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Learning without thought is labour lost;
thought without learning is perilous.

Contucius
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Abstract

A time domain panel method was formulated and a computer program pack-
age, OSFBEM, was developed to evaluate the propulsive performance of oscillating

propulsors.

This method was designed, and is able, to obtain hydrodynamic properties for an
unsteady, 3-D flexible wing. A number of features were implemented including the
geometry of both 2-1) and arbitrary 3-1) planforms; a non-zero thickness loil section

and a

section with a thickness as thin as 2% of the chord; large amplitude pitch

and heave motions; non-zero trailing edge thickness; flexible motion and geometry

parameters such as steady flow, unsteady motion, chordwise and spanwise flexibility;
and prediction of skin friction and qualitative examination of sectiona) flow patierns

i terms of boundary layer growth. Major limitations of this method include the

inability to precisely predict ion, stall and hydrody ic characteristics of a

foil with a very small aspect ratio,

A large amplitude theory was developed and used to analyze the propulsive of-

ficioncy and thrust. An instantancous angle of attack of the oscillating foil and a

large amplitude feathering parameter were defined for this

study. As a result of this
Ueoretical establishment, the theust was identified to be direetly re

ted to the in-
stantancons angle of attack. Most importantly, the best cfficiency was obtained at
the maximum instantancons angle of attack of about 10% for any combination of

motion parameters

and any shape of planforms with and without fleibility that were
examined in this rescarch.

Most. previous munerical predic

jons on 3-D unsteady oscillating foils were based
on the small amplitude theory. The present method, instead, is based on the finite
amplitude theory and it also takes the s

ional thickness di

ribution, planform shape
and skin friction, ctc., into account. Thercfore, a parametric study was also conducted
for rigid planforms to give results from a more realistic model.

The chordwise and spanwise fleibility were implemented by using a positive ap-
proach, i.c., different amplitudes of deflexion and shape functions were predetermined,
to simulate

fin whale’s flukes. Two non-dimensional parameters, the spanwise and
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chorduwise deflexion amplitude factors, together with another two parameters, the
spanwise and chordwise deflexion phase angles relative to the pitch were defined. A

parametric study was then conducted in terms of these parameters.

A I p dure was also established to d ine the angle of zero lift for
a foil duc to the chordwise flexibility and, this anglc of angle of zero lift was then
used to modify the instantancous pitch angle to obtain the instantancous angle of
attack at each time step. A numerical scheme was also formulated for foils with
spanwise flexibility in calculating the efficiency in which casc the heave amplitude
had a variation across the span.

Major findings include the limitation and validity of the small amplitude theory
obtained from a large amplitude analysis; determination of the instantancous angle
of attack of rigid and flexible oscillating foils; the relation between the maximum
instantancous angle of attack and the thrust; the instantancous angle of attack for
the best cfficiency; sectional thickness ratio effect on efficiency and thrust; skin friction
effect on the propulsive performance; pressure distribution and validity of the steady
Kutta condition for an unsteady oscillating foil with both chordwise and spanwise
flexibility; the chordwise and spanwise deflexion phase angles and their effects on the
clliciency and thrust; and the cffect of the spanwise deflexion amplitude on efficiency
and thrust.

Conclusions were drawn from these predicted results and suggestions on the go-

ometry and motion parameters in oscillating foil design were also made.
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Nomenclature and Abbreviations

Nomenclature

At o area of the wing

g o spm of the wing

(7 o+ 1ot chord length, also the reference length

it o aspect. ratio of the wing, At = S2/Aj

Vigre -+ foil forward swim speed (m/sec)

Vi normalized foil forward swim speed (1/scc)

Ve -+ kinematic velocity due to translation of the foil

Vit kinematic velocity due to revolution about the pitching axis
Vit o Kinematic velocity due to deflexion of a flexible foil

7y o total kinematic velocity of a panel (Vo = Vioans + Vi + Vi)
Vo o perturbation velocity due to a unit doublet on foil body pancl

Vicwske o+ perturbation velocity due to a unit doublet on shed wake panel

Visureo perturbation velocity due to a 1nit source on foil body pancl

w o frequency of the oscillation in rad/sec.

k <o redueed frequency, k = WO Vytign = w/ Vi

Penre v heave amplitude

hy, non-dirnensional heave amplitude hy = fpeae/Cr
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Chapter 1

Introduction

1-A  Wings in the natural world and in engineer-
ing

Birds fly and fish swim. They are on-the-wing creatures. In the flapping flight of

birds and insccts, wings provide both lift and thrust to their bodics; when gliding,

wings act as a lifting device, In the aquatic kingdom, flukes of a whale power the

motion, while dorsal fins and pecioral fins help to control the course of the navigation.

Penguins use fapping flippers; so do sca lions.

There are some extraordinary facts recorded on these animals. These facts though

in reliability (Matthews ct al. 1993), present a perspective on the speed
categories of certain on-the-wing creatures (Table 1.1). In air, the smallest, but
one of the greatest fliers, the bee hummingbirds (Mellisuga helenac), measuring only
three inches to four inches from bill (o tail, have a wing beating rate of fifty-five
{o seventy-five times a second. This so called “acrobat” in the bird world has high
manoenvrability at high speed in darting and dipping. However, the fastest fliers are
the peregrine falcons (Falco peregrinus): at a 30° angle of descent and a 45¢ angle
of ascent, their maximum velocity reaches 168 mph (270 km/h) and 217 mph (319

km/h) respectively. In level flight, the fastest, creatures are those from the duck and



Chapter 1. Introduction 2

On-The-Wing speed speed condition
Animals (mph) | (knots) of flight
Bue Hummingbird superior manocuvrability
Birds | Percgrine Falcon 1687217 | 146/188 | 30° descent/15° ascent
Duck, Goose 65 g level flight
Insects | Hawkmoth, Iorselly 21 21 intainable speed
Australian Dragonily Bl o Turst speed

Aquatic | Bull Killer Whal 34.5 |30 knots
Animals | Cosmoplitan Sailfish 68 60 knots
on-lhe-ley animal, checlah 60 52 knots burst speed

Table L.1: Nautical speeds of some fastest on-the-wing animals, after Matthews et al.
(1993)

goose familics. These powerful animals can fly at a speed of 65 mph (104 km/h). In
the insect world. hawkmoths (Sphingidac) and horseflics (Tabanus bovious) are able to

maintain a speed of 21 mph (39 ken/b); the burst. speed of the Australian dragonfly

(Austriophlabia’costalis) reaches 36 mph (38 km/h). In the ocean, fast swimmers

inclide whales and dolphins, and somne lunate-tailed fishes such as the shark. tuna and
sailfish. A 20 [t (6 m) long bull killer whale (Orcinus orca) was recorded swimming

at. a speed of 31.5 mph (30 kuots). Surprisingly, the fastest on-the-wing swimmer

in the water is even faster than the highest speed “on-the-legs” auimal on land: a
cosmopolitan sailfish (Istiophorus plalyplerus) can swim at a highest speed of 68
mph (110 km/h) over a short distance, while a cheetah (Acinonye juablus) rns at
maximum speed of 60 mph (97 km/h) for a short while.

These biological facts in the living world are intercsting and are probably one of

the motives behind bio-mechanical studies. In adapting to their environment, birds,

insects, marit nd fishes have different wing structures and therefore varied

manoeuvrability and speed. Different wing-body structures lead to a differcnt wing-
control mechanism. Usnally, fast and high manocuvrability birds have a larger wing
1o body ratio (the ratio of the arca of the wing to the weight of the body). Birds

in hovering flight have an omithopter mechanism. Long distance travelling birds
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Figure 1.1: Inscct fly mechanism after Acheson (1990). (a) clap, (b) fling (c) parting
of the wings. The thick arrows stand for the motion of the wings and the thin curved
arrows denote the circulation.

often ha

a higher wing aspect ratio to obtain larger lift/drag ratio and therefore
a smaller wing arca to save muscle power. The smaller wing arca and higher sweep
angle at. the leading edge also have less drag, especially in glide flight (van Dam 1986):
Arctic sterns! and swallows are examples. On the other hand, some inscets have quite
different wing-body combinations and hence a special wing-control mechanism. The
Weis-Fogh mechanism (Acheson 1990) was derived from the hovering motion of a
chalcid wasp (Fncarsia formosa). The sequence of the Weis-Fogh mechanism is clap,
fling and parting (sce figure 1.1). In flight, the span of wings is more parallel than
perpendicular to the motion. Underwater, swimming is another story. Most fast
aquatic animals have propulsors of large aspe

Iunate-tail swi ). These swi aredi

. ratio with a high sweep angle (called
"

1 by their mode of propulsion.
Unlike those that undulate their body to gencrate thrust, and the other modes such
as carangiform ([loar and Rtandall 1978): where both the body and tail contribute

Ision; fast e their flukes or tails in a thuniform mode

to

(the sub-mode of the iform). In swimming, the majority of their bodies remain
straight with enly the rear part in oscillation. The thuniform mode of propulsion is
widely recognized as the best form for high efficiency (Lai 1990).

Bio-mechanical remarkableness provides a clue in human being’s simulation and

e Arctic sterns (Sterna paradisea) are recorded as the longest distance fliers. An Arctic stern
was timed in a flight covering a distance of 14,000 miles (22,500 kilometres) over about a 10-month
time period.
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invention. One of the best examples of natural in engi

ing is probably the first airplanc built by the Wright brothers in i903. Examples

of wing theory in engincering applications are many: wings are pure lifting devices
Imills serve as torque absorbers and thus

blades of turbines and

for airplan
cuergy transformers; blades of screw propellers, cycloidal propellers, foils of oscillat-
ing propellers, sails and sculls are thrust generators. Rudders on ships control the
course of travel and Magnus effect cylinders? pushing a vessel are also wing theory
applications. A succossful recent wing theory application is the wing-in-ground cffect
wingship. With 30 tons of payload, and flying over wavetops, this kind of flyer (sce
cribed by Dane, 1992) could reach 250 mph (400 km/h) like a

as low as the same s

the Orlyonok d ctliner

but has u fucl sed steam ship,

Application of wing theory to marine transportation has its own cconomical im-

portance, Compared with a commercial aircraft or a land container truck, an occan

cargo carricr is superior in Lorms of ton-mileage cost, especiall

in cargocs consisting
of massive bulk quantities or huge packed volume, though there is still much room to
improve energy efficiency. On the other hand, the cost of propulsion is a major cost

in water transportation and the v propeller has long had a main role in marine

propulsion. Nevertheless, it is dilficult to improve elliciency of screw propellers, be-

cause the maximum efficiency for any kind of propulsor is dependent upon its mode or

nature of propulsion: different propulsion modes result in different ranges of loading

conditions; the higher the load of a propulsor, the lower the highest possible efficien

For a screw propeller, as it is highly loaded in most cases, this peak value is about 70%

10 80% and most marine propellers are working at about 50% efficiency. Therefore,
scientists and marine engineers have put forward many alternatives for propulsion

devices, including some oscillatory propulsors.

The Magnus effect is derived from the circulation theorem based on wing theory (Acheson 1990).
Au authentic application of this effect may be described as: “At the coming 1933 World’s Fair, we
were told, the wind would whip across Lake Michigan to drive three rotating wings on a 70-ft.
cabin cruiser. Mounted like masts, the 25-f.-high aluminum rotors would provide four times the
propulsion power of conventional sails and act as stabilizers in choppy water. After the sunset,
colonred lights splashed across the spinning rotors, offering a scintillating cffect, visible for miles.”
Popular Mechames, June 1
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1-B  Oscillating foils as an alternative to screw
propellers

Tor on-the-wing animals, wing-body structure determines the wing-control mecha-
nism, hence the manocuvrability, speed and required muscle power; in propulsor
design, different wing structures need different motion control devices Lo obtain a de-
sired propulsion modc. A good marine propulsor under specified working conditions
generally has both large thrust (coefficient) and efficiency (the ratio of uscful power
Lo input power), though in most cases increasing the thrust lowers the efficiency and
vice versa. A propeller having very high cfficiency but little thrust will not be useful
at allj a propeller having high thrust with poor cfficiency will result in an unafford-
able operating cost. Increasing both thrust and efficiency (with the consideration of
noisc, vibration and environmental issues) is the main focus of the development of

propulsion technology.

1-B-1 About screw propellers

Since the invention of the steam engine and screw propeller in the cighteenth and
nineteenth century respectively?, tremendous efforts have heen made to improve the
propulsive performance of the propulsors of marine vehicles, Studies in this arca
have been both theoretical and experimental. In the past century, many studies of
propulsive devices have been done and some of these devices have been installed in
ship propulsion systems. Among a number of propulsors studied, the screw propeller

has proved to be the most energy cfficient. However, the cfficiency of many ordinary

screw propellers is about fifty to sixty percent, especially those on smaller vessels.
In a few cases, the propulsive cfficiency of the screw propeller may reach as high as
70 percent. Scarching for a high efficiency propeller is a problem that still remains,

FAccording to Johnson ct. al. (1989), the modern condensing and double-acting steam engine was
invented by James Watt in 1782, following the atmospheric steam engine by Thomas Newcomen in
1705 and the pumping-water steam cngine by Savery Newcomen; the first steamship was invented

by Claude de Jouffroy d’Abbans, 1783 and the first screw propeller was invented independently by
Sir Francis P. Smith in 1836 and John Ericsson, 1837.



Chapter 1. Introduction 6

and previous studics have shown that the efficiency of a screw propeller will not
increasc greatly unless the propulsion mode is changed, because of certain limitations
in propeller design.

These limitations on the propulsive efficiency from a screw propeller for a required

amount of thrust include the following.

® As thrust is achieved by rotating the blades to obtain the inflow velocity for the

wing scctions, the rotation of the blades causes a number of problems.

1. "The wake at the trailing edge is in a helical form, and the whole wake of the
propeller is rotating. Rotational encrgy losses occur behind the propeller.
Some techniques can be applied o reduce these kinds of energy loss (Lee
ct al. 1990) such as coaxial contrarotating propellers, propellers with free-
running vane wheel, preswirl devices and postswirl devices. There is no

solution which completely eliminates these energy losses.

~

. As the blade of a screw propeller is radially placed, the inflow velocity
varics spanwise. According to the flow conditions, the geometry of the

propeller, and the thrust requirement, a larger pitch angle is required at

the root of the blade and vice versa at the tip of the blade. It is known

that the efficiency is restric

d in propeller design: the angle of attack at

the root section cannot be as large as it should be due to the separation

at the trailing cdge; the angle of attack at the tip has to be close to zero

degrees to avoid cavitation (Lee ct al. 1990).

The blade of a screw propeller is a kind of low aspect ratio wing. The
lift/drag ratio is small for low aspect ratio wings. Better efficiency is
expected for wings with a high aspect ratio. The geometry limitations at
the stern of a ship place a restriction on diameter and do not allow large
aspect ratio blades. Ducted propellers increase the efficiency under heavy
load conditions; however, these do not eliminate the aspect ratio problem,

as a gap exists between the blade tip and the duct.
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Figure 1.2: Sculling propulsion. (a) a scull in a boat from side view, (b
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of a boat from rear view and (c) sinusoidal motion of the scull in propulsion
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the blades are solid and the loading conditions like a cantilever beam in

deflection and torsion, certain related structural problems exist.

1. The root blade sections have to be very thick to balance the spanwise

IS}

1-B-2

deflection loading and the torsional moment between the hydrodynamical

centre and the clastic axis. Too much thickness reduces the efficiency of

the foil and adds drag to the propulsor.

. The blade vibrates duc o the fluctuating pressure caused by uneven flow
velocity distribution at the vicinity of the propeller. If the frequency of the
fluctuating pressure is close Lo the natural frequency of the blade, resonance
will occur. Besides the structural strength (repeating, shock loads, and
fatigue etc.) concerns, the stern wake patiern has to be improved and

sometimes the optimized rolational speed and the geometry parameters

ion due

of a propeller have to be sacrificed to reduce the noise and vibra
to shaft excitation. This also constrains the achicvement of the maximum

possible efficiency.

Some marine oscillatory propulsors
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The scull was probably the carlicst oscillating propulsor. Being vertically fixed at
the stern of a boat, a scull creates thrust by sculling the water sideways, periodically
back and forth. In sculling motion, both the sway and the yaw of a scull have an
oscillatory variation with time. Oscillation of a scull gives a high propulsive efficiency,
possibly the highest among all propulsion devices (Potzc 1986); efficiency in an ideal
fluid was calculated to be above 90% when two sculls with an aspect ratio of four were
fixed at the stern of a ship. Figure 1.2 shows the motion of a manually operated scull.

“T'he motion of the scull is a form of oscillating foil propulsion. However, the motion

of the manually operated scull shown in figure 1.2 is different from the descriptions

of oscillating propellers found in most, existing publications. The difference is that
the wing planform in sculling motion will alternatively change its leading edge and
inailing edge.  Another difference is the spanwise sway oscillation, i.c., the inflow
velocity is different at the leading edge along the span. So far, a systematic study for
this kind of propulsion has not been conducted. A mechanically driven scull has not
been developed. Manually operated scull boats are popular in Eastern Asia, such as
on the north-cast coast of China and in Japan.

The trochoidal propeller is another example of oscillating foil propulsion. This

propulsor is also called a vertical axis propeller, though it can also be mounted hori-

zontally ou a ship. Operation diagrams are presented in figure 1.3,

Figure 13 a shows the side view of the propeller. ‘The blades are installed per-

pendicular to the horizontal. In figure 13 b, the basc rotates while the blades are
pitching. Rotation of the base, the magnitude of the pitch and heave, together with
the

cillating frequency, are adjusted to enable the blades to have an appropriate
angle of attack for the best thrust and efficiency. Thrust is obtained from the forward
force component due to the lift (figure 1.3 ¢). The experimental cfficiency of a pro-

peller of thi

type with highly loaded high aspect ratio blades is about 70% although
frictional losses in the blade control mechanism are large and this effectively reduces
ice (Bose and Lai 1989).

Oscillating foil propulsion, the objective of this rescarch project, is used by most

the efficiency in pra

fast swimming marine animals and flying birds. Since a long time ago, scientists
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Figure 1.3: Schematic diagrams of a trochoidal propeller in operation. a. Side view;
b. Section view; and c. Thrust creation.

have marvelled that with such a small arca of tail compared with that of their bod-
ies, marine swimmers (whales, dolphins, tuna cte.) move fast, and have remarkable
manocuvrability. On the body of a whale, the propulsor is mainly the flukes. These:
flukes have a hydrodynamic wing scction with swept leading and trailing edges. Some:
wing sections and planforms of marine cetaccans are shown in figure 1.4; these have
been taken from Bose et al. 1990. These planforms have different aspect ratios and
different, leading and trailing edge sweep angles. Predictions of propulsive perfor-
imance of these planforms in an idcal fluid were made by Liu and Bose (1993) by

using a lincarized thin wing lifting surface theory with a rigid planform assumption.
fesdd

As the flukes are clastic, | theory for an oscillating foil is expected to pro-
vide more accurate predictions; allowances for real viscous flow should also be made.
Motion of the flukes is periodical in both pitch anc: freave. The traces of the foil in
both heave and pitch, are shown in figure 1.5.

Propulsive performance is evaluated in terms of the efficiency and thrust coeffi-

cient. Generally, the highest cfficiency is desired. However, for a given planform, the
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fin whale white—sided dolphin white whale

Figure L4: Some shapes of cetacean (luke planforms, after Bose et al., 1990.

higher the efficiency, the lower the thrust coefficient obtained. When the span of the
foil is limited, the required thrust in some cas

can be reached by increasing the
area of the foil (by adding chord length) and by increasing the heave amplitude (sce
Chapter 6).

Compared with the scrow propeller, the oscillating foil is lightly loaded, which
is the main reason for its high hydrodynamical officiency. A high aspect ratio, rigid
oscillating foil in an ideal fluid, when the oscillating parameters are oplimized, will
give as high as 80% propulsive efficiency (Lin aud Bose 1991). A 2D flexible oscil-
lating foil is expected 1o achiove a higher efficiency but with a dec
coollicient (Wa 1971, Katz and Weihs 1989).

e in the thrust

inflow velocity

heave
(@ ‘"’“S‘ﬁ/i/ e
T
ATANAW

Figure 1.5: A trace of a sinusoidally oscillating foil.




Chapter 1. Introduction 1

1-C Objective of this research

The aim of this work was to evaluate the performance of flexible oscillating foils. The

numerical model is based on boundary element theory with a time-domain approach.

The method of formulation, special treatments, verifications and comparisons are as

follows.

2-D,

3-D,

3-D,

steady, rigid foil: The constant doublet velocity potential pancl method was
used to start the study, for an infinite span foil at constant angle of attack.
The method and results were verified against Moran (1984). This 2-D steady

method and its results were a starting point and they are not discussed.

steady, rigid foil: This is the extension of the 2-D steady rigid foil case. Re-
sults were checked against data from the literature. A number of numerical

hes were d

d and ibi

p p into a new system of solution. These

schemes include: applying the BICGSTAB method o solve the system of lincar
cquations with a consideration of both accuracy and computing speed on ma-
chines with or without sufficient dynamic random access memory; polyfitting
the strength of the doublet to quadratic functions then differentiating them ox-
actly in the calculation of the tangential velocities and applying a method that
takes the jump of the trailing edge velacity potential into consideration in order
to improve the results for a foil with a non-zero thickness trailing cdge.

An extensive convergence study was performed with regard to the time stop
size, total number of time steps, number of chordwise and spanwise pancls and

their type of spacing arrangement, such as log, cosine and uniform grids.

unsteady, rigid foil: The 3-D steady case was further extended to the un-
steady case. Verification was done corresponding to the previous results that
were available. Mathematical formulation of thrust and efficiency and imple-
mentation of the computer program were also accomplished. The results were
compared against those by Chopra and Kambe (1977) and Liu & Bose (1991).
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Several numerical schemes were developed to improve the validity of the appli-
cation of the steady Kutta condition, including the scheme of determination of

the time step size, Lotal number of time steps based on the newly defined total

llating period and polyfit of the time variant doublet strength.

Large amplitude consideration and analysis: A practical large amplitude the-
ory for oscillating foils was cstablished. An analysis of large amplitde consider-
ations was performed and it was used to explain the propertics of the propulsive
performance of an oscillating foil.

Being the first kind of such theoretical establishment, this analysis provided a

powerful tool in the study of the nature of oscillating propulsion.

3-D unsteady, flexible foil: T'hi

planform shape. The effect of both the chordwise and the spanwise flexibility

a modelling of an clastic foil with an arbitrary

and sweep angle onhydrodynamic characteristics were also considered.

A system combining both theoretical and ical en s davdlonad

A couple of phasc angles of deflexion were defined to explore the possible motions

of a flexible oscillating propulsor. A numerical method was also developed to

calculate

he angle of zero lift for both symmetric and asymmetric foil sections

under chordwise deformation.

Skin drag analysis: Results predicted including cffects of frictional shear stress

were compared with those from the ideal flow model. An existing system of

methods for a 2-1) rigid foil for the calculation of skin friction coefficient and
3-D flexible foils. The

prediction of the boundary layer growth provided the qualitative evaluation and

boundary layer growth was extended and applicd to th

the comparison of the flow around a rigid and a flexible foil.

Parametric investigation of performance: Based on the large amplitude theory,

a s

ries of parametric studics of propulsive performance were done. Parameters
included the variation of efficiency and thrust with changes in flexibility of the

foil, the heave and pitch amplitudes, phase between the pitch and heave, ete.
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1-D Perspective of this research program

Though many methods are available to solve the unsteady lifting problem, probably
none of them are able to solve for a flexible, arbitrary planform exactly. Therefore,

to predict the hydrodynamic characteristics of an oscill,

flexible foil propeller
with different planform configurations, numerical methods nced to be applicd. This
increases the versatility of the computation and hence saves cumbersome mathemat-

ical fc lation. Predi

of the propulsive performance of an oscillating foil can
be done by a number of numerical methods. These methods divide themselves into
four familics: numerical methods based on boundary clement theory (panel meth-
ods); those based on unsteady thin wing theory; those based on momentum theory

(Glauret 1926, Moran 1984); and many applications in Navier-Stokes solvers. Un-

steady thin wing theory has been used ively in the for
more than halfl a century. Examples of these methods include lifting-line theory and
lifting-surface theory. Both of them study the vortices in the flow that represent the
foil. Lifting-linc theory is appropriate only for foils with large aspect ratio planforms,
because this theory was established by assuming the chord of the foil to be negligibly
small. The accuracy of the predictions from lifting-line theory for low aspect ratio foils

is questionable. As in most cases, cspecially in oscillating foil Ision, the wings

to be used are not of very large aspect ratio, the lifting-surface method such as the
unsteady QVLM (Quasi-Vortex-Lattice-Method, Lan 1979) is a good choice. How-
ever, as for any numerical method, the unsteady QVLM has its own disadvantages.

These shortcomings are as follows (Liu 1991).

The unsteady QVLM is mainly an analytical solution. The spanwise integration
for the downwash over cach clement is conducted analytically. An analytical
formulation was primarily nsed, but a number of non-integrable integrands were
replaced by quadratic functions in the last step of the solution. This adds dif-

ficultics in P and mathematical formulation but gains a

slight imp; in accuracy d with the VLM method. This im-

provement cannot be made when a foil is in large amplitude motion.
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® It was assumed that the trailing vortices extend from the trailing cdge of the

lating wake).

foil to infinity on the undisturbed z-plane (i.c., there is no os
This assumption is basically a small amplitude theory, so that it is not realistic

if this method is applied to large amplitude motion of an oscillating foil.

o When a wing having a large swept leading edge is under consideration, the ratio
needs to

of the number of chordwise lattices to the number of spanwise lattice:

be adjusted to maintain accuracy; this is similar to the problem identified by

Albano and Rodden (1969). This reduces the reliability of the results, bacause

the ratio is determined by a rough estimation.

o The QVLM is good for rigid, planar planforms. However. when a fiexible wing
is considered, further work on the formulation is needed, because Lan (1979) did
not solve propulsion problems for a three dimensional unsteady clastic lifting
surface,

The methods derived from unsteady lifting surface theory mentioned above are

solutions in the frequency domain (time, ¢, is climinated by using a harmonic com-

plex variable). Frequency domain solutions are able to deal with wings in harmonic
motions, but are limited to only certain types of motions. such as sinusoidal oscil-
lations. 1t is difficult for these frequency domain solutions to deal with arbitrary
motions, because the frequency is not obtainable from irregular motions and hence

sed as functions of the complex exponent, i.e.,

ihe irregular motion cannot be exp
the harmonic fanction, and hence the kernel function. Some lifting surface methods
have heen designed to solve for the lift from a wing in the time domain. These kinds
of methods reduce the complexity of the formulation of the method, by adding many

amples of these are

steps Lo the caleulation as it is repeated at cach time step.
ribed by Frydenhind and Kerwin (1977) and Katz and Plotkin (1991). Though

the thickness problem in lifting surface theory can also be solved by placing sources

des

along the element (Kinnas 1992), lifting-surface theory is not able to deal with wing-
L Ly

body ination probl which are i for the overall evaluation of the
¥ P

hydrodynamic characteristics of a body in a fluid.



Chapter 1. Introduction 15

Morcover, the leading edge suction problem that occurs in lifting-surface theory,

being animp problem in oscillating foil lsion, is largely unresolved in time
domain lifting surface theory. Although the time domain lifting surface approach has
been applied in screw propeller design, the accuracy of blade loading predictions
without an accurate calculation of the leading edge suction, especially in unsteady
cases, is questionable, though the efficiency and the torque of the propeller were close

o expesimental data, for instance, in Kerwin and Leo (1978). This can be reasoncd

ay

cven without the contribution of the leading edge suction, the Lift is probably
not. changed much and this will not greatly affect the thrust; the drag (torque) can
be adjusted largely by changing the drag cocflicient to cancel a contribution to the
thrust by the leading edge suction which exists in practice. When the leading cdgo
panel discretization is carcfully arranged, a time-domain panel method is able to take
both thickness and wing-body combinations into account, as well as the leading edge
suction. The leading cdge suction is included inherently in a panel method, though

some say the velocitics, and hence the suction, are over-predicted at the leading cdge.

In this rescarch work, a time domain pancl method was applicd and it was o

tended 1o cover a 3-D flexible oscillating propeller. Establishment, of this unsteady
1) flexible panel method enables us ot only to evaluate the performance of oscil-
lating foil propulsion, but also to use this to simulate the flying and swimming of
animals in bio-mechanical rescarch and to calculate other unsteady moving bodics in

large amplitude motion in engincering applications
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2-A Historical Review

Theoretical studics in unsteady acrodynamics have heen conducted since the late
1920s. The initiation of this subject was to predict the lift variation on wing surfaces
subjected to flutter and gusts. In these unsteady flows, the circulation and acrody-
namic characteristics of a moving foil change from instant to instant; these changes in
1ift, moment, and drag have an impact on the structural dynamic design of a wing and

fusclage. Before the widespread use of powerful computers, analytical study of the

acrodynamic characteristics of oscillating wings was well developed. Pioneer works

presented in the 19305 include those by von Kirmén and Burgers (1935), Theodorsen
(1935), and von Kérmin and Sears (1938). With the development of digital com-
puter technology and techniques of computational fluid dynamics (CFD), numerical
methods o treal complex wing configurations and unsteady flows became popular.
These methods mainly fall into three categories: lifting-surface methods, panel meth-
ads, phus the recent study of Navier-Stokes solvers. As lifting surface theory for both

steady and unsteady flows was reviewed and investigated previously (Liu 1991), the

jor part of this discussion will be devoted to panel methods.
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2-A-1 Lifting surface theory

Some of the earliest studies in three dimensional lifting surface theory are credited to
Falkner (1943) and Multhopp (1950). Falkner’s (1943) prescntation was the proto-
type of the vortex-lattice-method. The “quarter-chord and three-quarter-chord rule”
(loading location and downwash location respectively) of subsonic lifting surface the-
oty was initiated in his study. Following Multhopp (1950), many works in unsteady
lifting surface theory were done based on the kernel function theory. Kernel functions
ate the expressions of lincatized boundary value problems derived from the theoretical
acrodynamics of lifting surface theory in a potential flow field. The singularitics of the
kernel function as an integrand make it difficult to obtain cxact solutions (Watkins
et al. 1955).

Richardson (1955) extended the subsonic kernel function to the sonic and su-
personic ranges for the unsteady case. Before 1960, predictions of unsteady wing

propertics by using the unsteady kernel function method were not popular because

of the primitive state of development of comput

Since the carly 19605, a varicty of numerical methods, mainly the lifting-surface
method, have been presented Lo solve unsteady acrodynamical problems. These
computer-implemented works based on lifting surface theory include those by Davies
(1965), Albano and Rodden (1969), Lan (1979) and Frydenlund and Kerwin (1977).
In most of these works the classical numerical procedure was used: that is, the un-
steady kernel function was solved in the frequency domain. Frydenlund and Kerwin

(1977), however, used a time domain scheme Lo predict propeller performance; so did

Kerwin and Lee (1978). As the time interval was discretized in the computation, the
formulation of the method was much more simple than that of the classical approach
to the unsteady problem.

As lifting surface theory is based on a wing of zero thickness, predictions of acro-
dynamic characteristics of thick wings are incvitably inaccurate, especially when the
thickness ratio (a ratio of the maximum thickness to the chord length of a foil) /¢
is greater than 6%. In this cas> modification is usually required. This modification

is often necessary because the thickness ratios of most wing structires in engincering
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applications arc greater than 6%. Meanwhile, according to classical lifting surface the-
ory, modification of thickness is cffective only for asymmetric wings. In other words,
the lift predicted by classical lifting surface theory has the same valuc at different
thicknesses if a wing scction is symmetric (Bisplinchofl et al. 1955). This means
that the difference in pressure distribution between symmetric thin and thick wings
is neglected. For asymmetric wings, such as some propeller blades, modification of
lift or loading can be done by superposition of source singularities and vortices to im-
prove accuracy (Thwaites 1960, p. 366). However, calculation of leading edge suction
remains a difficult problem, which is important in oscillating foil propulsion. When
the normal inflow velocity is modified by adding the induced velocities due to camber
and thickn

s, lifting surface theory oblains a realistic normal inflow velocity and
loading distribution (Isin ot al. 1991). Nevertheless, accurate inflow normal velocity

docs not guarantee a realistic surface velocity distribution, which is the resultant of

normal, tangential and (spanvi Accurate prediction of the

velocity distribution, and hence pressure d

stribution, is ot only essential fo obtain
the loading of a wing, especially oscillating foil thrust, but it is also useful to estimate

boundary layer separation and transition from laminar flow to turbulent flow.

2-A-2 Panel methods

The panel method, also referred fo as the boundary integral method or boundary
clement method, solving potential flow problems was initiated in 1962 after a pioncer
wark, known as the Douglas Neumann progeam, by Hess and Smith (fless and Smith
1962). Their constant-strength source pancl method can solve only nonlifting prob-
lems, though the vessatility includes three-dimensional arbitrary body configurations.
In 1967, Hess and Smith (1967) prescuted their continuing study covering both two-
and three-dimensional bodies and lifting problems. The computation of forces on
lifting bodics by using panel methods becanie possible. However, the analysis of the
flow about arbitrary 3-1) shapes, including lift and cffects of thickness, in terms of
source panel and vortex lattice preseuted by Rubbert and Saaris (1967) is probably

the first use of a panel method for lifting problems. Their solutions to potential flow
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problems include velocitios and pressures at all points; th

forces and moments on each panel surface; velocity and pressure distribution in the

flow field; and streamlines on the panel and in the field (Rubbert. and Saaris 1972).
Before their engincering applications became widespread in the early 1980s, pancl

methods used to solve for acrodynamic characteristics mainly concentrated on distri-

bution of sousces and vrtice (Hess 1975). Panl methods vere often propesed to

substitute for finite clement and finite diffc methods in calculati I

1i | i ions, especially for external llows, in which case the

grid gencration to fit a 3-D shape was often difficult. The fundamental study of these
methods in a mathematical sense and numerical principles remained mainly the con-
cern of mathematicians and physicists (Brebbia and Dominguez 1989). After Hunt
(1980) and Banerjee and Butterfield (1981), systemalic analysis of the mathematical
formulation of boundary integral methods in both solid and fluid mechanics became
familiar to engincers. Iunt explained the physical problem using mathematical ex-

pressions; discussed the boundary conditions and also the uniqueness and existence of

the solution to the Laplace equation, though without presenting strict mathematical
evidence; and applicd Green's theorems Lo solve Laplace’s equation in single, multiple
domains, thin surfaces and open surfaces. In llunt’s study, surface singularities such
as surface sources, surface doublets, surface vorticity and their combinations to soive
polential flow problems, including the uniqueness of solutions under different singu-
larity combinations and Neumann and Dirichlet boundary conditions in the steady
flow case, were discussed.

In the early 1980s, there existed a variety of similar panel methods for the steady
flow case, with diffcrences in the order of pancl strength distribution, singularity
combinations, grid shapes and schemes for matrix ileration and inversion. Though
1ot an exclusive list, thesc previous works include work by Johnson et al. (1982), Yen
ot al. (1981), Maskew (1982), Johnston et al. (1985), and Clark (1985).

After the middle 1980s, steady surface panel methods were also extensively applied
to the calculation of wake simulations (Mracck and Mook 1988). The boundary inte-

gral method was first applied to marine propeller design in 1985 by Hess and Valarezo
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(1985). In their study, the helical wake, the far wake behind a screw propeller, and
the pressure distribution along the leading cdge of the blades were predicted. Follow-
ing Hess and Valarezo (1985), Kerwin et al. (1987), Koyama ct al. (1986), lloshino
(1989), Valarezo and Licheck (1988) and Hsin et al. (1991) used similar panel met hods
in marine propeller calculations.

Extensive applications of unsteady 3-D pancl methods to acrodynamic problems
started in the late 1980s. Solutions include both time domain and frequency domain
methods. In the lrequency domain, examples are work by Ruiz-Calavera. and Geissler
(1988), Rokhsaz ct al. (1989) and Appa and Smith (1989). The use of 3D time-
domain panel methods became popular later. The studies by Blair and Williams
(1989), Katz and Plotkin (1991), Kinnas and Ilsin (1992) are examples. Three-
dimeusional time domain panel methods were extended to the caleulation of multiple
bodies and vatious paths only recently in a paper by Richson and Katz (1993).

Two dimensional unsteady pancl methods have been in use for a long time e.g,
Giiesing (1968) and Basu and Hancock (1978). A time domain 2D pancl method
1o solve flexible wing aropulsion problems was developed relatively recently by Bose
(1992, 1993). In Bose studies, the chordwise flexibility of foils was governed by a
cubic function along the chord, and the tangential velocity at the clements on the
wing surface was corrected in torms of deflection displacement of the element and the

value at the foil surface hetween time intervals.
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2-B  Technical Review

Asit can bescen in many mathematical physics texts, the boundary integral method
is so called because it was used originally to solve lincar partial differential equations
(1.P.D.E.s) by integrating these equalions within the domain of interest. The resul-
tant integral is then solved by imposing sufficient boundary conditions, In fact, these
L.P.D.E.s usually have no physical meaning unless variables in the L.P.D.E.s are as-
signed as cerlain physical propertics for a particular physical problem. For example,

fora L.P.D.E. in aform of Laplace's cquation,

¢ Vo ¥ _ 5
a—z?+7g+5x—;—0. (21)

if the potential ¢ denotes heat, current or velocity potential, the flux

[ 4
Vi= "k"‘"DT,’ (22)
where & j, the second-rank tensor, denotes permeability in a homogenous region, V;
is then heat flux, current density, and fluid velocity in the directionsof i = 1, 2, 3,
respectively (Banerjee and Butterfield 1981).
Unlike finite clement. or finite difference methods that solve the governing equa-

tions (usually L.P.D.E.s) approximatcly by discretizing these LP.D.Es or by using
the variational principle (Shaw 1978), boundary clement methods solve the govern-
ing equations by direct integration and then solve the integro-differential equation
cither analytically or numerically. In boundary element methods, the formulation
of the integro-differential cquation can be donein different ways, depending on how
il

formulated. On the other hand, in formulating

the integ; ial equation is
any boundary integral method, there should be the existence and uniqueness of the:
solution so that this formulation can be useful. Moreover, different. formulations or
schemes need lo be employed to solve particular engincering problems. For example,
for lifting problems, the Kutta condition needs to be used in the numerical process
to obtain a mnique solution; for unsteady lifting flows, both the Kutta condition and

a proper vorlex approach such as discretization and history of the wake need to be
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taken into account topredict the flow on both surfaces of the wingand in the wake; for
viscous and separated flows, formulation of the BEM has to be revised or the BEM
has to be coupled with other method(s) such as finite clement or finite difference
methods. For shear flow and flow with separation, the BEM based on Navier-Stokes
cquations is also frequently used (see Shaw 1978, Morino 1989, Wu 198, lisiao and
Porler 1989, Watts and Juang 1989, and Patterson ot al. 1989). The above points
were inves

galed and are brielly discused below.

2-B-1 Three basic formulations

According to Banerjecand Bulterficld (1981), tosolve different engineering problens,
there are basically three kinds of formulations in boundary element methods. “They
are the direct, semi-direet and indirect formulations.

The direct formulation

Application of this formulation is often found in solid mechanics problems, such as

clasf

v and clastoplast e essence of this formulation is to integrate the gov-
erningequation directly. Banerjee and Butterfield (1981) indicated that in the process
of integration, the flux (or velodty) or potential (or force in solid mechanics) in the
field are found in the resultant integral in terms of all boundary values (see Banerjee

ield inknown

and Butterfield, 1981, p.26-30). This integration process will finall
boundary values with some other known boundary values. The velocities and poten-
tials in the field can be determined by substituting all known houndary values inlo
the velocity and potential integrals. A disadvantage of the direct formulation is that
although the flus and potential are determined direct 1y al boundaries. the values of
variables atinterior points are more difficult to find (Bauerjee and Butterfield 1981).
Anothier disadvantage is that this formulation is less accurate, for which the reasons

are unknown (0Brienand Geers 1989).
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The semi-direct formulation

In this kind of formulation, the integrand in the integral equation consists of an
unknown function analogous (o stress functions or stream functions (Banerjce and
Butterfield 1981). Stress distribution or streamnlines will beobtained by diflerentiating
the solulion of the boundary integral equation. There are not. many applications of
this approach.

Indirect formulation

This formulation is also called the Green's function method, whidh s widely used
in tati It

| fluid dynamics. In this for , the govening cquation, for
instance, Laplace's equation for potential flow, is not directly integrated to form an
integro-differential equation. Insiead, a unit singular or a combination of several
unit singular density function(s), which are fictitions with unknown density (Brebbia
and Walker 1978), are placed on the boundaries of the domain as unknowns in the
integrand of the integro-differential equation. This equation is then formed by using
Green's ldentity. Boundary values are determined by substituting given boundary

litions. ~ As this lation is i to this work, it will be discussed in
detail in Chaper 111

2-B-2 The Kutta condition

id fluid

flow, the stream leaves the sharp trailing edge of the foil smoothly and the velac

The steady Kutta condition assumes that, for a foil section in a sweady, ins

ity thereis finite, This condition is also called the Joukowski’s hypothesis from von
Mises (1945). This hy pothesis stales that, the circulation of a foil with a sharp trail-
ing cdge, in its working range of incidence (attached flow), always adjusts itself so
that the fluid speed at the trailing edge is finite. In Joukowski’s conformal mapping
of a circle onto a foil, a mmique value of circulation must he chosen to obtain a stag-
nation point on the circle corresponding to the sharp trailing cdge of the Joukowski
profile (Milne-Thomson 1958, p.114-115). The Kulta conditions make the solution
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boundary

flow domain V ot infiniy

fol solid
boundary

nsdgarr?erw

Vigire 2.1: A foil with a wake vorlex sheet in a lifting flow. Arrows stand for the
path of the integration. i =1, 7 =2, and i = 3 denote the boundaries—the foil

surface, the surface of wake vortex sheet and the flow domain extending o infinity.

tolifting potential flow possible. "The significance of the Kutta condition is illustrated

as follows,

The usefulness of the Kutta Condition

For a lifting foil whose cirenlation is not zero, the velocity potential has multiple
values, in which case, the Kutta condition must be accomplished to obain a unique
solition. Duc 1o viscons effects, thereis a shear layer behind the trailing edge which
extends to infinity (see figure 2.1). If the BEM method is based on potential flow,
the flow domain must exclude the shear layer to satisly the potential assumption.
Meanwhile, if this layer is treated as a barrier, a doubly connected region of a 2-D

flow domain can be changed into a simply connected region. However, because of the

xistonce of this barricr, the velocity potential, as the solution of Laplace’s equation,
has no single value, i.c., the solution is not. unique (Katzand Plotkin 1991, p. 35). The
amount, of cirenlation then canot be determined without using the Kutta condition.

In a different procedure, Moran (1981) showed that by spec

ying the circulation

around a curve c. around the 2-D foil

(2.3)
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the solution of Laplace’s cquation, with the boundary condition of V¢ — Vs, far from
the foil (this foil is fixed at a point in a moving fluid at a speed of Vi) and V-7 = 0

on the foil surface (normal velocity on the boundary is zero), is unique.

The validity of the unsteady Kutta condition

The steady Kutta condition can aiso be applied in unsteady flow, but care must be

taken. For instance, an unsteady foil movingat cither high reduced frequency (k=

where w, ¢ and U are oscillating frequency, chord length and forward velocity of the
wing respectively), or large pitch or heave amplitude, will cause separation at the
trailing edge. This means that the local flow passing the trailing edge is not. smooth
(streamlines arc not departing parallel to the trailing edge) and hence this flow may
violate the Kutta condition. Experiments (Katz and Plotkin 1991) indicated that
slight trailing cdge scparation (when 2 is just greater than 0.6) docs not. have a
noticeable cffect on lift and in this case, the unsteady Kutta condition is still valid.
Katz and Plotkin (1991) analyzed the validity of the Kutta condition and gave some
boundaries for the validity of an unsteady Kutta condition, under the assumption of

small-amplitude oscillation, as follows.

o Tor the steady flow case, large angles of attack shouid be carcfully controlled
Lo avoid a serious separation al the trailing cdge or even at the leading cdge
(another problem: stall). Tn unsteady flow, the pitch amplitude should be

carefully controlled.

o Again, lo avoid large scale separation, the heave amplitude should be reduced
when the reduced frequency increasos. For example, to have a reasonable thrust
level (the reduced frequency at its practical range from 0.5 to 1.0), when the
reduced frequency reaches its upper practical limit k = £ = 1, it allows the
maximum amplitude up to k, = 0.1 ¢, where h, is heave amplitude in the heave
motion equation, for example, h = hocos(wt). The feathering parameter (scc
Nomenclature), cither the one under the small amplitude assumption or the

one based on the larger amplitude assumption, cannot. be used in this kind of
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analysis, because the same value of this parameter has an infinitc number of
combinations of the instantancous angle of attack (by adjusting the product of
pitch amplitude and the forward fligat speed).

o The non-dimensional vertical velocity should be Vi = & < 1. This Tinits the
vertical displacement of the trailing cdge. This may become a problem when
the foil is used as an oscillating propulsor.

o Scparation at the trailing edge duc to viscous cffects will cause lag in the acro-
dynamic loads (sce Katz and Plotkin 1992).

In addition, the pitching axis position may affect the degree of the validity. A
pitch axis at the trailing edge will he better than one far ahcead of the trailing edge,
as Irailing edge separation is more likely to beavoided. llowever, this may createcarly
separation at the leading edge, which violates the attached flow assumption. Inthree-
dlimensional, large amplitude motion, the shape of the planform, the pitching axis
pasition, P, the oscillating frequency,w, the advance speed, Vi, the heave amplitude,
g, and the pitch amplitude, ,, do jointly inflience the flow at the trailing edge and
clsewhere. Analysis of the validity of the Kutta condition becomes more comnplicated.

The Kutta condition should be applied carefully to avoid errors in prediction of
the loads on an oscillating foil. Without carcful consideration, the predicted loads

could lose their accuracy and reliabili

Different assumptions made by previous studies, however, also exist. In the Tri-
antafyllou brothers’ experimental studies at MIT (Triantafyllon and Triantalyllou
1995), they argued that the hydrodynamic loads, especially the thrust of a fish tail or
an oscillating foil were mainly due to the vortex “jets” behind the propulsor created
by its oscillating motion. Their assumption has not been yet implemented into any

type of theoretical or mmerical model.

2-B-3 The uniqueness of the solution

Tor a high Reynolds number (greater than 10F), the boundary layer is thin so that
the flow outside of the boundary layer can be treated as potential flow. For such a
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polential flow, reasons supporting the validity of the approach are as follows.

o Uniqueness of irrotational flowin @ singly-connecled region. For an irrotational,
single-connected region, a velocily potential ¢ must exist. An irotational, in-

pressible flow in a singl. region is uiquue (Lighthill 1986, p.85).

o Supplementary conditions for a doubly I region. A doubly

region in a lifting low domain, for example, a 2D foil with its wake, can be
transferred to a singly-connected region if the wake is to be treated as a barrier
(sec figure 2.1). However, in the singly-connected region, the circulation by a.
potential solution, is I (k is an arbitrary constant), which has multiple values
(see p.93-94, Moran 1984). A supplementary condition is needed to provide
the uniqueness of the solution lo the velocity fild for this singly-connected
region that is d from the doubl; ted region (Lighthill 1986,

p-95-96). This supplementary condition, for an airfoil scclion with its wake, is
the Kulta condition. When the Kutta condition isimposed in the solution, this
modified doubly-connecled region of a flow around a foil has a unique velocity

distribution.

o Uniqueness of the solution to an unsicady flow in @ singly-connected region.
| 1

When a solid body is moving in an i ional flow (in a
region), or this body is stationary in a moving fluid, the flow field can be
determined uniquely by using the instantancous velocity normal to the surface
of thebody (Bachelor 1967, p.104). This indicates that the velocity profile of
the flow field can be predicted wiquely and this prediction is dependent upon
the instantancous boundary condition only; the acceleration of the body and the
motion history of the body have o effect on the prediction of velocily potential.
However, the history of wake vortices cannot be neglected. In other words, a
steady flow problem in asingly-connected region can be extended toan unsteady
case as long as the instantancons boundary condition is used. Thercfore, a
time-domain scheme can be employed in the unsteady singly-connected region.

For cxample, at cach time step in a numerical process, for a given boundary
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condition (velotity mormal to the surface of the ving), the flow field can be

solved uniquely.

+ Uniqueness of he solulion 2o a dowblywonnected ngion in the wslcady ase.
Bachelor (1967, p. 112) pointed out that an_ irrotational, unsteady, solenoidal
flow ina doubly-connected region can be deterrmined uniquely when the required
houndary conditions for nniqueness of flow in a singly-connected region are

imposed (wake as a barrier) and the cyclic constant is spec

o (hy imposing
the Kutla condition). This indicates that for an unsleady flow around an airfoil
(doubly-conn

ccled region) when the unsteady Kutla condition is imposed, the

unsteady potential (low of an airloil can be solved by a time-domain scheme.

Again, for the liting problem, theinduced velocityon t he foil from wake vor!

and their historic changes should be taken into account.

o Foree aleulation fromm an unslealy polelial flow salution. As unsteady poten-
tia] flow can be solved in the tine domain, the obtained wlocity potential and

local velocity along the surface of the

foil can be used to calalate acrody-

namic forces. At cach time step, the velocity polential @
its derivitives 2 are unique. The velaly potential changes with time steps,

iy
hence 3¢ can be obtained. Therelore, the instantarcous local pressure can be

s unique; therefore,

determined from the unsteady Bernoulli equation.

2-B-4 Wake considerations

As e local velocity around a 2-D foil, which is moving in a static. incompressible
fluid, varies with changes in pilch (instantancons angular velodity of the foil. hence
the angle of allack ), heave (instantancous vertical velocity and also t he instantancous
angle of attack), forward fli ght specd, and for part or all of these changes, the tolal
circulation I' of this seclion is changing, This circulation I', which is proportional lo

the lift (£ = pUT), is then a function of tire £,
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Form of the wake behind a 2-D foil in unsteady flight
According to Kelvin's theorem

or o

DL
in a flow domain. The development of a wake behind a wing section is simply described

(2.4)

as follows.

o At time ¢ = 0%, for a wing scction starting from rest with a moderate angle
of attack, a starting vortex Tyare al the trailing cdge and a vortex I of total
circulation of the section are created at the same time. Generation of this
starting vostex is due Lo viscous effects at the trailing cdge. The strengths of
these Lwo vortices are the same but opposite in dircction to give

DU _ DU+
Dl DI

(Bachelor 1967, p.440).

3 If the wing section moves ab a constant forward velocity, the total circulation
I'is constant and the starting vortex [y once shied, is constant (Ielmhotz
theorem). In this case, there is no trailing vortex shed by the foil at the trailing
edge because the span is infinite and then the change in spanwise circulation is

sero (Uhis will be discussed later in detail in the case of steady 3-D flow).
o When there is an increase in circulation around the foil section, from I' to

I' + AI' duc to an unsteady effect, to keep 2 = 0 in the entire flow domain

(=00 < ¥ < 400, =00 < ¥ < +00), there must be a decrease of the strength of
the vortices in the wake Iy — AT, and this —AT is the strength of a newly
shed vortex. Similarly, decreasc in circulation will produce a shedding vortex

with an cquivalent intensity but a counter circulation by the wing.

Figure 2.2 shows the variation of wake vortices shed at the trailing cdge with
changes in circulation of an oscillating foil. When the timeis £ = 0*, those two vortices

I'=o and D'ygre are shed. From Kelvin’s theorem, Fizg + Uyiare = 0. If cireulation of
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Figure 2.2: Presentation of shed vortices due Lo variation of circulation around a foil
section. The negative maguitude of the intensiy of the instant 5(z) shed in wake
the trailing ed culation curve I; (here
pect 1o the travel dis U 1) around the loil.

immediately after
I'; changes with

ion I' does not change, there will be no vortices shed in the wake (no area

is an increase

e 1 in the lower part of figure 2.2); from Iy at £y to 'y at fa, ther
in cireulation (ALY, = I'y = I'y) and there must be a decrease of total vortex strength
in the wake 5o as o shed a vortex I, with a negative magnitude in strength, i.c.,
APy 4 Dy = 00r I = Ty = Al =
instant can be expressed in terms of the current o

"wa- A newly shed vortex strength I'; at any

culation of the foil section and the

ions arc as follows.

sum of all wake vortices in history. Exp:

It can be seen that Al =1 = I'i_y = =D, which is equal to the shaded arca
between time intervals shown in figure 2.2. 1 and 'y are sectional circulations
at the current and previous time respectively, and I, ; is the strength of the shed
vortices at the current time step. Therefore, a recurrence relation between sectional

cireulation change and shed vortes can be expressed as

o= Tioy =T, (2.5)

= Theg—Tuony

= Tui-2,
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and the strength of shed vortex at time #; is then (Katz and Plotkin 1991, p.447)
i-1

= {r. +3 l‘.",k}. (2.6)
=

It is noted that from Helmollz's theorems, in an ideal flow, where there is no

Tug = ~[Ti =T

diffusion, the strengths of shed vortices in the wake at any time, once shed, arc
constant. As a vortex wake is also force-free, this wake moves with the local velocity.
The local velocity cither on the wing surface or in the wake is the resultant, velocity
from which the velocity is induced by vortices on the wing surface and by all shed

vortices in wake, i.c., all vortices in the flow domain.

The influence of the wake on forces on a wing section

Forces on a 2-D foil include total lift ! at an angle of attack?; moment about the
leading cdge; and thrust or drag along the dircction of the mean motion of the wing.
For a 2-D foil scction in steady flow, there is no induced drag. Total drag consists of
form drag and frictional drag.

von Karman and Sears (1938) pointed out that lift and moment are the functions
of the location and strength ol wake vortices. They expressed the momentum on a
foil section as the sum of momentums of vortex pairs (the product of the circulation
and the distance between the individual vortices T'(zig1 — 7). According to their

work, vortices are laid both on the wing surface and are shed in the wake. Therefore,

throughout the flow domain, thr total momentum is T Tyzi. As the wake vortices are
continuously shed due to the change in strength of vortices on the wing (circulation),
the total momentum ¥ I'a; and the total moment of momentum ¥ 1';a? varics with
that change. The lift and moment per unit area on the section were then exprossed

as the rate of the change in momentum and in moment of the momentum by
d - >
L=—p Yo, (2.7)

Total lift is the sum of all thrust components perpendicular to the velocity vector, acting on the
wing (von Miscs 1945).

“The angle of attack is the angle o between the velociy Vo and an arbitrary chosen direction in
the median plane of the foil; the angle of incidence is the angle of attack at zero lift direction (von
Mises 1945).
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and
M= —,,i PIRNER (2.8)
a& i
This indicates that the lift and moment are influenced by the wake vortices and this
is one of several ways to obtain the lift and pitching moment.

In addition, there is no force acting on the surface of the wake. However, in the

ulation of forces on the wing, the wake layer is moving with the local fluid, and
the wake vortices are the history of the lift and moment changes on the wing. The
elfect of wake vortices on the instantancous lift should he taken into account.
Unsteady solenoidal flow around a finite aspect ratio foil

The spanwise lift. distribution l(y)of a finite span foil can be represented in terms

of the spanwise circulation distribution, I.(y) = pUT(y), where [(y) is scctional lift,

p s density of fluid and I'(y) is spanwise circulation distribution, For a rectangular

lifting foil, the circulation I at the wing tips is zero. and gradually increases Lo its

maximum value at the root chord section. The curvature of the circulation curve
along the span is dependent upon the aspeet ratio, the shape of the planform and the
tip condition, ete. An elliptical planform moving at constant velocity in a static fluid

with an clliptic spanwise circulation distribution is schematically shown in figure 2.3,

As circulation aronnd adjacent sections varies, according to Kelvin's theorem,

railing vortices must be shed and these vortices move with the fluid; they cannot

terminate (Lighthill, 1986). The strength per unit arca of the trailing vortex filament

should be equal to the rate of change in the spanwise circulation, i.c., ¥(y) = _”}i‘M L

where the negative sign denotes that the strength of I(y) decreases when the value

of [y| increases. This infinite number of vortex lines make a wake vortex sheet be-
hind the foil (constructed by the broken lines in figure 2.3). According to Kelvin's

theorem, these trailing vortices must go through the starting vortices so that cach

vortex filament has the form of a closed vortex ring starting from the bound vortices

on the surface of the wing to the starting vortices via the trailing vortices in the
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Figure 2.3: Generation of the trailing vortices duc o variation of the spanwise circu-

lation.

wake (figure 2.4). As these trailing vortices get longer with time, but their strength
is constant, there is a drag, or induced drag, as associated with their formulation.

As the slope of the spanwise circulation curve at the tips for most wing planforms

is steepest, the trailing vortex density y(y) per unit length along the span reaches its

maximum value at the tips. Near the root chord, the slope is gentle. For an infinite
aspect ratio [oil, this slope H2 is zero (I'(y) =constant there). This is the reason

why for a two dimensional foil in a steady flow, the trailing vortex strength is zero

(the slope for an infinite span foil in the steady flow is zero, i.c., this trailing vortex
strength, 5. For a qualitative analysis, the thickness of the vortex sheet s used to
express the intensity of a local trailing vortex filament ¥(y), and the distribution of
() for a foil in steady motion is shown in figurc 2.4. The strength distribution of
trailing vortices is also shown in figure 2.4 for different times in a short time of history

before vortex sheet distortion occurs (for example, at £ and l, these distributions

are the same). Theoretically, in an inviscid fluid, though the vortex sheet distorts,
the strength of cach local vortex filament is constant. In certain cases, the vortex

filaments join or form instabilitics in the wake.

o Unsteady spanwise lift distribution and form of the wake. The spanwise circula-

tion curve keeps changing due to the motion of the foil (yaw, roll, surge, pitch,
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FFigure 2.
vorlice

.4: Formation of vortex rings by bound vortices, trailing vortices and starting
of a 3-D steady foil. Spanwise trailing vortex d
slope of the local circulation curve I'(y) and th
of the vortex

ribution is equated to the
strength is expressed as the thickness

lieave and sway) at any instant. Changes in circulation from instant to instant,

according to Kelvin's theorem, cause vortices to be shed from the trailing edge
5. When

culation I'(y,1) increases at an amount from I(y, Li_y) to

of the foil. A time d

ependent, form of the wake is illustrated in figure

the local sectional ¢

D(y, 1) which is —AT', there must be a shed vortes with i

trength equalling
+AT being shed by the trailing edge of this

ion. Then the strength of the
vortex currently shed is

Pl b)) = Dy, tiz)

)= s

2 (2.9)
In figure 2.5, 3,(r,), or the strength of the shed vortex, has value equal to
the negative slope of the spanwise circulation distribution I'(y), i.c., — 22 (by
vortex continuity) and 1,(r,p) has a value equal to the negative of the rate
of change in the magnitude of 1'(y) with respect to travel distance (U - £), i.c.,
-2 Phese two vortex vectors are orthogonal to cach other. The shed vortex
(2, y) contributes to the roll-up of the vortex sheet at tip-to-tip as it is shown
in figure 2.6; and the shed vortex 7,(x, y) will affect the far wake roll-up starting
at the starting vortex.
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Figure 2.5: Shed vortices of a 3-D foil duc Lo variation of the instant circulation. The
local strength of circulation 7, (z, ) is Uhe rate of change of spanwise circulation with
respect to the span location, and %,(z,p) in the wake is the rate of change of the
sectional circulation with respect to the travel distance, or the time ¢.

In any numerical process, the slope of the circulation curve is discretized in

steps to simulate the continuous vortices in the wake.

Roll-up of a vortez sheel behind a 3-D steady foil. Roll-up of the vortex sheel

in a wake can be described as follows.

As the wake vortex lines move with fluid (force free), and the local fluid velocity
is induced by both bound vortices on the surface of the foil and by trailing
vortices in the wake, the vortex sheet will be distorted with the motion of foil.
In other words, the local velocity changes as the wing moves away and trailing
vortices are continuously shed. The cross scction of the vortex sheet (y — z

planc) from the position close to the wing at 7, o a position far downstream

at 2 in figure 2.6 shows the process of roll-up the vortex sheot, for a wing in

steady motion (Lighthill 1986).

Induced by newly shed vortices and existing vortices on the planform and wake,
the center part of the vortex sheet has a greater downwash as this downwash is
contributed to by all vortices along the span with the same downward direction.

herefore, the center part of the vorlex sheet moves downward duc to the highly
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Figure 2.6: Schematic diagram of a vortex sheet roll-up process for a 3-D foil in a
steady flow (Lighthill 1986). Induced by all vortices in the wake and on the wing,
part of the vortex sheet in the waks to the root chord goes downward; vortex
filaments depart, al the root chord towards the tips; and tip vortices are rolling up
due to the induction of the inward vortices.

induced downwash. Meanwhile, affected by the downwash, vortex filaments
close 10 and on the left and right-hand sides of the root chord will also go
towards the left and right-hand tips respectively. With the continuing motion

es are bent into two curled tubes, Within

of the vort,

5, the Tocal tip vorti

a limited dis

ance from the foil, these tubes are cones. However, in the far

wake, they will break due to instability and diffuse duc to dissipation of viscous

energy.



Chapter 3
Formulation of the method

This chapler presents the assumptions and a brief discussion of the formulation of

the methods and solution procedures used in this rescarch.

3-A Physical aspects of the lifting flow domain

"I'he flow around the foil was idered to be inviscid, i ibleand irrotational

The physical assumptions arc as follows.

1. The Reynolds number Re is assumed to be high enough so that the boundary
layer thickness is small. The attached boundary layers on the upper and lower
surfaces of the foil meet at the trailing edge. The magnitudes of the vorticity
shed by the upper and lower boundary layers arc usually not cqual to cach other
unless the foil is in steady motion; the sum of these two generated vortices equals
the wake vorticity and this wake vorticity leaves the trailing cdge of a moving
foil. This wake vorticity assumed to be a sheet or thin layer; this sheet increases
its size when the foil moves and it moves with the local fluid and rolls up. The
difference in pressure across the sheet and normal velocity of the whole sheet
are both equal to zero. Across this vortex sheet there is a discontinuity in the

tangential velocity; hence the velocity potential across it is discontinuous.

37



Chapter 3. Formulation of the method 38

N

As the flow is irrotational,
VxV=0 (3.1)
Therefore, there must be a flow potential to express the flow velocities, V; = i”lz

i.c., V= V- . On the other hand, the incompressibility of the fluid yiclds:

P ;
din? =97 = (3:2)
(3.3)

. The boundary conditions for cquation (3.8) are a) the velocity at infinity is
zero, yielding Voo = ¥ - ¢ = 0, and b) the normal velocity passing through the
boundary of the foil scction is zero, i.c.,

)

=g =i-?=0 (34)

Va

This is a “N

umann exterior” problem (Katz and Plotkin 1991) and the unique
solution Lo cquation (3.3) docs not exist unless a physical boundary condition is
imposed. This boundary condition, as discussed on page 26, is the Kutta condition. In

most. panel methods for solving lifting flow problems, the Neumann exterior problem

is solved by using Green’s identity method and imposing the Kutta condition.
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3-B Formulation of the potential based panel method

In classical mathematical physics, there exist several approaches to solving a L.P.D.E.
They are typically the standing-wave scheme (separating variables and Fouricr tech-
niques); frequency spectrum approach (Fourier and Laplace transformations); pro-
gressive wave analysis (D’Alembert theorem) and the source-doublet method (Green’s
identity application). P d of the indirect lation of the potential based
method are discussed below.

The dure and applications of Green's

only are briefly discussed
here. Considering a three-dimensional potential flow domain, if the velocity potential
is 1 at one point and @; at another, and these velocity potentials are harmonics,
Green’s first identity yields

[l 6527 = [ 6585 — [[f 991 Faaav, (35)

where § and V' denote the domains of the integration. S is a closed surface enclosing
the finite volume V' of the flow domain and § must be an orientable surface. ¢; and

¢, are harmonics, eq. (3.5) can be interchangeably rewritten as

//V¢2v”¢|dv=/fsw%"ildsﬁfjjvwrwmu (3.6)

Subtracting cq. (3.6) from cq. (3.5) yiclds

I, 5% = ga900av = [[ 22 - 5,500 05. @)

eq. (3.7) is Green’s sccond identity. It can be written alternatively via 2 = V. i
as
[l &7 6900V = [[(6:96: - avo) s, G9)
which is eq. 3.4 in Katz and Plotkin (1991). Eq. (3.8) can also obtained by defining
a velocity vector
=($1Vd2— 6:Vé), (3.9)
and applying the divergence theorem (Moran 1984)

///VdianiV - //sﬁ VS, (3.10)
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The significance of Green's sccond identity, is that the valucs of é; and ¢; at
any position (z,y,2) within the flow domain can be expressed as a surface integral,
and ¢, and ¢, in the surface integral are the values on the boundary(s) of the flow
domain. In other words, ¢1(z,4,2), ¢2(z,4,2), V21(z,y,2) and V(z,y, ) have
certain relations governed by Green’s sccond identity with the boundary values of
$1(a,b,c), da(a, b,c), 222kl and 292febe) where a, b, and c are coordinates on the
boundary. Though Green’s second identity reveals those relations, it cannot be used
directly to solve the boundary value problems.
Green’s third identity in three dimensional cases states

on =1/, [5%—%”,‘( )]49 (.11)

¥ an
Vor multibody problems, as Laplace’s equation is lincar, a solution can be obtained
by superposition. Thercfore, eq. (3.11) can be applied generally as

_|N

wn- PR s e

In a lifting flow, where a foil has a wake extending downstream, N =3 is defined
for the surface boundary of the foil surface, the wake vortex sheet surface and the
infinity boundary surface (sce figure 2.1).

Considering a solid foil b lary (figure 3.1), the di in velocity potential
and velocity between the inside and outside of the boundary at point Q are

Q@ = Gin — Bouts (3.13)
and

Ddq _ Din— Do

o n (14)

respectively. As the velocity potential of a unit doublet duouret is cqual to 2spucce
(see Katz and Plotkin 1992), ¢q and %2 can be cqualized as

$Q = din — Pout =0 (3.15)
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flow field within the domain V
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Figure 3.1: Boundary conditions of velocity potential and normal velocity. Velocity
potential across the solid foil boundary has a jump, which is discontinuous, and
normal velacity across the boundary is continuous, which is zero.

no fluid flow inside the foil

and

0a _ D0 =0 _
on on !
where ¢ and p arc the strength of the source and doublet respectively. With the

(3.16)

unknown strengths of the source and doublet being placed in the integral of Green'’s

third identity, the potential flow based boundary integral method finally follows
-1 & 1 B o 3
#(P) = Fﬂg //s [n'-_ "‘E(T-’] ds. (3.17)

According to the boundary conditions for the potential lifting flow assumed on
page 37-38, both sources o and doublets y are allowed to exist on the surface of the
foil, though cither onc or both can be placed alternatively; on the wake vortex sheet,
as normal velocity v, = 32 is continuous and velocity potential has discontinuity
(jump on the boundary), only doublets are allowed on the sheet surface; at infinity,
as r — 00, both terms in the integral vanish, hence ¢(P) at n = 3 (boundary is taken
as infinity) is a constant, or ge(P). The known velocity potential g(P) of a unit
source and/or doublet at point P, has an influence on the boundary. This influcnce

can be determined in terms of the unknown strengths of these doublets and sources
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being placed on the boundary and the distance, r, from point Q on the boundary to
point P in the domain, with an unknown potential ¢(P). Towever, if P is chosen
inside the foil, () is zero—this will significantly simplify the solution procedure
(sec Katz and Plotkin 1991). In three dimensional cases for the foil, wake and the

flow boundary at infinity, the following relation cxists

A= T ot 4 Sl pgepas o @y

which is eq.3.13 in K

and Plotkin (1991). Similarly, the boundary integral in the
two dimensional case is then in the form of Katz and Plotkin (1991) as

a(r)

L y E
3 h [Ulnf —/r——(ln rl] is—o-f. h)tm(ln S+ 6(P).  (3.19)

A minus sign has been added to equation 3.19 duc fo a different assumption of the

a sonrce and/or doublet is placed on the foil surface, the velocity
potential and induced velocity at an arbitrary point P in the domain (point 7 can
also be placed on the boundary) will also have the same relation as given in eq. (3.18)
or eq. (3.19). This relation allows application of the boundary integrals above to solve
practical problems. When eq. (3.18) or eq.

3.19) is to be solved numerically, a number

of source and/or doublet clements are placed on the foil outer surface, a number of
doublet clements' are placed on the inner surface of the barrier (wake vortex sheet).
Usow + Veeyy + Weo.

1 a static fluid, the velocity potential éoo(2’) is constant

In addition, for a llow around a fixed foil, é.(/)

constant; for a foil moving

and,

a reference point. this constant can be taken. However, the mean velocity of

the foil implies that there are velocity components added to the moving body, i.c.. an
additional

Vot = UnoT + VioJ + Wk, (8.20)

Solution of eq. (3.18) and cq. (3.19) falls into three categories: Dirichlet problems

(¢ is given at the boundary as a function), Newmann problems (the derivative of ¢

TA doublet distribution has the same velority potential as the vortex ring does, if they are placed
properly. See Moran 1981,
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with respect to the normal, or the normal velocity 2 is known at the boundary)
and Robin problems (boundary values are given as mixed Dirichlet and Neumann
conditions). Again, for lifting problems they cannot be solved uniquely unless a
Kutta condition is imposed.
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3-C Numerical implementation

3-C-1 The method of numerical solution

By applying the Dirichlet boundary condition, a combination of source and doublet
distributions was used for the solution. By setting the inner velocity potential as

constant, eq. (3.18), referring Lo the body frame, yields a zero value at cach panel:

) I 91 =1 a1
=L Lis _/ 9 Lyas —/ 2iags0, 3.
Tl vt 4 T a8 + 5 [ s =0 @:21)
ForsEhisdioBarvalil an won Hsoussed fe-llicsprotious section: Miesuniomree
as (p.241 Katz and Plotkin 1991):

strength has to be sef

=itV (3.22)

where i is the normal vector of the foil’s surface.

1t is noted that ¥, is the total kinematic velocity due to the motion of the foil,
not. the forward swim speed Vyiigae, which was often expressed as Vi in the literature.
A number of surface pancls were placed on the body of the foil and the shed
wake, For each panel, three influcnce coefficients, corresponding to the three terms of
. (3.:21) were obtained. For the two doublet influence cocfficients (wake and foil),

the numerical solution was obtained through the following steps (Newman 1986):

1. The analytical result of the integration over a polygonal surface pancl

P = 2 e -0+ =+ ] = dedy (3.23)

is us

Here, the domain of integration S is divided by an infinite number of

clements dédy.

2. For cach panel where the influence cocfficients are to be sought, the coordinates?

%l this thesis, £, y and = represent the values in body frame; X, ¥, and 7 represent incrtia
frame and € and 1 are panel coordinates. Because the panel was assumed flat, the vertical ordinate
of the panel is zero.
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X,Y, and Z of the control point of cach panel were transferred to a Cartesian
coordinate system that is established on the local panel. In the process of
evaluation of the influence coefficient, the local panel coordinate system is the
reference frame and this panel is the one which makes the contribution to the

influence.

X}

. The influence cocfficient, at a point (usually the control point of a quadrilateral
panel) duc Lo a unit doublet on another quadrilateral panel was obtained by
integrating along the other panels’s four sides. A numerical form of cq. (3.23)
that was presented by Newman (1986) was then uscd:

4 - - 2%) ~ 8alz = &u)(y — 1
F - %Z tan-1 8nl(z = €0)? 4 %] ~ 8a(@ — &)y — 1)

nZ08n

a1 O1l(@ = n11) + ) = 8(2 = Eu11)y = 1)
R 266, '
(3.24)

Where 81 = Natt = Tiay 86n = Enst — £n with cyclic convention; R, was the
distance from the n-th comner point to point P(X,Y, %), the control point,

where the influence coefficient is found. A sch ic diagram is ted in

figure A.1in Appendix A.
The source influence cocfficients at. each panel were calculated as follows:
1. The analytical solution to the first term of eq. (3.23) was presented by Newman
(1986):
Cunuree = = [ Puotte = #Buttt (3.25)
;

2. Newman (1986) obtained a numerical form of eq. (3.25) for sources on a quadri-
lateral panel as:
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1
oouree = —j—: 3 {(@ — €)5in 0n — (3 — 1) c030,}
=
Ry + Ruyy + 80
In ot st =5~ 2P doublet (3.26)

where sin 0, = 222 and cosf, = =% and s, is the longth of the n-th side of
the pancl.
To numerically cvaluate cq. (3.24), in the summation of the values of the inverse

tangent functions, when the panel angle n is in the range of (~,7), has to be dealt
with carefully. To do this, Newman (1986) combined the two terms of eq. (3.24) by

tan=! () = tan="(2) = tan="(2);

3 = S1es — sger; (3.27)

= eyoy = 5isn
For a foil body having N panels, the influence coefficient, matrices, duc to the
doublet and the sonrce on the solid boundary, have an order of N. They were labelled

as [ollows:

diy g o e diy n
dyy dyy e e day 2
: H 3 £ (3.28)
dyy dya e dyy 12
and
oLl 0L2 - - OLN o
02,1 02,2 02,N o2
: i i (3.29)
ON,I ON,2 -+ +o ON,N on
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With the marching of the time steps, the size of the shed wake doublet influence
cocfficient matrix grows and it has an order of N x K, where K = M * [, is the
number of columns of the matrix, M is the number of wake strips across the span
and L is the number of total time steps. This matrix at the last time step (which
covers the history of all the shed vortices) looks like:

dwygy s dwigg e dwygy, dwy p o

3 F ] : 3 : (3.30)

dwyyy v dwnyg cccoee dwng, s dwnag, g

A subroutine was carefully writlen as the engine of the OSFBEM to obtain the
cocflicient matrices, along with another subroutine to transfer the global coordinates
1o panel local coordinates, These subroutines and two sample matrices are inchided
as Appendix A.

The i in eq. (3.28), in this doublet-source perturbation potential method?, is
cquivalent to ®;, the distribution of velocity potential over the solid surface, Once
the distribution of i was obtained, the tangential velocities were then obtained by
differentiating the potential with respect to the tangential vectors of each panel. FFor

rigid foils, as panel relative positions remained unchanged, these coeflicient. matrices

were the same for cach time step. For an clastic foil, they had to be obtained at cach
time step.
As can be seen, if o; and ji; arc not given, there is no unique solution to the lincar
cquation system:
eq. (3.28) — cq. (3.29) + cq. (3.30) =

However, eq. (3.29) becomes a known one-column matrix by applying cq. (3.22).

The total kinematic velocity due to the motion of the foil was obtained by:

Vo = Virans + Voat + V/tn« 31)

By assuming the inner velocity potential being constant, i.e., zero, the local doublet strength
yields a value the same as that of the local velocity potential. Sce Katz and Plotin 1991, p.210.
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The velocity Virans due to translation was the velocity at the origin of the body
frame coordinates. It consists of the x-component, foil forward swim speed Vi and
the vertical component, foil heaving velocity k. The y-component for an oscillating

foil is zero. It is in a form of

Virans = (Vitight; 0, il)- (3.32)

The velocity due to rigid body revolution about three fixed axes, V.o, was:

Viet = 0 x 7, (3.33)
where 7(z,y,z) is referred to the body frame and ﬁ, for a foil with pitch only, is
(0, épiten, 0)-

A large litude motion was d. Therefore, the velocity of heave and pitch
were derived from:
h = h,sin(wt — Pphase) (3.34)
and
a = a,sin(wt). (3.35)

For a flexible foil, the velocity at each panel, due to the relative motion of the
panel within each time step was obtained by determining the time derivative of the
deflexion equation f(z,y,z2,t). It was noted that this velocity was based on the body
frame so that it had to be projected to the global frame in order to be summed in
eq. (3.31).

When the total kinematic velocity Vi, was projected onto the panel surface, the
values of o were then the normal components of the projected velocity Ve With
these known source strength values, eq. (3.29) was reduced to a one-column matrix
and moved to the right-hand-side becoming RH S;.

As mentioned in a previous section, eq. (3.18) does not have a unique solution if the
Kutta condition is not imposed. Eq. (3.30) was also reduced to a known one-column
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matrix. This was done in two steps:

1.Finding the doublet strength at the immediately shed wake panel at the current
time step. Once these values are found, they remain constant. As the wake roll-up is
not implemented in this method, the locations of the wake panel remain where they
were shed. A steady Kutta condition (Morino 1974) was used to determine these

values. This Morino Kutta condition,
Puake = Pupper — Plowers (3.36)

is then evaluated along each wake strip across the span at each time step. Eq. (3.36)
indicates that a number (M) of unknowns should be added to the system linear
equations. The coefficient matrix of eq. (3.28) was then rewritten as

da o Ay den, A Ie(M-1)41 GMeN DMy
da ©odMy dwama, o dMgl(M-141 T SMMeN  dM My
g ik o) 1 Oy 1 v = 1
» (337)
My Ay deMize v dMugM-41 AMIMN AN My
1 1 - 1

-1

where J is the number of total chordwise panels including both the upper and lower
surfaces and M is the number of total spanwise strips. The subscripts (k,m,,) are the
flags of the influence coefficient at k contributed by the i-th immediately shed wake
panel; k ranges from 1 to M % J and m,, from 1 to M.
Eq. (3.37) was then reduced to a (N + M) x (N + M) coefficient matrix by
substituting
di, g, = diagiy — diggpan (3.38)

into the (M + 1)-th row for the first wake panel of eq. (3.37) and so forth as:
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Gy —dwn,) o (4 g +dea,) (43 oM—1y41 = 41,00) @ aan + 1,00,)
(dg1 = dwga,) (4,5 4 dwaa,) © sy ) (2,005 +42,00,)
o o o °
(dpgsy =dwprss,) (dprss +dwnga,) (dng g, se0(M=1)41 = ML M) (darsaen +dMny,)
° 0 o o o

(3.39)

At each time step, the values of doublet strength on the newly shed wake panel
were found by using eq. (3.36) for each wake strip (each section), after the linear
equation system was solved.

2. Using the values of the previous shed wake doublets to find the one-column

matriz. This is done as follows:

e At time ¢ = {,, py - - - pyy were found by using the steady Kutta condition and

the matrix solver. There was no wake matrix formed.

e At time ¢ = t;, the wake matrix then became

dwyyy dwigy - dwiag by
dwyyy  dwyzy -+ dwaa, pwy

g i 2 : 5 (3.40)
dwyiy dwngy - dwvaa Hwy

where N is the total number of panels and M is the number of wake strips. The
wake coefficient matrix had a size of (J x M) x M = J x M?, where J is the
total number of panels at each section. At this time step, there were only M

wake panels.

o At time ¢ = #1. the last time step, the wake matrix became eq. (3.30).
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This one-column matrix which incorporated the wake effect moved to the right-
hand-side as RHS;.

To improve the accuracy of the prediction, Katz and Plotkin (1991) moved the
control point of each immediately shed wake panel closer to the trailing edge of the
foil. Instead of doing so, this method employed a number of different approaches to
improve the accuracy of the results. Two of these approaches are explained below.

When the trailing edge of the foil had a thick a sub ial error in
prediction occurred. This is because the Kutta condition is invalid at the trailing edge.

To avoid this, the difference in the velocity potential @, at the trailing edge on the
lower surface panel and on the upper surface panel had to be taken into consideration.
Youngren et. al. (1983) has proposed an adjustment on their low order panel method,
QUADPAN. Maskew (1987) used a similar approach in his VSAERO. This was done

according to the formula:

fw = Hupper — Power + Pooupper — Poo,tower- (3.41)

These velocity potentials were evaluated in terms of the dot product of the global
velocity and the global coordinates of the panel’s control point.

Consequently, eq. (3.41) added another one-column matrix to eq. (3.39) as RHSs.

This one-column matrix was:

Rt B TS
RHS; = . (3.42)

T Vo b Ny
where N is the total number of panels, M is number of wake strips and s, ;m, is the
difference between the velocity potential of the upper and the lower panels at the
T.E. To find the doublet strength at the immediate shed wake panel, eq. (3.41) was
used, instead of eq. (3.36).
It was found that averaging the immediately shed doublet strength improved the

prediction on the velocity and pressure distribution on the foil, especially for a foil in
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sinusoidal motion. In most cases, the above approach reduced the pressure difference
at the trailing edge making the steady Kutta condition more feasible. This was

formulated as:

Baverage

Bl D) e 1)

Eq. (3.39) was further written as:

(g —dung /) o (g ey, /2) (1 go(amtypr = DM /D) aren + A 1)
(day — gy, /2) <o (dgg 4 dugay, [2) (g gapt—1ypr =G0 10 o (B ren + a0y 12)
o o o o
(darsa —dwrgsa /) oo (dagss 4 dwnsng 1) (Sasse(M=1)41 = 4802002 - (dnsagen + rsen/?)
o ° o o
(3.44)

Consequently, eq. (3.42) was revised as:
SM_ d, (:)+;,. my (t=1)
RHS = . (3.45)
TM, dy, 2 (1)

It was noted that the wake doublet strength found at the previous time step was
kept in memory and was used to find the average at the current time step.

Finally, the left-hand-side of the linear equation system was eq. (3.44) and the
right-hand-side was RHS; + RHS, + RHS;. This linear system was ready for a
matrix solver. The wake doublet strength currently shed was then determined by
eq. (3.43).
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3-C-2 The matrix solver

An accurate, reliable and efficient matrix solver can significantly improve the speed
of computational work, especially for time-domain applications in which the matrix
solver is to be repeatedly used at least as many times as the number of total time
steps. (In some iteration methods, either for fluid or fluid-structural equilibrium, the
matrix may need to be generated and solved a number of times at each time step).
The percentage of total elapsed time taken to solve the linear equation system in
this OSFBEM program depends on several factors: the matrix size and its property;
the selection of the solver; the accuracy requirement; the CPU and the bus speed;
programming techniques; the number of total time steps and panel density. This
percentage ranged from 30% to 90% for rigid foils. For flexible foils, this percentage
was reduced because both doublet and source coefficient matrices need to be obtained
at each time step.

In many computational jobs, coefficient matrices that were yielded from the
integral-L.P.D.E are symmetrical and sparse. For these symmetrical, sparse matrices,
there are a number of mature subroutines such as ITPACK, LAPACK, LINPACK,
NAG, IMSL, etc. Most of these well written packages are easily downloaded from
the Internet. However, in most cases eq. (3.44) was a dense coefficient matrix. This
matrix is not symmetrical due to the imposition of the Kutta condition, wake effects
and sometimes non-symmetrical 3-D geometry of the foil. Therefore, a highly effi-
cient, reliable matrix solver that is suitable for asymmetric and dense matrices is then
desirable.

A number of Gauss elimination subroutines for both real and complex linear equa-
tions are available. For large scale linear equation systems, the Gauss elimination
method is usually less numerically efficient, and this becomes obvious when the ma-
trix size is larger than 400 (Katz and Plotkin 1991). Another disadvantage is that this
method requires a greater amount of DRAM (dynamic random access memory) for
operation, at least as much as the size of the matrix multiplied by a precision factor
(e.g., for single precision this factor is 4). When a shortage of DRAM is encountered,

this method becomes unbearably slow even if a very little amount of virtual memory
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is to be swapped. A test on a 4865X 33MHz machine with 4MB DRAM found that,
for an 800 x 800 matrix, a solution took about four hours for a Gauss-Seidal iteration
method and about two days for a Gauss elimination method.

Many classical linear iteration methods, such as the Jacobi, Gauss-Seidal, and
SOR (successive over relaxation) methods are stationary iteration methods. They
have slow convergence rates and these rates also depend much on the property of the
matrix and over relaxation parameter (Jennings 1977). The SOR method was used
once to solve a matrix generated from this panel method with irregular geometry
input and it did not converge.

In this computer program OSFBEM (oscillating foil boundary element method),
the Bi-CGSTAB (BiConjugate gradient stabilized) method was used (Freund et al.
1991). A pseudocode of this method was presented by Barrett et al. (1994). The
subroutine used in the OSFBEM was based on a subroutine downloaded from the
NetLib, which requires more DRAM and more matrix manipulation than the one used
in OSFBEM. It was revised for two versions: a) Using a row-by-row reduction scheme
to solve a big matrix without using virtual memory swap. The revised subroutine
reads one row at a time when the DRAM is limited in which case the matrix is stored
in a binary file at each time step. Required DRAM is I + (7NV) bytes, where N is the
order of the matrix and I is the floating point precision. This avoided using virtual
memory swap which would take a long time to solve a big linear equation system. b) A
modified version to reduce the number of times of the matrix had to be manipulated.
This is particularly helpful when the DRAM is not very fast* or the virtual memory
swap was required in the case of a) above. This version requires that the computer
put a full coefficient matrix into DRAM. The amount of required DRAM is then
I % (N* + 7N) bytes. Version b) is much faster than a) but requires much more
memory. Version a) was found very helpful during the two-year development stage of
the OSFBEM. Version b) has been used since a machine, with a Pentium 120 MHz
processor, 32 Mb 70-ns DRAM and 1 Gb hard drive at accessing time of 8 ms, was

accessible.

“DRAM’s speed usually ranges from 60 to 80 ns. A faster EDO RAM is becoming popular now.
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Version b) above was used to compare with the SOR method. For the OSFBEM
with a given input, the ratio of total elapsed time for the Bi-CGSTAB to the that for
the SOR is 220:2617. In this case, the Bi-CGSTAB has over ten times the computing
efficiency of the SOR.

To achieve a fast convergence rate, Bi-CGSTAB requires that the matrix be nor-
malized. In the OSFBEM, this was done by dividing by d;; at each row for both the
LHS and the RHS.

3-C-3 Calculation of hydrodynamic forces

The solution to the linear equation system is the distribution of doublet perturbation
potential. The velocity profile was then calculated by differentiating the doublet
velocity potential with respect to the two tangential vectors on each panel and its
adjacent panels. Hydrodynamic loads, boundary layer growth, propulsive efficiency
(the ratio of the output power to the input power) and thrust were then obtained
with this given velocity profile.

To obtain this velocity profile, a simple differentiation scheme such as a central
or backward finite difference method will do the job. However, the velocity cannot
be obtained at the control point of an end panel if backward or forward differences
are used; either central or backward difference schemes may lose one point at each
section (or inaccurately predict the velocity on the two end panels at the trailing edge
of each section). Maskew (1987) used a surface quadratic formulation to get around
this problem. In OSFBEM, an orthogonal-line quadratic formulation is used. While
this method requires less computing power, it substantially improved the velocity dis-
tribution at both the leading edge and the trailing edge compared with the backward
or forward difference scheme.

This scheme was first to locate the three values of the adjacent doublets, these
values were then used to determine the coefficients a, b and ¢ of a parabolic function
by solving 3 x 3 linear equations. The tangential velocities were obtained by differen-
tiating these two quadratic equations with respect to their two directions, exactly. At

boundaries, values of the two closest adjacent panels were used; in the middle, values
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of the doublet distance were taken from the immediately adjacent panels. This scheme
is best to use for a structured® panel grid arrangement. For a non-structured panel
grid layout, such as triangular surface panels, some special treatment is necessary.

With these perturbation tangential velocities, V(V V;is Vor), the total velocity
based on the body frame at each panel [ was obtained (p. 501 Katz and Plotkin 1991)
by:

Vi = Vaal(Vit, W, Vi) - il 3, B) + ViV, V5, Vo), (3.46)

where i, j, and k are in the panel local coordinate system®, the total kinematic velocity
Vi is a velocity due to motion of the foil and is projected onto the panel coordinate
system. In this method, as discussed in a previous section, the strength of the source
was given by eq. (3.22) and the perturbation normal velocity was given by o = (Vi)
so that they cancel out to satisfy the boundary condition: velocity normal to a panel
on the body frame is zero. There was no axis transformation matrix operation needed
as all manipulations were performed by vector operations.

The total velocity at each panel was then the modulus of eq. (3.46). With this
velocity, the pressure coefficient ), on each panel was obtained (Katz and Plotkin
1991) from:

e 2 90
Cy=1 TATRETATE Tk (3.47)

The last term of eq. (3.47) can be obtained in a number of different ways. A

simple approach is using backward finite differences:

a0 .“« Ha—1
e (3.48)

5A structured panel layout is prepared according to a number of columns and rows, though the
size and the shape of the panel may vary. In the present method, the trailing edge side of the
upper and lower surface panels coincides each other. Unstructured panel arrangement will cause
certain numerical difficulties in applying the trailing edge Kutta condition or finding the trailing
edge pressure differences.

The panel unit vectors, i, j and E, were obtained in terms of the global frame, ie.,

AX.Y, 2)|VXTFYTE 23, (X, Y, 2)//XTF YT+ 27 and K(X, Y, 2)[VXEF Y2 + 22



Chapter 3. Formulation of the method 57

where, in this doublet-source method, ® is equivalent to u. In the devel, of the
OSFBEM, it was found that using finite-differences to find the doublet time derivative
had a slow convergence rate (i.e., it required more time steps to get an acceptable
degree of accuracy). More noticeably, for an oscillating foil in sinusoidal motion,
the time history of the strength of y at each panel is also curvilinear. Therefore, the
slope is better described by a polynomial. This was done by polyfitting three u values
(one at the current time step, two at previous time steps) to a quadratic function.
The time derivative was then found by differentiating the quadratic function exactly.
Mathematically, the difference bet these approach ishes when the time step
size approaches zero, but, when the time step size is larger, this method converges

faster. Using a higher order polynomial might be better for convergence, but it is
necessary to solve a set of higher order linear equations for each panel at each time
step. This in turn, increases the CPU demand.

The load normal to the panel (based on an inertia frame) at each panel [ was then

obtained from

Fi= ~(Co)(Apane)iFi(X, Y, Z2)E, (3.49)
where E is the reference dynamic pressure, %p[V;P and (Apanet)i is the panel area.
The sectional lift coefficient was calculated by:

ZF:(O 0,2), (3.50)

a=
Ancmm

where Ajection is the foil spanwise sectional area which is independent of foil thickness
and J is the total number of chordwise panels.
Sectional thrust (also drag in an ideal fluid for a steady foil) was then calculated

in similar manner:

€ = —

s EZF,(X 0,0), (3.51)

and the sectional moment coefficient was determined from:
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J
2 [(X: = Xpieen ) Fi(0,0, Z) — (Z: — Zyieen) (X, 0,0)], (3.52)

=1

Sl v
where Ciocar is the local chord length and X is the pitching axis location based on
the global frame. For a small angle of pitch amplitude oscillation, the second term
in eq. (3.52) may be neglected. Results from the calculation indicated that the effect
of this term on total propulsive efficiency is very small (For an angle of attack of
about 10°, the difference was usually less then 1%). For steady flow, this pitching
axis position was automatically set at 25% root chord by the computer program.
Total lift L, thrust 7' and pitching moment M at each time step were then deter-

mined from

J
= E(Cl):(’qaedmn)i (3.53)

=1

J
T Z:(‘-‘x)j(A-m-m)j (3.54)
Vi ZJ=1(CM))(AMxm))(ClmI);A (3.53)

=1 (Asection);(Ctocat )5

3-C-4 Consideration of viscous effects and skin friction co-

efficient Cy

Boundary layer separation has substantial effects on hydrodynamic forces and propul-
sive efficiency. These effects, however, have not been quantitatively identified as a
function of a variety of parameters such as aspect ratio, Reynolds number, roughness,
sectional shape, planform geometry, forward swimming speed, reduced frequency,
feathering parameter, deflexions, many of the factors, etc. They are too complicated
to consider exactly. Though many studies have been done on experimental aspects,
their results are by no means able to predict the flow phenomena for the oscillating
foils in this study. Detailed study of all viscous effects is beyond the scope of this
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research project. However, boundary layer separation effects on the flow pattern of
the foil were qualitatively controlled according to previous results as described in the
next few paragraphs.

In this method, a numerical prediction of boundary layer growth was made, mainly
for the following purposes:

1. To compare the boundary layer growth between a rigid and a flexible foil. By
doing so, it may allow the flexible foil to have a smaller pitch amplitude” and a
higher heave amplitude to have a fair comparison (the same degree of separation
or boundary layer growth). Usually, due to the chordwise bending moment,
of the flexible foil section, the instantaneous angle of attack of such a foil is
much less than that of a rigid foil; thus, it less prone to have a boundary layer
separation. This method did not intend to determine the exact viscous effects

on the boundary layer separation and dynamic stall.

To obtain a relatively accurate skin friction coefficient before boundary layer

N

separation occurs.

Re purpose #1 above, it was decided to examine whether the flexibility of the
foil would delay the boundary layer separation and, if so, how much delay. This
examination was also useful to select the oscillating parameters to avoid a severe
boundary layer separation in cooperation with the previous experimental studies. Re
purpose #2 above, it was not intended to obtain a precise skin friction coefficient if
separation occurs. However, it was intended to obtain a coefficient of skin friction
more accurate than a rough assumption for a foil for all kinds of motion.

Based on the above reasons, a subroutine for the boundary layer effects was added
to the OSFBEM. The formulation of the subroutine was based on Moran’s (1984) 2-D

steady flow approach. The assumptions were as follows:

o Each strip section of the foil resembles a 2-D wing section.

7In most cases, the larger the pitch amplitude, the smaller the instantaneous angle of attack.
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o The tangential velocity downstream was then the velocity in the calculation of

the velocity gradient.

The cross flow velocity (another tangential velocity across the span) was ne-

glected. This may affect the accuracy for small aspect ratio foils and for flow
at the tip.

o Reynolds number was determined by taking the root chord as the characteristic

length and the foil advance velocity as the reference velocity.

o The flow at each time step was assumed to be steady for the purposes of the
calculation and this simulated a steady flow at each time step. The effect of the

motion history on the boundary layer growth was neglected.

The stagnation points were approximately taken at the extreme points at the

leading edge and the trailing edge.

The skin coefficient, ¢y, was obtained first for each panel. This value stays where

both laminar and turbulent separation occur because ¢; is maximum there to
have a conservative estimation and a method to evaluate the ¢; at separation was
not available yet; and, for an immediate separation, this value was calculated
by using Blasius formula (p. 140 Schlichting 1979) for laminar separation and by
using eq. (21.11) of Schlichting (1979) for turbulent separation. A leading edge
separation may be allowed because it does not affect the loading sufficiently to
eliminate the possibility for an unsteady foil (p. 478 and 525 of Katz and Plotkin
1991).

As the theoretical background of the above method in 2-D respects was discussed
in detail by Moran (1984), the boundary layer growth starts at a stagnation point
at the leading edge. In the laminar flow region, ¢; was calculated by using Thwaites
method; at the transition point, Michel’s method was applied. The c; at each panel,
in turbulent flow, was obtained by Head’s method.

At each time step, the total skin friction coefficient Cy was calculated by
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N
= t pITINCE (3.56)

where N is total number of panels. This value of C; was then used to modify the
total thrust for input power calculation at each time step.

3-C-5 Efficiency and mean thrust calculation

The coefficient of friction was approximately taken as a reduction on the thrust,
though they are not in opposite directions. This may allow a conservative prediction

on the efficiency. Therefore, in each time step, the net thrust was calculated by:

M
T. = X_;I(Q)m = (1) m)(Asection)ms (3.57)

where M is the total number of sections and 1 is a time step index.

The trapezoidal rule was used to calculate the mean thrust in an oscillatory cycle
that consisted of a number of equal time steps.

The efficiency, 7, is the ratio of output power to input power. The instantaneous

input power at the i-th time step was calculated from

(Pingut)i = Mici — Lihi, (3.58)
where M is the pitch moment about the pitching axis, @ is the velocity of pitch, L
is the total lift and & is the velocity of the heave motion at the i-th time step. The
mean input power was also obtained using the trapezoidal rule.
The instantaneous output power is the product of the advance velocity of the foil
and the thrust 7.
The propulsive efficiency was finally obtained via the trapezoidal rule:

i T (Poutput)i + 2(Poutput)s + (Poutpu)i] (3:59)
T (P )i + %[(E"P“l)l + (Pinput)1]
It was noted that the mean input power and mean output power had to be cal-

culated separately over the period. At certain time steps, the moment had the same
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rotational direction as the angular velocity of pitch; thus, the instantaneous input
power was negative (The stored energy did the work); at a zero instantaneous angle
of attack, the thrust is negative due to pressure difference and the skin friction (extra
thrust was needed to push the foil forward) so that the output was negative. These
values should be held and be evaluated along with others in the whole period to yield

practical input and output power.

3-C-6 Computing considerations and the procedure

Theoretical study and mathematical formulation are both essential to a computational
fluid dynamics job. However, without a basic understanding of computer software,

hardware and necessary techniques, numerical modelling cannot be realized, or, at

least, results cannot be obtained in a ble time. The devel of the early
version of PMARC (Katz and Plotkin 1991) is such an example. If the binary file
storing the matrices were not applied and the matrices were not solved by row-by-
row reduction, it would not be possible to run it on a PC about ten years ago. Of
course, this is not really necessary today for most of computing tasks. Computer

d and soff hnology and to

knowledge helps to take advantage of new h
avoid a waste of existing resources. This is particularly important in the case where
the resources are limited.

A computer program package was produced to fulfil the computational tasks re-
quired by this research project. It consisted of four main parts:

1. Data input worksheet, JobInput. An ASCII file with templates and expla-
nations to instruct the user for data input. This worksheet was designed for
user-friendliness and for improving efficiency in batch jobs which required a
huge amount of work. Data were inputted below the explanation lines. These

data are in the following categories:

e Sections of foil geometry offsets. Data inputted in this way were to make
it easy to change the aspect ratio and thickness ratio of the foil. To change
thickness and aspect ratios, only N number of values needed to be changed,
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where N was the number of input section offsets. The planform shape was
also easy to change by alerting 2V values (the leading edge and the trailing
edge z-offset).

Oscillating parameters. These included the motion state (steady, unsteady

or flexible), oscillatory speed, pitching amplitude, pitching axis location,
heave amplitude, chordwise and spanwise deflexion equations and ampli-
tudes, etc.

Panel grid number and spacing across the span and chord. Nine combina-

tions of panel spacing schedules were implemented, i.e., equal, cosine and
log spacing in these two directions.
d

This input worksheet was also designed for rep putations in which

the input data and the dimension array sizes were different from one com-

putation to another, without reformatting, linking the source program. In
other words, an executable file OSFBEM.EXE will do them all.

2. Panel grid generation program, JobContr.FOR, a Fortran program to gener-
ate the panel corner points and to process the input data from the input data
worksheet. As this program needs a large number of dynamic arrays and a fast
CPU(s), it was designed to be separated from the main program for the hydro-
dynamic calculation. This arrangement enables the user to see the generated
panel geometry before the job is sent for long hours of hydrodynamical compu-
tations, when desired. Its input file is the worksheet JobInput. It outputs the
following files:

o A JobCorPt.BDF to be read by the main program. It includes all necessary
information for hydrodynamic calculations.

o A 3-D surface panel file JobPanel. DXF in an ASCII or binary DXF format.
This can be inputted to a CAD package such as AutoCAD to examine the
generated surface panels. When needed, it can be directly downloaded to
a computer that is linked to a CNC cutting machine to make a foil or an

arbitrary 3-D surface.
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o A polyline wire-frame DXF file JobGrid.DXF. This serves the same pur-
pose as the surface panel file, but as an alternative.
These DXF files enable a user to have a close examination of the 3-D foil
modelled in terms of surface panels. Errors in geometry may be corrected
before sending the data to the main program for hydrodynamic calcula-
tions.
The dimension array sizes are declared dynamically (through the WATCOM
F77/386 V. 9.01 compiler). This enables the compiled executable file to take
different input data without reformatting and linking the source code, saving

time and increasing portability.

=

The main program, OSFBEM (oscillating foil boundary element method). This
program reads in the input data file JobCorPt.BDF and performs computations

following the app hes and p d i 1 in previous sections. The

array sizes were also declared dynamically, so that memory can be released by
de-allocating some arrays and the program can take different input data without
recompiling the source code.

The main output of the OSFBEM is OSFBEM.LOG. Output items are ad-
justable by changing the settings in the input worksheet file JobInput.

-

. Pre- and post processing programs. These short programs were written to
generate the NACA 4-digit foil sections, translating binary output from the
OSFBEM to DXF format, retrieving specific values from the OSFBEM.LOG
(to rearrange results for plotting without re-computing), and manipulating the
binary file generated by AXUM (a plot package) for interfaces. These short pro-
grams were written in Borland C/C**, QuickBASIC and Fortran. They were
designed to work under DOS for portability and speed. Computer languages
were also selected in terms of their capability and time efficiency.

Computing procedures in the OSFBEM are listed below. They are

1. Dynamic array declarations (blank arguments).
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2. Reading data from input file JobContr.BDF

@

. Calculating all required array sizes and allocating them.

. Finding neighbour panels for each panel. By the end of the program, panel

'S

flags will be used in differentiation of the doublet velocity potential to obtain

two tangential velocities.

o

. Changing the body frame origin to the pitching axis location if flow is not
steady. This procedure finds the panel corner points and control points in the

inertia frame.

-

Determining the starting wake corner points and recording them for output to
a binary file OSFBEM.PAT (Using a binary file will save about 75% storage
space and increase 5 times the data flow speed while retaining a double precision
accuracy.) Recording the panel corner points and outputting them to a binary
file OSFBEM.STP. These files will be translated to DXF format for graphical

examination by other programs.

=

Transferring global corner points to panel local corner points. These Cartesian
axes on each panel are expressed in terms of three vectors based on the inertia

frame.

®

. Finding the doublet coefficient and source coefficient matrices.

©

. Initializing values and starting the time step loop.

10. Starting the time loop. Finding the instantaneous origin of the foil body frame

and pitch angle.

. For a flexible foil, finding the deflexions and relative velocities due to these

deflexions.

12. Finding global values of panel corner points (on inertia frame); transferring

panel corner points from the inertia frame to panel local frame.
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13.

14.

W

o

16.

=3

20.

o

2

For a flexible foil, calculating the doublet coefficient matrix and source coeffi-

cient matrix.

Finding the panel local velocities due to translation, rotation and deflexions
based on the foil body frame. Transferring body frame velocity to global veloc-

ity.

. Finding the panel local velocity referred to the panel’s local Cartesian frame 1},

uj and 4} (the unit vectors).

Calculating the fixed source strength (to yield the RHS;) by multiplying the
source coefficient matrix by the normal component of the body local velocity.
The source coefficient matrix for a flexible foil has to be obtained at each time

step.

. Determining the newly shed wake panel corner points and outputting them to

OSFBEM.PAT. These corner points are also stored in memory for wake doublet

coefficient matrix calculations.

. Outputting panel corner points in the global frame to OSFBEM.STP.

. Transferring global values of the newly shed wake panel corner points to the

panel local frame. These values will be used to modify the foil body doublet

coefficient matrix to fulfil the Kutta condition.

At t > t;, transferring global values of previous wake panel corner points to
panel local corner points and finding the doublet coefficient matrix due to these
wake panels. Using this matrix, along with the doublet strength values corre-
sponding to these coefficients, to find the RHS,.

. Applying the steady Kutta condition (Morino Kutta condition); further modify-

ing the double coefficient matrix due to body panels by taking the T.E. potential
jump into account; modifying the doublet coefficient matrix by averaging the

newly shed and last shed wake panel doublet strength to yield a new doublet



Chapter 3. Formulation of the method 67

22

23.

>3

4.

)
S

26.

S

2

N

28.

o

29.

30.

31.

32.

coefficient matrix and a new RHS;, at each time step. This is a one-step op-
eration, though it was discussed in number of steps in the previous section in
this Chapter.

Normalizing the doublet fhici matrix; finding the right-hand-side of the
linear system RHS = RHS, + RHS; + RHS;3 and normalizing it too.

Solving for the unknown doublet strength distribution on the foil.

Determining the doublet strength of the newly shed panels.

. Finding tangential velocities by using the panel neighbour flags, panel geometry

values and doublet distribution.

Finding the panel total velocity and reference velocity.

. Finding the derivative of the doublet potential at each panel.

Determining the pressure coefficient ), and hence the loads.
Calculation of the boundary layer and skin coefficient Cj.

Recording time related variables, outputting the panel corner points at the last

time step. Time loop ends here.
Calculating thrust and efficiency.

Outputting ies; ending the p

Verification of the program, convergence studies and certain special treatments

for oscillating foil problems are described in the next chapters.



Chapter 4

Results and discussion:
convergence and computing

efficiency

Before obtaining any results for oscillating foils, a series of convergence studies and
verifications were done. When the computer program OSFBEM was proven reliable,
it was then used to perform a number of computations for oscillating foils.

A convergence study was first done for a steady, rigid foil, with regard to the time
step size and the total number of panels. That is, the effect of time step size and
panel number on lift and thrust was examined. Further, the effect of different panel
spacings on lift and thrust were observed and several guidelines were obtained for
both steady and unsteady flows.

The extensive convergence study was completed for several reasons. First, the
combination of the panel density in the chordwise and the spanwise directions, the
panel spacing arrangement in directions, the time step size and the number of time
steps has a significant effect on the reliability and the accuracy of the predictions.
Second, obtaining an acceptable accuracy of the results with less computing effort
saves time and resources. Third, for a large scale numerical work, as the computing

power of an IBM compatible Pentium processor PC with CISC architecture or a

68
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Figure 4.1: The panel geometry of a 3-D foil with an aspect ratio of 6 that was used
in the convergence study with regard to the panel density arrangement.

UNIX workstation with a RISC processor (such as SuperSparc 5 or 10 or even a DEC
alpha) is still inadequate, conservation of the resources is especially important.

4-A Panel density effects for a steady foil calcu-
lation

A rectangular NACA 0012 foil with an aspect ratio of 6 was used for the convergence
study of the panel density and spacing. The sectional shape and one of the panel

spacing arrangements (cosine-cosine for chordwise and spanwise direction) is shown

in figure 4.1.

The chordwise panel intervals in figure 4.1 were taken as 20 and the spanwise
panel columns as 10. The number of panels in either direction can be altered easily
by changing one number in the input worksheet. The panel spacing arrangement
can also be changed by changing a word in the input worksheet. Because the panel
generation program was separated from the main program OSFBEM and several tool
programs were written for interface with different software packages, panel generation
and visualization were straight forward. A test was done on a Pentium 120 PC with
32 Mb on a PCI mainboard. For small panel numbers (about 10 by 20), when a batch
program was used, it took about two minutes in total to revise the panel number and
spacing, run the panel generation program, translate to a DXF file and display the
graphics from within AutoCAD R12. About one quarter of the time was taken on
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Figure 4.2: The foil with its shed wake. Each wake panel row stands for one time
step in history.

starting the AutoCAD or it could have been even faster.

Figures 4.2 and 4.3 show the wake panels of such a foil and its instantaneous
position in history, respectively. As was mentioned in Chapter 3, truncation of the
immediate wake panel was not applied (Katz and Plotkin 1991). Instead, several
different schemes were used. When these approaches were set active, the truncation
of the immediate shed panel size had little effect on the load predictions.

Before performing any calculations for a different number of panels, a convergence
study was done to select the fewest time steps necessary for a reliable result with an
acceptable CPU efficiency.

Figures 4.2 and 4.3 also show that even if the foil was in steady motion, it was
treated as if it were in an unsteady motion; i.e., the foil was moving constantly and
marching with time steps, in a steady fluid.

The smallest number of time steps required to obtain an acceptable accuracy was
about 5. As the starting vortex wake effect on the calculated hydrodynamic forces

was significant, this number was dependent on the size of the time step to keep the

Figure 4.3: The instantaneous foil position in motion at each time step.
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et 10 pint =51

Figure 4.1: The lift coefficient €y changes with the changes of the chordywise intetvals
NChiInt at a fixed number of the spanwise intervals NSpInt=6.

Iigure 4.5: The caleulated drag and the pitching moment. coefficients Cy, and Cy,
change with the changes of the number of chordwise intervals at a fixed number of
the spanwise intervals at. NSpInt=6.

foil far from the starting vortex wake. The distance from the starting vortex to the

foil. should be usually times the root chord length.
For a rough caleulation, in which only the lift coefficient and moment are im-

portant, a total of 5 time steps with 10 seconds step ufficient. For a clear

presentation, the time marching distance shown in figure 4.2 is much smaller than

it was in practice. Also. the intervals between cach instantancous position shown in

Figure 4.6: The lift coefficient €y changes with the changes of the spanwise intervals
NSplut at a fixed number of the chordwise intervals NChInt=6.
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Figure 4.7: The calculated drag and the pitching moment, coefficients Csi and C,
change with the changes of the spanwise intervals NSpnt at a fixed number of the
chordwise intervals NChnt=6.

15pint=10

Figure 4.8: The lift coefficient Cy changes with the changes of the chordwise intervals

NChint at a fixed number of the spanwise intervals NSplnt=10.

figure 4.3 are much larger than they actually were when an arrangement of § time
steps with a 10-second siep size was taken.
"The angle of attack of the foil for all calculations was 0.1 rad or 5.7296°. The panel

spacing arrangement for the results presented in figures 4.4 and 4.5 was cosine in both

chordwise and spanwise directions. In these two figures, NSplnt is the total number
of the spanwise pancl intervals, and NChInt is the total number of the chordwise
is NChintx2, including

both the upper and the lower surfaces. 1t can be scen that when NSplnt was taken

intervals. The total number of th tional chordwise panc

as a small number (6) the lift coefficient reached to about 047 (a converged value in

this case is about 0.45). As the value of NSpInt was small, converge annol. be

obtained. Cy;, the drag in an ideal fluid, and C,,, the pitch moment coefficient, (about

0.25C, where C; is the root chord) also showed a fake convergence. This indicates

that if the mumber of the spanwise pacl is taken as a small number, increasing the
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ulated drag and the pitehing moment coefficients €y, and €,
change with the changes of the number of chordwise intervals at a fixed number of
the spanwise intervals at. NSplit=10.

Fignre 4.9: The ¢

panel intes

Is in the chordwise direction will not improve the convergence rate! on

the lift coeffici

As shown in figures 1.6 and 1.7, when the panel density was changed to 6 panel
intervals across the chord with a total nutmber of patiels of NChInt x2 = 12, increasing

the spanwise panel density increased the convergence rate for the lift. coefficient €.

However, with such a small number of chordwise panels (12 in total), the nonviscons

drag coeflicient Cyi, and the piteh moment coefficient (7, stayerd almost at the same

values f.e.. they had a poor convergence hehaviour.

It was scen that the number of spanwise panels had a significant effect on the

convergence of thelift. This might be caused by increasing the number of the spanwise

The ‘convergence rate’, or the ‘convergence speed” mentioned in this thesis means that how fast
i result reaches a converged value with regard to the number of the panel intervals, the number of
time steps or the number of the iterations, if any. A good convergence rate, or a fast convergence
speed will show an ability of the results reaching a value and having a very small change when the
mumber of panel intervals, the number of time step ote., increase significantly.

Fignre 41.10: The lift coeflicient € changes with the changes of the spanwise intervals
NSpint at a fixed number of the chordwise intervals NChint=
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¢

Figure 4.11: Time convergence behaviour with regard to the number of time step and
{he Lime step size, The results were obtained from a rectangular foil with an asy
ratio of 4. To climinate the effect. of the panel spacing on the accuracy, 10 chordwise
and 20 spanwise pancls were arrangod.

wake strips. llowever, as the wake matrix takes an amount of memory in byles
cqual to (NSpInt)?xNChintx2xNTSMx I, where
on, I=1), increasing the number of wake strips will require substantially more

on parameter (for single

s 4 pre

pre
computing power and DRAM. As will be discussed later in this chapter, for osc
foil calculations, the CPU and the DRAM were barely adequate, even though a
Pentium P120 processor with a 32 Mb DRAM on a PCI local bus and EIDE 1/0

controlled mainboard was employed. Also, this result suggested that, using a high

lating

number of the spanwise pancls will not effectively improve: the convergence rate of

the thrust (the drag is the negative thrust in oscillatory motion).
Figures 4.8 and 1.9 show the convergence rates for the lift, thrust and pitcling

moment coefficients, at a constant spanwise panel mumber of 10. The panel spacing

ool IR (HEBIt=10) B

The calculated drag and the pitching moment cocfficients C; and Cpy
s intervals NSpInt at a fixed number of the

Figure 4.1
change with the changes of the spanw
chordwise intervals NChint=10.
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Fignre 113 The lift coeflicient €y changes with the changes of the number of the
chordwise intervals (NChInt) being equal 1o the spanwise intervals (XSplnt).

in both directions were cosine. where each panel houndary was determined by

" ('l!ﬂrmu, (L)
and
gy = Y o). (1.2)

where @, =i % 180/(NChlut) and 3, = j x 130/(NChlnt).
When the number of the spa
NChint had little

5 the con

Is remained constant at 10, inereasing the

chordwise interv; ffect on the rate of convergence of the lift coel-
ity

fast convergence rate on the pitch

licient. Howeve

1ce rate on the pitching moment (, was signific
improved. As can be seen later in this chapter

moment will speed up the convergence rate on propulsive officiency.

Fignres 110 and 112 show that when the number of chordwise panels was fixed,

Figure 4.10: The calenlated drag and the pitching moment cocllicients Cyi and Cy
change with the changes of the number of the chordwise intervals (NChlnt) being
equal 1o the spanwise intervals (NSpint).
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Figure 1.15: The lift coefficient. C; changes with the changes of both the number of
cosine chordwise interval

and the number of the uniform spanwise inter

increasing the spanwise pancl NSpInt increased the rate of convergence on the lift
coofficient and slowed the rate of convergence on the (hrust /drag and pitch moment

cocflicients. It also can be scen that the convergence speed, for the lift coefficient

at a larger value of chordwise pancl number (NChInt=10), became slow; i.c., the
21, the

icient converged quickly to about 0.45. As was mentioned carlier, when the

lift approached the limiting value. When NSplat. was taken to be above

lift. coc

number of e chordwise pancls is less than 10 x 2 = 20, the predicted thrust, drag
and the pitcliing moment do not have an acceptable aceuracy.

When it was

con that cither using a sniall number of chordwise or spanwise
panel numbers did not. obtain an overall fast convergence rate, equal panel spacings
in both directions were tested. The results for the same mimber of chordwise and
spanwise intervals (the number of chordwise panels was ien twice as many as that of

the spanwise panels), is shown in figures 4.13 and 4.11. These three quantities (lift,

) 3 SO ) <8t

Figure 4.16: The calculated drag and the pitching moment coefficients Cy; and .,
change with the changes of both the number of cosine chordwise intervals and the
number of the uniform spanwise interv




cncy "

Figure 4.17: The lift coefficient. C; changes with the changes of a_pancl
of the namber of 1
chordwise interv

rangement
anwise panel intervals being 2.1 times of the number of the

pitehing moment and prossure drag/thrust cocfficients) had a good convergence rate
when the mamber of panel intervals was about 10 to 11 Above 16, they gradually

approaclied a limit.

Up 1o this point. for the results 1o converge when using a relatively slow CPU and

. the time step

M

interval was abont 10 see. and the number of intervals in both directions was taken

DRAM set up. the number of time steps in the motion was N

abont the same (over 11). Using [ewer time steps and increasing the time inte

sive
inereased computing efficiency. However. when the time interval was too large (aspect
ratio of the shed wake panel being greater than 100). the shed wake panel became
i line, and this affected the aceuracy of the results. This numerical problom may
be caused by inaceurate determination of the panel veetors and relative geometrical

valies. In sueh cases, donble precision might be needed and this in turn. would have

Figure L18: The caleulated drag and the pitching moment coefficients C; and
', change with the clanges of a panel arrangement of the number of the span-
wise panel intervals being 2.4 times of the number of the chordwise intervals
(24*NChInt=NSplut).
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increased the CPU demand and the amount of DRAM required.

A test was also donc for different panel spacing arrangements across the span and
the chord. When the chordwise pancl spacing was taken as a uniform interval, the
prediction was obviously poor at the leading edge and the trailing edge. Especially,
at the leading cdge, the slope of the pressure cocfficient is in fact very large. Using a
dense pancl arrangement at these two edges, such as cosine, yiclded a better prediction
at a smaller total number of the chordwise pancls. In contrast, using the uniform
spanwise panel spacing resulted in a quicker convergence rate (sce figures 4.15 and
(4.16) for all three quantitics at NChInt=NSplnt. This may be due to the fact that
the lift distribution across the span had a relatively flat slope and therefore, the cosine
spacing was not optimal.

The log spacing in both directions was also tested. The log spacing along the

chord was determined by

;= ci(1 + log(10i/N)) (4.3)

where ¢; is halfl of the local chord length and ¥ is half of NChint,
and

i = s:(1 + log(10i/N)), (1.1)

where s; is the length of the half span. Figure 4.19 shows a log spacing for both the

spanwise and the with 14 x 14 panel intervals.

Pigure 4.19: A log spacing arrangement. for a rectangular foil with an aspect ratio
of 8. Toil scction is NACA 0012 with both 14 chordwise and spanwise intervals
(NChInt=NSpInt=14).
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sing log spacing in cither or both directions yielded about the

same results as that. obtained by using the cosine spacing, Thercfore, these results

are ot presented in this thes

As was mentioned above, increasing the number of the spanwise intervals improved

the speed of convergence. A larger ratio of NSpInt to NChInt was also used to examine
17

ans that there are

the convergence hehavionr. One of several combinations was plotted in figures

and .18, Tor example, when the ratio was taken as 2.4, 20 : 8 m

20 spanwise panels and 8 x 2 = 16 chordwise panels. The total number of pancls was

8 and

then 20 x 16 = 320. It can be scen that using a panel arrangement of NSplnt=
NChint=12, (i.

As all computations were done on PC

., 672 pancls in total) resulted in a good convergence performance.

s, improving the computing efficiency to

save time and resources became

¢ important.

For steady motion, a small total number of time steps and a bigger NSpInt number

were desirable for both speed of the convergence and computing efficiency.  The

guidelines yielded (rom the convergence study

o The total number of time steps and the time interval had to be considered
together. The foil had to be far from the starting vortex to eliminate the effect

of this vortex.

o "Foo many time steps would reduce the computing efficiency: too few time steps

and too large a time interval would have yiclded a v

When this ratio

v large panel aspect ratio.

too large, numerical difficulty oceurred.

» Using more time steps improved the pressure profile across the chord (this will

be diseussed late

in this chapter). Using a minimum of 50 time steps and a

I t0 2 seconds time interval gave a good overall computing performance; i

aceuracy and computing efficiency.

o Using a latger spanwise pancl number while keeping the NChint larger than 10

yielded a good panel arrangement. Typically, the combination is 1o less than
16 and 8 (the number of the spanwise and the chordwise pancl intervals being

NSplnt=16 and NChint=8).

equal to 16 and 8, respectively
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Tor a steady foil, there was no computing power problem even if a 33 MITz 486
PC was used. Shortage of RAM was not problematic either. Hlowever, for unsteady
motion, as the total number of time steps had to he very large (1o keep a higher
degree of validity of the stcady Kutta condition), increasing the number of wake
strips resulted in a dramatic increase in the computing power demand. The best
arrangement was 1o longer (e same as in the case of a steady foil where the situation

had to be re-evaluated.
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4-B Convergence study for an oscillating foil

Iigures 4.20 and 4.21 show the instantancous positions of an oscillating foil with an
aspect ratio of 6. As was mentioned hefore, compared with the actual time step size
of the moving steps, the time step size shown is very large; i.c.. the actual positions of

the foil had a very small step size and these positions almost overlapped cach other.

As shown in figure 4.21, the instantancous pitch angle and heave position at the
starting point were set at zero and —hy, ., vespectively, where hyape is the absolute

heave

amplitude. By doing so, the effect of the strength of the

reduced Lo a minimum so that fewer oscillating cy
en that the foil a

Aeration motion resulted in a minimum strength of the starting vortex. While

s were required to obtain steady,

periodical load valies. It w

zer0 angle of attack in a sudden

keeping e pitel leading the heave, the oscillating governing equations were rewritten
as
o = a,cos(wl) (15)

for pitch and

h = horos(wl — $ppase ) (1.6)

for heave. Reducing tie total period by a hall

Je reduced the number of time steps

=

—_— T

=== —

Figure 1.20: Instantancous position of an oscillatiug foil in motion. Viewing point at
(0.00, —1.00,0.00)
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Figure 4.21: Instantancous position and pancl geometry of an oscillating foil in mo-
tion. Viewing point at (0.05, ~1.00,0.10)

and this improved computing cfficiency by 20% because, when the total number of

time steps increased, the elapsed time increased exponentially (see figure

Figure 4.22 shows an oscillating foil with its shed wake sheet. The total number

of time steps shown in figure 4.22 is 50. The period of the motion is 2x. The period

for a sinusoidal motion is governed by

(1.7)

where w is the angular velocity. This indicates that the larger the value of w, the

shorter the period. Tn order to keep the Kutta condition valid. at least. 100 step
may be required in such a short. period.

Tt was noted that, while the phase angle was fixed, the phase shift in time is given

Figure 4.22: An oscillating foil with its shed w
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by

Tanir =

Bifore, (1.8)
w
where ® is the phase angle between piteh and heave. The period 7 mentioned above
was considered important for the validity of the Kutta condition: the time step size
was determined based on the period 7'
The convergonce study for an oscillating foil covers two aspects: The time step and
the panel number.

There were several things concerning the time:

o Because the sl

ly Kutta condition was nsed for nusteady foils, a small time

step size was desited to make the steady Kutta condition valid, Computation-
ally. the steady Kitta condition might be considered fully valid when the time
stop size approaches zero, This is obviously impossible. Therefore, for a better
computing efficiency. the largest time step size allowing an acceptable accuracy

needed ta be determined.

o An oscillating foil has a eyclic motion. This presented another problem: to find
the minimum mumber of eyeles which would not cause the reselts to be affected

by the starting vortex.

o Using a non-dimensional time (Katz and Plotkin 1991), £* = %, may be nec-
essary in studying a steady foil with a sudden acceleration at the initial stage

. this

ol its motion. Toweve

ze cannot reflect the

non-dimensional time step
angular velocity of an oscillating foil. This is simply because the 17 is not a
function of w. The wake effect was believed to be associated with the oscillat-

ing frequenc;

Therefore, the higher the froquency. the smaller the time step

si

should be taken. Therefore, (% was considered to be not a good parameter

for a comparison.

Iu the OSFBEM, the total number of time steps was set for four cyeles of the

oscillation. For example. for w = 1.0 rad/s. the period is 27 sce and hence the total



Chapter 4. Results and di; and ing efficiency 84

time hi:

ory is 87 secc. When the time step size was st at. zero in the input, the time
step size would be automatically calculated based on the period in terms of the total
given lime steps.
A number of test runs showed that the same results were obtained in three cycles.
Some previous studics nsed a Newton-Raphson iteration scheme to improve the
pressure distribution on the foil section in unsteady flow by obtaining an cqual pres-

sure on the upper and the lower trailing cdge pancls (Kinnas and Isin 1992). This

scheme improved the steady Kutta condition, especiaily the pressure at
the trailing edge, but required more computing power, even if a matrix manipulation

approach wae used (Kinnas and Ilsin 1992). However, the difference in lift, thrust,

and pitching moment coefficients, resulting from the approximation of the iteralive
Kutta condition was reported as unnoticeable. Mcantime, for a flexible foil compu-
{ation, if an iterative procedure is Lo be used, the high computing power required
becomes a problem. This implics that at cach time step, the coclficient matricos

need to be regenerated due to the flexibility plus the iteration for the Kutta con-

dition. Pyo and Kinnas (1994) pointed out that even if this scheme was used, for

certain i.cegular panel geometry, the pressure distribution could not be improved as

desired. In the caleulation done here, 1o atlempt was made Lo equalize pressure on
the upper and lower surfaces at. the trailing edge. The steady Kulta condition was
used without modification, The reasons for this are as follows: a) the steady Kutta

condition yielded accurate results when the time step and the size were chosen prop-

erly. These results included hydrodynamic loads; and b) the required high computing
power became a coticern when a flexible foil was under consideration.
An oscillating foil was used in a time convergence study. Its geometry and motion

parameters arc as follows:

o The number of chordwise intervals was NChint=16; which was equivalent to 16

o The number of the spanwise intervals was NSplnt=16. Total number of panels

was 256.
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Figure 4.23: Time converge: tudy of the cfficiency n and the thrust cocflicient Cy
vs. the total number of time steps NTSM.

Uniform and cosine spacing were used for spanwise and chordise pancls ro-
spectively.

"The foil had a NACA 0012 +

tion with an aspect ratio of 6.

The heave amplitude factor was sot at wnily (hy = hpaee/Cr = 1.0).

.

The apparent pitch amplitude was 0.16 rad (9.167).

The pitching axis position factor was sel at unity (5. =

e/ Cr = 1.0).

The phase angle. Sypaaes was 90° where pitch

Is heave,

The oscillating angular velocity was w = 1.0 rad/sce.

The foil forward swim speed was Vi = Vitigae/Cr = 1.0/sce.
o The reduced frequency was, then, k = wC,/Vigign = 1.0.

‘I'here were a total of four cycles for all different total numbers of time steps.
The number of time steps ranged {rom 64 to 448, with an increment of 64. When
the angular velocity was w = 1.0 rad/scc, the period was 27 sec. Four cycles had a

total time of 87 scconds. The time step
iy
6

1 started to converge at about 200 time steps (with a change of 0.1%). However,

ze was then from §r & 0.3927 second to

~ 0.05610 second. It can he seen from figure .23 that the propulsive cfficiency
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o e populsweetticiency 11

— e —- thustcoellicent &

T rtumber S tolal panels at HIPIn =HCHRL

Figure 4.21; The efficiency 7 and the thrust coefficient C; vs. the tolal number of
pancls with an arrangement of NSplnt=NChInt (the number of the chordwise panel
intervals being equal to the number of the spanwise pancl intervals) at a total of 256
time steps.

the thrust required more time steps at around 300 time steps to converge (about, 5%

increase from 320 to 384). The figure also shows that increasing the number of time

1 1, but the thrust cocllici

steps resulted in the efficiency remained almost
approached a limit of about 0.61. This indicates that, when using a smaller number
of time steps, the propulsive efficiency can be well predicted but the thrust might be
under-predicted and more time steps may be needed to obtain the same convergence
rale for the thrust as for the efficiency.

Results from a convergence study on the number of pancls are presented in fig-

wre 4.24. The total number of time steps was Laken as 256. [t can be scen that

propulsive efficiency had an acceptable convergence behaviour starting from a total
of 300 pancls. However, for the thrust coefficient, a denser pancl size was required.

This suggested that a combination of a large number of time steps and a larger mum-

ber of panels are required to obtain a satisfactory " the lhrust,
prediction. This would be computationally exp

approached the upper limit as the number of time steps increased, and it became loss

sive. However, the thrust coclficient

as the number of panels increased. An appropriate combination of modest time steps

and panel numbers is expected o yield an accurate result for engineering application.
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Figure 4.25: Required DRAM and elapsed time vs. the total number of pancls with an
arrangement of NSplnt=NChInt (the number of the chordwise pancl intervals being
cqual o the number of the spanwise panel intervals) at a total of 256 time steps.

4-B-1 Computing efficiency and conservation of resources

Figure 4.25 shows the total number of pancls versus required DRAM and total
clapsed time. These results were obtained from a Pentium 120 M1Iz computer with
32 Mb DRAM. For a foil with 20 x 40 0 pancls, doing one computation for 256
time steps, about 24 Mb of DRAM and about 35.000
10 hours) were required. rom a trial on a 486 33 MHz machine with 1 Mb DRAM, it

conds computing time (about

was found that it took about 350 hours or a hall month to do the same computations.
Ihe CPU speed of the computer is also important. A Pentium 120 PC with PCI/ISA
and built-in 1/0 had a overall throughput of seven limes that of a 486 33 Mz box
when the DRAM was enough for both.

If the amount of DRAM is not enough, binary files have to be used to store the

matrices and row-by-row reduction has to be applied to solve the lincar system. In

this case, five times as much time is required for the OSFBEM.

4-B-2 Summary

Considering both overall accuracy and computing cfficiency, for oscillating foils, pa-

rameters should be chosen as [ollows:
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@ Use cosine panel spacing for chordwise pancls with total of over 20 pancls,

® Usc uniform pancl spacing in the spanwise direction with more then 16 spanwise
intervals (NSplInt=16).

o Use 256 time sieps for computation for four cycles of oscillation to yield an
acceptable overall accuracy.



Chapter 5

Results and discussion:

verifications and comparisons

To test the results from OSIBEM. numerical results were first compared with existing

theoretical results, where these existed.

5-A Pressure distribution and lift coefficient of a
2-D foil

The test was first done on a 2-1) NACA 0012 foil at angle of attack of 8.3°. The the-
oretical results were available for both the 1ift coefficient (7 = 1.0) and the pressure
distribution (Moran 1981).

1 shows the pressure distributions obtained from a 2-1) analytical method
BEM. The OSFBEM is a 3-1) [oil program. To simulate the 2-1) section,

the aspect ratio was taken as 1000.

Figure

and from OS

T'he number of time steps was taken as 100. The

inmber of chordwise panels was 20 as was the number of spanwise panels. The

spanwise panel spacing was niform and the chordwise spacing was cosine,
It can be seen that the predicted pressure coefficients agree very well with the

theoretical ones. The predicted lift coefficient is 0973, The OSFBEM, in most
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Pigure 5.1:
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chordwise location x/¢

Pressure distribution €, on a 2-D NACA 0012 wing at an angle of attack

of 8.3°, which has a unit lift cocfficient Cjof 1.0.

cases, gave a conservative prediction of they ive perl ceand the

hetween the predicted values and the actual values was expected, in the worst casc,

to be under 5%.

Tl

For this foil section, the predicied potential drag cocfficient was

0.00822; the skin friction coefficient of the scction was 0.00983 and the pitch moment

cocfficient about the 25% root chord was 0.0045. The pressure difference at the T.E.

was about 0.003, a value close to zero, indicating the acceptability of the Kutta

condition used.
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5-B Pressure distribution at the tip of a 3-D foil

While it was relatively casy to obtain an agreement for 2-D steady foils, predictions
were obtained from the present method for a 3-D steady foil with results of an exper-
imental study (van Dam 1986). The foil had a NACA 0012 section with an aspect

tatio of G at an angle of attack of 6.75%. Input parameters were: uniform spanwise

spacing, cosine chordwise spacing, 11 spanwise pancls, 40 chordwise panels, a total

mmber of time steps of 5 and a time step size of 10 seconds. More chordwise pancls

were sel. at the trailing and the leading edges in order to have more data, because the

experimental datn were given in terms of |/

eRrle/<)
Pressure distribution €, on a reclangular wing with an aspect ratio of 6
ection close to tip at 98.75% semispan.

Figure
along the

Figure 5.2 shows the comparison of the pressure cocfficient along the

xtreme tip
of the foil, at 98.75% scmispan. Similar to the results by VSAERO, this method

producad results which had a high degree of agreement with the experimental ones,

except. that. there was a little difference in C, at the leading cdge on the suction
sido and there was a big difference between the predieted value and the experimental
valiie of the pressure coeflicient at the trailing edge on the suction side. The reason

for this i

s unkuown, perhaps crossllow. interference with tip vortex or scparation
accounted for the difference. Towever, the pressure coefficient from the experiment
at the trailing edge shows that the pressure difference in reality was not zero; this

conflicts with any kind of Kutta condition. This pressure difference is possibly caused
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by the severe cross flow at the wing tip.

"The spanwise distribution of pressure cocfficient was also compared with the ex-
perimental results from the same wing presented by van Dam (1986). These results
were in excellent agreement with cach other (almost coinciding except a tiny discrep-

ancy at the oot chord section). Therefore, the plots are ot presented here,
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5-C Pressure distribution of a swept and tapered
foil with 2% maximum thickness

Results from OSFBEM were also compared with those for foils that had certain
ction, N ACA 0002
wing at an angle of attack of 5° arc an example of this. This foil had a sweep angle

irregular geometies. ‘The results for a 2% thickness, thin, swopt s

of 30°, an aspect ratio of 6 and a taper ratio of 4.

Pigure 5.3: A 31 surface panel geomelry of a swept wing.

. The left graph in figire 5.3 shows

A 3-1 view of the foil is shown in figure

this thin section which is located at a position of the root chord. right-most colunn
and the right one shows an overview of the foil at a view point from (0.1, —1.0,0.1).
In the figure, the mmber of total chordsise pancls is 40 with a cosine spacing and
the nurnber of spanwise panels is 10 with uniform spacing.

Results along the middle semispan section (53% semispan) are presented in fig-
ure5.4. Ceneral agreement can be scen between the methods, 0SFBEMand VSEARO

. As the foil scction’s

(Maskew 1982) except at the leading cdge on the suction s
maximum thickness is only 2% of the chord, the leading edge is very sharp. A small

radins to be placed on the leading cdge is expected to smoothen the leadling edge
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Figure 5.4: Pressure distribution € on a swept wing with an aspect. ratio of 6 along
the 51.9% semispan.

pressure distribution on the suction side. Ifowever, it can be s

en from figure 5.4 that
the present, method produced a nearly zero pressure difference at the trailing edge.

The enlarged trailing edge pressure distribution placed in the square box in figure

shows that predictions from previous studies including the ones by Maskew, the low
order pancel method and by Robert, the high order panel method (sec

Maskew 1982)
liad a substantial pressure diffeence at the trailing edge compared with the prosent

method. Normally, a large trailing edge pressure difference reflects the poor applica-
Lion of the Kulta condition at the trailing cdge, and this usually affects the pressue
distribution at both the L.13 and the T.E.. to a large extent.,
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5-D  Efficiency and thrust from an oscillating foil

For an oscillating foil, as the accuracy of thrust and efficiency values are difficult to
cvaluate from an experimental study (for example, accurate measurement of thrust is
& problem), experimental results are difficult o use to verify predictions. Therefore,
results from experimental studies were not used for comparison. The propulsive
efficiency and thrust fom the OSFBEM without skin friction were compared with a
previons Tifting surface theory.

Anoscillating foil with an aspect ratio of 8 in Chopra and Kambe (1977) was used

in this comparison. The oscillating parameters are: forward swim velocity V5, =

10 m/see: heave amplitnde
it/ C'r = 0.7

and 0.06: reduced frequenc:

actor hy = e /Cy = L0 pitching axis position factor
0

k= @OVt = 0.1+ -20; and feat hering parameter

angular volocity w = 0.1

2.0: pilch amplitude e, =

0 = 0Vl lhow

Figure Comparison of elficiency y determined by ealeulated by lifling suface
theory (Chopra and Kambe 1977) and that. determined by the present panel method
for an oscillating foil of aspeet ratio 8,

Figure 5.5 shows the propulsive efficiency versus the reduced frequency &, It
can be seen that both methods are in agreement on the trends. but. the diserepancy
between results by the two method becomes obvious when the reduced frequency k
increases. “These differences may resull rom the different. methods. I the lifting
surface theory of Dasies (1965) which was used by Chopra and Kambe (1977). a

small amplitude of both heave and piteh was assimed. AL a large reduced frequency
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which corresponds with a large angular velocity, the pitch amplitude is large when
the feathering parameter is fixed; then the lincarized lifting surface theory hecornes
less acceplable. At k& =20, the pitch amplitude a, is 08 rad. These two terms,
sin(ar) and cos(a), that determine the heave and vertical velocity at the control
point, become sin(0.8) = 0.717 and cos(0.8) = 0.697 for the present method and,
sin(0.8) and cos(0.8) beingassumed to be08and 1.0 respectively, for small amplitude
theory. Therefore, the errors of the Lrigonometric functions (lo be used to control the
motions of the foil) for an a, of 0.8 rad arcabout 10% and 30% percent respeclively.
Another reason is that Chopra and Kambe (1977) did not. consider the unsteady, large

amplitude wake cffect. As was tested in the computations, there was a substantial

drop in both the thrust and efficiency when the wake effect was considered (Liu
1991). Meaningful results cannot he obtained from a panel method without taking

the unsteady wake effect into consideration.

e B0 0 et prnel i
. Apresant panel othos
6=0 01fling Surfucotinory of Ok .
020 4 Mling Surfoce Mooty +of C4F .

Figure 5.6: Comparison of the thrust coefficient. € by lifting surface theory (Chopra
and Kambe 1977) and present. panel method for an oscillating foil of aspect ratio 8.

In figure 5.6, the thrust coefficients are compazed. T hough the tyo methods agree
on the trends, they do not agree on the magnitudes. I a potential theory based
At the

same small amplitude feathering parameter of 0.8, the small amplitude theory has a

method, the larger the angle of attack of the foil, the larger the thrus

maximum instantancous angle of attack of 20.92° (sce table 6.1) and the maximum
instantancous angle of attack for the large amplitude theory is about 129, This

substantially large difference in the angle of attack was the major cause of such a
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la

difference in thrust, At o higher feathering parameler and a larger mgular
welocity, the change of the strength of the shed vortex: wake is rapid and lence the
wake effect is substantially strong. A dramatic drop in both efficiency and theust
is expected at a very large feathering parameter (close to 10). The previons lifting
surface theory work did not take this strong effect into consideration. Another cause
of the substantially high thrust predicted, nsing the lifting surface theory, is the

nature of the theory: i

ero thickness of the wing section is asumed. A thin
(wro-thickness) wing section has a lirge leading edge suction and this suction also

coufributes to the thrust,

Usingthe present method. the vilies: of proprlsive efficiency and thrust. when t he

reduced frequency

approached zero, decreased dramatically to zero. For the lifting

surface theo however, the efficien

¢ wenl up to 100%. This may be esplained

as follows: in - panel method, the fil has a “prossure dmg” (a prssure diference
caleulated by nsing the panel method in the x-direction) all the: time, and this drag

ilwi

cancels a part of the thrust, In Tifting surface theory a flat plate. moving in
a fluidl at an angle of attack of 7o, has a mro drag: henee there is o power input

required for the thin plate to move at any velocity. The panel method scems more

practical here.

Figures and 5.6 did not include the comparison at a feathering parameter
of 0.8. It can be seen that when the root chord € and the forward swim speed

Viighy were taken as a it value, changing the reduced frequency k was equivalent

fo changing the osillating frequency w beense k = wC,/Vyiign (it is noted that
k=wC,/ (Vi) Therclore. at
aliigh Feathering parameter of 0.8 and the oscillating frequency. w = 2.0, the pitch
= 9167, It s
impossible in reality for a pitch angle greater than 90° 1o yidd a positive ths

many rescarchers define the

uced frequenc

amplitude caleulated from the

uall amplitude theory reached 1.

In a lage amplitude theory developed in this thesis, the instantancous angle of

ween th

altack s the angle |

nstantancous pitch angle and the instantancous

kinematic velocity angle of the foil pitch axis.

I a practical range of the oscillat-

ing frequency w and the heave amplitude hy the larger the pitch angle, the smaller
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the instantancous angle of attack of the foil. A positive angle of attack is required

to produce a positive thrust. This means that the angle of the kinematic velocity

wh
Viugne
amplitude feathering parameter © has to be less than 1.0. For details, sce Chapter
6-A and figure 6.1.

According to the present method, the predicted efficiency became ridiculous when

tan™!

has to be greater then the instantancous pitch angle a, i.c., the large

the reduced frequency k reached 0.6 at 0 = 0.8 because at this oscillating frequency
the oscillating foil’s instantancous angle of attack was a negative value (the pitch
angle is greater than the velocity vector) and was no longer able to produce thrust so
that an external thrust was needed to keep the foil moving at a constant swim speed

of 1.0 m/sec.



Chapter 6

Results and discussion:
parametric analysis for rigid

planforms

A study of th

effects of variations of parameters on propulsiv

for a rigid oscillating foil was conducted. To have a full pic

are of the propulsive

oscil

performance for a 31, non-zero thicknes

ting foil with different, parameters,

a number of calenlations were done and they are presented below. The reasons for

doing so are as follows:
Previous methods used for those caleulations were based on cither two dimensional

theory or the small amplitude theory or both; a more realistic method, reflecting the

aspect. ratio, planform shape, sectional shape, large amplitude motion and viscous
drag of an oscillating foil, was dosirable. Because previous methods did not. cover

all the above [actors, a re-evaluation and analysis of the full spectrum of parameters

on the efficiency g and the thrast coefficient € is useful. A large amplitude theory
was developed first below and was then used to explain the propulsive performance.

The

misleading concept. This conceptual confusion is that the pitch angle has been taken

ablishment of t1

s large amplitude theory was found very uselul to clarify a

as a factor 1o affect the thrust and efficiency without considering the fnstantancous

99
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kinematic velocity for the pitch axis of the foil. Especially, some previous works
mistook the instantancous pitch angle as the instantancous angle of attack.

The parameters, covered in the analysis, arc heave amplitude factor ko = hpeave/Cry
apparent, pitch amplitude a, (the same as real amplitude for rigid foils), pitching axis
position measuring from the leading edge at the root chord 3, = Zpirea/Cr, phase
angle (pitch leads heave) @ppase, sectional thickness ratio £* = lmas/Cr, aspect ra-
tio A2, skin friction, and swept planforms of a man-made and naturally occurring

planform,

A hasc combination of motion and geometry parameters was set. When studying

cach effect, only one parameter was sct as a variable. This combination is as follows:

. Rectangular planform with an aspect ratio A2 = 8.0,

ad

NACA 0012 scction with 12% thickness, i= = 12%.

Oscillating propeller forward velocity Vi = Viiiga/Cr = 1.0/:

. Ileave amplitude factor ky = hpeaue/Cr = 1.0.

o

Oscillating angular velocity w = 1.0 rad/scc.

=

Reduced frequency k =wCs/ Vi = 1.0.

ol

Absolute pitch amplitude a, = 0.4rad ~ 22,927,

®

. Small amplitude feathering parameter 0 = {a,/h,} {/v,-,,.,,,‘/w} =04,

. Large amplitude feathering parameter © = a,/tan™"[who/Vyiign] = 0.5093.

1

s

. Pitch leading heave at a phase angle of 7/2 = 90°.
11 Pitch axis factor 23y, = Zpiter/Cr = 1.0.

In addition to the above parameters, all calculations were done using NTSM=256
time steps, NSplnt=20 spanwise pancls with uniform spacing and NChlntx2 = 20

chordwise pancls with cosine spacing,
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The individual effect of the variation of cach parameter on the propulsion perfor-

mance will be discussed in this chapter.

6-A A note on large amplitude theory

Since more than hall a century ago, the small amplitude assumption or lincarized
{cory has boen used Lo solve acrodynamic problems for wings in gust and flutter, The
reasons for using small amplitude theory are mainly: a) the foil under consideration
often has a very small amplitude of pitch and heave, so that the accuracy of the results

were acceptable; and b) solution for a large amplitude theory was difficult because

of a linear system of equations or an analytical solution was

not. possible. For example, lilting surface theory is a lince

ed analytical solution.

In small amplitude lifting surface theory, the magnitude of heave and the down-

wash velocily are evaluated by assuming fan(a) = o and

tan™ {who/ Vit } = whu/ Vitighe.

Because of this, the feathering parameter becomes 0 = aoVygn/(who). Unfortu-
nately, this small amplitude assumption, as can be seen later in this chapter, has an
unaceeptable accuracy in many cases.

For oscillating foils, in addition to an inaccurate evaluation of the heave, which

Figure
amplitude theory.

ical explanation of the instantancous angle of attack using a large
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heavily affects the accuracy of the results at higher pitch amplitude, the small ampli-
tude feathering parameter 0 also gives an excossive value of the pitch angle at a high
feathering parameter.

As can be scen in figurc 6.1, the feathering parameter is the ratio of the pitch
amplitude to the angle a, (the instantancous dircction angle of the foil pitch axis'
kinematic velocity), where a, is evaluated as a ratio of the maximum vertical velocity
Vih = who, o the forward swimming velocity Vyiign. When the phase angle is taken
as 90°, this kinematic velocity will occur at the same position as the instantancous
pitch angle reaching the maximum value av.

It is noted that the lift L produced by the foil has been defined as being per-
pendicular to the instantancous kinematic velocity of the pitching axis. The thrust,
however, is parallel to the horizontal.

"T'he left graph in figure 6.1 shows the determination of the large amplitude feath-
cring parameter

0 = ao/ay = ao/[Lan™ (who/ Vyign))- (6.1)

Conscquently, the instantancous pitch angle a is equal Lo the instantancous kine-

matic velocity of the pitch axis of the foil, ay, i.c., the large amplitude feathering

parameter ® = 1.0. Thercfore, the instantancous angle of attack is
Cingtant = 0y = = 0.0 (6.2)

Therefore, the lift coeflicient C; and the generated thrust are both equal to zero for
a symmetrical foil with no twist across the span.

The middle graph in figure 6.1 presents a feathering parameter of less than 1.0,
In this case, the instantancous pitch angle a is less than the angle of the kinematic
velocity, a,. Therefore, the generated thrust has a non-zero value and its direction is
the same as the foil forward velocity.

The right graph shows an undesirable situation for a propulsor, in which the
feathering parameter is ® > 1.0; this is cquivalent to producing a negative thrust,

i.c., the instantancous angle of attack

Qinstant = 0y — @ < 0.0,
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Reduced frequency & 0.2000  0.6000 1000 1400  1.800  2.000
(cvo)s in rad 0.1600  0.4800 0.8000 1.120 1440 1.600
()5 in dog 9.167 2750 4581  GLIT  82.50 9167
(Qnstuntymaz)s inrad  -0.0400  -0.1200 -0.2000 -0.2800 -0.3600 -0.4000
(Qinstantimaz)s in dog 2292 -6.876  -11.46 -16.00 -20.68 -20.92
(o)t in rad 0.1579 04323 0.6283 07601 0.8510 0.8857
(evo)r in dog 9.048 2077 3600 4375  48.76 5075
(instantomar)t in rad — -0.0420 01081 -0.1571 -0.1906 -0.2127 -0.2213
(Cinstantomaz)t in deg 2262 6194 -9.000 -10.89 -12.19 -12.68

‘Table 6.1: Comparison of the maximum instantancous angle of attack between small
and large amplitude theory, at a fixed small amplitude feathering parameter of 0 =
0.8. Subscripts s and { stand for small and large amplitude assumptions respectively.
“The value of the maximum instantancous angle of attack @instantmax may change with
the change of the phase angle ® . between the pitch and the heave. Values given
in this table arc for the phase angle at ® e = 90°.

To obtain a general picture of an error in feathering parameter in small amplitude
theory, an oscillating wing with a reference length of 1, heave amplitude factor of
I, Vit of 1/sce, and a fixed small amplitude feathering parameter of § = 08,
was used 1o tabulate the values of the instantancous angle of attack, angtants With
the changes in reduced frequency. From table 6.1, for small amplitude theory, the
instantancons angle of attack is already 16.00° at k = 1. At such a big angle of

attack, separation will oceur and the results are no louger meaningful. However, using

the large amplitude theory, the instantancous angle of attack is much smaller and the
lifting flow around the loil might be still possible at a much larger reduced frequency
say up to k = 20.

An instantancous large amplitude feathering paratneter Oyane was defined in the

form of

o .
Ounstant = —— T ©3)
tan=! v, thase.
=

The value of this ©ustane should be less than 1 to obtain a positive thrust. [owever,
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this instantancous value may be larger than, but must be close to 1, even if the large
amplitude feathering parameter © is less than 1, because the phase angle had an
cffect on the instantancous value (by shifting the phase of the numerator and the

denominator in cq. (6.3)).
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6-B Effect of heave amplitude on the efficiency
and thrust

of heave amplitude on the thrust and efficiency was observed and the

results are presented in figure 6.2. The figure shows that the heave amplitude has a

substantial cffect on the thrust; the predicted thrust coefficient €', ranges from 0.01

at hy = 0.5 to over 1.6 at b, = 2.5. However, the efficiency drops gradually from 74%
1o 62%. 1 can be s

gives an almost lincar relation for both the efficiency 5 and the thrust coclficient

cen that the use of the large amplitude theory in this method

. and that, with an increasing the heave amplitude, the efficiency drops while the
theust coefficient increases. As an inerease in the heave amplitude is equivalent to
an increase in the angle of attack, i.e.. a decrease in the feathering parameter ©, the

thrust inereased linearly.

W e efficiency
—ce—— tusteonticientct

D ) Woom

Heave amplitude foctor he

Fignre 6.2: Blfect of heave amplitude on the propulsive efficiency » and thrust coef-
ficient €, for a rigid rectangular oscillating foil with an aspect ratio of 8.

The trend of the efficiency in figure 6.2 is contrary to the conclusion by Yamaguchi

1992 (p.2). In the present method, higher heave amplitude results in lower efficiency,

though the eurve looks rather flat. This is also in agreement with the result by Lin and
Bose (p. 67-68, 199

using a small amplitude lifting surface theory. Increased thrust means an increased

). in which three naturally occurring planforms were examined

load of the propeller, and hence there is a drop in efficiency.
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ho = hheave/Cr 0.5000 1.0000 1.5000 2.0000 2.5000
0 = 0oVl [wha] 0.8000 0.4000 0.2667 0.2000 0.1600
0 = ao/tan~"[who/Vyiign] 0.8627 05093 0.4070 0.3613 0.3361
it ons 36450 22.080 33.390 40.520 45.280
k= wC,/ Vi 1.0000 1.0000 1.0000 1.0000 1.0000
J = Vgl [wha) 62832 3.1416 2.0941 15708 1.2566

Table 6.2: Results of changing the heave amplitude. Qinstantmaz is the maximum in-
stantancous angle of attack which oceurs at the equilibrium position of the oscillation
at a phase angle cqual to 90°,

Increasing foil arca will raise total thrust. In addition, increasing the heave ampli-
tude will have an equivalent effect. In both cases, however, the dimensions of the foil
and the heave amplitude usually have to be constrained by the geometry conditions
where an oscillating propulsor is installed, The reason for a higher heave amplitude
resulting in a higher thrust is that when the instantancous velocily angle a increa

505,

the instantancous angle of atlack @instant also increases. A larger instantancons angle
of attack will usually produce a higher lift and thrust before separation occurs, but
it will not produce a higher efficiency at all times; the pitching moment plays an
important role in determining efficiency (sce equation 3.59).

Changing the heave amplitude will also alter other parameters. For clarity, values
are tabulated in table 6.2. It is noted that the small amplitude feathering parameter
0 decreased linearly with the decrease in the heave amplitude. Iowever, the large
amplitude feathering parameter © decreased non-lincarly due to the relationship being
a reverse tangent function.

It can be scen that to obtain a larger thrust, the maximum instantancous angle
of attack needs to be increased. A too large angle of attack will produce a boundary
layer separation or stall. When the oscillating frequency w and the swim velocity
Vitignt is fixed, increasing the pitch angle a, and increasing the heave amplitude h,
may keep the instantancous angle of attack unchanged.

The advance ratio, J, defined by Bose and Licn (1989) is also included in the table.
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This advance ratio, as a base of comparison, is better than reduced frequency for a
tapered foil if the reference length is not. taken as the average of all local chords. For
afle:

le foil with a spanwis

flexibility, as the heave amplitude is not uniform across
the span, the basis of comparison, instead of using the advance ratio J and feathering

parameter @, needs to be determined.
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6-C Effect of apparent pitch amplitude on the ef-
ficiency and thrust

The apparent pitch amplitude was so named because, for an oscillating foil with a

the real i inst pitch angle is no longer the
same as that for a rigid oscillating foil. Thercfore, the cffective pitch amplitude had
to be determined and used in calculations for flexible foils in Chapter 7. However, for

rigid foils, this amplitude remains the same.

an 0.1000 0.2000 0.000 0.6000  0.8000
0= a,Vjiu/lwho] 01000 0.2000 0.4000 0.6000 0.8000
O = agflan~"(who/Vjigw] 0.1273  0.2547 05093  0.7639  1.0186

Cinilantes 30.270  27.810 22080 10.620 -0.840
WO Vit 1.0000  1.0000 1.0000 1.0000  1.0000
J = 7Vl lohd] 31416 31416 31416 31416 3.1416

Table 6.3: Results of changing the apparent pitch amplitude.  @insmantmar i the
maximum instantancous angle of attack which occurs at the equilibrium position
of the oscillation at a phase angle equal to 90°.

‘Table 6.3 tabulates the changes of small and large amplitude feathering
scen that at 0 = 0.8,

© is already greater than one, in which case, a negative thrust is expected when a

0 and ©, reduced [requency k and the advance ratio J. It can be

the large amplitude motion of the foil is considered.
The maximum allowable pitch amplitude was taken as 0.8 rad, i.c., 15.81°, Fig-
ure 6.3 shows that the oscillating foil no longer produced a positive thrust. because
the feathering parameter © was 100 large (© = 10186 at a, = 0.8 rad); consequently,
the instantancous angle of attack was less than zero.
In fact, at about a, = 0.8 rad ~ 45.84°, the value of the thrust. coefficient was
about zero (sce figute 6.8) because the angle of attack is close to zero or the large

amplitude feathering parameter © is about 1.0. This figure also tells us that there

is an almost lincar relation between the pitch amplitude and the thrust, perhaps duc
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el LA e

Fignre 6.3: Effect of the apparent pitch amplitude a, on the propulsive efficiency
and the thrust coellicient (¢, for a rigid oscillating foil with an aspect ratio of 8.

to the lincar relation between the lift and the instantancous angle of attack; i.c., the
larger the o, the smaller the ainatant, and, hence, the smaller the lift and thrust. This

trend, however, reverses the effect of heave on the thrust as shown in figure 6.2,

Results in figure 6.3 were obtained at an initial angle of attack of zero. Dilferent

initial angles of attack were also tested and there was no difference seen except that

the oscillatory values of instantancous it and thrust shifted a phase angle. This will
be discussed later.

The propulsive efficiency. however, follows a non-linear manner with different pitch

> and re s that,

amplitudes. This non-linear behaviour is different from cas

in oscillating propeller dosign, the maximum efficiency has to be evaluated for a

s. It can be

particular oscillating foil with particular motion and geometry paramet

(R

seen that at a piteh angle o, = 0.6 r . at the magimum instantancous angle of

attack @ypsgantmar about 107, the maximum efficiency n was obtained. A too small

angle of attack did not produce enough thrust and a too big angle of attack required

too much pitehing moment and hence they both resulted in a low efficiency.

As mentioned in verification of the results from an oscillating foil. efficiency drops

o when the reduced frequency approach 0. Reduction of pitch amplitude

fo

@y when the reduced frequency k = wC, /Vign s fixed. is equivalent 1o decreasing

the reduced froquency when the feathering parameter

© = aftan™ [why/Viign]

xed. [ other words. for a constant & (hence, a constant w) decreasing the pitch
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amplitude a, will decrease the large amplitude feathering parameter ©; to keep ©
constant, when decreasing the pitch amplitude a,, the oscillating frequency w has to
be decreased (equivalent to having the same angle of attack). At a very small w and
«,, the instantancous angle of attack is very small too; a large portion of thrust will
be cancelled by the pressure difference opposite to the motion of the foil (a calculated
drag in the pancl method) because the total amount of thrust produced is very small.
“Therefore, the cfficiency drops dramatically at a, approaching to zcro.

Again, at a larger pitch amplitude and hence a lower instantancous angle of attack
Cinstant, little thrust was produced, thus, the efficiency did not increase with the pitch
amplitude. This effect is also equivalent to increasing the reduced frequency (in most

cases increasing the angular speed) when the pitch amplitude is fixed.
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6-D Effect of pitching axis position factor on the
efficiency and thrust

Ixtensive study on the pitching axis position factor on the efficiency and thrust has

been done previously. 15 les include the ca

ilations for a 2-1) oscillating foil using

small amplitude theory in Lighthill (1970) and the observation for a 3-) oscillating

foil with a small amplitude assumption in Liu (1991). Tlere, results are presented for

an oscillating foil of finite thickness based on a large amplitude theory by the present

panel method (see figure 6.1).

5o

5 ettciency
B3 ToT thustcouicienty
o
o

- ;s .., Pitching oxis position foctor . .
Figure 6.4: Effect of pitching axis factor on the propulsive efficiency  and the thrust
coellicient €'y for a rigid oscillating foil with an aspect ratio of 8.

In the caleulation, as only the pitching axis position changed, all the oscillating

paramete

re not altered. Therefore, throughout the range, the feathering pa-

rameter was

© = 0.5093, reduced froquency was k = 1.0 and advanced ratio was
J=r
Compared with the study by Lighthill (1970), there is no difference in trends

for the efficiency and thrust versus the pitching axis position. It can be seen from

figure 6.1, that the best efficiency was at about 0.75 ~ 1.0, where the

minimum thrust is expected. An effective way to increase the thrust is to increase

cither the heave amplitude (o increase the thrust coefficient) or the wing arca (to
increase the total thrust). The optimum pitching axis location can be set at w5y, =
1.0, if the required thrust can be produced under the limitation of the heave amplitude

and the wing area.
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6-E Effect of phase angle on the efficiency and
thrust

Results of phase angle effect are shown in figure 6.5. Unlike the effect due to the heave
change, here. both efficiency and thrust had 2 non-linear relationship with the phase
angle. This agrees with conclusions in previous studics, in a 2-D theory by Lighthill
(1970), and in a 3-D lifting surface theory with a small amplitude assumption (Lan
1979 and Liu 1991).

o
o
S os
£ o
o
oa] ———— elficiencyn
al ———- atcodcintc,
Tom e m w wm = e wmw

Phase angle (pteh leading heave)
Figure 6.5: Effect of phase angle on the propulsive efficiency  and the thrust coclfi-
cient C for a rigid oscillating foil with an aspect ratio of 8. Phasc angle was tal
as pitch leading heave.

It can be clearly scen from the figure, for this particular foil gcometry with partic-
ular motion parameters, that the efficiency 5 reached a maximum at the phase angle
Dhase = 90° ~ 100°; this maximum representing an increase of about 80% over that
it Cy, however, had about a 30%

in the range from 0° to 90°. The thrust cocff
variation in this range of the phasc angle.

For experimental study and oscillating foil design, taking the phase angle around
90° scems to be a good choice if, again, the amount of thrust meets the requirement.
In a case where a large thrust value is required, and where changing other parameters
does not work or there are constraints on the change of other parameters such as the

area of the wing, the phase angle has to be taken close to 180° or zero (they coincide

with each other) to yield the maximam possible thrust.
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"T'he phase angle has an offect equivalent Lo the initial angle of attack. Thercfore,
for all computations, the initial angle of attack was taken as zero, with a phase angle
of 90°.
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6-F Effect of sectional thickness on the efficiency
and thrust

In the computation, sectional offsets were taken according to a NACA 0012 four-digit
series designation (Abbott and von Doenhoff 1949). Results obtained for the same
rectangular foil, with scctional thickness ratios ranging from 6% Lo 24%, arc presented

in figure 6.6.

ol —— .
c ————  efficiency
o8 —— - thrustecefficientC,
I T )

Sectianal thickness 1btio 7

Vigure 6.6: Effect of sectional thickness on the propulsive efficiency  and the thrust
coefficient C; for a rigid oscillating foil with an aspect ratio of 8.

value at a thickness ratio of 12%.

The propulsive efficiency 7 had a
Throughout the thickness ratio range, changes in the value of 7 were rather small.
However, the thrust coefficient Ct, reached large values for 6% thickness foil and 12%
foil.

For foils with section thinner than 9% of the chord length, decreasing the thickns
increased the thrust. This probably is the effect of the leading edge suction on the
pressure distribution because of the sharp leading edge or the small L.E. radius. As

can be seen in Chapter 5 (page 96, predicted thrust from the lifting surface theory

was much higher than that from the present method. Here, the thicknoss offect had
played an important role. In lifting surface theory, the thickness of a foil is zero;
hence a large amount of leading edge suction was added to the total thrust.

A thickness ratio less than 6% scems not to be cconomically feasible for engincering

applications, at least at present. in oscillating foil design, becanse of the strength of
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available materials. In fact, for such a thin wing the cfficiency might have a steep
drop when the foil is made flexible (sce next chapter) due to the large chordwise

and spanwise deflexion. ‘Therefore, reducing the thickness is not a good method to

inerease thrust.
g

Tor foils with a sectional thickness higher than 15% of chord, the larger the thick-

ness the smaller the thrust. This that a thicker foil se
i

are not a concern, would he around 12% of the chord.

implic

ion has lower hydrody-

namie

icy. The optimum thickness for an oscillating foil, if structural problems



Chapter 6. Results and discussion: parametric analysis for rigid planforms 116
6-G Efficiency and thrust from a lunate planform

Study of the propulsion from the lunate tail of marine animals has been conducted
for about a hall century. Numecrous publications arc available but most of them arc
cither based on 2-1) theories (some may include a 3-D correction) or lifting surface
theory in which foil thickness has been neglected; or small amplitude motion, from

which results obtained at large amplitude of heave and piteh are questionable.

Figurc 6.7: 3-D geometry of a man-made lunate planform with an aspect ratio of 8.
‘This 3-D surface panel is illustrated by the perspective view.

Based on the above arguments, predictions were made for a man-made luiate
planform to observe the differences betwoen methods. This man-made linate wing
was taken from Chopra and Kambe’s (1977) work: the B2 planform.

In their work, the offs

of 4

il were caleulated by

=0 {1 -} + Gy (64)

for the local chord length and

o=KL (65)

for the leading edge offsets. When K is taken as &, s a5 3, Cr = 1.0 and Cip=0.25

(the tip chord length), the foil hias an aspect ratio of A& = 6s(2C; + Cii) = 8 and
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an area of § = 28(2C, + Cyip) = 4.5 input data were taken for nine stations and

recorded on (1

nput worksheet; then they were curve fitted by a splin

function
in the JobContr.FOR program. The sectional offscts were taken as a NACA 0012
d

vight graph in figure 6.7 shows a perspective view of the foil with cosine and uniform

gnation (with 41 stations) and they were interpolated by the same program. The

spacing in chordwise and spanwise directions respectively. The upper loft graph shows
a 3D vi

of the right-most (starboard) tip section, The lower left graph shows the
top view of this Lip section.

Caleulations were done based on the following geometry and motion parameters:

o hicave amplitude A = 1.0 m; hence, the factor by = hieave/Cr = 1.0

o forward swim velocity Vyign = 1.0 m/s
1.0/sce;

i then, the velocity factor Viigy =

o pitching asis

St = Hien f O =104
o small amplitude feathering parameter 0 = 0.0, 0.1;

o large amplitude feathering parameter © = 0.0, 0.5093

o angular velocity w = 0.2 ~ L8 to obtain k = 0.2 ~ 1.8:

o and pitching amplitude a, = 0.08 ~ 0.72 rad.

It is noted that the value of © corresponding to ¢ = 0.4 is not uniform for cach

curve by tl

prosent method because of the non-linear large amplitude relationship.
atw = 0.2, 0.6, 1.0, L4 and 1.8, they are 04003, 0.4441, 0.5093. 0.5892, 0.6769,

For this man-made luate foil, two compai

sons were done and are presented as

follows. They are: a) the present method ver

sus previous ones. The present. method

fakes the large amplitudes and the sectional thickness into account. The computations

were done in the time domain. The previous methods are based on small amplitude

lifting surface theory (zero sectional thickne:

nd b) propulsive efficiency and thrust.
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from a rectangular oscillating wing versus those from the man-made lunate planform
predicled by the present method.

6-G-1 Present method versus lifting surface theory for a

man-made lunate tail

Figure 6.8: Efficiency y of a man-made lunate planform with an aspect ratio of 8,

Figure 6.8 shows the propulsive efficiency predicted by a small amplitude lifting
surface theory (Chopra and Kambe 1977) and by present method. In caleulation,
this lunate tail propulsor was st to hwve a NACA 0012 scction.  Similar to the

comparison for the rectangular oscillating foil in Chapter 5, the present. method gives

a lower officiency predi

fon, especially at a large frequency, because of the practical
large amplitude consideration.
In addition to the large difference in the feathering parameter, which makes the

comparison difficult at higher amplitudes of oscillation, for a small amplitude feath-

cring parameter 0 = 0.4, when the reduced frequency is 1.8, the pitch amplitude
@ is 0.72 rad. The error for pitch amplitude estimation itself from small amplitude

assumption is about ¢ = 50%. There is also about the same amount of error in heave

amplitude. Therefore, the discrepancy at larger heave and pitch amplitudes is signil-
icant. For a small feathering parameter, for example, 0 = 0.0, only the error of heave
amplitude exists; henee, the difference in efficiency is smaller.

In figure 69, the difference in thrust is substantial; iting surface theory predicted
a much larger thrust. The slope of the thrust curve obtained by the Tifting surface

theory at higher pitch amplitude (the same as a higher reduced frequency kat a fixed
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Figure ¢

feathering parameter 0), is

cep. I lifting sutface theory, the steepness is due to

the linear effect of the lift coefficient € slope and the in ig thrust portion (the

x-component of the normal foree), when @ inereases. Such a large difference in the

thrust coefficient is not suprising, hecanse the angle of attack of the small amplitude

theory is almost twice as lage as the Targe amplitude theory one.

6-G-2 Effect of the man-made lunate planform on efficiency

and thrust
. s : "
. . . : S
. . X
- ‘.
. . .
o . .

Figure 6.10: Efficiency y of a man-made hmate planform and a rectangular oscillating
foil.

To observe the effect of a lunate tail on j and(, results from a rectangular oscil-

Jating propulsor were oblained. This wing had a span of 6 m and a chord of 0.75 .

The forward swimming veloc

¥ Vitigne i sel as m /sce in order to have all the
¥ Vtig
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0 rector i ot

Reduced frmuency b

Figure 6.11: Thrust coeflicient C; of a man-made lunale planform and a rectangular
oscillating foil.

same motion paramelers.
Figures 6.10 and 6.11 show that the man-made lunate planform had a significant

efficiency and thrust increase over those from the rectangular planform, at a very small

feathering parameter (6 = 0 = 0.0), throughout all the reduced freq range. As

was mentioned before, at © = 0.0, the instantancous angle of attack of the foil reaches
a maximum. In this casc, the foil was under a heavy load condition; the lunate tail had
a helter performance. At a medium feathering parameter, the instantancous angle
of atlack is smaller (so that the thrust is smaller), the higher pressure drag hecame

dominant over the thrust, and the required pitch moment portion of the input power

increased (hence the efficiency decreased). This made the efficiency and thrust. le
than those from a rectangular foil.

“T'he observation ahove indicates that a) the propulsive performance of different
swept planforms predicted by evaluating them only in steady flow (for example in

van Dam 1986) is not adequate; b) as the lifting surface theory does not consider

the pressure drag and most previous 3-) metliods were based on a small amplitude
assumption, evaluations related to the effect of the swept planforms on the swim

cfficiency using these methods may have a questionable accuracy,
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6-H Efficiency and thrust from a fin whale’s flukes

Results were also obtained for a mturally occurring planform: a fin whale's flukes.
he measurements of the flukes were taken from the work by Bose and Lien (1989).
The thickness of the flukes’ section is 19.6% of the chord. Figure 6.12 shows such a
planform, In the figure, the lower right graph shows the top view and the upper left

one is a perspective view. The flukes have a span of 3 meters and an aspect. ratio of

6.1, "T'heir root, chord i3 0.87 . Comparison between the present method and lifting
ssed

surface theory, and also the effect of the hnate tail on 7 and Cy, will be dise

helow separately.

Figure 6,12 Three dimensional geometry of a fin whales fiukes. The left graph has
a perspective viewso that the tip of the left lluke looks rather wide.

6-H-1 Present method versus lifting surface theory for the
flukes of a fin whale
‘To compare the results from the lifting surface theory with those by present method,

the following motion parameters were used:

o Vi = Vi Cr = (087 mfsce) /(087 m) = 1.0;
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¢ hy = hpeave/Cr = 0.87 m/0.87 m = 1.0;
a = 20° = 03191 rad;

¢ Oppase =90° =7/2 rad;

o and 23, = zpien/Cr = 1.0,

Based on the above motion paramelers, the values of .J, along with the other

variables, arc listed in table 6.4.

0.5000 3.5000 6.0000 7.0000 8.0000 9.0000
0 0.0556 0.3889 0.6667 0.7778 0.8889 1.0000
@ —m./tan"{#,f‘:;] 0.2471 0.4773 0.7238 0.8276 0.9330 1.0395

ko= e 6.2832 0.8976 0.5236 0.4488 0.3927 0.3191

Viugne

w 6.2832 0.8976 0.5236 0.4488 0.3927 0.3191

Table 6.4: Advance ratio J versus other motion parameters for a fin whale’s flukes.

o Advance ratio

Figure 6.13: Propulsive cfficiency of rigid fin whale’s flukes: present method versus

ifting surface theory with small amplitude assumption and a 21 strip theory with
finile span and skin drag corrections,

It can be scen from figure 6.13 that the prediction by the present method on
cfficiency has a good agreement among others at a medium advance ratio J. When J
was very small, the foil oscillated at a large frequency w (w is 27 at J = 0.5) so that
it had a big instantancous angle of attack. The maximum thrust will always occur at

the largest instantancous angle of attack. A too large instanatncous angle of attack
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then yielded asmallerefficiency than other methods. Ata higher advance ratio thus a
small instantancous angle of attack, as total thrust is small, caleulated prossure drag
by panel method together with the skin friction drag cancelled a large portion of the
thrust and, hence, the efficiency dropped carlicr than the efficiency curves obtained
by the D lifting surface theoty (Liu and Bose 1993) and the 2-D strip theory with a
3-1) correction (Bose and Licn 1989).

s, the skin friction drag estimation was taken
in the 2 strip theory with a 3-D correction, the efficiency curve by Bose and Lien

(1989) dropped carlicr than that predicted by using the 3-1 lilting surface theory.

Predicted by the present method, the efficiency dropped quickly after J = 6 and this
is mainly due fo the drop in the maximum instantancous angle of attack.

“This also indicates that. when the amplitude of pitch and heave i

refully con-

small amplitude lifting surface theory gives an acceptable prediction. This

prediction, however, is limited to a small range of oscillating parameters.

Figure 6.14: Thrust coefficient €y of rigid fin whale’s flukes: present. method versus
lifting surface theory with small amplitude assumption,

As it was observed hefore, there is a large discrepancy between the thrust pre-
dictions determined by the two methods, especially at higher value pitch and heave
amplitudes, feathering paramoter, oscillating frequency and reduced frequency. A
large difference in the thust determined by the two methods can also be scen in fig-
ure 6.14 for the fin whale's flukes due to a remarkable difference in the angle of attack
at a low advance ratio J (equivalent to a small value of the large amplitude feather-
ing parameter © at which value, the difference in the angle of attack is substantially

large).
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I'igure 6.15: Efficiency 7 of the flukes of a fin whale and a rectangular oscillating foil.

6-H-2 Effect of a natural lunate tail on efficiency and thrust

Computation was also done for a rectangular oscillating propulsor with an aspect

atio of 6.1 to compare with the flukes of the fin whale. The span of the foil was
3.0 m and chord length was 0.4918 m. "To have the same basis of comparison, Vyiigne
was taken as 0.4918 m /sce so that all other motion parameters arc the same as those
for the flukes. "The sectional thickness distribution was also set. the same as that. of
the flukes.

Predicted propulsive elliciency and thrust for a rectangular oscillating planform
are presented in figures 6.15 and 6.16. When the wings are rigid, there is nol much
difference in either efficiency or thrust between these two different planforms. A large

drop in cfficiency for the rectangular planform, however, occurs after the advance

n i
o
| Advanceratio s ' .

Figure 6.16: Thrust coefficient of the flukes of fin whale and a rectangular oscillating
foil.
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ratio reaches about 6. At a large advance ratio, the instantancous angle of the axis
kinematic velocily @, is small and, hence, the instantancons angle of attack is srnall
(this is true in most normal cases, in which the feathering parameter has 1o be Tess
then 1.0). This indicates that, when the oscllating foil is under a light load, the fin
whale flukes obtzin a higher efficiency and the Alukes’ working range in termsof the
avance ratio ./ is also wider. It can also he seen that, at a heavier load where ./ is
small, the fin whale (lukes also had a slightly bit. better performance.

It can be seen that. the rectangular foil under a heavy load condition will produce

more thry

than the fin whale flukes; and the smaller the advance ratio. the greater

the thru

st procluced by the rectangular foil.

The above comparisous for botl the man-mace lmate planform and the nturally

ocanered fin whale lukes suggest that. for a rigid oscillating propukor, Tumte tails
have a slightly bigger working range. A rectangular foil, howeser., can produce almost

the sarne amount of thrust and efficiency.
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6-1 Effect of skin friction on efficiency and thrust

o have a common basis for a comparison of results from the small amplitude theory,
results presented below used the small amplitude feathering parameter for two groups,
though they were obtained by the large amplitude assumption. Therefore, the large
amplitude feathering parameter is not uniform for cach curve corresponding to 0 = 0.4

in cach plot.

iancy 1

attic

e mmntnctonat 0=0.4 Rt o frmquency b

Figure 6.17: Effect of skin friction C; on efficiency 7 of a rectangular oscillating foil
with an aspect ratio of 8.

Figure 6.17 shows the effect of skin friction on the efficiency for a rectangular foil
with an aspect ratio of 8. Al a low reduced frequency, where the generated thrust
was small, the skin friction and the caleulated pressure drag (they had about the

same order) cancelled a major portion of the thrust. Thercfore, the efficiency there

—e— ywihnotrctonol 8200 5

Frducad fragquenc v b

Figure 6.18: Bffect of skin friction C; on the thrust coclficient G, of a rectangular
oscillating foil with an aspect ratio of 8.
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tion on efficiency of a lunate oscillating foil with an

Figure 6.19: Effect of skin fr
aspect ratio of 8.

was

nall. At a higher reduced frequency, the skin friction relative to the generated

thrust is negligible. Therefore, there is no red similar

on of efficiency. This is als
that the skin
friction affected the efficiency in the lower range of reduced frequency (sce figure 6.19).

As

cocfficient for the rectangular foil and the lunale tail B2 wing; the average value of

to the curves for the man-made lunate B2 planform; the only differen;

can be seen in figures 6.18 and 6.20, skin (riction had little effect on the thrust

7 was about 0,085 ~ 0.095. “The skin friction effect had no change with a different
feathering parameter 0 or ©. As mentioned before, the implementation of the skin
fri

flow pattern between a ri

iction formulation was mainly to establish a basi

for a qualitative comparison of

id and a flexible foil. This will be discussed in the next

chapter.

Feluetie iyt

Ygure 6.20: 13 et of skin friction on thrust of & lunatL nscﬂlatmg foil with an aspect
ratio of 8



Chapter 7

Results and discussion: flexible
oscillating foils
This large amplitude, time domain, flexible 3-D geometry panel method, has been

used to simulate an oscillating rigid, non-zero thickness foil with an arbitrary plan-

form. In this chapter, simulations move a further step toward reality: computing the

performance of an oscillating propulsor with both chordwise and spanwise deflexion,

For a foil with given geometry, motion parameters, and modulus of clasticity, the
propulsive performance could be evaluated by iteration, which couples the hydrody-
namical forces, their cquilibrium and structural rigidity at cach time step. This kind
of method yields the efficiency and thrust and, at the same time, gives the passive

deflexion shapes and magnitudes. This passive approach may be advantageous in

a particular de oscillating propulsor with given planform shape,
thickness distribution and variation of rigidity (material, spanwise and chordwise sec-
tional moment of inertia). However, the passive calculation may lose a generality: fish
tails and flukes of whales and dolphins and, especially the flapping wings of birds,
may have certain muscle control on their propulsors, so that cither the chordwise

and/or the spanwise deflexion might be controlled actively. In addition, for certain
d

advanced airfoils or de swimming fish, optimization of

128
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the positive deflexion control needs also to be realized, to give a good and control-
in both the chordwise and the

lable propulsive per "Therefore, defl

spanwise dircctions were pre-determined in terms of shape functions and amplitudes
in this study.

This chapter will first discuss the selection of a number of chordwise and spanwise
deflexion cquations; secondly, it will examine the effect of a vaticty of flexibility
L will then compare the results from the

parameters on the propulsive performany
present method with that, from a 2-D pancl method in which a half chord clastic
rectangular foil was tested (Yamaguchi 1992); finally, the propulsive performace of

the fin whale flukes will be examined.

7-A  Selection of chordwise and spanwise deflex-
ionn equations

Selection of equations involved both the chordwise and spanwise directions and they

are discussed separately below.,

7-A-1 Deflexion equations for chordwise flexibility

For a general oscillating flexible foil, as the distribution of the moment of inertia of the
section parallel to the span and the variation of the chordwise pressure distribution
are not. predetermined, the shape function is difficult to obtain. In this study, in
addition to a cubic function assumption (Bose 1992), y = 86(z — 0.5)%, in a 2-D
analysis, five other equations were added to make a total of six. For a 3-D foil, the

jon was assumed to be the same across the

chordwise deflexion shape for cach se

span, though the thickuess distribution of cach section may be different. Equation
(7.1) is the shape function in a general form. The order ¢ of the shape functions
in equation (7.1) ranges from 1.5 to 4. These six cquations in a general form, after

normalization, are
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2 = 6(2z — 1)sin(wt + &), (7.1)

where 8, is the chordwise deflexion amplitude (6. = 62Clocat), a product of the chord-
wise deflexion factor &, (the input data for the maximum chordwise deflexion referring
{0 the chord length) and the local chord length; c is taken as ¢ = 1.5, 2, 2.5, 3, 3.5, 1
and &, is the phasc angle of the deflexion relative to the pitch. When c is taken as 3,
the chordwise deflexion equation is then reduced to that of Bose 1992. The value of

@, in a normal case (for a passive deflexion) s negative.

2=0.1(2,=1)"®

= dflevion
s o
2 8

orduis:

07 o) CE)

Figure 7.1: Shapes of chordwise deflexions determined by six equations.

The shapes of these six functions are plotted in figure 7.1 In the figure, the
maximum deflexion was set as 10% of the local chord length.

Several assumptions arc listed as follows:
® Deflexion starts at halfl local chord.

o Maximum deflexion is at the trailing edge and its magnitude is dotermined by

the local chord length and the deflexion factor 6.
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Figure 7.2: Shapes of spanwise deflexions determined by five equations.

One shape function governs all sections so that all sectional shapes of deflexions

are the same, though the thickness and/or the shape of the foil scction may

vary. In other words, there is no wist or forsional deflexion along the span.

al corresponding numerical procedures were

Based on the above assumptions

performed: a) Bach panel on the flexible part of the foil has a relative velocity. This
relative velocity was calenlated by differentiating eq. (7.1) with respect to time £, b)
“This relative velocity has to be added to the total velocity after a transformation
from the body frame to the global frame; and ¢) As the shape of the foil varics
with cach time step, the influence doublet and source coefficient matrices have to be

re-evaluated at each time step.

7-A-2 Deflexion equations for spanwise flexibility

Five spanwise deflexion equations were formed by using a cantilever beam deflexion

function, and they are shown in figure

ion formula for a uniform cantilever beam with a uniformly

The standard defley

distributed load is

To



Chapter 7. Results and discussion: flexible oscillating foils 132

-W
= m{my’—‘lynﬂld/l]« (7.2)

As the dimension of /, E and W are:

z

11", E— N/ and W — N,

the unit of the fraction outside the brackels of cquation (7.2) is I=2. Therefore,

cquation (7.2) can be rewritten for a time dependent oscillation, in a form of

a=620)F %(%)3 + ‘Ii(%]‘]l%rsiu(ul +0,). (.3)

In cquation (7.3), 8, is the maximum deflexion, &, = 8ul, a product of spanwise
deflexion factor &, and half span length L @, is the spanwise deflexion phase angle
relative to pitch. ¢ s taken as 0, 0.5, 1, 1.5 and 2.

The sccond torm in the brackets of cquation (7.3) has to be negative for the left
half span and positive for the right hall span to have a symmetrical deflexion. The
maximum deflexion occurs at the span tip at y = [, and zero deflexion occnrs at the
rool chord at y = 0.

Though there are allogether five spanwise deflexion cquations available in the
OSFBEM.FOR, only three of them will be discussed here; as it will be scen later,
the shape function of the spanwise deflexion has a negligible cffect on the propulsive

performance compared with the amplitude of the spanwise deflexion.

7-A-3 Determination of instantaneous effective angle of at-
tack

As thrust and cfficiency are dependant on the instantancous angle of attack Gitantmazs

this instantancous angle of attack is useful in explaining the relations between forces

and deflexion. Qinstantymaz 35 also important for boundary layer separation control.
Instantancous angle of attack is the difference between the instantancous pitch

angle a and the instantancous angle of the foil’s kinematic velocity e, i.¢., @instant =
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a,—a. In an oscillation with pure ch
1 b

Vit

In 2-D foil theory the cffective angle of attack, when a wing section is deformed,

the instantancous pitch angle

changes but the a, = lan~ remains constant.

can be determined by finding the angle of zero lift. A numerical implementation was
done in the present method to find the angle of zero lift by using Glauert’s expression
following Pankhurst (1944). In this method, the angle of zero lift of cach section was
obtained first; then the angle of zero lift of the whole foil was found by using

(7.4)

Qzerg =

For a symmetrical, rigid foil, the angle of zero lift a.,,, is zero. lowever, the

ion become a cambey

chordwise deflexion made the symmtrical s «done. Therefore,
the angle of zeto il au, was no longer zero. The instantancous pitch angle o
increasod at a value of gy ! The lift and the thrust were then determined inherently
by the panel method,

Tor a non-twisted foil, cach section has the same angle of zero lift; so does the

whole foil. The feathering parameter, as the pitch amplitude a, increases due to the

because of eq. (6.1)

Increasing © will produce a higher efficiency and a smaller thrust; therefore, when
the chordwise amplitude increased, the efficiency increased and the thrust dropped.
However, when the chordwise deflexion became sufficiently targe so that © was greater
than 1.0, the instantancons angle of attack changed its sign; then, a negative thrust
is generated. Therefore, a large chordwise amplitude deflexion of a foil may mix both
positive and negative thrust; hence, a lower efficiency and thrust may be obtained;
or, when the instantancous angle of attack is close to zero, a small amount of drag
will cancel the large portion of generated thrust; this results in a lower value of the
efliciency 5 and the thrust coefficient C,.

"In this case, the instantancous pitch angle is & = arigid = Csero
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7-A-4 Graphical representation of fin whale flukes in mo-
tion

In order to have an idea of the instantancous deflexion shape and the shed wake
patierns behind the fin whale's flukes, graphics for a combination of 19 chordwisc and
spanwise deflexion functions governing the flexible flukes are presented in Appendix
B.

Calculations were also made to observe the propulsive performance for these 19
cases. In the computations, the following parameters were used: 6, = 0.1; 6,0 = 0.1;
@, = —30% ®, = 90° (small flap); h, = h/C, = 1.305/0.87 = 1.5; a, = 20°%
Bptase = 90% X3, = 1.0 w = 0.2m & = 0.27; © = 0.4619 and 0 = 0.3701.

Table 7.1 tabulates some results from a series of calculations.

‘The results shown in table 7.1 show that:

o The higher the order of ¢in the chordwise deflexion, the higher the instantancous
pitch angle. This was obvious because the slope of the deflexion shape function
close to the trailing cdge incroased when the value of ¢ increased, and, hence,

the value of the angle of zero lift of the camber scction increased.

A larger c in the chordwise deflexion equation increased the instantancous pitch
angle, and, hence, decreased the value of maximum angle of attack. In other
words, the value of instantancous pitch angle was closer Lo the velocity slope
74 when ¢ was increased. This is the reason why the overall feathering

parameter was higher with the increase in c.

o Maximum efficiency was obtained by using chordwise defloxion equation #8and
spanwise deflexion cquation #2.

® Too large a value of ¢ in the case of the spanwise deflexion produced both small
efficiency and thrust. The best thrust was obtained from the rigid [oil, followed
by the least flexible foil governed by C1S1. When ¢ was small, the efficiency
increased with an increase in the chordwise flexibility; however, when ¢ was too

large (greater than 4), cfficiency decreased with an increasc of the value in c.



Chapter 7. Results and discussion: flexible oscillating foils 135

B, G Cw/C 1 nw/C ays @ Omer Ouy
€050 0.2600 02539  0.8098 07969 20.00 43.30 2330 0.4619
C1S1 01473 01410 08394 08147 30.63 4330 1267 07074
€152 01431 01370 08102 08155 30.63 43.30 12.67 0.7074
€153 01402 01341 08104 08153 30.63 43.30 1267 07074
€251 01310 01246 0.8130 0.8152 32.04 43 1126 0.7100
€252 01269 01207 08139 08150 32.04 11.26 07400
01239 01178 08112 0.8158 32.04 1126 0.7400
001174 0111 08441 08132 3326 4330 10.04 0.7681
0.1133  0.1072 0.8451 0.8139 33.26 43.30 10.04 0.7681
01101 0.1043  0.8455 0.8138 4330 10,04 0.7681
451 01056 0.0993  0.8126 0.8086 1330 8.950
€152 01016 0.0055  0.8137 0.8090 4330 8.050
0.0987 0.0926 08141 0.8086 4330 8.950
0.0950 0.0888  0.8386 0.8009 4330 7.980
0.0911  0.0819  0.8396 0.800 4330 7.980
0.0882  0.0822 08399 0.8050 1330 7.980
0.0883  0.0820 0.8310  0.7906 43.30  7.090
0.0881 0.0783  0.8318 0.7905 1330 7.000
0.0755  0.8320 0.7895 13,30 7.090

‘Table 7.1: Comparison of ninetcen combinations of deflexion equations for a fin
whale’s flukes. In the table, C0S0 means that there is no deflexion and C'152 in-
dicates that the chordwise shape function was equation number onc and the spanwise
shape function was equation number two. 5 and C, arc efficiency and thrust and
“w/Cy” means that the values were obtained after the reduction of the skin [riction.
auegys is the effective pitch angle due to the flexibility. This angle, however, is an overall
value for the whole planform if the chordwise deflexion is not uniform and is both an
overall and local value if the governing equation is the same for all the sections. ay is
the kinematie velocity of the foil’s pitching axis, and it is obtained by neglecting the
non-uniform heave amplitude duc to the spanwise deflexion. Strictly, cach section has
its own @, at cach time for a foil with spanwise flexibility. The value of @z is the
maximum instantancous angle of attack and it was obtained by assuming the phasc
angle Bppase = 7/2. Oryy, the cffective large amplitude feathering parameter, was
calculated based on e, and aqsp. All the angular values above for cach local section
at cach time step were obtained and recorded in the output file OSFBEM.LOG.




Chapter 7. Results and discussion: flexible oscillating foils 136

© The larger the maximum instantancous angle of attack, the larger the thrust
coefficient.

® The best efficiency (7 = 0.845) was obtained at the maximum instantancous

angle of attack of about 10°.

It was found that a combination of the heave amplitude factor ko, and the phase
angle of the spanwise deflexion phase angle ®, had a strong effect on the selection of
the spanwise deflexion amplitude to yield a positive thrust. Normally, a combination
of a higher heave amplitude and a spanwise deflexion phase angle of about, ®, = 180°
(the active control of deflexion) along with a large spanwise deflexion amplitude 8,
gave the best efficiency and thrust (sce page 139). The selection of shape functions
that governed the deflexion in both dircctions showed a much smaller effect than the

amplitude of deflexion on the cfficiency and thrust.



Chapter 7. Results and discussion: flexible oscillating foils 137
7-B  Effect of the chordwise deflexion phase angle
on efficiency and thrust

A graphical analysis of a flexible foil for the chordwise deflexion was done and it
suggested that a phasc angle between the start of the deflexion and the pitch is

necessary for flexible foils. This is evidenced by the fact that a flexible foil needs time

to adjust the bending equilibrium itsell and, consequently, the maximum deflexion

does not occur at the same instant as the bending moment reaches its maximum.

Figure 7.3: Effect of the chordwise deflexion phase angle @, on the elficiency # and
the thrust coefficient C for a rectangular half clastic chord oscillating foil.

Figutes 13.23 through 13.28 in Appendix 3 show the instantancous chordwise de-
flexion and the wake pattern with different deflexion phase angles ranging from 0°
Lo ~50°, The geometry and motion parameters of the oscillating foil shown are also
listed in Appendix B.

As can be scen in figures 13.23 through B.28, the trailing cdge of the sixth foil
position is higher than the maximum height (T.I. was taken as the location of the
pitching axis). This trailing edge position gradually became lower than the extreme
points. The wake patterns, however, do not appear much different from cach other
in the geometry shown.

A number of calculations were done Lo determine the effect of the chordwise phase
angle on thrust and efficiency. Figure 7.3 shows that the maximum efficiency was

obtained at @, = —40°, with a thrust the same as it was at ®. = 0°. When & is
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greater than 40°, efficiency drops rapidly at about the same rate as the increase in
thrust. As can be scen in figure B.25, the shape of the chordwise deflexion at the
peak and the trough seems practical.
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7-C Effect of the spanwise deflexion phase angle
on efficiency and thrust

To test the effect of the phase angle of spanwisc deflexion on the efficiency and thrust,

performance of a fin whale’s flukes was calculated, by using the following parameters:

planform and section geometry were the same as those in Chapter d-11;

o chordwise deflexion equation no. 0, no deflexion;

spanwise deflexion equation no. | with amplitude of 0.1;

scillating frequency w = 0.2r;

phase angle G = 90%

o pitch amplitude o, = 20°%
o pitching axis position at the T.E. 3y, = 1.0;
o llukes swimming speed Vi, = 1.0/sec;

heave amplitude of the root chord hy = 1.0;

large amplitude feat hering parameter based on the root chord ©

o the spanwise defloxion phase angle ranging from —180° ~ 180°,

It was noted that when a foil has a spanwise flexibility, the instantancous heave

velocity of cach section varics across the span. This is duc to the pitching axis being

1o longer a straight line; the height of the pitching axis is not wniform along the

span. Therefore, the second term of input power of cquation (3.58), Lk, has to be

svaluated for cach section instead of for the whole foil.

As the chordwise flexibility does not affect the pitching axis® kinematic velocity,
the total relative velocity due to the fleibility cannot be taken into account for the

efficiency. In the present method, the vertical velocity due to the spanwise deflexion
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Figure 7.4: Effect of the spanwise deflexion phase @, on the efficiency 7 and the thrust
coefficient C, for a fin whalc's flukes.

at all the control points of all pancls of cach section at cach time step were averaged
for a mean vertical velocity of the section. As this mean velocity was evaluated based
on the body frame coordinates, it had to be transformed o the inertia frame before
it was subtracted from the root chord pitching axis’ heave velocity.

If the velocity due to spanwise flexibility at cach control point is vy, where i s the
ith number of chordwise panel and j is the jthe number sections, the mean velocity

of cach section is then:

i
V=Y v (1.5)
i=1
The term Lk in the input power for the whole foil at cach time step is then
. J. N
Pinputp = Lk = Y% 8)i[=V5 + hroal- (7.6)
i=1

A number of calculations were also done for different phase angles ranging from
®, = —180° to 180°. Figure 7.4 shows the effect of the spanwise deflexion phase angle
on 5 and C. Results show that when the spanwisc deflexion did not have a muscle
control, i.c., the phasc angle @, was about 0° ~ 30°, the predicted cfficiency was the
minimum and the thrust was also at the bottom line. In this case, compared with

the rigid foil, spanwise deflexion produced both low thrust and small efficiency.
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When the foil’'s spanwise deflexion is under an active control, especially at an
angle of 180, the cfficiency and the thrust had a substantial increase.

The best, efficiency of = 0.8319 was obtained at ®, = £180° with a thrust
coeflicient of €y = 0.1332; and the best thrust coeflicient of 0.1482 with a good 7 of
0.8322 occured at @, = 120°.
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7-D Effect of the chordwise deflexion amplitude
on efficiency and thrust

To observe the effect of the chordwisc deflexion amplitude on 7 and C, calculations
were done for a half chord elastic rectangular foil. Geometry and motion parameters
were taken as the same as those in Yamaguchi (1992) and they were itemized in
Appendix B. The chordwise deflexion cquation, the pitching axis location and the
deflexion phase angle, however, were ot available, hence, they were taken as Cl,

T and —30°, respectively.

o e

et ~
wf s .
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Figure 7.5: Bffect of the chordwise deflexion faclor 6, on the efficiency y and the
thrust coefficient C; for a rectangular half elastic chord oscillating foil.

Figure 7.5 shows the changes of 7 and C; with the different chordwise deflexion
amplitude. When the amplitude factor &, was less than 0.2, cfficiency increased
lincarly but the thrust dropped rapidly. This trend agrees with Bose's 2D work
(1992). When the chordwise deflexion factor &, was greater than 0.2, the thrust
approached zero quickly with a large drop in efficiency.

As there are so many paramelers affecting the propulsive performance, figure 7.5
indicates that an overall propulsive performance cannot. be obtained by adjusting only
the chordwise deflexion amplitude itsell. In many cascs, a large amount of thrust has
to be sacrificed to obtain a higher efficiency.

Tigures 7.6 to 7.8 show the chordwise pressure distribution at cach section, for a
deflexion amplitudes of 0.0 (no deflexion), 20% chord and 28% chord, respectively.

The instantancous position was taken at the 240t time step (a total number of time
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7.6: Pressure distribution €, at zero chordwise deflexion for a rectangular half
chord oscillating foil.

steps cquals 256) ab an angular displacement of 7.5 7 and a time displacement, of
170948 «

At this ust time step, the

cones.

hydrodynamical forces in a cycle
for these three different. amplitudes of deflexion were obtained. The value of these
for

ould be multiplied by the dynamic pressure §pVA,, and the area of the
planform. The units of these forces are therefore in Newtons.

These non-dimensional forces arc as follows:

1. Total lift is -513.972, -125.986 and -71.3279.

. “Total thrust is -341.709, -100.300 and -52.2581 (Foil goes to the negative x-
direction; this is positive instantancous thrust relative to the motion of the foil.
The mean thrust, however, should be positive due to the formulation of the
method.).

3. Friction drag is 2.90524, 2.99726 and 2.98881.
4. ‘Total pitch moment 1347.57, 1297.88 and 1030.63.

5. C, is 1.498460, 0.367306 and 0.207953.
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6. Cr is-0.996235, -0.292419 and -0.152357.
7. Skin friction coefficient is 0.008464, 0.008775 and 0.008437
8. Cr with skin friction is -0.987765, -0.293681 and -0.143643.

The negative Cr shows a positive thrust because the oscillating foil was assumed
to move in the negative x-direction. .

When there was no deflexion, the pressurc distribution had a profile similar to
that for a steady foil. At a larger chordwise deflexion of 0.2, the pressure coefficient
C, on the pressure side dropped dramatically on the flexible part of the foil. As the
deflexion continued to increase, this drop increased. Therefore, the lift and thrust
were small for thesc larger deflexions,

The efficiency, however, kept increasing with the increase of the deflexion, becanse
the deflexion increased the instautancous pitch angle, so that the difference between
the instantancous pitch angle and the instantancous pitching axis' kinematic velocity
became smaller; i.e., the instantancous angle of attack became smaller. Thercfore,
the lift and thrust dropped.

It can be seen that, even though the foil had such high lift, thrust and pitch

moment at this time step, the pressure differences at the trailing edges, for both the
rigid and the flexible foil, were very small. This again indicates that as long as the
time step size, the total number of time steps and proper numerical procedure arce
carefully chosen, the validity of the steady Kutta condition will remain in a flow round
a flexible unsteady foil. Ilowever the pressure difference at the trailing edge may not,
in practice, be zero in certain cases, and this has to be tested by somewhat advanced
and sophisticated experimental studies.
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Figure 7.7: Pressure distribution ', at a 20% chordwise deflexion for a rectangular
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Figus re distribution €, at a 28% chordwise deflexion for a rectangular
half elastic chord oscillating foil.
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7-E The effect of spanwise deflexion amplitude
on efficiency and thrust

Calculations were done for a fin whale's flukes o examine the effect. of amplitude of
the spanwise deflexion on 7 and Cy and the results are presented in figure 7.9, The
following parameters of motion were uscd:

o Planform geometry was the same as that in Chapler 5.

» Chordwisc deflexion amplitude factor 6., = 0.

Spanwise deflexion equation was S1, the basic normalized cantilever beam de-

flexion function.

Oscillating frequency was 0.27.

o Pitching amplitude o, = 20°.

o llcave amplitude factor by = Ape/Cr = 0.87 m/0.87 m = 0.

o Fluke swimming speed Vign, = Viigne/C: = 0.87/0.87 = 1.0/sce.

o The ling small and Targe
and © =0.6222.

fitude foathering 0 = 05556

o Spanwise deflexion phase angle lagging pitch 07,

o Pitch axis position factor 23,0 = Zpiten/Cr = 087/0.87 = 1.0.

Figure 7.9 indicates that when the flukes did not have a positive flexibility, in-
creasing the spanwise deflexion will decrease the efficiency and thrust. As Li in
equation (7.6) is part of the denominator in equation (3.59), the sign of V; and iy
affect the value of Py, Tor a spanvise deflexion phase angle of zero degrees, the
signs of Vj and Ayoq wore opposite at all times so that the efficency was large (see

figure 7.10); at a large degree of phasc angle, V; and jyey may have had the same sign
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Figure 7.9: Ef
thrust coef]

of the spanwise deflexion factor 8,, on the efficiency i and the
nt Cy for a fin whale’s fluke:

at. a cortain instant. so that they add up. Thercfore, the larger the spanwise deflexion,
ey (figure 7.10).

Itis suggested that 10 obtain a higher efficiency for a p

the smaller the cffi

ve deflexion, the span-
wise deflexion amplitude should be controlled at around zero (rigid span). In the
case of bird flights, and especially in the case of swimming of whale, however, ac-
tive deflexion control mechanism may have a phase angle of 180° (tips go down on
downstroke when foil is going up and vice versa).

A controllable chordwise and spanwise man-made oscillating foil, if it is practical

in realily, is to be designed to have an active spanwise deflexion (spanwise flap of

a rigid halfspan hinged at the root chord) and a passive chordwise deflexion with a

phase lag of aronnd 35 (reducing the load by decreasing the instantancous angle of

attack duc to the chordwise flexibility).

Figure 102 Effect of the spanywise defleion amplitude factor 8, and the phase angle
®, on the efficency 5 and the thrust coeflicient € for a fin whales lukes.
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For an appropriate phase angle control (@, = 180°), a bigger spanwise deflexion
amplitude factor §, was desired to yield a higher cfficiency and thrust, but the ratio
of &,/h, has o be controlled to obtain a positive thrust. However, the best ratio
for both the cfficiency 5 and the thrust coefficient C; may not be obtained for all
cases, because this ratio depends on the shape of the planform, chordwise deflexion

s and the motion
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7-F  Propulsive performance of a rectangular flex-
ible foil

Computations were done for a rectangular foil with and without. chordwise deflexion.

The motion parameters (Yamaguchi 1992), were set as follows:

o Pitching amplitude o, = 15.8° and a, = 19.7°, for the rigid and flexible plan-

forms, respectively;

o Phase angle of pitch leading heave ®ase = 105° and Sprue = 1047, for the

vigid and flexible planforms, respectively;
o Heave amplitude factor ko = hreave /Cr = 4.2 /T m = 0.6.

o Osci'lating frequency w was set as 0,621, 0.7644, 0.9043, 1.047, and 1.123 for
the rigid foil and 0.7562, 09134, 1.1265, 1.3125, L4097 for the semi chordwise

clastic foil.

o 'The swimming forward velocity Vi was obtained as 4.3822, 5.477, 6.

7.669 and 8.217 /s, respestively.

i ghasanle renia o gt

Figire 7.1 Bfficiency 7 versus swimming speed Vg of a rectangular rigid/clastic
propulsor from Yamaguchi (1992), a 2-D theory with 3-D madification and the present
method with 2% and 5% chordwise deflexions.

The pitching axis position was assumed ab X = 1.0, The chordwise deflexion

phase angle b, was Laken as =30°, The deflexion amplitude was assimed to be 5%
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oal Fodformard velocity n m /s

Figure 7.12: Thrust cocfficient C, g speed of a lar rigid /clastic
propulsor from Yamaguchi (1992), a 2-D theory with 3-) modification and th present
method with 2% and 5% chordwise deflexions.

of chord length. As these parameters were not given in Yamaguchi 1992, they were
pre-assurned.

Figure 7.11 and 7.12 show the 2-D numerical results versus the results predicted
by the present method in deterimining cfficiency for the rigid and clastic foil. The
prediction for the rigid foil from the present method showed a higher thrust and
cfficiency than thosc from Yamaguchi 1992. As the rigid foil in his study had a
pitch amplitude a, = 15.8°, the maximum velocity angle a, of the foil was about
31° and the phase angle ®ppe was 14°, and the maximum instantancous angle of
attack was about Qjuiant ~ 16° (see figure 7.13 or 7.14). Such a large instantancous
angle of attack nuent Would probably have led to a boundary layer separation and
hence a reduction of the cfficiency and the thrust for the 2-1) calculations.  As the

Anqular displac ement i s

Tigure 7.13: Comparison of the instantaneous angle of altack, Ill'l and thrust. between
a rigid and a flexible (5% chord), a size of 49 m x 7 m, rectangular foil at Vi, =
(8217 m/s)/C, = 1.1T4/s.
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Figure 7.14: Comparison of the instar
atigid and a flexible (2% chord), a
(8217 m /s]/Cy = L1TA/s.

ancous angle of attack, lift and thrust between
se of 49 m x Tm, rectangular foil at Vjj, =

present. method cannot take the 1ift reduction due to the boundary layer separation

into account, it gave higher values of efficiency and thrust. lowever, L}

present.

methiod was able Lo give the value of diuscan: al cach time step to warn for a possible

boundary layer separalion.

Predictions for the elastic planform by the present method show that a very small
chordwise deflexion did not result in a noticeable gain in ctliciency compared with the
rigid foil. Asthe thrust from the 2-D pancl method was obtained at the same velocity

for these two planforms, the thrust coefficient for both the rigid and the clastic foils

were the same (the solid linein figures 7.13 and 7.14. Therefore, there are four curves

It can be seen that a smallamount of chordwise deflexion

reprosenting five quantit
produced negligible change in efficiency but, yielded a significant change in the theust.
For a relatively large chordyise deflexion (&, = 0.05), the thst decreased slightly

with about. the

ame portion as the inerease of the clliciency.

Figures 7.13 and 7.14 present the instantancous angle of attack, lift and thrust for
the plan forms with 5% and 20 chordwise flexibility, predicted by the present method.
lu figure 7.13, the graph of the instantancous fift was rather flat for the 5% deflexion

foil while that of the rigid foil looks like a sinusoidal wave. As the instantancous

piteh angle o was increased due to the chordwise flexibility (so that it was closer

to the instantancous kinematic velocity o, of the pitching axis), the instantancous

angle of attack had a fair amount of reduction; depending on the chordwise deflexion
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amplitude ( & = 0.05~0.2 ), this reduction usually ranged from 5° to 20°.

Figure 7.14 shows a rather irregular behaviour for a foil with a very small chord-
wise deflexion. This small amount of deflexion increased the pitch angle so that the
instantancous angle of attack should normally besmallerthan the rigid foil. llere, the
instantancous angle of attack was larger becausc the chordwise deflexion pliase angle
was (aken as —30° (a slight control of the deflexion). This pattem also existed with
the 5% deflexion planform. Ilowever, as the instantancous angle of attack dropped
rapidly at about every half 7 rad of angular displacement for the 5% chordwise de-

flexion foil, the mean thrust was much smaller than thal of a rigid foil.
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7-G Propulsive performance of a fin whale’s flukes

To examine the propulsive performance of a fin whale’s flukes as a propeller, com-
putations were done by using a nimber of motion parameters based on the study of

Bose and Lien (1992). Some molion parameters arc:
@ lieave amplitude factor h, = 1.723 hecause of h being taken as 1.5 mefers;
o pitch axis position starting at the T, X3 = 1.0;
o piteh leading heaye at S, = 907
e osillating frequency w = 3§ rad/sec;
® swimming forward velocity Viggne= 4,6, 8, 10 and 12 m/see.

Besides the above molion parameters, some additional parameters were used for

the flexibility:

o chordwise defle: amplitude factor 8, = 0.05;

spanwise dellexion amplitude factor &, = 0.1;

chordwise deflexion phase angle ®. = -30°;

30° and —180°%

spanwise dellexion phase angle @,

e dellexion shape function set (35

Calenlations for a flexible planform were made for two cases: a) for @, = —30°,

ity were assumed as passive deflexion

both the spanwise and the chordwise flexil
(no muscle control); b) a passive chordwise and an active spanwise control for the
deflexion.

A non-dimensional advance ratio was used and defined as

o _ Vitiane -
R (7.7)
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Viigwe (mfs) 40 60 80 100 12.0
Vitge (knots) 7.8 117 156 195 233
a, (deg) 48.37 36.86 2058 2423 20.56
Jn = Ve L7l 256 342 427 53
a (deg) 28.12 1661 933 498 231

instantymaz (deg) 15.50 1275 11.65  10.69 9.776

(€] 0.4507 0.3180 0.2057  0.1124

Table 7.2: Determination of an appropriate pitch amplitude for the flexible planforms
with and without active control.

The pitch amplitudes for the clastic planform were determined by considering the
efficiency, thtust and boundary layer separation; that is, to use a maximum possible

ins

antancous angle of attack. This maximum possible value was

{ at about 12°,
with a consideration that this value may be allowed to be slightly larger because this
maximum value occurred only in a small range of one oscillating cycle so that, even
if boundary separation occurs in that range, it would probably not affect the overall
performance.

Using a pitch amplitude of 50° as it was taken in Bose and Lien (1989), it is
not possible for this large amplitude theory to yield a positive thrust. [f such a
large pitch amplitude has to be used, cither the heave amplitude or the oscillating

frequency should be increased or the swim velocity should be decreased to have an

instantancous large amplitude feathering | less than 1.0, As can be scen in

table 7.2, the i angle of the instant kinematic velocity of the pitch

axis was 18.37°. Any pitch angle that is greater than this value yiclded a negative

thrust. This was obvious when the large amplitude was considered (Chapter 6).
Based on the above considerations and a number of trial computations, the pitch

amplitude for cach forward speed was selected and some related quantitics are tabu-

lated in table 7.2,

Tor a rigid foil, if a desired maximum angle of attack is 127, the pitch amplitude
should he set as 48.37° — 122 = 36.37° al a forward velocity of 4 m/s. llowever, for the

fin whale’s flukes section with a 5% chordwise deflexion, the change of the maximum
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Vi (mfs) 40 60 80 100 120
Cinstantomar (dog) 15.50 1275 1165 1069 9.776
) 05816 04507 03180 02057 0.124
0 07806 0813 08278 08202 0.8180
G 01100 0.1103 00935 00749 0.0575
Thrust (kN) 160 299 449 562 621
Pgut (factor) 1079 1222 13579 13633 12829
Power (kW) 863 220 4345 G817 9237

3: Propulsive performance of the fin whale's flukes withont an active spanwise
exion control (#, = —307) and with a skin friction consideration.

Vitighs (mfs) 1.0 6.0 8.0 10.0 12,0
Qinstantumas (deg) 1275 1L6) 1069 9.776
[} 04507 0.3180 02057

0.8670 0.8965 0.8042
0.1122 0.0861
; 6.16
15039 1.4

]

)

“Thrust (kN)
Paput (Factor)
Power (kW)

24

. L3184
2473 4803 7260  94.93

Table 7.4: Propulsive performance of the fin whale’s flukes with an active control
(%, = 180°) and with a skin friction consideration.

angle of attack was about 13.25°, i.c., an extra 13.25° had been added to the pitch
due to the flexibility. Therefore, to control the maximum angle of attack at about
12, the pitch amplitude had to be set at 48.37° — 12° — 13.25° = 23.12°,

In addition, a phase angle of —30° in chordwise deflexion shifted the point at which
is shift

reduced the maximum angle of attack by about 5%, Therefore, the pitch amplitude

the maximum pitch angle a and the maximum velocity angle o, coincide.

was sel at 28.12° in order to expeet a maximum instantancous angle of attack close
to 127,
The large amplitude feathering parameter O i, was obtained by neglecting

the spanwise deflexion, though the spanwise deflexion hiad affected the pitching axis’
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Figure 7.15: Press
phase angle of
step).

re distribution Cy, for a fin whale’s flukes with a spanwise deflexion
—30° (passive deflexion) and ¢ = 17.4948 scc (the 240th time

velocity. For a large spanwise deflexion, a value of © e that is greater than zero
and less than one may not produce a positive thrust due to too small an average
heave amplitude.

Tables 7.3 and 7.4 show the results from a fin whale’s flukes with and without
an active deflexion control (the deflexion phase angles were zero). In the tables,
cfficiency, thrust cocfficicnt and Piypu Were obtained after a reduction of skin friction.
“The thrust was obtained by multiplying the wing arca S and the reference dynamic
pressure §pVi 4 The required input power was, then, a product of the P factor,
the planform arca S and the reference dynamic pressure £pViiu.

The predicted efficiency in tables 7.3 and 7.4 show that the best efficiency oceurred
at the maximum instantancous angle of attack about 10°. This is the same with the
observations made for the rigid rectangular and the swept planforms.

It can be scen that when the flukes had a positive flexiuility control, both efficiency
and thrust had a substantial increase. In a normal range of the instantancous angle of
attack, the smaller the value of @, the higher the cfficiency and the lower the thrust.
kin

friction cancelled a targe portion of the thrust and, hence, the predicted efficiency

When the mean thrust was very small at a large forward speed (12 m/s), the
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wing oot

it

Figure 7.16: Pressure distribution €, for a fin whale’s flukes with & spanwise deflexion
phase angle of ®, = 180° (active deflexion control) and £

5 see.

became smaller, even though the value of © was very small.

Figures 7.15 and 7.16 show the pressure distributions of the fin whale's flukes with
and without. active spanwise deflexion control. The x-ordinates at where the C; value
is located were normalized to provide a clear viswalization.

It can be seen that when the planform did not have an active deflexion control
(simulating a passive deflexion), the pressure cocfficient €, had a small difference
hetween the pressure and the suction sides, especially at the flukes’s tips. The chord
length of the tip of the planform was set at 0.012 m, which is about 1.4% of the root
chord. ‘This small chord length was set to approximate a point tip of the planform.
Lven with such a small relative local chord, the predicted pressure distribution from
the presert method appeared normal.

When the spanwise deflexion had an active deflexion control at a phase angle of
180°, the difference in €, increased at all sections and, hence, so did the cfficiency
and the the

L. As the predicted pressure difference at

o trailing edge is very
small (sce figures 7,15 and 7.16), the Kutta condition used in this method along with

the selection of the number of time steps and the time step size were considered

acceptable.



Chapter 8
Conclusions

This is the first attempt to evaluate the propulsive performance from an oscillating
propeller with both spanwise and chordwise flexibility. A new system of approaches
was developed based on a classical time domain panel method, to calculate the perfor-
mance of a non-zero sectional thickness, unst=ady, flexible, three-dimensional, large

lituds il Isor including the ideration of viscous skin friction

and the allowance of a non-zero trailing edge thickness. In order to obtain reliable
results, a series of tests was done covering a rigorous convergence study and a carcful
verification analysis. When the method was proven accurate and dependable, it was
then used to predict the propulsive performance.

A large

ped and the instantaneous angle of attack, the

theory was
feathering and the i large amplitude feather-

large
ing parameter were defincd.

As previous results on 3-D rigid oscillating foils were obtained based on small
amplitude theory without considering the sectional thickness and the effect of skin
[riction, a parametric study was done to re-examine the effect of geometry and motion
parameters on the propulsive performance of a 3-D rigid oscillating foil.

Tor flexible 3-D foils, a number of deflexion cquations in both the chordwisc and
the spanwise directions were pre-assumed to simulate the fin whale’s flukes or the
flexible wing. Propulsive performance was evaluated for oscillating propellers with

158
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different amplitudes of the chordwise and the spanwise deflexion. The phasc lags of
both chordwisc and the spanwise deflexion were introduced to examine their cffect on
the efficiency and thrust. Predictions were also obtained for a 49 m x 7 m rectangular,
semi-chordwise flexible foil and results were compared with those from a 2-D pancl
method. Finally, a fin whale’s flukes with both spanwisc and chordwise flexibility was

used 1o evaluate its propulsive performance.
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8-A About the method

In steady flow, this low order, Dirichlet boundary condition 3-D panel method was
proven reliable, when the foil under consideration did not have a very small aspect
ratio. The predicted results were accurate and reliable for the hydrodynamic loads
and pressure distribution. The steady Kutta condition worked well for the steady
flow when the time step size was taken sufficiently small. In the steady flow, only
two things need to be considered in order to obtain accurale results: a) the number
of chordwise and spanwisc panels should be large enough to converge; b) the total
number of time steps should be large enough to keep a small time step size and
to minimize the cffect of the starting vortices in order to have a realistic pressure
distribution.

Application of the potential jump due to the kinematic velocity at the trailing edge
enabled this method to allow a non-zero thickness trailing edge wing geometry. The
quadratic function curve fits for the surface doublet distribution in both the chordwise
and spanwisc directions were formulated and the tangential velocitics were obtained
by differentiating the sccond order polynomial exactly at both middle points and
the surface boundaries. These approaches improved the pressure distribution when a
structured panel arrangement is used.

A number of approaches were implemented into the unsteady flow calculation:
a) The time variant doublet strength at cach panel were polyfitted to a quadratic
function and the differentiation with respect to time was then obtained from this
quadratic function exactly. This scheme improved the steady Kutta condition when
it was used in the unsteady flow; b) The doublet strength of the last and the present
shed wake panel at the trailing cdge were averaged for cach time step. This also
d the

P or reduced the total number of required time

steps for the same degree of accuracy. c¢) As the shed vortices behind the oscillating

foil were also a function of the oscillati w, A i ional time £ as

used in previous studies is not sufficient to be generally used to determine the time

step size. Therefore, a number of tests were done and the time step size was suggested
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to be determined based on the period 7' = 2r/w. At a small oscillating frequency,
the time step size can be taken as a large value, and vice versa, i.c., 61 = T/N,, where
N, is the total number of time steps. The value of N greater than or equal to 256
was believed acceptable in the consideration of both the accuracy and the CPU time
on a P120 (Intel Pentium 120 Mz processor) PC. The scheme that uses the period
7" along with N, = 256 to determine the size of the time step is advantageous to
maintain the validity of the steady Kutta condition in unsteady flow.

A convergence study for unsteady flow was also done. A bigger number of spanwise

pancls NSpInt improved the convergence more effectively than Lo increase the number

of chordwise pancls, but Loo big a value will significantly use up more memory and
add more manipulations. A stable prediction on cyclical thrust and lift was obtained
after three cycles of oscillation. Thercfore, the total number of cycles of all oscillating
aken as 4 (4 periods or 87 rad of angular displacement). Values in

propellers was

the last cycle were used to obtain the ¢ iciency and the mean thrust.

A large amplitude theory was developed. In the theory, the instantancous angle

of attack of the oscillating foil was defined as the instantancous angle between the in-

stantancous pitch angle (the tancous position of the foil) and the instantancous

angle of the kinematic velocity vector of the foil's pitch axis. The large amplitude
leathe

ng parameter and its instantancous value were also defined. They were used

Lo present the prediction and to analyze the propulsive performance.

For a foil with chordwise flexibility, the instantancous pitch angle changes duc to

the change of the shape of the foil section. A C was also established

to determine the efle instantancous pitch angle and hence the instantancous angle

of attack.
"The determination of the instantancous angle of attack was found to be a rule of

thumb in analyses of the changes in lift, thrust, large amplitude feathering parameters

with a variation of hea and the deflexion.
Thi

to a combination of the above parameters and the efficiency and thrust are found

plitude, pitch

i because the instantancous angle of attack has a definite value corresponding

directly dependent on this definite value. A preliminary design of an oscillating foil
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in terms of parameters can be easily done by properly selecting this instantancous
angle of attack without doing a hydrodynamic computation. It was also useful to
warn of a possible boundary layer separation due to too large an instantancous angle
of attack, for both rigid and flexible foils.

A ical dure was also

1 and applied to the calculations of the
foils with the spanwise flexibility. Spanwise flexibility affected the heave velocity, i.c.,
the vertical velocity varicd across the span for cach scction. Instcad of evaluating the
Lk term for a whole planform, scctional L was obtained and summed for the whole
planform in the efficiency calculation.

A numerical scheme to calculate the skin friction coefficient for a 3-D, unsteady,
flexible foil was also formulated based on a 2-D flow assumption at cach section.
The velocity gradient along cach section was used to determine the flow pattern, in
terms of laminar, laminar separation, turbulent transition, turbulent and turbulent
scparation, and the skin friction cocflicient Cy.

The computer program OSFBEM can be used when the DRAM is small in which
case binary files are created to store the matrices, instead of a very slow virtual
memory swap. Ilowever, when there is cnough DRAM run times are about five
times faster. A reliable, fast matrix solver by applying the Bi-CGSTAB method was
implemented. By using the steepest descent steps, the Bi-CGSTAB method gives a
smooth and fast convergence while avoiding the often irregular convergence patterns of
nt)
method and the CGS (Conjugate Gradient Squared) method. This method was then

other nonsymmetric lincar system solvers, such as the BiCG (BiConjugate Grad

used to solve the lincar system iteratively. The use of this method significantly

increased the computing cfficiency.
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8-B Verification of the method

Results for a 2-D foil section were first verificd. When the aspeet ratio of a 3-D
rectangular foil was set to 1000, predicted lift and pressure distributions were com-
pared with those of a 2-D foil obtained from a theoretical approach. The method
showed a good accuracy and reliability (even though a small number of pancls was
used) in terms of the prossure distribution and the value of the lift cocfficient (3% in
differen

“The pressure distribution at the extreme point, at the ip (98.75% halfspan) of a
31D foil, was obtained and compared with experimental results, The present method
had a good overall agreement, except at the trailing cdge, where the experimental
results did not agree with the Kutta condition (non-zero pressure difference).

Comparisons were also made for a 30° swept, § taper, 2% thickness thin wing

with an aspect ratio of 6. This method showed a general agreement among others
and a better Lrailing cdge Kutta condition (less amount of the trailing edge pressure
difference) was obtained which often implies a beter accuracy.

Finally, as there were no theoretical results that arc based on a large ampli-

Lnde assumption available, predictions of efficiency and thrust from a rectangular foil

were compared with the results from a lincarized lifting surface theory. There was
a slight difference between the methods at a small reduced frequency (k < 0.5) but
a substantial difference at higher reduced frequency (k & 2). Results indicated that
the lincarized lifting surface theory applied to evaluate the propulsive performance
had a limited validity in a small range. The present method, had an incompara-

ble.smaller thrust than previous oncs, in the working range of the reduced frequency

about k = 1.0. As the previous method used in comparison was a small amplitude as-
sumption (the instantancous angle of attack for the small amplitude theory was about
as Lwice as large (12,68 vs. 20.92°), which was the major cause of the difference in
thrust production) and did not consider the foil thickness, the thrust prediction by

present method is believed more accurate and more reliable.
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8-C Large amplitude analysis and parametric study
of a rigid oscillating propeller

As the results from q/mcthad that takes the large amplitude, thickness eflect, 3-D
geometry and viscous skin friction into account were not available, a parametric study
for a rigid foil was found necessary and was hence conducted.

A large amplitude analysis was performed and it was used to determine the large

feathering and the instant angle of attack. This indicated
that the small amplitude theory at a large reduced frequency and a large feathering
parameter (@ = 0.4 and k = 1.8) predicied an instantancous angle of attack about
twice that of large amplitude theory and, hence, it had a very large thrust production.
A comparison was done and it showed that the small amplitude assumption had a
thrust over prediction about five times at the above valucs of © and k. Mcanwhile,
the value of the instantancous angle of attack at © = 0.8 and k = L.8 for the small
amplitude theory was too large (20.68°). Such big an angle of attack would cause a
severe boundary layer separation even in a steady flow.

In addition, the instantancous angle of attack is usually close to zcro at a large ©
and a small k for the large amplitude theory. Thercfore, the calculated drag by the
present method cancelled a large portion of the small amount, of the predicted thrust
so that the present method yielded a smaller cfficiency and a much lower thrust.

At a large reduced frequency, significant errors in efficiency and thrust were found
for the small amplitude approximation. The error for the thrust production could
be as much as 50%. As a result of the large amplitude study, the pitch amplitude is
not suitable to be used to determine its effect on the propulsive efficiency. Instead,
the maximum instantancous angle of attack defined by the present method plays an
important role among other propulsive parameters. Predictions show that for cither a
rectangular or a swept wing, for cither a rigid or a flexible planform, the best efficiency
occurred at the maximum instantancous angle of attack @instantnaz about 10°.

The finding of the optimal angle, the maximum instantancous angle of attack

provides a direct control of a combination of the motion parameters to obtain the
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best cfficiency. This means that a combination of motion paramecters for ri,

can be approximately optimized by adjusting the maximum instantancous angle of
altack without performing a tedious hydrodynamic calculation.
Indication of the instantancous angle of attack (or the instantancous feathering

parameter) was also found useful to observe the sign of the gencrated thrust. An

instantancous feathering parcaneter greater than 1 will lead o a negative gouerated

stantancous thrust. Therefore, if this is the case, the problem can be solved so

o pitch amplitude, or phase angle (pitch leading heave), or the ratio
of the velocity derivative f(2) to Vygu (i.c., the denominator of eq. (6.1)) needs to
be adjusted to maintain an instantancous feathering parameter less than 1. The
phase angle (piteh leads heave) had an effect on the instantancous large amplitude
feathering parameter, As the phase angle has a direct effect on the instantancous
pitch angle, the instantancous large amplitude feathering parameter may be greater
than 1, if the phase angle is far away from 90° even if an overall value of the large
amplitude feathering parameter is less than 1 (comparing eq. (6.1) with eq. (6.3)).

Examination of the effect of the heave amplitude on the thrust and efficiency

owed that, increasing the heave amplitude raised the theust significantly, because

of the increased value of the i

stantancons angle of attack. This suggests that an

oscillating foil should be st ab the maximum possible heave amplitude for the best
possible thrust.

For a foil with all paramelters fixed and only the pitch amplitude a, as a variable,

the thrust decreased when the pitch litude «v, increased, because i ing the

pitch amplitude reduces the instantancous angle of attack. The best efficiency, how-

ever, occurred at a certain pitch amplitude wi'h a smaller amount of thrust. In any
case, the best efficiency was obtained at the maximum instantancous angle of attack
of about 10°.

When other paramelers being fixed, an optimum pitch ampitude was found for the

best efficiency. [lowever, this optimum pitch amplitude is only valid in a particular

combination of parameters. The best effici

in fact, was again controlled by the

imaximum instantancous angle of attack. At the optimum pitch amplitude point,
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increasing the pitch amplitude, both the efficiency and the thrust were increased,
though in most cases, increasing cfficiency will reduce the thrust output.

As in previous studies, a good pitching axis position for the best cfficiency was in
a range from 50% to 100% root chord from the leading edge.

The best efficiency can be obtained at an optimized phasc angle. The thrust,
however, had not much change in a wide range of the phasc angle values. From
Dphase = 0° to 180°, the relation, “the higher the efficiency, the lower the thrust” did
not appear as it was staled in previous studies. In fact, after the point where the
efficiency reached highest value (at the maximum instantancous angle of attack of
10°), the higher the efficiency the higher the thrust. This reversed relationship exists
after the point at which the maximum efficiency occurred (sce figure 6.5).

Sectional thickness ratio had little effect on the efficiency for a series of NACA 4-
digit symmetrical wing sections. The best efficiency occurred around 9% ~ 12%. The
thrust, however, had a good value of 0.4 (about the same as that for 6% thick section)
at a thickness of t = 12% chord. When ¢ < 9%, the smaller the thickness ratio, the
higher the thrust. This may be caused by the sharp leading cdge that brought a big
leading edge suction. This larger increase in thrust duc to the reduction of thickness
may not, be practical due to the pressure drop when the pressure at. the leading edge
below the vapour pressure. When ¢ > 15%, thrust dropped dramatically with an
of &

Comparison between the lincarized lifting surface theory and the large amplitude

incre:

panel method was also done for both a man-made lunate tail and a fin whale’s flukes.

The present, method gave a smaller cfficiency prediction and much lower thrust val-

ues. Because the present method considered the section thickness effect, the large

amplitude assumption and the skin friction effect, results from the present method
are believed more practical. The extremely large C, value from the lifting surface
theory indicates that this value was over estimated due to too big (impractical) an
instantaneous angle of attack and that the assumption of a zero-thickness wing sec-
tion had a disadvantage in calculating thrust because it over-predicted the leading

edge suction.
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Study of the effect of the swept planforms on the thrust and efficiency gives the
following conclusions:

o A lunate planform had a much better efficiency over that of a rectangular plan-
form, at a feathering parameter of © = 0. At this value, the load of the propeller

was maximum, The thrust from the lunate tail was slightly smallcr.

Atahiigher feathoring parameter of 0.4, the

octangular planform gave

Slightly
higher efficiency but a lower thrust in a working range of reduced frequency &

0.5 ~ 1.5). Again, under extreme load conditions (very light load at & < 0.1
3

or very heavy load & > 1.8), the man-made lunate tail hehaved better in terms

of both the efficiency and thrust.

The fin whale's flukes gave higher officiency than that of a rectangular foil
throughout. the range of advance ratio J, especially at a higher advance ratio
(4 2 6) at which the load is getting lighter. The fin whale’s lukes showed an
excellent energy efficiency (about n = 80% and €, = 0.1 at J =

5) at cruising,

at which a minimun input power is required to maintain the eruising speed.

o The rectangular planform produced a slightly higher thrust over the flukes.

[Towever, the naturally oceurring planform had a better overall performance.

The best cfficiency, again, oceurred when the maximum instantancous angle of

attack was at 10°, for both rectangula

d swept planforms.

‘The skin friction coeflicient €'y was obtained from the boundary e caleulation

and was deducted from the thrust coefficient €. Howe: it had little effect on

cither the officiency or the thrust. A significant effect ocenrred at a very low reduced

frequency k, at which value, the generated thrust was ve

simall so that the €y
cancelled out a large portion of the thrust.
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8-D About flexible oscillating planforms

To simulate both a possible muscle control and a passive flexibility of a fin whales
flukes, five chordwise and three spanwise deflexion cquations were Lested.

Chordwise deflexion was assumed to start at the half local chord position and
the deflexion was uniformly controlled by one cquation for all sections and the local
chord Tength for each section. Spanwise deflexion cquations were postulated based
on a cantilever heam with a uniform distributed load. Calculations showed that the
seloction of the governing equation had little effect on the efficiency and thrast.

A chordwise deflexion phase lag relative to the pitch was introduced and the study

showed that a phase lag of about 35° gave the |

est, efficiency (about 0.75) and about

the same thrust coelficient (about 0.35). The graphic presentation of the motion and

the wake of a rectangular planform showed that a phase lag about 30° seemed more

practical and closer to the shape of a natural deflexion. This is shown in Appendix B

that. the deflexion of an elastic section cannot have an undeformed shape at the trough

and peak where the vertical velocity is maximum when pitch leads heave about 90°.

The instantancous angle of attack or the instantancous large amplitude feathering
parametor changed due 1o a) the change of the chordwise flexibility of the foil because
the sectional shape was changed or twisted, b) the change of the phase lag between
the chordwise deflexion and the pitch @, hecause the sectional twist varics with time
and ¢) the change of the phase angle ®ppag. In a normal case, al Sppue = 90° (heave
lags pitch), &, = 0 ~ 30°, the chordwise flexibility played the most important role

in the changes of the instantancons angle of attack Qinstane. The effective value of the

instantancous angle of attack decreased when the flexibility or the amplitude of the
chordwise deflexion 8. increased. Therefore, a lighter load had a higher efficiency and
a lower thrust. When the chordwise deflexion amplitude 6., continued to increase,
the efficiency 7 dropped due to the generated ncgative thrust; the total thrust also

decreased. The decrease of the thrust due to the increase of the chordwise deflexion

factor &, was approximately lincarly proportional, but the best cfficiency

was obtained at about a chordwise deflexion amplitude of 20% local chord. However,
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at such a large deflexion, the thrust coefficient was very small (0.3). A medium
deflexion of 10% chord gave a good overall thrust and efficiency (7 = 0.75 and C; =
0.53 for a rigid span rectangular planform).

The pressure distribution for a ! i-elastic chordwise foil showed that
the steady Kutta condition has been carefully applied and the present method is
reliable for both the unsteady rigid and flexible foil. Though the value of the predicted
pressure difference at the trailing edge varied from one time step to another and

for different panel spacings, the pressure difference C) at the maximum lift point
(Ci = 10) is about 0.01. At a larger amplitude chordwise deflexion, the pressure
aistribution on the pressure side became negative due to the substantially increased
flow velocity. This negative value reduced the lift of the flexible section and hence the
thrust. Towever, as the pitching moment had reduced significantly due to chordwise
flexibility, the cfficiency had an increase until the feathering parameter approached
1.0, at which points negative thrust was gencrated al certain instantancous positions.

A spanwise deflexion phase angle (referring to the pitch) @, was also introduced
and was used to study the propulsive performance of a fin whale’s flukes. This
phase angle @, had a substantial effect on the thrust and efficiency. When the phase
angle was about 0°, the flukes always gave a lower valuc of both efficiency 7 and
thrust C;, compared with these obtained at spanwisc deflexion amplitude &,, (rigid
pan). Especially, at a medium heave amplitude (about h/c = 1.0), and a lower
oscillating frequency w (0.27), the flukes hardly produced a positive thrust when
both the chordwise and spanwise deflexion amplitude were set at 10% of chord and

IO% half span n!pcchvcly Increasing cither the heave amplitude, the oscillating

or d the swimming velocity will allow a larger degree of both
chordwise and spanwise deflexion. In any case of a foil having a passive flexibility,
there should be a large cnough rigidity of an oscillating foil to yicld a good propulsive
performance in terms of both thrust and efficiency. However, when the phase angle
®, was set at about 180°, at which value the flukes deflect downward when they heave
upward and vice versa, both the efficiency 7 and thrust C; had a substantial increase,
Such active deflexion control mechanism (controllable flexibility), if it is possible for
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an oscillating foil, can achieve a superior propulsive performance.

The amplitude of the spanwise deflexion factor &,, also had a noticeable effect on
the cfficiency 7 and thrust Ci. At a small angle of phasc lag (about ®, = 0°), the
amplitude of a pure spanwisc deflexion had little cffect on the efficiency 5 and thrust
Ci, and increasing the spanwise deflexion factor §,, decreased both the efficiency
7 and thrust C,. A large chordwise deflexion amplitude 6, and spanwise deflexion
amplitude §,, at a small heave amplitude produced a negative C, (needed extra thrust
to keep Vyiignt). However, as it was mentioned before, if the spanwise deflexion phase
angle ®, changed to about more than 90°, a large spanwise deflexion amplitude &,
gave a much larger efficiency 7 and thrust Cy.

"The propulsive performance for a rectangular semi-clastic foil was also predicted
and the results were compared with a previous 2-D numerical study with a 3-D
modification. The present method gave slightly higher values of the efficiency 7 and
thrust C..

A fin whales flukes was finally used to evaluate the oscillating propulsors’ per-
formance by using several carcfully selected motion and flexibility parameters. A
controllable spanwise flexibility being sct at a phase angle of £180° (sce figure B.35)
gave a superior cfficiency and thrust over the same planform with a passive deflexion
(scc figure B.37) which had about —60° phasc angle of spanwise deflexion. The fin
whale, when an optimal active deflexion control (the phase angle of the spanwise
deflexion was set at about £180°) was employed, had an excellent efficiency ranging
from 80% at 7.8 knots to 86% at 23 knots. The best cfficiency, the same as any other
planforms examined in this research, occurred at the maximum instantancous angle
of attack of about 10°.
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Appendix A

Determination of doublet/source

coefficient matrices

Reliability and accuracy of this method depend very much on how to program the
related subroutines. Understanding the theory, making a mathematical model were
only a part of the whole work. There were also many things to do with the program-

ming. For the most imp thing is to obtain the correct
results.

As it was discussed in Chapter 3, Newman’s (1986) formulation is for the pancl
based coordinates, for a simple mathematical formulation. To transfer inertia frame
coordinates to the panel local coordinales, a Fortran subroutine called GI2Lo.INC was
written. ! To save the DRAM, this subroutine did not declare any array. COMMON
blocks, in WATCOM F77/386, though they have a fast data transfer rate, were not
used for any array because they did not allow a program to declare any dynamic
array.

The subroutine Gl2Lo yiclds the transferred pancl local coordinates, the central

point of a panel and some other for velocity calculation. Figure (A.1)
shows the geometry and the legends.

The “INC” file extension for the OSFBEM was for ‘included subroutines. These subrontines
were separated from the main program for a better structure and readability.
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Pancl no. Corner Point I Corner Point 2 Corner Point 3 Corner Point 4

panel 1. (0,1,0) (0,-.5,.866) (1,0,0)

pancl 2.  (0,~.5,.866)  (0,—.5,—.866) (1,0,0)
panci3.  (0,—.5,—.866) (0,1,0) (1,0,0)

pancl 4. (-1,0,0) (0,-.5,.866)
pancl 5. (~1,0,0) (0,-.5,—.866)
panel 6. (~1,0,0) (0,1,0)

Table A.1: Offsets of a 3-D body with 5 faces and six corner points.

“Twelve values of the coordinate of four corner points on the world frame were
inputted (sec the subroutine below). This subroutine also take a triangle pancl, in
which case, coordinate of the fourth corner point are the same as that of the first
point. It was noted that for triangle pancls, the centroid of the panel cannot be
cevaluated by the way as it did for the quadrilateral panel or a numerical error would
occur. The theory is simple but it is casy to be ignored.

At the carly stage of the development of OSFBEM, it was noted that it was very
important to obtain the correct doublet and source coefficient matrices. The proper
values of these coefficient were hard to find for a verification. These could be very
helpful to beginners who arc doing a similar study. This appendix intended to serve
for this purpose.

“To verify the obtained doublet and source coefficient matrices, a 3-D body with
six corner points and five equilateral triangle faces was nsed. The coordinates of the
six pancls are as follows:

The order of these six panels was arbitrary. A sample Fortran program is attached

{o this Appendix and the results are as follows:
Doublet coefficient Matrix
1.00000000 0.28124517 0.28125706 0.15207383 0.14271028 0.14271366

0.28126054 1.00000000 0.28125051 0.14271171 0.15207648 0.14271171
0.28125706 0.28124517 1.00000000 0.14271356 0.14271028 0.15207383
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Figute A.1: Schematic diageam for coordinate transformation from the global frame
1o the panel local frame.

0.
14271171
0.

0

Source coeifi

-0.
-0.
23362425

-0

-0.
.16198526
~0.

-0

15207382

14271356

54000479
23352198

21327466

16198614

Area A

0.

o.

cies

-0
-0.
-0.
-0.
-0.
-0.

14271030 0.14271358 1.00000000 0.28124517 0.
28125054 1.00000000 0.

16207645  0.14271173
14271031 0.15207386

nt Hatrix

.23351721 -0.23352423

54000056 -0,23352195
23351724 -0.54000473
16198222 -0.16198613

21327186 ~(
16198221 ~

.16198522
121327466

0.
0.

-0.
-0.
-0.
-0.
-0.
-0.

28126709 0.28124517 1.

21327470 -0.16198219 -0.
16198626 -0.21327181 -0.
16198614 -0.16198219 -0.
54000473 ~0.23351720 -0.
23352197 -0.54000050 -0.
23352422 -0.23351720 -0.

28125709
28125054
00000000

16198614
16198523
21327470
23362422
23352197
54000473

0.96823448 0.96821743 0.96823448 0.96823448 0.96821743 0.96823448

The sample main program to find the matrices along with subroutine ‘cocffphi’
and gl2lo’ arc lirted below. 1 is noted that a good programming practi

0 use

i
thc dynamic array allocation, if the compiler has this option. A huge amount of time
will be saved in creating the exccutable file frequently.
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PROGRAN F_Natrix

INPLICIT REAL (A-H,0-2)

DINENSION WiCornrB(8,12) CornerLo(6,12),
W1ContrB(6,12) ,uk(8,3) ,ui(6,3) ,uj(6,3),are

DINENSION SoMatrix(6,6)

DINEESION DoMatrix(6,6)

data ((W1CorneB(I,3),§=1,12),§%1,6)/0.,1.,0.,0. .5, .866,

v 1.,0.,0.,0.,1.,0.,0.,-.5,.866,0. ,-.5,.866,1.,0.,0.

t 15,.866,0.,-.5,-.866,0.,1.,0.,1.,0,,0.,0.,-.5,-.866,
i 0.,1.,0.,71.,0.,0..,0. 10.,0.,-.5,.866,
v

i

-1.,0.,0.,0. \-.5,-.866,
“1.,0.0..0

Jobout1=12
OPEB(JobOut1, file='ppppp.out’, status='unknoun’)

¥TPBody=6
o TPBody

x1=H1CornrB(1,1)
CornrB(i,4)
x3=¥1CornrB(1,7)
x4=41CorarBi, 10)

1=W1CornrB(i,2)
y2:H1CornrB(1,5)
y3=1CornrB(1,8)
yA=M1CornrB(, 1)

21=W1CornrB(1,3)
22aW1CornrB(1,6)
23=W1CornrB(1,9)
24=01CornrB (4, 12)

CALL 0L2LOCx1 x2,x3,x4,y1,y2,y3,74,21,22,23,24

x ukx, uky ukz uix uiy,uiz £jx,ufy ujz Chlalng,
N SphlaLng,Side2D3,S46n201)

CornerLo(s, 1)=xt
CornerLo(i,4)=x2
CornerLo(i,7)=x3
CornerLo(i, 10)=x4
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CornerLo(i, 2)=y1
CornerLo(i,5)=y2
CornerLo(i,8)=y3
CornerLo(i,11)ey4

CornerLo(i 3=zt

CornerLo(1,12)=24

area(i)=a

ViContrB(1,1)%ex
WIContrB(1,2)=cy
ViContrB(1,3)=cz

k(4 1) =ukx
uk(,2)=uky
uk(d,3)=

uji,D=ugx
wji, =gy
uji, iz

wili, D=uix
wili, 2)=uiy
wili,Mmuiz

VAITE (o,0)

inished transformation of coordinates’

VRITE (JobOuti,e) 'Finished transformation of coordinates’

DO i1, ¥TPBody
DO j=1,5TPBody

cxsH1ContrB(3,1)
cy=41ContrB(3,2)
qx=H1ContrB(i,1)
qy=H1ContrB(1,2)
cz=W1ContxB(§,3)
qzeN1ContrB(1,3)

rx=qr-cx ! (control point)-j
rymay-cy

o1, initial setting
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rzege-cz
xerxeni(§,1)oryoui(§,2)+r20ai(§,3) | Find the relative x,y, and
yoraeej(5.1)4ryenj(§,2)4r208)(§,3) ! 2 to panel local coordinates

Zmrxeek (3, 1)oryouk(§,2) sraak (5, 3)

*  write(odOst1,e)

ative coordinates x,y,2'5,y.2

xt=CornerLo(j,1)
x2=CernerLo(j 4)
x3=CornerLo(§,7)
x4=CornerLo(3,10)

yi=CornerLo(§,2)
y2=ComnerLo(,5)
y3=CornerLo(,8)
yA=GornerLo(j,11)

21xCornerLo(,3)
#2=CornerLo(§,6)
23=CornerLo(},9)
z4=CornerLo(j,12)

CALL conf£phi (x1,x2,x3,x4,y1,72,¥3,¥4
1,5, FiDoublt FiSource)

DoMatrix(i,})=2.+Fidoublt
SoMatrix(i,§)=2.+FiSource

VRITE(obOutd) Fisesrce
WRITE(JobOutS) Fidesblt

) 'Finish cos

ot cosfficient Matrix’

write(JobOut1,'(6F12.8) ) (DoMatrix(i,)),§=1

writa(JobOut1,e)

write(JobOut1,#) Source cosfficiont Matrix’
DO 1=1,TPBod)

write(JobOut1,’ (6F12.8) *) (SoMatrix(1,)), =
E8D D0
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write(Joblutt,«) Area A"
writaCJoblutt,’ (6F12.8)") (area(i),i=1,NTPhody)
close(Jobluti)

stop

£

AN

SUBROUTINE GLOLOCx1,x2,63,x4,¥1,y2,y3,4,21,22,23,24,0,cx, 7,
: c2,ukx,uky ,ukz, uix,uly, uiz,uje,uiy, ujz,Chialng,
s SpiaLag, 5146203 ,51de201)

INPLICIT REAL®4 (A-H,0-2)

xi-4, y1-4 and 21-4 are the global coordinates of the corner o/
points. Xi-4 and y1-4 will be replaced by the new local

coordinate values. z1-4 should be sbout zerss. & is the ar
of the panel. cx, cy and cz are the controid ordinates of the o/
panel. ukz, uky and ukz are the componants of the unit normal o/
plane for twist panel. o/

Vector to the panel or to the me:

4x1x3-x1 ! The x component of the first diagonal of the panel
anexa-x2
dytay3-yt
apmya-y2
dzt=z3-21
422422

crd_x=dyisdz2-dy2edz1 | Vector CRD is cr
crd_ymdx2edzi-dxedz2
crd_z=dx1sdy2-dx2edy1

s product of d1 and d2

crd_mod=SQRT(crd_xscrd_xtcrd_yserd.ytcrd_zecrd_z)
ascrd_mod/2. ¢ Atea of the panel

ukxmcrd_x/crd.mod | The components of the unit normal vector UK
uky=crd_y/crd_mod
ukz=crd_z/crd_mod

d1=SQRT((x2-x1)##2+ (y2-y1) #92+(22-21) #92)
54258QRT((x3-x2) #02+ (y3-y2) e92+(23-22) #92)
843=SQRT((x4-x3) #2+ (yd-y3) s92+ (24-23) 942)
B4=SQRT((x1-x4)#2+ (y1-y4) +#2+(z1-24) #+2)
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IF (241.LT.0.000031) THER

ex=(x24x3+14)/3. | The centroid of the the (mean) panel
cy=Cy2ey3tyad 3,

cz=(2223424) /3.

ELSE IF (s42.LT.0.000001) THE

cx=(x1+13+34)/3. ! The centroid of the (nean) panel
ey=Cytiyana) /3.

ca=Cateainna) /3.

ELSE IF (s3.LT.0.000001) THEN

cx=(x14x2+x4)/3. | The centrold of the (sean) pansl
ey=Cytynya)/a.

ca=(ataziza) /3,

ELSE IF (s04,LT.0.000001) THEN

cx=(x1#x3+12)/3. | The centroid of the (mean) panel
cy=Cytagany) /3,

cz=Cath3b22) /3,

ELSE

ex=(x14x2913+x4)/4. ! The centrold of the (muan) panel
cy=Cytoyatydeyal/a

cam(zt4z2023020) /4,

B 1F

Vix=(x3n)/2.-ex

Viy=(an)/2.-cy

viz(aaan)/2.-c2

Vi=SQRT(vjxevjxtviysviy+vizevia) ! Modulus of the niddle point

+ vector v
ujxmvix/v] | Components of the unit vector U1,
uiy=vislvs
ugz=viaing

uix=ujysukz-ukysujz ! Components of the unit vector Ul
uiy=uknsufz-ujxeukz
utz=ufxey-ukxeujy

*  The follosings are the local quantities

rxi=xi-cx ! Components of the corner vactors based on cx,xy and Cz.

ryd=yd-cy
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ratsitcz
ra2maz-cz
rzdmd-cz
rzdmt-cz

xi=rxteuixtryteuty+rzioulz | X of comer vactor projected on UL
x2=rx2suixtry2outy raomiz
xasrxdeuixtrydoulyerzdeiz
xdsrxdeusvsrytoutysrzdmiz

yisrxieujxeryloujysrziougz
y2erx2euixtryeuiysraangz
yaradeujzsryoudysezaeufe
yardsujusrytoufysrateuge

aterxteukxéryleuky+rzionkz | The skes of the panel at point 1
225 rx2eukxsry2euky +ra2euk
23urx3eukxsryduky +radeuk
24sradvukxeryduky +radeuk

SplialngX=(x30x4)/2.
SpialagY=(yay8)/2.
SplialngZ=(z3+24)/2 .

ChitalngX=(x3x2)/2 .
ChitalngY=(y3ty2)s2 .
ChiaLngz=(23422)/2.

B SpHaLngZssplaLngZ)
i ChitaLngZeChitalngZ)
51de20I=ABS(ChhaLngY)

S1de2D1=ABS (ChhaLngX)

RETUN

En

SUBROUTINE casffphi (x1,x2,13,x4,¥1,12,y3,¥4,5,),2,
1,J,FiDoublt FiSource)
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INPLICIT REAL (A-H,0-2)

+  Tnis subroutine calculates the induced velocity potential at o/
“/  point P(x,y,2) due to an infinite nusber of uniformly o
+/  distributed dipoles over & quadrilateral panel. Numertcal  #/
o/ interpretation vas used according to J. Newman's formulation s/
. (Distributions of sources and normal dipoles over a o
o/ quadrilatersi panel, Journal of Engineving Mathematics, 20, o/
4/ 1986). Mota: the sequence of the four corner points is in CCW; o/
W/ sothat the result need to add a negitive sign o
o o

dxt=xst ¢ Precalculate values that will be used more then

dx223-32 ¢ one place to save the GRU tine

dxamierd

dxamxiexa

dytayzeyt

ayaeyy2

dyaeyty

dyasyi-ya

sd1=5QAT(dx14dx1vdy1edy1)
8d2=SQAT(dx2edx2Hdy2edy2)
5A3=SONT(AxIsdeey3ndy3)
5d4=SQT(dxdedsdtdytsdya)

r1=aqrt(Cx-x1)s(xx1)+ Cy-y1)e y=y1 ) 42v2)
i (x=x2)4 (c-x2) 4 Cy -y2)# (y-y2) 42%2)
it ((x=x3)4 (1-x3) + Cy -y2) e (y-y3) 4202)
ramaqrt((x=x4)s (-x4) + Cyy)o (y-ya) 4242)

VBEGIN{Bock 1} Doublet calculation

ELSE IF (ABS (2) 11.0.000001) THER
Fibowb1=0.0

ELSE

xz1=(cea1)# Cxx)ozez

x22=(xr2) # Cxox2)z0z

x23=(x13) # Cx-xd)4202

xza=(ret) o Cxoxt)zez

xy1=Gex) e (y-y)
xy2=Gex) o (yyd)
xy3=(cx3) # (y-y3)
2ya=(ea) +(y-yh)
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IF (s41.10.0.000001) THER
De1s0.

ELSE

sttsdytoxzi-dxtoryt
ctieriozedst
s12seytexz2-dxieny2
c12er2ezeaxt
sstmsitsctz-azectt
cetsctisc1zestion2
Desmatan2(sst ce1)
£ ¥

IF (s42.12.0.000001) THER

sLSE
s21mdy2exz2-duzery?
c21mr2ezedx2
822mdy2exz3-dxzexyd
c22mrdezedx2
sa2ma210c22-8220c20
ceameaieca2ea2ton22
De2eatan2(es2,cc2)
£ 1F

1F (243.10.0.000001) THEW

De3sa.

ELSE

m-dymn—mm:

caterIen

-;z-n,mu ix3exyd
x3

ma-.m:(nL:e:)
XD 1F

IF (s44.10.0.000001) THER
Dtds0.
ELSE
sa1sdydexza-dxdexyd
catardezeded
8a2zdydoxz1-drdoryt
cazeriozedad
ass41eca2-sd2ecat
ccAucdteca2+adiond2
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Dra=atan2(ss4,ccd)
D 17
FiDoublts(Dt14Dt24Dt3+D4)/12.56637061 ! Add a '~' sign for OV

EEDIF
*END(Block 1} Doublat Calculation o

TRTIe

*BEGIN{BLock 2} Source Calculation ¢sses:

IF (sil.1e.0.000001) THEN
st1=0.

ELSE

SEL=((xext) ody - (y-y1) edx1) /541 LOG ((r14r2bnd 1)/ (ri4r2-0d1))
ERD IF

IF (s42.1.0.000001) THEN
st2=o.

0.000001) THER

B IF

IF (sd4.10.0.000001) THER

sta=o.
ELSE
sta=( y4-(y L
B0 IF

+END(Black 2} Source Calculats

1)
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Appendix B

Graphical presentation of some

oscillating propellers in motion

This Appendixlists a mumber of graphics obtained numerically for different oscillating
foil planforms with different parameters. The first series of graphics described the fin

bi of deflexion i the second list is for a

whale flukes with 19
rectangular half clastic foil in terms of the chordwise deflexion phase angle.

B-A Instantaneous positions and wake paths of a
fin whale’s flukes

Six chordwise and three spanwise deflexion equations were used. Including the zero
deflexion in both directions, there are 19 combinations in the selection of equations.
It is noted that Cl stands for the chordwisc deflexion equation number one and
S1 for the first spanwise function, and so on in ascending order of the exponent ¢.
As it was mentioned before, the time step sizes used in the graphic presentation
is much larger than the actual values that were inputted to the computer program,

to keep the validity of the steady Kutta condition for a reliable prediction.
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In these figures, foil swimming velocity towards the negative x-direction, and z-
axis points upward. The values of the view point indicate the directional vector

pointing from the origin to the viewer,
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Figure B.I: Deflexion of a fin whale’s flukes by a combination of C0 and §0, where
€0 and 80 stand for arigid planform (no deflexion). View point isat (—1,-10, 3).

-

Figure B.2: Deflexion of a fin whale’s flukes by a combination of C1 and 1, where
C1 and 1 stand for € =1.5 and c = 0 incqn. 7.1 and cqn. 7.3, respectively. View
point is at (—1,-10, —3).
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ligure B.3: Dellexion of a fin whale’s flukes by a combination of Cl and 2, where
€1 and $2 stand for 1.5 and ¢= 0.5 ineqn. 7.1 and eqn. 7.3, respectively. View
point is at (— 1,10

_ J<

Figure Bik: Deflexion of
Cl &nd 83 stand for ¢
point s at (— 1,10, 3

afin whale's flukes by a combination of Cl and $3, where
15 and c= 1 ineqn. 7.1 and eqn, 7.3, respectively. View
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Figure B.5: Dellexion of a fin whale’s flukes by a combination of C2 and $1, where
€2 and S1 stand for ¢ = 2 and ¢ = 0 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (—1,—10,=3).
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Figure B.6: Deflexion of a fin whale’s flukes by a combination of C2 and 52, where
€2 and §2 stand for ¢ = 2 and ¢ = 0.5 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (—1,~10,-3).
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: Pa ¢

Figure B.7: Deflexion of a fin whale's flukes by a combination of C'2 and $3, where
c2 3 stand for ¢ = 2 and ¢ = 1 in eqn. 7.1 and cqn. 7.3, respectively. View
point is al (=1, =10,~3).

f I

Iigure B.8: Deflexion of a fin whale’s flukes by a combination of C3 and S1, where
3 and 81 stand for ¢ = 2.5 and ¢ = 0 in equ. 7.1 and eqn. 7.3, respectively. View
point is at (=1,-10,-3).
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Figure B.9: Deflexion of a fin whale's flukes by a combination of C3 and 52, where
€3 and 52 stand for ¢ = 2.5 and ¢ = 0.5 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (=1, —10,-3).
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Figure B.10: Deflexion of a fin whales flukes by a combination of C3 and §3, where
€3 and S3 stand for ¢ = 2.5 and € = 1 in cqn. 7.1 and cqn. 7.3, respectively. View
point is at (=1, -10,~3).
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Iigure B.11: Deflexion of a fin whale’s flukes by a combination of C4 and S1, where
¢4 and S1 stand for ¢ = 3 and ¢ = 0 in cqn. 7.1 and cqn. 7.3, respectively. View
point is at (=1,~10,4).
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Figure B.12: Deflexion of a fin whale’s flukes by a combination of C4 and 52, where
€1 and 82 stand for ¢ = 3 and ¢ = 0.5 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (=1, —10,~4).
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Figure B.13: Deflexion of a fin whale's flukes by a combination of C'4 and 53, where
C4 and 3 stand for ¢ = 3 and ¢ = 1 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (=1,~10,4).
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Figure B.14: Deflexion of & fin whales flukes by a combination of C5 and 51, where
€5 and S1 stand for ¢ = 3.5 and ¢ = 0 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (-1, 10, —4).
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Figure B.15: Deflexion of a fin whale's flukes by a combination of C5 and 2, where
©5 and 52 stand for ¢ = 3.5 and ¢ = 0.5 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (—1,—10,4).

A .

Figure B.16: Deflexion of a fin whale’s flukes by a combination of G5 and $3, where
€5 and §3 stand for ¢ = 3.5 and ¢ = 1 in equ. 7.1 and cqn. 7.3, respectively. View
point is at (—1,~10,3).
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Figure B.17: Deflexion of a fin whale’s flukes by a combination of C6 and S1, where
C6 and S1 stand for ¢ = 4 and ¢ = 0 in cqn. 7.1 and cqn. 7.3, respectively. View
point is at (=1,—10,—4).

ned

Figure B.18: Deflexion of a fin whale's flukes by a combination of C6 and S2, where
€6 and 52 stand for e = 4 and ¢ = 0.5 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (~1,~10,4).
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Figure B.19: Deflexion of a fin whale’s flukes by a combination of C6 and §3, where
C6 and tand for ¢ = 4 and ¢ = | in eqn. 7.1 and eqn. 7.3, respectively. View
point is at (=1,—10,—4).

Pigure B.20: Path of the flukes with their wake by a combination of C0 and S0, where
€0 and $0 stand for a rigid planform (no deflexion). View point is at (—1.—10,4).
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Figure B.21: Path of the flukes with their wake by a combination of C1 and S1,
where C1 and S1 stand for cqn. 7.1 and eqn. 7.3 at ¢ = 1.5 and ¢ = 0, respectively.
View point is at (=1,~10, ).

Figure B.22: Path of the flukes with their wake by a combination of C'1 and $2, where
C1 and §2 stand for cqn. 7.1 and eqn. 7.3 at € = 1.5 and ¢ = 0.5, respectively. View
point is at (—1,—10,4). The wake path :slots for other combinations of cquations arc
looked similar to this one so that they ate omitted.
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B-B Variation of phase angle of chordwise deflex-
ion

The following foil geometry and motion parameters were used for graphics in this
section:

Scction thickness distribution is NACA 63A015.

Span is 49 m and chord is 7 m and hence aspect ratio is A2 = 7.

Spanwise deflexion is 6, = 0.0.

Oscillating frequency is w = 1.3468.

Equation of chordwise deflexion is (8,)i(2r — 1)*.

Deflexion starting = 50% ~ 100% is referring to the local chord.

The maximum deflexion factor is 6, = 0.2.

Chordwise deflexion phase lag is —30°.

leave amplitude factor is h, = 0.7,

o Phase angle (pitch leading heave) is ®ppuse = 104°.

Pitch amplitude is o, = 19.7°,

Again, the actual time step size in the computations for efficiency and thrust is

much smaller than shown.
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Figure B.23: Instantancous positions of a rectangular foil with a semichord deflexion
at 0° phase lag. View point is at (0, ~1,0).

=\

Figure B.24: Instantancous positions of a rectangular foil with a semichord deflexion
at =20° phasc lag. View point is at (0,~1,0).
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IFigure B.25: Instantancons positions of a rect lar foil with a I deflexion

at —40° phase lag. View point is at (0, —1,0).

Figure B.26: Wake and path of a rectangular foil with a semichord deflexion at 0°
phase lag. View point is at (1,~10,3).
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B-C Variation of phase angle of spanwise deflex-
ion
B-C-1 Small change in phase angle for a rectangular foil

To simulate the phase lag of the spanwise deflexion of a rectangular oscillating propul-

sor, the following parameters were used:

oscillating frequency w = 1.3468 rad/sec.

o cquation of spanwise deflexion being Dypan[2 * (/1) F 3(y/1)* + §(y/1)"].

maximum deflexion factor §,, = 0.2 and 8, = 6,, * [, where [ is the semispan

length.

sectional thickness distribution using NACA 63A015

span S =49 m, chord C; = 7 m and aspect ratio R =T.

chordwise deflexion amplitude §, = 0.0, no deflexion.

licave amplitude o = 0.7,

phase angle (pitch leading heave) is ®ppage = 104°,

pitch amplitude is o, = 19.7°.

spanwise deflexion phase lag @, ranging from 0° ~ 50°.

number of total time step of 10.
o time step size i = Tyeriot/8 = 27/uw(8 = 05831 sec.

A number of total chordwise panels was taken as 20 and spanwise pancls as 10.
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A dix B. Graphical ion of some

Figure B.29: Instantancous positions of a rectangular foil with a spanwise deflexion
at 0° phase lag. View point is at (1,~5,0.5).

Figure B.20: Instantancous positions of a rectangular foil with a spanwise deflexion
al —30° phase lag. View point is at (1,~5,0.5).
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Figure B.31: Instantancous positions of a rectangular foil with a spanwise deflexion
at =50° phase lag. View point is at (1, ~5,0.5).

IMigure 3.32: Wake and path of a rectangular foil with a spanwise deflexion at 0°
phase lag. View point is at (I,~5,0.5).
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Figure B.33: Wake and path of a rectangular foil with a spanwise deflexion at —30°
phase lag. View point is at (1,—5,05).

Figure B.34: Wake and path of a rectangular foil with a spanwise deflexion at —50°
phase lag. View point is at (1,—5,0.5).



illating propellers in motion 212

Appendix B. Graphical entation of some
B-C-2 Large change in spanwise deflexion phase angle for
a fin whale’s flukes

"To simulate the phase angle of the spanwise deflexion of a fin whalc's flukes as an

asillating propulsor, the following parameters were used:

oscillating frequency w = 0.2r rad /sec.

cquation of spanwise deflexion being Dypan[2 * (5/1)? F 4(u/1)* + Xy /1))

maximum deflexion factor 8,, = 0.1 and &, = b, * I, where L is the semispan
length.

o scctional thickness distribution being the same as that of a real fin whale’s
flukes.

chordwise delflexion amplitude §. = 0.0, no deflexion.

o heave amplitude h, = 1.0.

phase angle (pitch leading heave) is ®pase = 90°.

pitch amplitude is o, = 20°.

spanwise deflexion phase lag @, ranging from —~180° ~ 180°.

number of total time siep of 10,
o time step si2¢ i = Theriod/ 10 =27 /w/10 = 1.0 sec.

A number of total chordwise pancls was taken as 20 and spanwise panels as 10.
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Figure B.35: Instantancous positions of a fin whale’s flukes with a spanise deflexion
at ~180° phase angle. View point is at (—1,~10,4).

Figure B.36: Instantancous positions of a fin whale’s flukes with a spanwise deflexion
at —120° phase angle. View point is at (=1, —10,4).
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Iigure B.37: Instantancous positions of a fin whale’s flukes with a spanwise deflexion
at —60° phase angle. View point is at (-1, —10,4).

Figgure B.38: Instantancons positions of a fin whale's flukes with a spanwise deflexion
i 0° phase angle. View point isat (—1,~10,4).
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Figure B.39: Instantancous positions of a fin whale’s flukes with a spanwise deflexion
al 60° phasc angle. View point is at (—1,-10,4).

Figure B.40: Instantancous positions of a fin whale's flukes with a spanwisc deflexion
al 120° phase angle. View point isat (—1,~10,4).
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Figure B.l: Instantancous positions of a fin whale's flukes with a spanwise dellexion
a1 180° phase angle, View point is at (—1,~10,4).

Iigure B.42: Wake and its path of a fin whale’s flukes with a spanwise deflexion at
—180° phase angle. View point is at (—1, —10,4).
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Figure B.43: Wake and its path of a fin whale’s flukes with a spanwise deflesion at
—120° phase angle. View point is at (=1, —10,4).

Figure B.44: Wake and its path of a fin whale’s flukes with a spanwise deflexion at
—60° phase angle. View point is at (-1, —10,4).
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Figure 13.45: Wake and its path of a fin whale’s flukes with a spanwise deflexion at
0° phase angle. View point is at. (=1,-10,4).

Figure B.46: Wake and its path of a fin whale’s fiukes with a spanwise deflexion at
60° phase angle. View pointis at (-1,~10,4).
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Appendix B, jcal pr ion of some

Figure B.47: Wake and its path of a fin whale's flukes with a spanwise deflexion at
120° phase angle. View point is at (—1,-10,4).

Figure B.48: Wake and its path of a fin whale’s flukes with a spunwise deflexion at
180° phase angle. View point is at (—1,~10,4).
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