EROSION OF PALEOZOIC BEDROCK IN THE Terminal zone of yoho glacier, British Columbia

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

RICHARD JOSEPH KODYBKA

1+

National Library of Canada Collections Development Branch

Canadian Theses on Microfiche Service Bibliothèque nationale du Canada Direction du développement des collection

Service des thises canadienr sur microfiche

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, Please read the sutharization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

AVIS

S'il manque des pages, veuillez communiquer, avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales on étédactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvénir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne-sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

Ottawa, Canada K1A 0N4

EROSION OF PALEOZOIC BEDROCK IN THE TERMINAL ZONE OF YOHO GLACIER, BRITISH COLUMBIA

bv

Richard Joseph Kodybka, B.A. (Hons.)

A Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Geography Memorial University of Newfoundland July 1981

St. John's

Newfoundland

Recent research has revealed differing points of view as to whether the physical characteristics of glacial debris are determined by the lithology of orded bedrock or are a function of the environment of transport and deposition. A gap exists in the literature concerning short distances of transportation where relatively soft sedimentary rocks predominate and the resultant eroded bedform morphologies.

In the proglacial zone of Yoho Glacier, British Columbia, there are seven main sedimentary lithologies which have been exposed by recent, post-Neoglacial recession. The beds lie across the former direction of ice movement. Both erosional and depositional surfaces are exposed and virtually unmodified by other geomorphic and subacrial processes. It is therefore possible to compare the bedrock erosion and comminution processes for varying adjacent sedimentary bedrock types under the same general ice conditions.

In order to gain an understanding of sub-glacial ecosional processes from the examination of bedrock lithology, contents of related tills, and surface roughness, certain field and laboratory procedures were adopted and designed. In an attempt to combine glaciological and glacial-geoffsicalpractices, certain procedures can be viswed as standard. Others have Seen adopted from the engineering and computer sciences disciplines to help demonstrate some physical and chemical characteristics of lithology, tills and surfaces (bedrock) that have in the past been given only passing examination.

 Laboratory analyses conducted on till samples did not produce results that enable definite conclusions to be drawn about the relationship between

Abstract.

bedrock type and their volumetric abundance in till Although bimodality is observed in the grain size distribution curves with apparent terminal grade modes, it is doubtful that these characteristics are solely the result of either bedrock type, distance of transport, or mode of transport, but rather a combination of these. The excavation of large boulders and their subsequent deposition down-valley from their source (1.5 km) clearly indicates that not all miterials are greatly reduced in bulk. However, because bimodality is observed in all samples, the bedrock units were probably comminued to some degree due to a combination of abrasion and plucking, in transport for up to 1.5 km from their source.

To indicate the roughness of a given bedrock unit, the extent of each physical and chemical characteristic of the bedrock unit must be specified. It is hypothesized that 'ideal plane' or 'ideal Sliding surface' configurations (surface roughness) of bedrock units meed not necessarily be horizontally level to enhance glacier flow. Based on physical and chemical characteristics of bedrock types, and of glacier ice conditions at the ice-rock interface; each bedrock unit tends toward its own configuration which enhances flow and retards erosion. The roughness of a bedrock mit can be viewed as its morphological variation from its ideal plane or ideal sliding surface configoration which may not necessarily be a smooth surface (horizontally level).

The results of bedrock unit strength tests (susceptibility to stosion by physical and chemical processes), and of the ranking of bedrock units with reference to slope frequency distribution, ideal plane configuration and degrees of horizontal levelness clearly indicates that over a given time particle, relatively weaker bedrock units will erode to a smoother surface than, stronger bedrock units.

111.

Acknowledgements

The research of the Yoho Clacier, British Columbia was partially, made possible by an N. S. E. R. C. grant awarded to Dr. R. J. Rogerson of the Departments of Geology and Geography, Memorial University of Newfoundland. Parks Canada permitted the collection of samples and surveying during the 1979 and 1980 field seasons.

I an considerably indebted to my academic supervisor and friend, Dr. R. J. Rogerson whose knowledge and expertise proved to be an invaluable source of inspiration and guidance. J'also thank Martin J. Batterson (gressently with the Ontario Geological Survey) for his assistance in the field. His willingness to discuss research problems and his friendship were greatly appreciated. My thanks are also extended to Dorothy A. Palton for her help with the tedious task of surveying despite various hardships encountered in the field.

I wish to express my thanks to the Department of Geology at Memorial University for the use of their facilities, and especially to Mr. Jaan Vahtra for his assistance with the X-ray diffraction analyses.

The Department of Geography at Memorial University also allowed me to use their facilities and tap their expertise. Financial support from the Department in the form of photographic and cartographic work was greatly appreciated. My sincerest thanks to the Geography Department.

Advice on cartographic work was provided by Mr. Charles Conway of the Memorial University of Newfoundland Cartographic-Laboratory (MUNCL). Mr. Conway was always willing to discuss any cartographic problem I en-

iv.

countered, even if it meant doing so on his own time (which was usually the case). Photographic reproductions were performed by Mr. Gary Mohamus and Mr. C. Conway (MUNCL). I greatly appreciated these two gentlements assistance, friendship and good humour.

Mr. James Everard of the Department of Geography was instrumental in the building of the 'abradometer', which was used extensively in laboratory tests. His technical skills and expertise were an asset to my research and a credit to the Department.

Mr. Alvin Simms of the Department of Geography offered assistance and guidance with the production of computer graphics. His assistance was essential from the initial stages of program design (computer) to the final stages of graphic production.

The Department of Engineering facilitated the mechanical crushing of rock samples. I thank the technical staff of the Department for their support. The Physics Department (Geophysics) supplied the diamond coring apparatus used to extract rock cores from samples. To both these Departments, I express my thanks.

Finally, I thank my patient typist, Gay Carver and my very alart proof reader, Cheryl Smith for the difficult tasks they performed.

Dedicated to Judy Ford of Port aux Basques.

Table of Contents

11.

viv.

ix.

Abstract Acknowledgements List of Tables List of Figures

Chapter 1

Objectives and Introduction

.1	The Field Area
.2 .	Climate
.3 .	Sunshine
.4	Temperature
.5	. Precipitation
.6	Wind
.7	Vegetation
.8	History of the Yoho Glacier
.9	' Canadian Rocky Mountain Pleistocene Chronology
.10	Structural Geology
.11	Regional Geology
.12	Bedrock Stratigraphy

Chapter 2

Previous Research

2.	1	Bedrock Erosion 2
2.	2	Glacier Sliding at the Ice-Rock Interface
2.	3	Newtonian Viscous Flow
2.	4 .	Ice-Bound Debris
2.	5	Regelation and Precipitates - 3
2.	6, ***	Glacier-Streamlined Bedrock Surfaces - 3
A		

Chapter 3 Strategy and Approach 37-53 37-41 3.1 Field Methods: Sampling Procedures 3.11 Scale 39 3.12 Lithologic Samples 39 3.13 Boulder Count 40 3.14 Till Sampling 40 3.2 Survey Methods: Bedrock Surface Morphology 41-43 3.21 Surface Area Determination: Plane Table Survey 41 3.22 Bedrock Unit Site Selection: Micro-Relief . Sample Site 42

vi

		1. S. M. L.
Chapter 3	Strategy and Approach. Cont'd	Page
3.23	Micro-Relief Survey	
3.3	Laboratory Analyses: Lithology	63-69
3.31	Bedrock Identification	. 43.
3 32	Y-Pay Diffraction Techniques	. 43
3.33	Redrock Strength Characteristics: Total	
	Carbonate Content	. 43
3. 34	Carbonic Acid Solubility	45
9, 35	Annarant Paragity	45
3 36	Bedrack Abragion	. 45
3.37	Uniarial Compression	
3.4	Till Characteriatics	49-50
3.41	X-Ray Diffraction	49
3.42	Grain Size	50
3.5	Analysis of Bedrock Surface Roughness	50-53
9.51	Computer Techniques	50
3.52	Slope Frequency Distribution	50
- 3.53	Synagraphic Mapping System (Symap): Trend	
	Surface Analysis	51
3.54	Three Dimensional Viewing: Symvu Program	53
		12 Jan 19 Taylor
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		e Maria Al
Chapter 4	Results and Interpretations	54-119
A		2 4 1 14 14 14
4.1	Bedrock Surface Morphology and Unit Description	54
4.2	Micro-Relief Survey	58
4.3	Bedrock Unit Description: Lithology	58-75
4.31	Bedrock Textures	. 62
4.32	X-Ray Diffraction Analysis	62
4.33	Total Carbonate Content	64
4.34	Carbonic Acid (CaCO3) Solubility	64
4.35	Apparent Porosity	67
4.36	Bedrock Abrasion	71
4.37	Uniaxial Compression	. 71
4.4	Boulder Count	75-77
4.5	Till Analysis	77-86
4.51	X-Ray Diffraction	77
4.52	Mineralogy: Frictional Properties of Minerals	81
4.53	Grain Size	83
4.0	Roughness - Morphologies: Computer Analysis	86-119
4.61	Slope Frequencies	86
4.62	Irend Surrace Analysis	91
4.02	Qualitative Analysis	
4.024	brosional Bedrorms and Processes:	05
6 690	A Qualitative Assessment	
4.02.3	, concrustons	TTA
man March 1.	그렇지 않는 것이 많은 동안을 받다. 영화 등 것이 없는 것이 없 않았다. 않이	1 100 A 10
Chapter 5	Discussion and Conclusions	120-127
5.1	The Susceptibility of Bedrock Units to Erosion	120
.5.2	Abundance of Bedrock Units in Till Samples	120
5.3	Bedrock Surface Morphology: Bedrock Roughness	123
5.4	Bedrock Unit Strength and Morphology	125
5.5	Bedrock Morphology and Glacial Flow: Concluding	
Conversion Providence	Remarks	.126

ż

Section of the section of the

vii

1

Bibliography	120
Appendix A	Carbonic Acid Solubility 144
Appendix 🗯	Slope Frequency Distribution Computer List
Appendix C	Latero-Terminal Moraine Grain Size Distribu- tion Curves 151
Appendix D	Statistics on Symvu Trend Surface by bedrock. type

List of Tables

1	a second s	and the second
Table 1	Ceneral Features of the Field (British Columbia) and Banff (Alberta) Tounsites, and Peyto Glacier Meteorological Station.	6
Table 2	Average Number of Hours With Bright Sunshine at Banff, 1941-1970.	8
Table 3	Recession Rates at the Terminus of Yoho Glacier.	16
Table 4	Table of Formations:	21
Table 5	Bedrock Unit Descriptions.	57
Table 6	Total Carbonate Content (%).	65
Table 7	Carbonic Acid Solubility	66
Table 8	Average Apparent Porosity of Bedrock Units	68
Table 9	Abrasion Test Results (time required to abrade 3.6 cm of rock sample):	72
Table 10	Summary of the Unlaxial Compression Test Results.	74
Table 11	Boulder Count Results.	76.
Table 12	Ranking of Bedrock Strengths: Susceptibil- ity to Erosion by Physical and Chemical Processes.	121
Table 13	Ranking of Bedrock Units with Reference to Slope Frequency Distributions and Ideal Plane Configuration at the Micro-Scale and a Qualitative Assessment of the Degree of Horizontal Levalness at the Meso-Scale.	124

Page

Conversion of the state of the	deade line when we have a set	and the second by the state of the second se	A. Common
) }		
		List of Figures	Page
Figure	1	Yoho Glacier: Location of Study Area.	-4-
Figure	2a	Terminus of Yoho Glacier, 1906.	13
Figure	2b	Terminus of Yoho Glacier, 1913.	14
Figure	2c /	Terminus of Yoho Glacier, 1931.	15
Figure	2d	View locking up-valley towards Yoho Glacier which is partly obscured from view by the bedrock formation on the eastern side of the Yoho River, 1980.	15
Figure	3	Bedrock formations in the vicinity of Yoho Glacier.	23
Figure	4a	Streamlined glacially eroded bedform indicative of the abrasion process.	27
Figure	4b.	Block boulders approximately 1 km down- valley from the bedrock units under study.	27
Figure	4c ,	Plucked surfaces on lee sides of bedrock obstructions.	27
Figure	5a	Calcite deposits in lee of bedrock pro- tuberances.	34
Figure	56	Calcite deposits (spicules) oriented in the direction of former ice flow or regelation water migration.	34
Figure	6 *	Bedrock Unit Plot Sites.	44
Figure	7a	Custom Built Abradometer	47
Figure	7Ъ	Moveable tray with vise assembly and automatic trip-stop switch.	47
Figure	7c	Rock tablet in position to be tested.	47
Figure	8	Relationship between a third order poly- nomial plane and equation in 2 and 3 dimensional view.	* 52
Figure	9	Levelled profiles measured along or parallel to glacial strictions across the bedrock units.	55
/ Figure	10	(Plane Table Survey.	56
Figure	11	Contouring of bedrock unit plots.	59
Figure	12	Contact Between the Eldon Formation (Bottom)	1

Figure 13a

Bedrock units in relation to former ice flow. 61

Page

61

61 ..

63

78-79

A

88

96

97

98-

99

100/

Figure 13b

13

Bedrock units on western side of Yoho River showing approximate limits on individual units and former ice flow.

Figure 13c

Extension of the limits of bedrock units on the east side of Yoho River.

Figure 14

X-ray Diffraction Plots of Bedrock Units.

Figure 15

Pitted bedrock surface, possibly the result of solution at the ice-rock contact caused by abundance of sub-glacial water and high apparent porosity of the rock unit (Bedrock unit E).

Figure 16a,b

Recessional End Moraine X-Ray Diffraction Plots.

Figure 17

Textural changes in lateral moraine thill progressively down Walley.

Figure 18a

Slope Frequency Distribution Bedrock Units A and B.

Figure 18b

Slope Frequency Distribution Bedrock Units C and D.

Figure 18c

Slope Frequency Distribution Bedrock Units F and F. Slope Frequency Distribution Bedrock Unit

Figure 18d

Figure 19a

Residual plots of the trend surface Bedrock

Figure 19b

Figure 19c.

Figure 20a

Figure 20b

Residual plots of the trend surface Bedrock Unit A; Azimuth 225

Residual plots of the trend surface Bedrock Unit A, Azimuth 316

Residual plots of the trend surface Bedrock Unit B, Azimuth 450

Residual plots of the trend surface Bedrock Unit B, Azimuth 225°.

Figure 20c

Residual plots of the trend surface Bedrock Unit B, Ažimuth 315

1		1. 10 10	그는 사람이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.	Page
	Figure	21a	Residual plots of the trend surface Bedrock Unit C, Azimuth 45°.	103
	Figure	21ь	Residual plots of the trend surface Bedrock Unit C, Azimuth 225°.	104
	Figure	21c	Residual plots of the trend surface Bedrock Unit C, Azimuch 315°.	105
1.1.4	Figure	22a-	Residual plots of the trend surface Bedrock Unit D, Azimuth 45°.	106
	Figure	22Ъ	Residual plots of the trend surface Bedrock Unit D, Azimuth 225°.	107
1000	Figure	22c	Residual plots of the trend surface Bedrock Unit D, Azimuth 315°.	108
	Figure	23a	Residual plots of the trend surface Bedrock Unit E, Azimuth 45°.	110
	Figure	235	Residual plots of the trend surface Bedrock Unit E, Azimuth 225%.	111
	Figure	23c	Residual plots of the trend surface Bedrock Unit E, Azimuth 315°.	112
5	Figure	24a	Residual plots of the trend surface Bedrock Unit F, Azimuth 45°.	/ 113
	Figure	24Ъ	Residual plots of the trend surface Bedrock Unit F, Azimuth 225°.	114
10	Figure	24c	Residual plots of the trend surface Bedrock Unit F, Azimuth 315°.	115
	Figure	25a	Residual/plots of the trend surface Bedrock Unit G, Azimuth 45°.	116
1 1 1 1 1	Figure	256 /	Residual plots of the trend surface Bedrock Unit 6, Azimuth 225°.	117
	Figure	25c/	Residual plots of the trend surface Bedrock Unit G, Azimuth 315°.	118

xii

Objectives and Introduction

The Symposium on Glacier Seds held in Othewa in 1978, (Glan <u>et al.</u> 1979) provided a forum in which both glaciologists and glacial geologists presented and discussed related works and made recommendations concerning the coordination of future endeavours. The previous state of these aciences was summed up by Meidr (1979) who stated: "One of the problems that we have noticed in the past is a separation of people who are interested in ice from those people who are interested in the effects of past ice asyments." Libourry (1979) commented that more data on geology and microstructures of glacial beis was needed in order to advance the theoretical knowledge of aliging and bottom creep.

hanter

Comments made by Hallet (1979), Röthlisberger (1979) and Boulton (1979) brought into perspective several of the more popular concerns discussed at the symposium. Ballet (1979) states: "Glacial geologists could study the debris cover of recently deglaciated glacier beds to obtain information on the abundance of debris present within or at the base of retreating glaciers...if one sees a wast expanse of glaciated bedrock with little debris, perhaps bordered by distinct moraine, and if one canestablish that much of the material was not removed by proglacial streams, the former debris load in and on the glaciar must have been very low." This suggests perhaps laited subclacial errotion of bedrock.

Röthlisberger (1979) commented on the relative importance of the plucking and abrasion processes; and stated that because more fine

The study of the process (abrasion, plucking, solution) - response (bedform, till content) system at an interdisciplinary level (glaciology: glacial geology) can enhance our understanding of this problem.

The basic concern of this study is to gain an understanding of subglacial erosional processes from the examination of bedrock lithology, contents of related tills, and surface roughness characteristics. The field area is recently deglaciated and consists of at least seven Palescoic bedrock units with relatively little surface till cover. It has a distinct Neoglacial latero-terminal moraine complex (similar to that described by Ballet (1379) in his recommendations for field study), and shows few signs of post-glacial modification. The area also shows again of videspread plucking as evidenced by inches roumone forms, and of sbrasin which is mmiltered by artisted surfaces and related erosional bedforms.

The objectives of this thesis can be itemized as follows:

- I) To determine (through the use of three-dimensional graphics and related statistical parameters) if different Middle Cambrian rock units exhibit different glacially eroded bedforms (roughness) at a microscale.
- To demonstrate how various lithological characteristics (physical and chemical) can be used in the analysis of erosional processes.

-2-

- iii) To examine the contents of tills and relate these to the erosional processes.
- To attempt a general assessment of the rates of erosion on different substrata.

.1 The Field Area

Yoho Glatler (51°35'hills°32'h) is located in the northern extremity of Yoho National Park in the Maputik Mountains (Continental Manges, Rocky Mountains, British Golumbia) approximately 18 kms north of Field, British Golumbia. The glacier is part of the Mapta Icefield which stradiles the British Golumbia/Alberta border and the Yoho and Manff. National Parks boundary (Figure 1). The elevation of Yoho Glacier ranges from 2130 m and, (above mean sea level) at the terminus to over 2430 m and at its source in the Mapta Icefield.

The area of detailed study lies between is in and 2.0 km from the terminus of Yoho Glacier. The area is part of a bedrock valley floor which was covered by glacier ice less than 50 years ago. This freshly glaciated surface, takes the form of a concave upwards rock bench which is obscured in a few areas by small pods of drift. The Yoho River to the east, lies in a gorge more than 20 m below the bench. Proglacial fluvial modification of the glaciated surface is therefore slight and confined to small tributary streams which generally flow along the bedding planes of the bedrock.

A continuous Neoglacial Latero-terminal moraine, marking the Neoglacial maximum (c. 1844: Bray and Struik 1963) extends along the destarn edge of the glaciated valley for about 500 metres. The moraine distributed where the valley marrows and steep cliff-forming units of the

Sullivan Formation dominate. Three Neoglacial recessional moraines approximately 3 to 5 metres in height are located 2 km down-walley from the present glacier terminus. They are spaced approximately 50 metres spart and can be traced across the Joho River. Wheeler (1931), and Bray and Struk (1963) date these moraines at about 1901, 1904 and 1910 respectively on the basis of dendrochropologic techniques.

.2 Climate

The essential characteristics of climite in the Rocky Mountains result from a continental location, high felief and a morth-south oriented topography, normal to prevailing westerly winds. Several short treatises refarring to the climate of the Rocky Mountains have appaired but for the most part these publications have been extremely general or have dealt with specific areas or topics outside the Yobo Valley. The lack of data and the complexities of mountain climates have discouraged comprehensive description of climatic conditions (Janz and Störr, 1977). Generally, stations are scattered over large areas, almost all located in valleys and at best represent only the conditions at that alevation and site. Climatic elements are controlled to a large artent by such terrinf characteristics as elevition and aspect. This obviously results in extreme spatial variability of climate within mountainous areas for any one period of time.

Because thère is no mateorological station located in the immediate vicinity of the field area, this discussion necessitates the use of data and summaries from the Banff townsite; Field, British Columbia; and Peyro Glacier stations (Table 1). The application of these data to the field area is therefore duggistive and intended to give a realistic impression rabbr than describe precise climatic barriers.

	Field	Banff	Peyto Glacier
Location 1	Field, B.C. Lat 51° 24'N Lon 116° 29'W	Banff, Alta. Lat 31° 11'N Lon 115° 34'W	Banff National Park, Alta. Lat 51° 40'N Lon 116° 35'W
Glacier area			13.4km²
Max. elevation			3185 masl
Min. elevation			2125 masl
Mean elevation	1246 masl	1368 masl	2635 masl
Mean surface slope		1 parts	12.9°
Mean azimith of surface/valley	c. 090°	- c.160%	.033°
Instrumentation elevation		1396 masi	2220 masl (100m from glacier margin)

Source: Young and Stanley (1976)

Table 1

General Features of the Field (British Columbia) and Banff (Alberta) Townsites and Peyto Glacier Meteorological Station

.3 Sunshine

Janz and Storr (1972) define the duration of bright sunshine as of sufficient intensity to burn or to scorch standard sunshine cards inserted in a Campbell-Stokes Sunshine Recorder (Environment Canada, Atmospheric Environment Service). The closest station continuously recording such data is located at the Banff tommitic (Global radiation measurements are chrited our sporadically at the Peyto Glacistr. Goodison (1972); Young, per. comm."). The average number of hours with bright sunshine at Banff is given in Table 2.

Although the actual hours of sumshine at the field area are thought to differ from those recorded at Banff, relative changes from month to month will probably not vary drastically. Surrounding mountains may reduce the hours of potential sumshine at various sites on many days, especially during the winter months when the sum is low in the sky. Because the field area is possifiend in a marrow north-south oriented valley, the valley sides greatly reduce the number of sumshine hours. It is estimated that during the field months of July and August only 150 to 210 hours of sumshine per month were experienced in the centre of the walley Gased on observation, no instrumentation).

1.4 Temperature

Temperature regimes in the mountain regions are controlled mainly by the radiation cycle, the succession of airmasses, and elevation (Roessel 1974; Janz and Storr 1977). Average monthly temperatures during the summer (June to August) range from 12° C to 5° C at Field, British Columbia, Lapse rates of .7° to .8°/100 a reduce the temperature at the field area (Yoho Glacier and vicinity) to a range of approximately 8°C to 2° C. In the immediate glacier environment (and down valley from

-7-

Table 2

Average Number of Hours With Bright Sunshine at Banff, 1941-1970

· · · · · · · · · · · · · · · · · · ·	
Ján	
Feb	93
Mar	1. 126
Apr	160
May .	200
Jun	207
Jul	255
Aug	.214
Sept.	171
Oct	1.130
Nov	82
Dec	92

Annual Total: 1739

-8-

Source: Atmospheric Environment Service Janz and Storr (1977)

9

Yoho Glacier), the influence of katabatic winds further reduces temperatures by $2^{\circ}{\rm C}$ to $3^{\circ}{\rm C}{\rm c}$.

Temperature ranges are characteristic of continental mountain climates; 83°C in the Peyto Glacier area, 78°C at Field, British Columbia (Janz and Storr 1977). The proximity of the Mapta Leefield would affect the temperature range at the field area with winter extremes being more prohounced and summer extremes less pronounced than at Field, British Columbia. This condition is partly a function of elevation, resulting in temperature regimes in higher icefield areas which are less extreme than those in the valleys.

1.5 Precipitation

The confinential nature of the climate is demonstrated in the year to year variations of precipitation (Jana and Storr 1977). Topographic influences probably cause rather complex variations of rainfall and snowfall over short distances. The estimated average precipitation at the field area is over 1000 mm, compared to 500 mm at the Banff townsite and 750 mm at Field, B. C. (Jana and Storr 1977). The principle that precipitation inreceases with increasing elevation is generally accepted.

1.6 Wind

Janz and Storr (1977) attess two very important conditions when dealing with wind data from mountainous regions: 1) Winds wary greatly (in both direction and strengtB) and therefore where they are measured may only be representative of the place of measurement. 11) While broad scale pressure differences control the general wind conditions, topography exerts a modifying influence on both direction and speed, as does the presence of glaciers (A. Stemning 1980, unpublished). Since the prevailing wind aloft over the field area is vesterly, it follows that walleys with an east-west orientation are the high wind greas. However, this is not to say that the north-south oriented Yoho Valley does not experience strong winds. Glacker winds have been shown to have considerable influence on circulation patterns in glacial valleys (A. Stenning, 1980, unpublished). Janz and Starr (1977) and Steining (1980, unpublished). Janz and Starr (1977) and Steining (1980, unpublished) and Starr (1977) and Steining (1980, unpublished) are generally of relatively short duration. During Winter months, easterly winds over Kicking Horse Pass combine with winds off (hiswapta Teefield which are fummelled down the Yoho Valley and create the Tamous "Yoho Blows", events of high storn conditions at Field, B. C. (K. A. Doberty, personal communication).

1.7 Vegetation

The field area lies in a transitional subalpine forest-alpine tundra vegetation zone or timberline area. Characteristic of this area are the spire-like trees of heavy snow country and stunied or dwarfed trees known as Krummholtz. This dwarfing is largely a result of wind action and inadequate soil development (Blocd 1976).

Bray and Strutk (1963) have carried out botanical spudies in the Yoho Valley and described the major vegetational species. They report that <u>Pices engolmanni</u> is the dominant tree species with <u>Abies lasiocarps</u> occasionally appearing in the forest stands. Important understorsyplants are <u>Menziesia glabells</u>, <u>Rhododendron albiflorum</u>. <u>Vaccinium membranaccum</u>, <u>Vaccinium scoparium</u>, <u>Vaccinium caespitosum</u>. Thyllodogs empetriformis. <u>Cassiope mertensiana</u>, <u>Valeriana sitchensis</u>, <u>Lycopodium ananctinum</u> and <u>Sphagnum</u>.

Forest stands occur on a variety of slope conditions at elevations ranging from 1750 to 2100 m amai. All sites are reported to be mesic to

-10-

mesic-dry (Bray and Struik 1963).

The immediate field area is largely unvegetated due to its recent date of deglaciation and poor skeletal soil cover. It does, however liebelow the immediate tree line by 120 m.

1.8 History of the Yoho Glacier

Glaciers of various sizes and types are present in the Bocky Mountains. They include icefields, valley glaciers of the outlet type, valley glaciers of the alpine type, circue glaciers and cliff mountain shelf or niche glaciers (Groom 1959; Gardner 1972; Ommanney 1976). These glaciers are largely remmants of the Megglaciation, a period covering the last 400 to 500 years 8. P., although the larger and higher icefields may have survived since the late Wisconsin and therefore be at least 30,000 years old (Heusner 1956; Porter and Denton 1967; Gardner 1972; and others).

Yoho Glader, previously known as Mapta Glacter (Meeler 1931), in the largest southerply outflow from the Mapta lefteld. The area of the lefteld is approximately 50 km² and occupies a basin enclosed by mounts Gordon, Olive, Thompson, Baker, Collide, Des Follou, McArthur, Assert, Hoolated and Yoho Peaks Logenter with connecting ridges (Figure 1).

Scientiff observation of the Yoho Clacter was initiated by W. Hitell under the awayices of the Smithsonian Institute in 1901 (Sharkr 1907). In 1906, the Alpine Club of Canada commenced an annual surveillance of Yoho Clacter with two objectives:

i) To ascertain retreat or advance, and

11) To record surface flow through the force of gravity (Wheeler 1931). Although these treks were mainly of an outing nature, they did provide valuable scientific data and photographs which are useful for comparison with present day glacier extent (Figures 2 a, b, c, and d).

Much of the glacial data from the Canadian Rocky Mountains concerns, frogen or terminal recession. The condition of recession has prevailed for the last seventy years and likely since the Nooglacial maximum (Gardner 1972). It has occurred at a variable rate, probably reaching a maximum in the 1940's and 1950's. Sherzer (1960), heusser (1956), and Bray and Struik (1963) place the Yoho Glacier Neoglacial maximum at around 1857 when the terminus was almost 2 km down-walley from its present position. Recossion data for Yoho Glacier are given in Table 3.

The fluctuating rate of glacial recession has been explained in terms of climatic change (Beusser 1956; Brunger, Kelson and Ashvell 1967; Benoch 1971; Gardner 1972; and Slaymaker and McNerson 1972). Recession from c. 1910 to c. 1930 is explained with respect to a general increase in mean annual temperatures and a decrease in precipitation up to the sarily. 1940's. Collier (1957) postulates that a decline in temperature and an increase in precipitation in the 1950's resulted in a glacial researance in the Cordillera. Although this readvance did not occur in many parts of the Ganadian Bockies, a parket decline in the rate of recension is noted (Bubley1956; West and Maki 1961; and Gardner 1972). Climatic conditions during the last decade may be responsible for present day readvance evident at the termini of Emeralia and President glaciers in the Yoho Valley (M. Baterson 1960, unpublished; R. J. Rogerson, <u>personal communication</u>). Terminal readvance is not currently evident at tobo Glacier.

1.9 Canadian . Rocky Mountain Pleistocene Chronology

Intensive study in the valleys and passes east of the main range of the Canadian Rocky Mountains has produced some descriptive accounts of glaciation for the mountain region (Beach 1943; Rostock 1948; Belyes 1960;

Figure 2a, b c and d

the Peter and Catharine Whyte Foundation, Archives of the Canadian Rockies, Banff, Alta, Figure 2d taken by This series of photographs was taken from approximately the same location on the Neoglacial latero terminal moraine looking towards the terminus of Yoho Glacier. Figures 2a, b and c are reproduced with the permission of R.J. Kodybka, 1980.

Note lack of supra-glacial debris, especially along cliff wall (out of photo view) to the left of photo

Figure 2b Terminus of Yoho Glacier, 1913.

Figure 2c Terminus of Yoho Glacier, 1931.

Figure 2d

View looking up-valley towards Yoho Glacier which is partly obscured from view by the bedrock formation on the eastern side of the Yoho River, 1980.

Year	 Recession (m 	/ / /
901-1904	.11.0	
904-1906	· · · · ·	19
906-1907	06.0	1
907-1908	11.4	
908-1909	11.8	
909-1910	14.1	12
910-1912	14.9	
912-1914	09.4	
914-1916	29.8	
916-1917	07.9	
917-1918	14.5	
918-1919	15.0'	1
919-1931	13.82	2.
931-1980	20.43	
	No. 1999 - States - S	

Total recession 1901-1980, 1412m

Source: Wheeler (1931): 1 and 2 from Slavmaker and McPherson (1972): 3 from Kodybka (1980 field season)

Table 3

Recession Rates at the Terminus of Yoho Glacier

-10-

Sec. 2.

Wagner 1966; Butter 1966; Shaw 1972; Harris and Boydell 1972; Harris and Bowell 1977; Roed 1975; Luckan and Osborn 1979). A variety of interpretations have been made including differing numbers of glacial advances within similar time periods. This implies that either glacial events cannot be correlated between adjacent valleys or that the evidence is equivocal (Shaw 1972; Luckan and Osborn 1979). Nost attempts at evaluating chromology are based primarily on stratigraphic evidence. Although it is assumed that over long periods of time glacial responses will be synchromous, over short periods advances have been reported to produce contrasting responses in adjacent valleys. Therefore, Shaw (1972) and hatter (1972) state that for any one glaciation, advances may appear as oscillations superimposed on larger period oscillations related to glacier stades and interstades.

Morphological evidence suggests that ice stagnation was an important feature in the process of retreat in Mountain glaciers (Shaw 1972). Magner (1966) states that glacier erratics of Mountain provenance found in the Foothills of Mouthwestern Alberta may be used to establish maximum cordilizeran ice thickness during the Miccosin in a bout 600 matres.

Attempts to correlate Mountain glacier episodes, with Continental sequences have led to chronological deductions based on inconclusive evidence (Wagner 1966; Richmond 1965; Stalker and HcPherson 1969; Shaw 1972; Reed 1975).

Noloceme glacial events have been neglected until recently (Luckman and Osborn 1979; Bray 1964). Luckman and Osborn (1979) and Rutter (1976, 1977) state that Holeceme glacier advances in the Banff-Toho area of the Canadiam Rockles/have been of limited extent. Limiting ¹⁴C dates within 1 km of contemporary glaciers indicate that the late Wisconsin Ice Sheet and valley glaciers disappeared prior to 5060 yrs. B. 2. Luckman

-17

and Osborn (1973) identify two subsequent glacial advances: an early Groufoot advance prior to \$600 yrs. B. P. which is identified as early Bölocene for perhaps late Misconsin in age, and a late Neoglacial Cavell advance consisting of several glacial advances of approximately equal extent. Because of the variation in number, age, and extent of Cavell advance moraines this advance is considered to be a model for the whole suite of Bolocene glacial advances in the area. Lucksm and Osborn (1979) conclude that Bolocene glacial events are much more complex that previously thought, and that overriding of earlier glacial events by the Cavell advance complicates the chronological record.

1.10 Structural Geology

Rocks of the study area form part of a single thruit plate-over the Simpson-Pass Thrust. They are described structurally and stratigraphically as belonging to the Eastern Main Ranges (Cook 1975).

The structural evolution during the Lover Paleozoic in the southern Rockies probably resulted from several superimposed periods of tectonic activity, some of which may have occurred in the Lover Paleozoic and are possibly contemporaneous with sedimentation (Harrison 1969; Cook 1975). The previously held idea (Harrison 1966 and others) that a series of separate thrust plates containing internal imbrications and folds had developed in the Eastern Main Ranges has since been refuted (Cook 1973).

Barrison (1969) and Cook (1973) state the regional structure of the study area is dominated by broad, open concentric folds and a series of north and northwest transfing normal faults downthrown to the west. These marge with the complex bell of thrusts and folds that occur along the zone of factes transition. Thrust faults and folds occurring in the eastern Main Ranges have been identified by Airken (1966, 1971, 1978), Harrison (1969). Balkvill (1972), Cook (1975) and others. The Scephen-Cathedral fault is in close proximity to the study area and Marks the contact between the Pika and Sullivan Formations. It can be traced along the vestern margin of the upper Yoho Valley and is characterized by extremely picep, high cliffs.

1.11 Regional Geology

North and Handerson (1954) divide the southern Ganadian Bocky Mountains into four physiographic-stratigraphic-structural sub-provinces: the Foothills, Front Ranges, Nain Ranges and the Western Ranges. The sames of concern in this study is the easiern sector of the Main Ranges consisting of Lower Paleozoic (Middle Cambrian) rocks which are predominantly carbonate.

The stratigraphic succession described by Adtken (1966, 1978) consists of sediments which formed on a stable, slowly subsiding shelf adjacent to the landmans of the Canadian Shield. Two factors dowinated deposition on this shelf: a persistent supply of clastic sediments (crystalline rocks) from the Canadian Shield, and a transgressing continental shoreline on the Shield with temporary retreats. Throughout the Cambrian, the eastern edge of the shale basin fluquated. Its position is marked by the eastern edge of the principal Lower Faleozoic carbonate formations. Falmer (1960) and Bobison (1960) suggest that these factors gave rise to three discernable facies:

An inner detrital facies characterized by shales and bilt stones with supporting the carbonate interbeds. This grades to sandstones as contact with the crystalline Precambrian basement is approached. In Lower Cambrian deposits, sandstones are the dominant litbology.

-19-
A middle carbonate facies with a variety of carbonate rocks. Shales are virtually absent. Carbonates contain some clay and beds with quartz, silt and sand occur in some sequences.

An outer detrital facies characterized in some locations by mudstones and thin-bedded, argillaceous and silty carbonate rocks, and in others by carbonate-shale couplets (Aitken 1978).

And the second second

Aitken (1966, 1978) describes sedimentation in the -uppermost Lower Cambrian, Middle and Upper Cambrian and the Lower Ordovician as being cyclic: Grand cycles spanning from one to three trilobite assemblage zones have been identified with the appearance of an inner detrital factes (Lower shale) passing gradually upwards into a carbonate faciles (Upper carbonate) (Aitken 1978; Fritz 1975) (Table 4). Cyclicity within outer detrital deposits has not been observed (Aitken 1978) although Falmer (1971) has suggested restricted grand cycle sequences in some middle carbonate with outer detrital deposits. The lithologic sequences or sub-cycles found within the grand cycle scheme are interpreted as récording increases in water depth and increased supply of terrigenous sediment, followed by a gradual decrease in both water depth and sequence.

Aithen (1966), and others have proposed a tilting craton theory to explain the linked behaviour of source and depositional areas, recorded by cycles (grand cycles) involving inner detrital and middle carbonate deposits. It is suggested that the Lover Paleosoic transgression took place during tilting of the craton, resulting in uplift of the source area and subsidence of the depositional area. This occurred in combination with a continuous, slow subsidence of the axis of tilting. Tilting occurred through movements of short period, reflected in sedimentary thythm which

C	
ō	
1	
4-4	
3	
C	
1	
1	
0	
L	
20	
5	
-	
00	
-	
0	
775	
1	
100	
-	
-	
4	
m	
-	
0	
m	
-	
100	

	-	-	TT	-	TT	-	1	-	1	-	TT		
Fosat Zones (Anten 1978)		Saukia	Prychaspis Prosaukla Conaspis	Elvinia Aphelaspis	Crepicephalus	Cedaria		Bolaspidella	Bathvuriscus Etrathina	Ghoscobleura	Albertella	Plagiura Poliella	Bonnia-olenelius
Grand Cycles	+			*		-		-	*		-	-	ż
Factes	Middle Carbonate, Inner Detrital	Middle Cerbonate	Outer Detrital	Middle Carbonate	Inner Detrital	Middle Carbonate	Inner Detritat	Middle Carbonate, Inner Detrital	Middle Carbonate	Inner Detritäl	Middle Carbonate	Inner Detrital	
Lithology	Slate, some limestone	Limestone, minor amounts of dolomite (interbeds)	Shale, some limestone and calcarente interbeds	Dolomite and limestone with chert zones	Shale: interbedded limestone and sitt, massive limestone and dolomite.	Dolomite, some shale	Shale, sittatone, some dolomite	Limestone, dolomite	Limestone, dolomite	Limestone, shale	Limestone, dolomite	Limestone, attstone, shate	Quartzite, minor shale, sandstone and some limestone at top of unit.
Max. Thickness (m)	240	162	213	370	431	165	228	273	333	137	364	137	2133
Formation	Survey Peak [Aitken and Norford, 1967, Cook 1975]	Mittaya (Aitkan and Greggs 1967, Cook 1975)	Bison Creek (Altken and Greggs 1967, Cook 1975)	Lyell (Walcott 1908, Deiss 1939, Aitken 1968, Cook 1975)	Sultivan (Walcott 1920, Aitkens and Greggs 1967, Cook 1976)	Waterfowl (Aitken and Greggs 1967, Cook 1975)	Arctomys (Walcott 1920, Aitkens and Greggs 1967, Cook 1975)	Pika (Delss 1939, Cook 1975)	Eldon (Walcott 1908, Deiss 1939, Aitken 1966, Cook 1975)	Stephen Walcott 1908, Rosetti 1951, Atken 1966, Cook 1975)	Cathedral (Walcott 1908, Cook 1975)	Mount Whyte (Watcott 1909, Deiss 1939, Rasetti 1951, Cook 1975)	Gog Group (Deiss 1940, Okulrtch 1956, Moumtoy 1962, Coek 1975)
Age	Ordovician (Lower)	Upper					Mode						

are superimposed on motions of a similar nature but extended period,

1.12 Bedrock Stratigraphy

· . · · R.

Bedrock Ha the field area belongs to the Middle Cambrian Eldon and Fika Formations. The Eldon Formation is characterized by distinctive thick-bedded dolomite did argullaceous linestone (Cook 1975). The Formation occurs throughout the area as a masive cliff-forming carbonate unit in which large, treegular, sharply bounded dolomitized zones do not follow specific stratigraphic horizons. The contact between the Eldon Formation and the conformably overlying Fika Formation is marked by a change from thick-bedded dolomite and linestone to the thin-bedded linestones with shaly partings. The Fika Formation is composed of thimbedded to flagy limestones with arguilaceous partings. Beds of hard, dense dolomits often form a resisting risk the top of thing formation. Beneath this rib, the formation generally wathers as a recessive unit relative to the underlying Eldon Formation, so that the lower contact of these two formations is often marked by a distinct break in slops. _

Figure 3 shows bedrock formations in and around the immediate field

-22-

Figure 3 BEDROCK FORMATION in the VICINITY of YOHO GLACIER

Chapter 2

Previous Research

2.1 Bedrock Erosion

Bedrock érosion by glaciers may take the form of abrasion, plucking or solution by subglacial water. Boulton (1979) states that glacially eroded bedrock surfaces reflect at least two important processes: an abrading process which smooths surfaces and produces the characteristic stremmlined bedforms; and a plucking process which produces locally roughand areas of bed (Matthes, 1920).

The fundamental requirements for abrasion are a supply of basal debris; sliding of basal ice; and the effective migration of debris down towards the bedrock surface due to not loss of surrounding ice through basal melting. Factors affecting the rate and type of abrasion include ice thickness, basal water pressure, relative hardness of rock particles and bedrock, rock! particle characteristics and the afficiency of rock flour removal. Glacier abrasion has been observed directly in the field by Boulton (1974), experimentally boulton and Vivian (1973), Hope, et al. (1972), Brepson (1976), and Nathews (1979), and estimated from sediment discharge by Thourinsson (1933), and from excavated rock volumes by Andrews (1972), and Kaszycki and Shilts (1979).

Various degrees and scales of plucking are said to take place under a variety of basal ice conditions (Soulton 1979; Matcalf 1979; Glem 1979; and others). Matcalf (1979), and Glem (1979) point out that at a micro-scale, individual grains may be either pulled off by glacier ice or pulled off by basal debris. Based on previous literature (Boulton 1972, and others). four mechanisms of plucking have been proposed. These are listed by Kemmis (1979) as follows: i) "Plucking during glacier sliding related to enhanced basal creep where the ice is at the pressure melting point: ice envelops boulders, rocks or publies on the glacier bed and penetrates fissures. Plucking by regelation where ice sliding over a fine grained bed 11) (carbonate) may enable basal melt water to carry in suspension individual clay to-sand size particles. These may then be frozen into the glacier bed during regelation. iii) 'Plucking is also related to a sequence of thermal regime zones. Basal melt water is produced in an up-glacier zone of ice at the pressure melting point where it flows outward under a hydrostatic head to an outer zone where the ice is below the pressure melting point. Flucking occurs as available basal debris is frozen in with the basal melt water in the cold outer zone. iv) Plucking where a sequence of basal thermal regime zones allows melt water flow in the glacier bed materials but not between the bed and basal ice. The melt water flow weakens the bed by increasing pore pressures in localized bed areas (Moran et al. 1980).

Clearly, different flucking mechanisms may depend on the thermal regime of the glacier. The recognition that several plucking mechanisms can occur under a glacier simultaneously may be important if the relative importance of abrasion and plucking is to be determined.

It has been demonstrated (Galibert 1962; Boulton 1978, 1979; and

others) that the process of plucking may be enhanced by pre-existing joints in the rocks. Several processes have been proposed whereby entirely joint-bounded blocks may be pulled from the bed and incorporated into the glacier, or where partially jointed blocks may be further fractured and incorporated (Boulton 1979). Carol (1947) states that regulation mult water in lee-side positions may lead to the shaftering of bedrock due to ice growth in the interstices. Lewis (1940) proposed that glacial unloading may cause dilation joints in bedrock thus yeakening the rock. Boulton (1974) discovered that internal stresses induced in a sub-glacial humnock by glacier flow may lead to fracturing in lee-side positions. Boulton (1978) also observed that boulders in traction in pasal ice produe fracturing on lee-side creats of hummocks where they are expelled from the ice under reduced basal pressure.

The relative importance of abrasion and plucking as ecosional agents is difficult to assess. Plucking, though volumetrically important, is a highly localized process concentrated on the distal sides of bedrock humocks and more profound on jointed rocks (as these found in the Yoho Valley study ares). The streamlined forms of glaciated bedrock surfaces are largely a groduct of more videopread abrasional processes (Boulton 1979). Evident in the study area are the highly streamlined glacially ended bedforms indicative of the abrasion process (Figure 4.) and large quantities of block boulders down glacier (Figure 4.) which by their provenance constitute evidence of substantial amounts of plucking (Figure 4.).

2.2 Glacier Sliding at the Ice-Rock Interface

Glacier sliding at the ice-rock interface has been the topic of much recent glaciological literature (Andrews 1972; Kamb 1970; Nye 1969;

-26-

Figure 4a

Streamlined glacially eroded bedform indicative of the abrasion process. Note striated surface.

Figure 4b

Block boulders approximately 1 km down-valley from the bedrock units under study. Their provenance constitutes evidence of large-scale plucking.

Figure 4c

Plucked surfaces on lee sides of bedrock obstructions. 1970; Hallet 1976; Boulton 1978, 1979; Fouler 1979; Robin 1976; Morris 1979; Broster, <u>et al</u>. 1979; Goldchwait 1979; Budd, <u>et al</u>. 1979; Hambrey and Muller 1978; Liboutry 1977, 1978; Weertaan 1976; etc.). Andreys (1972) states that the erosive power of a glacier.com, be estimated from a determination of the power avended in sliding over its bed.

Be defines the total power (x_{m}) as equalling $Tg\overline{U}$ where \overline{U} is the average glacier speed and Tg is the shear stress at the glacier bed. The effective erosive power is therefore some fraction of W_{T} , which depends on the relationship between glacier sliding velocity and internal flow velocity. It might be construed from this that glacial erosion is effected by glacier ice alone. Boulton (1974) shows that although plucking say be caused by sliding ice alone, it is debris in basal ice that actually produces an abraded surface. The sliding/abrasion process is typical of many warm-base glaciers. Where cold-base glaciers are concerned, shearing in the glacier ice or beneath the bedrock/ice interface is a major process (Moran, et al. 1980) and erosion due to sliding is retarded.

Most theoretical concepts concerning glacker sliding were originated by Weertman (1957) and later modified and re-interpreted by hliboutry (1965, 1968, 1976, 1979) as well as by Weertman (1962, 1968, 1979, 1972, 1974). Further contributions have been made by Boulton (1975), Mobin (1976). Ny (1969), Kamb (1970), and Worland (1976).

Weartman (1957) suggests two mechanisms which allow the ice of a temperate or warm-base glacier to move over its bed. The first of these mechanisms, plastic flow, enables ice to flow over and around obstacles. The other, pressure mail résults when ice selts under pressure on the upstream surface of the obstacle and refréezes on the downarteam side where pressure is less. Weartman's (1957) treatmant of

-28

glacier eliding assumes obstacles are all the same size and the remaining bed is perfectly smooth. Under a given shear streas, the plastic flow Sechanism results in fee movement increasing with larger obstacle size, whereas in the pressure melt mechanism, ice movement decreases with increasing obstacle size. Weetman argues that the pressure melt mechanism enables ice to flow around smaller obstacles while the plastic flow mechanism enables ice to flow around larger obstacles. Hence, sliding speed is determined by obstacles of a size ab which the sliding speed such that the sliding speed size to the two mechanisms are equal: the controlling obstacle size.

Weertaan (1964) refines his approach by taking account of the resistance offered by obstacles smaller and larger than the controlling obstacle size. This is accomplished by simplifying the distribution of obstacle sizes. Instead of looking at a coptinuous spectrum (Weertman 1957), three discrete sizes are examined. Weertman (1964) considers a bed to be a superimposition of a series of beds all having similar roughness parameters, but at a variety of scales. Thus he concludes that an appreciable part of the resistance to sliding comes from obstacles other than the controlling obstacle size.

Liboutry (1968) models a sliding bed in respect to sine waves. The amplitude divided by the wavelength of a single sine wave is the roughness parameter. Libbutry's (1976, 1979) subsequent treatment calls for the superimposition of several sine waves of the same roughness but differing wavelengths. As a result the wavelength and amplitude vary in geometric progression.

Both Weertman's and Lliboutry's theories rely on intuitively appropriate simplification, evident by their reference eq . discrete obstacle sizes applied to a bed which most likely contains a continuous spectrum of obstacle sizes.

.3 Newtonian Viscous Flow

Early'theoretical works on glacier silding (Weertaan 1957, 1962; Lilboutry 1958, 1965; Nye 1969) considered glacier ice as a Newtonian Viscous Material. This treatment of ice flow would be appropriate in the absence of regelation and presence of basel ice debris (Nye. 1967, 1969; Vivian and Bocquet 1973; Boulton, <u>at al</u>. 1979; Norris 1979). The melting and refreezing of ice onto basel ice and the glacier bed; cavitation induced by bedrock obstructions; and clasts held in ice, all have an effect on altering the lower boundary conditions at the ice-rock interface, and thus flow in the ice.

Creep in ice is accompliable by slippage along crystal planes (Mye 1965, 1969, 1970; Olem, <u>et al.</u> 1965; libbutry 1965; and others). Individual grains have enough freedom to rotate and line up parallel with one another® Creep rate becomes noticeable when a critical stress is reached (in ice; ligf/cm2). Experimentally, creep rate is proportional to the cube of the stress (Glen's Law).

Barnes <u>et al.</u> (1971) studied the frictional and creep properties of polycrystalline ice: They concluded that the behaviour of sliding ice ' on bedrock under conditions of strong interfacial adhesion fall into three regimes. At very low sliding velocities (approximately 10⁻⁶m.sec⁻¹), recrystallization is produced in a thin zone of ice close to the interfacewith the basal planes being preferentially oriented in the direction of sliding. This situation was observed to favour easy creep in the sliding direction. At somewhat higher sliding velocities (approximately 10⁻⁶m. sec⁻¹), whear failure and britle fracture limit the shere strength of the ice and lead to a coefficient of friction that does not vary significantly with sliding velocities. At still higher velocities (approximately 10⁻⁷m. sec⁻¹), heating at the interface is sufficient to produce some melting and the friction coefficient drops drastically.

2.4 Ice-Bound Debris

Studies of basal ice sliding have generally dealt with clean ice (Weertman 1957; Libourry 1965; 1968; Bye-1969; 1970; Kamb 1970; etc.). Morris (1979) maintains that an understanding of the motion of a clast in the basal ice of a glaciter lies at the heart of physically-based models of erosion and deposition.

Boulton et al. (1979) report that debris found in glacier ice near the bed may occur in concentrations of up to 30 to 40% by volume. Besides being an important erosive agent, debris is comminuted wand retarded relative to the moving glacier, presumably because of drag at the debrisice and debris-bed interface. rock-on-rock friction values being much higher than those for ice-on-rock. Where the frictional drag between debris and bed is large, and concentrations high, the presence of hasal debris must be an important determinant of glacier sliding velocity and subsequently of ice dynamics. Ice must not only slide over bedrock hut also around the mobile obstructions found in basal ice and at the rockice contact. Glen et al. (1977) present analytical solutions for the motion of isolated clasts in ice unbounded by other solid surfaces. Lewis (1960) and Boulton (1975) have examined the motion of clasts in basal ice and have described their effects on erosion and deposition. Lewis (1960) describes the maximum force that could be exerted by a rock held in ice and Boulton (1975) adapts Weertman's (1957) sliding theory to describe a condition for the onset of abrasion. Röthlisberger (1968) describes the processes which tend to bring clasts into contact, with the bed.

-31-

Weerman (1957), llibutry (1968), Nye (1969, 1970) and Kamb -(1970) assume when considering basil sliding theories with clean ice, a lubricating layer of water exists between ice and bedrock. Thus shear atress at the ice-rock interface is negligible. Morris (1979) suggests that when the bed undulates about a given base plane, the ice exerts a net force on the rock which can be interpreted as the result of an average shear stress acting over the base plane.

Boulton (1975) defines the conditions for the lodgement of a stone in basal ice by estimating the horizontal force exercised on the stone by the ice and equating thit to the retarding friction or drag between the stone and the bad. If classs are close to the bad, the existence of irregularities on the stone would allow normal and frictional forces to be transmitted without disturbing the pattern of flow of ice or altering the physical processes at the rock-ice contact.

2.5 Regelation and Precipitates

Morts (1973) observes that in the steady state, the classical regulation boundary condition as described by Wertman (1957, 1970, etc.) and hilboutry (1977, 1978), cannot be obsyed both at the glacier bed and at the surface of clasts in the overlying ice. Temperature and stress distributions cannot ensure that both surfaces are at the pressure melting point (Kye 1967). Mortis (1976, 1979) has argued that melting and refreezing within ice would produce an internal temperature distribution to be added to the regulation temperature distribution at the bed. This method of analysis depends on the assumption that any internal component of temperature is negligible compared to the regulation component at the ice-rock boundary. Mortis (1979) shows that this is net allows the case an eliting and refreering within the ice produces an internal temperature

32-

distribution such that the ice at the two boundaries and at the internal water inclusion (possibly in a cavity in the ice of clasts held in suspension in ice), is at the pressure melting point.

Vivian and Bocquet (1973) and Boulton, <u>et al.</u> (1979) observe that cavities frequently occur in the lee of large clasts. Some of the cavities are filled with water, while others develop epicules of ice. Clearly, the size and shape of these cavities will depend on the flow patterns of the ice andare observed to vary on a seasonal basis (Vivian and Bocquet 1973). Morris (1979) states that if clasts move towards a part of the bed with a different flow pattern, bulk melting or refreezing must take place as the cavities adjust to the new pressure and stress situations.

Hellet (1976) states that thin superficial chemical precipitates on bedrock are characteristic of many retreating temperate glaciers. Bauer (1961), Kers (1964), Ford, et al. (1970), and Hallet (1975, 1976) dientify calcite as being the most common and best developed deposit generally formed on limsetone and other carbonate-rich rocks. The calcite deposite are charactéristically found in the lee of bedrock protuberances (Figure 5a) where they are oriented parallel to the direction of, the former ice flow or regelation where migration. (Figure 5 b) (Hallet, 1975). The author has also identified calcite precipitates on the bottom surface of an overhanding bedrock form (Fresident Glacier, Yobe National Park). This suggests appressure release of the calcite deposits onto a surface rather chan, as the term precipitate may imply, a gradual gravitational fall-out of the deposits.

Hallet (1975, 1976) suggests that the genesis of such forms appears to be closely related to the regulation-slip process (Westman 1957; 11thourry 1979). which Llibourry (1965) and Hallet (1976) identify

-33-

Figure 5a Calcite deposits in lee of bedrock protuberances.

Figure 5b

Calcite deposits (spicules) oriented in the direction of former ice flow or regelation water migration.

as being characteristic at 'the bed of temperate glaciers.

The role of adhesion during the sliding of the ice over bedrock has been studied by Roraty and Tabor (1958), Sarnes, <u>et al.</u> (1971) and more recently by Robin (1976). Lilbourry (1968) has drawn attention to the lack of adequate theoretical treatment of variations in the flow properties of ice in the presence of salt water.

The assumption that basal ice is separated from bedrock by a continuous thin film of water plays a major role in theories of glacial sliding (Weerman 1957, 1964, 1972, for example). The implication of this assumption is that the pressure at the water film boundary is normal and no shearing takes place as a result of adhesion between ice and rock. However, it has been shown by Budd (1976) and Robin (1976) that adhesion is present when glacters are sliding at relatively low velocities (presumbly due to a decrease in friction). Cold patches may also occur where adhesion forms between ice and bedrock.

Robin (1976) has drawn attention to the role of impurities in hamal ice which may be a major cause of cold patches. Soucher, <u>et al</u>. (1973) have described the complex changing physical and chamical properties of hamal ice as it moves through variations in temperature and pressure conditions around bedrock irregularities. These phenomena may have important effects on the stick-slip motion oftem reported in temperate gatesters (Soulton 1976, 1979; Hallet 1979; and others).

2.6 Glacier-Streamlined Bedrock Surfaces

The investigation of glacier-streamlined befrock surfaces has been pursued by both geomorphologists and glaciologists. The characteristics of <u>roches moutomnées, riegeln</u>, rock drumlins, flutes, grooves, striations and o-forms revell described in Secondribut and slaciological literature

-35-

(Ljunger 1924, 1925; Hjulstrom 1935; Johnson 1956; Dahl 1965; Giessing 1966; Embleton and King 1966; Boulton 1974; Sugden and John 1976; and othere). Recent studies by Boulton (1979) and Weetraam (1979) have emphasized their development with reference to glacier sliding. In search for a glacier sliding law, Weetraam (1979) and Lilbourry (1979) have described the effects of these hummocks under glaciers.

Benoist and Libourty (1978) and Renoist (1979) have provided a spectral analysis of micro-relief from <u>roches moutonnés</u> and developed a shadowing function to describe the affects of bumps on les-side cavitation bennath a glacier. The fine scale of roughness on synthetic slabs has been related to asperimentally-induced ice aliding by Budd, <u>et al.</u> (1979). Benoist and Libourty (1978) suggest that the relief spectrum of subglacial bedrock humnocks is a response to the sliding law of the ice and the erodibility of the substrata. Libourty (1979) suggests that detailed maps of these forms on a micro-scale (of the order of cantimetres in vertical height) could provide valuable information on the theory of ice sliding.

Strategy and Approach

The strategy and approach adopted for this study was basically dictated by field conditions (time and accessibility) and laboratory facilities.

Chapter 3

In order to gain an understanding of sub-glacial erosional processes from the examination of bedrock strength, surface roughness and the contents of related tills, certain field and laboratory procedures were designed and adopted (these are outlined in the discussion to follow). Certain of the glaciological and glacial-geological practices, can be viewed as standard (in that they are accepted practice). Others have been adopted from the engineering and computer sciences disciplines to help demonstrate some physical and chemical characteristics of lithology, tills and surfaces that have not been subject to detailed examination in the past.

This study does not claim that the procedures and techniques used here are the only or ideal methods. They have, however, been successful in providing data and analyses of these data which are of some value.

3.1 Field Methods: Sampling Procedures

¹ Daugherty (1974) writes: "The essence of sampling lies in the fact that a large number of items, individuals or locations may, within specified limits of statistical probability, be represented by a smaller group of items (samples) selected from the larger group...if we carry out sampling correctly, a limited number of samples will be mufficient for making generalizations... sampling represents a more efficient use of _____ our energy while still allowing us to make reliable statements about the whole population... The key to success in sampling lies in adopting a procedure which permits us to draw satisfactory conclusions about a parent population from a sample of minimal size."

Daugherty (1974) identifies three basic considerations before adopting a sampling procedure and before conclusions can be drawn from the samples collected:

The exact size and extent of what is being sampled must be determined.
The most appropriate sampling procedure must be adopted, taking into account time constraints and field conditions.

iii) The minimum size of sample both in number and volume must be determined so that reliable representation of the feature sampled can be attained.

In attempting to solve most goochemical field problems (Classen and Shifts 1977), and geological engineering and schanical problems (Miller 1976; and others), geologicals have conventionally tended to collect as many samples as the and laboratory facilities paratit and to spot localities are evenly as possible over the args of study. A sampling design of this nature implies rather restrictive assumptions about the variability of element composition of the rock and/or sediment unit. First of all, it assumes both that the material sampled is fairly uniform on a local scale, as explicitly with the taking of only one sample per locality, and that a more important variation in composition is exhibited on a regional scale as specimens from many parts of the pareit unit are needed. Asy rational designs one as the

-38-,

number of specimens or the distribution of sampling localities can only be based on prior knowledge of the natural variability in composition in the parent units, and on intuition. Visual assessment and interpretation of unit geochemical and physical features are strabsed as being essential before sampling can be undertaken? Thus sampling in this thesis is stratified or systematic trather than random.

3.11 Scale

A consideration of the scale of approach one is taking is usually benaficial to make as it puts into proper perspective the magnitude of size of form one is studying. The generally accepted classification of large, medium, small or mega, meso, micro (Liboutry 1979; and others) usually refers to forms such as glaciated valleys or cirques; <u>moches</u> <u>acutondes</u>, whalebacks, etc; and striations, precipitates, small relief forms, etc.; respectively. Of concern to this mudy are the meso and micro scale.

3.12 Lithologic Samples

Glarial geological studies require bedrock samples for refined lithological detail by microscopic examination and laboratory tests (chemical and physical). Krumbein and Sloss (1963) state that normally, samples should not be large (depending on laboratory analysis) as their evacuation from the field area may become a burden. However, each sample abould fully represent, in relative volumes collected, the lithologic variations in each bedrock unit (Lamar and Thomson 1956).

In small scale studies, samples are generally collected within 1.5 to 3 metre intervals, rather than within natural subunits, since the regular intervals provide samples comparable to those derived from drilling. This sampling technique is useful in stratigraphic studies involving the comparison of sufface and sub-surface data (Krumbain and Sloss 1963), It has been noted that systematic sampling procedures are suitable for the purposes of preparing a more complete description of stratigraphic sections through microscopic and laboratory analysis (Krombain and Sloss 1963) schemet, and Adams 1943; Milner 1952; Labee 1961; and others).

Because of the observed homogeneity exhibited in each bedrock unit, and because only loose surface boulders were allowed to be taken from the study area (Parks Gausda, Collection Permit), the sampling of lithologic units econsisted of a stratified sampling of boulders that were suitable in size and which resembled the physical and chemical characteristics of the parent bedrock units. Where possible, samples were taken from the parena units using systematic intervals.

3.13 Boulder Count

Approximately 1.5 km down valley from the present glacier terminus and .5 km to 1/m down valley from the bedrock bench, is a field of glacially transported boulders whose provenance is the study area (Figure 3b).

A boulder count on 500 bedrock blocks measuring approximately 0.25m² was conducted to determine dominant rock type and the effects of large scale plucking on the bedrock units. Boulders supplied from the adjoining cliff face (Sullivan Formstion) were few and were distinguished on the basis of their characteristic black colour, gmaller size and shatered platey appearance.

3.14 Till Sampling

The sampling of till slong moraines in the Yoko Valley generally followed the line sampling and systematic sampling prodecures described by Daugherty (1974), and others. Till samples were collected at a pre-

-40-

determined interval of 20 metres along the worains. All empires were obtained from the proximal side of the moraine and were considered to be surface-subsurface samples (taken at a depth of approximately 10 cm) (Phillips 1955). This depth was chosen in order to reduce the probability of cliff-side debris being incorporated into the samples. Generally, from failed observation, cliff-side debris on the surface of the lateral moraine was discontinuous and was less than 10 cm thick.

The problem of choosing a representative size of sample (volume) is always difficult. Ideally, the larger the sample size, the more likely it is to be representative of the fill. In all probability, the only correct way to sample fill without the sample being biaded is to extract it by 'bull-doring'. In this manner all size fractions at a variety of depths can be accounted for. This method however proves to be extremely expensive and destructive when a large number of samples is ample size and pumber.

Twenty-nine sub-surface till samples (approximately 400 to 600 grams each) were collected from the Neoglacial latero-terminal moraine (western side of the Yoho Valley) at a regular interval of 20 m. Twelve till samples were collected from the proximal side of 3 recessional moraines mar the Neoglacial maximum morains (four samples from each moraine).

3.2 Survey Methods: Bedrock Surface Morphology

3.21 Surface Area Determination: Plane Table Survey

The area of the seven bedrock units was surveyed with a planetable and a self-reducing alidade. The purpose of the survey was to determine af approximate proportional surface area of contact between individual bedrock units and glacier ice, and to examine the three dimensional nature of the bedrock units at the medium scale. The same bedrock unit surface areas on the eastern side of the Yoho River were estimated from serial photos.

3.22 Bedrock Unit Site Selection: Micro-Relief Sample Site

The concept of micro-relief is not new. The term was apparently coined by Le Conte (1877) to describe prairie mounds in California and Oregon, and was used to describe the configuration of a surface in which coalescent low mounds were 6 to 10 inches higher than the adjoining, depressions. Subsequent use of the term has varied in application and scale (Noventk <u>et al.</u>, 1959; Strahler and Koons. 1959; Van Lopik and Kolb 1958; Mabbut 1963; and others).

In this study, the term micro-relief refers to a glacially eroded bedrock surface with the vertical relief generally not exceeding 30 cm and is represented by a series of la² plots on each bedrock type. In its broader context, micro-relief refers to all bedrock surfaces eroded by glacial ice with vertical relief not exceeding 30 cm or those relief forms which generally do not fall into the elongated erosional or asymmetrical rock form category (iffs. whalebacks, roches moutonnées, hummocky bedrock, etc.) (Laverdière, etcl., 1979).

3.23 Micro-Relief Survey

A three disensional micro-relief contouring survey was performed on seven in bedrock tplots, one on each bedrock type. The purpose of " this survey was to gather relief information which could be displayed and analysed with the did of computer mapping techniques. It is suggested that bedrock characteristics at the micro-scale can be assessed as indicators of bedrock crosion and can be utilized in identifying and

-42-

describing erosive processes.

Each plot was on the creat of a whaleback form, characterfletic of each bedrock unit (Figure 6). The survey was by centimetric ruler held perpendicular to a metric scale which was moved over a fully levelled wooden frame at 2 cm intervals. A total of 2601 ralief readings was obtained from each micro-relief plot. Note was made of fractures, bedding planes and guiface precipitares. Striations were amped and essured.

3.3 Laboratory Analyses: Lithology

3.31 Bedrock Identification

A sample from each bedrock unit was thin-sectioned and examined microscopically for constituent minerals to aid in Identification. The preparation and analysis of thin sections followed the standard procedure set forth by Dickson (1966).

3.32 X-Ray Diffrection Techniques

Analysis of the finer than 40 (0.0625 mm) fraction of artificially crushed bedrock unit samples using X-ray diffraction techniques was facilitated by a Phillips Diffractometer and followed the procedures outlined by Grim (1962), Carroll (1970), and Brown (1972).

The purpose of this snalysis was to supplement the thin section identification of constituent minerals in each bedrock unit.

3.33 Bedrock Strength Characteristics: Total Carbonate Content

Since bedrock strength involves resistance to solution, abrasion and crushing, tests were designed to describe the solubility and mechanical strength of the bedrock units.

A comparison of the relative solubilities of the bedrock units was

Bedrock Unit A

Bedrock Unit C

Bedrock Unit D

Bedrock Unit E

Bedrock Unit G

Bedrock Unit F

Figure 6 Bedrock Unit Plot Sites obtained by measuring the percent (X) carbonate by weight in each unit. This was accomplished by powdering the sample to pass it through a 46 mesh size and adding 50 ml 4 normal H_2SO_4 and the required 45 normal H_2OH to one gram of the powdered sample. The weight loss after reaction (which takes place in a matter of minutes) indicates the X of carbonate. In 1 gram of sample reacting with the acid.

3.34 Carbonic Acid Solubility

Since natural limestone solution is accomplished by $B_{2}O_{3}$, a solubility test employing a weak solution of $H_{2}O_{3}$ (pH. 4.0) was undertake. It is the opinion of the author that the results from such a test should better reflect the natural conditions of limestone solubility in a glacial environment. A procedure was designed which enabled an efficient analysis under controlled conditions (Strong, per. comm.; Yoxall, per. comm.) (Appendix A).

3.35 Apparent Porosity

The porosity of a rock is defined as the ratio of the volume of pores to the bulk volume of the rock (Lama and Vutukurf. 1978). If pore volume and bulk volume can be determined, then apparent porosity can be calculated. The pore volume measured was of interconnected pores, hence the value calculated is the spparent porosity (Lama and Vutukuri 1978; Vutukuri et al., 1974).

Apparent porosity calculations were performed on cylindrical specimens (diameter 2.5 cm, length 2 cm) with bedding planes perpendicular and horizontal to the elongated cylindrical configuration of the specimens. Varukurf <u>et al</u>. (1974) state that the number of specimens to be tested should vary with the type of rock. Ideally, the greater the specimen number; the more accurate the results. For carbonate rocks, 5 to 10 samples are generally sufficient for testing purposes.

Apparent porosity calculations on the seven bedrock units enabled a relative comparison of apparent void space, hence susceptibility to water and solute intake, related erosive processes and compressive strength determinations.

3.36 Bedrock Abrasion

Tablets of each bedrock unit were tested for their susceptibility to abrasion using a custom-built 'abradometer' (figures 7 a, b, and c). This test was not intended to simulate the abrasion of rock by sliding ide, but rather to compare and contrast abrasion strength (time) of each bedrock unit sample, under similar, controlled conditions.

The abradometer consists of a SOM, 100 rpm. geared-down motor which drives a replaceable 63 mm dismeter, 6 mm wide, medium-fine grit grindstone. Each fock table was squared, levelied, and clamped in the wise, and oriented in the direction of the strictions, with respect to the grindstone rotation. The tables were hold at an arbitrarily fixed constant presence of 1.34 X 10²Rs against the grindstone. (The pressure was detarmined by the combined weights of the heaviest tablet and the moveable vise assembly. Meights were added onto the tray assembly of lighter tablets to equal the constant pressure.) The instrument stopped automatically when a volume of rock equivalent to 3.6 m², was abraded. The time required for this process to complete itself was recorded on an electric trip-stop clock. Each before, unit was tested four times. Similar runs were conducted on/a granite and table tablet to determine an approximate upper and lower time boundary.

46-

Figure 7a Custom Built Abradometer

Figure 7b

Moveable tray with vise assembly and automatic trip-stop switch.

Figure 7c

Rock tablet in position to be tested. Each tablet was positioned in respect to the trip-stop switch mechanism so that exactly 3.6 cm³ of rock was abraded Smoodinov (1966) conducted laboratory experiments to determine an abrasiveness index on limestones which was dependent on the time of grinding. The pressures used in his experiments were also arbitrarily arrived at and generally did not exceed 3.00×10^5 Pa. Mathews (1979) tried to simulate glacial abrasion by turning a grindbroke made of ice and crushed quarts between two stone plates (limestone and foldspar) and found that the relatively quick abrasion of limestone (as compared to feldspar) was likely due to the ease of plucking grin from grain, or to the breaking of wesk inter-crystalize bonde limking calcite grains.

3.37 Uniaxial Compression

Compressive strength or crushing strength is defined as the stress required to crush a cylindrical rock sample unconfined at its sides (Faraer 1966). The stress value at fracture (collapse of internal pores) is defined as the compressive strength of the specimen (Q_c) and is given by the relationship $Q_c = T/A_i$ where F is the applied force at failure and A is the initial cross sectional area transverse to the direction of force (Vurkunt et al., 1974).

Unixial compression testson saturated bedrock samples (apparent saturation) with bedding planes parallel and perpendicular to the elongated cylindrical configuration of the specimes were conducted to determine the relative strengths of each unit under conditions of applied compressive force. This test should give some insight into the magnitude of pressure required to:

1) Crush and pluck the bedrock units in situ.

 Comminute the individual bedrock boulders while they are in basal ice or traction.

Preparation and testing procedures followed the standard methods.

described by Vutukuri, <u>et sl</u>. (1974); Maronti and Sovers (1965); Yamaguchi (1970); Lama and Vutukuri (1978); and the I.S.R.M. Committee on Laboratory. Tests (1972).

The ratio of length to diameter of the specimens was 2.5 to 3.0. The availability of coring bits dictated the specimen size at 2.0 cm X 2.5 cm. All samples were 'apparently' saturated ('apparently' refering to the apparent porosity) which resulted in compressive strengths being less than if the samples were oven dried (Vutukuri, et al., 1974). A Varsa Tester 30M uniaxial compression device was employed to crush the specimens at a constant loading rate of 1.0 WFa/sec. The number of specimens tested corresponds to ., the number tested for apparent porosity.

3.4 : Till Characteristics

The sampling of the moraine material was undertaken to demonstrate the textural change in moraine material progressively down glacker, and to postulate which bedrocks provided the greatest abudance of sediments through a comparison of till and bedrock minerology. This was accomplished through the malysis of constituent clay minerals in the till matrix, and through them texmination and identification of clases.

3.41 X-ray Diffraction

Analysis of the finer than 40 (0.0625 mm) fraction of twelve recessional end moraine till samples using X-ray diffraction techniques followed the procedures outlined above.

Because individual badrock units may be typified by peak values for certain minerals (Petrijohn 1975), the patterns observed from the bedrock units were compared to end moraine diffraction plots to identify similarities. From this comparison suggestions can be made as to which units are more abundant in the recessional moraine samples.

3.42 Grain Size

All samples (split to approximately 200 grams each) were wet steved using a 40 (0.0625 mm) sieve following standard preparation to remove organic material. The coarser than 40 fraction was oven-dried and sieved according to standard methods (Folk 1968; Griffiths 1967; Bowles 1974). Sedigraph analysis of the less than 40 fraction was facilitated by a Sedigaph 5000 Analyser and X-ray beam (GeoLogical Survey of Canada, Ottawa).

Comulative particle size, frequency curves and statistical parameters (four moments measures; mean size, standard deviation, skewness and kurtosis) were derived from raw weight data by computer. The computer program employed was that of Slatt and Freess (1976) for a Bevlett-Fackard desk top calculator model 9821and plotter model 98 62A in which textural statistical parameters were derived by the graphic method rather than the moments method.

3.5 Analysis of Bedrock Surface Roughness

3.51 Computer Techniques

Computer programs were used to:

- Analyze the detailed slope characteristics (segment length) of each micro-relief plot.
- ii) Conduct's three-dimensional, 3rd order polynomial trend surface analysis.

3.52. Slope Frequency Distribution

Slope characteristics (segment length, rise/run; Carson and Kirby

-50-

1972) on each micro-reliaf plot were computed to produce a frequency distribution of slopes at 1 m intervals from 0, mu to 100 mm (Appendix B). Slopé values were calculated between surveyed reliaf points 2 cm spart (2550. slopes/plot). A comparative study of the seven slope frequency distributions may indicate varying erosion processes and magnitudes.

3.53 Synagraphic Mapping System (Synap): Trend Surface Analysis

A Symap computer mapping program with a trend surface analysis elective was employed to plot and analyse data obtained from micro-relief surveys.

Trend surface analysis is a mathematical technique in which surfaces of increasing complexity are fitted to point observations. The positions of a best fit plane is such, that the sum of the squares of the vertical distances between the points and the plane is reduced to a minimum. In this way, residual values which indicate local variations not predicted by the general trend are plotted. Their magnitude may be taken to provide a measure of variation from an 'ideal' uniface, or roughness.

This method of surface fitting is related to regression analysis except that it takes place in three dimensions rather than two. As in 2dimensional regression analysis, the fit of the curve through a series of points can be improved by the use of a high order polynomial function which changes the stright line regression to a curve. In trend surface analysis, higher order surfaces can be fitted to the scatter of points in the same manner to obtain a best fit plane. Figure 8 illustrates the theoretical application of the relationship between a third order or cubic two dimensional curve and the three dimensional counterpart.

-51-

Relationship between a third order polynomial plane and equation in 2 and 3 dimensional view.

3.54 Three Dimensional Viewing: Symvu Program

States Secondar

Symvu is a computer graphics program written for the purpose of generating three-dimensional line-drawing displays of data. Symap used in conjunction with Symvu, generated accompanying statistical parameters of the third order polynomial analysis.

The Symvu program is written in Fortran IV and is operated on the 18 m 370/168 using 250K memory. A Cal-Comp plotter is used to Whatch the illustrations (Schmidt 1975).

-53-

Chapter 4

Results and Interpretations

Bedrock Surface Morphology and Unit Description

Seven bedrock units were identified (Units A, B, C, D, E, F, G) and described in the field on the basis of strike-dip-relations, bedding, unit thickness and drift cover.

Three levelled profiles measured parallel to strictions are given in Figure 5. They show the two dimensional nature of the bedrock units at the medium or meso scale. Relative distances of bedrock units traversed by glacier ice can be seen. from the profiles (areas of bedrock type in contact with glacier ice were obtained from the plane table survey, Figure 10; Table 5). The contact between the Eldon Formation (bedrock unit A) and the Pika Formation (bedrock unit B) (Figure 12) is described in detail on Figure 9. Societon 1.

Section 1 from Figure 9 clearly shows bedrock unit A lying below the bedrock bench (units B, C, D, E, F and G). Angles of bedding contact are given in the profiles.

A qualitative specessent of the relative range of relief (levelness; moothest to roughest) for the bedrock units in the Piks Formation indicates that unit D is the smoothest while unit E is the roughest. Bedrock units C, F, G, and B are ranked within this range respectively. Because bedrock unit A (Eldon Formation) lies below the bedrock bench, it is not included in this ranking.

Levelled profiles measured along or parallel to glacial striations across the bedrock units

-55-

ation	Bedrock	Description	Strike/dip	Surface Area (m ²) www.uf Yune Rose, East of Yoho Rose	Comments
2	-	Line mudstone: iron poor	NI J-W 34°SW	36 39	Approximately 15 major beds pur metre. Till cover less than 10%-Stria tions at 124° to 160%
in a	Beaks Unit	Lime mudstone: parily dolomitized, spicular	NOB"W 34°SW	45 A	Some Iractures and cracks. Two majo beds per metre. Till cover approximately 20%. Striations at 1 38° to 158°.
ka i		Marble-lime mudstvive iron rich	W2058 W00IN	38 46	Fractures and cracks widuspread Quartz verns dominate relief. The protrude from the unit-up to 5 cm. In cover approximately 30%. Strations a 130° to 153°.
nation	Bestech Une D	Shale: scattered ratic calcue grains	NO8°W 34°SW	26 32	Fractures, cracks widespread. Quart veins throughour. Chalter hanks abun dant. Till cover approximately 10%. Striations at 130° to 142°.
	Budient Unit C	Dolamite - Innesione: interbedded iron poor, cleavage oblique to bedding	MS.9E. MABON	27 35	Isolated fractures and cracks. Quart vents abundant. Till cover approx mately 5%. Striations at 142° to 156°
1 .	Burners Unit B	Linna mutstone iron poor slightly fossitiferous, burrow mottled (iron rich)	WS. BE WORDN	35 42	Isolated fractures and cracks. Scattered precipitates. Till cover approximately 10% Striations at 135° to 141°.
don nation	Turbers Unit A	Dolomite: iron poor, medium to coarse crystalline. hypidiotopic, scattered pyrite	N17°W 43°SW	>200 > 250	Plucking widespraad. Precipitate abundant. Quart and pyrite evident. Til cover approximately 30%, boulders gravel. Striations at 144° to 165°.
		•		Estimated from photographs (setial)	Note: All bedrock units are listerally bounded by valley walls, or as in the case of the units on the eastern side of the Yoho River, a distinct break in slope flaulth.

5 Bedrock Unit Description

-57-

4.2 Micro-Relief Survey

The relief data obtained from each \ln^2 bedrock plot were drafted to produce Figurell. Quarts veins, precipitates, till and striations were also identified on the plots. Bedding planes show up quite clearly on bedrock units B, F, and G where contours are densely grouped in linear fashion. Bedrock units C, D, and E exhibit clongated quartz veifie (characteristic of those units as a whole): Bedrock unit plot E shows the deposition of minor till in the lee of some quartz veins (note the disection of ice flow) which were noted to protrude from the surface of the rock unit. Generally, till cover was sparse over all the bedrock plots as were precipitate deposits. A complete description of the bedrock unite/plote appears in Table 5.

4.3 Bedrock Unit Description: Lithology

Seven bedrock units are examined, all but A are contiguous. Between unit A and B, a steep slope of alternating thin hedded dolomite and lime mudstone marks the stratigraphic boundary between the Eldon and Pika Formations (Figure 12.). A detailed description of the bedrock units is given in Table 5.

Bedrock unit descriptions and approximate surface area of contact between individual units and glacier ice are given in Table 5. Bads strike approximately north-south and dip steeply westward between 34° and 54°. On the western side of the Tohn River, they cross the Toho Valley at an angle of approximately 40° to the former direction of ice movement. They lie normal to ice movement on the east side of the river (Figures 13 a, b, c).

Pika Formation (Bedrock unit B)

Eldon Formation (Bedrock unit A)

Contact Between the Eldon Formation (Bottom) and Pika Formation (Top)

Figure 12

Figure 13 a Bedrock units in relation to former ice flow.

Figure 13 b

Bedrock units on western side of Yoho River showing approximate limits on individual units and former ice flow. Note the units are laterally bounded by the valley wall.

Figure 13 c

Extension of the limits of bedrock units on the east side of Yoho River. Note the direction of former ice flow as evidenced by till deposits and striations, and the distinct break in the units slope (laterally bounded).

4.31 Bedrock Textures

Although no precise examination of the bedrock textures was made, generalities concerning the relative bedrock unit textures are appropriate. Dolomite, which is a major constituent of most of the bedrock units, generally occurs in rhombs and measures between 30 to 120 microns in size. Fine dolomite rhombs (less than 30 microns) are scattered through most limestone units. The grains of the calcite matrix, which were observed to be mainly nonferroan calcite, are 3 to 4 orders of magnitude smaller than dolomite grains.

A relative grouping of bedrock units based on textural characteristics can be made as follows: Bedrock unit & exhibits the coarsest textural size followed by bedrocks C and F respectively. Bedrocks B, E, G (grouped together), and bedrock wit D exhibited the finest textural characteristics.

4.32 X-Ray Diffraction Analysis

X-ray diffraction plots of the seven bedrock units are given in Figure 14. The presence of illicivities is evidenced by a large peak between 9 to 10 Angstroms (Å), and generilly a smaller peak at 4.4 Å. Quarts enhibits peaks at 4.2 Å and 3.3 Å while chlorite peaks at 14 Å, 7.0 Å, 4.7 Å, and 3.5 Å. Dolomits peaks at 2.5 Å, 2.6 Å, 2.7 Å, and 3.7 Å while calcite exhibits peaks at 2.45 Å and 3.0 Å. Most minerule in the montmorillonits group are identified by a peak, between 12 to 13 Å. Interstratified clays and other mixed layer minerals are difficult to identify because of their complex structures. Generally, mixed layering of mich is indicated by a series of small peaks on the high Å side of the 10 Å peak. Mixed layering of the montmorillonits are indicated by the small peaks on the lower Å side of the 14 Å peak (Weaver 1958; Carroll 1970; Beaugone 1972; Whitra peit comp.):

-62-

Glycolation and heat treatment showed that no kaolinite or montmorillomite was present in any of the bedrock or morainic samples. Batterson (1980, unpublished) came to a similar conclusion while studying morainic material in the Emerald Glacier area, 8 km southwest of Yoho Glacier.

4.33 Total Carbonate Content,

Although solubility is only a marginally relevant test for erostonal potential (kinetics of dissolution being more appropriate) it was fait that a relative comparison between the various bedrock solubilities would enable a qualitative assessment of total available carbonates and erostonal potential.

Total carbonate content (I wt.) of the seven bedrock units is given in Table 6. In considering the kinetics of dissolution, the resuits suggest that all bedrock units except unit D show high susceptibility to this process of erosion if the subglacial environment were suitable (i.e., continuous supply of mait water, Collins 1979).

4.34 Carbonic Acid (Ca CO.) Solubility

Test results of the carbonic acid solubility analysis are presented in Table 7. Bedrock units B, C, D, E, P, and C quickly reached saturation. Bedrock unit A did not reach solution saturation until the 19th hour. The decreasing concentrations of Ca CO₃ shiftled in the 7th to 43rd hour readings in bedrock units B, F, and G were probably due to two factors: 1) change in Belavic acidity of the solution and

 experimental error in regards to the washing of the solution off the conduction probe after each reading.

-64-

Table 6

Total Carbonate Content (%)

	Percent carbonate b	wwt. in 1 gm. powde	red
Bedrock Unit A		99.55	
Bedrock Unit B		95.05	
Bedrock Unit C		91.90	
Bedrock Unit D		28.20	
Bedrock Unit E		84.90	
Bedrock Unit F		99.70	
Bedrock Unit G	(a. 199	97.75	
	1. 18 .	1 I I I I I I I	

(Acid-neutralization method; Allison and Moodie, 1965)

-63-

Table 7

Carbonic Acid Solubility

	95 M		1.0	- 8	- A - 22		~ w	
Bedrach Unr	387	408*	408	365	321	321	234	ration
A link there	365	408.	408	408	332	332	278	ution satu
Model Unit 6	256*	256	256	256	256	256	256	cates soli
g/L CaCO,	278-	278	8278	321	278	321	278	indi
m	321	366*	365	365	321	321 .	321	ar Rij
advect Unit B B	452.	452	321	343	300	273	234	-
A line of the A	83	138	197	206	223.	223	223	
					Q X			- 9. 2
Temp.°C	6.0	5,5	¥6.0	5.0	5.0	6.0	5.0	
Stan	4.2	4.2	4.2	4.2	,4.2	4.2	4.5	
	1.	11	19	1		2.2.		g

The solution saturation concentrations (mg/L.) of the bedrock units are taken as those concentrations where stabilization of the readings has occurred. The highest solution saturation concentration levels were, in descending order, bedrock units B, F and G, C, D, E, and A. If solution play an important role in the erosion of the bedrock units, it is suggested that this process and associated erosional forms would be more pronounced on the surfaces of the bedrock units in the order given above.

There appears to be no relationship between the percent carbonate present in the bedrock units and the H_2O_3 solution rates. Bedrock unit A, which exhibited one of the highest 3 carbonate values (99.553), took the greatest amount of time to reach solution saturation (19 hours). Bedrock unit D, with only 28.23 carbonate by weight, exhibited immediate solution saturation of C 00.

4.35 Apparent Porosity

The average apparent porosities of the bedrock units are given in Table 8. Microscopic examination of thin sections revealed that pore configuration is generally preferentially oriented in the direction of the bedding planes. The pore surface exposed on the exterior of the specmens will therefore vary with the orientation of bedding planes, hence apparent porosity will be expected to vary conformably. Table 8 gives the number of specimens tested for each bedrock type, and summarizes the resultant average apparent porosities. Because of the flagsy nature of bedrock unit D, cylindrical apecimens could not be extracted, thus apparent porosity had to be calculated with the use of fload displatement techniques (Lema and Vuthuri 1978). The total average apparent porosity for for bedrock unit D was calculated at 2.22 (5 samples tested).

All bedrock units except units C and E exhibited higher apparent

-67-

Table B

2	
5	
2	
8	
ゥ	
ň	
5	
≥	
3	
ă	
<u>.</u>	
Ē	
ž	
훕	
<	
8	
5	
₹.	

	Based Unit A	Bearing Union B	Bedreck Unit C	Direct Cont D	Bedrock Unit E	Rediech Unit F	Brekela Unit D
umber of specimens with bedding realiel to the elongated cylinutical infiguration of specimens.	10	2	2			10	
Average Apparent Porosity (%)	2.33	0.69	0.95		16.0	0.82	0.62
umber of spacements with badding repedicular to the alongated findrical configuration of specimens.	81	2	°			2	. 2
Average Apparent Porosity (%)	1.51	0.54	0.95	1.00	2.12	0.61	0.48
Ital Average Apparent Porosity	1.60	, 0.56	0.95		1.36	. 0.68	0.50

ucause of the flaggy nature of bedrock unit D, cores could not be extracted

pordities with beddings parallel to the elongated configuration of the specimens. The average apparent porosities of bedrock unit C with bedding perpendicular and parallel to the specimens elongated cylindrical configuration were identical, while bedrock unit E exhibited a higher apparent porosity with the bedding perpendicular to the elongated cylindrical specimen. The largest total average apparent porosity was exhibited by bedrock unit D (2.22), the smallest was exhibited by bedrock unit G (0.52). The large value exhibited by bedrock is probably a result of its flaggy nature (laminated beds) and its high clay content which may have been responsible for the adsorption of water to the gineral surfaces (Brady 1974; Billel 1971).

Bedrock unit A with a 1.6% total everage porosity value was identified as having the largest textural size range of all the bedrock units. The large dolonite minerals resulted in large wild spacings between minerals, and therefore a high apparent porosity value. Bedrock unit G, a line mustone, had a relatively small textural range with fewer and smaller void spaces.

High apparent poresities can influence a number of erosional mechanisms. Since subglacial water is usually acidic (Collins 1979) and because of the carbonate nature of the bedrock units, the water is able to penetrate into focks (if pore pressures are suitable) leaving greater surface areas of rock susceptible to the solution process. If this process acts quickly, or if it persists for an extended period of time; a bedrock micro-relief could result that would resemble a coarse sandpaper appearance (Figure 15).

Another mechanism could result if subglacial water enters the rock pores and due to changing basal thermal regimes, freezes. The expanding, freezing water could cause a shatter effect on the rock surfaces, thereby reducing the surface relief of the bedrock after thay takes place. (This

-69-

Pitted bedrock surface, possibly the result of solution at the ice-rock contact caused by abundance of sub-glacial water and high apparent porosity of the rock unit (Bedrock unit E). shatter effect may resemble the more common 'frost shattering' of rocks when water freezes inside rock cracks or bedding planes).

Clearly, the greater the apparent porosity of a rock unit, the more likely it is that several evolutional mechanisms can operate under various ice pressure and temperature conditions.

4.36 Bedrock Abrasion

The results of the abrasion test are presented in Table 9., The relative ease with which the bedrock units were abraded with respect to time taken for abrasion of 3.6 cm³ of rock, can be ranked as follows: talc; bedrocks D, C, B, A, G, E, F and granite respectively.

Laboratory tests indicate, under given abrasion conditions, bedrock unit D will likely be eroded volumetrically the most whereas bedrock F will be eroded the least.

4.37 Uniaxial Compression

Compression tests on cylindrical bedrock samples have been used extensively by engineering geologists (Misterek 1970; Obert and Duvill 1967; and Jaeger 1972) mining engineers (Means 1976; Donaldson 1974; and others), and in related rock and soil mechanics (Lamma and Yutukuri 1978; and Yutukuri; et al. 1974). Relatively little attention has been focused on this aspect of rock behaviour by glacial georgists.

In concept, the compressive strength of webrocks is influenced not only by ice physics but, by internal rock properties such as atheralogy, grain size, poresity, bedding and other inherent rock properties (Vurukuri<u>et al</u>. 1974). Clearly, a compression test on bedrock units can provide valuable data to help describe the general theory of glacial erosion and comminution of rock deris.

-71-

able 9

Abrasion Test Results (time required to abrade 3.6cm3 of rock sample

Bedrock Unit A

Bedrock Unit B

Bedrock Unit C

Average	15 minutes	11 seconds	Average	14 minutes	16 seconds Average	e 09 minutes	35 seconds
100	16 minutes	11 seconds		13 minutes	19 seconds	14 minutes	51 seconds
×	15 minutes	04 seconds	2.2	16 minutes	09 seconds	07 minutes	28 seconds
	13 minutes	13 seconds		15 minutes	10 seconds	11 minutes	28 seconds.
5	16 minutes	.05 seconds	· · · ·	12 minutes	25 seconds	Q6 minutes	'41 seconds

Bedrock Unit D

Bedrock Unit E

Bedrock Unit F

03 minutes 30 seconds	1 30	30 minutes	14 seconds	43 minutes	23 seconds
. 02 minutes 58 seconds		33 minutes	27 seconds	45 minutes	23 seconds
05 minutes 27 seconds		31 minutes	53 seconds	43 Iminutes	08 seconds
. 06 minutes 15 seconds		33 minutes	57 seconds	43 minutes	03 seconds
verage 04 minutes 33 seconds	Average	31 minutes	38 seconds Average	43 minutes	17 seconds

Granite

Bedrock Unit G

19 minutes 27 seconds 53 minutes 56 seconds 01 minutes 35 seconds 20 minutes 24 seconds 56 minutes 15 seconds 01 minutes 35 seconds 15 minutes 30 seconds 96 minutes 15 seconds 01 minutes 35 second 20 seconds 98 minutes 15 seconds 01 minutes 25 seconds 20 seconds 98 seconds 98 minutes 17 seconds Average 25 seconds 20 seconds 98 seconds 98 minutes 37 seconds Average 30 minutes 37 seconds 20 seconds 99 seconds 98 minutes 37 seconds Average 30 minutes 37 seconds 20 seconds 99 seconds 98 seconds 49 seconds 24 seconds 99 seconds

-72-

Table 10 summarizes, the average compressive strengths' of the bedrock units with bedding planes perpendicular and parallel, to the applied force.

Ruiz (1966) determined that the compressive strength of limestone and dolonites under apparent saturated conditions is. up to 20% leggy than air dried samples. Vutukuri, <u>st.al</u>. (1974) report similar results. The results reported in Table 10 are therefore minimum strengths of bedrock types under apparent saturated conditions.

There is a great deal of literature regarding compressive strengths and orientation of bedding planes (Berenhum and Brodle 1959; Dube and Singh 1969; Barron 1971; etc.). Lama and Vurukuri (1978) suggest that compressive strength is greatest as the angle of applied force reaches 0° (parallel) and lowest as this angle approaches 90° (Perpendicular) to the bedding planes. Clearly, this would vary with rock types and inherent rock properties. Results from modelling of various angles of bedding planes and joints in rocks under compression tests generally agree with Lama's and Vurukuri's (1978) reported findings.

The results in Table 10 show that all bedrock unit's extept A and E have higher compredicts strengths with bedring at 0° to the applied force. Bedrock unit A is exceptional probably because of the massive nature of the unit. Bedrock unit E on the other hand has a large number of quartiveins which probably lead to fracturing at the quartz-lisestone interfaces regardless of bedding plane orientations.

Bedrock unit A exhibits the highest total average compressive strength (22.6 MPa.). The high compressive strength is probably due to the large dolomite content, which Rogman and Friedman (1979) state has a

Table 10

ummary of the Uniaxial Compression Test Result

	Besticah Unit A	Beauch Unn B	Debroch Unit C	Bedroch Unit D	Budrach Unu E	Bedock Unit F	Birde out Unit D
Number of specimens with bedding planes parallel to the applied force (0º)	10	10	13		14	19	6
Average Compressive Strength (MPa)	21.5	16.3	13.3		8.8	21.6	21.3
Number of specimens with bedding planes perpendicular to the applied force (90%).	81	16	12		8	16	4
Average Compressive Strangth (MPa) 7	23.2	12.4	11.2		10.9	11.5	16.6
Total Average Campressive Strength (MPa)	22.6	13.9	12.1		9.6	17.0	18.9

The second secon

-74-

significant effect on the ultimate strength of low porosity, carbonate rocks.

Boulder Count

The results of the boulder count are given in Table 11.

Recent literature esphasizes the causal relationship between jointed rocks and the dass with which they are plucked, crushed, and transported in glacial and other environments (Boulton 1978; Lama et al. 1978). Galibert (1962) and Soulton (1978, 1979) suggest that the plucking or the large scale excention of a bedrock may be enhanced by pre-existing joints in rocks. Laboratory investigations have also resulted in similar findings (Chenevert and Gatlin 1965; Chappell 1974; 1975; Byerlee and Summers 1975; etc.).

The strike-dip relationship will also have an effect on the plucking process. With the beds striking approximately north-south and dipping steeply usest between 34° and 54° , the resultant log contact was at approximately 45° (Figures 9 and 13 a, b). From laborstoxy compression fests Vurburi, <u>et al.</u> (1974), and Lam and Vurburi (1978) have shown that similar orientations of rock cores enhance rock failure.

Although jointing and bedding planes are not videspread in bedrock unit A, a relatively large boulder count (100 or 202) was recorded. This can best be explained with frank to the bedrock surface area exposed to glacial processes. Bedrock A extends from the related bedrock bench (decribed previously), northward to beyond the this of diacter into the Wapta leefield (fildon Formation; Gook 1975). The total area exposed far exceeds that of the combined bedrock unit areas of 580 square settees on the vestern side of the Yoho liver. The extensive surface area evailable for glacier excision would therefore suggest that a greater probability exists for the process of blucking to occur.

-75

Table 11 Boulder Gount Results

White and the set of the second s

TO

of Bould % of Total Bedrock Unit A 100 20 Bedrock Unit B 116 23 Bedrock Unit C 51 10 Bedrock Unit D 15 3 Bedrock Unit E 45 Bedrock Unit F 117 24 Bedrock Unit G 20 Other 36 7:00

-76-

On bedrock units B and F where fractures and cracks were identified, the boulder count of 116 and 117 respectively may be related to the angle of contact between ice motion and bedding planes (dip). Lama and Vutukuri (1978) Mad Vutukuri, <u>et al</u>. (1974) showed that as the gasle of applied force reaches, 90° to bedding planes of experimentally compressed rocks; the compressive force required to crush the speciment incressed.

Tests were conducted on the shear strength of spectmens where similar results were reported (Vatukuri, <u>et al.</u> 1974). The force required to shear the specimes decreased as the angle of force approached 180[°] to the bedding planes. These findings therefore suggest that given a constant pressure. Whether it be compressive, shear or frictional, bedrock units with bedding planes oriented parallel to the direction of the applied force, will tend to be less resistant to fracture than those oriented at right angles to the apole of force.

This argument could-also apply to bedrock units C, E, and G, with boulder counts of 51, 45 and 20 respectively. Only 15 boulders were. identified as bedrock b. This is probably due to the nature of the rock which is clearly susceptible to rapid comminution of entrained clasts. The number of bedding planes (both major and mimor) is clearly a controlling factor in the plucking and crushing of bedrock units.

The pressure-induced plucking of elongated erosional froms (Boulton 1979, and others) is probably enhanced when bedding planes are present.

4.5 Till Analyses

4.51 X-ray Diffraction

X-ray diffraction, plots for the twelve recessional moraine samples are presented in Figures 16 a and b. Moraine samples 1-1, 1-2 and 1-4

-77-

Figure 16a

Figure 16 a and b Recessional End Moraine X-Ray Diffraction Plots

show extremely high quantities of dolomlte, quartz, chlorite and mica, with lesser amounts of calcite and feldspars. Moraine sample 1-3 exhibits high dolomite and quartz peaks and lesser calcite, chlorite, feldspar and mica peaks.

Moraine samples 2-1, 2-3 and 2-4 exhibit virtually the same patterns as those described above, for moraine samples 1-1, 1-2 and 1-4. , Moraine sample 2-2 demonstrates high dolomite and quartz peaks and lesser calcite, feldspars, chlorite and mics peaks (similar to end moraine 1-3).

Horaine samples 3-1 and 3-3 show extremely high dolomite and quarts peaks with chlorite, mics, calcite and feldspars following in order of magnitude. Moraine samples 3-2 and 3-4 demonstrate a high quarts peak with secondary high chlorite, dolomite, calcite and mica peaks and a low foldspar peak.

The origin of the tills based on the X-ray diffraction plots is difficult to assess. No-clear relationship exists between befrock unit plots and mornine plots. All bedrock units generally exhibit high peaks in dolonite and/or calcite. Only bedrock unit D shows a dominant quertz and mica peak. All end soraine samples exhibit peaks in quertz and mica which for all except samples 1-3, 2-2, 3-1, 5-3 are major peaks. By using transparent overlays of all bedrock unit and moraine samples, it was evident that the patterns and magnitudes of peaks exhibited in bedrock D closely resembled all of the moraine plots. This is in itself, however, not conclusive, evidence that bedrock D is in greater abundance in the till matrix. Based on previous studies of various shale units (Batterson 1980, unpublished; Beausont 1971), x-ray diffraction analysis showed high chlorite, quartz and mica peaks. These peaks were also observed in all the recessional moraine samples, although their magnitude varied. The cliff face adjoing the laterel moraine is part-of the Sullivan Formation (Cook 1975):

a shale unit. However, as shown on Figures 2a and b, the 1903 and 1913 Table Glacier extent, very little super-glacial debris is present at the ice-valley vall contact. Therefore, the volumetric component of the valley side debris in the tills is probably very low. It is suggested that valley side debris that did reach the recessional and an oracles super-glacially (approximately 100 m to 300 m from the 1913 glacier terminus), is unlikely, to have been rapidly comminated in such a short distance, and via supraglacial transport. The observed peaks of chlorite, quarts and mice may well be of bedrock unit D provenance. The dearth of supra-glacial debris wyleful to the montane sum smally of emigracial origin (i.e. shrided and plucked debris).

4.52 Mineralogy: Frictional Properties of Minerals

In establishing the mineral content of the moraine amples, it is necessary to discuss and speculate on the affect these minerals may have on gladier sliding and upon befrock morphology.

Horn, <u>et al</u>. (1962). studied the frictional properties of various minerals iscluding calitie, quartz, chlorite and others. Their investigations revealed that for variang moisture conditions kinetic friction is generally equal to or slightly less than static friction. The exception to islo occurred in the case of quartz where a stick-slip phenomenon was observed. This is a attributed to kinetic frictional resistance developed between the sacurated quartz forfaces and the sliding medim. Dry quarts exhibited relatively little frictional resistance, as did calcite. The presence of water was noted to act as an anti-lubricant when it was applied to surfaces of minerals that had massive crystal structures such as quarts and calcite, whereas it lubristed surfaces of minerals such as chorica, and ites that had lays:-lattice crystal structures.

-81-

The stick-slip process clearly varies with took type and bed roughness however, under given conditions there are definite trends with mineral content. Brace (1972) and Byerlee and Brace (1968) state that chilorite and mices have Tittle influence on the stick-slip process. Increased quart content is more conducive to stick-slip behaviour. Stick-slip occurs in carbonate rocks but only under builtable moisture conditions. Byerlee and Brace (1968) found that stick-slip behaviour occurs on limestone and doionites less readily than on sandstones, granites or quartites (Ohnska 1973; Engelder 1974; Friedman, et al. 1974).

Clayton (1951) states that the frictional characteristics of many coefficients of quarts do not vary with the rate of sliding in both saturated and dry states (Born, <u>et al. 1962</u>). Clay minorals on the other hand show increases in Static frictional resistance under both wet and dry conditions.

All loyer-lattice minerals (like those found in bedrock unit D) have perfect basel cleavage (Born, et al. 1962). Atoms in a molecular sheet are held together by relatively strong covalent bonds. The molecular detets on the other hand are held-together by weak wan der Kauls forces. As a resulf at is extremely easy to cleave clean sheets from crystals of these minerals. It is difficult, however, to rupture a crystal along a bon-cleavage plans. This implies that the abrasion that results when boundary-lubricited surfaces of layer-lattice minerals are subble together generally exposes freshly cleaved surfaces. If no solution is present to mentralize the/cohesive forces between the fresh cleavage surfaces, che frictional registance will be high, thus soliding hong the plane is reduced

A number of conclusions can be drawn from this discussion: Mineral type and content have a significant role to play in the sliding and/or abrasion process of the ice over bedrock.

- The presence of absence of a lubricating layer of water can enhance or retard those processes depending on mineral type.
- 111) The relative presence of guarts in rock types is at least partially responsible for the stick-slip process often reported in glaciological studies.

All bedrock units studied were shown to be high in calcite (Figure 12). Therefore, frictional resistance to sliding ice should have been relatively small if the ice-rock interface were dry and greater if it were wet. The presence of precipitates over all the bedrock units clearly indicates that the ice was ware based and water was present at the ice-rock interface in more locations at some time.

Based on frictional properties of minerals, a water layer generally impedes glacier sliding over most of the bedrock units and encourages abrasion. An exception occurs with bedrock unit D. Having a high quartz and mica content (partial perfect basal cleavage), the unit should exhibit cleavage at sheet planes when moisture is in short supply, and enhanced sliding when water lubricates the bedrock surface.

This may be manifest in the surface morphology of this unit as resembling an ideal plane configuration that takes the form of the units dip $(3k^2 St)$ or foliation (in this case, a fairly borizontal morphology at the mass and micro-scale).

4.53 Grain Size

The plots of particle size, frequency distribution, and statistical parameters for the 41 moraine samples are presented in Appendix C.

A bimodal size distribution is apparent in most of the till plots, having a clast size consisting predominantly of rock fragments (-2.50) and a till matrix consisting unially of minoral fragments at around 58. This is in keeping with Dreidmins and Vagners (1971) finding on glacial eroston and transport of tills (predominantly of dolomite origin) in Southern Ontario. Buller and Kokanus (1973) found that tills from valley glaciers tend to have bindeal size distributions as well. Controverby exists as to whether till textures are a function of the environment of transport or dependent upon the nature of the bedrock source. Slatt (1971) examined the textures of sadiments taken from terminal deposits of various Alaskan valley glacipts which eroded five different bedrock types and determined that the model occurrance of proglacial sedments is probably a function of glacial transport and independent of the bedrock type.

Contrary to Slatt's (1971) findings, Hills (1975) working on Cemperate valley glaciers, and Dreinsnie and Vagners (1971) studying sediments of continental glacier origin, determined that the texture of tills is dependent upon sedimentary bedrock lithology.

The bindedl trend exhibited by the sample analysis is probably θ_j result of the bedrock types rather than the environment of transport. The dominance of dolomite and calcits in both bedrock and moraine samples (recessional end moraines) confirms this as the terminal grade of dolomite and calcite, and of the samples (till matrix mode), with size fractions at between $d\theta$ and $d\theta$ (Dreimanis and Wagners 1971). It is surprising to find terminal grades appearing after only 1 km or so of transport. This may reflect the high sliding-abrading energy of temperate alping glaciers (Rogarson 1980, par. com.), but is probably more the result of the general bedrock type. which in relative term is failly weak.

Textural changes in the morainic material (progressively down valley) along the latero-terminal moraine are demonstrated in Figure 17.

-84-

Percent gravel, and, silt and clay fractions were taken from the particle size and frequency curves, and a simple regression salysis was performed. The slopes of the individual regression lines are thought to represent constant values or slight changes in the cumulative percent of the individual textural classes over the distance of the latero-terminal morane (600 m.)

The graval fraction exhibits the only negative slope (-0.33) indicating that the percent grave is decreasing sown valley as the and (slope 0.22) increased very slightly. The slit and clay fractions remain relatively ionstant (slit slope 0.06, clay slope 0.06). Dreimsins and Yagners (1971) believe that textures of tills derived from sedimentary more pend not only upon the textures of tills derived from sedimentary more which are sminly located in the slit and clay fractions, but also upon the medium/hard sedimentary rocks composing the sand fraction. These are often aggregates of dolonities and calcites. This bimodality is delived to take place anywhere from 0 to 3 km from bedrock sources in continental ice deposits (Dreimanis and Vagners 1971). Despite the alpine glacial emvironment, some similar trends in textures and terminal grade modes of medientary rocks are observed in the present study. There is none temdency towards increasing sand fraction down valley and a decreasing gravel fraction.

4.6 Roughness - Morphologies: Computer Analysia

4.61 Slope Frequencies

The graphs of the slope frequency distributions at the microscale and accompanying statistical parameters for each bedrock unit plot are given in Figures 18 a, b, c, and d. Themeans of the slopes (segment

-87-

Figure 18d

lengths) range from 2.3 m on bedrock E to 3.9 mm on bedrock G. The methal is only influenced by the position of values in the ranking and not directly by the magnitude of these values. Therefore, it is a measure of central tendency (King 1969). This suggests that at this particular sampling interval, the tendency towards a more uniform, levelled relief is schibbled by units E. D. B. T. C. A. and G respectively where E is the most and G is the least uniform or levelled (horizontally). All units schibbl positive skemess with bedrock units D and A being strongly skewed (11.25 and 8.45 respectively); and bedrock C schibiting the least positive skewness (0.50). Kurtosis values all indicate an extremely low concentration of slopes around the mean.

Of particular interest is the range of slope segments graphed at 10 mm to 100 mm. Considering slope sample points are 2 cm spart, the frequency distributions in this range may be a result of relatively weak bedding planes or fractures within each rock type. It is therefore suggested that these relatively large slope values can be explained in terms of 'micro-plucking' of individual units by overburden ice (similar to processes described by Kemmis 1979). An examination of the bedrock descriptions (Table 5) verifies that bedrock unit 6 with 12 of slopes between the 10 mm to 300 mm range is also very well bedded.

Other bedrock unit slope frequencies between 10 mm and 100 mm are as follows: bedrock unit A, 5.7%; bedrock unit B, 6.7%; bedrock unit C, 4.9%; bedrock unit D, 6/1%; bedrock unit E, 3.2%; bedrock unit F, 4.5%. A qualitative assessment of the extent of micro-plucking appears in the next section.

4.62 Trend Surface

Trend surface analysis enables both quantitative and qualitative
interpretation of data. The Symu 3-dimensional representation of bedrock unifform (residual surface) enables a visual assessment of bedform which provides some insight into the related glacial crosive processes.

A series of three diagrams were constructed for each bedrock unit; azimuth 045° views the surface in an up-glacked direction; azimuth 225° views the surface in a down glacket direction; azimuth 315° views the resultant glacially-eroded forms at right angles to glacket flow. The 045° azimuth view night be ixpected to highlight areas of micro-plucking on the lee of small, eroded forms while the 225° azimuth view illustrates the monothed stores side of these forms. The 315° azimuth view emphasizes the saymetry in micro-relief. The altitude (the elevation of the viewing position above the horizontal plane) is kept constant at 45° , as is the viewing distance (25 cm).

The quantitative analysis includes the following (Appendix D): Standard deviation (6) or the second meants measure, which is a measure of dispersion. This statistical parameter indicates the spread of values on either side of the mean of normalized data. In this case the mean is represented by the mean plane defined by the ird order polynomial equation: Sixty-Six and two thirds percent of the variation in the sample would be expected to lie within one-standard deviation of the mean, and 95% within two standard deviations of the mean:

Total variation (δ^2) is the standard deviation squared. It is a measure of the spread of values in the individual bedrock unit plots. Coefficient of determination $\langle r^2 \rangle$ is the coefficient of correlation squared, expressing the proportion of variation in the dependent variables (observed data values) explained by the association with

-92-

2)

the independent variables (expected data values) (Cole and King 1968; and Chorley and Kennedy 1971).

Recent studies on bed roughness and form have generally dealt with a 2-dimensional perspective on the scale of the order of metres (Boulton 1974; Kamb 1970; Hallet 1976; Fowler 1979; Libboutry 1977, 1978; Weertman 1976; and others). Benoist (1979) examined longitudinal profiles of roches <u>moutofines</u> measuring every centimetre over a total length of approximatery 100 m, which he termed micro-relief, but which was a two-dimensional perspective. Both Eliboutry (1968, 1975, 1977, 1978) and Weertman (1966, 1967, 1969, 1976) have studied bed roughness parameters by introducing sime waves and relating The amplitudes to a roughness index. This treatment however only concerns itself with 2-dimensions. It is suggested that a 3-dimensional examination of bedform is a more realistic approach to the problem.

. If one assumes that the eroid of a bedrock surface at the microtocale (as in this study) decreases as the bedrorm reaches its 'Meal configuration' or 'ideal plane' (which allows ice to slide with minimus work) then, by inference, there must be a bedrock plane configuration which may enhance sliding but reduce erosion. This 'ideal plane' can be mathematically defined in terms of polymonials.

The equation describing the ideal plane was chosen at the 3rd order, or cubic (having a cubed as well as a squared linear term). This order was selected after a computer run of five polymonial orders was made for each bedrock unit plot and examined with reference torbest fit (Dougenik and Shecham:1977). Peuchar (1972) and Cole and King (1968) recommend polymontal equations of the 3rd order to describe most geological features.

-03-

4.621 /Quantitative Analysis

King (1967), Cole and King (1968), and Chorley and Haggett (1965) suggest that the standard deviation of the plotted data can supply useful information as to where the values are in relation to the best fit polynomial surface. It is hypothesized that this statistical parameter can be used as an indication of how close the bedrock is to being evolved to it a down, place.

The standard deviations of the bedrock units (ranging from 1.33 for bedrock G to 2.00 for bedrock 3) suggest that from 66 2/3% to 95% of the data points lie within 1.33 and 2.00 standard deviations of the ideal plane. The high correlation coefficients, ranging from .72 (bedrock 8) to .96 (bedrock A and C) indicate that the plotted surfaces (bedrock 8) to .96 (bedrock A and C) indicate that the plotted surfaces (bedrock 8) semble the polymomially determined 3rd order surfaces. These values are perhaps not surprising considering the large sample number (2601) in each case, however, it must be remembered that residual values, which tend to accentuate local anomalies, were plotted. Therefore, the statistical values do have mamring.

If the ideal place hypothesis is accepted, then all bedrock unit plots were very close to achieving the enhanced, non-erosive, flow configuration.

It is suggested that changes in ice-dow direction, basal pressure, shear pressure, etc. would likely necesseriate an ideal plane of different configuration, and because these conditions are known to fluctuate (Raterson 1969; Liboutry 1976; Weerman 1978), an ideal plane on a bedrpck surface. is probably never achieved. However, one may speculate that because the statistical parameters computed indicate the bedrock forms closely resemble the individual ideal planes, ice flows, pressures, and other ice-pock interface conditions must have been fairly constant over a period of time necessary to erode the bedrock units to their present configurations, or the bedrock units responded very quickly to glacial conditions.

4.622 Erosional Bedforms and Processes: A Qualitative Assessment

Bedrock Unit A

The residual plots of the trend surface analysis for bedrock unit A are presented in Figures 19 a, b, and c. The bedrock unit (defonite) is, in respect to the other bedrock types studied, a fairly massive unit with few bedding planes. This is generally the observed case for most dolomites (Hugean and Frizeman 1979, Wenkers 1979, etc.). No bedding planes were observed in the bedrock plot examined. Therefore, no inherent weakens in this particular plot contributed to its glacially evoded relief form.

Pigeres 10 a and c clearly show localized results of micro-plucking, whereas 19 b presents a smoother surface to the viewer. The micro-plucked surfaces are probably the result of ice pressure and subsequent fracture of the lece-side surfaces similar to the processes used to describe the plucked les surfaces of elongated encodonal forms of much larger dimensions (Boulton 1974, 1979; Carol 1947; Engelder and Scholz 1976). Figure 19 b illustrates the smooth stores slopes of aicro forms.

Bedrock Unit B

The residual plots of the three asimuth views of hedrock unit B are presented in Figures 20 a, b, and c. Two major bedding planes are evident in Figure 20 a. This view illustrates the erosive effects of aliding ice on the rocks with bedding planes. Figures 20 a and c show

-95-

Figure 19a Residual plots of the trend surface Bedrock Unit A

0.71 7.49 0.50 2.23 0.00 -10.40 Actual Observed Identifies micro-plucked surfaces
Azimuth 225° (down glacier view)

Figure 19b Residual plots of the trend surface, Bedrock Unit A,

the lee surfaces plucked at bedding plane contacts. This is evidenced by the Jagged outlines and vertical slopes (analysis of slope) frequency shows 5.7% of the slopes are greater than 10 mm).

Figure 20 b illustrates the smothed stoss alopes, while Figure 20 c shows in profile, the combined reflects of smoothed stoss and plucked lee surfaces. Micro-Plucking is videopreed over the entire plot and is accentusted along bedding planes. There is little evidence of solution erosion (solution hollows, etc.), however, the process may have had some effect along the bedding planes.

Bedrock Unit C

The three azimuth views of bedrock unit C are given in Figures 21 s. b. and c. The high peaked ridges exhibited in all three views canbe attributed to quarts veins. Micro-plucking is evident in Figures 21 s and c. Relatively smoother store slopes are illustrated in Figure 21 b. Solution erotion appears to be infinil.

Bedrock Unit D

Fractures and cracks widespread in bedrock plot D are depicted in Figures 22 a, b, and c. The jagged appearance of the plot may be attributed to the rock type (shele). Bedding units may be easily picked out in Figures 22 b and ci The summits of the eroded forms (Figures 22 b and c) are attributed to the more resistant quarts veins. As in bedrock unit B, micro-plucking is, accelutated along the bedrock planes (Figures 22 c indicates some smoothed stoss slopes and plucked lee slopes.

-102-

Bedrock Unit E

Bedrock unit I was observed to have quarts veind dominating the relief. This is evident on the summine depicted in Figures 23 a, b, and c. Midespread fracturing and cracks were also observed. which likely account for the apparent high degrees of micro-plucking (Figures 23 a and c). The somewhat irregular stoss slopes shown in Figure 23 b do not appear to support the micro-plucking process, fourer, Figure 23 c does contain evidence of this phenomenon in the form of plucked les surfaces.

Bedrock Unit F

Bodrock unit 7 (Figures 24 s, b, and c) shown wridence of at least one major bedding plane. As in other bedrock units, plucking slong the bedding plane dominates the relief. (Figure 24 s and c). Figure 24 b clearly demonstrates a smoothed stons slope. The steep slopes in plucked areas around bedding planes is typical of other bedrock units which exhibit bedding planes. Solution effects in plucked cavities at the bedding plane (Figures 24's and c) were probably responsible in part, for the resultant relief form.

Bedrock Unit G

The residual plot of the trend surface analysis for bedrock unit G is presented in Figures, 25 a, b, and c. Bedding planes and partings were observed to be abundant on this bedrock unit. Figures 25 a and c show that at least of major bedding planes appear in the bedrock plot. Flucking is accontusted all along the bedding planes (Figures 25 a and c). Figure 25 b shows some resemblance to relatively smoothed stores alonges. Solution affects appear to have been restricted to placked cavities.

4.623 'Conclusions

The 3-dimensional trend surfaces reveal features which may be attributed to abrusion and micro-plucking at this scale. In addition, solution-induced erosional forms appear to be less pronounced. The microplucking process is videopread on all bedrock unit plots and appears to be accentuated in zones of fractures, cracks and particularly bedding planes. The classical amothed stoss and plucked les slopes often reported on mesoscale elongated erosional forms at the micro-deals.

The high degree to which the surfaces approximate an ideal aliding surface (plane) indicates that:

 The bedrock units respond very quickly to glacial conditions, and/or;
Tag flows, pressures and other ice-rock interface conditions must have been fairly constant over a period of time necessary to erode the units to that present configuration.

Chapter'5

Discussion and Conclusions

5.1 The Susceptibility of Bedrock Units to Erosion

The results from laboratory analysis performed on the lithologic units enable a ranking of relative bedrock strengths by susceptibility to ecosion by physical and chemical processes. Table 12 is a ranking from 1 to 7 (corresponding to the number of bedrock units) whereby 1 represents the nost susceptible to erosion or weakest bedrock unit and 7 the least susceptible to erosion of the strongest bedrock unit and 7 the least laboratory test. The test scores are totalled so that the summed laboratory analysis scores are directly proportional to the net bedrock bedrock the

Bedrock unit D with the lowegt mat score (12) proves to be the weakest unit while bedrock unit/o with the highest net score is the strongest. The other bedrock units, although showing some variations in the Total scores, are very scalar. All bedrock units generally show a wide variation of rank to various tests (i.e., no unit appears to be consistently low of high ranking in all laboratory tests). The implication of this is that in detail, different erosional processes may predominate on different bedrock units.

5.2 Abundance of Bedrock Units in Till Samples

The laboratory analyses conducted on till samples (X-ray diffraction, grain size) did not produce results that enable definite conclusions to be drawn about the relationship between bedrock type and their volumetric

	10111
1.1	
21110	
	2.3
an -	
0.2	
5.8	
23	1.000
1 2 3	
6.8	A
1 1 5	
182	
1 2	1.0
- 8	EC 12
7 16 2	
6 5	
1.0	
65	
7.5-5	
183	
21	100
7.4	
	1.1
	1
18.8	1.1
1 4 3	
7.5	
1 2 3	100
- ÷ 9	10.0%
- 2 -	er 13
2 8	6 - S
F & 3	in 13
0.1	
8 3	10.00
2 2	1.12
: 2 P	1.0
0.5	
	1.1
1 3 3	
158	Carol
2 0	1.11
	18.19
8 2	
* 8	10.01
- = - E	1.5
- 4	1.1.1
53	1.1
	1.1
12.1	1.0
	1.1
12	1.00
2 4	1.0
	8
52	1.001
23	10.0
4.1	1.11
5 4	1.00
18.27	1.10
8.8	15.7
· Z 👳	100.00
* *	
	1.00
11	1.0
1	1

	Bedrock Unit A	Bedrock Unit B	Bedrock Unit C	Bedrock Unit D	Bedrock Unit E	Bedrock Unit F	Bedrock Unit G
Total Carbonate Content	N	474.4	5	7	6		3
Carbonic Acid Solubility		100	6	2	3	4	5
Apparent Porosity	- 2	6	4	1 1 1 1 1 1 1 1 1	3	5) 1
Bedrock Abrasion	4	3	2	1.1 1.1.1	6	Take 1	
Uniaxial Compression	7	4	3	We be also	2	5	6
Total Score	. 22	18	20-	12	20	22	26

ity to ICal a

AN MATCH BRIDE PROVIDENCE

abundance in till. No precise examination of bedrock textures was made, thus the relationship of these to till textures remains tentative.

Although bimodality is observed in the grain size distribution curves with apparent terminal grade modes, it is doubtful that these characteristics are molely the result of either took type, distance of transport, or mode of transport but rather a combination of the three. Samples from the latero-frontal moraige were taken over a distance of approximately 500 m (1 to 1.5 km down willey from the bedrock soutce). All samples show a trend towards bimodality. Therefore, blocks plucked from the bedrock units were probably comminuted, due to a combination of abrasion and crushing for up to [75 km/rom that source.]

Since all bedrock units have solomits and califite as a major mineralconstituent, no distinction can be made as to which rock unit was dominant in the gills. Sefrock unit D which was observed to be high in chlorite, quarti; and mice content, generally dominates the till mineral constituent, according to X-ray plots. It is considered that bedrock unit D (the Weakest unit), maplies the major fine matrix constituent of the tills.

The excavation of large builders and their subsequent deposition down-valley 0.5 to 2.0 ks from their source clearly indicates that not all materials are grantly reduced in bulk. The sole of transport of these boulders were probably seglicities and/or basel according to photographic records of the glacier terminum (Figures 2 s, b, c, and d). Boulders may have had a significant role to play in the erois of bedrook units as avidenced by the shundance of striations, chitter marks and deep goinges over virtually all bedrock units. Reverer, there is no may to tell from these eroisonal forms the size of eroiding softemat.

-122-

The work influential bedrock characteristics in determining the number and miss of excavated boulders appear to be hedding joins. The artike-dip relationship high influences the degrees to which hedrock unit are plucked and excavated. With beds striking approximately morth-sould and dipping steeply wear between 14° and 54° , overlying ice movement was at approximately 45° to atrike. The situation has been reported to anhance rock fracture, (Lama and Veukwerl 1978).

-109-

5.3 Bedrock Surface Morphology: Bedrock Roughness

Befrock roughness was examined quantitutively and quiltativaly at the micro-scale, and qualitativity at the meso-scale. Now the alopefrequency distributions and trend surface anitysis of individual befrock unit plots, bedrock roughness can be ranked at the altro-scale.

Table 13 summarises the ranking of bedrack unit plots with reference to slope frequency distribution and the measure of 'ideal plane' entiguration (correlation coefficient of the trend surface analysis, ide order polynomial). The ranking ranges from 1 to 7. In the slope frequency ranking, the range represents a bendary towards a cough or non-uniform surface. A similar ranking for the trend surface ideal plane refers to 1 ar being closest to resembling an ideal plane and 7 the least similar. To this discussion the ranking is a measure of relative roughness. At the measurements, a qualitative visual assessment we used in the branking of bedrack unit profiles.

of the micho-scale, the slope frequency ranking has bedrock unit E as the knowthese closely followed by bedrock unit D, and unit G as the roughest. The 'ideal Jime' ranking temperies bedrock units A and C as closely resembling the ideal place configuration (surface) with unit B having the laser resembling.

-123-

					-
		ъ	-	- T	- 2
٠	~	•		- 4	~

Ranking of Bedrock Units with Reference to Slope Frequency Distributions and Ideal Plane Configuration at the Micro-Scale and a Qualitative Assessment of the Degree of Horizontial Levelness at the Meso-Scale.

and the second sec			
		micro-scale	meso-scale
	Slope Frequency Distribution	Correlation Coefficient (Ideal Plane Configuration)	Qualitative Assessment
Bedrock Unit A	6	1 .	3
Bedrock Unit B	3	6	6
Bedrock Unit C	5		2
Bedrock Unit D	2	4	
Bedrock Unit E	and a second	2	7
Bedrock Unit F	4	3	
Bedrock Unit G	7.0	5	× 1. 5

Stope frequency (spatial region of 1 to 7) indicates a bandway towards a more uniform, invalid relief (surface) and least uniform invalid relief percentage and recepted region of the store is a located band surface. Note that of the store is a constraint in the store is a store is a store in the store in the store is a store in the store is a store in the store is a store in the store in the store is a store is a store in the store is a store is a store is a store is a store in the store is a store is a store is a store in the store is a store in the store is a store in the store is a store is

-124

110-

The slope frequency ranking ranks the units as to their resemblance to a lavelled, horizontal surface. This, however, does not imply that a surface such as this is the monother in terms of ice aligns. As discussed in the truth worface analysis, a surface that resembles a 3rd order polynomial plane best typifies an ideal sliding surface at the micro-scale. Therefore, it would not be appropriate that the two rankings be added to produce an overall roughness ranking. The slope frequency rating may best be interpreted as providing an insight as to whether a bedrock unit was eroded evenly (i.e. was there preferential erosion on a particular bedrock unit, and was this the result of glacker ice characteristics or the actual physical characteristics of the bedrock unit?).

At the measurealls, the ranking of a levelled horizontal surface has bedrock unit D as the immother with bedrock unit E the roughers. Again this does not imply that this qualitative measure of roughness can be imterpreted as a measure of an ideal aliding surface at this scale.

A visual interpretation of bedrock mmoothness at the memo-scale and a qumnificative assessment of slope frequencies at the micro-scale show no apparent similarities in bedrock roughness or degrees of levelness at these two scales. At the micro-scale, bedrock unit B is the smoothest (most horizontally level) and G is the roughnest (least horizontally level); at the semo-scale, bedrock unit D is the smoothest and S is the roughest.

5.4 Bedrock Unit Strength and Morphology

The results presented in Tables 12 and 13 clearly indicate that bedrick unit D is the weakest and one of the smoothest bedrock unit, while bedrock unit O is the strongert and roughest unit. The significance of this relationship is that over a type them that point weaks the derivat work are derived to

-125-

a smoother bedform as compared to stronger units which erode to a relatively rougher bedform.

Although roughness/smoothness or degree of horizontal levelness may be an indication of eresion (preferential) on bedrock mults, they probably do not adequately describe a bedform in which sliding is enhanced and eroston retarded. It is more probable that each bedrock unit has its own unique bed configuration which enhances sliding and retards erosion. The morphology of this bed appears to be influenced by physical and chemical characteristics inherent in the bedrock (such as those identified in Table 12) as well as variations in beach its conditions.

In summation, no comprehensive description of roughness and erosion can be expressed in simple numerical form. It is concluded that roughness and erosion are, in mathematical termitables, vectors rather than scalar quantities (Stone and Dungundji 1963). In any assessment of erodibility of a given beforek unit, the extent of each physical and chemical characteristic of the unit must be opecified. Through the qualitative and quantitative processies, once understanding of the resultant bedrock roughness may be achieved. Residentiaries of the resultant bedrock roughness may be achieved. Residentiaries of the resultant bedrock roughness are be achieved. Residentiaries of the resultant bedrock to roughness are in fact relative terms.

5.5 Bedrock Morphology and Glacial Flow: Concluding Remarks

It has been hypothesized in this thesis that ideal plane (surface) configurations of bedrock units meed hot necessarily be borisonically level to embance glacial flow. Based on physical and chanical characteristics of bedrock types, and of glacier ics conditions at the ics-rock interface, each bedrock type vill seek out its om particular configuration (ideal

-126-

-112-

sliding surface) which enhances flow and retards erosion. The erodibility of a bedrock unit may be reflected in its morphological variation from an ideal plane or surface, although in this study all bedrocks appear to be of the similar magnitude of erodibility. Any differences between them appear to be compensated for by each unit assuming distinct micro surface characteristics:

Thus, each bedrock type probably has an affect on basal ice conditions and ice flow. However, where various bedrock types are in close proximity to one another, individual bedrock affects on ice flow may be masked by collective properties. Bedrock morphologies (prior to and during glacial activity) have a major influence in determining basal ice conditions and glacial flow.

-127-

Sec. St. Trans

Bibliography

-114-

- Aitken, J.D., (1966): "Middle Ordovician cyclic sedimentation, southern Rocky Mountains of Alberta." <u>Bulletin of Canadian Petroleum Geology</u>, Vol. 14(9), p 405-441.
- Aitkan, J.D., (1971): "Control of Lower Faleozoic sedimentary facies by the Kicking Horse Rim, southern Rocky Mountains, Gamada." <u>Sulletin</u> of Canadian Petroleum Geology, Vol. 19(3), p 557-569.
- Aitken, J.D., (1978): "Revised models for depositional Grand Cycles, Cambrian of the southern Rocky Mountains, Canada." <u>Bulletin of</u> <u>Canadian Petroleum Geology</u>, Vol. 26(4), p 515-542.
- Attkein, J.D., and Gregge, K.G., (1967): Upper Canadian Formations, Southern Rocky Mountains of Alberta, An Intertue Report, Dept. of Energy, Mines and Resources, Geological Survey of Canada, Ottawa, Paper 66-49, 91 pp.
- Aitkan, J.D., and Norford, B.S., (1967): "Lower Ordovician Survey Peak and Outram Formations, southern Rocky Mountains of Alberta." <u>Bullatin of</u> <u>Canadian Petroleum Geology</u>, Vol. 15(2), p. 150-207.
- Allison, L.E., and Moodie, C.D., (1965): "Carbonate: Acid-Neutralization Method." In, C.A. Black, (ed.), <u>Methods of Soil Analysis</u>, American Sociaty of Agronomy: Madison, Wisconsin, p 1379-1408.
- Andrews, J.T., (1972): "Glacier power, mass balances, velocities and erosion potential." Zeitschrift für geomorphologie, No. 13, p 1-17.
- Balkwill, H.R., (1972): "Structural geology, lower Kicking Horse River region, Rocky Mountains, British Columbia." <u>Bulletin of Canadian Petroleum</u> <u>Geology</u>, Vol. 20(3), p. 508-633.
- Barnes, P., Tabor, D., and Walker, J.C.F., (1971): "The friction and creep of polycrystalline ice." Proceedings of the Royal Society of London. Sories A, No. 324, p 127-155.
- Barron, K., (1971): "Britle fracture initiated in and ultimate fracture of rocks." <u>International Journal of Rock Mechanics and Mining Science</u>, Vol. 8(6), p 565-575.
- Batterson, M.J., (1980): <u>Contemporary Frontal Moraine Formation in the Yoho</u> <u>Valley, British Columbia</u>, M.Sc. thesis, <u>Memorial University of NewFound-Iand</u>.

and a support of the address of

1 14 15 16 16.
- Bauer, V.F., (1961): "Kalkabeitze unter Kalkalpengistechern und ihre Bedautung fur die Alterbestimmungheute glatscherfrei werdender Karren-ormen." Zeitschrift für Unterscherkunde und Glazialgeologie. Bd. 4, Ht. 3, P215-223.
- Beach, H.H., (1943): <u>Moose Mountain and Morley map areas, Alberta,</u> Department of Energy, Mines and Resources, Geological Survey of Canada, Octawa, Memoir 236, 74 pp. 4
- Beaumoff, P., (1972): "Clay mineralogy of glacial clays in eastern Durham, Engländ:" In, E. Yatsu, and A. Falconer, (eds.), Research Methods in Pleistocene Geomorphology, Proceedings 2nd Guelph Symposium on Geomorphology, 1971. University of Guelph, Gutario, p. 83-208.
- Belyes, H.R., (1960): The Story of the Mountains in Banff National Park, Department of Energy, Mines and Resources, Geological Survey of Canada, Ottawa, Misc. Report No. 1, 42 pp.
- Benoist, J.P., (1979): "The spectral power density and shadowing function of a glacier microrelief at the decimetre scale." <u>Journal of Glaciology</u>, Vol. 23(89). p 57-66.
- Benoist, J.P., and Lliboutry, L., (1978): "Fonction'd'éclairement d'un profil aléatoire gaussien." Annales de Géophysique, Vol. 34(2), p 163-175.
- Berenbaum, R., and Brodie, I., (1959): "The tensile strength of coal." Journal of the Institute of Fuel, Vol. 32, p 320-327.
- Blood, D., (1976): <u>Rocky Mountain Wildlife</u>, Hancock House; Saanichton, B.C., Seattle, Washington, Buffalo, New York, 116 pp.
- Bostcoff, H.S., (1948): Physicography of the Canadian Cordillera, with special reference to the area north of the fifty-fifth parallel, Department of Energy, Mines and Resources, Geological Survey of Canada, Ottawa, Memoir 247, 106 pp.
- Boulton, G.S., (1972): "The role of thermal regime in glacial sedimentation." In, R.J. Frice, and D.E. Sugden, (eds.), <u>Polar Geomorphology</u>. Institute of British Geographers; London, p 1-19.
- Boulton, G.S., (1974): "Processes and patterns of glacial erosion." In, D.R. Costes, (ed.), <u>Glacial Geomorphology</u>, State University of New york; <u>Binghampton</u>, New York, p 47-87.
- Boulton, G.S., (1975): "Processes and patterns of subglacial sedimentation: a theoretical approach." In, A.B. Wright, and F. Moseley, (eds.), <u>Ice Ages: Ancient and Modern, Seal House Press</u>, Liverpool, p.7-42.

-115-

-129-

- Boulton, G.S., (1976): "A genetic classification of tills and criteria for distinguishing tills of different origin.". Zensyty Naukode Universytetu Im Adama Mickiewicz w Poznaniu, Geografia, Vol. 12, p 65-80.
- Boulton, G.S., (1978): "Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. <u>Sedismenciogy</u>, Vol. 25(6), p 773-799.
- Boulton, G.S., (1979): "Processes of glacier erosion on different substrata." Journal of Glaciology, Vol. 23(89), p 15-38.

Boulton, G.S., Morris, E.M., Armstrong, A.A., and Thomas, A., (1979): "Direct measurement of stress at the base of a glacier." <u>Journal of Glaciology</u>, Vol. 22(22), p 3-24.

- Boulton, G.S., and Vivian, R., (1973): "Underneath the glaciers." <u>Geographical</u> <u>Magazine</u>, Vol. 45(4), p 311-319.
- Bowles, J.E., (1974): Engineering Properties of Soils and Their Measurement, McGraw-Hill; New York, New York, 187 pp.
- Brace, W.F., (1972): "Laboratory studies of stick-slip and their application to earthquakes." Tectonophysics, Vol. 14, p 189-200.
- Brady, N.C., (1974): The Nature and Properties of Soils, Macmillan Publishing Co.; New York, New York, 639 pp.
- Bray, J.R., (1964): "Chronology of a small glacier in eastern British Columbia, Canada." Science, Vol. 144, p. 288-298.
- Bray, J.R., and Struik, G.J., (1963): "forest growth and glacial chronology in eastern British Columbia and their relation to recent climatic & trends." Canadian Journal of Botany, Vol. 41(8), p 1245-1271.
- Brepson, R., (1979): "Simulated glacier sliding over an obstacle." <u>Journal</u> of Glaciology, Vol. 23(89), p 143-156.
- Broster, B.E., Dröhmania, A., and White, J.C., (1979): "A sequence of glacial deformation, erosion, and deposition at the tea-rock interface during the last glaciation; Crambrook, British Columbia, Canada." Journal of Glaciology, Vol. 23(89), p 283-295.
- Brown, C., (ed.), (1972): <u>The X-Ray Identification and Crystal Structures</u> of <u>Clay Minerals</u>, Mineralogical Society, Clay Minerals Group; London, 544 pp.

Brunger, A.G., Nelson, J.G., and Ashwell, I.Y., (1967): "Recession of Hector and Peyto Glaciers: Further studies in the Drummond Glacier, Red Deer Valley area, Alberta," Canadian Geographer, Vol. 11(1), p 35-48. Budd, W.F., (1976): "Ice sliding and friction experiments." Journal of Glaciology, Vol. 16(74), p 279-280.

-117-

- Budd, W.F., Keage, P.L., and Blundy, N.A., (1979): "Empirical studies of sliding ice." Journal of Glaciology, Vol. 23(89), p 157-170.
- Buller, A.T., and McManus, J., (1973): The quartile-deviation/median-diameter relationships of glacial deposits." <u>Sedimentary Geology</u>, Vol. 10(2), p 135-146.
- Byerlee, J.D., and Brace, W.F., (1968): "Stick-slip, stable sliding, and earthquakes - effect of rock type, pressure, strain rate, and stiffness." Journal of Geophysical Research, Vol. 73(18), p 6031-6037.
- Byerlee, J.D., and Summers, R., (1975): "Stable sliding preceding stick-slip on fault surfaces in granite at high pressure." <u>Pure and Applied Geophysics</u>, Vol. 113, p 63-68.
- Carol, H., (1947): "The formation of <u>roches moutonnées</u>," <u>Journal of Glaciology</u>, Vol. 1(2), p 57-59.
- Carozzi, A.V., (ed.), (1975): Sedimentary Rocks, John Wiley and Sons; Stroudsburg, Penn., 468 pp.
- Carroll, D., (1970): Clay Minerals: A Guide to Their X-Ray Identification, Geological Society of America, Special Paper 126, 80 pp.
- Carson, M.A., and Kirkby, M.J., (1972): Hillslope Form and Process, Cambridge University Press; Cambridge, 475 pp.
- Chappell, B.A., (1974), "Deformational response of blocky models." <u>Intermational Journal of Rock Mechanics, Mining Science and Geomechanics</u>, Vol. 11(J), p 13-19.
- Chappell, B.A., (1975), "Component charatéristics of jointed rock massesb" International Journal of Rock Machanics, Mining Science and Geomechanics, Vol. 12(4), p 87-92.
- Chenevert, M.E., and Gatlin, C., (1965): "Hechanical anistropies of laminated sedimentary rocks." Society of Petroleum Engineers, Vol. 5(1), p 67-77.
- Chorley, R.J., and Haggett, P., (1965): "Trend surface mapping in geographical research." Transactions, Institute of British Geographers, No. 37, p 47-67.
- Chorley, R.J., and Kennedy, B.A., (1971): Physical Geography: A Systems Approach, Frentice-Hall; London, 370 pp.

Clayton, D., (1951): "An introduction to boundary and extreme pressure lubrication." British Journal of Applied Physics, No. 1, p 25-32.

Cole, J.P., and King, C.A.M., (1968): <u>Quantitative Geography</u>, John Wiley and Sons Inc.; London, New York, Sydney, 692 pp. Collier, E.P., (1957): "Glacier variations and transf in runoff in the Ganadian Cordillers." <u>International Union of Geodesy and Geophysics</u>, International Association of Scientific Hydrology General Assembly, Toronto. Ontario. No. 4, p 344-337.

-118-

- Collins, D.N., (1978): "Sediment concentration in melt waters as an indicator of erosion processes beneath an alpine glacier." <u>Journal of</u> Glaciology, Vol. 23(89), p. 247-257.
- Cook, D.G., (1975): <u>Structural Style Influenced by Lithofacies, Rocky</u> <u>Mountain Main Ranges, Alberta-British Columbia, Pepartment of</u> <u>Energy</u>, Mines and Remources, Geological Survey of Canada, Ottawa, Bulletin 233, 73 pp.
- Dahl, R., (1965): "Plastically sculptured detail forms on rock surfaces in northern Nordland, Norway." <u>Geografiska Annaler</u>, Vol. 47a(2), p83-140.
- Daugherty, R., (1974): <u>Science in Geography 2</u>, Data Collecting, Oxford University Press; London, 70 pp.
- Dickson, J.A.D., (1966): "Carbonate identification and genesis as revealed by staining." Journal of Sedimentary Petrology, Vol. 36(2), p 491-505.
- Diess, C., (1939): "Cambrian formations of southwestern Alberta and southexamplern British Columbia." <u>Geological Society of America Bulletin</u>, Vol. 50(6), p 951-1026.
- Donaldson, E.M., (1974): <u>Methods for the Analysis of Ores, Rocks and Related Minerals</u>, Department of Energy, <u>Mines and Resources</u>, <u>Mines</u> Branch, Ottawa, Monograph 881, 377 pp.
- Dreimanis, A., and Vagners, U.J., (1971): "Bimodal distribution of rock and mineral fragments in basal tills." In, R.P. Goldthwait, -(ed.), Till - A Symposium, Ohio State University Press; Ohio, p 27-37.
- Dreimanis, A., and Vagners, U.J., (1972): "The effect of lithology upon texture of tiles." In, E. Yitsu, and A. Falconer, (eds.), <u>Research Methods in Pleistcorem Geoscrphology</u>, Proceedings 2nd Guelph Symposium on Geomorphology, 1971. University of Guelph; Guelph, Ontario., pr 66-82.
- Dube, A.K., and Singh, B., (1969): "Determination of tensile strength of rocks by disc test method." Journal of Mines, Metals and Fuels, Vol. 17(9), p 305-307.

Dwornik, S.E., Johnson, S.E., Little, J.E., and Walker, J.E., (1959): "Microrelief - physiography - land-use relationships." <u>Geological</u> <u>Society of America Bulletin</u>, Vol. 70, p. 1804. Embleton, C., and King, C.A.M., (1968): <u>Glacial and Periglacial Geomor-phology</u>, Arnold; London, 608 pp.

-119-

Engelder, J.T., (1974): "Microscopic wear grooves on slickensides; indicators of paleoseismicity." <u>Journal of Geophysical Research</u>, Vol. 79(29), p 4387-4392.

Engelder, J.T., and Scholz, C.H., (1976): "The role of asperity indentation and ploughing in rock friction. Influence of relative hardness and normal loads." <u>International Journal of Rock Mechanics and Mining Science</u>, Vol. 13(5), p. 155-163.

Farmer, I.W., (1968): Engineering Properties of Rocks, Butler and Tanner Ltd.; London, 180 pp.

Foessel, D.G., (1974): An Analysis of the Temperature Distribution Over the Peyto Glacier, Alberta, M.Sc. thesis, University of Guelph.

Folk, L., (1968): Petrology of Sedimentary Rocks, Hemphills; Austin, Texas, 170 pp.

Ford, D.C., Fuller, P.G., and Drake, J.J., (1970): "Calcite precipitates at the soles of temperate glaciers." <u>Nature</u>, Vol. 226(5244), p 441-442.

Fowler, A.C., (1979): "A mathematical approach to the theory of gladier sliding." Journal of Glaciology, Vol. 23(89); p 131-141.

Friedman, M., Logan, J.M., and Rigert, J.A., (1974): "Glass-indurated quartz gouge in sliding-friction experiments on sandstone." <u>Geological</u> <u>Society of America/Bulletin</u>, Vol. 85, p 937-942.

Fritz, W.H., (1975): <u>Broad Correlations of Some Lower and Middle Cambrian</u> <u>Strata in the North American Cordillars, Department of Emergy, Mines</u> and Resources, <u>Goelogical Survey of Canada</u>, Ottawa, Paper 75-1A, p 533-540.

Galibert, M.G., (1962): "Recherches sur les processus d'érosion glaciaires de la haute montagne alpine." <u>Bulletin de l'Association Géographique</u> <u>Tranquis</u>, Vol. 304(4), p. 8-46.

Gardner, J., (1972): "Recent glacial activity and nome associated landforms in the Canadam Rocky Mountains" Tn. 0. Slavmaker and H.J. McPherson, (eds.), <u>Houncain Geomorphology</u>. Tantalus; Vancouver, British Columbia, p 55-62.

Gjessing, J., (1966): "On elastic scouring and subglacial erosion." <u>Norsk</u> <u>Geografisk Tidsskrift</u>, Bd. 20, Ht. 1-2, p 1-37.

Glen, J.W., (1979): "General Discussion." Journal of Glaciology, Vol. 23(89), p 391.

- Glen, J.W., Adie, R.J., Johnson, D.M., Bower, D.R., and Macqueen, A.D., (eds.), (1599): "Symposium on Glacier Bedis: the Ice-Rock Interface, Ottawa, 15-19 August, 1978." Journal of Glaciology, Vol. 23(89), 445 pp.
- Glen, J.W., Donner, J.J., and West, R.G., (1957): "On the mechanism by which stones in till become oriented." <u>American Journal of Science</u>, Vol. 255(3), p. 194-205.
- Gien, J.F., Bomer, D.R., and Paren, J.G., (1977): "Water at grain boundaries its role in the purification of temperate glacier ide." <u>Union Obodisique et Göophysque Internationale. Association International</u> <u>des Sciences Hydrologiums. Commission des Neigos et Glaces, Spropoina,</u> <u>Intotopes et impurtés dans les neiges et glaces, Actes du colloque de</u> <u>Grenolie, solt/sproptent 1975, Publication Bo. 118, p. 263-271.</u>
- Goldthwait, R.P., (1979): "Giant grooves made by concentrated basal ice streams." Journal of Glaciology, Vol. 23(89), p 297-307.
- Goodison, B., (1972): <u>The Distribution of Global Radiation Over Peyto</u> Clacier, Alberta, Environment Canada, Inland Waters Directorate, Ottawa, Ser58 No. 22, 22 pp.
- Griffiths, J.C., (1967): <u>Scientific Method in Analysis of Sediments</u>, McGraw-Hill; New York, New York, 508 pp.
- Grim, R.E., (1962): <u>Applied Clay Mineralogy</u>, McGraw-Hill; New York, New York, 384 pp.
- Groom, G.E., (1959): "Niche glaciers in Bünsow-land, Vestspitzbergen," Journal of Glaciology, Vol. 3(25), p 369-376.
- Hallet, B., (1975): "Subglacial silica deposits." <u>Nature</u>, Vol. 254(5502), p 682-683.
- Hallet, B., (1976): "The effect of subglacial chemical processes on glacier sliding." Journal of Glaciology, Vol. 17(76), p 209-221.
- Hallet, B., (1979): "A theoretical model of glacial abrasion." Journal of Glaciology, Vol. 23(89), p 39-50.
- Hambrey, M.J., and Muller, F., (1978): "Structures and ice deformations in White Glacier, Axel Heiberg Island, North West Perritories, Canada." Journal of Glaciology, Vol. 20(82). p 41-66.
- Hartis, S.A., and Boydell, A.N., (1972): "Clacial history of the Bow River and Red Deer River areas and adjacent foothils," In. H.O. Slayanker, and H.J. McPherson, (eds.), <u>Mountain Geomorphology</u>, Tantalus Press; Vancouver, British Columbia 9, 97-53.

Harris, S.A., and Howell, J.D., (1977): "Chateau Lake Louise moraines evidence for a new Holocene glacial event in southwestern Alberta." <u>Bulletin of Canadian Petroleum Geology</u>, Vol. 25(3) p 441-455.

Harrison, R.S., (1969): <u>Petrology of Some Mottled and Laminated Middle</u> <u>Cambrian Bolomites From Banff and Yoho National Parks</u>, M.Sc. thesis, University of Calgary.

Henoch, W.E.S., (1971): "Estimate of glacier secular (1948-1966) volumetric change and is contribution to the discharge in the Upper Saskatchewan River basin." Journal of Hydrology, Vol. 12(1), p 145-160.

Heusser, C.J., (1956): "Postglacial environments in the Canadian Rocky Mountains." <u>Ecological Monographs</u>, Vol. 26(3), p 263-302.

Hillel, D., (1971): Soil and Water: Physical Principles and Processes, Academic Press; New York, San Francisco, London, 288 pp.

Hjulstrøm, F., (1935): "Morphological activity of rivers as illustrated by the river Fyris." <u>Bulletin Geológical Institute Uppsala</u>, Vol. 25.

Rope, R., Lister, H., and Whitehorse, R., (1972): "The wear of sandstone by cold sliding ice." In, R.J. Frice, and D.E. Sugden, (eds.), Polar Geomorphology. Institute of British Geographers; London, p 21-31.

Horn, H.M., and Deere, D.U., (1962): "Frictional characteristics of minerals." Géotechnique, Vol. 12(4), p 319-335.

Hubley, R.C., (1956); "Glaciers of the Washington Cascade and Olympic Mountains; their present activity and its relation to local climatic trends." Journal of Glaciology, Vol. 2(19), p 669-674.

Hugman, R.H. H., and Friedman, N., (1979): "Effect of texture and composition on the mechanical behaviour of experimentally deformed carbonate rocks," <u>American Association of Petroleum Geologists Bullerin</u>, Vol. 63(9), p 1478-1489.

Intertuational Society for Rock Mechanics (ISBM), Commission on Standardisation of Laboratory and Field Tests, (1972): Sugmented Mathods for Decomming the Unlaxial Compressive Strength of Rock Materials and the Point Load Strength Index, Committee on Laboratory Tests; Lisbon, Documents No. 182.

Jaeger, C., (1972): <u>Rock Mechanics and Engineering</u>, Cambridge University Press; Cambridge, 417 pp.

Janz, B., and Storr, D., (1977): The Climate of the Contiguous Mountain Parks: Banff - Jaeper - Yoho - Kootensy, Environment Canada, Atmospheric Environmental Service, Toronto, Project Report No. 30, 324 pp.

Johnsson, G., (1956): "Glacialmorfologiska studier i södra Sverige med särskild hänsyn till glaciala riktnings - element och periglaciala frostfenomen." Medd. fr. Lunds Univ. Geogr. Inst., Auh. 30.

-135-

with her statute

Kamb, B., (1970): "Sliding motion of glaciers; theory and observation." Reviews of Geophysics and Space Physics, Vol. 8(4), p 673-728.

-127-

Kaszycki, C.A., and Shilts, W.W., (1979): "Average depth of glacial erosion, Canadian Shield." <u>Current Research</u>, Part B; <u>Geological Survey of Canada</u>, Paper 79-1B, p 395-396.

Kemmis, T.J., (1979): "General Discussion." Journal of Glaciology, Vol. 23(89), p 391-392.

Kers, L.E., (1964): "Förekomster av subglacialt utfälld kalksten i Solna samt i Gardvik, Västerbortens Län." <u>Geologiska Föreningens i Stockholm</u> Förandlingar, Vol. 86, pt. 3, p 282-310.

King, C.A.M., (1967): "An introduction to trend surface analysis." <u>Bulletin</u> of Quantitative Data For Geographers, No. 12, 38 pp.

King, C.A.M., (1969): "Trend surface analysis of central Pennine erosion surfaces." <u>Transactions of the Institute of British Geographers</u>, No. 47, p 47-59.

Klassen, R.A., and Shilts, W.W., (1977): "Glacial dispersal of uranium in the District of Reewarin, Canada." In, <u>Prospecting in Areas of Glaciated Terrain 1977</u>, Institution of Mining and Metallurgy; London, p 80-88;

Krumbein, W.C., and Sloss, L.L., (1963): <u>Stratigraphy and Sedimentology</u>, Freeman; San Francisco, 660 pp.

Lahee, F.G., (1961): Field Geology, McGraw-Hill Book Co. Inc.; New York, New York, 926 pp.

Lama, R.D., and Vutukuri, V.S., (1978): <u>Handbook on Mechanical Properties</u> <u>of Mocks</u>, Series on Nock and Soil Mechanics, Vol. 4, Trans Tech Fublication; Clausthal, Germany, 515 pp.

Lamar, J.E., and Thompson, K. B. (1956): "Sampling limestone and dolomite deposits for trace and minor elements." <u>Illonois State Geological</u> Survey, Circular 221, 18 pp.

Laverdièra, C., Guimont, P., and Pharand, M., (1979): "Marks and forms on glacier beds; formation and classification." <u>Journal of Glaciology</u>, Vol. 23(89), p 414-416.

Le Conte, J., (1877): "Hog wallows or prairie mounds of California and Oregon." <u>Nature</u>, Vol. 15, p 530-531.

Lewis, W., V., (1940): "The function of melt water in cirque formation." Geographical Review, Vol. 30(1), p 64-83.

-136-

Lewis, W.V., (1960): <u>Investigations on Norwegian Cirque Glaciers</u>, Royal Geographical Society; London, Research Series No. 4, 104 pp.

-123-

the second second state at a second state of the

Ljungner, E., (1924): "Nägra drag av den bohuslänska skärgårdens geologi och geomorfologi." <u>Mædd. fr. Geogr. Fören. 1 Göteborg</u>, 3.

Ljungner, E., (1925): "Tväflikiga grytor, ett drag 1 den glaciala detaljskulpturn." <u>Förh. 17, Skand. Naturfi-möte</u>, 1923.

Lliboutry, L., (1958): "Glacier mechanics in the perfect plasticity theory." Journal of Glaciology, Vol. 3(23), p 162-169.

Lliboutry, L., (1965): "How glaciers move." <u>New Scientist</u>, Vol. 28(473), * p 734-736.

Lliboutry, L., (1968): "Glacial theory of subglacial cavitation and sliding of temperate glaciers." Journal of Glaciology, Vol. 7(49), p 21-58.

Lliboutry, L., (1969): "The dynamics of temperate glaciers from the detailed viewpoint." Journal of Glaciology, Vol. 8(53), p 185-205.

Lliboutry, L., (1975): "Loi de glissement d'un glacier sans cavitation," Annales de Géophysique, Vol. 30(2), p 207-225.

Lliboutry, L., (1976): "Physical processes in temperate glaciers." Journal of Glaciology, Vol. 16(74), p 151-159. 46

Liboutry, L., (1977): "Glacier sliding on a plane with smooth hemispherical knobs." <u>Transactions</u>, <u>American Geophysical Union</u>, Vol. 58(9), 'p 904-905.

Lliboutry, L., (1978): "Sliding of a glacier over a plane with hemispherical obstacles." <u>Annales de Géophysique</u>, Vol. 34(2), p 147-162.

Libourry, L., (1979): "Local friction laws for glaciers: a critical review and new openings." <u>Journal of Glaciology</u>, Vol. 23(89), p 67-95.

Luckman, B.H., and Osborne, G.D., (1979): "Bolocene glacier fluctuations in the middle Canadian Rocky Mountains." <u>Quaternary Research</u>, Vol. 11(1), p 152-77.

Mabbutt, J.A., (1963): "Wanderrie banks: microreliaf patterns in semi-arid western Australia." <u>Geological Society of America Bulletin</u>, Vol. 74(5), p 529-540.

Mathews, W.H., (1979): "Simulated glacial abrasion." <u>Journal of Glaciology</u>, Vol. 23(89), p 51-56.

Matthes, F.E., (1930): "Geological history of the Yosemite valley." United States Geological Survey, Professional Paper 160, 137 pp.

-137-

Linger strain

Mazanti, 5.5., and Sowers, G.F., (1965): "Laboratory testing of rock strength." <u>Proceedings of the Symposium for Testing Techniques for</u> Rock Mechanics, Seattle, Washington, p. 207-227.

Service Strategy Strategy

and the state of the second state of the

Means, W.D., (1976): Stress and Strain, Springer-Verlag; Berlin, New York, 339 pp.

Meier, M.F., (1979) : "General Discussion." <u>Journal of Glaciology</u>, Vol. 23(89), p 381.

Metcalf, R.C., (1979): "Energy dissipation during subglacial abrasion at Nisqually Glacier, Washington, U.S.A." <u>Journal of Glaciology</u>, Vol. 23(89), p 233-246.

Mills, H., (1975): Sediment Characteristics of Small Temperate Glaciers, Ph.D. thesis, University of Washington.

Milner, H.B., (1962): <u>Sedimentary Petrography</u>, Macmillan Co.; New York, New York, 643 pp.

Misterek, D.L., (1970): "Analysis of data from radial jacking tests." Proceedings, Symposium for Determination of the In situ Modulus of Deformation of Rock, Denver Colorado, 1969, A.S.T.M. Special Technical Publication No. 477, p 27-38.

Moran, S.R., Clayton, L., Hooke, R. Le B., Fenton, M.M., and Andriashek, L.D., (1980): "Glacier bed landforms of the prairie region of North America." Journal of Glaciology, Vol. 25(93), p. 457-476.

Morland, L.W., (1976): "Glacier sliding down an inclined wavy bed." Journal of Glaciology, Vol. 17(77), p 447-462.

Morris, E. M., (1976): "An experimental study of the motion of ice past obstacles by the process of regelation." <u>Journal of Glaciology</u>, Vol. 17(75), p. 79-98.

Morris, E.M., (1979): "The flow of ice, treated as Newtonian viscous liquid, around a cylindrical obstacle near the bed of a glacier." <u>Journal of</u> <u>Glaciology</u> Vol. 23(89), p 117-129.

Mountjoy, E.W., (1962): Mount Robson (southeast) Map Area, Rocky Mountains of Alberts and British Columbia, Department of Energy, Mines and Resources, Geological Survey of Canada, Ottawa, Paper 61-31, 114 pp.

North, F.K., and Henderson, G.G.L., (1954) (""Summary of the geology of the southern Rocky Mountains of Canada:" <u>Alberts Society of Petroleum</u> <u>Geologists</u>, Guidebook, Fourth Annual Conference, p 15-81.

Nye, J.F., (1965): "The flow of a glacier in a channel of rectangular elliptic or parabolic cross-section." <u>Journal of Glaciology</u>, Vol. 5(41), p 661-690. Nye, J.F., (1967): "Theory of regelation." Philosophical Magazine, Vol. 16(6), p 1249.

· 1. "你说了,你说,这次不是你没有了你?""你你你你的你?"你你说你说这些,我们都能能不是

Nye, J.F., (1969): "A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation." <u>Proceedings ofthe Royal Society of London, Section A, Vol. 311, p 445-467.</u>

Nye, J.F., (1970): "Clacier Bliding without cavitation in a linear viscous approximation." <u>Proceedings of the Royal Society of London</u>, Section A, Vol. 315, p 381-403.

Obert, L., and Duvall, W.I., (1967): <u>Rock Mechanics and the Design of Structures in Rock</u>, John Wiley and Sone, Inc.; New York, London, Sydney, 650 pp.

Ohnaka, H., (1973): "Experimental studies of stick-slip and their application to the earthquake source mechanism." <u>Journal of Physics of the Earth</u>, Vol. 21, p 285-303.

Okulitch, J.V., (1956): "The Lower Cambrian of western Canada and Alaska." <u>El Sistema Cambrico, Su Paleogeografia Y El Problema De Su Base</u>, 20th Compreso Geològico Internacional, Mexico. p 701-734.

Ommanney, C.S.L., (1976): <u>Canadian Glacier Variations and Mass Balance</u> <u>Changes 1970-1974</u>; Environment Canada, Glaciology Division, Ottawa, <u>Quadrennial Report, 18 pp.</u>

Palmer, A.R., (1960): "Some aspects of the early Upper Cambrian stratightephy of White Pine Country, Nevada and vicinity." In, Intermountain Association of Petroleum Geologists, <u>Guidebook to the Geology of East Central Nevada</u>, p 53-58.

Palmer, A.R., (1971): "The Cambrian of the Great Basin and adjacent areas, western United States." In C.B. Bolland, (ed.), <u>Cambrian of the New</u> World, "Kiley-Interscience; Toronto, p. 1-78.

Paterson, W.S.B., (1969): The Physics of Glaciers, Pergamon Press; Oxford, 250 pp.

Pettijohn, E.J., (1975): <u>Sedimentary Rocks</u>, Harper and Row Publishing Co.; New York, 628 pp.

Peuker, T.K., (1972): Computer Cartography, Association of American Geographers; Washington, 75 pp.

Phillips, J.G., (1955): The Sampling and Examination of Clay and Shale Deposits, Department of Mines and Technical Surveys, Mines Branch, Ottawa, 7 pp. -

Porter, S.C., and Denton, G.H., (1967): "Chronology of Neoglaciation in the North American Cordiliera." <u>American Journal of Science</u>, Vol. 265(3), 9 137-210.

- Raraty, L.E., and Tabor, D., (1958): "The adhesion and strength properties of ice." <u>Proceedings of the Royal Society of London</u>, Series A, Vol. 245 (1241), p 184-201.
- Resetti, F., (1951): "Middle Cambrian stratigraphy and faunas of the Canadian-Rocky Mountains." Smithsonian Miscellaneous Collection, Vol. 116, 277 pp.
- Richmond, G.M., (1965): "Glaciation of the Rocky Mountains." In, R.E. Wright, Jr., and D. Frey, (eds.), <u>Quaternary of the United States</u>, Frinceton University Press; Princeton, p 217-230.
- Kingheim, A.S., (1964): "Experiences with the Beaver Paw Shale at the South Saskatchewan River dam." <u>Transactions of the 8th Congress on Large Dame</u>, Vol. 1, p 529-550.
- Robin, G., de Q., (1976): "Is the basal ice of a temperate glacier at the pressure melting point?" Journal of Glaciology, Vol. 16(74) p 183-186.
- Robison, R.A., (1960): "Lower and Middle Cambrian stratigraphy of the eastern Great Basin." In, Intermountain Association of Petroleum Geologists, Guidelook to the Geology of East Central Nevada; p 43-52.
- Roed, N.A., (1975): "Cordilleran and Laurentide multiple glaciation, west central Alberta." Canadian Journal of Earth Science, Vol. 12(9), p 1493-1515.
- Röthlisberger, H., (1968): "Eropive processes which are fikely to accentuate or reduce the bottom relief of valley glaciers." <u>Wind a Gödémie et</u> <u>Göphysique Internationale</u>. Association Internationale d^{*}Bydrologis Scien-<u>Hifque</u>. Assemblée générale de Berne, Sept. 25 - Oct. 7, 1957, p. 87-97.
- Röthlisberger, H., (1979): "General Discussion." <u>Journal of Glaciology</u>, Vol. 23(89), p 385.
- Ruiz, M.D., (1966): "Some technological characteristics of twenty-six Brazilian rock types." <u>Proceedings of the last Congress, International Society of</u> <u>Rock Mechanics</u>, Lisbon, Vol. 8, p 115-119.
- Rutter, N.W., (1966): "Multiple glaciation in the Banff area, Alberta." <u>Bulletin</u> of Canadian Petroleum Geology, Vol. 14(4), p 620-626.
- Rutter, N.W., (1972): <u>Geomorphology and Multiple Clacistion. Banff Area.</u> <u>Alberts</u>, Department of Energy, Mines and Resources, Geological Survey of Camada, Ottawa, Bulletin 206, 54 pp.
- Rutter, N.W. (1976): "Multiple glaciation in the Canadian Rocky Nountains with special reference to northeastern British Olumbia." In, N.C. Mahney, (ed.), Quaternary Stratigraphy of North America, Dowden, Hutchinson and Ross; Stroudsburg, Ra., p 405-440.

Rutter, N.W., (1977): <u>Multiple Glaciation in the Area of Williston Lake</u>, <u>British Columbia</u>, Department of Emergy, Mines and Resources, Geological Survey of Canada, Ottawa, Bulletin 273, 31 pp. Schenck, H.G., and Adams, J.E., (1943): "Operation of commercial micropaleontological laboratories." Journal of Paleontology, Vol. 17 (6), p 554-583.

如何的现在,1997年1月1日。 1997年1月1日(1997年1月1日) 1997年1月1日(1997年1月1日)

Schmidt, A.H., (1975): SYMVU Manual, Harvard University; Cambridge, Mass., 48 pp.

-127-

- Shav, J., (1972): "Pleistocene chronology and geemorphology of the Rocky Mountains in south and central Alberts." In, R.O. Slaymaker, and R.J. McPhernon, (eds.), <u>Mountain Geomorphology</u>, Tantalus Press; Vancouver, British Columbia, 9 37-46.
- Scherzer, W.H., (1905): "Glacial studies in the Canadian Rockies and Selkirks." Smithsonian Miscellaneous Collection, Vol. 47(2), p 453-496.
- Scherzer, W.H., (1907): "Glaciers of the Canadian Rockies and Selkirks." Smithsonian Contribution to Knowledge, Vol. 34, 134 pp.
- Slatt, R.M., (1971): "Texture of ice-cored deposits from ten Alaskan valley glaciers." Journal of Sedimentary Patrology, Vol. 41(3), p 828-834.
- Slatt, R.M., and Press, D.E., (1976): "Computer program for presentation of grain-size data by the graphic method." <u>Sedimentology</u>, Vol. 23(1), p 121-132.
- Slaymaker, H.O., and McPherson, H.J., (eds.), (1972): <u>Mountain Geomorphology</u>, Tantalus Press; Vancouver, British Columbia, 274 pp.
- Smorodinov, M.I., (1966): "Express method of the rock abrasiveness estimation". Proceedings of the let Congress, International Society of Rock Mechanics, Lisbon, Vol. 1, p. 111-113.
- Souchez, R.A., Lorrain, R.D., and Lemmens, M.M., (1973): "Refreezing of interstitial water in a subglactal cavity of an lpine glacier as indicated by the chemical composition of ice." Journal of Glaciology, Vol. 12 (86), p 453-459.
- Stalker, A., and McPherson, H.J., (1969): "A probable late Finedale terminal moraine in Castle River Valley, Alberts." <u>Geological Society of America Bullerin</u>, No. 80, p 2115-2122.
- Stenning, A.J., (1980): Synoptic Controls on Katabatic Layer Characteristics Above a Temperate Alpine Type Glacier, Peyto Glacier, Alberta; M.Sc. thesis, Memorial University of Newfoundland.
- Stone, R.O., and Dungundji, J., (1965): "A study of microrelief. Its mapping classification and qualification by means of a Fourier analysis." <u>Engineering Geology</u>, Vol. 1(2), p 89-187.
- Strahler, A.H., and Koons, D., (1959): "Objective field sampling of terrain properties." <u>Geological Society of America Bulletin</u>, Vol. 70, p 1813.

Sugden, D.E., and John, B.S., (1976): <u>Claciers' and Landscapes</u>, Arnold; London, 376 pp.

Thorarinsson, S., (1939): "Hoffellsjökull, its movement and drainage." Geografisks Annaler, Arg. 21, Ht. 2-4, p 189-215. Van Lopik, J.R., and Kolb, C.R., (1958): "Semi-quantitative classification of landscape in desert regions." <u>Geological Society of America Bulletin</u>, Vol. 69(4), p 294-302.

Viyian, R., and Bocquet, G., (1973): "Subglacial cavitation phenomena under the Glacier D'Argentiere, Mont Blanc, France." Journal of Glaciology, Vol. 12(66), p 439-451.

Vutukuri, V.S., Lama, R.D., and Saluja, S.S., (1974): <u>Handbook on Mechanical</u> <u>Properties of Rocks</u>, Trans Tech Publications; Ohio, Vol. 2(1), 280 pp.

Wagner, W.P., (1966): <u>Correlation of Rocky Mountain and Laurentide Glacial</u> <u>Chronologies in Southwestern Alberta, Canada</u>, Ph.D. thesis, University of Michigan.

Walcott, C.D., (1908): "Nomenclature of some Cambrian Cordilleran formations." Smithsonian Miscellaneous Collection, Vol. 53(1), p-1-12.

Walcott, C.D., (1920): "Geological explorations in the Canadian Rockies." <u>Smithsonian Miscellaneous Collection</u>, Vol. 72(1), p 1-16.

Wanless, E.R., (1979): "Limestone response to stress: pressure solution and dolomitization." Journal of Sedimentary Petrology, Vol 49(2), p 437-462.

Wesver, C.E., (1958): "Geologic interpretation of argillaceous sediments: Part 1, Origin and sign#filence of Clay mimerals in sedimentary rocks." Builetin, American Association of Petrolsim Geologists, Vol. 42(2), p 254-271.

Weertman, J., (1957): "On the sliding of glaciers." Journal of Glaciology, Vol. 3(21), p 33-38.

Weertman, J., (1962): "Catastrophic glacier advances." In, International Association Scientific Hydrology, Symposium of Obergurg1, 1962, p 31-39.

Weertman, J., (1964): "The theory of glacier sliding." <u>Journal of Glaciology</u>, Vol. 5(39), p 287-303.

Weertman, J., (1966): "Effect of the basal water layer on the dimensions of ice sheets." Journal of Glaciology, Vol: 6(44), p 19.

Weertman, J., (1967): "An examination of the Lliboutry theory of glacier sliding." Journal of Glaciology, Vol. 6(46), p 489-494.

Weertman, J., (1968): "Lubrication mechanism of glacier surges." <u>Canadian</u> Journal of Earth Science, Vol. 6(4), p 929-939.

Weertman, J., (1972): "General theory of water flow at the base of a glacier or ice sheat." <u>Reviews of Geophysics and Space Physics</u>, Vol. 10(1), p. 287-333. Weertman, J., (1974): "Stability of the junction of an ice sheet and an ice shelf." Journal of Glaciology, Vol. 13(67), p 3-11.

Weertman, J., (1976): "Penetration depth of closely spaced crevasses." Transactions, American Geophysical Union, Vol. 57(4), p 324-325.

Weertman, J., (1979): "The unsolved general glacier sliding problem." Journal of Glaciology, Vol. 23(89), p 97-115.

West, R., and Raki, A., (1961): "An advancing glacier in Canada." <u>Science</u>, No. 133, p 1361.

Wheeler, A.O., (1931): "Glacial change in the Canadian Cordillera: the 1931 expedition." <u>Canadian Alpine Journal</u>, Vol. 20, p 120-142.

Yamaguchi, U., (1970): "The number of test pieces required to determine the strength of rock." <u>International Journal of Rock Mechanics and Mining Science</u>, Vol. 7 (2), p 209-227.

Young, G.J., and Stalley, A.D., (1976): <u>Canadian Glacters in the International Bydrological Beacher Program, 1965-1974, No. 4, Perto Glacier, Alberta, Environment, Canada, Inland Waters Directorate, Ottawa, Scientific Series No. 71, 55 pp.</u>

Appendix A:

Carbonic Acid Solubility

Since matural limatons solution is accomplished by H_2CO_3 , a solubility test employing a weak solution of H_2CO_3 (bH 4.0) was undertaken. It was reasoned that this procedure would reflect the matural conditions of limestoms solution. No reference could be found for similar tests on powdered rock samples. A procedure was designed which emabled an efficient analysis under controlled conditions (Toxall, per, com., Strong, per, com.).

The procedure consists of adding a known amount of less than 46powdered bedrock ample (5 gm) to a solution of $\mathbb{I}_2(O_3 \ (50 ml))$; pH 4.0. Samples and solutions are controlled by placing them in a freezer at 4.0 ' to 5.0°C. A standard solution of $\mathbb{I}_2(O_3$ was made and bonitered (pH and temp.).

Temperature pR and concentration of CACD₂ (mg/L) readings were taken at 1 hr., 2 hrs., 7 hrs., 19 hrs., 31 hrs., and 43 hrs. A conductivity metre facilitated the determination of mg/L of CACD₂. Care was taken to assure samples were covered and kept at a constant temperature of 4.0 to 5.0° C at all times.

*********** . HISTOGRAN ********* logical#1 stars(80), title(40), iparn, isnfil, iend integer ihist(300) virtual array(5500) data stars/80*'*'/ implicit real+8 (a-h.o-z) type 20 format(' file or kb: ?') 20 accept 30, iparm, format(al) 30 if(iparn .eq. 'K') soto 12 type 21 21 format(" output file ?"/) call assign(9, 'out.dat',-1) opto 13. 12 call assign(9, 'kbr'.0) 13. iparas'N' 1 type 22 format(' input file 7'/) 22 call assign(8, 'in.dat',-1) if(iparm .eq. 'Y') goto 2 . 11 type 23 format(' # of intvis') 23 accept . . intvis type 24 24. format(10 - high range ?') accept ., ilo,ihi type 25 25 format(' variable ?') accept *, ivar. type 26 24 format(conversion ?') accept +,icvr type 328 format(' IBB status ?'). 328 accept *, ibnotib top=ihi offset=ilo call cvr(top,icvr) call cvr (offset, icvr) sizint=(top-offset)/float(inty) 12 type 27 27 format(" title ?') accept 28, title 28 format(40al)

-132-

type hcpy.for

S. in Mine

initialize variables c dn 29 i=1.300 ihist(i)=0 29 continue Sump nun=1 izero=0 SAISVED inisy=0 ismall=0 large=0 z=0.0 sgr=0.0 cube=0.0 forth=0.0 sy2=0.0 8×3=0.0 sx4=0.0 3 read(8.*.end=99), arrav(num) 10 format(f5.2) type 329 sib8, (array(num; j), j=1,3) 329 format(3x, 11,316.0) x = array(num) if(x .gt. 0.0) gota 6 if(x .ne. 0.0) gota 7 izero=izero+1 c disable the following 'goto 5' stat when including zero. readings in the calculations. soto 5 if(ilo..gt. O)ismall=ismall+1 if(ilo .eq. 0)ihist(1)=ifist(1)+1 if(x .eg. -99.0) imisv=imisv+1 goto 5 call cvr(x.icvr) array(num)=x SUA - SUA + X ¥2syey. sx2=sx2+x2 x3=x2*x 5x3=5x3+x3 ×4=x3*x sx4=sx4+x4 if((x.ge.offset).and.(x.le.top)) goto 4 if(x.lt.offset) ismall=ismall+1 if(x.gt.top) large=large+1 goto 5

-147-

do 60 -i=1, intv1s thi=offset+(sizint+i) flosfhi-sizint+0.01 percnt=(ihist(i)/fs)#100.0 ilnth = int(percat+50.0/100.0) if(ihist(i) .GT. 0.0) goto 31 write (9,53) ihist(i), percnt, flo, fhi format(5x, i4, ' readings (', f6.2, '%) 53 in the intvl 17.2, ' to ', 17.2;' : ',80A1) 1 goto 60 31 write (9,53) ihist(i), percnt, flo, fhi, (stars(j), j=1, ilmih) 60 continue Display Statistics. • write (9,65) 65 format(//20x, "STATISTICS"//) write (9,66) nt,sun, skewa, skew. write (9,67) n,xm,sesk white (9,68) imisv, var2, xkurta, xkurt write (9,69) sd,seku-66 format(6x, 'total entries : ', 15,5x, 'sum : ', 18.3,5x, ' skew : ',219.4) 67. format(2x, 'valid test scores : ', 15,5x, 'mean : ', f8.3,5x, 1-4 ' se : : ',18.4) - 68 format(Sx, 'missing values : ',15,5x, 'var : ',18.3,5x, ' ' kurt : ',219.4) .69 format(32x, 's.d. : ', f8.3, 5x, ' se : ', f8.4) c write (9.70) format(5x.'Statistics include readines above and below '. 70 'the said limits.'/) write (9.71) ismall.offset write (9.72) large.top write (9,76) izero 71 format(Sx,15, ' readings below limit of ',18.2)
72 format(Sx,15, ' readings above limit of ',18.2)
76 format(Sx,15, ' actual zero value/s encountered (included in ' 'statistics)',6(/)) type 73 73 . format(//' end??') accept 30, iend if(iend .eq. '1') goto 199 rewind 8 type 74 74 fornat(' Same parameters ?') accept 30, ipara type 75

CONTRACTOR AND AND A DAY

-148-

hänsyn till glaciala riktnings - element och periglaciala frostfenomen. Medd. fr. Lunds Univ. Geogr. Inst., Auh. 30. -135n = int(((v-offeet)/sizint) + 0.99) ihist(n)=ihist(n)+1 nun=hun+1 goto 3 All data read in. Set up to calculate statistics ntenue-1 nenue-1-inisy fn=float(n) sun2=sun**2.0 sun3=sun##3.0 sundasunatt.0 xn=sun/fn x#2=x###2.0 xn3=xn++3.0 xn4=xn++4.0 var2=(5x2 - fn+x+2)/(fn -1.0) var = sor/(fn-1.0) sd = dsgrt(var2) c loop to calculate v minus vbar c do 40 i=1.nt x=arrav(i) z=(x-xa) 22=2*#2 sar=sar+z2 sz=z/sd z3=5z++3 cube=cube+z3 24=52++4 forthaforth+z4 continue -• calculate statistics skewa=(cube+fn)/((fn-1.0)+(fn-2.0)) xkurta=forth*((fn*(fn+1.0))/((fn-1.0)*(fn-2.0)*(fn-3.0))) (3*(fn-1.0)*(fn-1.0))/((fn-2.0)*(fn-3.0)) \$kew1=(sx3-(3.0+xn+sx2)+(3.0+xn2+sun))/fn-xn3 skew2=((sx2-(fn*xn2))/(fn-1.0))**1.5 skeu=skeu1/skeu2 sesk = dsgrt((6.0+fn+(fn-1.0))/((fn-2.0)+(fn+1.0)+(fn+3.0))) xkurt1=((sx4-4.0*xn*sx3+6.0*xn2*sx2)-4.0*xn3*sun)/fn+xn4 xkurt2=((sx2-fn+xm2)/(fn-1.0))++2 xkurt=xkurt1/xkurt2 - 3 sekul = (24+fn+((fn-1.0)++2))/((fn-3.0)+(fn-2.0)) seku = dsqrt(seku1/((fn+3)*(fn+5))) Display Histogram c write (9,50) title format(//10x.40a1///) 50 -149-

and a

-136formati' Same file ?') accept 30,isnfil if((infil .eq. 'Y') .and. (iparn .eq. 'Y')) if(isnfil .eq. 'Y') goto 11 tall close(8) goto 1 25 N anto 199. call close(8) call close(9) stop Ready -150-

Shiped Size Ser

Martin States

Statistican and

the set was in similar as your

17. 23

198

A Best

Appendix D

Statistics on SYNVU Trend Surface by Bedrock Type

Bedrock Unit

A B C D B		. G .	
Standard Deviation (0)	0.93	0,83	
Total Variation (30) 0.94 0.27 0.92 0.81 0.88	0.86	0.69	į
Correlation Coefficient (r) 0.98 0.72 0.98 0.95 0.97	0.96	0.91	0
Coefficient of Determination (r1) 1.63 2.00 1.41 1.34 1.61	2.00	1.33	

101

なんちょう ちょうちょうない ひょうし

