Addmg a smgle topcgraph:c variable (elevauou) to the TM data set

resulted in si provel pared to when the TM data were uscd

—alone: An overall accuracy of 75.4% was obtained. -The addition of elevation

improved classification results for each class except class 10 which was originally
defined well and remained the same. However, results including overall accuracy
werdgenéially less than when topographic dsta was employed alone exeept for &
major indxease from 30.3% to 85.0% for class 1.

pe, incidence, or relief to the TM data show;d
similar improvements
Oversll accuracies were 77.7%, 77.4%, and 76.3% respectively. There were

overall accuracy compared to the use of TM data alofie.

imprgvemems in all classes with the exception of an insignificant reductions in
classes 1 and 0 when incidence was used. As in the case of adding elevation,
accuracies were generally less than when the topographic data were used alone

except for marked increases in class 1.

In the next step, elevahon, slope and incidence were added to the TM
data to d)scnmmnte classes. ‘Overall accuracy increased to 92.1%. This was
above that obtained with either the TM data or the topographic data used alone.
This was also an increase over any single topographic variable added to the TM

. data. Individual class ies also imp. d or stayed the same in all classes

except for class'1 where the use of TM and elevation alone produce the best
results and class 3 in which the topogrtiphic data alone best discriminated fhis
dss. The Iurther/nddition of relief so that all topographic variables and all TM

‘data wu}e{qployéd further improved overall accuracy to 87.5% and improved all

classes further except in the case of the first exception identified above, class 1,
where fesults were the next best to adding elevation to the TM data alone.




Generally, the same trends can be identified in Table 5-2(b) which shw;;
similar results for the first group of test pixels. There are improvements in
overall classification accuracy when either topographic variable is added to the
TM data set and an even gre;ter accuracy, when the topof;rnphic diits sre used
alone. There is a further improvement when three of the tt;pogrnphic variables,
elevation slope, and incidence are added to the TM data’set to discriminate the
classes and still & greater improvement when all topographic variables are added.
Trends of mdmdual classes are alSo similar with' {classes 3 and 9 the most poorly
del‘med using the TM data alone snd class 1 with“poor definition based on the
topographic data alone. Al classes show the best results ~when TM.and ‘the
complete topographic data set is used. - ) < .

. . . o

Table 5-3 m:i results of the same procedure ap};liéd V',g 8 second
group of pixels. Again, overall classification accuradies reflect similar-trends when-
compared to the results of the first group for both the training and test pixels.
Since the impact of using certain variable to disuimqumte among the gh;sa is
consistent regardless of which training or test group is employed and sincé the
trained and test groups were selected randomly, this suggests thnt’pixels selected .
and used to train and test each class, represent the data set well. Consequently,
in spite of the relshvely small number of known pixels, these results are
consldered to be consistent and reliable and can be used to reflect the xmplct of”

employing various TM and binations in discrimi of

landscape classesin the study ares. -

While the class accuracies reveal the impact of incorporating
'mpégraphic variables in the discrimil;stion process, they do not suggest where the
problems of confusion between classes occur. Table 5-4(a-i) contains contingency
‘matrices constnlcted‘mer using each of the nine discriminant function to
separately classify the 672 training pixels and the 102 test pixels in test group 1.

These tables show how pixels from each class were classified according to .the
discriminant functions. ' The vertical diagonal represents the number of pixels
correctly grouped in to each class and correéponds to the percentages presented in
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« . .
Table 52 Omission errors represent pisels identified as belonging to one class
according to the field data but assigned differently by the discriminant functions.
Commission errors are pixels identified as belov,j‘mg to different classes from the

field dala-but assigned to the same class by the discriminant functions. The

classifications based on both the training and test data sets are provided. Similar .

tables were produced for the second test group but are not included because
results were similar as indicated in the overall summaries provided in Table 52
and Table 5-3. d 2 '

. . s

When the 'TM variables sre_used alone to discriminate the classes, there
afe significant errors of omission for all classes. The iargest omlsslon errors
occurred for class 3 (Upland Shrub) where 87 of the 150 pixels asslg'ned to_that
class are classified incqrrectly.” Most of these pixels were-incorrectly assigned to
class 8 (Valley Forest) or class 10 (Immature Spruce Forest) but there was
confusion with all classes except class 2 (Organic Terrain). In the test data set,
major confusion occurred with class @ (Deciduous Shrub). This suggests that this

class is poorly defined. based on TM data and alone and more discriminatory

information is required if the accuracy of this class is to be improved. Omission
errors are also large for class 9 where 11 of the 54 pixels defined as belonging to

. class 9 were assigned to class 3. This further shows confusion between classes 3

and 9 and indicates that thng(ingses are spectral very similar, If we consxder the
surface cover deséription of these two classes we note that both contain decnduous

type vegetation. It is the topographic context that makes them distinet. The

incorporation of topographic variables in the discrimiination process should thus -

improve results. Although class 8 has relatively few errors of omission, 46 of the

72 pixels assigned to class eight are, incorrectly done so in the training data set

and 8 of the 13 in the test data set. . The main sources of confusion are classes 3

and 10. _Again this is ‘because class eight is spectrally not unique.

Topographically and by definition it only occurs in valleys. Incorporation of

topographic data SI'JDI;IQ therefore, reduce commission errors and thereby improve
.

class discrimination:
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- The use of topographic data alone reduces total errors of omission from
234 to 130 in the training data set and from 38 to 24 in the test data. This
overall reduction is contributed to by all classes except class 1 (Forest/Plain) and

1
class 4 (Alpine Meadow) where omission errors increase by 49% and 51% pixels

_respectively for the training data set and by 9% pixels for class 1 in the test data

set. The increase in“omission errors for class 10 can be explained by the fact that

the Spruce Forest class is defined relatively well spectrally and is noft™ +

discriminated well on the basis of its topography. Although omission errors are

Jhigher, however, there are no commission el}nrs, that is, no pixels were ~

incorrectly assigied into this class. - Thjs could reflect that the training pixels
simply did not capture the full topographic variability with this class in which
case the incorporation of topographic variables would enforce stricter topographic

limits on the assignment of a pixels to this class than what should be imposed.

The incorporation of either “elevation, slope, incidence, or 'relief (Table
5-1c,d,e,f) reveal decreases in the number of omission error compared to when
TM data were used alone but not to the level when topographic variables are
included as a group cither of elevation, slope and incidence or with the inclusion
of relief. The lowest overall number of omission errors (21 of the 672 training
data and 2 of the 102 test pixels) occurs when all topographic variables are
included and are further reduced to 2 and 0 when all ground variables including
the percent surface cover data are employed. When all the topographic data are
used with the TM data the omission errors that occur are primarily a result of

" confusion between classes 1 and 10. As mentioned previously this may be a result

of Lho tmmmg data not encompassing ¥ wide enough range of topographic
condluons for this class. The inclusion of additional training data for this class
might Lhe}e{ore improve this class discrimination. Since class 1 was defined
better when only eldvation was added to the TM data this suggests that subtle
variations in incidence, relief, and slope that is not captured by the training data
could largely be the cause.

d 76
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5.3. Sum'mnry A “

In this chapter, known pixels based on -field a;mlysis of an area of

mountainous terrain in the Southwest Yukon are assigned to landscape classes

defined in-terms of surface cover and morphometry. The classification !;l cach

pixel is dependent on diseriminant functions devclopednscd oerM dnirnlmro T
s /lopogmplnc data alone, and combinations of ’PM topographie, nnd surface. cover 2

R P i

Contingeri mbles"'m

;‘\ used, to classify random selections of training and tesl. plxels dre_examined to =N

détermine the level of improvements that can be ac}nevcd by mcorpornhng

various hi in the classification process. 3
: L
Results of this chapter have provided evidencé that topographic data are
necessary for terrain classil‘icntion’ in high relief environments. The topographic
data employed in the preceding analysis, ‘howevar, were measured or derived from
measurements taken in the field. If topographic-data are to be employed in a °

lassification of the"confplete study area, a conti data set must be available,

Such data.are obtainable_from a digital elevation-model. The level of aceuracy

that can be expected on a more operational level using DEM deriveg data will be

examinied- in the next chapter. Further, the preceding analysis uses one

anglysis.  Although the results of 3
discriminant anSlysis are statistically precise, image analysis systems employed for
producing classification results in the form of a map often use a maximum . .-
likelihood or othef type of classifier. The next chapter investigates data ¥
integration from -a spatial pe}spective using & maximum likelifiood classifier fo
classify and l‘n‘ap all pixels in the‘ study area. .‘}ss'cssmenls are :n(ade based on the
known field pixels. * « )

\




. =, Chapter 8

Terram Classification II: Maximum
@&catmand Mgpme

6.1. Introductinn

Pyl In this chapter, integrated classification is presented which mcorporntes
spectral data acquired by Landsat and topographic data extracted from & digital
elevation model. Maps of the distribution of terrain classes are included which
were produced based on (i) the spectral data alone and (i) a combined spectral |
and topographic data set. A qualitilive assessment of the spatial effects of
incorporating t®pographic\ parameters in the digital classification is then
discussed. This is followed by quanutmve accuracy assessments of the two maps
based on site data acquired in the field snd useq in the diseriminant analysxs

(discussed in the previous chapter). %

E A
A supervised classification approach was taken which involves training a

classifier to recognize the classes of interest to the map user. In the training

procedure, the image analyst identifies areas on the image that are known to

represent each class from field data. The data associated with these areas are
then. used to d;\‘r’g\loﬁlm slgnatures for each class. This is ong stage in which
geomorphometric pnmmete‘s may be incorporated into the classification.” In this
research, two sets of class signatures were developed from’ the same training areas
for each class, For the first set, class signatures were developed based on spectral
TM bands 1.7 alona‘. For the second set, elevntlon, slope, and incidence were

included in the class sigi . A
was theh employed to classify each pixel in the study area into ane of the terrain /

classes based. (i) on the spectral sigi and (ii) on the i d spectral and

K b i




10
-topogmphic signat\lré ‘Maps were output from the clmiﬁéation to show the

" spatial distribution of terrain classes on an Ink Jet Plotter linked to the ARIES
I Classification summary tables were also produced "

6.2. Spaﬁal Analyuia - o

£ Maps of the distribution of terrain classes are preaented in F'gures 61
\ and 6-2. Figure 6-1 was pr{oduced based ofi the speclrnl énln alone. Figure 6-2 is

the mtegnted classification, Summaries for cach class are pmsented in Table
6-laand b o . W ok i

Some spatial effects of incorporating geomorphometric parameters in the
classification are immediately obvious when comparing the two maps.. The.most
evident is in the spatial distribution of class 8. On Figure 61, class 8 is
incorfectly mapped along the alluvial plain. This class, by definition, should show
up only throughout the -mountain valley system. In Figure 6-2 ‘Where

geomorph i have been employed to discriminale. classes, the -

problem is eliminated and class 8.is c'&nectly mapped only in the valleys. While
afeas along the plains are spectrally slmllar to those in the valleys du\to the
vegetation composition which is primarily black spruce, topognphlhlly, ‘the two
areas are distinct.  This- clearly" ill that  topographic infc '\u
* necessary if this class is to be mapped successfully in this region.

\

Another variation between the two maps occurs in thé southern part in
an area referred to as the Burwash Flats. On Figure 6-1 a large section of this
to class'8 in ridge). The highest elevation
in the area is 5500 feet. This ig far below the lower limit of elevation for an area

Jentified a3 belonet

area is i as

to bé classified as mountain ridge in this aréa. When elevation ‘and the other
‘ '

“geomorphometric parameters ‘are -included in the classification, this area is

corre‘ctly identified as class 4.

. . g
A third observable differénce between the two maps is in the level of

homogenieity of classes. In Figure 6-1, gmall Jocal variations in- upéctul

-
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Table 8-1: Class Summaries for Maxi Likelihood Cl
"~ ’(a) TM Data Alone )
class [pixels[ area [%of] class label [map colour
1 - |21483[193347.00( 7.11 | - Forest Plain Brmﬁv’p
2, 16682, Eo'ﬁﬁ's_z Organic Terrain |- Dark Blue
3 [73971|665730.00(24:50] Upland Shrub [Light Green
4 [26219[235071.00{ 8.68 | Alpine Meadow | Yelléw
" 5 [21628[104652.00 7.16 | Alpine Tundra Pink
6—<[21844]106506.00] 7.2 1 M in,Ridg Grey -
7 |24080[224820.00] 8.27 |Exposed Hillslope| Light Blue s
8  [30418|354762.00{13.05| Valley Forest Red =
9 9032 [812880.00( 2.99 | Deciduous Shrub |Dark Green
Tymi{m::o 11.08/Immature Spruce| Orange
uncl [13232]119088.00[ 4.38 | Unclassified Black
’ :\ 1)
(b) Combined TM and Topographic data .
" | class |pixels| .area [%of| class label map colour
1< [24078( 216702.00 [ 7.97 | Forest Plain Brown
2 °[7837 | 68733.00 |2.53 | Organic Terrain | Dark Blue
3 |97084] 881856.00 |32.45) Upland Shrub [Light Green
4 41_5%3 373698.00 [13.75] Alpine Meadow | Yellow
5 [14381]'120249.00 [ 4.76 |- Alpine Tundra Pink
6 |13289] 119601,00 | 4.40 Grey
7 [12611] 11349900 [ 4.18 Light Blue
8 _ |18088] 144792.00 | 5.33 | Valley Forest |- -. Red '
9 9921 80289.00 |3.29 [ Deciduous Shrub {Dark Green
. 10 [34282[3085538.0011.35| Immature Spruce| Orange
uncl (30175} 271575.00 | 9.99 Unclassified Black
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characteristics show up a different classes. 'Conse‘qur:ntly the map a};pglri noisy. \

In Figure 6-2, classes appear more hor s. A possible”ékplanation is that in
order for a pixel bo be asslgned to a class in the mteg'rated clus.slhcmon, the data
for that pixel must satisfy both spectnl and topographlc conditions. The posxlbla
range ‘of spectral values for each class will consequently be bronder T

" Another ¢ observatlon worthy of explanati 'wh.,h is_less f le-i =

terms of the integrated clusmcanon is the g-renter percentage of unchsslﬁed o
pnxels This is in part because pixels must satisfy more crxterL before bemg‘

assigned to a class’ and the full range of-values for each parameter must”be

captlred d\mng the tmmng stage. As noted by Hutchlnson (1982), this becomes ,

more difficult as the number of parameters increases. In this study, the n\_lrnber

of unclassified pixels could be reduced if more training ddta were available.

Further, there may be terrain classes that weré not inciuded in the random

selection of pixels visited in the field and consequently were not tramed upon in

the classification procedure.

6.3. Mapping Accuracy

The accuracy assessment of the digital classifications is based on the

level of between field cl

of 774 pixels,and the spectral and
integrated classifications. It is worthwhile repeating from chapter 5 that the
relies on the

ption of accurate, field classification. As a result,
? % .
the i tables the level of agh between the field data™

and the digital classifications rather'than the level of accuracy of the maps. 4

The terrain class assigned to cach pixel was defermined accordipg to the .
the following procedure. Each site kus identified . on the digital imn{;o §
classifications using the DIPIX ARIES Image Analysis System. Thc‘qinc pixels \
which make up each site were examined to determine the dominant terrain class.

The class label given to the site was simply the class in which the greatest o

' number of pixelQ in the site had been assigned: “All pixels within that site would '
then be given that class label for the purpose of assessing the agreement between




field observations and the digital classification. This approachensured a high
level of ‘locational sccuracy with respect to 1denmymg individual pixels in_the
field. Whlle it was not always possible to precnsely locate a single 30m x 30m
pixel, ]ocntlng & 8100m? area which constitutes a site and includes thgt pixel was

done with confidence..

Table 6-2 contains ucuracx summnrlesLof the. fmuxlmum_hke_hhmdf

classificatfons produced based on the TM data alone and the combined TM *and

hic data ( ion, slope, and inci Table 6-3a and 6-3b contain
contingency tables for the d)g\lnl classifications based on TM data alone’ nnd the
integrated data sets respectively. For each table, the }sgonal gives the umber
of pixels identified as belonging to the same class by bbth the digital classification
and field classification. Omission errors are pi _tﬁat were identified as
belonging to one class from the field dsta but were classified differently by the
digital classification. Commission errors represent pixels classified differently
I'ro‘m the field data but assigned to e same class in the digital classification.
Confidence intervals for these tables are presented in A}pendix B.
The digital classification based on the TM data alone (see Tables 82
and 6-3a) has an average overall classification accuracy of 55.8%. « Notg that’
classes 2 and 7 were omitted from the average as in the discriminant’
classifications as a result of the limitegvnumbel of training data available.
Average accuracies are highest for classes 1, 8, and 10. Note that these represent

the forest classes which are located in areas where variations in topography are

low. Although class 8 is mnppcd with 75% accuracy, there are however, large

errors of commission. Of the lD° pugols classified_as clns; 8 by the maximum
likeliliood classifier, 81 pixels actually bclong.cd to other classes according to the
field data. The spatial effects of these errors were yn;tinlly identified in the
previous scction in that a large number of pixels on thc alluvial plain were

incorrectly assigned.to class 8.
. ¢

\
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Tnble 8-2: S(nmmnry of Mappmg Acc\lracy -
Percent Classified Accurntely in Class

a

U Class . TM-Alone T™+ Topography -
' W 846, 10007 7y -
-2 [ 500 500
s . 832 - 842
s 56.0' 1000 ~ ©
’ T 5 430 D
, -8 . 400 ' 800 .
7 ¢ 1000 100.0
8 75.0- 100.0
9 143 28.6.
10 - 706 70.6
- mean"* 55.8 118
" w.mean 61.6 t 9.1

* - subject to rounding error
** - excludes classes 2 and 7




. . Table 8-8; - C  for Maximum Likelih J 3
) +_\(a) TMData Aloge- F s
L number pixels grouped into class I
» [cass[ 1234567 9| 10 Juncl] tot Jomis
T (9018 0[20]0[0[0[0[0] 0.0 3
"2 [0 [0 [0 08|00 [0[0][0]0
3 ] 0] 0[108[0 [(0-[0 [0 [27[37{ Q|0 3
¢ 4 [0]0 |94 0 0.[9FL0[-0[ 0, 0 [81]36]
5 |00 0|9 [27[0[018]0] 0/| 0[63][38].
‘8 (0[O0 [O0[0 [0 1818|000 [0 |45 ]2
7 [0[0|0[0[0[0][27[0F0] 0 |0.]2]0
"8 [0 [0 910 [0 [0,[0 27 [0°[ 0 [0 [36][0
9 |00 (27 [0 0|60 [0 0|00 [63]54
L [-10 [0 9[9[ 0][0[0[0[27[0[W8[ 0 [163]45
total | 108] 36 |102] 54 |.54 | 27 |72 [ 108| 36 | 108 | 0 | 774 | 207
Jcomm[ 0. [27 54| 0 [27] 0 [45 8127 0 | 0 [207 i)
G s "B
7 §
S P {b) TM Data + Topography ="' "+
+ 2 . " {Elevation, Slope, and Incidence) -
& - number pixels grouped into class™ ——<« - - -
class [ 1 | 2 [ 3 | 4[5 6 | 789 ]10[uncl] tot-Jomis
T _[107]0-{ 0 [0 [0 [0[0[0[0]0[0[lI7[0
3. [0[0][0[0 [0 [0 [0 0[0[0[0 18[9
3 |0 [0[144[0}9.[0]0 0 [0 [ 90 [I71] 27
"4 [0 0.f0[8I[0 ][0 ][0 0[o0[0 (80|
<5 0|0 |18[0[36[0.|0 0|00 063]2
B |00 0]|0[0|3|0|0]0][0] 0:]45]90.
7 F0]0]|0|0|0[Q[27|0[0]0]| 0 [27 |0
8 | 0]0]0|0[0]0|0|36[0]0| 03] 0
9 [0 0[27[0[0]0]|0][06[18]0] 0 634
o [T10 |18 0 [18[0 |00 [0 |0][0]I08 0 |I53] 45
Total | 135 18 | 207 81 | 54 | 30.].45 | 54 | 18 [108| 18 | 774 | 162
Comm| 18 | {63 0 |18 0 [15[18] 0 | 0 | 18 | 162
sy R .
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" More poorly defined classes are the alpine meadpw, alpine shrub, qu

“mountain top classes. These classes primarily occur in‘areas of varying elevation,

angles. These variations-ray reas to look 1l

slope, and ir
similar when in fact they repre;m{i dirrer_gn% landscape classes. The convers;a may
alio be true; areas that represnt the same landscape classes may appear
spcctrn]l[ dljcrenl and conscqucntly will be classified differently based on the -

sensor data. N F

. 2 .
Class 9 is very poorly defined based on the TM data dlone. . Only 11%
of the class 9 pixel§ were classified correctly. Commission errors were also large

with 27 of the 36 pixels.identified as class 9 from the field data cldssified-as other

* classes by the maximum likelihood classifier. This may be in pnr;."n reflection of -

the nature of this class. Tt,oceurs priii'{nrily in small pntches across the study "

dnscnbed the variability in this class. Furm/et./tfeclduous vegetation often is
located in va]ley bottoms where water and' rocks are mterspersed ‘with the
deciduous shrub and conmbule to the response recorded by Landsat for pl‘(els

that represent lhls class ~

' The classlhcahou based on the integrated TM and wpograpluc data set

of elevation; slope, and incid: has an overall accuracy of 77. 1%; an

increase of ‘greater than 20% over the classification based on the Landsat sensor

Foata

data alone. Imp: in class ies range from 14.1% in

class § to 44.0%n class 4. A large reduction in pmiséion errors for class 1 can be

“largely i to the extra discriminatory i ion provided by the slope:

variable. Pixels that. are situated ;utpppgr slopes on the alluvial plain‘tend to "

be better drainéd and -consequently represent more mature spruce stands. In flat
areas, ctginage is often poorand or.gsni;: miaterial is more common. As a result,
18 pixels incorrectly identified as organic material on the TM classification, were
id\eniiﬁed correctly as mature spruce forest on the integrated map. In spite of
this reduction in commission errors, class 2 remaing poorli defined with only a

50% class accuracy. This is in part because limited training data were nvnil‘ble.




Y

') . l
5 to develop class slgnnturea for thw clnss ‘and only 2 field sltes (18 pm‘s) bolgad

(see Chapher 5), clsxslflcauon accuraci

. improved to 77.6% when the topographic data was added.

to the class for lestmg clnss nccumcy .

Class 3 improves by 21.| 0% when tl\e topogrnphlc data set 1s employud in.- =

the classificati process. A redi

in confusion between this clqss and class 9,
which s spectrally similar but occurs. s.at lower elevations in valley bottbms of the

study area, contributes largcly to thls |mprovemont 5 ' “ .

Poor mapping accuracies for olasses 5 and 0 after the tcf;ugrnphic
variables are mcorporated may be attributed to several factors: (i) sités may’ Imve
been mcorrectly identified in the field or (ii) other information may be ncccssnry
to fully diseriminate the landscape c]asses, for example, soil type, rehef.or
convexity measures. Since, however, in ef(ﬁ;;;{ing dis‘criminolhg élnisi[icntign N F iy
were above 95% for these two classes, =
ng ﬂrea; for these classes

when topognphy was used, it.js more llkely that tra'

may not have. represented the full variance in sensur»and topographic variables:

0.4.Sugnmaryl . ‘ D o Y

In this chapter,.two ‘separate maximum likelihood ‘classiﬁcations were
performed for the Yukon study area. The first was based on TM data alone; the
second employed TM dita bined ‘with hic data in lhe form of

elevation, sI‘Bpe, and incidence extracted from a DEM. Maps were produced-- -

which show the spatial variations in the classification results, Mapping agcuracy

was determined by ing. the fidld classification with each maximim -

likelihood classification for the 774 pixels wslted during the ﬁeld season, For ‘the
classification base off TM data alone, mapping accuracy “was 55, 8%. This Py

Resultsof this chni)ter support the results of Chapter'5 in providing

evidence ‘that topographic data is necessary for. terrain- classification of s high g
relief environment. In n\iditionﬁ(tbae results show that the necessary topographic

data can be extracted relatively
: ‘ N

easily from a DEM 6f the area since in the




 from field were employed. This is imp nt fmmu

P
maximum likelihood mnlylel DEM data nther than wyogrnphu: dsu derived
L

vlewpom'. mee in order to classify an entire area, conhnuous uwognphlc
éoveuge is reqlured In the future, itis posnble that tha‘contumons DEM will be

available from the i unggery themselves. ¥
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) »» . Chapter 7 - A
L Summiary, Concluslons, and
s Recommepdatlons '

7.1, Summary : P s s s :

Lmdsaz satnlhte Wy coptains a topograplnc effect whlch in
mountainous. termn, can lead’to poor c]usslﬁcmon uccurscy Attempu to reduce: -

- Lo, eliminate thxs elfect based on modellmg have met partial success, pnhcululy
with MSS data, but TM -data lmve lmproved spectnl Capabilities.. Complex -

. madels designed” to-correct these data have not beeit adequate Another idea i isto »
3 N - mtegmte speccral response and. lopognphlc m[ormatlon from a DEM, " This ks s S
been nccomphshed successfully for MSS "data by Satterwhite o al. (1984), and ¥
e others. More recéntly, Frinklin (1987) based the integration of MS$S and: DEM
: datn on-theidea of integrated or, landscape classil hpatlon: “first applied by
.- E Hlltchmson (1978).and Robmove (1876) using satellite i imagery.

e

The research ducussed here was designed to address some of the
N - hodological bl d wnth TM data in the classlficntlon ol"hlgh

relief terrain. The main ob;ectwe was to show that a data set composed of | & /

topogmphm terrain descriptors can. pmvnde additional information And lond to -t

p! d classification results if integFated “with - spectul data ncqmred by
. Landsat in terrain analysis of a high relief region. ~ . s e
The analysis is described in three stages. The first, correlation analysis, 7 %

is used to document the relationships between the ™ variables and the gr'ound ;
vnmbles which’ mclude e[evmon, slope, incidence, . nnd relief. Slg'mﬁcnn!
correl{wns mdlcated direct relahonsh\ps between the Ynnouu cumponentu ol fhe ' .
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' «landscape and the data recorded by Landsst For example, the correlation

between elevation and Band 5° was. found to be r=0.58, coniferous vegetation

f correlates with- Band 5 with r=-0.40. The fact that cofrel ations.were_ weak was
mtcrpreted to miean that the DEM vambles might be expected to add

% % i ,' i n jon ip terrain ificatiol Lmt}e} orno Impmvemen! in

correlation results When botl surface cover and to]:og‘raphm variables were.

considered as a group and examined with reference to th8 T™ bands. Thls
Y ~-suggests that variance contained in the topographic data set that is contamed in
each TM bnnd does not increase by -the addition of the surface cover varmbles .

This can be mterpreted as the surface cover variables providing little information
/ . that is:not alrendy contained i in the topogrnphnc data set and a single TM band.

The more complex canonical: correlahon nnslysls showed the extent to
which the landscape classés occupied the sime posmons in the TM feature spnce
o ST they’ dld in the topographic and/or surface’ cover feature spaces. Smce

“canchical correlatmns were slgmﬁcsnt between the TM and -the sun‘a’ée cover
(R =0.68 for the hrst vector, pair) and the TM and the topographic data set
‘_ (R,=0.80), this suggested that there was similarity in the structure of landscape

“—classes 85 defined using the TM ad either of the other data sets. éonsequent]y,
v integration of the TM and topographic data sets might provide a mea.mng Tset

of data Gseful for landscape classification. Since the canonical conehtmhs are
- genemlly weak and lgoderate at best, and are not one to one, it is expected that

is in the’ topographic data set nbove that which

is contniﬁed_ in the TM data set alone. This additional ml'ormnnon»mxy resu}t in
" an improvement in the ability to discriminate between landscape clt;ss'e\ wlren the
N * integrated data set is employed. :
The second stage, discriminant analysis, was desrgned to_identify the
actnal improvements that are posslble when- the integrated data set was used.
Lo ° The strength of the statisti Li was ined by

“terrain

classification based onvarious combinations of the ‘TM, topographic ‘and surface | Y

cover data sets... The addition of virious topographic variables to the TM data set
\ .




 redyced errars of ‘Savision and i and . imp overall

resulu over that which was obtamed when the TM data were employed alofié, |
When, TM was used. alohe; clusl('cmun lc.curncy was 86.! 5% I'or the traming

sample nnd 84.1% l‘or the test sample The best ruults were ach\aved when all |
* topographic vambles were i ed. T)vernll sification” accuracy

- jmproved -to, 07.5% nnd 98.7% for the hmnmg ‘and test nmples respectwe]y

Thls represents an mcrense

classification accuracy of’ gleuter thnn 30 parcent
Thé hxgh level of . nccumcm ach:eved when the mtegrated data set was used

ﬂlustram that digital TM and topographi¢ data cm\ be used to lmprove terrmn Y

o anulyms in high relief envuonments % B \ Con 3 oY
s g, | i K

K A . '
" A further demqnstratigt_n o(,thé critical = thie “ancillary ‘topographic
i ol

< data’if terrain. analysis is to be employ i il terrain was

hasé(:l on-a spectrally consi;ﬂent clg_ssiﬁcation of 'a\lnrge area. Tile li\nxfmum .

“likelifiood cfasslﬁcmons further suppoﬂ the 1mportant fole of topography by

demonstretmg improvements -in mnppmg Mcurny for lhe sludy area when

topographic data extracted from a DEM are integrated with the TM data.” When
-~the TM data were employed alone, overall' mapping accuracy was only 55.8% |-

based on 774 pnxels studied in the ﬁela "This mcreased to 77.1 B% when elevation,

- slope, and incidence vnnables weré included. - The' largest |mpravement was, %%

. for class 4 {Alpine Maadow) with more than 10% improvement in elch ol the | .
" other classes except class 10 {Immature Spruce) which ‘remained the same. ° o~
. 5

@ .
\ Cnm:lumnn!

\ .

Resulls of the ana\ysls reported in thu thesis “support” the lollowmg

s 5 cgnclusmns : . & \ 3 2 .

o (i) There “are significant relationships , between’ surface cover and -

topography for the area selected for this reaesrch Correlation coefficients were
- mterpreted as evidence that an analysis npproach thnt conslders?topopnphy |

TR i ook

‘or

. and surface cover characteristics, a7l

. appropriate for classification of this high relief environment. 3 B /




4
in “terrain analysls

(i) Relanonshlps between ground vanables nud sensor ‘variables are ~

wcnk to modcrate These relatlonslups wefe inferpreted, w‘meun that the ground-

"varmbles contam vannnce tha\t is -uniqie compared to ‘the sensor data and
)

canssquently' zhese vambles m|ght provide, addnwnal informntlou if mcorporsted
PR .

- (i) Canomcal conelntlon coefflclents md.caced ‘that common variance

between ‘the ground and e data sets are, relanvely small; 40% for sluhce

cover and M% for topo hy. The conclusmn bued on these oonelahons was

" that the sensm- data alofie do not contain sufficient: i tc te

bétwedn landsgape classes defined ding: to the i d or land
approach. Ganseque.nﬂ?,‘ these results’ shqw that additional mrormahon iss

reqmred if terrain analysis is to be curned Gut successfully in- this- lngh relief

" region. Smce continuous tapographlc dnta en be obtained relatwély easlly from

a ‘DEM, an anclllary !opographlc data- set ls the ‘more prachcal source of

additional information. : A3

(iv) Little (mpro“zement in correlation coefﬁcients -wu found when
surface cover vambles were used in addition to the tupographlc varjablés in the
canomcnl model. This was interpreted as evldence that much of the variance in
surhce cover was explamed by the topographic and sensor, variables alone.
Further, it was concluded that an ancillary topographic data set should “be
incorporated in “the analysis of* high rehef terram for xmproved clnsslﬁcatlon

results. g o . B s

(v) Land lassification’ of the

: Landsnt ™ datn alone resulted in maps-of low accuracy, only 86.5% at best'
‘based on’ an annlysxs of a*random set.of 672 training pixels for which the

associated landscape clnsses were lmown l'rom the field and identified onthe

- digital clnsslficnhon Accuracy was 64 1% based on an mdependent test data set.

. -

K

Yukon shgly area using, ¥




grated TM .and topographic data set for discrimit
among landscnpe classes in tbxs Eigh relief envxmnment |mproved classlr entlun

‘\ (vi) Use of an i

results sngmﬁcantly ovenwhen the TM data were employed . alone, Ovemll‘ ’

classification results. mpmved‘by more than30% with the addxhou of elevnmn. :

'slupe, incidence, and relief variables. . ’

“(vil) The ophmal topogrsphxc data set, or that which pmdlmd the best
c!a&smcstmn unlis based on-- the kuown field dm, - mcorponted all the
tcpographw variables exammed in thu nnalysls, ie. elevnhon nlops, incidence, and
rehel Results lor the tra ing data set.were 97. 5% The correspondmg accuracy
Vhen either wpoghphne riable was added alone was at most 77.7%. |

(viii) Mappmg Jccnracy m&oved slgm{lcantly for the Yukon study area
when a /{pp(xl%phlc \du n,qet extracted from a ‘DEM was incorporated in the
classification procedure over when the TM data were used alone Usmg ‘the ’KM.

data set alone resulted m a mappmg nccuracy of only 55. 8% ba.sed on 774.p|xels -
* visited in the field. Thls lmpruved to 77.6% with the addmon of elevylon, slope,

and incidence.

‘nn‘ integrated data set c«‘?mposed of topographic and sénsnr data can be employed -

to improve classiﬁcaiiou‘results in high relief terrain analysis. v

%.3. Recommendations for Ij‘utﬁre Research

The research described in this thesis identified improvements in TM

classification results withl the addition of ancillary topographic information for an-

| area of hlgh elief tetrain.  Another area of* research might involve the

development of lmproved‘nethods of tmmng area selectlon for supervised
clmlﬁeatlon For ercample, raethods which reduce subjecnve analyst
mterpretahons and ensure that uhe variability within terrain classes of interest is

captured ror each vnnab&e Thls is particularly tmpommt when integtated data

sets are employed and ‘ terrain ch i nsidered in the selection -
|- N g
o
e . o

(ix) Based on the overall results of this research, it can be epncluﬂed that) |




* mot be responsible for selecting training areas based on hisfher own knowledge of

\ " e ® 2 s e Bl e
terrain classifi mapping land: or terrain units using Landsat

* Thematic Mapper and Digital Elevation Model Data. Further research is needed

T B g O £ ey e, ety

of tmmng areas. One posmble sugxshon to- rzduce operator, sulueenvn.y might
be to convert sensor ds‘h to absolute values such as albedo. If known albedo
values I‘o‘rv-rmm land cover typu could be established, then the operator would

.the region.{ Rather, known” albedo values cou!d be used "to develop class !

signatures. -This is fine for the sensor data buf limits on the ancillary data
varisbles would alsohave to be-established when integrated data sets are-used.

The ability to mask cut certain sections in the study area u’rheI the~ |

intéﬁnted data sets are uséd mny improve discrimination .ol‘cla.ssu where certain
terrain descnpum are not |mponnnt or add confusuon to-the’ classifiers. In this
analysis, for example, the addijtion of. wpographw variables beyond elevanon,
resulted in lower classification saccuracies thnn when the sensor variables and
elevation alone were employed to’ map class l (Foren Plam) lf classlr iers could
<be developed to_incorporate certain variables for the dlscmmnahon of ‘some
classes antl’ dnﬂerent binati for the discrimination of ‘otben,.,ovenll ;

d ~

results may he‘ ip

Research is . required into_ the - question of relationships bel.ween

. Lopoguphm data recorded or derived from ,neasuremenu taken in the field and

similar data extracted fml_n a DEM. Various methods of producing DEMs should

“be examined to Helermiﬁq which' produces results which correlate best with the _

field data. In this area, al surees of hic data (other than g
topographic maps) for example, DEMs ' produced using pho \phic- i
machines or from stereo SPOT satellité data should be considered. Different o

“interpolation rontines for creating elevation grids from digitiz'ed contours can be
examined an’l: developed; and finally, other topogrnphlc vnnahles, for exnmple.

convexxty ShollBi be examined.

. Finally, the researcht deseribed in this thesis examined one approach to




»

. : , / - ‘
in other applicationb such as ciassifying sad mapping _teri-nh_l. classes dm\-i

d-in
terms of glaciated u%:its or defined from a geomorphf:lbgi_cnl or geologjeal "
perspective. Future| rdsearch might also consider different types of s‘ntellila‘dn,tn,
for example, SPOT.
\
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. ,‘ AppéndixA

Programs
. .
PROGRAM NAME: OUTWDW .FOR L
Aughor: | ~.Joan E. Moulton

{" ~Repartment-of Geography

) | Mmoriu Univnliby ot Nu!aundhnd
* 1

Description: | This program ikdeuigned to output TM pixel (

\ values of & 3°x 3 window;given the

coordinates of ‘the cuntmﬁ\pixll

N

Fa .
Computer: . .. VAx-saoo ‘and vAx-u/7ss |
Language:. | Fortrad77 (VAQ) N ¥
Operating System:' | VMS (version 4.5) ’
Date: | 14 Nov' 1687
Execution Sequemce: | :
.$ fortran outwdw.for y
N © § link outwdw . ad

$ run Gutwdw

integer xco(99), yco(99). i, x, y, 1.7 §, k, xm xp, ym, yp
byte ' barr(661, 548)
character*16 infile
character+16 outfile

print#,’Enter input band file’.
accept 60, ‘infile

print#, 'Enter outfile’’

accept, 60, outfile .

open (unit= nlq *coord.dat’, status='old’) 7
open(unit=2, file=infile, status='old’) 3
open (unit=3, file=outfile, status='mew’)®

1do 10 y=1,661
read (2,200) (barr(y,x), rl 648)
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10 continue
do 20 §=1,100,
read (1,%) xco(]) 7ca(!)
“ x =-xco(j)-374 : -
y = yco(j)-849
xp = x+1 =
m = x~1 ’
. =yl - . .
= y-1 . . 2
do 30 1 = ym, yP »

do 40 k = xm, xp
ﬂ ((x.ne.-1) . Land. (y.xde. 1)) then
i =barr(l,k) /-
i=iand (%,266) /

write(3,%) 1 -
else ;
wrice(s *) x|
. endit .
140" - continue & : :
30 continue . . “ Va, "
20° continue ! s £ st ’ .
200  format(648al) -
80 format(aib) x a w
close (unit=1) I :
close (unit=2)
cloge (unit=3)
stop )
end
- “~
. % [N o
|
- ’
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PROGRAM NAKE:
Author: -

" Description:

Computer: .
Language:

g"‘ in a 3X3 pixel window.

SLOPE. FOR .
Joap E. Moulton
Department of Geography
+ - Menorisl University of Newfoundland

ned to calculate 3-
iven the elevations

This praﬁrqm is d
average slope plane

VAX-8800 and VAX-11/786
Fortran 77 (VAX)

Operating System: = VMS {version 4.5)

Date:

Execution Sequence:

" integer mi, 12, n3, n4, n6su6, 07, 18, 29

11 Dec 1987

3$ toré‘:\'an nlgy}n.for
$ link slope
$ run slope

integer i, r, slope .
real.templ, temp2, temp3, tempd, sl

open(unit=i, fil,
open(unit=2, fil,

elevarr.dat’, status='old’)
slope.dat’, status=’new’)

do 10 i=1,100

“read(l,
it (o1

*) ni, n2, 03, n4, 26, p@, n7, 18, n9

e. 0) then -

n1-n7)* (n2-18) + (n3-09)

n1-n3) + (n4-16) + (n7-19)

‘temp1/180) #(temp1/180) + (temp2/180) * (temp2/180)
qrt (temp3) ¢

s1=atand (temp4)
slope=int(sl)
< e

slope=-1
endif

do 40°r=1,9
write(2,%) slope
continue
continue

close (u

nit=1)

clage (unit=2)

stop
end
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PROGRAM ITXME:

wAuthor:
Description:

Computer:

Language : »
Operating System:
Date:

Execution Sequence:

ASPECT.FO IN

1t

Joan E. Moulton X 3,
Department of Geography .
Memorial” University of Newfoundland

This progran is designed to calculate the |
average direction that the slope plane
caclulated using SLOPE.FOR faces.

VAX-8800 and VAX-11/785

Fortran 77 (VAX) E
VMS (version 4.5)

19 Jan 1988

$ fortran aspect.for
$ link aspect
$ run aspect s b

integer ni, n2; o, n4, 16, 18, 07, 18, n9
integer i, r, aspect N
real Lempl, tomp2, tempd, tempd, tempb, asp

open (unit=1, fila!"elavarr.dlt’, status="0ld’)
open(unit=2, #ile=’aspect.dat’, status="new’)

do 10 i=1,100 oo™ .
read(1,'(9 46)') n1, 02, n3, n4, 6, 18, n7, 08, n9
it (o1 .ge. 0) then
temp1=((a1-n7)+(n2-n8)+(n3-n9))

temp:

(n1-n3)+(24-n6)+(n7-19))

- temp3=-1#temp1/180

tempd=-1+temp2/180

-
if (temp3 .eq. 0) then (%
if (tempd leq. O) then
‘& aspect=0
else

if (tempd .gt. 0) then
aspect=0




20

2 tempb=tenpd/temp3
. asp=atandftempt)
aspect=int(asp)
if (aspect .ge. 0) then
if ((temp3 .1t. 0) .and.
aspect=aspect+30
se i 1S
. aspect=aspect+270

ndif .

elde . "
if (temp3 .gt. 0) then
aspect=aspect*=1+180

else

10+ .

(

| *do 20-7=1,9
write(2,4) aspect
continue &
. continue | g
—~—close (unit=1)
close (unit=2)
stop
end . .
\

~ Ty

(tempd .1le. 0)‘) then

» 3
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PROGRAM NAME: INC.FOR
Author: Joad E. Moulton
. Department of Geography
Memorial University of Néwfoundland

Description: This program ia designed to calculate

it incidence values as a function of slope.
aspect, sun elevation and sun angle at the
time of sensor overpass.

Computer: VAX-8800 and VAX-11/786
Language: Fortran 77 (VAX)
Operating System:  VMS (version 4.5) ~
Date: 20 Jan 1988

Execution Sequence: -
$ fortran inc.for
$ link inc
[ & $ run inc ¥
integer aspect, i, j, incidence
real sunelev, azidiff, slope, azimuth, inc

open(unit=1, fil
open (unit=2, fil
open(unit=3, fil
sunelev=42.0
azimuth=164.0
do’ 100 j=1,900 g
read(1,#) slope
read(2,*) aspect

inc.dat}, status=iga )

it ((slope .me. -1) .and. (aspect .ne. 999)) then
azidiff=aspect-azimuth :

inc=cosd (slope)+sind (slope) #cosd (sunelev) #cosd (azidif?)
incidedce=int (inc) )
else

+ ime=-1

endif

write(3,'(27.3)") inc~ i -
continue ¢

. close (unit=1)
close (unit=2)
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Telief values for each pixel based on the

PROGRAM NAME: " 'RELIEF.FOR
Author: Joan E. Moulton 1
Department of Glognphy
Memorial University of lln!cnndhnd
Dascx:'iption: This prcgrim is designed to calculate
variance in elevation at each eite.
Computer: VAX-8800 and VAX-11/785
Language: Fortran 77 (VAX)

Operating Syubm

Date: 20 Jan 1988

Execution saq\uncL

$ run relief

VMS (version 4.6)

_ $ fortran Telief.for
$ link relief

integer ni, n2, 03, n4, 06, n6, n7, n8, nd

integer i, 1 relief

real mean, temp, ms, 8

open(unit=1, fili
open(unit=2, fil

do 10 i=1,100

read(1,%) ni, n2, n3, n4, n6, n6, n7, 18, ng
mun}(n14n2bn3*n4#n50n8~n70n8

ms = /nean * mean

tempi

s=sqrt (temp/9)
relief=int(s)

elief.dat’,

print#, relief

do 20 j=1,9

write(2,’(26.2)") ]

continue

continue

close (unit=1)
. close(unit=2)

stop

end

status

levarr.dat’, status='old’)
’)

(n1#n1-ms) +(n2+n2-ns) + (034n3-1s) + (nd*+n4-ms) +
* (n6*n6-ms) + (n6+n6-ma) + (n7!n7-mn) +(n8#n6-ms) + (nﬂtnﬁ-m)

a8),




App‘endix B

Confidence Intervals.

B.1. Explanatory Note to Tables 5-2 and 5-4

Example Calculation ; TM Data Alone -

:T™ - Training Data

= number of samples -+ .- -, @
number correct
number of incorrect & K
probability of correctly classifying a pixel '
probability of incorrectly, classifying a pixel
mean for the binomial distribution

s = standard deviationfor the binomial distribution- ¥

standard error of jneag estimate

e, = standard error of glimg:e of standard deviation \

Pl
P = 438, Q=234
4 . ¢
6518 . '
3482 -
np = 438.010 Y
5= SQR(npq) = 12.350
. ep=3/N=.001 . -
$/SQR(2N) = .337 y
Lower acceptable limit to give a 09.0% confidence level .
CLygyyee = [(m- 3e,) - 3(s + 3¢ )/N = 69.10% . .
Upper limit :
CL

wppor = L3~ 38)) 4 3G + 3001/ = 71,148




.69.10% - 71.14%

Confidence Interval is : CL) .. = CLu”"

Conclusion : We are 99.9% sure tﬁpt the T¥ cl. ilic.uon blnﬁ"on
the training data is’ at least 59.10% accurate, but not more than
71.14% accurate when compared with the site data.l”

Confdence Intervals for Selected Dlscnmmnut Cluslﬁcatlons

canndcnco Ingterval

Function Training Data Test Data>
(a) T™ Alone 59.10% - 71.14% 46.22%. - 79.08%
(b) Topography'Alone 76.70% - 85.59% 61.10% - 93.42%
(g) T™ + Elevation, . -
Slope, and Incidence = ° 85.41% - 93.16% ' 52.95% - 88.99%
. (&) TM + AL Topography 95.16% - 97.60% 9;.095-- 100.00%

B.2, E‘xplanato}y Note'to Tables 6-2 and 6-3 - N

Confidence Intervals for Maximum Likélihood Classifications

Function Confidence Inw\rni
@ T Alone " 56.00% - 67.7%
(b) T™ + Elevation, v ou -

Slope, and Incidence y 74.34% - 83 1\97‘-

!

-
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