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Abstract

A time domain panel l1Ictllod lVa~ fOflllulaLcd find a computer program p'H.:k

age, OSFllEr·..I, was developed t.o l)vall1atc t.he propulsive pCrfOflTlllTlCC of oscillating

Ilrnl)lII.~(Jrs.

This mctlioll wa..~ dcsigllCd, ilnd is able, to ulliaill hydrudYllarnic propcrties for 1I1I

1lIls1t!i\(Jy, :I. D n{~xihlc wing. A llumber ':If features Wefe impl{)IIlCnlc<1 illcludillg the

gtX>lllC:lryof IJOtll 2-D lind arhitrary :1-0 I,I/l.llforms; a non-zero thickllCHS foil scdion

aml a St)(:tioll with 11 lldckncss as thin 1IS 2% of tIle c1lord; lafAr amplitude pitch

and hc/l.vC motiolls; nOli-zero trnilillg cslgc lhickllcss; /l(~xihll: 1I10tioll and gll()tH<~try

l.i1r<Ulld(~rs sud\ <IS steady /low, ullsteady motion, l:hordwiSl: ilull spllnwise IIcxihilily:

nllll predidion or skin friction lind Ilualit.ativI! exa1l1illillion of sectiollalllo\\' patlcrns

in l.l'rlllS of boundary lilYI'r growlh. ;\liLjor limitations or this Illdhod illdlldf~ the

illahility 10 pwcisdy pn~dit! Sf~IJ1H11tiOll, stalllHlI[ hy(lrodynnlllic dl1lrat!I'ristics of a

roilwit.h II vt:r)' small ilsllf'<::t m\.;o.

A large amplitude Lheory was developed and uscII Lo analyze the propulsive I{

liderll:y anel thrust. An illstl\11tarll'OIlS augle or al.l.ar.k of the ().~cillatiug foil and a

Iilrge' iI'npli1.lldc fcatlll'rillg pMalllelr.r were defined for this study. As iI. r('snlt of lids

tlreort\tical estahHshllwlll. the thrust. WilS identified to Iw directly rdilled 10 tIlt: ill

slilntaneolls i'lllgie of attack. ~lt1St importi\ut1y, the besL cfrldcll<::Y WIIS ohlaine{1 ;11.

l1w tIIaximullI illsttltllancolls angle or al.l.f1ck of Hhont IQQ, for allY combiuation of

1IIotion paramc!llrs aud mlY shape of plalirOrrllS willr ami wiLhout flcxibility tlllli. wcre

e~xarnincd in 1I1is rcscilre!r.

Most previous lluITlI'rical rm:dirliolls on ;J-I) IIllSI.C;Hly oscillating foils wcre hased

Oil tire slllilil arnplil,lIde thmry. The ]lwscnt mdhod, instead, is based on Lhc (lnil.e

alii plitlld(~ theory and it also takes tllC SI~l:lionall.hickTlcss distributioll, plflllform shape

ilnd skin {ridion, etc., inlo iI<::<::Olllll. Thcrdure, 1\ parnllldrk stmly was l\l~o <::olldllctetl

ror ril;id planforms 1,0 gi\'I~ results from H more realistic llIodeL

Tire chord wise aliI! xpanwise flexibility were implelllente~d by lI~:ng a posilive ap

pl'tJllch, i.e., difr(~rt:llt amplitudes of dcflexioll and sha]lI: functions were prmlctermined,

III simulale: a fin whale's flukes, Two nOll-dimensional parametcrs, the spi\lIwisc and



chordwise deflexion amplitude facLors, together with another two parameters, the

spanwise and c1lOrdwise deflexion phase angles relative to the pitch were dllfinecl. A

parametric. study was then conduded in terms of these parameters.

A numerical procedure was also established to determine the angle of zero lift for

a foil due to the chord wise flexibility and, this angle of aflgle of zero lift was then

ll~ed to modify the instantaneous pitch angle to obtain the instantaneol1s angle of

attack at cadi time step. A numerical scheme was Also formulated for foils with

spauwise flexibility in calculating tIle cfJiciency in which CilSC the heave amplitude

had a vilriatiolJ across the Srilll.

Major findiflgs imllide the limilatiOlI aud validity uf the ~rnall alllplitUll'l theory

obl.ained from a large amplitude analysis; determination of the instantalll'UliS angle

of attack of rigid and flexible oscillating foils; the relation hel.weell tile maximum

instantancous angle of alt.ack and the thrust; the instantancous angle of aHack for

the bc.~l efficiency; sectional thickness ratio elfet:t.on cfliciellcy and thrust; skin friction

eWeet all the propuisivil performance; pressure distribution and \'alidity of the steady

l<uUa condition for an ullsteady oscillating foil with hath ch()f(lwi~c and spnnwise

flexibility; Lhc chord wise alld spallwisc Ileflexion pltilse angles all/I their c/feds Oil Llw

efficiency and thrust; ant! tllC efret:t of the spalllvise deflexiotl amplilude on dliciclicy

and thrust.

Conclusions were drawn from these predicled results ilnd suggestiolls on Llie g(~

omet.ry and Illotion parameters in oscillating foil design were also made.
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Chapter 1

Introduction

i-A Wings in the natural world and in engineer

ing

nird~ ny and fish swim. They arc on-tile-wing creatlln~s. In the f1appill~ flight of

hirds illid ill~ccls, wings proviull hotll lift aliI! thrust to their l)(Jdi,:s; when glillillg,

wiugs act as a liftillg dt:vice. In the iltpmtic kingdom, nukes of 11 whale !'()wcr tIll'

Illotion, while dorsal fill~ (111(1 pcclomllins heir to controllhc (~OllrSt~of the navigation.

P<mguillll IISI~ /lapping f1il)IWrSj su do sea lions.

ThcTll arc some cxlrilonlil\ary filets wcorde<1 till tht'1Hl animals. These facLs though

qll,~tiol1aolc ill reliahility (Matthews c1 "I. ]993), prCSI~lIt a pcrsl'cdiv(~ on the s'le(~d

l:atq~oril,.'S or cerlain oil-tile-wing trcalUrcs {TallIe 1.1). 111 iliT, the smallest, hut

nile of the greatest fliers, lIle bee humrningbinb (Melli.mgll heft/lllt), measuring only

threc indies to four inches from bill to tail, have a wing bC;ltillg ratl: of lifty-li\'!'

t.o seventy-fiyc limcs "sl'nmd. This su callt.'d Uiluohat" in tile bird world ll/ls Ili~h

1llil.II01:llvTilbility at high speed in Ilarlillg and dipping. lIoWCVl:f, tlu: fastest fliers Hfe~

the pcregrillc falcons (I'ideo f/f:l"fgrh"I.~); at a :10" angle of descent and a ,I.~IP allgl,'

of ascent, t.llcir llIaXin1\l1ll vc:locity readills 168 mpll (270 ktll/h) allil 2li mph (:I'l!l

kill/h) respectively. [II b'd /light, t.he fastest creatur~ arc those frolll the: I!m;k IIml



Chapter I. tll/ror/l/cliol/

On·The-Wing speed
Animals (rnr1h)

Il,X] Ilummil1ghird
lJin/,~ Peregrine Falcon 168217

Duck, Goosc 65
Insecls lIawkrnotli, Horsefly 2,1

Alls1.rillian Dragonfly :W
AtllUllic Bull Kilb Wllah~ :I-1,[i
,1"inHl{,~ CosmoI' il,lII Sailfish 6S
Nl.~lr:.~l /lfI-lfu:-!r;.q rwiml/f, chcdflh (i0

Tal,le LI: Nillltic<l1 spl~~b of SOl1U~ filsles\. on-thl'-wing ilnimals, l'lfkr ).-tilll.lll~lI"s d al.
( I~J!J:I)

V;OlN~ filllli\il~S, Thl~l~ p()lI'l~rr1l11111irnal.. 1:1l1l lIy ilt a '~IJet'd of fir) lTlpll ()Q.l kill/h). III

Hle ins(~d IVorld. hilwkmotlls (Spbingilbu:) ilnd horsdlies (1idJllI/u,~ b(n'iml.~) ilW allie to

lllainlaill il spel~d of 2,1 mph (:l!J kill/ii); 1I1l~ hurst spe(~rl of the Australian dragonfly

(/II/,~ll'i/JIIMltbili (;r},~II"i$) rc,lCh<~:j(i 11I1Ih (:is km/h), 111 tilt· on~;I11, fnsl swimmers

in('.ludl~ IVhall~s lIud rlolphillS, IInrl sorlie 11lIlate-1.lIiled fishes ~lldl as 1.11(~ shl'lrk. tllna "lid

sililfisll. A 2{] n. (n Ill) IOliA bull kill(~r II'hilll~ (Orcinl/,' flrca) was recorded SWilllrtlilig

al. a spr'e<l of :I'I.ii Inph (;10 kllols). Sllrprisillgl)'. the fa~tcsl oll-thc~\\'illg .~willlmer

ill Ihr~ w,llr)r is () ....en fasler limn the hiAlL(~t spl!Cd ~(}tl-lhc.lcl\s" nllim111 Oil land: a

l'osmupolill1ll s1'liltish (I,~Ii()/!hOl'!I,' phIIYlllerrt,.) ('/111 sll'irn at. il lligllest specrl of 68

IIlph (110 kill/h) 0\"1'1" II sllor1. dislillH:e, while a r:!lI'c1<lh (l1ciI10Ily.tjlltlbIIlS) nUls n1.

lllilXhulllllSPl'('d ofliO 11Iph (!Ii kill/h) rorilshorl \\liik

TIIl.'sl' hiologkal fads ill the lil'iag world afl~ intI-resting <Iud ilre prohably Oll(' of

1111: Illoli\,('S b,-hil1d bi(J-IIU~dlallil:ll\ sl.lllli,-s. III mlapling 10 tll,~ir cn\"irolllllClll, birds,

illSI'cls, rrWril)(~ l11illlll1lf1l~ alld fishes Ila\'l!(lilfcreut willAsl.rlldllres i1l1(lth"rcfore \"ilril-.:.!

Illilll(J(:llvrilhilily illul SP(~~(1. Differelll willg-hody slrucl,mes lead 10.1 differcnt wing

(,()l1l1'O1 I1wdlitllislII. Uswdly, fil~t. fllld high m<lltOcuvrahility birds lli\Vc a largcr wing

to hOlly ratio \1 he ratio of the arf'a of the willI! to tlie lI'elght or the body). Birds

ill h(J\1I~rilig flight ha\",~ <HI 01"1lith(Jpt(~r l1lcchallisl1l. l.ong distance tril\"elling birds



Chapter I. Introduction

Figuic 1.1: Insect Oy mechanism after Acheson (1900). (a) Chip, (II) fling (e) parting
of the wings. The thick i1rrows stand for the molioll of tile wings lind the thin curved
arrows denote the circulation.

often hilVl~ a Iligher wing IIsJle<:l ratio 1.0 obtain larger Iift/drilg ralio i1nd tlil~rcfore

a smaller wing area La save ltIuscle power. The smaller wing arc" and highcr sweep

angle at the leading edge also have less drag, especially in glide lIight (vall DaHl 1986):

Ardic sterns' and swallows arc examples. On the other hand, some inseds 11,\Ve quite

different wing-body combinations and hence a special wing-control IIlccllilllislT1. The

Weis-Fogh lTlecllanislTl (Acheson WOO) waH Ikrived from the hovering moLiull of 11

chl\lcid wasp (Encarsia Jllrmosa). The sequence or the Wds-Fogh IIlt'chanlSIIl is clap,

fling and parting (s(.'( figure 1.1). III night, the span of wings is morc parallel Own

perpendicular to the motion. Underwater, swimming is another story. Most fast

aquatic animals have propulsors of large aspect ratio with a high ~weep ilngle (I:alled

lllllate-tail swimllleni). 'I'h(~swillllllers af(~ distinguished by tllcir Illode of pro[lIllsion.

Unlike those I,hat undulate their hody 1,0 generate thrust, arlilthl~ ollwr rnmlcs Suell

as carangiform (Hoar <l11l1 Randall 1!l78): wh(~re hath lhe hody and tail contribute

to propulsion; fast swimmers manoeuvre tllcir lIukes or lails ill a UUllIiform Illude

(the sub-mode of the carangiform). In swimming, the majority of tlleir bodies relllaill

straight will, only the rear parl ill oscillation. The thullirorlll modi: of propulsioll is

widely reeognir.cd lIS tbe best form for lligh efficiellcy (Lai l!J!JO).

Ilio-mechanical remarkableness provides i\ due in human hcing'lI simulation and

IT!lo:' Arctic slcrns (Slerna pamdi.'CII) arr. Tccor,1N1 a.. rhe longCllL distant<: flicrs. All Arctic IIlr.rn
Was Limco in ... night covcring n oi~tnncc or I~,OOO miles (22,aOO kilorllctml) over al!Olll n IO-molllh

timcl'crioo.
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iuveut.ioll. One of the hcst cxamples of simulating nat.ural phenomena in engineer

ing is probably the first airplane built by the Wright brothers in :,)03, Examples

of wing theory in engineering applications are many: wings are pure lifting devices

for airplanes; blades of turbines ilud windmills serllCl as torquCl absorbers awl thus

energy transformers; blades of screw propellers, cycloidal propellel"ll, foils of oscill'lt

ill~ propdlers, sails and sculls 'lrl1 thrllst generators. Rud(lers OlL sllips control the

course of travel mul l\laglllls effect cylillders2 Jlllshillg a lIessd are abo willg theory

applications. 1\ successful recCllLt willg llicory applicatiOlI is t.he willg-in-groun([ dfecl

wlngsltip. With :\0 lOllS of payloild, and flying ovcr wavClto]Js, this kind of lIyer (SL'C

the Orlyo1lokdescribc(1 lIy Dane, 1!)!J2) wuld reach 250 mplJ (,100 kill/II) like ajetliner

hut 11iIs 11 fud (:ost as lull' a~ tllf~ sallie sized steam ship.

Application of wing !.I1I_'ory lo Iflarjflt~ lrilllsporlalion h;\s its own economical im

portaIlC(~, Compared with a commerc;al ain:raft or a lantl container trnck, an oceillL

cnrgu cnrril:r is superior ill krms of ton-milengfl cost, especially ill cnrgocs cOllsist.ing

of ltlassivCl hulk qllantiti"s or huge Ilacked \'olull](~, thollglJ there is still much room to

t1ll!,rov,~ I~nl~rgy dlicielJl:Y. On the other IIMd, the (;Q,~t of propulsion is i\ major cos!.

in water transllortatioLL and th(~ snew propeller has long had i\ main role ill lTIarine

Ilmpulsion. Ne\'erthdl~ss, il is flillicllit to improve elliciellcy or .~crew propellers, be

caus'~ tlw maXilllUII1 cflidellcy ror any kind or I)fOlltllsor is dependcnt upon its lIlode or

na!.ure of propulsion: (lifff'rctil. (Iwpulsioll modes rcsult ill different rallg~ of loading

l"IlllditiollS; 11\l~ hight~r the load of a proplllsoT, the lower the highest possible dlicicllcy_

]lora M:rI~W propdlt~r, ilS il is hif!;llly lOilll,'u ;nlllost t:iISeS, t.his pCilk value is .tUou!. 70%

10 SO% mill 11I0st marilJ{' prupdlers me working at about 50% efficicncy. Therdorc,

scil:nl.isl.s allli 1r11lriJl(~ l~lIgilll~'rll IHI\'t~ Pllt forward llIillly "llerJlattvL'll ror prolmlsioll

(Ievke~, iududing sollie oscillillory liruplllsors.

"ThcMngnllsclrceti~ttl'rivctl frolllthccirClilatiolilhoorcrnhi\SL'<Ioli wirlgthcorYl,\chcsoTl lD90).
All allthcnt.ic 1tl'l'lic;,.tiol' of this d[cd may he descliuc,t M: ~Allhe romillg 19:1~ WOll,l'~ F~ir, we
W"rt~ lold, the wind wOlild whill ,1crOS~ Lake :lticbigan to drive three roh,ting wing.. on ;\ 70-fl.
cl\hill cruisn. Mountell like 11111.!l1~, t.he 2fl-fl.-high "rlllninullI rotors woulll provitle [OIlT limes lhc
propliision Ilower or con\'clllional ""il~ alld "ct il.'I ~ll\hili~crs in choppy watel. ,\flf'r the S(lll5Cl,
colo\lIcd 1ight~ ~1,lnshed across lite spillllillg rotors, oITcring !l ~tinlil1alinl\eITcct. visible ror mill'll."
IJ~I,ulll" Mcclalnh", hllc Ig:J.~.
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loB Oscillating foils as an alternative to screw

propellers

For on-the-wing animals, wing.hOlJy structure dclermines the wing-control mecha

nism, hence the manoeuvrability, speed and required muscle flower; ill propulsor

design, different wing structures need differentmotioll control devices to obtain a tle

~irecl propulsion mode. 1\ good marine propulsor under spedncd working conditions

generally has both large thrust (coetricient) and etriciency (tile ratio of IIscful power

to input pO\\'er), thongll ill most ca.'ics iucreasillg the lhrust lowers the efficiency and

vice versa. 1\ propeller having very high efficiency but little thrust will not he llseful

at allj a propeller having high thrust with poor efliciclicy will fCsult in an unafrord

ahle operating cost. Increasing both thrust ami efficiellcy (with the collsideration of

liaise, vibration and environmental issucs) is the main foclls of the devdnpnwnt of

propulsion technology.

I-B-l About screw propellers

Since the invention of tile steam engine and screw propcll(:r ill the I:iglltt'(mlh ami

lliliclecntiJ century respeclivcly3, tremendous efforts have been made Lo improve thl:

propulsive performance of the flrop'llsor~ of mnrine vehide~. StlHlil:~ ill thi~ area

have been both theoretical and experimental. In the past century, lIlany studie~ of

propulsive devices 111IVe been dOlle and ~ome of these deviCl._<S ]Iave bl'(:n illstalled ill

ship propulsion systcms. Among a numbcr of propulsors studied, tll(: screw propeller

has Jlroved to be the most energy c1fident. However, the efliciency of lIlallY ordinary

screw propelters is about nfty to sixty percent, especially those OlL smaller vessd~.

In a few ca~cs, the propulsive efficiency of the screw propeller lTlay reach as high as

70 percent. Searching for 11 high efficiency prollcllcr is a prohlem that ~till remains,

~AccordingtoJohnsonct111. (19t19),thcrnodcrncondensillg.lnd dOllhlc-aetingsteameligincwlIs
invcntetl by JamCll Walt in 1782, following th., IItmo!l'herie steam engine by Thomns Newcolllen ill
1765 lind the rurnring-water Bteam e"gine by Savery NCWeOlTlCII; tile first ~tclI",ship Willi lUVCllLcd
by Claude de JoulTroy d'AbballS, 1183 and the first screw propeller was invented indepeudenLly hy
Sir Francis P. Smith in 1836 and John Eriessoll, 1837.
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and previous studies have shown tliaL the emdency of a screw propeller will not

increase greatly unless the propulsion mode is changed, because of certain limitationli

in propeller dl.'5ign.

These limitations 011 the propulsive efficiency [rum a screw prop!!ller [or a rClluircd

amoullt of thrnst illdlld(~ tIle following.

• As thrust h; achieved uy rolaling llie blaJes to ontllin the inflow velocity for the

wing sect.ions, tile rotation o[ the hlacles callses a number or prohlelTls.

J. TII(! wake al the trailing edg(~ i.~ ill a helical [orlll, amI the wllole wake of the

propeller is rotating. ltotatiOflal energy loslies occur locliind lhe propeller.

Sorrw ler:hlli(IIl(~S nm lie applied Lo redllCl~ these kinds of energy loss (Lef~

f~l ill. I!J!JO) snch as coaxial colltrarolating propdl(~rs, propellers wilh [rcc

rUlIning Vllllf! whed, pfeillvirl devices Illl(! postswirl devices. Tllere is no

sohltioll whirll complddy diluinates tllese C1H.·rgy [oss(.'5.

2. As Hie blallc of a screw propdler is radially [II aced, the irdlol\' velocity

varics spanwisc. According 1.0 tile 1I0\\' (ondiLions, tIle geometry of the

propellef, aud the thTilst w1lllire!ncllt, it larger pitch angle is required at

till! root of thl~ !lIMle ilud \'kl~ versa at the tip of lhe hlade. II i~ known

that tlle l'lficil'IICy is restrictel[ in [lrordll~r dl:'sign: tllf' iHlgle or attaek at

lhl~ root sed-ion canllot bl~ as [ilTg(~ as it shonld hc dill' to the Sejlilfatioll

;11. till: Iwiling ellgc; tli(' angle or altack ill Ihe tip hilS t.o he duse to 7.{~ro

degrt'l's lo il\"oid ca\'iLatioll (Lee eL al. [!JUO).

:1. TIle hlade of il SCfew propdler is a kind or [Oil' aspect ratio willg. The

lirt/drag ratio is smilll for lo\\' aspccl ratio wings. tidIer d£icicncy is

expt:t'lcd ror wings with ;~ high asred ratio. The gcomelry limitalions at

tile slcTII o[ 11 ship pla('c a rl'slrictioll 011 diillllder allli 1[0 110t allow large

aSJ)f'I:t ratio blades. DUeled propellers illcrc"':Jc the efliciellcy under heavy

IOild colllliliolls: howcrer, these do not eliminate thc a~pcct ratio problcm,

a.." a gap c)(isl~ bdwC1!1l lhe blildc lip (lml lhe ducl.
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Figure 1.2: SC\llling propulsion. (a) a scull in a boat from siue view, (II) i\ scull al
the stern of a boat from rear view anu (e) sil1l1.~oidal motion of the scull in propulsion
(plan view)

• As the blaucs are solid and the loading conditions like a calltil(~ver hc!am in

denedioll and torsion, certain related structural problems exisl.

I. The root blilde sections have to he very thick to lJ<lIauce the spallwisl:

deflection 10ildillg and the lorsiotl111 moment hc1.ween tile hydrodyni\micill

centre and the clastic axis. '1'00 lIl11l;h thickll\:'llS n:(!uccll the dlicic11cy of

the foil and mlds drag to tIll: prollllisor.

2. The blade vibrates ulle to the lIuctllati11g pressure caused hy 1l1wvcn flow

velocity distribution althe vicinity of lhe propeller. H tIle frcqlU:ncy of thc

fluctuating pressure is close to lhe natural frequency or the hlade, rCSOnil.IIO!

will ocr.ur. Iksi<lcs the structural st.rength (repeating, shock IOillls, ilud

fatigue dC.) concerns, the IItenl wake pattern ;ll\l1 to h(~ illlllf()v(~d Itnt!

sometimes the optimized rotational SIIL'cd and thL' geometry IWralllclL'TlI

"f a propeller havc to be sacrificed to red11'::e I.1IC lIoise ami vibration dlle

to shaft excitation. Tllis also constrains tilt! aclrievcJIlC'llt of tIl!' maximulII

possible cfficiency.

I-B-2 Some marine oscillatory propulsors
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Thc scull was probably the earliest oscillating propulsor, flcing vertically fixed at

till' slern or a bOilt, a scull creates thrust hy sculling the waler siJcways, periodically

hack and rorth, In sculling motion, both the sway and the yaw or a scull Ilave all

llsrillatory variation with 1ime. Oscillatioll of il scull gives a lligh propulsive dliciellcy,

possihly the lligliest among all propulsioll devices (l'ot1.e HJ8fi)i eHicicllcy ill an ideal

fluid was calculated to he ahovc DO% whcli two sculls witli 1111 aspI~ct ratio of fOllr werc

fba!ll at the stern or a ship. Figure 1.2 shows the motion or a manually operated scull.

The motion of t.he sClll1 is a rorm of oscillating roil propulsion. HUII'(lVnr, t.he motion

or the rnallual1y operaLed scull .'lholvlI ill figure 1.2 is Iliffef(~nt from thl! (1('~rripti()llS

or o.sl:illatillg rropdll~rs found ill JIlost (~xisting puhlicatiolls. Tile difrenmce is I.Ill\t

tlU' Will!!; plallform in scullin!!; mot.ion willalhlrllatin:ly change its leilding l'flgt~ ali(I

1,I'ililillg c~dge, Anotller (lilrNellre i.s tlll~ ~patl\\'ise sIVay oscillation, Le., llie inflow

vdocity is difrcTlml at llu: l(!ading edge .,Iong tlic Spilll, So far, a systematic study fOf

Ihis kill(l or propulsie)ll lins not helm wllduc!ctl. A mcehallkally drivlm scull ha.~ not

hC:Cll dc\'doped. Manually 0llcrlll.cd ~cl111 lloflt!\ arc popuhlr ill l~asl.erll Asia, such as

011 I.ll(~ north-t'a.st coast of China and in ,Iilpan,

The trochoid,d propdlelr is allolher example or oscillatillg roil propulsion, Tllis

propulsor i.~ also called It vertical axis propeller, though it e1ln al~o he ltlo\lllled IlOri·

xOlllnlly ()II a lOhip. Operation diagrams arc pr($t~lIletl in figure l.a.

Figuw La II .~hows III(~ side view of I,he propeller. Tile hlildcs arc inslalled per·

IIl'1Idicul,lr 10 nu~ IlOri1.llIIlill. 111 figure 1.:1 IJ, tile hi\se roli\te.'! while the blildc.'! ilrc

pitdlillg. !toLation of Llie hl1S(\ the magnit1Jd(~ of 1111' pitch and heave, together with

tIll! oscillating rreqUCl\I:Y, arc adjl1sl.:d 10 (~llable the hlades to have all appropriate

<luglc or att1u:k for the \Wl<t lhrust 111111 dliciellcy. Thrust is obti1incd from t.he fOfward

forn~ COl1l]JOI1t'l1l dill' to the lift (figure 1.:1 c). TIle cxperimcnt.al efficiency or a pro·

1H'llcr of t.hi.~ lyp(~ witli highly IOiHled higl1 ilsped ratio IJladcli is ilbout 70% i\lthough

fridiollal los,;,:'s in till' hladc cuntrol IUI.'t'Il1tllis1l1 iln~ hlfg{\ 11111\ this cfrectivcly reduccli

the dfidl!llcy ilL prat:l.it:e (Bose atld Lai W89).

Oscillating roil propulsioll, the objectivc or this Tl'search projcd, is lIscd by most

rast swimming lIli1rinc animals and flying birds. Silll:e a long Lime ago, scientists
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Figure 1.3: Scllematic diilgram~ of a trochoidal propeller in operation. u. Side vil~w;

b. Section view; and c. Thrust creation.

have marvelled that with such a small area of tail comparl!(! with that of their bOII

ies, marine swimmers (whales, dolphins, tuna etc.) 1t10VI~ fast, arllllmve rl'lIlarkablc

manoeuvrability. Oil the body of 11 wh1lle, the propulsor is mainly the /lukes. These

nukes have a hydrodynamic wing seclion with sweptlcacling <lud lmiling I'dgl~s. SOlll('

wing sections and planforms of marine cetaceans are 8110wll ill figurc IA; these hav(!

been takcll frolTl Uose el al. U190. These planforms have difTerenlllspcd ratios HllIl

diffcrent leading and trailing edge sweep <Ingles. Predictions of ptopulsivI: pt~rror

mance of these planforrns in an ideal Duid were made by !,iu and Bose (l!J!J,1) I>y

using a lilleari:;,ed thin wing lifting surface t1100ry with a rigid plallform asslllllpl,itlll.

I\s t.he flukes arc clastic, hydtoda.~tic theury for all oscillating foil is expccl.t:d til pro

vide more accurate prediclions; altowallc('.~ for reill viscous flo\ll should also he madc.

Motion of the flukes is periodical in both flitch arh' i,eave. 'l'I1C traces of l,lll~ foil ill

both heave and pitch, arc shown in figure 1.5.

ProJlulsive performancl: is evaluated in terms of thc efficiency lind lhrust coclfi·

dtmL. Generally, the hight.'lIl cfficiency is desircd. lIowever, for a givcn plill1foT11l, thl'



Cbapter I. Introductioll

~c1ItJ
I , ' I

i i ! 1 ! i

10

finll'hole while-sided dolphin white whole

Figurc IA: SOllie ~hallc:~ elf cdaceilll ([uke rlll.uform~, i\ftcr lIoS(~ ct 1\1., I!l!JO.

higl\l~f l.111~ dlicil:lIl:y, I,lll' 1(J\I'I:r l1H~ Ihrllsl fOdlicicn\. oh1.aillctl. Wlum the span or t.11f'

roil is lilllil.l~l, 1.111~ n~lllliTl~IIIiTll~L in SU1IlI~ CiISI~S l:aJl hI: Tl'ad,ed Ily inCTellsillg the

Im',l of 1111: foil (hy acldillg dlnnl II:ngl!l) ,11111 hy incrcasing the Ill'i\l'e <IIrlplitwlc (see

ChaIJlcr(i).

COllljlilrcd wilh tIlt: SI:Tl:W propdler. Ille llscillatillg roil is liglilly loaded, wllidl

i.~ l,he main reasoll fot ils high hydrodYllilmical dficiellcy. A Iligh aspec1 falio, rigid

uscill;tting fuil ill an ide,ll fluid, wllcn lhe oscillating patamctl:rs an: oplimizcd, will

givl~ ns high ilS 80% propulsivl: cUidency (Lilt Clud Bose l!l!ll). ,\ 'l-Il f1exihle oscil·

I;\l,illg foil is I~Xjll:dell 10 achil:\'l: a higlu:r dlkicllcy hnt. with a dl'CTl'HSC ill the thrllsl

f'\Jl'Ilicil:nl. (WlI I!JiJ, I\alz and Wl:il,s IDS!').

Figure 1.5: A l.racll of n sinusoidnlly o~dlla1illg foil.
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l-C Objective of this research

II

The aim of this worl.: was to evaluate the performance of flexible oscillating foils. The

numcrical modcl is based on boundary clement theory with a time-domain apllroach.

The method of formulation, spccial treatments, verifications and comparisons arc as

follows.

2.D, steady, rigid foil: The constant doublet velocity potential panel method was

Ilscd \.0 start the study, for an infinite span foil at constant angle of attack.

The method and rellllits were verified against MOfan (198'1). TILiIi 2-D steady

melllo(l am! its resu!ts were a !Itarling point and they arc not disCUllSC{1.

3·0, steady, rigid foil: This is the extellsion of the 2-D stcady rigid foil ca.~e. Rc

suits were checked against data frolll the literaturc. A number of numerical

approachcs were developed and cumbined into a new system of solutioll. Tllesl:

schemes include: applying the BiCGSTAn mcthod to solvc tIle system of lineal'

C(luatiolls with a cOl1siderntion of bol,1i accuracy and cOInplltilig sp(.'('c1 ou ma

dlines with or wil.hollt sufficient dynamic random access memory; polyfitting

t11C strength of the doublet to <luadratic fUllctions then differcntiatillg thellll:X

actly ill tile calculation of the tangclltial velocities am! applying iI. method tlmt

takes the jump of the trailiug edgc velocity potential iulo cons;deratioll ill onler

to improve the rcsults for a foil with a 11OrH~ero thickncss trailing edge.

An extensive convergence study was performed with regard to the lillie sll:p

sim, total number of time steps, uumber of chordwise and spanw;sc panels and

their type of spacing arrangemcnt, sudl as log, cosinc and uniform grids.

3-D, unsteady, rigid foil: The 3-D stcady ca.~c \\las furthcr exlclllbl lo the lln

stcady Ci\llC. Verification was {Iolle corrcspondillg to the previous resulls tlla1.

wcre available. Mathematical formulation of thrust aud efficictlcy and imple

menlation of tile computer program w(~re also accoll1r1islll~d. The rcsults wcre

comparcd against those by Chopra and l<all1bc (11)77) and Liu k Bose (ll)!ll).
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Several Ilumerical schefnCll were developed to improve the validity of the appli.

calion of tlle steady Kulla condition, including the scheme of c1etcrrninatioll of

the time step si~e. Lotal !Il1mber of lillie lIleps b'lsed on thc ncwly dcfilled tot/ll

o~cilliLting period al1l1 polyfit of the t.ime variant doublet strength.

Large amplitude consideration and analysis: A practical large amplitude the·

ory for oscillating foil~ wa~ establisllel1. All analysilluf large allll,litll.l" collsidcr

alinns was performed and it was used to explain lhe propcrtk'!l of the propulllivc

perf(Jrt1latll;f~ of all uscilliLtiup; foil.

Bdu.e; 1.]1f~ fir~t kiud "f such lhf'ot.:tical ,:star.li~lJlmmt, this analysi.'! provided a

pow.~rful lool in I.he ~ttldy of till: lmture of rnldllating propulsion.

3~D unsteady, flexible foil: This is al11ocldlillgof all daslic foil with all al'bitrary

pl;mform "Ilil!,<:. The dfed of hoth the chordwise ,mil th.: llflallwise flexibility

1Ind sweep lingle 011 Ilydr",IYllamic dlllraclcri~lics wcrc also considered.

A system combining hoth thcorcticnl ~lld Imrnerica] itpproache~ Wit~ d<~vcl(lp<:d.

A couple of pha~e allgte~ or <lellexioll were ,ldilleo to explore lhe po~siblemotioll~

of II 11<:xihk oscillnting propu!sor. A lI11lllerirlll method was 0150 dcveloped to

cal<:u!ah: the illlgl<: of 7,em lift for buth sYHlrJIdric Illifl a~YITlmclrir. foil s<:cliorlll

uuder fll,)f<lwi~e ,Idormillioll.

Skin drilg illlalysis: Hesllll.~ l'redic1cd illclndillg clfeds of friction«l ~heilr ~tress

wen' cOl!lpared with t.hose from tIll: i.I.:al flow lIlodel. All t!:<i~tillg system of

methods for It 1-1) rigi.l foil for the cn1culation of ~kill friction coelf1cicllt 1I11(]

bOllll<llIry hl)",:r growth WilS extended all.1 1Ipplied to till: 3·0 flexiblc foil~. The

prediction of the bOlllluary layer growth providcd Ihc Illlalitativecvalu1Itiou and

I!I.' cOllllmrisoll of till: lIow arolJlul it rigid ilUU a rlexihlc foil.

Parametric investigation of performance: Ba~cd 011 the IlIrgeillHplitude theory,

a sl:ril~s of parillllcl ric stlUlies of propulsivc performancc wen: dOllc. Parameters

illchuku lhc variatiull of dliciellcy anti t hrnst \\'ith dmngcs in llcxibility of the

foil, t.he llcavc ilIlfl pil.ch ill1lplitll<lcs, pl';ls<) hd.w''C1i the pilch and llcave, de.
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I-D Perspective of this research program

13

Though many methods arc available to solve the unsteady lifting problem, probably

llonc of them are able to solve for a nexible, arbitrary plan form exactly. Therefore,

to predict the hydrodynamic characteristics of an oscillating nexible foil propeller

with different planform configurations, numerical mclhods nccd to be applied. This

incrcases the versatility of the computation and hence saves cumbersome mathemat

ical formulatioll. Predictions of the propulsive performance of all oscillating foil can

be done by 1\ llumber of numerical methods. 'fllcse methods divide themselves into

four families: lIumerical methods based on boundary element thool'y (puuc1 meth

ods); those based 011 unsteady thin wing theory; those based on momentum theory

(Glauret 1926, Moran 1984); and many applications ill Navil~r-Stokes Holvers. Un

steady thin wing theory has bccn use(1 extensively in the aerodynamic community for

more than half a century. Examples of these methods include lifting-line theory and

lifling-surface theory. Doth of them study the vortices in the lIow that repwsent the

foil. Lifting-line theory is appropriate only for foils with large i\.SfJf:ct ratio plan forms,

because this theory ....'as establishe{\ by assuming the chord of the foil to be lIegligihly

~mall. The accuracy of the predictions from lifting-line theory for low a~l'ecl wtio foils

is questionable. As in most cases, especially in oscillating foil propulsioll, till: wings

1.0 Iw IIsed arc not of very large iIIlpect ratio, tlw lifting-surface mcthod slIch as 1I1lJ

l1l1steady QVLM (Quasi-Vort.ex-Latticc-Mclhod, Li1ll 19i!)) is a good choict:. IImv·

cver, as for any numerical method, the lIllsteady QVL~'l has its own disadvallt.agcs.

These shortcomings lire as follows (Liu 1991).

• Thc unsteady QVL~" is mainly an analytical solution. The sp1l11wise intcgratioll

for the downwash over each clement is conducted analytically. All 1111alyticill

rormu\;ttioll was primarily usctl, but a llU1J\UCr or non-intcgrahlll integralllls lVere

replaced by quadratic functions in ~he 11llIt step of the solution. This adds dif

ficulties in computer programming and mathematical formulation hnt gains 11

slight improvement ill accuracy compared with the VLM method. This im

provement cannot be made when 11 foil is ill large amplitude lIlotion.
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• Il waR aS~llmed thal the trailing vorlkcs ,'xt'~lld frolll til') lrailing edge of the

foil to infinity 011 lhe nn<.listlJrhed :1:-pJa1ll~ (i.,'" lllere is no os,:illaling wake).

This assumption is ba-~ically a small amplilmJe lheory, .'0 lhat it is llOt realistic

if this llId-hod is tqlpli<:<l t.o Inrgc amplitude 11Iotion of all oscillalillE; f"i1.

• "Vllell a wing having a large Rwcptlcading edge is nuder cOlllii,lcration, the ratio

of the llumber of chordwisc Ill,tticcli 10 the number of spauwise lnttices needs to

he adjusted to maintain aCCllrIlCY; lids is similar to tile problem id"nlinc,1 by

Alhalu) ami Ilmlden (1!J(j!l). Tlli.~ rc,JllCL'S the rdiabilil,y of 11Lc ~CRllltS, b,~Cll,llS"

ll", rlltio is .1dermil1ed hy;[ rough cJ;til1latioll.

• '1'11<; QVl,j'd is good for rigid, 1,I:lnar plauforrns, lIowevcr, wlwll a ll('xihle wing

iSI:(lllsid"n"l, rlll'tll"l" workon1.!l" formulation isnccrled. 1"'e1ll1se Lan (1!)7!») .lid

nol solve l'rnlmlsiorl I'rohlmus for 11 1.111"<'" dilllcnsiollaiullsteady elaslic lifting

sllt'fac",

Tile methods dcri\'(~,l from 1I11slciHfy Iiflillg surf",." 1.1,eory 1I11'IItiollf"! i,h",'" nI'l'

solutions in tit" fTf)'lll<'IIl:Y 110lllain (tillie, I. is e1iminalcd hy usinl'; II h«r11lolli<: mlll

I,kx \"i.riilhl.~). Fr<~'lll"l1':y ,Iollmill solutions ill" i\r,ll~ to ,]c;d with Will!!jS ill harmoni,

l11oti()Il~, hilt llTf~ limited to olily ("'rtain types of l!lotions. SUi'll as sinllsoi,I;,1 asciI·

latiotls, It is dilliellll for th"st~ frc'l"ency .IOll1ilin solnl.ions 10 tkal wilh ilrhit.r;lry

1l1OliollS, I",callse tltl~ frl'<llll'11l:y is lIol ohtaillilhlc froll1 irn:glllilr lIIotions 'lIId hellec

lit.' inegllJar 1110tiOlI Cillll10t hl~ ('xl'rl)sscd as fUllctiol1s of the t:omplcx "Xpoll<'l1l.. i,""

tIl" Imrl110nic function, a11fl hence Ilw kernd flillclion. SOllie lifling surface 1I1d!lo'ls

hnl"~ 1""'11 r!csigllcd 10 sol\"e for tIll' lift. from a II'iug ill Ihe lilt1e ,100ullin, TIt,'s,: kinds

"f I1Il~tlulils Tf~llln~ I.hl' l'Oll1pl,~xily of th,' fonnll!;,tion or tl,,: Ilwt!lO<!, I,y *Iditlg lmlny

sl"ps l,u 1.11<' rakulal.i"u as il. is n'lwat<-d al. .,;,<:11 tim') sl"p, Exam!,l,;!! "f th"s" ilT'~

,h'''<'1"illl~<! lIy Fry,klliulld anti I\,'rll"ill (1!17T) illl,l I';ilt;.; ;111<1 l'lotkill (Im)l). Tllougl,

tIl,' tllickncss [lmhlelll in lifting sl1rfac<~ 11[('01'.1" nlll ;Ibo I,,! sol \"I,d hy pl"eillg SOllrn~:s

~d()lIg the eknwlIl (I":inllas I!J!)2), lifling'surface theory is not ahk 10 d,'al willi wing

hody com hi nation probl"ms, which ;In) important fm tll() o"crall t"'alllMion of thc

hy.lrOlIY11l\lnic dlllrl\cterist.ics of 1\ bo,ly in a Uuid,
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Moreovcr, the lcading edge suction problcm t.hat uccurs in lifting-surfacc lheory,

being an important problcm in oscillating foil propulsion, is largely unresolveo in time

domain lifting surface theory. Although the time domaillliftillg surface approach has

hecH allplied in scrcw propeller dcsign, the accuracy of blade loading predictions

without an accurate calculation of the leading edgc suction, especially in unsteady

C;L~es, is Illlcstionablc, though the crficielJl:y and tllc tUflillC uf ~hc propeller were close

10 cxpc:imcntal data, for inslancc, in Kcrwin and J.<''C (1978). This can bc reasoned

as: C:VClI without I,he foutrihutioll of t.he leading cclge suction, the lift is pfCJbi\hly

1101. changed much and this will 1I0t greatly arrecllhe thrust; the drag (torque) eM

IlL' adjusted largely by challging the drng coefficient to cancel a contribul,ion 1.0 lhe

tllrllllt by the leading edge suclion wllich exists ill practice. When the leading edgo

)land cli~crctiilalioll is cilrcfully arranged, a time-domain panel method is able 1.0 take

hoth thicknc!\s antlwing.body combinations into accollnt, as well ilS lhc~ kadillg ('clge

sucl.iou. The leading edgc ~udioll is includcll illhert~nt.ly in a pallel 1l1c1.hod, though

~orllC say thc velocities, ilfl(lll(mce the suction, are o\ler-predictcd at the ll:ilding c(lge.

III this rcsclltcli work, 11- limc: dOll1ain pllnel IlIdhocl was applied IIlld it WIIS c~x

tended to covcr it 3-D nc~xible oscillating propc:ller. Eslahlishlllellt or this lll1l1tcacly

:1·1) !lexible panel lI1ctllOlI cnables us nol only to c\'alllat{~ lhe pedormilll(:e of osc:il·

lating foil propul~ion, but, also to lise this 1.0 simulate the flying and swimming of

animals in bio-mechanical rcsearch il.11d to calculale other 1II1Steildy 1l10Villg ho(lics ill

lllrge amplitude motion ill cngil1<.'Cring 'lpplica1.iolJs.
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Review of Literature

2-A Historical Review

T1H1llfdicfl! Htlldie~ in 1111s1l:'1I1y iwrodYllamics llaH' h(:t~n conuucted sillel: the late

I!120s. The illi1.ialjcll1 ur I his .~lIhjl:ct was to pn:dict the lin \'ariation 011 wing surfaces

suhjc'cl,ed 10 fllltll:r and gusls. In tlleSI: llns1.Cildy flows, the circulation <11111 acrody

1Iillllic dliltilch'ristics uf il moving foil chauge from inslllullo instant: thC'S<l rhangL'S in

mt, 1l1ollllml, illul C!rilg h1\\'11 <In imparl. 011 tll(' sl rIlcluTillllYllamic desiglJ of it wiug and

fnsdagC', IIdore l.11(' lI'idl'spn:iHl lise of powerful computers, i\1Ii11ytit:al study of the

,n:rol]Ylllllllil: I'hilracl(:ris~ics of nSI:il1aliug winAs WilS \\,,,11 develope/I. l'iOlll.'CT works

]ll'l'Sc1nlt:'] in Illl' [!laOs itll'lmlt, t!tOs(l hy \'on [\lirn"ill aud llllrgl:rs (I !J35), Thcodor~lm

(I!J:~fi), lUlll VOIl K;inm,n mid S\~ars (l!l:18). Willi lhl~ Ilc\'cl0PIllClll of digital corn

pull:" II:chl101o/U' ,llld tl'l"huiqllt'S or corlllllitalioual fluid dynamics (CFD), llumerical

Irwl.llOlb 1.0 treilL I:Olllp!eX wiug nmfiguratiolls ilIlIl llllslcady flows IWGHlll: popular.

Tllt'sl: mdhorls m,tinly fall into I. hrL,{~ cal.l:gorics: lin ing,sllrf;tc(: nW1.hods, llilnclmcth.

Illls, pIllS llll~ n'Cl~nl sIllily of Navicr·Stokes solvers, As lift.iug surface theory for bolh

.~II'IIt!y autl lI11stciuly !lOll'S was Tl~\'ic\I'eti ami iul"t::lligillcd prcviollsly (Lill l!J91), tIle

1Il,ljor part of this discussion will be dl:\"o\'et!lo pi1llcllllClhods,

16
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Some of the earliest studies in three dimensionallifling snrfaee theory are credited to

!"alkncr (1943) and Multhopp (1950). !"alkner's (1943) presentation was the proto·

type of tile vortex·latticC*lJlclhod, The ~quarter-chonland three-quarter-chord rule~

(loading location and tlownwash location respectively) of subsonic lifting surface the

ory WlU! initiated in Ilis study. Following Multhopp (1950), many works ill unsteady

lifting surface theory were done based on the kernel function theory. Kernel functions

are the expressions of linearized boundary value problelJls derived from the t.heoretical

aerodynamics of lifting sudace theory in a potential now field. Tile singularit.ies of the

kernel function as all integrand make it difficult to obtain exact solutions (Watkins

d a!. 1955).

Hichardson (19ri5) eXLended the subsonic kernel function to the SOllie and SIl

personic rauges for the 1I11steady case. Defore 1960, predictions of unsteady wing

properties by using the ullsteady kernel function method were not popular he(allst~

uf the primitive state of development of computing Lecllllology.

Since the early 1960s, a wHicty of numerical methods, mainly the lift.ing-sllrface

method, have been presented to solve unsteady acrmlymunical Jlrohlems. These

computer-implemented works bascu 011 lifting surface theory inclu<lc Lhose hy Davies

(1965), Albano and Ro(ldell (1969), Lan {l979) and Frydenlund aJ](! Kl~rwin (UJ77).

III most of these works the classical numerical Jlrocedure \lias Iised: t1mt is, th.! 11I1

steady kernel fUllclion was solved ill tile frCtjllency domain. Frydenlund and K/!fwin

(llJ77), however, used a time domain scheme to prC<1ict propeller pcrrormancc; so <Iiel

Kerwin and Lcc (1978), As the time interval was di~crcli~(~d in thc computation, thc

formulation of the lI1etllo<l Wil.S much more simple than tllllt of the classical approach

to the unsteady problem.

As lifting surfacc theory is based 011 a wing of l.erO thickm:ss, IlTt!uictiollH of Itcro

tlynamic characteristics of thick wings are incvitably inaccurate, especially when tile

thickness ratio (a ratio of the maximum thickness to tIle dlOnl length of a foil) lie

is grealer than 6%, In this CM~ modification is usually rC(luired. This modification

is often nccessary because the thickness ratios of most willg stru/·t11rN; in (mginecring
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applications arc greater tlmn 6%. ~'Ieanwhilc, according to dassicallifting surface the

ory, modification of 111ickllcss is crfective only for asymmetric willgs. In ollier words,

lhe lift predicloo by c1nssical lifting surface theory has the fiarnc valuc al diffl'lrent

tllicknesses if a wing section is symmcLric (Bisplincholf et al. 1955). This means

that tIle dil[erencc in pressure distribution between symmclric lhill and thick wings

is rlegb:tcd. For allymmdri<: wings, :llIch all some propcller blll.de.~, modification of

lift or loading can be dOlle hy superposition of source singularities and vortices to im

prove accuracy ('1'hwlI.ites 1!}60, p. :l66). lluwevcr, ca1culatiutl of leading cug!~ suctioll

n~rt1aills 11. diHicult probl(~m, which is irnporlilllt in oscillating foil propulsion. Whcli

tlw norrnal influw velocity is rnodified lJy 1uldillg the in<lllced velociLies Ull!: tu cam her

lind thickness, lifling surCncr. theory obtains 11 fcnlistic norm/ll inflow vdocity and

IOlldinp; distribution (lIsill el al. 1!J!J1). Newrl.llcless, accurate inflow normal ~·clocity

d(ws not guarallt!~ 1~ realistic surface velocity di~trihU1.ion, which is the rcsultant of

1101'111111, tanwmtial and lrallSVNSl) (spallwise) components. "ccural!) prediction of the

velocity dill1.rihutioll, 1IlIIl hence PWllllUW distribution, is 1I0t only I'SS(~T1li,l! 10 ohl,'lin

t.he loading of 11 willg, l:spr~l:ially oscillilting foil tll1'1lSt, but it is illso llsdul to estimale

bOllndary layC'r separation and l.rilllsitioll (rom lnminar lIow 10 tmhllient flow.

2·A-2 Panel methods

TIle [lanel method, IIlso rdcrn:ll lOllS lhc hOllndary illl('gnd method or bOllndary

d(~lI1(:lIt Il1dhod, solving !,otc.ntial flow problems was initiated ill 1!J62 after a pioncfJr

work, known 1\S the DOllglns NeulIIillttt program. by lIess nnd Smith (Iless and Smith

I!J{i2). Their cousl,illlt.-strength source pand method call solve only n0111iftillg prob

Il'rl1.~, 1.1101lg11 tire \·(·,·"alility irrdmkos lllr,)!,·,lirnensiollal arbitrary body configurations.

III I!Ju7, Ikss 111111 Smith (1%7) prC'senled their contilluillg study co\·cring both two

and t!JrCl:·Jimcllsional hodies alii! lifting probl"llIs. The computation of force!! on

lirtillg bodies hy llsing ]laud l1lethotls becanre pos.~ible. Ilowever, the analysis or t~e

flow abont arbitrary :1·]) sllal'es, including lift and eITecls of thickness, ill terms of

source panel 1111(1 vorlcx lallice [lfCSellled hy Rubbcrl and Saads (1!J67) is Ilrobably

lhe first lise of 11 ]lauel rndhod for lifting problems. Their solutions to potr:nlil\l now
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problems include velocitie~ and pressures at all collocation points; three-component

forces and moments on each panel surfacc; velocity and prcssure distribution in the

flow field; and streamlincson the panel and ill the field (Rnhbcrt ami Saaris 1972).

Ueforc their engineering applications became widespread in the early 19805, panel

methods used to solve for aerodynamic characteristics mainly concentrated Oil distri

bution of sources and vortices (Hess 1975). Panel methods wcre oftell propored to

substitutc for finite clement and fillite difference methods in caleulatiOlls involving

complicated geometric configurations, cspedally for external flows, in which ca~c the

grid generation to /it a 3-D shape was often difficult. The fundamental sLudy of these

methods in a mathematical sensc and numerical principles rcmaine<1 mainly tIll! con

cern of mathematicians and physicists (Brebbia and Dominguez 1989). After lIunt

(1980) and Banerjee and Butterfield (1981), systematic analysis of the mathematical

formulation of boundary integral methods in both solid and fluid lIlt'Cllallic~ hecnme

familiar to engineers. IIullL explained the physical problem using ll\...~hematical ex

pressions; discussed the houmlary condi~ions alld also tile ulJiqucfl{:ss ;\IId (:xistcuCl: of

tile solution ~o llle Laplace eqoation, thougll without presenting strict matlH!matical

evidencc; and applied Green's theorems to solve Laplace's equal:on in single, multiple

domains, thin surfaces and open surfaces. In Hunt's study, surface singlliariliell stich

as surface sources, surface doublets, surface vorticity and their comhinaliolls to soi vc

polential flow problems, including the uniquelit'Ss of IIOlutiOlIN under dilrerclll singu

larity combinations and Neumann and Dirichlet hOlludary conditions in the slmdy

now case, were discllssed.

III the early 1980s, there existed a variety of similar pancllllclhods for the sleady

flow case, with differences in the order of panel strength distribution, singularity

combinations, grid shapes aud sclJemcs for matrix ileration and inversion. Tbuugh

not an exclusive list, these IJrevious works include work by Johnson cl al. (I !)82), Yell

et al. (1981), Ma<lkcw (1982), Johnstoll cL al. {l985), and Clark (1985).

After the middle 1980s, steady surface panel methods were also extellsivcly aJl!'lied

to the calculation of wake simulations (Mracek and Mook 1988). The boundary iute

gralmethod was firs~ applied to marine propeller design in 1985 hy !·I(!ss nnd Vlllllrc7.0
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(l!J85). 111 their study, tllC helical wake, the far wake hehind a screw propeller, and

the pressure distribution along the leading edge oCtile blades were predicted. Follow·

ing Hess and Va[are7.0 (1985), [{erwin d al. (1987), Koyama et al. ([986j, [Ioshino

(IrI89), Valarezo and Lil!bcck ([988) anll [lsill ct al. (1991) uscd similar panel methods

in 111i\rine propeller calclliations.

Extensive Ilpplkatiolls of Illisleady ;1.1) panellilcthOils 10 aerodynamic problems

st/lrted ill thc lale 19805. Solutions include uotil time domain and frequency domain

IlIdllm[s. In the rn::q\lt!!tcy domain, exampllos arc lVork by nlli~-Ca\;wcraf\ml Geissler

(I!J88), Rokhsaz cl a\. ([989) and Ap[lallnd Smith (1989). The lise of :1·1) timl"

domain panel methods bccame popular later. Thc studic:l by llIair and Williams

(W89), Kat7. lIud PloLkili (I!l!.l!), KilllllU Ilnd lbin (HI!J'l) Itre examplcs. Threc·

l!inumsionaltit1l(! domaiu pand mdhods wcrc extended to the calculation uf multiple

hOllil'S il1lrl various paths only rl'Cently ill a papI!r hy Itichsoll aud l\atz (I!l!!;!).

'1'11'0 IlimellSiol1al unsteady [Ianel methods have hecll in lise for a long lime ~.g.,

Gicsillg (I!J68) illid 1l1l~1l MId lIallco<:k (1!178). A lime domain 2·D panel method

1.0 sol\'c flcxiblc wing n()pulsioll problcll\~ wall dc\'c1op(~1 relatively recentl)· by Bose

(1!1!l2. !!l9;J). [n Uose'l. studies, the chonlwisc ncxihiJily of foils was govcrlled by a

l:lIhic fundion along lilt! chord, ;11111 tile lo1l1gcntial \'cIocity at till' elcm(~llts on the

willg surface was eorrec1ed in terms of Ilelll'Ctioll di~[liacelllc!tt of the dmnclIlllIld the

villue atllw foil surfacl' lldw('cli lime ill((~r\'ilh;.
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As i~ r::an bclCCn in ma.ny malhcmatical physia tcxu, the boundary intc~fal method

is 50 called because il was 1~'t.I originally to solvc linear partial {lifTcrL'n!illl cqullions

(L.P.D.E.!) by integrating thesc cquIILions wiLhin the domain of interest The resul

tilnt intcgml i~ thellllOlvcd by imprn;ing sufflcietlt bouncillrY conditions. In facl, lhr:sc

L.P.D.E.M uSlially havc no physicalmcaning nnlr:ss variablc! inlhc L.P.D.E.s Me ilS

lIignoo a.lj ttrtain physical propcrlies fOf a particular Ilhysicalllroblclll. l'br examplc,

for a I•. PJ>.E. in a form of I",placc'.cquation,

{J~~ D~¢ if,
a.rl+~+84=O, (2.1)

if the potClltiat ¢ (1alOtcs lICit, curre1llor vclocity potcntial, the nux

\1;"" -k;J*!;' (2.2)

where J..';.j, tllC scconll·rallk lensor, IIr.110lcs IJCrmcahiliLy in a hornoglmolls rcgioll, V;

iM thcn hCil~ nux, entTent dcn!ity, alulltuid velocit.y in tile dirldiollll Ilf ; = I, 2, :1,

rcspedively (lJancrjt'C and lllltlerlicIlI19S1).

Unlike finitc clcmcnt or finile ,Iirrcrcnce IIIclhocls Lhltt solrc 111£: Aovl:rllin~ 1~llIil

tiou~ (usually L.P.O.Ks) approximalcly by discrct.izillS lhese 1,.1 1.1).1':., ur Ily using

the variational principle (Shlw 1t178j, Imundary clement methods SQI\'f! th(~ gO\~n·

ing C1luatious by direct illlClration /llitl lhcn solve the inlcgro-dirrcrelltilll t:«Uiliun

.:ither analytically 0( numeriCAlly. 111 ooundny clem"ll methods, the rOflllulation

or the intczro-dirrercnlial equalion un be done in different wa)'!. depending OflllO\\'

lhe inlegro-Ililfcrcntial cquation is formulated. On the ot.llL'r Iland, in (ormulating

il.ny houndary inlegrallnethotl, there ~llould be llle clIilItCl!l;c amI Illli1luelu:ss of thl'

solution so thai t.hi~ formulation call be useful. Mort'U'o'cr, dilft'Tcnl. formulat.iolls Ilr

sclwt11CS Ill'CIl Lo be clr1plo)'l'(1 10 solw particular engineering prohlcms. FlJr cXllt1lplr:,

for lifting prohlems, lhe Kulla condition needs to bl: lt~l~d ill tile nlluu:riCIlI JlfOO~S

toohlain n uniqlle solutioll; for unsLcady liftillA 1l0wII, !loth tll" Kutla cOlldition and

it proper vorlcx approach sucll lUI di5crdi~atioll aTld hislory or thc wllkl: lll.:cd to he
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t.aken into account to prcdiCll1w. now on both 5urfAc;:c5 orUte will~and in lhe wake; for

viscous and separat.ed ROWlI, 'onlluli\lioo of t.he BENt hu to \)C revised or thc m:M
hall 10 hc ctlllpll:d with oLhcr lllctIIlX[(S) such ilS l'inilc c1cmcnt ar finite clirrcrencc

IIll'lliolls. For ,hear IIow nlHl n()\\.· with 5Cparalion, thc m:M Iwcd 011 N'aviclr~Slokell

CCllllltialis is Also fn''CI"elltly 1l~1 (sl:'r.Sllllw 1978, MorillO !9R9, \VII 198!1,llsiaollntl

I)nrkr 1!)8!J, Wlltt:s IIn,l .llll1n~ 1!189, and PattcDOll r.llll. 1989). The 1I1l()\'c poinb

wf~rcdllvesti~aled amlllrl~ brieOr disCll~'C1 hdOll',

2-B-1 Three basic formulations

'\nurdillg tu 1l'l1wrjc~~Mld IluHI:rfidd (HIlll ), 10SlJlw~ diffl~rCtlll~n~iJl(~riligprohll~IllS.

( 111~rc\ nTl~ 1l<ISil:atly thn~~ k imls uf formlllnl ions ill hOlIIll\Jlry C:II~11I1'l1l 111('( holls. 'l'\wr

111"1' 11\1' dired, SI'llli-r1irr~'1 flllIl ilillired ror11lulalioll.~,

The direct formulation

,\ IIp1iraiion IIr 111is rflflllul"tioll i~ orh~1 fOUII(! ill solid IIII'('h""I" prohIMIl.'!, slu:h ;(.'i

phlSliol)' awl dilNto"l~tidly,TIIC' eS,<;('fIrcor 1Iii.'! fornmlalion i.'ilo illlcgrilic the gO\"

prllirt,f;I'CllICttilll1llircdlr. Ili\IIl'r;"'illld lIul1crlldll(!!)tilji"dkatl,llhat inlhc pr~

tlf il1lt-,:rntioll, Ihll nUl (tlr \'14ocily) or pOlential (or forN' ill soIitllllcdianiC'i) ill the

lil'lll lIrc' rOllll11 ill the ml1l!lalil inll'grill inlf'rrmul all "oullclar)' \'<Ililes (SCI' IJallcr}ce

<llld lIullcrficlcl.I!JSI, 11,2fi·:m). TId!! illhop;ratiOllllrOcl~ wil1lill"'I.1o' yicltll1nkllawn

IIUlllldu)' \'<tllll':! wit h ilOIlIC' other kIIO\~IIIl()ulldarr \'a I III'S, TIll' \1:lociticsillld polett'

IIliis in II,,~ ficM ntll h.. 111'1 ('rllli1JC'C1 Ii)' sullS! itlltin}; all knuwll Ilollnuary \·ahlC.."S iulo

thc' \'I'MII"ily iIllllllOlfmlial illll~rilis. J\ tlisad\'i\I1Ia,:C' of IhI' din,., formulation is Ihill

i11t.lltl1lgh till: 1I1l~ alld IKJ11'fll ialllrl' clc~h'rrniTl(~d dill'ct Iy ill hOl1tlllilric'S, Ih(' \'alul':l of

\'i1rillhll'NlIl iUIl'l'ior JloinlN art'lIIure cli(firl1lt t.o filiI! (liilm~Tjl'c ilnd UUlll'f[jI,(d t !)SI).

'\l1olhl'T dis<uh'ill1lagc is that thi.'i formulation is ll':ls acrllralc, for whicll lhl~ rca$OIl~

1I1"C' uIlkllOWII (O'lIriclIllud (lius IDS!J),
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In this kind of forrnulalion, the integrand in the integral eqtlatioll consiNts of an

unknown function analo~ous to stress functions or stream functions (Banerjee Ilntl

Butterfield 1981). Strc~distri\J\ltion orslreamlillC5\vill beohtainedLy dilTerentiatillg

the ~olution of the bOlllldary inLcgral e1luation. There MC not IlIllny appliclltion~ of

this ilpproach.

Indirect formulation

This formulatioll is alw callt.'tlthc Green's function mclhod, which is widely uscli

ill compl1tationallluid IlynamiCi. In this formulation, tbe governing c1lllnlion, for

instance, Laplace's equation for potenLial now, is not dircdly intcgrated 10 forrn an

int.egro·llifferclitial eqlllllion. h\stcad, a lInit sillgular or a comhination or several

unit sillgl1lar (l!msity fUliclion(s), whid arc fictitiolls witlllluknolVlI density (Ilrcbhia

Mid Walker 1!178), are placed 011 the Ooundarirn of the Ilorl1ain as lI11klloWIiS in till!

integrand of the integro-Ililfcrelltial equation. This ~luatioll is thclI fortllf~d Il}' ll~illg

Green's Identity. Boundary vallics are determined by substituting given honndary

conditiolls. As this forlllulatioll is iITlllOrlanl to thi!i work, it will In: Ilisclls~ed in

det.ail in Chapter III.

2-B-2 The Kutta condition

The stcally Kulla condilion assullIes t111l1, for a foil sectioll in a ~,clI<ly, invisr.id fluid

flow, the stream !eav£.'S the sllarll trailing (~dgc of the foil smooLhly and thl: veloc

ity t.here is finite. This condition is also called the Joukowski's h}'llOthesis from Villi

~lises (Hl15). This hypoLhesis states that, the circulation 01 a foil with it shaff' trail·

ing edge, in its working range of incidence (attached flow), always adjusts itself so

illat. the fluid Spt'Cd at the trailinll edge is nnit(:. III .}oukowski's conrormal ma.pping

ur a circle onto 11 foil, 11 unique value of circulatiollillust he c1lOsclllo ohtain a stag·

nation point 011 the circle corresponding to the sharp t.railing cdg(!or the JOllkowski

profile (Milne.Thomson 1958, p.IJ'I~ 115). The KuUa COlIt!itiol1s nlake llic solution
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How dOl'Min V
boundary
olinfinily

n=J

"'\

Fii'\l\rt! 2.1: A foil wilh it wake vortex slu_'d in n lifting floII'. f\rro\\'.~ slalll] for the
llath of the integralioll. Ii = I, jj = 2, amI ii = :i ,Iennte thl~ hOllllllaries-·-llw foil
smfaCll, the: surfncI: of wakt: \'(lrt(~x sh,~·t HIIlI !\w rlow dorn<lilll~xt('tHlilig10 infinity.

to lini ng pnl'~llt.ial noll' pos~ihle" 'I'he sigll i fiCi!llC'~ uf llll~ I': tI t t a wud it iOll is i] 11lslrn!.c,1

il~ r(]lIo\\·.~,

The usefulness of the Kutta Condition

For a liftillg foil whosl! rirclilatiun is 1101 ~ero, I he \'docity potclltial has I1lllltirl!c

\'nllws, ill whit:h e.1S", lll(' l\u1la ,"ol\(litioll mllst he al'col1lpli~hl'tl to oh\;lin a uniquc

SUlllliull. Dill: 10 viSf'tl1ls dfex:ts, Ilwn: is II slll'iIr lilyer hehind tlie trailillg I.'tlgc which

(·.~Ii·rj(ls III inlinity \~l'! figllre 2,1), If the llE,\1 metlwd is based 011 pokntial Ilo\\',

tl1l'1l0\V cJolllaill must ,'xdllcle till' slimr layer to salisfy the potciltial ilsstltnptioll.

~I('allwhile, if this lalw is he'aled a~ a barril~r, ,t dO\lhly cOllllt~kd region of a 2-D

flu\\' domain can I", dmllgccl into it ~imply cOllllected region. HOlI"cver, !JCC,1USC of the

('.~islC:IlC(!oftlris bimier. tit" I'dodt), putential, as l.h'lsolul.iou of Laplace's C(luatioll,

ha~ 1It1 sillgle \'<\llle, i.e" the SOlJlt,jOIi is lIut IIl\iqlll~ (Katz alld Plotkin l!J!JI. p. 35). The

illl1l1l1l1t of drc:ulatioll th':11 e:all1\ot he: c1dcr!llillt~d withoul \Ising the \\\\Un eOlldition.

In a eliff'~WIl\ pr()('(~lllw, Murall (11l~,1) SllOlI't~1 tllat by spl.'dfyillg till! circulation

i1wlltlll it f:llfI't: c. ilHIIIII" tlll~ 2-D foil

(2.:1)
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the solution of Laplace's cquation, with the boundary condition of Vr/> -+ V.., far from

the foil (this foil is fixed at a point ill 11 moving fluid at a speed of V",,) and V· ,1 = 0

all the foil surfacc (normal velocity on the boundary is zcro), i~ unique.

The validity of the unsteady Kutta condition

The steady KuLla condition can also be applied in unsteady lIow, but Clm: must bc

taken. For instance, an unsteady foil Iilovingat either high rcduced freqllency (I.: =m,
wllere w, e aud U are oscillating frequcncy, chord length and forward velocity uf lIle

wing respectively), or large pitch or heave amplitude, will calise separation at the

trailing edge. This means that the local flow passing tIle trailing cdgc is not smooth

(streamlines arc not departing parallel to the trailing edge) and hCllce this !low may

violate l,he KuLla condition. Experiments (K<ltz and Plotkin 1991) indicated that

slight trailing edge separatioll (when Wis just greater thall 0.6) docs not have a

noti(:eable effect on lin and in this CMe, the unst(!ll.1ly Kulla condition is Iltill valid.

I<al,:;' and Plotkin (1991) analyzed the validity of l,he I<uu.a coudit.ion awl gnve ~(JIlIr:

bOlllldarics for the \alidity of an unstcady l\ulta condition, uuder the i\s~lllrlptioJlof

:imalr·alllplitudc oscillation, Nl follows .

• For the steady flow case, large angles of alll'lck shollid be cllrdnlfy c()lltrolbl

to avoid a serious separation at tile trailing edge or e\'l~n at the leading edge

(another problem: stall). III uusteady !low, tile pitch amplitude slwlll(\ be

carefully controlled .

• Again, to avoid large scale separation, the heave amplitude shollltllw reduced

when the redllCed frequency increases. For example, to have a reasoflable thrllst

level (the reduced frequency at its practical rauge from 0.5 t.o 1.0), wilen the

reduced rrC<IUency reaches its upper praclical limit k = W= I, it allows lhe

maximum amplitude up to Ito "" 0.1 c, where h" is heaveamplitmleill the heilve

motion equation, for example, II = hocoj(wt). The feathering parll.lIlcter (st.'C

Nomenclature), either the one under the small amplitude assumption or the

one based on the larger amplilmle assumption, cannot be us{~d ill this kind of
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analyl!il!, hccall~ the MlnC \'1luc of thil! paramclcr hi\S 1m infinitc nUl1Iber of

cOlllbinationl! or thc iMla.nlallt'Ous an&lc of altil.ck (by adjuslil1t; lIle product or

pitch amplitudc And the rorwaro nigntspccd) .

• The nOIl-diTJ1Cfll!ional vertical \'C!ocily dlould be VII = b< I. This lillli15 the

vertical displacement 01 the trailing ed~. TllililIIay becorne iI. liroblem "'!Ien

the foil is uscd as an osdllatint; Iltopubor.

• Separation atllw. I.rflilillp; edge due to viSCOlli'i clft:ds will cause la« ill llte'll:ro·

IIYlla1l1ic loads (S(:(l I<alx allil Plotkin I!JlJ'l).

In addition. the pitching axis pe~ilioll may afft.'Cl Ihl: dC!Il~ of the validit)·. A

pitdl axis llt the hailill}!; e~llgc will hi: Ilcttcr limn onc fat ahead of thc trailillg edge,

ilS trailing edge scpMaliol1 is lIlore likely 10 ue amidcll. lIowever, this may crcalccarly

se:[J/lratioll aL the lcadillg (xlgc, which \'iolatell the attached flo\\' assumption. In three

(lil1\t~llsioml, large amlltil-mle 1lI0tion, the sltalle of lite plallfor1l1. till: Ilitcbing Ilxis

IMflilioll, I', 11ll' OS(:iItlltillg frCllllcllC)'.w.I.llcalll·aIICc lllJl.'C:cI. V"".lhc hcm: aTllllliludc,

h", allli the Ilitdl amplitude, fl., do jointly illlllll~llce thc !low al Ih(' I railing cel&e alld

f·ISI'wlll're. Allal}'sisofthc "alidity of IlL<' KutlacondiliOIl hC<:Ull\t~morecomplitlltcd.

The: Kulla COTnlitioll ~ho\lld hc applied carefully 10 il\"oitl errors in Ilrcdiclion of

tilt· loads on all O:!Cilhlling foil. \Vill!out urdul c::oI15itlcrlltioll. the IlfCilicted Ioad~

c;oulellosc lheir ac::cllraq· ami rdialJilit),.

Diffcrent as.~lltnplit>lls made hy Ilrcviolls stlldiell, hO\\"C\"cr, also exist. III the Tri·

mltll{ylloll brotheri'l' CJ[llCriml:ntal lltmlit.'S ill MIT (Trialltafyl1ol1 alld Triantafyllou

I !)!)."I), they argued tliat t he hydrodynamic loaels, especially the Ihrusl of II fish tailor

1II1 u,'lcillatilll: foil were lTlRinl)'cluc 10 the vortex "jcts" hehind tllc propulsor created

hy ill! oscillating lIlotion. Tlleir assumplion hi\ll lIot llr.Cll yet il1\lllclllclltcel into lilly

l'}'IK: of thcon~licl\1 or lIluncrical mOlle!.

2-B-3 The uniqueness of the solution

For II high lIe)'t101t.]s numbcr (grcaler thart 11f), thc bOllndary laycr i~ llLin so th'lt

t.Ilt! flolV outside of the lIolllldary l.l}\.'f can lie trcated a~ pOlcliLial now. For ~lldl .'\
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potential flow, reasons supporling lhe validity of the approach arc as follows.
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• Uniqueness ofirrolationalfloloin a singly-conncclerl region. Foran irrotational,

single·connected region, a velocity potential ¢ mllsl exisl. All irrotational, in

comprcssibleflow in a singly-connected region is unique (Lighthill L986, p.SS).

• Supplementary conditions for a dQltbly-co7lTlcdeJ rcgiQJI, A doubly-connected

region in a lifting flow domain, for example, a 2·0 foil with its wake, can ue

tnlnsferrcd to a singly·eonnected region if the wake is to be treated as It barrier

(sec ngure 2.1). Howevcr, in the singly·conne<:tcd region, the circulatiou by a

potential solution, is kr (k is all arbitrary constant), which has multiple values

(sec 11.93-94, Moran 19M). A supplementary condition is needed to provide

the un.iquencss ~r·the solution 10 tile velocity ncld for this singly-connccted

region that is transformed from the doubly-connccted region (l,ighthill I!J86,

p.95·96). This supplemcntary condition, for an airfoil Rcdion with its wake, is

the Kuttll. condition. When the KuttaCOlldit.ion is imposed ill the solution, tllis

modified doubl)'·conm:ded region of a now around n. foil hIlS a unillllC velocity

distribution.

• Uniquencss of tire SQ/Illion to 411 unsteady flow in a singly-cOllllcctcd region.

When a solid body is moving in an irrolational now (in a. sirlgly-colIIlL'c1.ed.

region), or this body is stationary in a movins fluid, the flow ncld call be

determined uniquely by using thc inslantaneous vrlocity normal to the surface

of the body (Uachelor 1967, p.IO'!}. This indiclllC8 that the velocity profilc of

lhe flow field cao be predicted uniquely and this prediction is dq>cudcllL upon

lhe ilistanta!lCQus boundary coudition only; the acceleration of tllc body ami the

motion history of the body havc ltO e(fecion the predictiou of velocily potcntial.

However, the hislory of wake vortices cannot bc ncglccted. In other words, a

steady fiow problcm in asingly,collnecled region call be extcnded toan ullstc;uly

case as long as the inslantallcOlls boundary condition is uscd. Therefore, a

lime·domain sclLcmc can be employed in the unsteady singly-collnected region.

For example, at each time step in a numcrical process, for a givcu boundary
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condition (velocity normal to the surface of the wing), Ihe f10lY field can he

wlvedlllliqucly.

• Uniqucllcss of tilt ."ol!llial~ to a l!oub!y-collncdcd regio/! irl tlte ull.,'crllly 00,'0_

Bacliclor (1967, p_ 112) pointed out lhat;m irrotation'll. 11IIst.l~ally. solenoidal

f1uw in alloubly-collnccLcd regioll can Iredctcrrnil1l~Juniqlldy wlwtl (hr. n.'lluirl'd

bOlllulary conditions for lInitlllCncss olllnw in n !ingly-colltu:clrll r(~gi[Jn are

impost'll (wake a~ a barri(~r) and the qdic con~talll is specifi(~d (by impo~illg

the l{uLl.lcondition)_ This inlli(atc~ i1laLfor an 1I11~lcadynolV nWlllll1 atlilirfoi]

(dollbly-connl~dl'(l region) when Illc uns!eady 1\1111a cOlulition i~ iIllPOSt~l, t1w

ullst.mu]y potl~IlLin\ flow uf an airfoil un IIC solved by a time-donmin sdll~mc_

J\gaill, for the lirt.iug problt!m, theindumll'c1ocilyon thc foil frOl1lll'nkC \"or1i((~s

aud their historic changf'S should be taken intI] account.

• "o'-ce ca/cllln/;arl fmrn an llTl.'/twly pottll/illl flonl :lGIi/tiv/!. As uns1cady jlolcli'

l.i,,1 flow (:an be solved ill (he tillle dOlllaill, the oh1~illcd \'Clocity IKllclllial alld

local \'c1ocity aloll!; the ~l1rracl: of thc airfoil C;III Ilt: llst~t110 calculate ;uoTOlly

n;trnit: fortes. AI I:ach time step. the velocity potelll;al 9 is I1l1i/llle; there/ow.

iLs derivnlive~ !l!i arc ulIiquc. The \"clocity potclilial Chillllll'S wilh time steps,

hellCI~ ¥* can hi: (Jhtailll~d. Therefore, tin: inst.i1.t1tmlcOHs local ptl:s.~llrr. C;\II be

detcrmint'lj from the unsteady Ilcrnouml~lllatioll.

2-B-4 Wake considerations

As lhelocnl vdocity ~roillid 11 2-D foil, which i.~ moving ill oil staLic. in(:OInprt'S.~ihlc

f1l1id, varies with Chilllgt':l in pitrh (insLantallcolI~ angular velocity of llt(~ foil. hence

tIle allglc or aLlack), hca\'(~ (i nslantant'Olls verlical \'clocitJ' and 1llw t hc ill~lantallt~lUs

Itnglc of attack), forward llight speed, lind/or part or all of tl!etlc chulIgC:l, the tolal

circulation rof this seclion is changing. This circulat.ionl', which is proportional 10

tilClift (L ""pUr), islhcn a flillctiolioftimci.
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Form of the wake behind a 2-D foil in unsteady flight
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According io Kelvin's theorem
Dr
-=0
01

(2'<)

in a now domain. The dcvclollment of a wake behind a wing section is simply tlescribed

as follows .

• AI. time t = 0+, for a wing sedion startillg from rC!'it with a mouerilie angle

of attack, a sLarting vortex l'.tnd at the trailing edge anu a vortex r of total

circulation of the ~cction arc created ill the sallie time. G(~ncration of 1I1is

starting vo~tex is due to viscous c1rects at the trailillg ec.lge. The strengths of

these lwo vorticell arc the !lame but opposite ill direction to give

~= 1J[1'+I',(o<tl=O
/Jl Df

(Bachelor 1967, p.~'10).

) If the willg sectioll lIiOVI)S at it constant forward velocity, 1.11I~ total circulation

I' is constant and the starting vurtex I',>fa,t once slleu, b collstallt, (lIdlllhuti\

theorem). In this case, there is no trailillg vortex shed hy the foil at the trailing

edge because the spall is in~lIitc and then lhe dlallge ill spallwisc circulation is

7,cro (this will be <liscussed later in detail in the ca..~e of steady a·J) 1101'1) .

• When there is lIll illereilse in circulalion around the foil section, frolll ]' to

l' + Dol' {Itle to an unsteady effect, to keep lffr =0 in lhe cntire flow domain

(-oo < :z: < +00, -00 < Y < +(0), there must he it decrease of 1I1e .~trength of

the vortices in the wake r.ln" - .6.1', and this -.0.1' is the ~1.rtmgth of it ncwly

shed vortex. Similarly, decrease in circulation will produce II shedding vortcx

with an equivalent inlensity hut a oollutcr circulation by the wing.

Figure 2.2 shows thc \'ariation of wake vortices shed III the: lrnilillg edge with

cIlnllgcs in circulation of all oscillating foil. When the time is / = 0+, those twn vortices

I'I:U and 1"(6T( arc shed. From Kelvill's theorem, 1'1=11 + 1"IUT( = O. If circulatioll of
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Figure 2.2: Presell!,alioll of sht:d vortict:'!! due ta volriation o[ circulalion around a [oil
st'dioll. The negative magrlitlldl~ of tht~ intellsity of tIle inslant 1(.1:) shcII in wilkc
illlllwdialdy ,,[lIT thc trailing edb'l: cl[uuls tIle slope of tile circulatioll curw r; (here
1'; t:lillng(.'S with respl:l:t W tlw 1ravel disLilllr:C:l = tJ /) around thl: foil.

1111: s(:dioll J" dOl'S HoI l'II;l1Igt', tllerl: will he flO rortit'cs slu~1 ill t!lf: wake (110 areil

lu:fore II ill Lht~ lowl:r I'llr1 of figlll'l' :t.::!); frolH I'll lit /'1 1.0 1'1 al '1, tlWTt: is au incfellstl

ill circu[ation (0.1'1 = 1'1 - I'll) and \ !It'n: I1Jllst Ill' it. dcen'ilsc of talill vortex strt:nglll

in tIll: wake so as to sllf~tl II vortt~x 1'".. 1 with it lIl:galivc l1li1gnitudc ill strcligth, i.e.,

0.1\ + 1"",1:::: 0 or 1'1 - 1"0 =ill'l :::: -1'''',1' A 1ll:lI'ly shed vorlex slrength ['0 III ilny

instil III call he l:xprc;sctl in terms of t.he current circulalioll of tim foil section nnd the

Sll111 or all W"kl: \'ortit:(~s in hislory, Expn:~siolls arc as follows.

It I:i1I1 Ill: Sf~~11 lhat .:.\l'i = 1'; - 1';_1 = -I'",.i, wllich is l'{lllal to the shaded area

bt'l\I'I~!1I lime iIl11~rl'als sholl' II ill figure ::!.2. 1'; Hnt! 1'._1 are sectional circllla1.ioll.~

;11 1.I11~ plff"f'nl and Im'violls tillll! rcspedivdy, IlIlt! 1'''''; is the strength of t.he shell

I·tlrtit:!.'s at. thl' t:IlI'f('nl t i1Hl~ sll:p. '['hc1"l'fofl~. it rl'f.nrrellfe rdiltioll hel,ween sectional

l'in:lIlalioll cllange aut! slll'{! vortex cnll he l~xl'resscd ilS

1';

1"-1 1';-2- [',,',i-I,

1"1_1 1"_:1 - 1',..,;_1,

(2.5)
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ilnd the strength of shed vortex at time Ii is then (I(atz and Plotkin 1991, (1./147)

(2.6)

It is noted that frorTI Helmoltz's theorems, in all ideal nOlV, where there is no

diffusion, the strengths of shed vortices in the wake al allY time, once shed, arc

constant. As a vortex wake is also force-free, this wake moves with the local velocity.

TIle local velocity either Oll the wing surCace or in the wake is the resultant velocity

from which the velocity is innuced by vortices on the wing surface ,lin] by all shcIl

vortices in wake, i.e., all vortices in the flow domain.

The influence of the wake on forces on a wing section

ITotlilliflisthlJslllnofaUtliTustcornponentsperplJnclicularlol],cvdo<:ity vedor,ndiugOlI the
willg(von Miscs \915).

1Thc allgle of nttack is tile angle 0 LclwCl:1I the ,·c1ocity VI» and 1111 arLitra'y chll'lclI dircetiou ill
lhe median pJn.ne of the foil; the i1ngle ofin<:idcllce is the Rnglcof nltnck nLzero lin direction ('0'011
Mi8C!l [945).

I'orces on a 2-D foil include lolal lift 1 at all allgh) of allack1 ; lflumellt ahout the

leading edge; alld thrust or drag along the direction of the meall motion of tIle willg.

For a 2-1) foil section in slei\.{ly now, there is 110 indl1clld drag. Total drag collsists of

form drag and frictional drag.

VOTl I(arman and Seal'1l (19:18) pointed ou1l.hat lift and lTlonwnt i1W the fnllc!.iolls

of tlw location and fltrcligth 01 wake vortices. They exprt'Sllcd the momentulll Oil a

foil section as the slim of lllomentullls of vortex pairs (tile product of the cirelilatiOlI

and t.he distance hdwCill1 the individual vortices r;(Zi+1 - Xi))' Aecordil1g to their

work, vortices arc laid both 1I11 the wing surface ilnd are shed in thl: wakc. TheTl~forc,

throughout the flow domain, th~· total momentum is L: fiX;, As the wake \'ortkes arc

continuou~ly shed due to tIle change in strcngtll of vorl,icCfl all lhe wing (circulation),

lhe tolal momentum L: l'iXi and the total moment of momentum L: l';xf varies with

that change. The lift alld moment per IInit area 011 the section WI:rll thell expres,ed

a.~ lhe ratt: of the change in momcntum ann in fIlomcnt of the momcntum hy

I, = -P~ 1: l';x;, (2.7)

---':;CC7.~;------;-:;::---'--
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lind

M = -p~ L: I';x? (2.8)

This illt/kates that the lift ilnd momellt arc influenced by the wake vortices ami lids

is lUll; l)f several ways to ohtaill the lih and I)itching moment.

III addition, there is no forcl: acting Oil the surface of the wake, However, ill the

r.lI1clllation of forces 011 the wing, the wake layer is moving with thll local fluid, and

the wake vortices are the history of the lift aud moment c1mngl'S 011 the wing. The

dfcd of wake vorlil:l'S 011 the instalitalleOllS lift sllOlllJ he taken into account.

Unsteady solenoidal flow around a finite aspect ratio foil

Till: SjlilllWisll lift distrihution 1.(.'I)of a finite SJlilll foil C1Ill be represented in terms

of the SPilIllVis{! cin:lllation distril"-iUolI, fA!}) = pUl'(y), wlwrc I,(y) is sectiollallift,

(I is density of f1uill ilnd 1'(!1l is spanwise cin:ulalioll (listrihution. For ;\ rectangular

lifting foil, the r.irculal_ioll l' at till: wing t.irs is Z(!ro, IUIII gradually inCrf'ilses 1.0 ih

!1Iilxirlllllll \'allll; at tire roo!. chord seeliol1, The cun',lLure of t.lre circlIlnt.iOlr curve

Hlon/o( lilt: Sl)iur is dependent llpon the ilsJled ratio, the ~lrHpe of tlre plmrform amI the

t.ill nllll!i1.ioll, elc. All dliplical plllnforIl111\{l\'ing at l:onslanl vclOl:ity irr a sIal, it; !lui.l

witlr an cllipt.if sllauwi~l~ drclIlatioll disl.ributiorr is sdreuHltica.lly shown illligul'c 2.3.

As cin:ulatiorr arOUl1d j\(ljaccnt sectiOrLli varies, llC('ordirrg 1,0 l\clvin's thcorelll,

1.r;lilirrg vor1.iws lIlllSt he slrell MHI these vortices mo\'e with the fluidi they cannot

l.ernlillat.e (I.iglrt.lrill, I!J8n). TIre stf(~rrg1.1r per nrrit awa of the lrailing I'Orlcx filament.

slllmld be equal to tire rate: of chnnge iu the spallwise circulnlion, i.e., 1(.'1) =-~,
I\"IrC'tf~ tire ueg<lt.ive sign denote'll 1.1rnl. the strcng1.11 of l'(y) decreases 1I'1r(~n the v,1111e

uf l!ll irrcreilS<.'S, Tlris infillile lrurnher of \'orl(!)( lines make a Wilke \'orlex shed be

l1i,1l1 the foil (wlllslructel! by lire brnkcll lines in figure 2.3). According to 1\c1vill's

Ull'orem, these lrailirrg vortices must go throug!. tlll~ st;lrtillg \·ort.iccs so t.hal each

vortex fi1a1l1errllra,~ the form of a doscil vorl())( ring slarting from the bound vortices

orr tire surface of the wing to the slart.ing \'ortices via the trailing vortices in the
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Figurc 2.3: Gcncration of thc trailing vortices due to variation of the RJlanwise circu
latioll.

wake (figure 2.'1). As these trailing vortices get longer with time, but their strcngtll

is constant, there is a drag, or induced drag, as associated with their formulation.

As the slope of thc sp1l.lJwise circulation curve at the tips for Illost willS planfonmi

is steepest, the trailing vortex dcnsity l'(y) per unit Icngth aloug the lIpali rcadlt:; il.ll

maximum value at the tips. Ncar the root chord, the slopc is gcntle. ror an infinite

aspect ratio foil, this slope W is zero (I'(y) =constant there). 'l'llis is 1ht: reason

wIlY for a two dimensional foil in a steady flow, the trailing vortex strength is ;(ero

(the slope for an infinite span foil in the steady now is zcro, i.I:., this trailing vortex

sl.rtmgth, ~). For a qnalitative allalysis, tile 1I1ickncss of the vortex shee1 is used to

exprrss the intensity of a local trailing vortcx filamcnt l'(y), and the distrihution of

"Y(y) for a foil in steady motion is shown in figure :U. The strength distrihution of

trailing vortices is also shown in figure 2,4 for different limes ill a short timc of hislory

hdore vortex sheet disLortion occurs (for example, at t l autl l1, these tlistrilJutiolis

are the same). Theoretically, ill an inviscitl fluid, thougll the vortt~x shl~t:L dislorl.11,

the strength of each local vortex filament is constant. In certain cases, the vortex

filamcnts join or form instabilities in the wakc.

• Uns/cady sparnvisc lift distriblllimi (Juri fM," nf lite l/JfJkc. The spauwise circula

tion curve keeps changing duc to the motion or the foil (yaw, roll, surge, pitch,
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Figure ~A: Formatioll of "orlcx rings hy hOllnd \'ortkes, trailing nlrticcsand sliHtlng
\'or1.kes of 11 :1-1) stl~i11ly foil. Spilllwise trailing vortex distrihlltloll is c(luall~d to the
slopI' of nil' 101:,11 circlllat iOll clIrve I'(y) 1\1111 tllis strength is l~xprl'ssC(1 as 1I1l~ thickucss
of the vortex shl~et..

lll,av,' <l11l1 S\\'ay) ill, lin)' inst;IIIL Cllaugcs ill circulatioll from iliStillillo instanl,

ilcl:ordill~ In l\ddn's t.hcorml1, GlUs(~ vorlil:cs to hi! shed from the trailing edge

uf the foil. ,\ t.ime c1t~pelldL'ut form of the wake is illuslral(·J ill liguTl~ 2"i. \VhclI

tim 101:111 scd,iml'll dreulalion I'(y,l) increilses ill. an iUlIOUlll from !'(y,li_l) 10

1'(.'1, I,.) wldeh is -~I', there lllllst hc a shed yortf:X with its strcngth equalling

+~[' heing shed hy t.he I.r,\Uiug edgc of thill !jl:clion, Tlu:lI lhl~ strength of the

vor1.exclll'l'lmtlyslll'(lis

(2.!))

[II figure 2.r" )'~(.r,!I), or llic s1.I'ellgth of the shed vorlcx, hilS I"itlue cII"alto

the lII~gati\'(' slorH~ of I.hl~ SpilllWisl' ('irclllatioll distriillllioll I'(y), i.e.,-~ (uy

\'orlt:x ctllll,illllil.y) lind ;r(:r,fJl has a \'ilhw C111lill to the lll:gati\'(~ or the rate

of dmllgl~ in the lIIilglliludc of 1'(1/) with respect to trilvd djs~il.tlce (U ·1), i.e"

-.~. These tll"O vorkl( Wl;torS arf: orlhogonal to each other. The shc<J vor~cx

)'~(.l,!I) t:Olltrihllll'S til lhe rull-ut' of the vortex sheet at tip-lo·tip as il is sholl"n

ill figurc 2,(i; ;mll lhf: slwd vorll!x 1r(:t, y) will atfcct the fitr wake roll-Ill> slarting

at lhc slarting \·orlex.
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Figure 2.5: Shed vortices of a 3-0 foil due to variation of the instant circulation. The
local strength of circulation 1'~(x,y) is the rate of dlRngc of spanwise circulation wil,11
respect to the span location, and /,,,(X./I) in the wake is the rale of change of the
sectional circulation whh rcSpl'tt t.o the travel distallce, or the tillu: t.

In any I1nmerical process, the slope of the circulation curve i.~ discrdi~c(1 ill

steps to simulate the continuous vortices ill th(~ wake.

• Roll-up of II uortcx sheet bchillll (l .1-1J slca/ly foi'. !toll'lIp of the vortex sheet

in a wake can be dl~~cribed as follows.

As the wake vortex lines move witll fluid (force frcl~), alHI the local fluid velocity

is induced hy both hound vorlices 011 the surf"ce of the foil ,md hy trailinp;

vortices iu the wake, the vortex slll'd will be distorted witll the motion of foil.

In other words, the III(':al velocity changes as the wing moves away and trailing

vortices arc continuollsly shed. TIle tross seclion of the vOI'l.I~X !lhl'd. (y - z

plane) from the po~itiolL close to the wing at Xl to 11 pO.'lition far dOlVnstream

at Xr. in figure 2.6 shows the process of roll-up till! vortex slu!<!t, for a wing in

steady motion (Lighlhill 1(86).

Induced hy ncwly shed vortio:s and existing vortices on the plallfufl1l aml wil.kt~,

the centcr part of lhe vortex ~heet has a greater dowllw;\.~h all 1I1is dOWllWa.<ih is

contributed to by all vortices along the span witll the sallie d(lll'lIward Ilirectioll.

Therefore, the center part of the vorlex shcclmovcs downward due to the highly
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FiJ;lIl'l~ 1.6: Sdll:Ulntk diagram of a vortex sllt~et roll-up process for a :1-1) foil ill 11
sll'ady flow (Ligltlhill l!J8fi). 11l<lUC1:d hy all vort.ict's in the wake: flUtl on thc wing,
lIilr!. uf tllC vorll~X sllcel, in llltl wake etOSf~ to the root chord goes dowfI\vilrd; vortex
filillllClits depart, 1'11, dill rout chord towilr<ls tilt: t.ips; alit! lip vortkes are rolling up
dm: to t,lu: illcluction of the iflll'ani vortices.

induced dOll"lIwasll. ~Ic!all\\'hilc, alfcdctl hy the I!OWl1Il'iISII, 1'llr1.ex filaments

dosl! 10 alld on Ihe Idl IIlIlI rigli1-!Iand siu<.'!i of llie root dlord will also go

!.owi'lnls 1.111: Idl ilml righl·hillltl tips n~spl:cti\·d.l'. Wilh the continuing motiol1

of the vort.i{:t~s, t,lw local tip vorlin:s art: bent inlo two curled tubes. Within

a lilllitl!d distance from the foil, these tubes iHt! rones. 1l0'lw:ver, in t.he far

lVilkl:, tlu:y will hreilk tlue to illstnhility and diffnse due to dissipation of viscolls
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Formulation of the method

This chapler present.s the assumptions and a brief discussion of the formulation of

the methods amI solution procedures used in this rc~carch.

3-A Physical aspects of the lifting flow domain

The flow arollnd the foil was considered to hcinviscid, incornprcssiblcflnd irrolaliollal.

The physical assumptions arc as follows.

I. The Reynolds number llc is a.~sumcd to be high enough so that the hOlllldary

layer thickness is small. The allached boulldary laycr~ on the upper ami lower

surfaces of the foil meet at the trailing edge. The magnitudes of the vorticity

shed by the IIpper and lower boundary layers arc usually not equal to each other

unless the foil is ill steady molioll; the sum of these two generaLe,] vorticcscqualN

the wake vorticity and this wake vorticity leaves the trailing e(lge or a moving

roil. This wake vorticity assumeclto be it sheet or thin layer; lhis sheet illcrea.~eM

its size when the foil moves and it moves wilh the local nuid and rolls up. The

difference in pressure across the shed and normal velocity or the whole sheet

are hoth equal to zero. Acro.~s this vortex sheet there is a discontinuity in the

tangential velocity; hence the velocity potential across it is discontinuous.

37
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2. As the flow is irrolalional,

38

(3.1)

TherdoTl), there flllIst be a flow potcntial to express the flow velocities, V; = fi.
i.e., V= V· ¢t, all the other hand, the incompressibility of thc fluill yields: r,

diuV=~· V= ~+~~+~ =0.
i):r:l {)X1 (Jx:J

This guarantees the flow heing potential, and if it exists, it l!lust be

(3.:1)

a. The boundary mnditions for clluation (:1.3) an~ ,I) tllc velocity al infinity is

l.ero, yielding V:' = ~. ¢J = 0, and b) the normal velocity passing through the

hOlllltlnry of the foil secliOll is zcro, i.t~.,

Vn=~=ii.V=O.

This is a ~NclllfHllln t~xterior~ prohlem (Katz and Plotkin In!)]) and the unique

solution to equation p.:!) docs IIOt exist unlcss a I)hysical l)ouudary condition ;s

imposed. This bO\1l1dary willI it ion, as diSCllssed 011 page 26, i.~ tile Kulla condition. In

most pallcllllctllOds for solving Ii fling flow prohlems, thc NCUIllIIIIIl exterior problcm

is solved by IIsiuA Grt~II'S idcntity method aud imposing the KuHa t:ollditioll.
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3-B Formulation of the potential based panel method

In da.5sical mathematical physics, there exist several approaches to solving a L.P.D.E.

They arc typically the standing-wave scheme (separating variables and Fourier tech

niques); frequency spcctrum approach (Fourier and Laplace transformations); pro·

gressive wave analysis (D'Alembcrt theorem) and the source-doublet method (Green's

identity application). Procedures of the indirect formulation of the potential based

method are discussed below.

The procedure and ajlplicalions of Green's identities only arc briefly discllssed

here. Considering a three·dimensional potential flow domaill, if the velocity Jlotential

is 4Jl at one point and .jJ, at another, and these velocity potentials arc Imrmonics,

GrcclI's first identity yields

IJL/>,V'i>,dV~ JI.i>,?t;dS-IJLVi>,Vi>,dV, (35)

where S and V dCllotc the domains of the integration. S is a closed surface enclosing

the finite volumc V of the flow domain and S must bc an oricntable surface. 4J1 and

4J~ are harmonics, cq. (3.5) can be interchangeably rewriUen as

Subtracting eq. (:W) from eq. (3.5) yields

fffv(4J,V2tP2 - .jJ,V'tPJ)dV = ffs(tPl~ - tP2~)dS. (3.7)

eq. (3.7) is Green's second identity. It can be wriUen alternatively via £; ='V. ii

fflv(¢lV2tP2 - 4J.:zV2tPddV = fL(tPl'Vt/J2 - tP2 'Vt/Jd' iidS, (a.8)

which is eq. 3.4 in Katz and Plotkin (1991). E{I. (3.8) can also obtaincd by defining

a velocity vcctor

(3.9)

and applying the divergence theorem (Moran 1984)

(3.10)
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The significancc of Green's second identit.y, is that the values of 91 and tP-J ",t

Any position (Z,II,.) wilhin the flow domain can be expn:ssc:d as a surfacc intesral,

and <!>l AIId 97. in the surfAcc integral are tile ValuCli Oil ~hc boundary(s) of the flow

,lomain. In other wortls, ¢d%,y,z), ~(z,y,.), V1¢I(Z,lI,z) And V1~(Z,II,.) have

CCft.ain rcl",tiollB governed !ly Green'li second identity with the boundary values or

dll(p,b,c), ~(a,b,e),~ And ~,where a, h, /lntl e arc coordinatCli 011 the

houndary. Though Green's BL'Cond identitji reveals those relations, it callnot be used

directly to SOIVll I,he hOllrulary value problems.

Grccn's third idelltity in lhrlle dimcnsional ca.w.lI stalClt

-111. [180Q /} I] .¢(/I)=- ---"Q-;-(-) u5.
'i/r s r chi un r

(:1.11)

I,'or Ill11Uibo,ly problems, iUI I.l\place's C{IUAlioll is lincar, a !SOlution can be obtained

hy lIupcrpo!iition. Tllcrdnnl, ':fl. (3.11) call be applied gencrally as

-I N 11. [1"6q 0 11¢(I')~-~ ---6q-H JS.
'Ill" ~=l S r /)11 U/I r

('.12)

In a !irtillg flow, where A foil hM a wake clltcnding downstream, N ::: 3 is defined

for tile surfacr. boundary of the foil sllrracc, the WAke vortex sllect surface And tile

illlirlity houndary surface (Ke figure 2.1).

GOllsillerinl. a liOlit! foil hOllndAry (figure 3.1), the differencClI in \'Clocity potelltial

KIllI velocity hctwccn tile insillc and outside or tIle bollndMY at point Q are

mill

6q =¢,. -¢••" (3.13)

iJ¢Q {)¢;>t - /)¢P~l (3.1<1)a;; =--0-,,-

rcspcclivcly. As the velocity potential or II. unit doublet OJp"bl<l i9 equal to~

(IIL'C 1(lI.t<\ illid Plotkin 1!192), r/JQ ilntl ~ call be eqllalbr,c<l '"

('.15)
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f10'/l' field '/I'ith;, the domoin V

4'

Figllre 3.1: BOllndary conditions of velocity potential and normal velocity. Velocity
potcntial acrolls the solid foil houndar}' ha.~ it jllmp, which is discontirLlLous, ilnd
nOTlllal vc!ucily acrOSll thc llOlluuary is contilluoml, which is 1.ero.

and

{)~Q = DA" ;nD¢Joul = II, (3. If!)

wherc q and II are the strcngth of tIle !iOllrcc alld doublet respectively. Witll tht:

1I11known strengths of the source and douulet heing placed in the integral of Grctm's

third idcntity, the potcntial 1101V ba~d boundary integral rndhod finally follows

-I N if. [I D I]ql(/') ~,E u- - /,"(-) "S.
',1l' ,,=1 S T' UI! T'

(:1.17)

According to the boundary conditions for thc potential lifting flow a~stlmetl on

page ;17-38, boll I sources q hlld doublets 11 are allowed to cxist 011 tile surface of the

foil, thongh either onc or both can bc placcd alternatively; on the wake vorLex sheet,

i\.5 normal velocity v" = ~ is continuolls and velocity potcntial has discontinnity

(jump 011 the boundary), ouly doublcts ilrc allowe<j all the sllcct Sllrrl\c(~; at infinity,

a~ r --+ 00, hoth terms in the intcgral vanish, hcncc ¢J(P) at rI =:l (boundary ;stakcll

as infinity) is a conl'ltant, or f/!...(P). The known velocity potential 4J(P) or a unit

source and/or doublel at point P, ha.'l illl influence 011 the boundary. This influcncc

can be detcrmined in tcrms of t.he unknown strengths of thcse (Ioublcls 11Ild sources
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heillg placed on tile boundary and the dislallce, r. from point Q on the boundary lo

IKiint P in the domain, with an unknown flOtclltial 6(1'). 1I0wcv~r, if P is chosen

inzide the foil, 9(1') i~ y.ero-thi~ will !Iignilicantly !Iilllpliry the solution procedure

(lw.t, Kat;.; and Plolkin U191). III llm.'C dilllcnlliollill ca!it.'!I for til<: foil. wak.~ alit! tile

trow houmlary at infinity, tllc following relalion exish

-Il~ [' iJ' ] , 1~ fl I .¢(P} "" - tT- -/1-;-, (-) dS+ - /'-:-, (-)d$ +6",,("),
'Ill" I~il ,. (II ,. 'hr ...h r" r

(:I.IS)

which is ';'I.:l.I;J in 1(;\11'. Illld I'lotkin (I!WI). Similarly, the hOl1mlnr~' int<:JI;trll ill th.,

I.wo dinwlIsiolllll CI11U' i~ 1.l1crr irr tile form of l(a1.;,. lfilll Plotkin (Imll) a~

'f, [ /} l' 'i. iJ6(1')=;- "lrrr-I'-iJ (In,.) ,/.1,--, "-1' (11I'·)I{S+o",,(P).:llt/",t II 7r"",tf /I
CI.I!I)

,\ l"illUIl sign lias h•.~'ll ;,,1,1,·,110 1:'IUl1tioll :I.I!1 due '0 a Ililf"t!'lll. ;\ssulIll'lion of tilt,

Ilil"l:<:l.ioJl or the 110rmal \·.:o:l.or or lhe roil's ,.urr;.c.!.

Similarly, ir" ,.."u... , atlel/or dlll.hlel is placc.1 nn lire roil surface. lh.: \'clocity

pot''1.tial and ill.h,cl.·d vducity at /1/1 arhitrary lwirrl J' ill 1I.c ,Iomain (poillt J' rail

JlIM' he ,.laCL..1011 thc hOlllul:lry) ,,'i11 also ha\'c thc !IalllC relation nll gi\'f~ll in Cli. (3.18)

ur l."'. (3.19). Thi!l relAtion allOlVlIlIpplicatioll of the honmlar)' illtl.'gral" abo\"c to lIOh'c

"melical prohk~nlf. \\'11<'11 .'(,. (:l.18) or Cli. (:I.I!I) ill to bcllOh'cd 11I111lcriCIIlly. Illllllllbcr

or !tOlIrcc aml/vr dOIlIl1<:t .,IClIl""l.3 arc placed 011 the roil outer :ourracC!, a number or

doublet dell1elltlf ' ;It<: ,,1:1.·...1011 the inner :ourfacc of ti,e b.urkr (wake \'orlC:'- ~hcct).

In 1f.1.litioll. for 11 UO\\' Mound" !i:'(ClI roil. 0",,(1') = U_~ + I/_!J + 111",,=. i" IIOt

"ulIlItant; ror a foillum'ing ill:l "talic lIl/icl, Ihe \'clodl)' poten~ial 0_(1') is col1l1lant

alul, all iI rd,m:lwe Jloint. thil'l COl1l1lllllt call hc tllken. 1I0\\·(.'\·c1. Illf~ mC1I1l \'c\ocityof

lh" foil imli!i"s lhat lh.~n' ilr" vclodty l:ompol1ell1" lItl.I,:.1 \n tim 1I1l1\'in/!; bOlly, i.e.. all

nd.liti~'llill

(:t.201

Solution or Cll. (J.IS) lIlIll cll. (:I. Ill) rail" iuto1hrc,: l:n1l~/!;oriclf: I)irit:hld problel11s

(~ i" gh"'11 al lile 1101l11clary ;\.~ 1\ rUlIction). Ne1l11l11l111 IIrobll:l1Il1 (lhe derh'ati"O! of 0

IA llon!>I"I. di~ITihlllion 11M lhe Mille vdocily 1,01",,';al.'UI Ihe vort"" ring lin."" iflhe}' arc I,la<",'
I,ropetl)'. s..., Mo,,,,,I91j.\.
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with rcsped to the normal, or the normal veloc.ily I! is known at the boundary)

and Robin problems (boundary values arc given as mixed Dirichlet and Neumann

conditions). Again, ror lining problems they cannol be wIved uniquely unless II

KulLa condition is imposed.
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3-C Numerical implementation

3-C·l The method of numerical solution

By ilpplying the Diridilel, boundary condition, a comhination of sourcc and douhlet

(lis!.rihlltiolls was llscd for the solution. By se1.tillg l.1w inner velocity potclll,ial w;

COllstant, eq. (:1.18), rderring to the hody frame, yields a zero valuc at e'lell panel:

For this to Ill: villi,l, i1S was ,Jiscussed in the pr(~\-iolJs section, tIle Hili!. .~ollrce

strength has tolw scl as (1'.2,11 I(atz ancll'lotkill Imll):

a = il' 1/00' 1:1.22)

wlll~n~ ii is the uormal vector of the foil's sllrf1ll:e.

[I. is lIol.ed l,hilt V"", is the lotal kincmatic \-c!oeity rille to tile 1lI0tion of t.lw foil,

not the forward swim spc:ed Vj1i!1hh which was often expwsseflns Vo<> illihe literature.

A !lumher of surface: pil1lcls were plilccd 011 the hody of the foil ilild thc shed

Imkt:. I.'or c:ildl palld, tllf(:c iuflllCIiCC (;odliciellts, corresponding to ! IIf: tllree terms of

f'll. (:1.21) were ohtain(!l1. For t.lre 1.11"0 (Jail hId inflllcnce eodficiellts (wake and foil),

111(: 1LIllll,:riral solutio!1 was obtaincllthrough thc following steps (Newmilll 1!18G):

I. Tire analytical result, or the illtcgfiltion ovcr a p()lygollal surf"c(: pauel

is IIsed. 1I1~l'c, llw {!uII1I1ill of intcgrillioll oS' is dil'idcd by all infinite flllmhcr of

dl:fHcrllsdc.{II,.

2. I·'or cHcll panel wllere t.lle illflllcm;c cocfliciellls are to h(~ sought, thc coordinates2

~lllthi. tll<'si.,.c, y ami: r~II!($<~n\ tlll~ ~alllCll in holly rralllc; S, Y, lInd ~ rcpre$clIt incrtia
rr;llilcillltll. aml,/ areJlallclcoordirml~"', lIccalll<C thc 1>lIlU'l wa.'lassulllcdHnt.thcw'lticnlordinnll1
orll,,' I'fllId i.1."ro.
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X, Y, and Z of the control point of each panel were transferred to a Cartesian

coordinate system tha.t is established on the local panel. In the process of

evaluation of the influence coefficient, the local panel coordinate system is the

reference frame and this panel is the one which makes the contribution to the

influence.

3. The influence cocfficient at a point (usually the conlrol point of a fJu;Hlrilatcral

panel) due Lo a unit doublet on another quadrilateral panel was obtained by

integrat.ing along the other panels's four sides. A numerical form of eq. (:I.2:l)

that was presented by Newman (1986) was lhen used:

where thIn = 71n+1 - 'In, 8(n = {n+l - {n with cyclic convent.ion; Il" was the

distance from the II-til corner point to poi lit P(X, Y,Z), the wiltrol point,

where the influence coefficient is found. A schematic diagram is pre8Cnted in

figure A.I in Appendix A.

The sourcc innucm:c coefficients at each pand were calculate<! a.~ follows:

1. The analytical solution to the first term of cq. (3.2:1) was prLsentcJ by Newman

(1986),

(3.25)

2. Newman (1986) obtained a numerical form of cq. (3.25) for sonrces OIL ;~ quadri

lateral pancl1Ul:
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(3.26)

where sill On =~ /tnd COli On = ~ and "n is the lenglh of the II-UI side of

thc panel.

To numerically evalUitl,c C(I. (3.:H), ill the summation or lIle values of lhc inverse

lallg(ml functions, wher! lIle partel angle n is in tlte range or (-"', ro), has to be dealt

with carefully. To do t.hill, Newman (1!)86) combined the two terms of e(l. (a.24) hy

(3.27)

C:j = Clc,-8IS,.

For it foil hody having N panels, the illfluclll,:e codlicient Illlllrk(.'li, due to lile

flollhld anfl tll(~ soun:c on the .~tllid bOlllldary, have an order of N. They were lahelled

ilS follows:

li l •1 liL, d,.,.,. I"

r/,.I d,., ({,.N I"

I{"".I I1N.2 liN .N lIN

and

01,1 01,2 OI,N

1
",

02,1 02,2 02,1\' ",

ON,I ON,2 ON,N j "N

(3.29)
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With the marching of the time steps, the size of the shed wake doublet inAllcncc

coefficient matrix grows and it has an order of N xl(, where !( = AI * r, is the

numbcr of columns of the matrix, M is the number of wake strips across thc ~pan

and L ill the number of total time steps. This matrix at the last time stcp (which

OOYers the history of all the shed vorticc!'l) looks like:

[ dw""
dWl,M,1 (lWI,I,I,

' Jw"" , ]

I"~'"~ I
''''''

(:1,30)

dWN,I,1 ..• dWN,M,l dWN.l,l. I!IJJN.M.J,

A subroutine was carefully written as the engine of the OSFJ3EM 1.0 oh[ail1 t.he

coefficicnt malriccs, along with another !Hlbrontine to transfer the glohal coordinates

to pancl local coordinates. These subroutines and tll'O sample 1flatrin~~ arc included

as Appendix A.

The J/i ill CfJ. (3.28), in this doublet-sonrce perturbation potential lll<:thod:l , is

equivalent to ~i, the distribution of velocity potential ovcr the solid surface. Once

the distribution of /1; Willi obtained, the tallgcntial velocities II'err: tlll:n ohtllirwd hy

differentiating t.he potclllial\Vith respect to tlle tangeutial 1'I~ICJrs of l'adl pauel. For

rigid foils, as panp,l relativc positions rCTnllillCd unchaugcd, LllI!s(~ codlkielli. llIalric(:s

were the same for each timc step. \"or all clastic foil, 1l1l:Y hall 10 he ohlailled ;lll:m:h

lime step.

As can he seen, if Uj 8m] /1; arc not given, Lhcre is 110 ll11illlll~ solution t.o 1.1IciineiH

equation sy~tcrIl:

eq. (3.28) - cq. (3.29) +cq. (:1.30) :;; O.

However, eq. (3.29) b~'Comcs a kuown out'-column ma.trix by applyiug eq. (a.22).

The tot.al killcmatic velocity due to the motioll of LIm foil \Vas oUlailll:l1 hy:

(:I,:lI)

311y assuming the inner velocity Ilotential being cOlIslnJlI, i.e., zero, the local dOli bid ~lrcllglh

yield$ n value the same as tlrat orlhe loul vdocity I'0lcntial.licc Ii,ltz nnd l'lot~in 1m)l, p.l~O.
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The velocity V,Tlln. due to translation was the velocity at the origin of the body

frame coordinates. It consists of the x-component, foil forward swim speed V/1•gltt and

the vertical component, foil heaving velocity h. The y-component for an oscillating

foil is zero. It is in a form of

(3.32)

The velocity due to rigid body revolution about three fixed axes, v.."" was:

(3.33)

where i(x,y, z) is referred to the body frame and n, for a foil with pitch only, is

(O,6pit~It,O).

A large amplitude motion was assumed. Therefore, the velocity of heave and pitch

were derived from:

and

h = hosin(wt - ~PItaK)

O'=aosin(wt).

(3.34)

(3.35)

For a flexible foil, the velocity at each panel, due to the relat.ive motion of the

panel within each time step was obtained by determining the t.ime derivative of the

deflexion equation f(x, y, z, t). It was noted that this velocity was based on the body

frame so that it. had t.o be projected t.o the global frame in order t.o be summed in

eq. (3.31).

When the total kinematic velocity Voo was project.ed onto the panel surface, the

values of q were then the normal components of the projected velocity Voo ' With

these known source strength values, eq. (3.29) was reduced to a. one-column matrix

and moved to the right-hand-side becoming RH31 •

As mentioned in a previous section, eq. (3.18) does not. have a unique solution if the

Kulla condition is oot imposed. Eq. (3.30) was also reduced to a known ooe-column
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matrix. This was done in two steps:

l.Finding the doublet strength at the immediately shed wake panel at the current

hme step. Once these values are found, they remain constant. As the wake roll-up is

not implemented in this method, the locations of the wake panel remain where they

were shed. A steady Kutta condition (Morino 1974) was used to determine these

values. This Morino Kutta condition,

(3.36)

is then evaluated along each wake strip across the span at each time step. Eq. (3.36)

indicates that a number (M) of unknowns should be added to the system linear

equations. The coefficient matrix of eq. (3.28) was then rewritten as

"'1.1 "'1,1 "''''1,1. "'1,/0( ..... -1)+1 "'I, ...... N "'I .......

<1101,1 <1101,1 d"'M,I .. <lM ,IO<7-1)+1 dM,MoN d.v,M..

(3.37)

<1101 1•• "'MI.I <I·MI,I. <lMI,/o(:'-lHI "'MI.M.N "'MI.M.

where J is the number of total cbordwise panels including both the upper and lower

surfaces and AI is the number of total spanwise strips. The subscripts (k, m.. ) are the

flags of the influence coefficient at k contributed by the i-th immediately shed wake

panel; k ranges from I to AI * J and m", from 1 to M.

Eq, (3.37) was then reduced to a (N + M) x (N + M) coefficient matrix by

substituting

(3.38)

into the (M + I)-th row for the first wake panel of eq, (3.37) and so forth as:
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(~.J"~,I.)
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(4"'J.I-4""'J.I.). (4"'J.J +4.",J.I.).
(3.39)

At each t.ime st.ep, t.he values of doublet strengt.h on t.he newly shed wake panel

were found by using C<I. (3.36) for each wake strip (each sect.ion), after the linear

equation syst.em was solved.

2. Using the values of the previous shed wake doublets to find the one-column

matrix. This is done as follows:

• At time t = tD • PI ... PM were found by using the steady Kulla condition and

the matrix solver. There was no wake matrix formed.

• At time t = t .. tbe wake matrix then became

dWI.1.1 dW,.2,1

dW2,1,1 dW2.2,1

(3.40)

where N is the t.otalnumber of panels and M is the number of wake strips. The

wake coefficient matrix had a size of (J x M) x M = J X M:l, where J is t.he

tot.al number of panels at each section. At. tbis time st.ep, t.here were only M

wake panels.

• At time t = tL. the last time step, the wake matrix became eq. (3.30).
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This one-column matrix which incorporated the wake effect moved to the right

hand-side as RHSl.

To improve the accuracy of the prediction, Katz and Plotkin (1991) moved the

control point of each immediately shed wake panel closer to the trailing edge of the

foil. Instead of doing so, this method employed a number of different approaches to

improve the accuracy of the results. Two of these approaches are explained below.

When the trailing edge of the foil had a non-zero thickness, a substantial error in

prediction occurred. This is because the Kutta condition is invalid at the trailing edge.

To avoid thjs, the difference in the velocity potential <1>00 at the trailing edge on the

lower surface panel and on the upper surface panel had to be taken into consideration.

Youngren et. aI. (1983) has proposed an adjustment on their low order panel method,

QUADPAN. Maskew (1987) used a similar approach in his VSAERO. This was done

according to the formula:

I-tw = I-t"pper - I-tlower + <Iloo,,,pper - <Iloo.lower. (3.41)

These velocity potentials wcre evaluated in terms of the dot product of the global

velocity and the global coordinates of the panel's control point.

Consequently, eq. (3.41) added another one-column matrix to eq. (3.39) as RH53.

This one-column matrix was:

(3.42)

L~=l dN""mI-tN,m"

where N is the total number of pancls, M is number of wake strips and f!.n,m" is the

difference between the velocity potential of the upper and the lower panels at the

T.E. To find the doublet strength at the immediate shed wake panel, eq. (3.41) was

used. instead of eq. (3.36).

It was found that averaging the immediately shed doublet strength improved the

prediction on the velocity and pressure distribution on the foil, especially for a foil in
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sinusoidal motion. In most cases, the above approach reduced the pressure difference

at the trailing edge making the steady Kut.ta condition more feasible. This was

formulated as:

Eq. (3.39) was further written as:

1#__(1) - #1_(1)1 + #.(1 - I)
2

(3.43)

("'MJ.J +"'·UJ.I .. /2).
(~,M.N -t ~,M .. /2).

("'UJ,u.r;+"'uJ.M.. /2).
(3.44)

Consequently, eq. (3.42) was revised as:

RJIS3 = (3.45)

E~::;:I d:v.. ,M I'N"',,(f)+;N ..... (f-l)

It was noted that the wake doublet strength found at the previous time step was

kept in memory and was used to find the average at the current time step.

Finally, the left-hand-side of the lincar equation system was eq. (3.44) and the

right-hand-side was RJ-I51 + RH8 2 + RIl Sa. This linear system was ready for a

matrix solver. The wake doublet strength currently shed was then determined by

cq. (3.43).
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3-C-2 The matrix solver

53

An accurate, reliable and efficient matrix solver can significantly improve the speed

of computational work, especially for time-domain applications in which the matrix

solver is to be repeatedly used at least as many times as the number of total time

steps. (In some iteration methods, either for fluid or fluid~structuralequilibrium, the

matrix may need to be generated and solved a number of times at each time step).

The percentage of total elapsed time taken to solve the linear equation system in

this OSFBEM program depends on several factors: the matrix size and its property;

the selection of the solver; the accuracy requirement; the CPU and the bus speed;

programming techniques; the number of total time steps and panel density. This

percentage ranged from 30% to 90% for rigid foils. For flexible foils, this percentage

wa.., reduced because both doublet and source coefficient matrices need to be obtained

at each time step.

In many computational jobs, coefficient matrices that were yielded from the

integral-L.P.D.E are symmetrical and sparse. For these symmetrical, sparse matrices,

there are a number of mature subroutines such as lTPACK, LAPACK, LlNPACK,

NAG, IMSL, etc. Most of these well written packages are easily downloaded from

the Internet. However, in most cases eq. (3.44) was a dense coefficient matrix. This

matrix is not symmetrical due to the imposition of the Kutta condition, wake effects

and sometimes non-symmetrical 3-D geometry of the foil. Therefore, a highly effi

cient, reliable matrix solver that is suitable for asymmetric and dense matrices is then

desirable.

A number of Gauss elimination subroutines for both real and complex linear equa

tions are available. For large scale linear equation systems, the Gauss elimination

method is usually less numerically efficient, and this becomes obvious when the ma~

trix size is larger than 400 (Katz and Plotkin 1991). Another disadvantage is that this

method requires a greater amount of DRAM (dynamic random access memory) for

operation, at least as much as the size of the matrix multiplied by a precision factor

(e.g., for single precision this factor is 4). When a shortage of DRAM is encountered,

this method becomes unbearably slow even if a very little amount of virtual memory
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is to be swapped. A test on a 486SX 33!\tllz machine with 4MB DRAM found that,

for an 800 x 800 matrix, a solution took about four hours for a Gauss-Seidal iteration

method and about two days for a Gauss elimination method.

:\Iany classical linear iteration methods, such as the Jacobi, Gauss-Seidal, and

SOR (successive over relaxation) methods are stationary iteration methods. They

ha....e slow convergence rates and these rates also depend much on the property of the

matrix and over relaxation parameter (Jennings 1977). The SOR method was used

once to soh'e a matrix generated from this panel method with irregular geometry

input and it did not con ....erge.

In this computer program OSFI3EM (oscillating foil boundary element method),

the l3i-CGSTAB (BiConjugate gradient stabilized) method was used (Freund ct al.

199t). A pseudocode of this method was presented by Barrett et al. (1994). The

subroutine used in the OSF'BEM was based on a subroutine downloaded from the

NetLib, which requires more DRAM and more matrix manipulation than the one used

in OSF'DEM. It was revised for two versions: a) Using a row-by· row reduction scheme

to solve a big matrix without using virtual memory swap. The revised subroutine

reads one row at a time when the DRAM is limited in which case the matrix is stored

in a binary file at each time step. Required DRAM is /. (7N) bytes, where N is the

order of the matrix and / is the floating point precision. This a\'oided using virt.ual

memory swap which would take a long time to solve a big linear equation system. b) A

modified version to reduce the number of times of t.he mat.rix had to be manipulated.

This is particularly helpful when the DRAM is not. very fast4 or the virtual memory

swap was required in the case of a) above. This version requires t.hat t.he comput.er

put a full coefficient. mat.rix into DRAM. The amount of required DRAM is t.hen

I • (N 2 + 7N) bytes. Version b) is much faster t.han a) but requires much morc

memory. Version a) was found very helpful during t.he two-year dcvelopment stage of

the OSFI3Er..J. Version b) has been used since a machine, with a Pentium 120 l\lIIz

processor, 32 l\lb 70-ns DRAM and I Gb hard drive at accessing time of 8 ms, was

accessible.

4DRAM'sspeed usually ranges from 60 to 80 n6. A faster EDO RAM is becoming popular now



ClIapter 3. Formulation of tile metllod 55

Version b) above was used to compare with the SOR method. For the OSFBEf\1

with a given input, the ratio of total elapsed time for the Bi-CeSTAB to the that for

the SOR is 220:2617. In this case, the Bi-CeSTAB has over tcn times the computing

efficiency of the SOR.

To achieve a fast convergence rate, Bi-CeSTAB requires that the matrix be nor

malized. In the OSFBE~1, this was done by dividing by d", at each row for both the

LIIS and the RHS.

3-C-3 Calculation of hydrodynamic forces

The solution to the linear equation system is the distribution of doublet perturbation

potential. The velocity profile was then calculated by differentiating the doublet

velocity potential with respect to the two tangential vectors on each panel and its

adjacent panels. Hydrodynamic loads, boundary layer growth, propulsive efficiency

(the ratio of tbe output power to the input power) and thrust were then obtained

with this given velocity profile.

To obtain this velocity profile, a simple djlferentiation scheme such as a central

or backward finite difference method will do the job. However, the velocity cannot

be obtained at the control point of an end panel if backward or forward differences

are used; either central or backward difference schemes may lose one point at each

section (or inaccurately predict the velocity on the two end panels at the trailing edge

of each section). Maskew (1987) used a surface quadratic formulation to get around

this problem. In OSFBEM, an orthogonal-line quadratic formulation is used. While

this method requires less computing power, it substantially improved the velocity dis

tribution at both the leading edge and the trailing edge compared with the backward

or forward difference scheme.

This scheme was first to locate the three values of the adjacent doublets, these

values were then used to determine the coefficients a, band c of a parabolic function

by solving 3 x 3 linear equations. The tangential velocities were obtained by differen

tiating these two quadratic equations with respect to their two directions, exactly. At

boundaries, values of the t.....o closest adjacent panels were used; in the middle, values
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of the doublet distance were taken from the immediately adjacent panels. This scheme

is best to use for a structureds panel grid arrangement. For a non~structured panel

grid layout, such as triangular surface panels, some special treatment is necessary.

With these perturbation tangential yelocities , v,,(Vpil V..
"

V... ), the total velocity

based on the body (rame at each panell was obtained (p. SOl Katz and Plotkin 1991)

by,

v. = Voo(Vx, Vy, Vz )' ii,(i,j,k) + v.(v" 11" V.), (3,46)

(3.47)

where i, i, and k are in the panel local coordinate system6
, the total kinematic velocity

Voo is a velocity due to motion of the foil and is projected onto the panel coordinate

system. In this method, as discussed in a previous section, the strength of the source

was given by eq. (3.22) and the perturbation normal velocity was given by a/ = (V.)/

so that they cancel out to satisfy the boundary condition: velocity normal to a panel

on the body frame is zero. There was no axis transformation matrix operation needed

as all manipulations were performed by vector operations.

The total velocity at eacb panel was tben the modulus of eq. (3.46). With this

velocity, the pressure coefficient C.. on each panel was obtained (Katz and Plotkin

1991) from:

C -1- IV.I' __2_~
,- IVool' IVool' at'

The last term of eq. (3.4 7) can be obtained in a number of different ways. A

simple approach is using backward finite differences:

(3.48)

~ A structured panel layout is prepared according to a number of columns and rows, though the
size and the shape of the panel may vary. In the present method, the trailing edge side of the
upper and lower surface panels coincides each other. Unstructured panel arrangement will cause
certam numerical difficulties in applying the trailing edge Kutta condition or finding the trailing
edge pressure differences

'The panel unit \'eclors, I, ; and f, "jere obtamed m terms of the global frame, I_e.,
~X,Y,Z)/~,;(X,Y,Z)/~a.odf(X,y,Z)/~



Chapter 3. Formulation of the method 57

where, in this doublet-source method, 4> is equivalent to p. In the development of the

OSFBEM, it was found that using finite-differences to find the doublet time derivative

had a slow convergence rate (i.e., it required more time steps to get an acceptable

degree of accuracy). More noticeably, for an oscillating foil in sinusoidal motion,

the time history of the strength of p at each panel is also curvilinear. Therefore, the

slope is better described by a polynomial. This was done by polyfitting three j.t values

(one at the current time step, two at previous time steps) to a quadratic function.

The time derivative was then found by differentiating the quadratic function exactly.

~Iathematically, the difference between these approaches vanishes when the time step

size approaches zero, but, when the time step size is larger, this method converges

faster. Using a higher order polynomial might be better for convergence, but it is

necessary to soh'e a set of higher order linear equations for each panel at eacb t.ime

step. This in turn, increases the CPU demand.

The load normal to the panel (based Oil an inertia frame) at each panel I was then

obtained from

F, ~ -(C,),(A,.'d),k,(X, Y, Z)E, (3.49)

where E is the reference dynamic pressure, ~p[V:rl and (Apcanc')' is the panel area.

The sectional lift. coefficient was calculated by:

1 J

C, ~ - A....,_E~ F,(O,O,Z), (3.50)

where A.eclion is t.he foil spanwise sectional area which is independent of foil thickness

and J is the total number of chordwise panels.

Sectional thrust. (also drag in an ideal fluid for a st.eady foil) was t.hen calculated

in similar manner:

I J

CI = - AKd.OftE:; F,(X, 0, 0),

and the sectional moment coefficient was det.ermined from:

(3.51)
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'E t [(X, - X~,,,,)F,(O,O, Z) - (Z, - Z~,,,,)F,(X, 0, 0)), (3.52)
Aucl",.. CiOOllI J=I

where C,00Il1 is the local chord length aDd Xpttdt. is the pitching axis location based on

the global frame. For a. small angle of pitch amplitude oscillation, the second term

in eq. (3.52) may be neglected. Results from the calculation indicated thai the effect

of this term on total propulsive efficiency is very small (For an angle of attack of

about 10", the difference was usually less then 1%). For steady flow, this pitching

axis position was automatically sei at 25% root chord by the computer program.

Total lift L, thrust T and pitching moment M at each time step were then deter

mined from

J

L 2)c,),(A"",_), (3.53)
J=-

J

T 2)c.),(A.~,_), (3.54)
J=1

At
E;:,(c",),(A_,_),(ct~,),

(3.55)
L.f=1 (A$CCl'''''')J(CiOOlll)J

3-C-4 Consideration of viscous effects and skin friction co

efficient Cf

Boundary layer separation has substantial effects on hydrodynamic forces and propul

sive efficiency. These effects, however, have not been quantitatively identified as a

function of a variety of parameters such as aspect ratio, Reynolds number, roughness,

sectional shape, planform geometry, forward swimming speed, reduced frequency,

feathering parameter, de£lexions, many of the factors, etc. They are too complicated

to consider exactly. Though many studies have been done on experimental aspects,

their results are by no means able to predict the flow phenomena for the oscillating

foils in this study. Detailed study of all viscous effects is beyond the scope of this
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research projecl. However, boundary layer separation effects on the flow pattern of

the foil were qualitatively controlled according to previous results as described in the

next few paragraphs.

In this method, a numerical prediction of boundary layer growth was made, mainly

for the following purposes:

1. To compare the boundary layer growth between a rigid and a Oexible foil. By

doing so, it may allow the flexible foil to have a smaller pitch amplitude7 and a

higher heave amplitude to have a fair comparison (the same degree of separation

or boundary layer growth). Usually, due to the chord wise bending moment

of the flexible foil section, the instantaneous angle of attack of such a foil is

much less than that of a rigid foil; thus, it less prone to have a boundary layer

separation. This method did not intend to determine the exact viscous effects

on the boundary layer separation and dynamjc stall.

2. To obtain a relatively accurate skin friction coefficient before boundary layer

separation occurs.

Re purpose #1 above, it was decided to examine whether the flexibility of the

foil would delay the boundary layer separation and, if so, how much delay. This

examination was also useful to select the oscillating parameters to avoid a severe

boundary layer separation in cooperation with the previous experimental studies. Re

purpose #2 above, it was not intended to obtain a precise skin friction coefficient if

separation occurs. However, it was intended to obtain a coefficient of skin friction

more accurate than a rough assumption for a foil for all kinds of motion.

Based on the above reasons, a subroutine for the boundary layer effects was added

to the OSF'BEM. The formulation of the subroutine was based on Moran's (1984) 24D

steady flow approach. The assumptions were as follows:

• Each strip section of the foil resembles a 2-D wing section.

71n m06t eases, the larger tbe pItch amplitude, the smaller the IIlstantaneous angle of attaek
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• The tangential velocity downstream was then the velocity in the calculation of

the velocity gradient.

• The cross flow velocity (another tangential velocity across the span) was ne

glected. This may affect the accuracy for small aspect ratio foils and for flow

at the tip.

• Reynolds number was determined by taking the root chord as the characteristic

length and the foil advance velocity as the reference velocity.

• The flow at each time step was assumed to be steady for the purposes of the

calculation and this simulated a steady flow at each time step. The effect of the

motion history on the boundary layer growth was neglected.

• The stagnation points were approximately taken at the extreme points at the

leading edge and the trailing edge.

• The skin coefficient, c/' was obtained first for each panel. This value stays where

both laminar and turbulent separation occur because cJ is maximum there to

have a conservative estimation and a method to evaluate the Cj at separation was

not available yet; and, for an immediate separation, this value was calculated

by using Blasius formula (p. 140 Schlichting 1979) for laminar separation and by

using cq. (21.11) of Schlichting (1979) for turbulent separation. A leading edge

separation may be allowed because it does not affect the loading sufficiently to

eliminate the possibility for an unsteady foil (p. 478 and 525 of Katz and Plotkin

1991).

As the theoretical background of the above method in 2-D respeds was discussed

in detail by ~'Ioran (1984), the boundary layer growth starts at a stagnation point

at the leading edge. In the laminar flow region, cf was calculated by using Thwaites

method; at the transition point, Michel's method was applied. The cJ at each panel,

in turbulent How, was obtained by Head's method.

At each time step, the total skin friction coefficient CJ was calculated by
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1 N

Ct = At~1 :;(ct).(A"'~I).' (3.56)

where N is total number of panels. This value of C/ was then used to modify the

total thrust for input power calculation at each time step.

3-C-5 Efficiency and mean thrust calculation

The coefficient of friction was approximately taken as a reduction on the thrust,

though they are not. in opposite directions. This may allow a conservative prediction

on the efficiency. Therefore, in each time step, the net. thrust was calculated by:

At

T, = f,l(c.)m - (ct)m](A ....... )m' (3.57)

where M is the total number of sections and i is a time step index.

The trapezoidal rule was used to calculate the mean thrust in an oscillatory cycle

that consisted of a number of equal time steps.

The efficiency, '1, is the ra.tio of output power to input power. The instantaneous

input. power at the i-th time step was calculated from

(P,.,",), = M,a. - L.;'" (3.58)

(3.59)

where M is the pitch moment about the pitching axis, a is the velocity of pitch, L

is the total lift and it is the velocity of the heave motion at the i-th time step. The

mean input power was also obtained using the trapezoidal rule.

The instantaneous output power is the product of the advance velocit.y of the foil

and the thrust Ti .

The propulsive efficiency was finally obtained via the trapezoidal rule:

_ L[_I(POOII""r), + !I<POUI,...I). + (POOII,...dl)
~ - E!" (P..,",), + li(P..,",), + (p••,",),] .

it was noted that the mean input po.....er and mean output power had to be cal

culated separately o\'er the period. At certain time steps, the moment had the same
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rotational direction as the angular velocity of pitch; thus, the instantaneous input

power was negative (The stored energy did the work); at a zero instantaneous angle

of attack, the thrust is negative due to pressure difference and the skin friction (extra

thrust was needed to push the foil forward) so that the output was negative. These

\:alues should be held and be evaluated along with others in the whole period to yield

practical input and output power.

3-C-6 Computing considerations and the procedure

Th(.-'()retical study and mathematical formulation are both essential to a computational

fluid dynamics job. However, without a basic understanding of computer software,

hardware and necessary techniquC5, numerical modelling cannot be realized, or, at

least, results cannot be obtained in a reasonable time. The development of the early

version of PMARC (Katz and Plotkin 1991) is such an example. If the binary file

storing the matrices were not applied and the matrices were not solved by row· by

row reduction, it would not be possible to run it on a PC about ten years ago. Of

course, this is not really necessary today for most of computing tasks. Computer

knowledge helps to take advantage of new hardware and software technology and to

a\'oid a waste of existing resources. This is particularly important in the case where

the resources are limited.

A computer program package was produced to fulfil the computational tasks re

quired by this research project. It consisted of four main parts:

I. Data input worksheet, Joblnput. An ASCII file with templates and expla

nations to instruct the user for data input. This worksheet was designed for

user-friendliness and for improving efficiency in batch jobs which required a

huge amount of work. Data were inputted below the explanation lines. These

data are in the following categories:

• Sections of foil geometry offsets. Data inputted in this way were to make

it easy to change the aspect ratio and thickness ratio of the foil. To change

thickness and aspect ratios, only N number of values needed to be changed,
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where N was the number of input section offsets. The planform shape was

also easy to change by alert.ing 2N values (the leading edge and t.he trailing

edge x-offset.).

• Oscillating paramet.ers. These included t.he motion state (steady, unsteady

or flexible), oscillatory speed, pitching amplitude, pitching axis location,

heave amplitude, chordwise and spanwise deflexioll equations and ampli

tudes, etc.

• Panel grid number and spacing across the span and chord. Ninc combina

tions of pancl spacing schedules were implemented, i.e., equal, cosine and

log spacing in these two directions.

This input worksheet was also designed for repeated computations in which

the input data. and the dimension array sizes were different from one com

putation to another, without reformatting, linking the source program. In

other words, an executable file OSFBEM.EXE will do them alt.

2. Panel grid generation program, JobContr.FOR, a Fortran program to gener

ate the panel corner points and to process the input data from the input. data

worksheet.. As this program needs a large number of dynamic arrays and a fast.

CPU(s), it was designed to be separated from the main program for the hydro

dynamic calculation. This arrangement enables the user to see the generated

panel geometry before the job is sent for long hours of hydrodynamical compu

tations, when desired. Its input file is the worksheet JobInput. it. outputs the

following files:

• A JobCorPt.BDF to be read by the main program. It includes all necessary

information for hydrodynamic calculations.

• A 3-D surface panel file JobPanel.DXF in an ASCII or binary DXF formal.

This can be inputted to a CAD package such as AutoCAD to examine the

generated surface panels. When needed, it can be directly downloaded to

a computer that is linked to a CNC cutting machine to make a foil or an

arbitrary 3-D surface.
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• A polyline wire-frame DXF file JobGrid.DXF. This serves the same pur

pose as the surface panel file, but as an alternative.

These DXF files enable a user to have a close examination of the 3-D foil

modelled in terms of surface panels. Errors in geometry may be corrected

before sending the data to the main program for hydrodynamic calcula

tions.

The dimension array sizes are declared dynamically (through the WATCOM

F77/386 V. 9.01 compiler). This enables the compiled executable file to take

different input data without reformatting and linking the source code, saving

time and increasing portability.

3. The main program, OSFBEM (oscillating foil boundary element method). This

program reads in the input data file JobCorPt.DDF and performs computations

following the approaches and procedures discussed in previous sections. The

array sizes were also declared dynamically, so that memory can be released by

de-allocating some arrays and the program can take different input data without

recompiling the source code.

The main output of the OSFBE~1 is OSFBE~1.LOC. Output items are ad

justable by changing the settings in the input worksheet file Joblnput.

4. Pre- and post processing programs. These short programs were written to

generate the NACA 4-digit foil sections, translating binary output from the

OSFBEM to DXF format, retrieving specific values from the OSFBEM.LOG

(to rearrange results for plotting without re-computing), and manipulating the

binary file generated by AXUM (a plot package) for interfaces. These short pro

grams were written in Borland C/C++, QuickBASIC and Fortran. They were

designed to work under DOS for portability and speed. Computer languages

were also selected in terms of their capability and time efficiency.

Computing procedures in the OSFBE~I are listed below. They are

I. Dynamic array declarations (blank arguments).
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2. Reading data from input file JobContr.BDF

3. Calculating all required array sizes and allocating them.
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4. Finding neighbour panels for each panel. By the end of the program, panel

flags will be used in differentiation of the doublet velocity potential to obtain

two tangential velocities.

5. Changing the body frame origin to the pitching axis location if flow is not

steady. This procedure finds the panel corner points and control points in the

inertia frame.

6. Detennining the starting wake corner points and recording them for output to

a binary file OSFBEM.PAT (Using a binary file will save about 75% storage

space and increase 5 times the data flow speed while retaining a double precision

accuracy.) Recording the panel corner points and outputting them to a binary

file OSFDEM.STP. These files will be translated to DXF format for graphical

examination by other programs.

7. Transferring global corner points to panel local corner points. These Cartesian

axes on each panel are expressed in terms of three vectors based on the inertia

frame.

8. Finding the doublet. coefficient. and source coefficient matrices.

9. Initializing values and starting the time step loop.

10. Start.ing the time loop. Finding the instantaneous origin of the foil body frame

and pitch angle.

11. For a flexible foil, finding the deflexions and relative velocities due to t.hese

deflexions.

12. Finding global values of panel corner points (on inertia frame); transferring

panel corner points from the inertia frame to panel local frame.
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13. For a flexible foil, calculating the doublet coefficient matrix and source coeffi~

cient matrix.

14. Finding the panel local velocities due to translation, rotation and deflexions

based on the foil body frame. Transferring body frame velocity to global veloc

ity.

15. Finding t.he panel local velocit.y referred to the panel's local Cartesian frame tii,
uj and 11k (the unit vectors).

16. Calculating the fixed source strength (to yield the lUI Sd by multiplying the

source coefficient matrix by the normal component of the body local velocity.

The source coefficient matrix for a flexible foil has to be obtained at each time

step.

17. Determining the newly shed wake panel corner points and outputting them to

OSFBEM.PAT. These corner points are also stored in memory for wake doublet

coefficient matrix calculations.

18. Outputting panel corner points in the global frame to OSFBEM.STP.

19. Transferring global values of the newly shed wake panel corner points to the

panel local frame. These values will be used to modify the foil body doublet

coefficient matrix to fulfil the Kutta condition.

20. At t > tl , transferring global values of previous wake panel corner points to

panel local corner points and finding the doublet coefficient matrix due to these

wake panels. Using this matrix, along wit.h the doublet strength values corre

sponding to these coefficients, to find the RH S2.

21. Applying the steady Kutta condition (Morino Kutta condition); furiller modify

ing the double coefficient matrix due to body panels by taking the T.E. potential

jump into account; modifying the doublet coefficient matrix by averaging the

newly shed and last shed wake panel doublet strength to yield a new doublet
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coefficient matrix and a new RII53, at each time step. This is a one-step op

eration, though it. was discussed in number of steps in the previous section in

this Chapter,

22. Normalizing t.he doublet coefficient. matrix; finding the right-hand-side of the

linear system R/-I8 = RlJ 8\ + RII 82 +RlJ 83 and normalizing it. too.

23. Solving for t.he unknown doublet strength distribution on the foil.

21. Determining the doublet strength of the newly shed panels.

25. Finding tangential \'elocities by using the panel neighbour flags, panel geometry

values and doublet distribution.

26. Finding the panel total velocity and reference velocity.

27, Finding the derivative of the doublet potential at. each panel.

28. Determining the pressure coefficient Cp and hence t.he loads.

29. Calculation of the boundary layer and skin coefficient. CJ•

30. Recordjng time related variables, output.ting the panel corner points at the last

time step. Time loop ends here.

31. Calculating thrust. and efficiency,

32. Outputting summaries; ending t.he program.

Verification of t.he program, convergence studies and certain special treatments

for oscillating foil problems are described in the next chapters.
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Results and discussion:

convergence and computing

efficiency

Before obtaining any results for oscillating foils, a series of convergence studies and

verifications were done. When the computer program OSFBEM was proven reliable,

it. was then used to perform a number of computations for oscillating foils.

A convergence study was first done for a steady, rigid foil, with regard to the time

step size and the lotal number of panels. That is, the effect of time step size and

panel number on lift. and thrust was examined. Further, the effect of different panel

spacings on lift. and thrust. were observed and several guidelines were obtained for

both steady and unsteady flows.

The extensive convergence study was completed for several reasons. First., the

combinat.ion of the panel density in t.he chordwise and the spanwise directions, the

panel spacing arrangement in dir<."Ctions, the time step size and the number of time

steps has a significant effect on the reliability and the accuracy of the predictions.

Second, obtaining an acceptable accuracy of the results with less computing effort

saves time and resources. Third, for a large scale numerical work, as the computing

power of an IB~I compatible Pentium processor PC with CISC architecture or a

68
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Figure 4.1: The panel geometry of a 3-D foil with an aspect ratio of 6 that was used
in the convergence study with regard to the panel density arrangement.

UNIX workstation with a ruse processor (such as SuperSparc 5 or 10 or even a D8C

alpha) is still inadequate, conservation of thc resources is especially important.

4-A Panel density effects for a steady foil calcu

lation

A rectangular NACA 0012 foil with an aspect ratio of 6 was used for the convergence

study of the panel density and spacing. The sectional shape and onc of the panel

spacing arrangements (cosine-cosine for chordwise and spanwise diredion) is shown

in figure 4.1.

The chordwise panel intervals in figure 4.1 were taken as 20 and the spanwise

panel columns as 10. The number of panels in either direction can be altered easily

by changing one number in the input worksheet. The panel spacing arrangement

(an also be changed by changing a word in the input worksheet. Because the panel

generation program was separated from the main program OSFBEM and several tool

programs were written for interface with different software packages, panel generation

and visualization were straight forward. A test was done on a Pentium 120 PC with

32 i\lb on a PCI mainboard. For small panel numbers (about to by 20), when a batch

program was used, it took about two minutes in total to revise the panel number and

spacing, run the panel generation program, translate to a DXF file and display the

graphics from within AutoeAD R12. About one quarter of the time was taken on
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Figure 4.2: The foil with its shed wake. Each wake panel row stands for one time
step in history.

starting the AutoCAD or it could have been even faster.

Figures 4.2 and 4.3 show the wake panels of such a foil and its instantaneous

position in history, respectively. As was mentioned in Chapter 3, truncation of the

immediate wake panel was not applied (Katz and Plotkin 1991). Instead, several

different schemes were used. When these approaches were set active, the truncation

of the immediate shed panel size had little effect on the load predictions.

Before performing any calculations for a different number of panels, a convergence

study was done to select the fewest time steps necessary for a reliable result with an

acceptable CP efficiency.

Figures 4.2 and 4.3 also show that even if the foil was in steady motion, it was

treated as if it were in an unsteady motion; i.e., the foil was moving constantly and

marching with time steps, in a steady fluid.

The smallest number of time steps required to obtain an acceptable accuracy was

about 5. As the starting vortex wake effect on the calculated hydrodynamic forces

was significant, this number was dependent on the size of the time step to keep the

Figure 4.3: The instantaneous foil position in motion at each time step.



CllII[Jtcr 1. f(c.~ult.~ iWel fliw:II,,"~io/l: cOl/vergcu("() II/lfl computing cfficiNlcy 71

.-_0 .I""I
.. :: .

'--~------,,---"-----"------,,~--

Figul"e ·\.,1: TIll' lifl l:odficifml COl (hallgl"~ wilh llll) dl<lllgC~ of lhc dlorflwi~c: intl~lv1l.ls

NCltlnl al 11 [ix(:d T11l1ulJer or tlw spallwisl' ililen';IL~ NSplnl=fi.

.:J
I'igllrl' ,1..-",: 'I'll" ndl:1I1"h-'ll dnlg ,11111 thl' l,ilchillg 1l101l11:lIl codficients Cd, 1IIIfi ern
Cllillll-\C' with till' dlilll/;I'.S of 1Ill! t1tlllll)(:l" of elionlwisl: illtl'r\"als <II a lix/'II 1I11l1l1H:r of
1,111' spi\lIwisl~ illl.lln'ilis ill. i\Splllj,=(i.

fuil far from llw sl.<\rlillg \'lll'1I'X wake. The dislllllt'l: froll\ the starting \'orlc:x tu til{:

foil. should IJ(' IIs11nlly gn'aler llilln.'-.o lillll'S tlll' rool dlord length.

For il rough CilklllHt.ioll, in whirh oilly 111l' lift codlkjl:1l1 alld 1ll011lf'1I1 ,He jill

IlOr1Hlll, II tot.al of."1 lillW stl:ps wil.ll 10 scI:unc!s stc'l' Si~I', i.~ slllIicic'lIt. For iI dear

pl"f':il'lItatioll, l.11l: 1tHlIl mill'ching dislallcc sII0\\'11 in lil';ure ,1.2 is lllll\'h slIlaller thall

il \\"il.~ ill practin'. t\!so, till: illlcn',lls hdll'cell I'adl illSl<llll,ll1COll.~ position shown in

···.1

':;: ..

l'igmc 'l.fi: The lift (octlic:il~lll C/ Chilllgl:~ wi\.h the (hal\gc~ of tlll' Sjl,IIlW;Sf' illlervals
NSllllll al II lixl'd 1Il1mh(:r of lhc chordwisl' inkrvals NChltl!.={i.
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I"igure 1.7: The calculated drag and the pilchillg mOlllent. codlicicllls (',(; and C',"
change willi lIw changes of th,~ spallwisc inlr.rvals NSpltlt ill. a fixed llulIllwr of till)
dlOnlwisc illtervals NChlnt=(i.

"I':~ .- .~:." .- -- -.- -.- -·---·1
0" •.

I"iglln~ '1.8: 'l'lle lift codlir.icllt C/ changes wit.h 1he f'hallgl~s of the dml'Ilwis/: illt.I:rval~

NChhlt at a fix(~d 11lll11lJer of t1w spall wise iuten'als NSplnt = IO.

ligure '1.:l Me much larger t.han 1.111:y actually w/~rl' Whf'll 1111 arrallgl:rnl'lll of.'i tirrlt'

steps with it 10-~ccon,1 stl:P si~£ was taken.

Tire angle of attack of the foil for all calculations WIIS 0.1 rad or.'i. 72!Jfl". 'I'lll~ IHiud

spacing arrangement for the rcsults pre.'iCnte\[ in figurl:~ ,l.iJ illlll '1.5 WilS fllSilll: irr hotll

choTllwisc and spallwise directions. [n tlrese two figures, NSp[lll is llie lotal 11ll1nhl~r

of tire spanwisc panel irrtcrvals, and NClrlrrt is the total llurnhl'r of Ule d]()Tllwi.~l'

intervals. The t.otallllllllher of the sectional chord wise pauds is NChlntx2, illcllldillg

ho1.!1 lhe llppl~r ami \.lIe lower surfacC:l. It call he S(~~II \.Ilal, whcn NSplnl WilS lilkt~tr

as il sl\lallnuTllhcr (G) tire lift cllcnicient rcac1ltld to ithout 0.-17 (il converged val1w ill

this case is ahout 0.'15). As the value of NSplllt was small, couvergtmce eilllliot h/~

ohtaiucd. CJi , the drag ill an ideal fluid, and em, the pitch morll(~lll (;Qdfici(~llt (ahout

O.25C, where C, is the root chord) also sllowell a fake convergence. This illditall~~

that if the 1lI111lucr of the spanwise panel is taken as a smalllllllllhcr, illl:wasillg 1.111:
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1"il;l1re ·I.!): 'l'he nllcllJ;l1.r~1 Ilrag ilud lhr! pildlin,e; 1110ml~nl I:odlir:ir~nt~ Col, ,llld Cm

r:llangl~ wil h 1,11l! cllallgr~s of tIm 11111111)('r clf dlllrdwis<, intervals at ,1 fixed lIurlllJ'~I' of
tlll~ slmnwisl~ illlervals at NSpllll.=IO.

Ililiid iIILr~r\'als ill till' dlo,.,lwise IlirccLion willilot, il11prol"e lhe nllIV{~r,e;en((' ral(~1 1111

tlrcliftr:odlic;ilmL.

As ~h()wll irl figul"l'S ,l.{i aUfI 'l.i, wlll'lI Ih(: [lilnd Ilell~iLy was dlilngell to {j pillll'l

illl,q\'ills ,H'rnss l.hl~ clrordwil.ll i\ IOlal11llmbNUr Pillld~ of ",Clllnlx'l = 12. increasing

Ilrl~ SPilIlWi~,: pand dl'lIsily ill("l'I:asl'r1 III(' (,OIln'rg<~lIr'<: rill" for Ilw lifl, codlicicnt Ct.

llo\\"c~\·f'l". willi slldl iI ~nlall 111l1111>l'r of rllonlwis.' Pill1d~ (1'1 ill (01111), til(' nOI1Vi~f;(IIIS

<lnl!!: ("(wllkielll C di , '\l1d the pi1t:h lHOlIWlI1. ("(1I'lIi(:il'l1l (.',,, Sl.ilyed ;]hno~l. III lite SillllC

V'lltlf'; i.f~., t.1l"y Irlld a [lour l'Ollwrs"nr:r' hdli\l·iolll'.

II, 1I'1IS ~1'(~1l lIla!. tlll' ll11rnlwl" of ~llilliWisf' PilrLt:I~ had a sigrlifir"illil dferl 011 tllc

f'onvcrgl~Il(:C(If thl' lift. 'I'hi~ rnighllJ(' c.ll1sr~1 II)" illCrf'llsilig llll~ 1l111ll1)('r or t he ~11.lnl\'ise

1'1'1,,' 'nulvNll"lln' talc', Ilr Ihe 'ron"f~rgelln: ~I'",:d' Ilu'nliorlf'd in lhis rhe~i~ 1I1l"IIiS Ihal how rl\~l

a r,,,,nlt rr'arJ,,,., a r<>n,·,'rl;e<l "alll~ WIlh r"I;'lfIl 10 the lIIltl\h"r or \h~ 1''111<'1 illlcr""ls, lhc nurnhcr of
liltll'sl"I'~"r II,,' 1II11111t,'rorll,,' ir,.,alions, iral!}", ,\ l;oo.lwllwrgcnc,' rat", or a f'lsl Wl)I"l:rgcncc
sl,,~~l will sho,,":1lI "hililS "r 11", r"~lIh .• I'<'ndlinl: i\ "ahl<' <Ultl hal'ing a "f'ry ~1Il;,1I rJl'IIlI:" wh"11 lin'
lIllrUI"'r"rp:II11'1 iull'r"als, II,,, 1llll'll"'fOrltlUpskp si,."",rr .. illrl't,.,.rsigllificM,ll)'

FiAIll'l: ·1,10: 'I'll<' lift ':Ol'lIiciellt (,', dl'lllgl~ witll llic dl'lngcs (If 1he Sl"lllwi~c illtcr\'al~

NSplll1. a\. i\ li:<t'd lllllllbcr of I,he dlonlwbt~ intt:rvills NCII!111 =10.
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Figure -1.11: Time collvergellcc behaviour witll regard 10 the Il\IlllU(~ror time slell ill\d
I,he time step size, The results were obtailwll rrnt" a n:dangular foil witll all .,sped
ratio or,!. To e1iminllte the erreel. or the panel sllilcing on the i1CCUrilCY, ,10 dlordwisl'
and 20 spanwise panels were arranged.

Wilke strips. llowever, as the wak(! matrix lakes all i\ll1011ll~ or llll!mory ill hyks

(!fIUal to {NSplnl)'xNChlntx1x NTSto.,1 x,, where [ is a pro~dsiu!l parillncl.cr (ror single'

precision, 1=,1), increasillg thl~ lIulnl)(~r or wake ~1 rip.~ will r('lluirc suhsl,alltiillly I!lOTl'

fOl1lputing power ane! DHAM. As will he t1i!lClls~l'clla'erill this ("haplel'. ror oscill"t.ing

roil calculations, the CPU alld the DRAl\] were Imrf'ly ilde~qllal,l', "\'1'11 lhllligh a

I'lmliulIl Pl20 prot:l-':isor with a 32 l\'lh DIlAl\l elll a PCI local IIIIS Illnl EIIJI': I/O

controllell mainboarll wa.~ employed. Also, this result sllggcst,:cl thilt. llsing it lligh

numher or the spallwisl~ ]Jillids will no!. drccl.ivdy improvl: I.he CfJn\·('rgenc(' Til!.!! or

lhl!l.1lrust (the drag is!.lw llegal,ive I.llrllsl ill oscillalory motion).

Figures -1.8 .mll ,UJ show l.lle convergellce rales for the lift, thrust alill pih:llin,l!;

IllOllwnt coeHiciellts, at a constant spanwise panclll1lmhcr fJr 10. The plllll'l spadng

"I
~ ""j .""" IISl,I,,! (l¥':hlnl~IO)

.0' 0-- 0 _

_0.0' '" ,. ,.
Figure 1\.12: The calculated urag alHI the pitching IILOIlleul wdfidl~llts C,li ,lUll C'rn
change with the chauges or tile spallwis(~ intervals NSplnt at, /I [iXI~d tUlllllwr or the
dlOrdwisc intervals NClllnt=lO.
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Fj~lll'e ·1.1:1: TIle lift nmHkir'nl. (;/ dlllup,es wilh l.lw dl1\IlW~s of IJll~ lIurllbf~r of IIII'
dl()1"(lwis'~ in!('ITills (;\Chllllj h"illp: (~(l1lal10 tll(' spallwise il!Il~TI';lls (:\Splnt).

ill 1'01,11 ,li,..~ ..I;"lIs w,'n' <""silu'. W!Wl'I' ,,;wlt pillll·1 hOlilidary was rl"I,'nnill"'! hy

aud

!I; = "h~IJ r'IJ,.,ll' (.l.~)

11'11('1'1' 0, = i X ISO/(;,\( 'hili!) ,1lId .IJ =.i x l"U/(:\('hllll).

\VlI1'n jlll~ 1IIIlllhnof lhl' sparlwise piltlds ['('rllilillf'rl nmslnlll ill 10, il\tT,'asill~ 1\)('

dlr,nl\\'jsl' iutl'n';11 X( :111111 hilll IiI t 1(' I'lfr'.. ' 011 Ilw ralt" of ('olln~rg('rl(,('of 111\' lift ('od

li/"jl'll1. IJO\\'(~\'('r, tIll' ("()lln'r~I~Il(f' ratl' Oil till' pilddng moment (.om \\"IlS signilirillltly

illll'l"o\"tsl. ,\s rHn llt' Sl'I'H later ill this dlilplf·l'. ,I f;lsl rOl\\'j~rgf'lll:e fil1<' on Ilw pildl

IIlOTH"UI will sp,~·(l Ill' tlu' rOfl\','rgclltp ralc~ <J1I pl'o)llllsi\'(~ ,·f!ki"lIfY.

Fil4l'r<'s ,I. Jt) ,lllli ·1. I::! SIIUI\' 111i1t \I'h"ll III<' 111111IlJ,:r ur l'hordll'isl' pmwls WIl~ fixed.

I. .: I
Fi)l;lIW ·I.H: Tlw C'iIlfUlilled drilg iltlll the pilrhing ll!onwnl codlicic[lis Cd; ,ltI<1 em
dlangl' witll Ihe <.:hilllgC's of Ih,' 1I1111l\wr or 1111' eh(lr<lwi~e inlen'ills (:\'Cltlnl) heing
l"I1Iili to IltcspilllWis(' illler\'ill~ (N::iplnt),
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Figure ·1.15: Th~ lift codlicit'llt C, cliallAe~ with the fh~llg('S of 1>01 II 1he lIullIllt'r of
('OSilll~ dl()nlwil'l~ illlcrl'als and t.ll~' number of 1.111' uniform ~p11nwis(~ intC'r\'ids.

ill(:n:ilsing Llle spauwise p'lIlCl NSplllt illf:reasc!l till' raIl' of l:()II\'eQ~lm('(' 011 llu~ lin

eodJicienl 111111 sloll'cd t11(~ till.e of fon\'f~rgellcc011 till' (hnlsljdrllg 1111d pil.l:h 1II0llwnl

('odlicic!l1.s, !1. illso Citll he S(',~n thaI. 1I1!~ t~on\'t'QI;CII('(' SJlI'(~(I, for U1t~ lin. codlkie111

ill a larger l'illlW of rhoTd\\'isf~ rmllcllHlmlH'r (NChlnl=IOj. hC(.'lIIIW ~Io\\'; i,e., III(~

lift appToit(:hcd ll[(~ limilillg \·all1t~. \Vhf'lI 1\Splil1. 1I'11S 1.1lk(~11 to hf~ .1!JO\'l.' 2·1, Ihe

lift. ,'odliti,mt rflllvcrg(~1 (Iuickl)' to nlm111. O.·lr" As WilS Illl'lltio[wd eilrli'~r. \l'h(~l1 1111~

Humher of [III' d[ord\l'i~(' pilHcls is [pss 1hilH HI X ~ = 'lU, 1.1H~ )ln~lli('ktl IIITIlS!., dril).!;

ilnd thf~ p;Ir11ing 'nomen1. ,10 Hoi. llal'l~ ilIl iln:l~plilllll~ an~lI1'iu:y,

WhclI it was seen 1.11111 either 1I,~irrp; a srrlllil lIl11nl)!'1' of dlOl'dll'i~l: or spall\\'i~1'

pll1ld 1l11lnlwrs did 110t ohlilill all ov(!rall fast eon vergence 1'111.1', e1lllal pilud ~paf:illg~

ill holh dirediolls II't~re t(~(.l~(l. The results for t.he ~lllll'~ 1I1l11lhc!' of dlonlwil'l: ,lIld

spallll'ise inteTvals (the 11llmlll'T or dlOrdwi~f' II;lnds was then lwiCf~ as 1l1lHl,Y as that. of

tlll~ sJlillll1'i~c Pillll'[~), is ShllWll ill li~HT('S ,1.1:1 allll'L1·!. TIIl~SI~ Ihn'!' qUillllilil'S {lift,

Figul'e,l.lfi: The calculated drag and thc pitching 1I1omcnt codlicicllt.s C"i 11m[ C/o.
dlllllge with the changes of hot.h tire l1umher of CO,~illC chnrdwisc illll:rvals ami tlw
11ll111UCr of tl](: lllliform spmlwisc iTltcTVids.
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Figlln~ ,1.17: Tlll~ lifl. ("(Wl!il:il'fll. (,', t:llflliges with tlw rlIflIlAI:S uf it [laud arrangfmll'1I1
of \.lw nHlllhn uf 1111: Sl'l1l1Wisl' p.wl'! illtl:n',,!s \ll'in~ :.!.l lillws of 1111' flullIl.er or Iii,'
dumlwise inll:l'\"flls (l.,l T \(:hln1.=NSplul).

l'il<'1ling 1Il011U'1I1. 1I11(] IllVSSllt'(' drilg/1.hrllsl ("(}('fIicil'lIls) had il good COllI'ITgf'II!:!' rill,'

witI'll 111l: n,llIll",r of l'ilfll'l i1l1crl'ids \\'a~ abollt J(J It! J L A!Jon' Hi. lht:y grildniill,\"

ilpprolldwd il limit.

Ijp 10 Ihis point. [or IIll' l'I's1IlIs 10 nOJl\'I'!}~I: wlwlI Ilsing il 1""lllli\'dy slow elll: Imel

DH,\?l Sl'1 Ill'. tIll' 1l11llIhl'I' or lil1l" sl"I'-' ill 1Ill' l!1otjoll WitS .\TS.\I=."J, tlu' 1111](' .sll'p

inll'r\'alll'ilS 1,110111 In .Sf',.. ;lud ,1)(' 1ll1fll1H'r or j1l1NI,,.ls ill hUllt ,Iin'clioll.s WilS lilkl'!l

i,I"1111. I Ill' sanl(' (llI'N 1,1). I ;~ill~ rt'\\'('r 1itlll' ~1('11~ aud itll'rt'i1sitlg th!' t illW illl'~l'\'al ~iz('

infTl'i\S\,,1 ro1t1ptll ill~ dliri"11I:y. ll()\\"l'\"l't. wll,'n I Ill' I inw i1lletl"111 \l"it~ too liIlW' (ll.sl',:rl

wtio o[ Iltl: ~Itl'd wllk,' pil1ll'll)('in~ ~n'ill"1" llinn l()[)). JIll' sllt'd wakl' paud h"CiIllIl'

II lill<', atld litis alr('cl(',1 Ill!' ,\(Tltl',U'y or tIle n·sllhs. Thi~ tllltlH:ri"1I1 pmbkut tltil.\'

lll' l'ill1s,'d lIy itl1llTtlral" ,11:II'rminiltiotl or the pil1l1'l \'t'(lors <l1ld rdalin' geo1l\,:lriral

\'illlll:S. In snl"h l"ilS':l', ,Ionllh' pn'cisioll t11i~hl 1)(' !U'('t!,',l illHllliis in Itlm. II"Oltld Ilil\'!:

Fi~\ln' ,1.1$: 'I'll,: "a!culale<! drug lIud tIll' Ililrhil1l; 11\0ll1cul ("(J('([iciel1ls C</; ;uul
('", dlatlg,: wit II t.1u' dl1l11ges or il pilnd arrft11,t!;l'm,'ul of the llUlnlll'r or tlte Sjllll\
wist, pallcl inl,:n'"ls lu'ing 2.·1 liuU's of IIII' Ililtubl'r or 1111' dlUnlwis,' inten'als

(2,'I~NChltt1.=N~pltlt,),
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increased the CPU demand alld tile amount of DRAM required.

A tC!lt wa.~ also done for dilTcrcnt panel spacing arrallt;ements across the span "nd

the chord. \Vllcn the chonlwisc panel sp"cing WIL'I t"ken "s a uniform inlcn'al, the:

prediction was obviollsly poor at the leaelinr; r.clge and the trailing r.clge. E.",'>C.'Cia.l1y,

ilt the leading r.clge. the slolM: of the prL-s."urc coefficient ill ill fad \'Cry large. Using a

elCII:iC panel arrangcmcntat thCllC lwoedgcs, .!Iuch as {"O!Iim:, yidlfL'Cl a heUer prediction

at il NlIlallcr lolal number of lhe chortlwisc panek In conlrast. Ilsing the uniform

NflllllWisc pand Npacin,!l: rcsultr.cl ill a Iluickcr COII\'crgcllcc raW (st'C figure-; .1.1:' alUt

(,I.lfi) for all tlITL'!: IIUilllLilif..'lI al NChhllo=NSpllll. This lIlay he: dllr: 10 t.ll(· filet 1,11i11

1.Ile lifl eliNtriLulioll i1t"roNI! the spall had a rdalh'c1y l1al Nlup'! and l.1l!'rcforc. 1,lle l:Il~illl'

NJlilcing lVas 1101, optimal.

Tlw log Npadllg ill holh directiolls was il!NO 1.1·IILI~11. The log 1I11acil1P; ,doug llil!

dlord was dc\.crlllillcd IIy

:r; 0= r,(l +lug(IOiIN))

wllt'fe r.; i!l half of tilt' Im:al d,ort! ICllgtll ant! IV is hair of ~Cldlll,

<lncl

Yi 0= JI;(I + log(IOiIN»,

«·:11

«..I)

where .~; is the length of the Iialf ~pall. Figure <1.19 ~how:c il log ~')ilcillg for II01h tilt'

~panwisc illIIl till: dl01llwist: IIircdio1l5 will. 1<1 )C 1,\ pilnel inlr.rvak

Figure'!. HI: A tog IIpacilig arrallgr.lIU:tlt for a rt'dilnglllilr roil wiLh all a~JIf:d ratio
or :1. Foil St'<:tion is NAGA 0012 with hoth H chorfllViS(~ illid SIJallwis(' illlcrval~

(NChluto=NSpJnt= I,I).



The prNlicl.iolls hy using Ivg spacing in dther or hoth i!ir('cl!ons .I'if'ldl:d ah01lt tIle

sallie rcslll!$ as tllal. ohlililll~11 hy IIsill/!; the olsilll: spadng. 'l'herdlJr<:' 1I1I'SI: results

,II'I~ 1I1l1. presented ill t.1I is l!l('sis,

As WIIS melltioned iilJ()\"f~, illl:rl.'ilsing thl~ !Iumhcr of the spnnwise illt<:rmls impro\'cI]

[JIl' speed of cott\'l~ri;eltce, A J1lTgl~r ratio of NSplllllo N(:hllll. 11'i\S itlso used 10 c)(lIrnillf'

tJIl' l'Oll\'crgelll:l~ hdlilviollr. Oln~ of s('\"I'rill cotllhillil!iollS WilS 1'101["11 in fiWln's,I,li

,I lid ·1.18. For '~:<'llllpll', whell tlll~ rat.io \I'i\S 11IkcllIIS 1A,:m: H llle,lllS \\tllt 1I11'w ilre

:W spallwis,~ pilnds illld K x 'l := Hi l"llOrdwisc lJl1llek TIll' lolal Ilumber of pHlII')S 1I'1IS

t 111'11 10 x iii 0:: ;I~(). [I. Gill 1m SI~:11 111111 1I.~ing a pand ill"rimgclIl<:nl of j\SJlII11=~8Mid

.'\(:111111.",,"1, (i.e" li7~ Jlillll'lS ill lolal) r('sll[\I,d ill iI gUild I:OIl\"l~rgmln' lH'rforrllanl;I'.

,\s ,lll ('(llHPlitaliotls II'l'l"e dOl\l~ Oil pes, improving I Ill; tIllllpl1lillg dtidl'll<")' 10

Sil\'1' nnw I1ml r!'ji()UI"I'I'S 11I~I'illlll~ n'l"y imporlanl.

For sll',1I1y molioll. iI slIlnll tolall1l1ltlheror lime Slt'ps illlli a higW'1" :\Sp[1I1 J11l1llhl~r

WI'I"!' ,Jf'sil"illJll' rur 110111 ~l){,l~d of Ilrl' f"onl'I'rgl'lln: aud fOllljll1tiug ('ffici"II<'y. TJl{'

jl,lIidl'l;llt'~ yil'IIj('d from (JI!' I'OIlI'!'Tf!,I'II!"{" ~I lilly iln::

• '1'111: lolill rrllll1lu'l" l)f t.illl!' .~II'pS ilnd til\' lillll' illll'rrill Irild 10 hI' nlllsidl'I'('d

log!'llu!l', '1'111' roiJ Ir;HI III Ill! rill' rrolll lire ,~lilrlilJg \"(J1'II~x 10 l'lillliIW1e 11111 drl'c1

or (hill \"lJl'll'X,

• Too Illall)' lillll' steps wOldd I'('llllff' thl: wlTlpulinjl, dlickrrcy: too rl;w lirnl'~tcps

ilmlloo lm'gll i\ lillll' illl!'l'\'ill wOlllII JI<I\'(' yiddt'd 01 \'cry tnrg" pOInd ilsl)("\ rillio.

WIII'Il tllis rillio WilS \()o Ifll'jI,l" 1l1l1ll('rirflltliflkult)' ocrurred.

• lisillg lllun' lillll' sll'ps illlprtllTIll111' !JfI'jiS\lr1' pl'o[ik ill'ross Ill!' chord (lhis will

Jm Ilisl'ussl,d lall~r in this dlal)ll~r). \ising n minimllm or ;lO Ii Ill!' sk[JS illlli 11

I w:! SPlulllls lilll!' irrllll"l'al gavil a good O\'('rall ("(lI11pllling IWrrOl"llliHl("('; i.e"

iICI'IITiH:y and <:!llllPlitillg eflicielKy,

• Using a larger S[liHllI'isl' plilld llllmlJf:r \\'hill~ kt'(.'ping lire ,\"Chlm larger lIlilll 10

yidll('d ,1 gUild par!!'l arrilllgl:nrl'llt.. Typically. [he nlmhination is Illl ll~s than

IH aml K(thl' 1Il1ll1hl~r nf lhe spilll\\'i~I' lllHI til\' dlOTllwisc lHlIld illh~l'\';lls beillg

('(Ilial to iii <Hul S. n'~p('("\i\'dr, i.t'.. NSplnlo::W ilntl i\"Chlnt.::::S).
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For a steady foil, there was no cotn[lllting power problem evell if 11.33 jvlllz IjSr;

PC was used. Shortage of RAM was not problcmatir. either. However, for Ilnsteilfly

motion, as lhe total number of time sleps had to he very large (to keep il higher

degree of validity of lhe steilily Kulta cOJl(lition), illcrea.~illg lhe number of wakl'

.~trips resulted in a dramatic illcrca~e in the computing power dl~rnalld. Thl~ 111',;1

arrangement was 110 longer the snn~ a.~ in the case of il stl!ilily fl'ilwhcrc tllf' SitUiltioll

hall to be rC-f~vallliltr:11.



4·B Convergence study for an oscillating foil

1:1AllI'I''; ,I.:W ,lIld ·I.:!l show the iliSlillllilllf.'OIiS positions or all oscillaling foil with 1111

'ISpl'do ral,jo of Ii. As was lru:lI!.iollcd IJl:forc, compared willi tile ildual timl: step size

of Ilw l1l0\'lllg Sll'IIS, llH' Hille step siz(~ S]I<lWlI is \'ery Iilrgf'; i.I'., tl\1) actual positions of

lIn: foil hilll ;1 \'('0' sl11;.11 .~tq) sixI: iH1fl tlll:SI: positiolls almosl o\'l:rlapPf:ll (:ilch ollier.

,\s showli ill figure '1.2J, the ilislilnl.illll.'OliS pildl illlgh: <tllll hGW(: jlositioll allhl:

sl;lrlilig poillt wcre: sd aI, 1.1'1'(1 ilIlll -hh.." .• l'<'spf:di\"dy, when: hh""" is tile ;Il.so[lI!e

IWilvI: illHplitll(!l:. By doing so, 1.11<' dft:el or lit,: stnmgtll or 1111: starlin,!!; \'orll::< WilS

l"l,!lun:d to il minimllm so Ihill kll'N osC'iIl;\lillg rydl's WI:f!.' rl'lluill'd to oh!niu steady,

1,,'riOllinllloilci 1"<lIlIl'S, [I was s('('u tlllil tIll' roil al Z<'rO auglc of auack ill il Sllll,lclI

ilfT"ll'rillioll 111011011 n',~1111('d ill it Illiuillll1f11 sll'l'lIgtlJ of lilt' slarting: Hlrlc'x. \Vhill'

h'c'pillP; llll~ Ilildl h'i\{till~ t hl'IH~ill"'. I hi' oscilli\l illp; p;o\'(~rnillp; ('lllIatiol1s II'NI' n'wrillf~n

(Hi)

fur hl'lll·". HI,.llll'illg 1ill' lolallll'l'iod hy 11. hillf (;ydc: wdllc"d the 1l1l1l1lwr of lime 1'111')11'1

===-
==-

Fil';11\'l: '1.'<10: Il1i'1tl\lltilllCOI1i'1 l1osltiolL of lIll (lscillntillg foil in l1lotiOli. Viewillg point nl

(O.O(J,-t.OO,O.OO)
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l'igurc ,1.21: In~\.il1llancolls position and Pillld W'Ollldr}' of 1In osciHilting foil ill mo
t,ioll. Viewing poillt, at (O.0;j,-1.00,0.10)

alld this illlprOv(~d computing clficielH:y hy 20% hl~('iI1IS!:, II'lu:1l the 101il1 nllmher of

time steps increased, tIle dilpsClIl.i1llc illr.rcast:d ('xpolwntially (St-'(: fiWIrl~ .1.2."1).

Figure 4.22 shows fill oscillatillg foil witll its slll~d wake sllt'd. 'I'll,: totlll tlllllllwf

of time st.eps 5110\\'1I ill figure ,1.22 is 50. Tlw pl'riml or tIll: lIIorioli is 2:1'. TIll' pt'I'iOll

for n sinllsoidal motioll is govl:rlll~tl !ly

(.1.7)

where w i.s lll(~ illlgular \"t~locilY. This imlio\l(~ t.lla1. tIle larger the viduc of w, 1hc

short.(:r tire pcriod. III order 1.0 kl,(:p the KIlHil t:cmditioll Villid. ill h:ns1. lOa slqJ sizc:s

rnay b(~ rc(]uircd in sneh il short period.

It WflS T1Oll'llthal, whilf1 t,llC~ phase allgle was fixed, 1.Iw pbasl: shift in tillU: is gil'l'lI

Figure ,1.22: An meil1atiug foil with its sll{~(l Wilke in rluid.



hy

"~h;JI = '~~d'C, (-1.8)

II'h('rc~ $ is tile pll~.~e nllgl{~ Ilf~I\\""'11 pildl lIlid lWill'e. TIIl~ Ill'riod '/' llll!lliiorll'd aho\'!'

WilS {'ollsidC're,[ illl]l0l"1/1111. for the validity o[ the KUHa cotlllil,ion: 111<' lilll(' skI' sizl'

WllS fll'l,~rn,im'd h;ISI~tl Oil 1111' pl'Thlll 'to

TIll' 1'()IIV{~rp;f~lIl"1~slndy for all llsrillal iug roil rOI"l~rs 1.11'(1 aspects: lli,~ lilll!' siPI' ilntl

IIII' pillwllllllllh,·r.

Till'!'!' \\'('n~ sl'vf'rill1hillfl,S nllln'r1linp; l,h"tiltH':

• ll('fallsf~ the sll~ildy l\lI1.(il j"ollllilioll \\'as 1I.~t'll for IlIlSII';Hly foils, II sm'l11 tillll'

skp sizt: WilS ,hosin'd to Illllk!, tIl<' sll';\c!Y I\utl;\ l"Illlllitioli \"alid. COlllplllatiow

lilly. nil' Slf';Idy KUlla f'(llIdiliOll Itli~hl Ill' C(jllsifll~rt'fl fully I'Hlit! 11"111'11 lilt' liltH'

s!l'P siz!' approiu:llf'S ZI'ro. Tllis is ()IJ\'ioll~ly illlpo.,silJlc'. 'j'hl'rdon'_ lin' il I)('lt('r

rompl(l ill}!; I'lfil"ic!IIC'.\', till' lar.';('..1 lill)(' :'ilc'!' .• i_w illloll"ill~ all iln·('pl"bl,. iICClIl"iH:y

1I1't,,!c'd III !U',IC'lNl1lln"Il.

• All uSI:illatitlj1; foil hils;, t:ydil" llllJlioli. This pn'sl'ut('d 11110tll(,f prohl,'m: (0 lind

till' minimum 1Il1mlll'f uf ':.\Tli':'i II"hidl wUlll,IIIUI (,;IlISC: 111(' n.'Sldls to l", illfed"d

hy tilt' stnrtinl!; \·orh·:,;.

• IJsillj!; 11 tloll-di,llC'IISiOlI1l1 timl' (]\;,tz illld ]'[olkill Im)I). ,. = ~_ 111;,y be lIe,'

('SSHfy ill silld.\"ill~ a slC'ad)' foilwilh 01 sm[lleli ilrn·I"ralilJll ;,t I Ill' illiti,,[ stage

of its "IOliuli. Ilowl'\-('r. (his 'loll-,lilllC'IISiOlIilI ti'IH'st"I' SiZI'(,1,1I1101 I·"H(...·I 11w

;mglll;u ,-C'llIdly of all oSfill;\lillg foil. This is simply Iwrallsl' 11ll' /. is !lU\. a

[uuctioll 01' I..:. Th,' I\";lkt! dfl'ft \\'"S ht'lic~\'l·(l to \)(' i,ssoria\('d 1I'1lh I II,' osrillill

iug fn!qlll)Jl':y. TI ...n,rort'. tI((' Iliglwl" tile fl"('{llll'lIt:y, Iht, slr1lllh'l" lIlt' time skp

siz,~ sllOlIld IJ(' l"k"tI. T]Wfl{Of';, r \\"as t'llIISi,!('l'('([llJ [)(' uol a good pilfil1l1{)lN

for <ll·\llllparisoll.

III lilt' OSFHE~1. tl((' (otal llllmb"f of (ime sh'ps Wi,S st't for fOllr "yell'S of the

oSfillillioli. For l'XfJlllph,. fUf <.<.' = I.n fild/s. the ]ledu,l is:1rr .'cc il1ll111ellCl' Ill(' (otlll
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time history is 81:" sec. When the time step size was set at ?oem in the input, the time

~t(:p size would be automatically calculated based on the period ill terms of lhe total

given tirncsteps.

A number of test rum showed lhat the same results were obtained in three cycles.

Some previous studies '15ed a Newtoll-Raphson ileral.ioll scheme to improve the

llrCS~l1rt~ distrihution 011 the foil section in ullstcady now by obtaining au equal pres

sure all the upper aut! tlll~ lower trailing ellge pll.lleb (Kinllas and Ibill 19!12). This

~I:hcme improved the steady KllUa condition, especiaily tile Ilrcs~Itf(~ Ilirrcrcnce at

tile trailing edge, but required more computing power, evell if 11 matrix manipulation

apprculch W?· usee! (l(il1l1l1.~ ilnd l1~ill 1992). 1l0wI:vcr, t.he dirrcnmce in lift, thrust

ill1d pitching momcnt cocl1icients, resulting from t.IlC approxi1l1<ltiol1 of the itl~rative

l\uHa condition was f(~potted as unnoticeable. Meantime, for a flexihle foil mmpll

till.ion, if illl iterative procedurc is to bl~ llSloJ, thc high cOlllflllting flOwer rC1lllired

hceoll\c~ <I. problcm. This i11lpHI..'S til at at cach time: IIlep, thc cocllicicnl matriws

I1I~d to be regenerated (llle lo the nexibility pl\l~ the iteriltioll for t.lll~ !\UUiI I:Oli

dilion. FiO and l<ilJna.~ (1!.19-1) poillted Ollt that el!C:l! if t.his sclWI1H: was lIsl!d, for

cerl ·Iin i. regul,\r pane! geomclry, the pn~SSlire di~lrihutiolJ could Hot Iu: impHlved as

Ill~sired. In the calculatioll done here, 110 aUelllpt. W;L~ made to cqllalizl: ]If(!SSllre Oil

1.Jlc lIpper and lower 5urracr~~ at tile tfililillg l:llgc. 'I'll(: steady Kul.ta condition lVa~

IIsed wilhout l1lodilicatioll. The rcasons for tlii~ an: ,,~ follow~: Il) th(~ stc:ady ](lIt1.;\

condition yielded accurate results whcll the time step and the siw Wl:rc chosen IlroP

crly. These rcsults iuc\ndetl hydrodynamic loaos; a11l1 h) the Tetluiretl high t:OIllJllllillg

power became a COl,cern when a flexible fuil was Huller cnnsilbatioll.

An uscillatiug roil was used ill a timc convergence study. Its geolllc~try lind llloti(llI

pararnclc:rs arc a.~ follows:

• The nUlIlhcf of dlOfllwisc intervals wa~ NChlnt=Hi; which Wi\.," 1~'I\liVIlI{~l\t !,f) lli

c!lorth,b(! panels.

• Tlie llumber of the spanwise intervals was NSlllllt= 16. Total 11111nber or pallcls

was2.'i6.
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FigUl"l: ,1.2:1: 'l'ilt1ll WII"I:rWlIICC ~t.lJ(ly of th.: dFicicllcy "Illlc! the tlirust wdlicicllt, C/
\'.~. lhe tolitl1l11lnheror l.irncstllpS NTSl\I .

• Unifonn and C(lSilll~ sllilcing WeW willd fur spallwise alld chordwis(! panels r~

spe(:tively,

The foil hlld 11 KACA no1'.! sedilJll with ,Ill asp(.'(:t ratio oUi.

• The pildlilll; axis positiull fi\clor W,lS sd at unity (.r;" ../. =J·p,'<'l,IC, = 1.0).

TIII~ oSl:illal.illg nll/l;lliar velocity W11~ w = 1.0 '·fUll.olT,

The foil forw;lrcl ~Willl ~IJ('(-(I WilS l'il;1~1 = \'/Ii!1h1/C, = 1.0;'" c.

Th(:re lI'erll II total of fnllr cydl~s ror all Ilirferellt loti\l Tlumbers of limc steps.

'1'11(' IIlHIlIH~r of tinw sll'fls Tllllp;ed frum (l·1 t.o +18, with an iuncmenl. of M. When

I Ill) angular velocit.y was w:::: I.U rad/sec, III!' period IV;lS 2.. Sl'(. Four cycles \llId a

1,(JUtl time of 81T sl'(:omb. The t.ime skp si;.:e WilS lhen r!"OlIl kif ~ O,3!l27 sc(:Oltd to

~1T:::::! O.05(i10 se'nll1ll. h. call he: secli rmlll figure ,1.2:1 lhat the lIroplilsive efficiency

II st;lrtcd 10 f:(Jl1\'erf\ll Itt. aLollt ~UO time sl('p~ (wit.h 1\ change or 0.\ %). However,
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Figure ~.2": The efficiency,! and the thrust coefficient C, VII. the total IIl1mber of
panels with an arrangemellt of NSplllt=NChlllt (tite number of the chorJwise pand
intervals beillg equal to the number of the spanwisc panel intervals) at a total of 256
timc steps.

the thrust requirC(lmore time steps at around :\00 time steps to converge (ahullt 5%

illcrease frolll 320 to :181). The figure also shows that increasing the n1lmhl:r of time

steps resulted ill the efficiency remained almoot unchallged, but the thrust I:llellicienl

1l.!lproachc<l a limit oi abollt 0.61. This ilidicliles that, whcn using a .~mallc~r llumhl~l·

of tillle sleps, thO'l propulsive efficiency can be well prCilicled bllt the thrllst Illigllt I)(~

1I11der-prc<liclcel and more time sleps may be lIC(~cled lo obtaill tIle same cOllvergellcc

rate for lhe thrust as for lheefficiel1cy.

Itesulls from a convergence study on the number or panels arc~ prescllted ill lig

ure 4.21. The total number or time ~teps Wil.1 taken as 25G. 1l can Iw seen th;t\

propulsive elDciellcy had an ac<;cpLable convergcnce hcllaviuur starting frorn ,\ totlll

or aDo panek However, for the thrnst coelficiellt, it den~er pauel siz(~ was rl~quirel1.

This ~lIggested thalli combination of a large Ilumber or time steps a.ml a larger 1111111

ber or panels are rcquirecllo obtain asatisfaclory convergence 011 the 1I1fllsl c:odlicient

prediction. This would be computlltionallycxpensivf~.However, 1I1e thrust cocllicil~llt

ilpproached the upper limit as the number of time steps increased, and It he(:anlc less

1\.~ the number of panels increased. An appropriate combillatloll of !Jl()(ILo:l1. time ~leps

ilnd pallcluumbers is expected to yield all accurate resull ror cngim.'Cring ;\pplic;\tiou.
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Figllf() /1.2:1: Requited 1>llAM allli elapsed time vs. the tOlalllll1J1hcr ofpanc!s with 1111
amlllgcnwllt or NSplllt=N(;II!nt (lIIC 1I11lnller of till: dlflrd\\'is(: Pillld intervals heillg

1:(ll1al to t.lre lllullher of tile sjl<lliwisc Pilllel intervals) at II tolal of 2.'jfi time steps.

4~B-l Computing efficiency and conservation of resources

Figurl' '1.2."i ShUlI'S til{' lotal 111I1llIJl'r of Ilaneis \'crslis requirell D!lA;\1 and total

elapse<! t.ime. Tlwse milll1s were olJtained frolll a I'cllliulll 120 i\IIIz ('om puler wilh

:12 Nih DHAi\1. For i\ roil with 20 x,IO = 800 pilllcls, lloillg 0111: COllljlUI;\\.ioll for 2;)6

tinw sleps, lIholll :>.,1 ;\lb of l)ltA;\1 <lull lIhoul :t3.0oo scmllfls ClllJlPlllilig lime (aholll

10 hUlITs) \\WC Tl'{luired. I·'wm It t.rial OIL 11,18(; :J:l ,\!IIz machine with·l j\lb Dllt\M, it

\\'il~ f01l111lllwt. il look almut :l.'lO !Lllurs ur a half moutll to do LlI(:sarnc computations.

I'll(' (:['I} slwcd of thl' nlll\!JIlI(~r is also inl!Jurlalll. " I'clItilllll 1:>.0 PC with I'CI/ISA

itrlll huilt-in I/O had ;1 onnlll,IITOllglrpllt or SC\'CIl lil11C~ l.lml of II ·186 :\;\ "flIz box

W)I1'11 1 Ill! ])IV\l\1 WilS 1~IlOllglr for hoth.

If \.llc illllonnl of 1)1{,\!\1 is 1I0t {,llo11gh, binary filt'~ 1111\'(: 10 be I1s(~d 10 slurI' lire

lllaLri<:c.~ and ww-hy·ww "I~<luct.ion ha~ 10 lJe IIPl'licd to Holve lllc lincar ~)"slcm. III

this (:asc, li\'l' liJ)](~ il.~ I11l1dl lime i~ required for t.he OSFBE~1.

4-B-2 Summary

COllsidering hoUI ol'('Tidl ilCCllracy ;11111 I:omplltillg ellkiclI<:Y, for oscillaling foils, pa

rollnders should lw dlosen ilS follows:
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• Usc cosine panel spacing for chordwise panels with tnt-al of over 20 panels.

• Usc uniform panel spacing in the spanwise direction with more then 16 spanwisc

intervals (NSplnt=16).

• Usc 256 time steps for compulation for four cycle:> of mcillation 10 yield all

l1cceptable overall accuracy,



Chapter 5

Results and discussion:

verifications and compari,-;ons

'li/lt'sl tIle rt'sllll.~ fmlll OSFlIE~I. "tlltll'rif";tl fl'SUJts \\'Port: fit~t l:ompllfcd will, cxistiuJ;

Ih".rdir.l] "'!lulls. Wlll'll' llu~' f·xish~1.

5-A Pressure distribution and lift coefficient of a

2-D foil

TI,,-le,:,l was lirsl 110111' Oil i\ 1-1} ~,\(',\ 0011 foilll.t angle of altack of 8.:1". The the

\.rl'lin,1 tI':!lIlIL~ wc'n' 1\\'ailah[,' [lit IIoth the lift nlt'lIidt'lIl (c, = 1.0) ami III" !lrCSSllfl'

tlisirilllllioll (~Iurall W.'l·I).

Figurc' iI.1 sho\\'.~ tIll' IJrt~:llIn' c1istrilJllliolls ulJlaim~1 from it 1·1} an.. lylical method

Hill! from OSFHE1\I. Thf'()SF\lE~1 is il :1·1) foil program. '1',si"lUlalt: tl,e:.:!·I) section,

tlU' ,1:11)(:,;1 ratio WitS l11k('11 lli'l WOO. TIlt' 1I111ll1lf'fUr lillu'SICps was lakl:1I as 100. The

111l1111wf (If rIlUnlwisf: pllnds WilS 20 il~ wns llit' 1I11m]>l'r of llpnllwillc l ..,lIds. The

llpal1wiSl' pl\l\I~1 ~pill'illg Il'lIS 1111irorlll ilwl 1.111' chuTllwiSl' slHH:ing II'ns cositH,.

II t:1L1l 1)(' !lI~('11 lhat. lht~ prt'lli(1(~d pw~sUfI'I:odlici('llts i\grt~~ l'l~ry well with lhe

1Iu~m~ti("i,1 (Jill'S. The Im,didel! lirl ('lldlicicl(t i~ O.!I7:\.l. The OSFng~l, in l\lo:ll
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Figure 5.1: Pressure clislrihlltion Cp on II ~·D NACA 0012 wing at ~n angle of attack
of 8.3°, which llR~ a. uuit lift coefficient C, of 1.0.

Cil~CS, gave a cOllscrvativc prediction of the proptll~ivc p(~rformatlce ilntl t.he IlilTcrcllcl'

Iwtwcclllhc predictcd valucs and Lhe actuill valm~ lVas expected, iu tlte worst caSl~,

10 hc under 5%. For this foil section, the prcI[ictcd puL(~ltii\1 drilg codfi(:ient WilS

0.00822; the skill frictioll cocfficicuL of tIle section \Vas 0.OO!J8:! and tlie pit.di l1lonwnL

coefficient about the 25% root chord wa.'! 0.00'15. The prc:;,~url) dilfCrl~IICC i11.lhfl T.E.

was aboul 0.003, a value close 10 ?ocro, indicating the ncct~rtahilil~' of 1.111' KuHn

condition used.
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5-B Pressure distribution at the tip of a 3-D foil

While it was rd~tively c~sy to obtain an ~grccmclll for 2-D ~l()ady foils, predictions

were obl~ined frol'llhc pre~cllt method for ~ :1-0 steady foil with resilils of /Ill c)xpcr·

inwntal ~llldy (Vlln Dam J!JSfi). TIll' foil had iI. NACA 0012 section with ,Ill aspecl

nltio of fi at all angle of altack of 6.75°. lliput parameters lI'ere: \IT1iforrn spanwisf:

~pilf:ing, cosine dlordwisc slmcillg, lot spl\l1wisc pauds, 40 c1lUrdwisc panels, II total

I1l11tlher of !.illJt~ 5tciIS of 'i all{l a till1c.~t.ep sizc of III seconds. i\lore chorclwise panels

lI"erc~ M~t al. lh{~ I.railill~ llfllilhe 1(,l1dill~ C'dW!:S ill order 1.0 have: morc {lilta, b{:f:ause I he

c'xperi rl1l:lItal dnla were gil'l:n itt terms of V;;;.

..,'~~~,.~
0.. ..;v' ......._..

.. .1 _ =~~=:
,••ir"----Ir-_.;,;-,-,/,;-,-,.......---.---1,

Fillllt'f~ 'i.2: Pre.~Sllw distribution Cp 011 a rectangular wing wit It an aspect. ralio of fi
alotlp; tllC:sccl.iotl close to lip at. !J8.75% s{~rtIispal1.

1"igUTl' 5.2 ShOlI'S the clllllparisoti of till: prt'~Sllre cocflicicnt along Ilie exl rellle tip

uf lite foil, ill. !)i!.jWlo scmisp;ul. Similar to the results by VSAEIlO, Ihis 11Iethod

IJrmlu(:cll TI~HI\IIs which h;ld a high degree of agreement with lhe exp,'rimenta! 01lC'!l,

('~f'f:JlI. lliat thew was 11 lillIe dilfercnce ill Gp al the lcaclillg edge 011 the suction

sidc: and thl:re was a big dilfcrcllt:e betweell lhe predicted valuc and lhe experimcntal

\'alllt: of Ihe pressure cocllicicllt at tlte trailillg Cdg(l 011 l.he suction side. Thc rci\.SOIl

fur this is unknown, perhaps crossUow. interference with tip vortex or lleparatioll

;l('(·lllllll.ed for lIlc dilTcren(f~. lIo\\'{~\W, tlw pressure cocHiciell1 rrom the experimcllt

aL the trailing {:flgc shows llmt the pT<)'Ssure clirreTl~lIcc in reality was nol ;.:ero; this

C'olillict.s wilh iIlly kiml of [(uUa comlitioll. This prcsSUf{~ diffcrencc is Ilossibly cau!lcd
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hy the severe cross flow at the wing tip.

The spanwisc dislribution or pressure coefficient was also compared with the ex·

perimental rc.~ults rrom the same wing [lrcsented by van Dam (IDS{i). These results

were in excellent agreement with each other (almost coillciding except a t.iny di~r.n:p·

allCY «L the root dlOnl section). Therefore, tllc [llot~ arc 1101. pfC!ienLcd hen:.
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5-C Pressure distribution of a swept and tapered

foil with 2% maximum thickness

lksillts from OSFIlEi\-1 \I'/:rI) nl~(I compllfr:ll witli those for foils thal had n:rt.ain

irn:gular gl~rn~trir.~. The wsults fut 11 2'}{) thickncss, thill, SWi:II1. s~dinll, l' ACA 0002

wing at. 1111 Illlgl!! uf al.t.i1ck of r," /HC all cXlItlIrlle of this. '['Ilis foil had a SWf'''I' lIngle

of :l0", all aspr)d ratio of 6 lind 11 l11ppr ratio of A,

Figurf' ;/.:1: ,\ :1·1) l<Urfll(I' l'ilIll'l geOl/ll'lQ' of 11 Sll'ept. willI:.

,\ :1-]) ripw of the foil is showli ill Figllf'f' .').:1. The lefl. gral,h ill figllre 5.:1 shows

Ihis thin Sl.:dioll which is located ill II posilioll of tllC mot. dlord. rigllHlIosl. column

Hml the right OIl(: ~hows illl un:rvil:1I' uf tlj(~ foil at a \'il:\\' poi III from (0.1. -1,0,0.1).

III Ihe rigUTl', tlw 1l1l11lhnuf tolal chordwisc pands is ·10 wilh iI cosinc spa dug alld

t}lI: Illltilbl:tlJf sl';lIlll"isr' pallets is [0 wit.h llllirorm slml'illg.

Iksllll~ along tht: lllirlflic sCl11i~pan s(:clioll (551
;(1 se:l11isl'llll) nrc pfl:se'llt.cd in rig

lin:.').'!. (11:lIcr,,1 ilgl"1'('lTIl't1te:an lIes!'c!! hel\\'t~~ll1.lJ<: IlIl:thods,OSFOEM nnrl VSI·;ARO

(Milskcw 1!I8'l) I'xecpt Hllhe leading edge Oil the slldioll silk. As tlu: foil st'Ction's

Hl;lliilllUIIl thickncss is oilly 2% of tile chon!. I.lll~ lcnding rxlgc is \'cry sharp. A small

rlllliliS to 11f: I'laccdull the: leading cdgc is cxpected 10 smoothen the' !l'ading cdge
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Figllre 5.1: l'fl~.~sun: dist.rilluLioli C p 011 il lIWI~pt wing wilh illl i(Spet·t raliu ur (i nlulig
i.Il1:'it!J% scmispan.

pressure distlihllt.iOIi till the slidiOlI sid(~. Ilow('\"(:r, it 1:,111 he :-;(·t~lI fwm 1i!;1Ifl" ;,.-1 llJill

thl: rJl"(~cnl. mdbod pwduCt:lI;\ nearly t.(:ro pTl:ssllrc dim'n'nce;1I 1.1l(' lrililinp; I·d!;,'.

Thl:l~ldilrgl:ll Lrailillg txlge pressure distrihlltion p11lcI:II ill lhe Sl1llan' box ill figlll"t· 'i.'l

SIJOWH Lllat. !'fl:did.ioIlS frolll JI1'Cvious stmlics illcludillg 111<: 0I1C.~ by "'Iaskw, th(: luw

onh'r pilnel 11\(:1.11011 ami hy Hobl:rt, thl: high onler p1llld mctilOlI (so:1: /lIi1~k.~w I!)H'.!)

h<ld il substilulinl prr:s.,nre dirrerelle<: III lhe tr;\iling ell!:t' compllrl'(l wilh III<: pn:scul

lIlclhod. NOTlually, 11 l~rge Irililing edr,r. pn::-;SUrl~ tlirfcrr:llt't: rdlet:ls Ill<: ptlur ;1 pplit~a.

tiOIl or tile l'nl1.a corllliliO[l nt the t.rai1illg cdgl:, nnd tllis Ils1wlly nlf.'d~ till' I'n'li~I:rt'

t1islriLutioli ilt both th,~ L.K nut! thc T.r... 1.0 n largl: exlt'lit.
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5·D Efficiency and thrust from an oscillating foil

For illl os<:illlltillg fuil, as tlll~ ilCl:Uti\<:y uf thrnst and dlicicllI:y valucs Me dilfinllllo

I'''illilalc from 111\ CXIM!rilllellll11 S1.1l11y ({or (')(arnl}ll~, aCI:ma1.(l I1ll'ilSllfflllll'ul!lf t.llrllst is

;1 l,ro]II"OI), exp'lrirrlf!lllid ff'S!llls fire diflicull. III llS'~ tlll'l'rify [lfl!diel.inlls. Therduw,

n'sults frol11 ('xp<'I'inlf'ulld studies \I',!U' lIot 1IS/·11 for curnparisulI, 'I'hf~ propulsil'(!

('lficif'lwy illlfll111'1lS1 [rom lhe OSFBE~1 wit.houl skill fridiull \\,':f<: (;()lllllarf'11 with a

prl'I'iullS linin!!; surfnl'c thl'ory,

Au oscillntillp; roil will. au ilS!Il'l'l ratio of ~ ill Cllopm illlll I\mull!' (I!lii) was w\l~d

ill this l'OIII]HlrisOII, TIll' oscilliltilig Ililrnllle\,('rs are: fonranl s\\'im \'I·lo('ity Vili,I,( =
I.U m/spc: 11l';}I'p alllplit1ldl~ [iu'tor' h~ '" 11,,,.,.,,,.1(.', = t ,0: pildlill~ axis llosilioll flldor

is .r;..,..h = .rp,I'h/( 'r '" (l,7,,: Illlguhl1' \'l'11ll'ily ... '" D.] ,,:1,0: pikh illllplil11,]" (I" ",0.11

and (I,]fi; J'('r1I1('('1! fn~llIPIII')' k = ...·(',/"'/1>,,1,' '" fI,l ,,:!.O: alul ["at hl'rilll; p;lrilllll't('r

IJ =n"Vjl,!,hr/lil",.... j ",u,n, fl.-I.

I

..

I
FiAun' .1,:): (,ullIflilrisml of (·lIi('il'lIl',\' 1/ dl'I<'l'Illitl('d by fillnrlall'd hy lirtill~ surfi1('('

I IU~lry ( ~lropril ..Hili I\;lmlll' I!Jii) illullhnl df'lf'mriIH'f! h,l' tire prf'S"nt [Jmll'l mel hod
[or 1111 uspillatiuf!; foil U[;IS]Jl'l"l r;llio S.

Figure rl,."i shows thl' prnplllsh'(' dliril'IlI',\' l'l'rSll,~ tire rI'duc('d fn~'1IIl~u,y k, II

",III Ill'SIT!1 lilat. hoth 111<'1 hods ilTI' ill ngwPIlLclil OIl eh,' trl'llds, hilI t h,! dis('rl'pallcy

1)('l\I"~~lI l'('sulls IJy l!rl' 1\\'Ollll'lhmllll'l'ollles o!JI'ious wlll'lL tl\l' Tl'dlll'l'(l fn'IIII('lIl:Y k

illnl'ilSI'S, 'I'lIl's!' dirTl'll'lI('('s lIlay r('sillt from lhc dilrl'rl'lI1. 11I(!lh(Jds, 111 the lifliug

sudan' n..:ory of J)ill'ies (I!Hii'J) whirh was l1l\1~1 hy Chopra 111111 h:alllbc (1977), a

S1111111 amllli1.11l1,·o[ hulh Itt'iI\'(' ami pilf'h was i!S$III11Cd, I\t 1\ large reduced frcquctlry
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which corresponds with a large angular velocity, the pitch amplitude is Iilrgl~ whcn

!,hll fcathering parameter is fixed; then the linearized liftingsurfl\l:l: thcory blx:omes

h~~s acceptable. At k = :l.0, the pitch mnlllit.ude nD is OJ! rad. These two h'rms,

.•ill(O') llnd CO.5(0), that dd-ermine th~ heave and vertical I'c!ocity at t.he control

poin!., bL'(OITlC .'iill(O.S) =0.717 and co.~(0.8) = O.Cl!)1 for the pn.'lient method and,

~in(O.8)and cO.!i(O.8) bciligasslllllcI! to be 0.8 and 1.0 rcsp(:divcly, for sllHlllllmplitudl'

Ihl)ory. Therefore, the errors of the trigonometric fllncliom (10 be Il.'wd 1.0 t:onLrol the

l1lutiOllsof thc foil) for Hn 0D of 0.8 rad an:ahout JO% and :m% percl'II!, rCSII(divcJy.

Another reason isthat GhOlifil mill Kambe(I!J77) Ilitiliot consider I.heul1I.;t'('iuly, largl)

mllp!itll(ll~ wake dr(~ct. As was Ielled ill the compulations, Iht)t!: was a, sllh~lallt.iaJ

drop ill both thc thrust lllll! dfidcn<:y II'hl)!I tilt: wak(l <'lIIJrt was rollsilh'l1:d (Liu

1!1!J1). MIJallingfut results CaTlllot 1m oht.ailu:d from a p;lIId mdllod wi\.lwul taking

the Illllilemly wakl: effed into c01l~idcral,ioll.

Ojr(ll,!• .,.. n' J"''''' ".·u..~.t
OJ rU ~I••'~.. ! r'..,.!o'... ,....~1
~ :~) ~.:,\~ s~::rr;~:\~::,yv·:~/c~,f;

Figure 5.6: COlllpari~oll of t!ll.' thr1lsl coellicicnt C/ hy Ii fti1lg ~Ilrfacc) lhcory (C!lopra
111111 Kallihc 19(7) and prt~'iCnt pand method for IIli 1!S(;illatinf; foil of a~Jled ratio S.

III FigUTl' 5.n, the t.ILrusl. coeHicknls arc) compa'f)(L 'I Il(lugh l.lle tll'O Illet!Jods agnJI'

Oil t.he l_rL)nds, I,hey do 1Iol agrl'C on tlw magllitllCh:s. In ~ polt'lIli~1 t1)(:ory ha.<;(ld

method, thc larSI)T the angle of altack o[ the foil, the II\rller tht~ thrust. At. the

SiLlIHl sl1llll1 1\lnplitude feathering lJaramelerof U.8, Iht! slnall ,Iluplitnd(! t.1l<'\!TY has II

maximuJIl iTls!.antalJCOlIIi angle of al1.a<.;k of :lO.92u (ii1~ t.ilhlc (i. I ) <JIlil t.h(~ lIIaXimUll1

inslnntalll'Olls angle of allack fOT the large amplitlllle tlll'lJry i~ ahout I~, This

slLIIst.anLially large diffen:lIce ill lh(! angle of attack was Ihl1 major I:<\IIS(' o[ sllch it
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Inrge dirrcrenc(~ in thrl1~L AI. 1\ higher r,~nlhcring p1l.ramckr ;\llll n IHrg,~r angular

\'docity, the dlang,~ of tll1~ strenglh of tile ~hcd vortex wnk,: is rapid and henre tile

wake drct:l is slll~~tiUll.ially stroll/:. A draHllltic drop ill bolh cflidmlry iHlll tllrusl

i~ pxpeclcd at. a \'l~ry ];ngc feat.hering parallleter (dose to 1.0). Th"lJrcviom lift.illg

~urface lhl~lry work did !lot tilkc thi~ st.roug df<~ct. illto COI\~iderali()n, AlIollll'r nl.\ISI~

01 t.he slLb~lIl11lin\ly high thrust pr('{lkt<:ll. using llie lifting surr;":l' I!u'ory, is t.11I'

lIilllll"C of llie t.lll,lry; i.e., %ero lhickllcss of t.he lI'illg sediolL is ns.~ll111crl. A thin

(zl'ro-t.Ilit'kliess) willg S{'rllOli 'Hl~ a lllr~e II'a,lillp; I~dgc sliclillU ilwllhis Nlll"liun <t1so

nllltl'ihlll('Sto Ih.!lhnlsl,

ljsi 11K lhl~ pt·(!SI!lIl. 11l<'llturi. t.hl~ mhw.'< or Ilroplllsil'I' I'ffidl'lll:)' and Ilin}sl , 1I'!tl'tl tIl<'

m!llct:d frt'l[llf'lIcy nppnMrlll'd %.'m, d{'<:I'/';I~I'd drillllillintlll' 10 Z<'tl!. 1-'01' tIll' lin i ng

sudan: 1I1f,lry. hOlW\·PI'. IIIl' dfit'iI~II{"Y \1'1'111 IIJl III lOO'j{" ThiN 1twj' II(' l'Xlllilil}(,d

il.~ f{}tr{)II'~: ill pand ITwtllod, til<! fuil llils n ~pn~sslLr(' dr;\g" (i\ pn's.sllf<' dHfl'ren<:<'

rn\ndalt~11 by llsiu)! lhe Pilll!'1 HlClllol! ill 1!lI~x-din~rti()ll)all 1111' lilliI', aud Ihis drH,I!;

;,]II';lyS {'iIlll'l'ls a part. <J( Ilu' lltl"lIsl. In lifliuR surfan' t.Ill'<Jry;1 Hilt platf'. IlIlJl"ilig ill

;, lIuid at all i\l1gI1' of HI lark of %e'n>, Ita:; i' ~"ro dTflg; 11{'1IC<~ Iltere' i., 1111 fH)\\,.'r inpllt

11~lllil'<.'d fur 1\1(' Ihin Jllilh~ to mUl'\' ill allY \'1'locilY, Th(, pillid IIlI',lIo(1 S("~Il\~ 11l0l"<~

pml"li(,lIlhl't("

Fip;lll'e's ii..'; ;lInl :J.(i dill 1I0t inducle Illl' l"Olllpnrison 1\1 1\ f'~ilthl'tillg parallleter

of U,S, II filii I", .'iI'('11 thaI Wll<'ll tlte nwl rllol'd C, <\1I,llh,' forll'ilnl swim spee<1

l'rli,,'" wen' tak<'ll ;\~ i\ uuit \"<11\1\:, dlilllgillg lhl~ redlL('C~d frt'(IUCI\C)'~' was "'luiviI!cnl

hi dlllnRiug Ill., osdllil1iug (re'lllcnry ....· Ill'enllst' A, ::: ....:(',/I'Jli.1hl (il is 11011'(1 lhl11

l1Ian)' I"I'Sl';lre:lll'l"s c1dillc till' redllC(~l fn'<[H{'IIfY liS 1.:::: ,,-'Cr / (2I'fli.q~d), T'lf~rl'forc. HI

a high fl'illlu~rillg Ilar;U1w[('r of O,Il <l1Ie! llle (lscillatiliR fl'<'ljlll'!IC)'. oN '" 1,0. lilt' IJit.dl

aUlJllit1\d,~eillcu[;\h~1fl"oltlthe s1l\i\l1nll1plitlld,~ thcory r{'Hl'1ll'tllJi r~\l= HI.GjO. It. is

illllJDssible ill r(';llity fol' ;1 pill'll <1llgI1~ ~n'i1II'r tlliU1 DO" 1<1 yidel 11 positi\'c t !tnlsl.

111 a larg(' <ll11plitl1dt' lhmry rlel'dopcd ill Illis thesis, 11ll' ills!.aHI;llwolis nngle of

i111nl'k is lIll! allgl{~ hd,1I"I1'1l t.1I(! inslillltml('Olls pilch allgh: llll<l Ihc illst.i1ulmwolls

killl'll1<\tie 1',~lo("it.y allgh' of Ihe fo(11Ii1<:11 llxis. Iu a IJrilrlirnlrilllgc of ttl<' oscilla.t.

ing freqllel1l'y ..,; inlll t.1l<' hl'lWC ampliludc It, thc I<\rgcr tile pilch allglc, the sl1l<1llcr
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llie instantaneous angle of attack of the foil. A positive angle of attack is required

to produce a I'0silive lhrusl. This means lhal lhc angle or the kinematic velocity

Llln- IVI:':.. has to be gt(!ater lhen the inst.antancolls pitch IUlgie n, i.e., the large

amplitude feathering parameter 8 has 10 be Ics.~ lIlan 1.0. For dctAils, !ICC Chapter

G-A amI figure 6.1.

According to till: prCllClItlllcthod, thc prcdicted eHidency bccallle ridiclllou., whcll

thc reduced rrC(!ucncy k n!achcd 0.6 at 0 =O.R 1M.'C~IIl!lC at this oscillating frequency

the oscillating roil's inslilnlilllt.'OlIS angle of 1Itlack wa~ it ncgativc value (the I>ilr.h

allglc is greater lhan the velocity vl!Ctor) 1I1It1 \Va., 1111 IOllgc!r ilhlc! to IHolluCI! lhmst so

l.hllt. an external thrnst WIIS 11t.'Cile<l10 keep the ruillllUving at Ii C:Ortlltlll1t SWilllllpt.'Cci

or 1.0 1II/!l<'.C.



Chapter 6

Results and discussion:

parametric analysis for rigid

planforms

1\ ~\'ll([Y uf tln~ dk~:\.~ of vilrinli(lll~ of pHrillllf!1t:I'.~ 011 PI"l1Ilulsin! dliciclIl:Y 1I1II1 t1lfusL

for a r;p;id u~('illl1l;lIg fnil was ("tlndUc!I'11. 'I'll Im\'\' a full pidlll"! of Ill,! proplll~i\'c

IlerfoTllWIIO' for 11 :\.1), IIOIH:t'ro lhil-kllf~SS {)scilli\l;l1~ foil with different parillnclcrs,

il lIumber of l"ilkllla1.jolis wert! 110l1t! and they <Ire pn!M!1l1cd hdow. 'I'!I!! rcawlls for

doing so ilrc as follows:

Pn!ViOllS IIldl111ds IIs!:t] fur 1110:1(.' t:akillatiolis wcreIJased 011 either (,wodimcnsiollal

111(~lry or till' .~rtlall ilmplitmlt: theory or hoth; 1l1ll0rc: realistic method, reflecting the

.1Spl'd rallo, planfoflll slJillw, scdional shape, large alllplitude illotion ilnd ViSCOll~

dl'ilg or ;In osriH;ll\lIg fnil, W1Ii'I dl'sirahlc. lknHlsc pnl\"ious 1Ilt'lllllfls flill flOt f'OV(~r

idllhe ahov(' factors, a rI'-f'l';l1uatiol\ ,Hid ill\i1lysis of \.l\(~ full spcdruHl of parilTTlctp,rs

OIl 111l' dlil:il~lLl:'y II ilnd Illl~ llil"llsl. l:IM'llid(~1I1 (,'1 is l1sdul, t\ !il!"gC i\lliplitudc theory

was devdupl~lllirsl, helow and W;lS IIH~n 11~('d 10 f'xplain nlt' propulsive r)(~rfonnall(,"

Tlw l~stahlisll11l(~IILof tllis largf~ illTlplitude l.ll(~Ol'Y WilS fOllnd \wy user" I 10 clarify a

misleading rOllccpt. This conceptual confusioll is I.1l<1t tIll: pitch angle 111lS heel! taken

as a faelor 10 ar[ect I Ill' t.hrust ;olll dlkiency wit!lo\ll collsi(lcrillg the i'nslal1tanCOl1s

H!J
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kinematic velocity for the pitch axis of the foil. Especially, some previom; works

mistook tile instantancolls pitch angle as the instantancolls angle of attack.

The parameters, covered in the analysis, arc heave amplitude factor Ito = h"e4~/C"

apparent pitch amplitude 0" (the same as real amplitude for rigid foils), pitching axi~

position measuring from the leading edge at the root chord x;ild. = xpildlC.. phase

angle (pitch leads heave) 4Jph•c, sectional thickness ratio r = Im4r1C" aspect ril

lio Al, skill friction, and swept planforms of a man-made alld nat.urally occllrring

pl;mform.

A hase combination of motion alld geometry parillllclcrs was sd.. When st.mlying

cadI effect, only OIll' pamrnclcr was set as a variahle. Thill comhillatioll is as roll()w.~:

I. Rectangular plan form with 1111 a..~w~ct ratio Al =8.0.

2. NACA 0012 section with 12% thickness, /" = 12%.

:1. Oscillating propeller forward velocity Vjli,ht = V/H.qhl/G, = I.O/.~rr:.

'1. lIeave illl1plitude factor fl. = Ith<ow:ICr = LO.

5. Oscillating Itngular velocity w = 1.0 '·f1d;'~f:.r:.

6. Reduced frequency k =we,lVilighl = 1.0.

7. Absolule pilch amplitude 0" = OArari ~ 22.!l2~.

!J. Large ;HlIplitllllc fcatherillg parameter H = o"l/tw-'[w!l"IV//i!Jht] = o.fJO!n.

10. Pitch leading heave at a 1111A.SC angle of rol'l. = 90".

II. Pitch axis factor X;ilch = XpilChiC. = 1.0.

In addilion lo lhe above paramclcf~, all calculations were dOlle nsillg NTS",'I='l.Fifi

lillie ~leps, NSplnl=20 ~pallwi3c panels willi uniform ~Ilacillg and NCldntx2 = 20

chord wise panels with cosine spacillg.
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The individual effect of the variatioll of each parameter all the propulsion perfor

mance will be discussctl ill this chapter.

6-A A note on large amplitude theory

Since more tllall half a century ago, the small amplitude a~sllmptinn or lincnriwd

1\\l~ory hM he(~ll liMed to liOlvll aerodynamic problems for wings in gust and flIlUI:r. The

rf'il.~OllS for llSilig small amplitude theory arl~ rnaillly; il) the foilllllder cOllsideration

(Jftl~1I has a very small aml,litlldeor pitch and heave, so that the accllra/:y of t1w results

\\'el'l: acn~l'tablc~; iUlI! Il) solution for i1 Inrge amplituc!l: thc'Ory was c.Hlficl1lt hl:cauS(~

the l:slahlislmwllt or a 1IIm-liuear system of l:qualiolls or an nnalytical solution was

nol. possihle. Vor c~xml1l'lc, mtinj; surface tlll'ory is il linearized analylicill solutiolJ.

111 slIliIlI amplitude lif1 iug surfaCl: theory, Ihe Illilgllitudc or hl:avc and IIII' dowJI·

wilsh \'dodty arl~ evahlilted by aS~lIll1ing 11I1!(0) ~ nand

IkcallSI~ of tills, tllc~ fealhering l'ar;\lIldl~r ll('fo!1ll'1i 0 :; n~VJI;9~d((j,.·I,o)' lIurol'tu·

Iwt.dy, Ihis 111111111 illlll'litlllle ilMMllmptioll, as nUl he seen \iller ill this dwplt'l', hilS 1111

IlniH:n'l,tilhle HecnrilC}' illll1;l11}' nl~·S.

For oseillnting foils, in ;ulcli1iou 1n nil illi\{'cllrale I'l'alualioli of tile heal'e, which

"" \",. I
v,:,:L __;~~

,

,~:1.1r
_,,, LJ )v..

v~:~;:'_;(:';j

Fig\ll'l~ (i. I; A graphil:ill explanation of tile iUMlanliuK'OllS angle or aUack using a large
i\\1Iplillldc lheory.
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heavily affccts the accuracy of the results at higher pitch amplitude, the small ampli

tude feathering parameter 0 also gives an excessive value of the pitch angle at a high

feathering parameter.

/l.s can be seen in figure 6.1, tile feathering parameter is the ralio of the piLch

amplitude to the angle a" (the instantancous din:clion angle of the foil pitch axis'

kincmatic velocity), where 0'" is evaluated as a ratio of the maximum verticlll velocity

V...h =who. to the forward swimming velocity VI/ighl. When l.he phase angle is taken

as 900
, this kinematic velocity will occur at Llle same position as the instantaneolls

pitch angle reaching the maximum value 0'0'

It is noled that the lifl L produced by the foil hilS bt'Cn defined as heing per

pml<licular to the insl,antalleOllS kinematic velodty of the pitching axis. The t.llrllst,

however, is parallel to the horizontal.

The left graph ill figure 6.1 shows the determinaLion of t.hc large amplitude fealll·

ering parameter

(6.1)

Consequently, the in~tal1tancous pitch angle a is equal Lo the iustantaUelllls killc:

matic velocity of the pitch axis of the foil, 0", i.e., the large <Ulllllitmle fcathc:ring

parameter 0 = 1.0. Tllcrefore, the instantancous angle of aHack is

Oinlt.nl = n" - n = 0.0. (fi.2)

Therefore, the lirt coefficienl C, and the gencrat('dlhrust are hoth equal lo ,.;ero for

1\ sYlTlllletrical foil with no lwisl across Llle span.

The middle graph in figure 6.1 presents a fealliering parailleter of less LIlaH 1.0.

In this casc, the instantaneous pitch anglc (\' is less than lhe allglc of the kinematic

velocity, a". Thereforc, the gcnerated thrust has a llon-1.cro value ami itli direc:Lioll is

1I1e same as the foil rorward velocity.

The right graph shows an undesiraUlc situation for ..l propubor, ill which l.he

feathering parameter is 0 > 1.0; this is c{juivalcnt to Ilrodllcillg I\. llegalivc: thrust,

i.e., the instantancolls anglc of attack

O'in.I••1 = lI" - n < 0.0.
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Reduced rrequeney k 0.2000 0.6000 [.000 IAOO [.800 2.000
(On)~ in rad 0.1600 0.'1800 0.8000 1.120 IAI\O 1.600
(0 0 )4 in deg !J.!67 27.50 '15.81\ M.[7 82.50 91.67

(Oiool""I.mul. in rad ·0.01\00 -0.1200 ·0.2000 -0.2800 -0.3600 -0.1\000

(Oi".lo"I""",). in deg ·'L292 -6.876 -11A6 -16.00 -20.68 -20.!J2
(00 )1 ill rad a.157H 0.'132:1 0.(j2S;\ 0.760<\ 0.8510 0.8857

(croll in deg 9.048 2<\.77 :16.00 1\:I.7ii '18.76 .10.i,')

(ni",I""I.,,, ...)t ill rilil -0.0420 -0,[081 -0.157l ·0.1906 ·0.2127 ·0.22[:1

(Hi".I,,,,,,,••,,)1 inllq!; -2.2(i2 -6.!!H -!J.OOO -10.89 -J2.!!J -12,{;8

TallIe n.l: Comparisoll ur 1I1c 11111Xitrllllll instantaneous angle of al.l.aek betwccn small
,IIHI largl~ amp[itllde theory, at iI fixed sl1lall illlllllitlllle rCilthcriJlg parameter or 0 =
O.K. S11bscripts .~ a\111 I stand for small lind [arge amplitllde il.~sumrtions respectively.
The Vilhw of the 1l1axil1lul11 illstallialleolls angle of atlack Oiul•• I.",or may <:llange with
1111: change of I.he phasc anglc $phm bc\wccn 1I11: pitch and the hl'II\·C. Valucs givI:lI
in t.his t.ahle .trll for llu~ plli\~ l111glc al $I'h.... = !JOQ,

To o1Jtain il gClJcral pictllll: of ilIl error ill feilthering parallletcr in SIIlll1l1llllflliluue

Ihcory, all osdllilting willg willi a rdefl'IlCI~ Icngth of l, 11I'il\'C illHpli1.uUe faclor of

I, II/Ii.?hl of [/sec, illul a lixed Smit!l alllll[ihll!e f(~alhcrillg pilrameler of 0 = 0.8,

WHS Ilsl~d 10 I.allaht!(: Ilw villul'S of Ihe illslalllillll.'llllS 'llIgle of al.tack, ninAlo"l, witll

the dlllngcs ill rellllced frequenc)'. Frolll t1lull: 6.1, for small illI1plitude tlleory, the

iUSI."lltIIlICOIlS angle of 'l!.l.'lI:k is Idrcady 16.00b ill k = 1..1. At such a hig angle of

;lttiu:k, sl:llilratioll will on:nr aud the results al'C 110 [oliger Illl'allillgfui. 1I0wc\'cl', using

\lll~ largl~ aillplitude lheory, tIll: inslallt alll'O\lS lingle of aHack is rnuch smaller and the

lir1.ing IInw ,lrotlllll tIll' roillllighl he still possible al11 lIluch larger fl..'(luced frequeucy

SilY up t.u k = <!.O.
'\11 ill,~lilutil1U:f)lIS lill'l\l~ 1I111llliludc realhl~rillg pafilllletcr (-)in.lonl was ddined ill the

furlllof

0;"'IO"I""I(/I1_1'~' (6.:1)

The val\ll~ of Ihis 0;"'1,,,,1 should hi' less than I lo ohtain a positi\'c thrust. lIowever,
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t.his instantancous value may be I,uger than, but mllst be close to 1, e~·en if tIle large

amplit.ude feathering parameter 8 is less than I, because t.he phase angle hall an

clf(:d 011 the installtaneous value (by shifting the ph~e or lhe numeralor aud lhe

<Ilmolllinator ill eq. (G.a)).
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6-B Effect of heave amplitude on the efficiency

and thrust

TIll: clfct:t, of hellve Illllplil,mle 011 thc 1I1rllst Anti cfflcil:ncy WIlS ohserved IIml the

l'l'snlts ill"!: IlTl:sI:llted ill figure 6.2. TIle figure sllows 1hat tIle heave amplitude has II

suhstilnliill cfrce! 011 the thrusl; the predicted thrust coefficicnt Gt rangcs from 0.0,1

ill !In = O,."j IOO\'I:r l.(j at lin :::: 2.,'. Ilowe\'(:r, the ellicil:ucy dTllps gradu;\lly from 7,1%

10 Ci2%. It CilIl he Sl'l:n that tIll: ll~l: or till' lnrgl: illllp1ilul!(: tlll~)r'y iu Llli~ method

Ki\T~ illl IdllloSt lim:ilr rdatioll fur hull! till: l'/licielll:Y 'I il1ld tlw thru.~1 mdfic;il'1I1

C/. ;11111 thill, with 1111 incrl'a~illg till' 11l'1Ive nmplitmle, 1Ill: dlir.il:llfy drups whi!l'I1u:

thrusl ('ocHi!"i!'!!1 inrl'I'ilsl'S. As all ilwfI'a!ll' ill thl: hl'a\'(! ilmlJlitl1dl' is equivalent to

all illl:f1'ilSI: ill tIll: Hllgll: or at lill'k, i.l . 11 111~TI:1ISI: ill till' rl';\tlll'ring l'ilTiUlwll:r Co). tIll:

I.lrrllstilll;rl'aSl'lllilll:llrl.v.

Hoo...mpl~od.foOI""~,

l,'igUTl: fl.2: Elrl'f\. or III:aI'l: amplitude 011 thl' propulsive dliri(!IIQ' II illlIllhrll~1 cod
lidl'1I1 C/ for n rigid n~dallgul,lr IlIlcillat.ing foil with all as]Jl'd ratio of 8.

'rill' 11'PIIl! or tltl! prlil'il'll(,y ill figllTl' fi.'l i~ 1;()1I1mry to the cOIlc1l1~iol1 by Yilll1llgudli

1!l!J~ (p.2). III tIll' prl'~t'llt IlwlhOll, ltiglll'r hl'm'e 1l111111itlllll; mmlts ill lowC1" dficiency,

(lIol1gh I,Ill: I;\lf\'t' lonb rallwr Hat. Thi~ is 1t1~(J in agTl'I'IIll:111 with 1111: T!'sult by Liu and

IiOSI: (p.ll;·(iH, IlI!):I). in whirll I!rH'I; llaturally orclIrrilig plallrorm~ werc l'xa11lincd

tJ.~illg il SIII,,11 iIlllplitlldl: lifting ~urfau: 11U'()ry. Illcn'ased tllrJlst nleilllS till illCfCi\.<;(.'(!

lou,1 of LIII; propeller. /llid lit'1UX' 1,11l'T1: i~;l drill' ill dlidellcy.
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h" = hhcavc!Cr 0.5000 1.0000 1.5000 2.0000 2.5000
o= 0"VjlighJ[wh..] 0.8000 0.11000 0.2667 0.2000 0.1600
e = o,,!lan-l[wh,,!Vjlighl! 0.8627 0.5093 0.4070 0.3613 0.3361
fiiMI .."I, ..."r 3.6450 22.080 33.390 40.520 15.280
J.: =WC./Vjlighl I.UOOO 1.0000 1.0000 1.0000 1.0000
.J == lrVjligl<,/[wh..1 6.2832 3.1416 2.0911 1.5708 1.2566

Tnllie u.2: Rcsults of changing the heave amplitude. 0i".I ..", .... O% i~ t,hc maximulIl ill
~t1l1l1.alteOIlS angle of all.ack which occurs althceljuililJrium position of tllc oscillation
at it pha.~c angle e<lual to !l0".

Illcremiing foil area will raise loLal 11lrllst. III additioll, increasing the heave ampli

tudc will have an equivalcnt effect. In hoth casc~, however, lhc dimensions of I,he foil

and the heave amplitude usually have to he constrained by the geolllclry mllditioll~

where all oscill'lting propulsor is illstalbl. The reason for a higlH~r heaVf~ amplitude

Tl~~uhing in a higher thrust is that when tile instantallCO\l~ vdocity angle n~ increa~(~~,

the imtalltalle01l.':; angle of attack Oiul~nl also increases. /\ larger illsl.iU1lallC~lls angle

of all.nck will usually produce a higher lift and thru~t hefore separat.ion occurs, Il1It

it will not produce n higher efficiency at all timcs; the pitching mOllwnt plays all

important role in determining efficiency (s(''C equatioll :1.59).

Changing the heave amplitude will also alter other paramcl.ers. For darity, villlle~

are talmlated in table 6.2. It is noted that the small amplitude bll.hering paranW1.I~l'

oclecreased linearly with tIle decremie ill I,he heave amplitude. However, thl! large

allll)litude featherillg paramcler e dccrrascd non-linearly <luc to Llle relaliunshi]llll~illg

a rl:vcrsetangcnt fUllction.

[t can be sccn that to obtain a larger thrust, t.he lIIi1xilTlIllII iIlStl\lltll11(~Jll~ angle

of atlack lwcds 1.0 be increased. /\ loo largc angle of aUack will proIIIlC!: 1\. hOlllHlllry

layer separation or ~tall. Whcn tile oscillating frequcncy w am.! the swim velocity

V/li.qhl i5 fixed, increasing the pitc11 anple OQ ami increasing the heave amplitude h~

may keep the instantancous l\1lgle of all,lck ullchanged.

The advance ratio, .1, defined by nose and Lien (I!lS!J) is also includ<:d ill t.i,<: table.
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Thi~ advance ral.io, illl a balle of comparillon, is heuer t11i111 rCllllc(~d frequency for a

tilpered foil if thl~ rdcrcncc length is 110t taken all tIle average of illl local chords. For

a f1exihlc foil with i\ spalllvillc flexibility, as the heaw amplitude is not uniform acroslI

Ull~ span, thll basill of ~ofllpilriso!l, illstcad of IIsing tile allvann' ratio.J and r{'athering

pi\rall\ctcr 0, \I('C,ls to be ll(~lI:r11Jincd.
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6-C Effect of apparent pitch amplitude on the ef

ficiency and thrust

The apparcnt pitch amplitude was so named becausc, for an oscillating foil with n

churJwisc flexibility, thc rcal maximum illstantanco\ls pit.ch angle is 110 longcr the

same as that for a rigid oscillating foil. Tllcrcfore, the effcctivc pitch amplil,ude had

to be Jetennined alld USI..'(1 in calculations for flexible foils ill Chapter 7. lI(lwevcr, for

rigid foils, this amplitude remains tIle s'lIne.

". 0.1000 0.'2000 0.,1000 O.HOOO 0.8000
0= H" VJij,~hI/fw"o] 0.\000 0.2000 0.'1000 0.6000 0.8000
(-)= n,,/lflll- l [wh,,/Vj li,h,] 0.127:1 0.25t\7 0.509:1 0.7G3!.l 1.0186
ni".,"",.",." :m.270 27.810 22.080 10.(;20 -0.840
k = wCr/Vj/ig/d 1.0000 1.0000 1.0000 1.0000 1.0000
.I = 1TVjlighJ[wh,,] :l.l'llH :1.],116 3.141fi :l.HI(j :I.l-ltfi

'I'illJle 6.:1: llesults of {:lJanging tile apparenl pilell illllplil.U\II:. Hi"./""!.""",, is llll~

ltlitximulI1 instantancolls augle of attack whidl ()(:cllrs at the 1~luilihrilll11 p().~it,ion

of Ute oscillation at a pllaSl~ anKII~ equal to 90".

Table G.a t.ilhllliltl!S tlte dlallgcs of small and largl~ amplitude fcatlterill~ paramdl:rs

oalld 0, rCdllC(~d frCilllcncy k and til!) advilnce ratio ,}. IL Cilll he s(~C~lI 1.1li11. at 0 =0.8,

(-) is illrcilJy greater thilll OIlC, ill wllich CllSI~, a lIcgillive thrusl is cxpl~ctcd wlll~l1 a

tlll~ large arnpliluuc 11I0tioli or the roil is cOllsidc~nsl.

Thc maximulll allowl1l1le pitch alllpHtuut! was takml liS O.H Tlld, i.e., ·15.lH P
• Fig

ure (i.3 shows t.hat the oscillating foil no longer IJrOllun:d a pOHitiw thrl1s1. hec,l1lse

t.he feallicrilig paramcler H was 100 largc! (0 = 1.0IS(i al 0" = 0.8 rad); t'olli<l~ql1ently,

the illstantiHlcOUS allgle of attack was less thall zero.

In fact, ill auout 0" = 0.8 1"{/(/ ~ tl5.8'1", lhc value' of tlll~ lhrus1. (;()dlici(~llt WilS

allOul ZCI"O (SL"I~ figure (1.3) !:lecausc tl1l' angle of illtm:k is close lo zero or the lurge

amplilildc feathering parameter e is about 1.0. Tllis ligure also tl'lls 11.~ tllat UII'W

ill all almostlincar relation bctwccn the pitch amplitude illill the lhrust. pt:rhHflH dlle
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l"il;l1"'~ (i,:l: 1':lf"1"I or tlw ilppilnml Ilitch <I1l1plitlldc fr" on the propl1lsi,'\; d{i\'icnry 1/
;lIld thl; Illl"Ilsl, ("(Jdliri(~l1l C'( for a rigid osrillnling foil with an ilspcel ratio o[ i'l,

10 the linear rdatiun !J('II\'ITlL Ihe lift. ;Iud the iTls\i\llt;\I\(~UllS Mlgle uf a(.lllck; i.e" thl;

largl:r the n a, l.lu: s1Jlallertlw Hin,'"nl, ,lillI, hem'f', t.lll: slllilller lllC lift all(llhrllNl. TIIiN

tWllll, howc\'(:r, Tl~\"crSI;N the dfl'c1. of Jll'il\"t' on 1,11l~ thrust as shown in ligul"C' fi.2,

Ikslllt1< in figure f;':l wen' oh',,;n,'\1 at an initio'] angle of IIt.lack or zero. Dilfcrf:lll

iuiti,11 HlIgl1'S of al1(wk IIW,; also (('sl('\llllld thef(' was 1\0 IImen'nec s,'(m ('xccpllhat

lilt' flsdllntory \"llllf:S of inslulIli\llC'O\l.~ lifl IIlId thrnst sllifll'(l a philse angk This will

h(' dis(;II1<Sf;lllal(:r.

T)w propulsh'(·dlki('lIey.liowl'H·r. follo\\'s il nOlI·]jlU'ilr manner wil Ii differ('lll pildi

illllpli1.ll!lcs, TI.is lIoll-1il({'ar h.;lia\·iollr is dilf('f,'nl from ("iIS(~ to (";\se alld n:\'('als tllat,

in osrillulillg prnpdkr lll'sir,ll, lh" maXilll111ll dficil'lIfY llils 10 1)(' e\'i1lllille(1 for il

pilrt.indM" oSl:illiltilig foilll"il 11 pilfl inllHr motioll ,lIul W'Ollll'l ry pilfiUJu:krs. II .:iI\I he

S"l'll tlillt at iI pitch Hugh' (l" = OJ; rild, i,('" ;It tlll~ IlWXillll1l1l illSllllllillU:OU,~ ilTlgle of

IlltlWk 0, ••(,,,01,,,,",. allOlll 10". tlll~ maxitllllllll'fliciell(~Y II was obt!lilll'd, A 100 small

'lll~h' uf alla.·k (Iitlnol I)wlilln' I'liollgh tllrll~\ Ull11 a too hig ilngle of atti\(:k rl~f1uirr'd

100 lIlUdl pi\.dlilll; IliOllW1I1 illnl 11l'1It:(' tlwy butl! f('slll1t~.1 in 11 low dfici(·!Iry.

As Illl'lltiorwtl ill \"l'rilif1llioll of lhc n'slllls frOlIl illi osrilliltillp: [oil, cllicit'HQ' drops

10 ;Wrfl whl'lI tile (('r!U<:t,t! ff('qll'~Ul:Y i\ppr(ladle~ zero. Ht'dud,ion of pitch illllpli\.ud,'

II", when the rt,t!llc('d frp'lllcnry J.' = ....·C'!Fjli.1hl is lixl'll. is ('qlli\'IlIl'1l1 to lIl'ucasing

1111' n~(ltln'(l [(('([lIell(:)' wbt~JI Ilw feal1ll'l"illg pilralllet.~r

i~ lixed. III other wonk fur U nlllstant k (1\('lIf('. a WllsIUl\t w} d('cf(~asillg IIII' pikh
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amplitude 0 0 will decrease the large amplitude feathering parameter 0; 10 keep 0

constant, when decreasing the pitch amplitude 00' the oscillating frequency w has to

be d~reased (equivalent to having the same angle of allack). At a very small wand

0'", the instanlaneolls angle of attack is very smalltooj a large portion of thrust will

he cancelled by the pressure difference opposite to the lIlotion or the roil (a calculatl.."<l

drag in the panel method) occause the total amount or thrust prodllced is very slIIall.

Thcrdore, the efficiency drops dramatically at 00 approaching to ;"ero.

Again, at a larger pitch amplitude ilnd ILence a lower instantallL'Olls allp;!e or attack

0i'Ulonl, liLLie tJlrusL was produced, tlms, the elTidellC)-' did not increllse with the pit,c:h

amplitude. This cffed is .llso equivalent to increasing the retltlCel! rreqnency (ill most

eases increasing the ilnglll<Jr speed) when lhc pitcl! amplitllcle is fixel!.
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6-D Effect of pitching axis position factor on the

efficiency and thrust

Extl~llSiv(~ study 01L tltl~ l'itdting axis position filt\.or on the dlicil~ILCY aml llirust has

h(!I'll dom' previously. Examples inchlllrll.llc calculations for a 2·1) o~cil1atillg foililsilig

Smallll1llplitlldl! theory in Lighthill (1!J70) and 1I1e ohscr\'atiOlI for a a·D osdllating

foil with a slllall alllplitlldl~ ;lssllmpliull ill !.ill ([mIl). Herc, n~sulls arc pn~sclllc(l [Of

1Hl oseilli\ling foil of fini!.(! thi(:knl!l\s bascd on 11 largl! nmplit.udl! tlwllry by the ]Jrr'.~elll

paul'! method (.~l!l' ligllw GAl,

p;t<~;", o,i.po.;\io~foc\",

Fig\1tI~ (iii: Erfel:\. of pilrhing axis faclor on t.he pmp1l1si\'r~ d~dcl1q' II ;lIIr!tllt' thrust
l·Ol'IIi1:il'\\l. C, fur;l rigid IIs{'illa\illg [oilwilh "n ilsl)('(:\ ratio o[ 8.

III I.lw I:alculatioll, as only 111ll pilfhinll: axis jlosilioll dlilllgcll, 11111111: osdllatillg

paranu'll'rs \\"('rt' not alll'l"I'II, Tlll'rc'fort" tlll"Oughonl lhe range. l1u~ fl'illlll'rilig pa

rill1ll'1l~r \\'as H =O,iiOln. ("(,1I111"1'll fn''IIII'IICf \I'a,~ k = 1.0 ;111d ;u!I'alll;l,d I'alio I\'<\S

./ = To,

('omp<lrI'11 willi thl~ ~tlldy IIy Lighthill (1!170). I111"rl' i~ 110 IlilfrTl'lIn· ill lTl~lIds

for 1.111' dJi("il~I1C'Y and t!lrusl \"I'rsus (1J(' pilthillg axis lJOsitioli. [I nm Ill' Sl'l'lI fmlll

li).!;IIl"l' fi.·r. that. till' 1)t',~l l,r[idl~lI('Y WilS ,II all()llt. .r~,r<h :::: !l.T5 .... 1.0, wllerl' the

IIlil1il11ll111 1II1'11S1 i.~ C'Xpc'l'lpd. All dfl'di\'f' way 10 illC:rl'aS(~ I hi' Ih1'1ls1 is 10 ;llnc~ilsc'

l,ilhllr \.hl~ hea\'c 11mplitl1t1" (Ill illnl'llSI' \.hl' ll1mst t'odlicielll.) or Ihl' willg area (In

illnl'lIsc~ lilt' lolal thrust), Tlw optimum pildling axis loeilliOIl l'IlI! 1)(' Sl't nl. .r;'ld, ==

1.0, if L1w l"l~lllIill'llthrusl nUl be prc)(IIII"l'd 1II111('r the limitation of tltr' hl'<l\"(, IHllplit.lldc

.11111 tIll' willg arl'l1.
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6-E Effect of phase angle on the efficiency and

thrust

He'ltllb of pha'iC an&le cITed are shown in figure 6.5. Unlike theelfcct due to the hCilve

ChiUlge, here. both efficiency and thrust had a non-linear relationship with the pha.'iC

angle. This agrees with conclusions in IlrC\'iolls studies, ill a 2-D lheory by I.ighlhill

(1970), and in a 3-)) lifting sudace lheory with a slllallalllplillltic assUluption (Lall

1979 ami Liu 19HI).

"",,,o"4.(plI.oh~_l

Figure 6.5: Effed of phase a.llgle 011 the propulsi\'e clfici(~nqt 'I and the~ thrllst r.oclli
c;i(''11t C, for a rigid oscillating foil with an a.51"'Ct ratio (If 8. 11]1'5C anglll WiL'I t~kr.n

as pitch leading heave.

Il can be clearly seen from the figure, for this Illl.rticular foil geometry wilh I)<\rtic

IIlar moLion parameter.l, that the ellicicllcy 'I rcached a maximum at the phase ilugle:

4Ipolo.." = 90" .... 100°; this lI11uimum representing an increase of ahout 80% ove:r that

in thc range from 0" to 90". The thrust cocllicient e" however, h'lll ahout a 30%

vari~tioll in thi$ range of thc phase angle.

For cxperimcntal lItlldy ami oscillating foil design, taking the rilla.'il~ angle arollllll

"0" Ilccms to be il good choicc if, again, the amOlll1t of lInust IIwds I.he rclfllirl~lIlellt.

III a case where a largc thrust value is required, and where dlauging olher plimmeterll

doc~ not work or thcre iLrc constraints all tllc dumgc of ot.her Illlriulldcrs sndl as l,hl~

iLr~a of thc wing, the phn~c angle has lo hc takcn c1oS(~ lo 180U or zcro (they coindd(~

with each other) lo yicJel thc rnnxillllllll possible tlirll~t.
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The phase anglll h;us lUI dfect equivalent to tile initial angle of attack. Therdore,

ror all eompulations, lhn initial allgle or attack was taken a.<; zero, wilh a phase angle

or !Jon.
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6-F Effect of sectional thickness on the efficiency

and thrust

In the cornrmtation, sectional offsets weretakcll according to a NACA 0012 four-digit

series designation (Abuott and von Doenhoff 1949). Results obtained for the same

wctangular foil, with sedional thickness ratios ranging from H% to 2,1%, af(~ presented

in figurc 6.6.

Figure 6.6: Effect of sectional thickness on thc propulsive eHicieru:y 'I ilud the thrust
coefficient C l for a rigid oscillating foil with an aspl)d ratio of 8.

The propulsive efficiency 'I had a maximum value at it 1Ilickl1f)sS ratio uf [2%.

Throughout the thickf1cs.~ ratio rangc, dlilllges in the valuc of '} were rathl)r .~milii.

However, the thrust coefficient er, rcachcJ large values for (;% thickness foil Mid 12%

foil.

For foils with section thillller tlmn !J% of the cllord length, dC(;n:asing tile tllickllC)SS

iucreased the thrust. 'l'llis prouably is the dfed of the leading edge sndion 011 the

pn:ssure distribution becausc of the SIIMII kading edge or the snml1 L.E. radius. As

ran be SI)Cn ill Chapter [j (page 96, predicted thrust from the lifting surface theory

was much higher than that frolll the present method. Here, the ll,ickness dfecl had

played all imporlant role. III lifting surface theory, the thickncss (If a foil is :t,ero;

hence a large amount of leacling edge snction was added to the tolal thrust.

A thickness ratio less than 6% seems not to be economically feasible for engirwerillg

aflplicalions, at least at present. ill osdlla~itlg foil design, because of the strengl/I of
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'\V11.ilablc Tnaterial~. In fad, for such a thi!1 wing the efJiciclicy might have iI sh'Cp

drop whcn the [oil is made flcxilJ1c (IK'() next dmr.tcr) l]lIC to the largll dlOnlwisc

aliI! spillllvisc dcncxion. Therefore, wduciug tl"l thi<;kllCSll is not it good method Lo

For [oill' witll 11. ~cctiollalthickness higher tltall Hi% o[ duml, til.) larger tllc thick

rl'~s the stlll\l1er the tl1ru~t.. This implies that a t.llickcr [Oillll!ctlon hilS luwer hydrody

namic dridlmey. The 01'1.irtllllll thickllCllS for 1111 osdllilling foil, if strllc1.lIral problcllU'

i1nl 1101. 1\ .:nrtC:Cf11, would r,,~ around t:!'J(, of the chord.
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6-G Efficiency and thrust from a lunate planform

Study of the propulsion from the lunate tail of marine animals ha:! been l:omllldcl!

for about a half century. Numerous puhlications arc a\'ai!ab[e hllt most of th<llll are

either has<l<l on 2-D theories (some may includc a a-D correction) or lifting surface

theor}' in whidl foil thickness ha.~ been neglected: or s1I1all amlllillidc molioll, frolll

which resulls ohtained al large amplitude of lieavc alld pilch nrc qUCSl.iOllahlc.

Figure 6.7: ;j.1) geometry of a man-madc lunate plnnforlll with Ml 11..'ipt:cL ratio or s.
This 3·f) surface panel is illllSlratcd by lhe pcrsllcctivc vielV.

Based 011 lhe aho\'e arguments, predictious wcre mad(.' for 11. nHlIH!liu[(' llillatc~

p[allrorm to observe thl: dirrerellee~ hdw(:cl1 Illcthods. This 11Iall·made IUlla"'.' willg

\Va.<; !<lken from Chopra aru! J<<ltllbc's (1977) work: 1.11l.' 112 planrorl11.

[II their work, the o(f.~d.~ of lhl: foil war: c"kulal.cd hy

(6.·1)

for 111l.'locill chord lellglli amI

(lUi)

for the leading edge ()lr~d~. When /\ is taken ~s t, .~ <I~ :I, C r = 1.0 mill Clip=O.2ti

(the tip chonilcllgth), llie foil hlUl ill! a~rect ralio of III = 6.s(2C, + C,ip) = 8 nlHl
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1I11 atea or S = ~.q(2C, + C'ip) = .l.:i. lnpul (lata W~t~ lakl~n fot nilll~ ~lal.ion.q .1.1\d

l'l~f:orderi on LlIl~ input worhllcct; llll~n they w,~rt! Cllrl"~ filled hy a spline function

ill 1,111: .JohContr,FOll [lrugratll. ,[,11l~ sf:cliollal offseh wcrc taken as a N/\GA 0012

dcsiglhltioll (with" I SI1,1.ions) Illld they WCft~ iutllrpolalcd by the ~alt1e program. Thc

right grapl, ill JigU[l' 6.7 ~how~ a pcrspcdil'eview or 1I1l' foilwilh cosineRTHI uniform

slladllg in d,onlwiSf1 '1",1 s!","wisf' ,Jircdiolls n'speclively. TIm lIpp"r Idl graph shows

II :I-D villiI' of th" right-mOllt (slarlmud) tip scdion. The lowl~r left graph shows tile

lop \'if~1\' of this tip s('dioll.

(:akulntio!ls w,:rt: dnllt~ hased 011 lhc f'll!ml'ing gl:nmdry IImlmo1.ioTl parm!U:I,~rs:

• 111'111'" "I"I,li1.'''t.. "h, ..... = 1.0 lit: h.~nc'~. tl'e factor h~ = 1Jhcn..,!C, = 1.0:

• forward swim 1,.·I(J{:ily V/ligh, = 1,0 IIl/SI;!:; thlm. Il'll \·t:!ocil.y fadol' Vjl;,M =
1,0/,<('(;;

• smull 1l11lplilUI!e [I'nlll('rillg paramt'1l~r 0 =0.0, (1,.1:

• HUllular I'/·Io{'jly ...• =1l.2 """ I.~ III ol.l.niJl k = fl.:! '"" I.S:

• illllll'ild'ill!l allll'lillldr;n~ = (LOS ...... U.7:! I"/lfl,

II, is "oll.'~l lhal 1l1t~ I"alul' of (-) t'urr"spotillilig 100 "" O.·j is Jlot lIuHorm fot 1)llch

rut'\"!' Ill' 11,,: pres"lll. ITIdliod l)f'caltS'~ of I he 1Il1ll-1ilwar large amplilll(lt· t,'I.\tionship.

Th"l"l~rot'1~, al w =O.t, 0.(;, 1.0, 1,.1 111ld I.S, 11ll'y nre 0..\0!):1. 0.<10\011, O';lO!J:I. O.5~H2, O.U7H!J,

rr'slwl't;I'dy.

Fot' lI,is llHlIHll<lt!'1 11l1lall' foil, two ,·I.IIlI.nrisons \I"'re dOlle aud are presented as

r"lIows. Tlwy ,1I'l~: a) 1,1111 presl~!1t 1l1el110d \'f~r~us prel'iolls ones. The PTl~Sl'l1l. lIldhod

lakes ll", large l\lllplilIllJ('~al\dtb.: ~:ctioJ)f\llhicklll'sSJilIn acemmt, Tlw t'0ll1pll1aliol1s

1I','n: dOli(' ill 11,,' tim!: Ilolllllin. The pWI'iollS Itldl'Ulls lite basl'll OIL STlHlll a11lplitude

lifl,i"gslltfllce l!leory (;\l'wsectiollal l,hkkncslI); ,lilt! oj propulslvcdlidellc)'alld thrust
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from ... rcctangular oscillating wing vcrsu~ those from tile man-made lunate plall(orm

predicLed by the present method.

6-G-l Present method versus lifting surface theory for a

man-made lunate tail

Figure 6.8: Elficicllcy tlof a man-madl! lunate plallform with all ;'~ped nll.io of N.

Figure: n.N ~how~ the ]lro"nl~i\'e dlidelley p[(~dk\.el! by a small alTlplitllde: liftillg

~llrface' theory (Chopra and I(iltllIJC 1!l77) ami b)' prc::iC:uL rnclhucl. III rakulllLion,

this lunatc tail l)rOpul.~(Jr wa~ :iC:t to have It NACA 0012 M:dioll. Similar to till'

e:olTlpariSOll fur the tt~liUlgld..\r osdllalill!l foil ill Cllilpl(~r TI, t,lu: prc!St:nt II1I:lho<l gil't:1I

a lowcrdficiellcy prcdictioll, especially at a large frequency, bee:illl~t~ of tilt' pfi\die;,.l

large amplitude: I;onsid(:ralinn.

III addition to tIle large difference ill Lllc fl:athcrillg parillTH:1.pr. wliidllllak('/; tlU'

comparisoll dilRcult atliigher al1lplitudt~of o~dlliltitJll, r(lr il slllilll ;l1lJplillll!(: fe~alh

l:rillg para1l\ell:r 0 = 0.'1, Wltell the) reduced frC(IIll~IICY i~ I.' = 1.8, the pitfh alllplitllllt,

no is 0.72 nul. The error for pitch amplitude e'~lilllatioll il~clf from small alllplilt1lll~

il~sllmptioTl is about (= 50%. There i~ also almllt till! salll(: ilf!lOlllll. of (:rrllr ill heill'('

amplitude. Therefore, 1.I1e~ discrCJlilllCY ,\llarger hcave ilnd pi1.dl ;lllIplii.udc~ is siguif.

i'i\III" For a ~mall f..:allll:rillg parallleter, for (~xiltnple, 0 = 0.0, only the: e:rror or Ilt:;lve

amplitudc cxi~1.~; hemeI', the difference ill cHidclley is smaller.

In figure 6.!I, the difTe'rcllcc in Ihrust is sllbstmltial; liftiug SllrraC(~ theory [Jl"cdid(~l

,I Illuch larger thrust.. The slo]l(: of 1.Iu: lhrust r.urvc ohlailwd hy tile lifting smfaf(~

1h<..'Ory at higher pitdl alllplitlldt~(the sallie as a higher reduccd frl:lluency I.' ill. a li~l!d
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l·" ..". ..... ~ .....,.'. "," ",..,,"',..,."".,

Figlltl~ G,!): Thrust lJrl1111;lTl'IIl~t1I~ 11l1l~k plllllform will. ~n itspcd ratio of S.

rl~lllhl~rillg pi\r~lIIdl~T 0), is sh'{·p. III linillg Sllrrlln~ Illl'ory, th.· stl':l'lIess i~ rll[(' to

lin' lilll'lIrdfe(·llltlll·lifl !'Ol'lIi..il'ul (.'/ slup!' illld Illl' illl"Tl'asillK 1.IHIlsi !lorliull (tIl('

X·1'l11 'lPUIll~111 of lile' IlOl'lllid fnITt·). wlll'l1 o..J ill("rt'II~I'S, Sudl 1\ la"~l~ Ililrl~rt'IIl"I~ ill I ht,

Il1tllS1. l"ud[il:it'1l1 is llot ~IlrprisiIIg. hl't'il liSt' IIII' i11lg11' of ilU~I'k of Ill(' ~rnall IllIlplil. lIdl'

1l1l'0!'y i~ 111111()~1 lwin' 1I~ Inrp;1' iI.S llll' lilT!!;I' at11plitll1ll' t linlry OIl<'.

6-G-2 Effect of the man-made lunate planform on efficiency

and thrust

:I
Fir;l1rt' (i.lll: Elliril'lI('y I/llf ~ lIlilll-1llmlt· llillilll- plnnfnr1l1 ilwl ,I 1't'<:I anglllil!" H~l"illatillg

[ojl.

'n, "hWI'VP tlll~I'lf('l'1llf11111111111' lilil 01111 HIltl(.'" rt'Sl1lt~ frtHli a rt'{:tallglll~r oscil·

lillillg pmPll!sOr II"I'rl' ohtaillt'd. Thi.~ willS h~t1 it ~Jlnll of (i //I IIlld H r110rd of O.7;j III.

TIl(' fOTwml swimmillg 1,.,lucil y I"li,hl is St~1 liS 0.75 11/ j.'I:c in order 10 have ,Ill the
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Figure a.ll: Thrust wdfici<'nt Cl of a mall-made lunate IllilliforlTl alll! 11 rCI:tallgtllar
oscillating foil.

lIame motion Il,'lratnclcrs.

Figures 6.10 and G.lIl1huw that the man·made lunalt~ pla11for1l1 had a signifi<'-llllt

(~mdency and thrust Increase over those from thercctallgillar piallforlll, at a \wy sluall

feathering pm,lmetcr (0 = 0 = 0.0), tllroUghollt all the rt..'(lucet! frf!(IIWlll:y r'U1gt~. As

wa1'; lllclilionccI bt:fow, al 0 = 0.0, the instantaneous IIl1gle of "Hack of 1111: foil n'ndll~

a lllMlill1llm. IlllhisCIISC, the foil was Illlilcra h(mvy load Wllditiol1; the 11IIlatl't,ailllud

a heUer pcrrmmallcc. At a medium feathering parall1cl(:r, tile illslanlallcuus ,mgle

of allack i~ smaller (so that lile 1.I1rllsl is smaller), the highl:r preSSlIfl: drllg hl~calHc

([Oll1ll1allt over the thrust, amI the requircl! pitch 1Il01l1cnt portiul1 uf the illJHlt power

incre;\&.'t! (hence the crliciency decrea:iI:t1). This malic llH~ dlit:il~t1CY 1\1111 lllrn~1. II~~~

than those from a rectangular foil.

The observation ahove indicates that a) tIll! propulsive performallce of dHfl~f(:lll

~\Vert Illanforrns predict(~d by evaluating 1hem Dilly ill steady flow (for example ill

van Dam 1986) is 1I0111dcljUaLe; b) a.~ thc Ii fling surface thP,Ory Iloe~ !lol (:llllHid(~r

the prl'.l\SlIre drl\g alld 1I10st previous 3-D lIIe~hod,; wew hil~I.'(1 011 a ~mall attlplitndc

iU\!HllIllllion, cvalualiolls relaled 10 the clfl..'Cl of the SIVI:pt ]llanforl11.~ on the swim

(~fficiellcy IIsinl: these mcthods may havc a questionable aCCllracy.
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6-H Efficiency and thrust from a fin whale's flukes

l!l:~ults WI!«: also ouLailwd for a lmlllt"ally occllrrillg plallform; a lin whale's flukes,

Tlu! rneilsnrenwllL~ of 1I11! Ilukes II'm: takell from Lhc work by Bo~(' ilull Li<:t1 (11)89).

The thickness of tlw fluke!!' sectioll is 19,6% of the chord, lIigufC 6.12 ~hows SllCh it

Il!;mforrn, III till! figllre, lilt! lower right grlllih shows th<: to(l \'il~w and the I1pper !<lft

ow: i:-; it Ill!fSpt:dil,t: vi(~w, The Ilnkell lu\.V(' a 1I1H11l of:l mckl1\ ;md 1I11 aspect ralio of

{i,1. Their fool, duml b O,lli TTl, Comparisoll hetwclm the Pl't'S(~llt IIldhOlI arnlliftillg

,~lJrfa(:e lhc(Jry, IIl1tl iliso lhe effed of tile hillitte Jail OIL I} lIud Ct. willlw dilicllsscd

hl'iow st!pllr;It.('l~',

~~~~:-:?'3.~

1'1', ,

'J Ii!l,llt1J~

FigUrl' <i,12: Tllrt,\, tlinWlllllonal j;1'ul\H'1 ry nf a lill whale's nukE'S, TIle lcrt gtilJlh hi'l~

;1 \1l'fSIWdiw' Vi('WlIll tlwllhl'lillOfllw It'flI111k<'lullks ralller widl'.

6~H-l Present method versus lifting surface theory for the

flukes of a fin whale

To rolTl\Hlre l.h(~ rl'SIIU,s from the liflillg surfncc l!\('nry with those hy Pl't"5t:~llt. Illc\.hod,

lhll following 111nliun panlluc\.(lrS Wt:w IIsetl:
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• kg = Ilh.ove/C, = 0.87 m/O.87 m = 1.0;

• 0" = 20" ~ 0.3191 rad;

• ifJ pl« ... =!)Q" = .,,/2 rail;

• and x;il,h = x~l<~/Cr = 1.0.

Based 011 the above moLion paramclers, the values of ./, a)ollg with the other

variahles, arc listed in table (lA.

:=~
e =/;altan·1lel
k=e

0.5000 3.5OO0 G.OOOO 7.000n 8.0000 !I.OOOO
0.0556 0.3889 0.6667 0.7778 0.888!) 1.0000
0.2m 0.'1773 0.7238 0.8276 0.9330 1.0395

6.2832 O.8!J76 0.5236 0.1188 0.3927 0.a41)1

G.2832 0.8976 0.52:16 0.'1188 0.3927 O.H!>I

Tahle 6.4: Advance ratio .J vcrsus olhcr molioll paraTl1cLer~ for a fill whale's lIuk\'S.

Figure G. 1:1: Propul~i\.'c cHiciency of rigid fin whale's flukes: prcslmt rndhod V'!l"lIliS

lifting surface theory wilh small al1lpliludc <U;SlIHlptioli and a 2-1) strip tlu:ory wilh
filliLcslla,n and skin drag corredions.

It can be seen from figure 6.13 that t.he predictioll by the Ilresent met.hod 011

elficicllcy hall a ,l!;ood agreement among others aL a.mcdilllll advance ratio ./. Wlll:l1.1

was very small, the foil oscillated at a large frequency w (w is 211" at J = 0.5) so that

it had a big illstantanoous angle of attack. The ma.ximum lhrllst will always occur i\t

the largest in~ti\ntant'Ou~ angle or attack. A too large illslanalnoolls angle or attack
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t.hen yieldcd ilMllallereflideney Ulan other metholls. At a higher i'.dvance ratio LIll\~ il.

~mill\ illlltantnneous angle of attack, i\..~ tolal thnlst is smnll, calculated prcs.mrc drag

by pillid method t.ogether with the skill friction drag caucel1cd a large portion of Lhe

thrusL and, Ilcnce, tlll~ dricicllcy droppcd earlim than the cmch~llcy eurvcs obtained

by t.he :I-D liftillg surfal;c t.heory (I.ill and Bose I!l!I3) ami the 'l.1l strip theory wilh i\

:1-1) COrTl)ction (Bose aml l.iell 1989). A\thc skin frictiOll drag c:slinlatioll IY<I.~ tllkcn

ill tIll! 21) strip thcory with a :\.]) corrccl.ion, llll~ dficiency Cllrw~ by BOSI~ ilnd Lien

(I !)S!J) clroPIJf~c1 earlier Ihall IliaL predil:1ed by Ilsing the 3- J) lifting stltri\C(~ l,ht'Ory.

Pl"llllir.lc~d by thc prescnl method, t.he dlicil'HCY droppell quickly aflcr .J = 6 and Ihis

is 1JlIlinly due 10 till: drop in the maxill;~rn inslatltam~(JlIs angle or attack,

Thi~ also illtliciltes lhat w!ll;n tllll ilfl\plitllllc of pitc:h illIl! ht~j\\'l' is carefully COII

trolled, sm .... ll amplitude lift,illil ~lIrfucl: Illl'ory gi\"t~s all m:l:epl<lhl" pr(.'(liclioll. Thi~

pn:diclioll, btJ\\"l~ver. i~ lililitl'd tu it slllall fallge of oscilla1ing p<llamcler~.

':! r I
Figun: 6,1,1: Thrust. «M'lIicient (.', of rigill fin whalll's ([ukl)S: PTl'Sl.!lIl. mdlmd vcr~u~

lirt.illil ~ul"fa(:(~ lheory with Slllilli <llllplitllllt~ a..-;slIlnptioll,

A~ it was oh~tlrved lwfore, Iht:rc is" large discrcp'\IlC)' Lclwc~ll the l\irust. pre·

(lil:tiUlIS lld.eflllillcd !ly tile t\\"o md.hOlI~, c~,)ecial1y at higher value pitch and heave

alJ1plitlides, fl:alherillIlIJill"il.TlIe[t:r. oscillaling rre1lllcilcyalld rl'lhu:cd frc1lllellcy, A

I,lrgll c1irrercJl(:e in the thrust determined hy the two methods can also be ~'Cn in fig

lll'jl H.14 for thl' rin wha\l:'s nl\kc~tluc to i\ remark.lhle differcuce in Ihe <tllgleof at.tack

at il loll' adViIllCI~ riltio J (equi\'illlmt to a small \'alue or Ihe Imgc alllplitude featllcl·

ing parameter f) at whir.h value, the difference ill llic angle of attack is sllll:'ltant.ially

large),
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1
Figure (l.W: Efficiency 1} ofLhe 1111kc~ of a lin whall! 1\nd a rcdanglllato~cilhltillg foil.

6-H-2 Effect of a natural lunate tail on efficiency and thrust

ComputaLion wa~ also <lone for 1\ rcet.angulnr oscill1\ling IJropulsur wiLh ,ul1\s[lecl

r"lin of ILl to compare wiLh the lIukes of the fin whale. The SPUIl of t.IH~ foil WUH

:1.0 rn an<l chord length lI'as 0.191R ilL 'Ib have the same Imsi~ of comlJariHon, V'lin},1

was taken as 0.1918 rn/.~,~c lIO tllaL all ot.her mot.ioll pararnclerH art~ Llw same as lll0s{~

for t.he flukes. The sectiunal thickness dislribution was also set. till! same as LIlat of

the flukc~.

Predided propulsive c1liciency allli thrust. for a fecL,wgular oscillating plallform

arc prescnted in ligures 6.15 an<l6.16. When the willgs om: rigid, lhl~n! is not 1ll1H:11

dilfcrence in eit.her efficiency or Llltllsl beLwC(!1I t.heS(~ Lwo different JllaliforlTl.~. IIlarg{:

drOI) in ellicicncy for t.he Tt'Ct.angular plauform, however, occurs afh!r tlte mlvance

[
J

.. ,
t. A,~.."",~,alooJ ,

,""'o~.,"...,_m.......,."".-

Figure 6.16: Thrust coefficient of lhe lIukcsof fin whale ami a rectallgulllr osciliaLing
foil.
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ratio reaches aholll 6. Al a large allvancl: fl\\io, till: in~l.ant.1\lleO\l~ angle of tlie: axi~

kiHcmalic velocity a" is ~lIIall and, hcnce, Ihe: instalitaneOll~ angle of ilttack is srni.lll

(lhis i~ tnll: in moot nOfmal (:aSt!S, ill \"'hich the fcalhering Jlilralllell'r has III he less

1111'11 I.O). Thi~ imlirall's llial., WitCH tilt: oscillat.ing foil is 1lIul... r a light ]oild, tile fill

whale flukNt oul;.iu iI highe:r dficit:C\cy allll thl: flukL'S' workillg l'an';l: in l.er1l1~ of the

illl\"~lIlCe mtio .1 i~ also willn. Il call also ht: iicc:n that, at a heavier load wlwll'.J i~

sliiall, t!le lin whale: flukes also had ~ slighlly lIil. hdler pI:rformanrt:,

It caulK: SC:(:T! L!H\1. Iht:rc:ctilll!\ulilr foillllllll:r a heavy IOIlII cOlllJilinli will pmdllCi'

mure: t.hfu~ll.hall the: fill whale 1I11k('!I; and tin' sllli\lle:r \.II(' advance falio. till: gWi\ter

Iht: \.hrll~l pr()dllt:l~l hy the: recl.i1nll\lI~,r foil.

'I'h(; aIJO\"t~ comparisoliM for hoth IIIC' fllan,ulitdc hllla!.I' planfonn Mill II\(' IIl1turally

O('t:lIlTed fill whilll~ (luke's Sllggc,~t Ih~1 for il rigid usdltatilllllJrOplllsor. hl1lll[c' !.ails

1101\'e: it sli!\hlly hiAAI~r workillg run!,;e'. ,\ n:t:lilligular foil. IwwI'I"I:r. ('IIn pTtldlll"l' ~Inlost

l\le~ .~anw amount of I.lirH.~l 1\1Id dliril:nc.y.
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6-1 Effect of skin friction on efficiency and thrust

To have a comlnon basis for a comparisoll of results from the small amplitude theory,

results presented below \lsed the small allll,lilUde fealh(~ring parameter for two groups,

t.hough they were obtaincd b}' the large amplitude assull1ption. Thcreforc, thc large

amplitude feathcring parametcr is not uniform for cach clIrvccorrcspouding to 0 = 0.'1

in each plot.

Figurc 6.17: Effect of skin friction CJ on dfidcllcy 'I of a rectangullll' oscillating foil
with an aspccl ratio of 8.

Fignn: fi.J 7 lIhuws tll(: dfccl of skin hiclioll 011 the cllicicllcy for ;\ rectilugular foil

with all ilSPCct ratio of 8. Ai a low rcduccd frc{lllcIICY, wherc the g(:llCI'Ht~:d thrust

WiLS small, thc skill friction and the calculated prCEsurc drag (thcy hiul alJOut the

same order) cilllcelled a major l>ortio11 of tllc thrust. Therefore, Lllc efficiency t.llcre

t "I <':::~:';'::::~:: -_A ~----' I
~ ., ,. "" ...l.,.,n,,,rO_ ...._.'

~ :: ~S~~-- .~~~•... -. -.
. ""....d-· F'<l,<cod"~'l'.R""'"

Figure G.l8:
o
°"Erfdi of ;kill r;i'ctiOl;' CJ ~~I thc' t.llrll~t co~'mdt:'r;t Cl';,f a n~dallglllal'

oscillatillg foil willi an i1~recl ratio or 8.
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Figure (i. HI: Effect of skin (riction Oil dFkiency of a lunak oscillating foil with all
ilSpl:d rlltioof H.

was lImal!. At a higlll:r n:dncI:d fn:qllClll:y, the skin friction relative to 11u: generated

thrnst is ncgligibll:. Thc:rdorc, t!H:rl' is no recludion of dliciency. Tllis is also similar

1.0 the l:urVCS for the flIan-lIlilllt: IUlIale /1'2 Illanforll1; the only IlifferenCf: is that the skill

friction affected tIll: dficiency inlhc 10\\'er nlllgl: of n:duced freqllency (S(le figure (l.W).

I\S can Ill: SI:t:1\ ill IigHl"lJ:\ (i.18 1lllU {;.:.w, skin [rictioll lHullittlc dfect, on the thrust.

wdlicicnl for till: rectilllp;1l11lr foil ami tlil: lunall: tail In wing; Lhe il\'crage value of

C'J WilS "hout O.08.'i ..... 0.095. The skin friction cf[I'cl had 110 change wit.h il differellt

flliltherillg panllllc1.er 0 or (-l. As lrlclltiolled before, the imp1ell1cllli1.1ion of the skin

fridioll fornll1hl1.iol1 \\'as maillly 1.0 estahlish 1l hasis for a qualitative comparison of

1101\' paHPrIl between a rigid ilIHI 11 llcxihlf: [oil. This will he discllsscd in the lIcxt

l:hapLer.

Fi~nre fi,20: glfed of skin friction on thrust of alulli\lc oscillaLing foil wilh (lll aspcct
r;ll.io of8.



Chapter 7

Results and discussion: flexible

oscillating foils

This large amplitude, time domain, flexible 3-D geometry pand method, has been

llsed La simulate an oscillating rigid, non-zero thickness foil with all arbitrary plan

form. In tllis dlapLcr, simulatiolls move a further step lowilnl reality: cOlllpuLilig the

Jlerformance of an oscillating propulsor with both chord wise and span wise dcllcxioll.

For a foil with given gcomclry, motion parameters, and modulus of elasticity, the

propulsive perfurmance could be evaluated by iteration, which couples the hydrody

llarnical forces, their C<Juilibrium and st.ructural rigidity at each time step. This kiud

of method yiclJs tile efficiency and thrust and, at the saine lime, gives the pnsllivc

dcflcxion sllapcs and magnitudes. This passive approach may bc advanlllgcoll~ ill

designing a particular man-made oscillating propulsor with givcn planform shape,

tllickncss distributioll and variation of rigidity (material, spanwisc amI chord wise .-;cc

tional mOlllent of incrtia)_ I-Iowever,the plUisive calculation may lose a generality: IiHh

tails and flukes of whales ami dolphins and, especially the flapping wings of birds,

may have certain muscle control on their propulsors, so that either tIle chordwisc

and/or the spanwise deflexion might be controlled adively. In addition, for certain

advanccd man-made oscillating airfoils or man-matle swimming fish, uptimization of

128
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the Jlositive ddlcxion r.onlrol nccds al.'lO to he realized, to give a good and control

lahle rropnl~ivc pcrrorrnance. Therefore, dcnexions in hath the chordwisc and the

spallwise directions were pre·determined in terms of shape fUllctions and amplitudes

ill this study.

This chapter will first discuss the scll~ctioll of II number of chord wise and spllnwise

ddlexiOlI (.'(lll1l.tionsj secolldly, iL will examine the dfed of II variety of flexihility

paramet.crs on the propulsive pNformal1l:c; it willthell compare the results from llie

presellt rnethofl with thal from II 2-]) pand method in which il llilH chord c111~Lic

rectilngular foil \vas ll::;t,f'cl (Yamaguchi HJ!J2); finally, the propul~i\l(~ pCrrOl"lnallCC of

I,hf' fill whall! Ilukes witll)!) {'Xamilled.

7-A Selection of chordwise and spanwise deflex

ion equations

Sdedioll of C(luation~ involved holh till' dlordwisc and span\\'isl~ directions aud they

arc disclls~l~d SI~llaraldy hdmv.

1-A-l Deflexion equations for chordwise flexibility

FIJt il gf'lIcral escill.1Ung f1cxihlc foil, as the distrihulioll of the rnomelltof inertia of the

sf'ctioll parallel 10 lhe spall and tilt! variation of thl: chord wise pressure distribution

atf~ nol prcdctl~rlHined, lhe shape function is diflicull to ohtain. In this study, in

addilioll to It I:ubic fliliCliOiI ilSSUlllptioll (Uose Ul!.l2), y !=: &S(x - 0.5)3, in iL 2·))

'U1idysis, IiVI~ other l'lillatiolls werl! added to lIlilke a I,olal of six. For a a·1) foil, till'

c110nlwisc ddlexioll shape for eilch section wa~ ilJsllrTled to be the same across the

spall, I,hough tlw thickness distribution of each section may be dirfe\"(~I\t. Equation

(7.1) is the shilpf: functioll ill a general form. TIle order ( of the sll1lpc functions

in {~qllaLion (7.1) rallges from I..'i to ,I. These six C(luatiolls ill a gCI1t'ral fOTm. after

lIorltlali:f.iltiol1, are
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z =: 0e(2J: - I)'sin(wt + 4l~),

130

(7.1)

where 5. is the chord wise dcnexion amplitude (5. =6.",C,-.I), a product of tile chord·

willC dcflcxion fador 0.", (I.he input data for the maximum chordwisedeflexion referring

to the chord length) lind the local chord lengtll; ( is tll!;';:" as ( = 1.5, 2, 2.5, 3, a.5, ,I

and ~. is the ph1l.'le angle of thc dcflexion rclalive to Lhc pilch. When ( is taken a~ a,
the chordwise deflexion equation is thcn reduced to that of nose lfllJ2. '1'111: value of

$~ in a normal case (for a ra.~~ive dcflexion) i~ neglltivc.

Figure 7. [: Sllape~ of chord wise dcflexiolls determined uy six el!Uatiolls.

The shapes of these six functions nre plolled in ngure 7.1. In t,he figure, the

maximum deflexioll was ~cl as 1(\% of tile local chorll length.

Several assllmptions are lisled as follows:

• Deflexioll starts at half local chord .

• Maximum deflexion is at lhe trailing edse and its magnitude is determined by

lhe local chord lcngth and the dcflcxioll factor D.O'
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Figure 7.~: ShillWS of spilnwi.'\c ([('flexions (h~1crmirll~d hy ri\'(~ t'(lllations.

• Olll~ ShilJlC flllll:tioll go\'crlls all s('{;tiuus so lIm1 all scCtiOIl.ll sll1l))e.'\ or ddlcxiolls

are tlle same, thuup;IJ lll,: lhickru~.'\s ilnd/or lhe shape or tlll' foil ~edi(Jn llIay

vary. In (Illwr words, 1111'n~ is lin L\\'ist or 1orsional ddlcxioll along t.he span.

liilS(~d Oil tlw aho\"(: ilS.~III1I]II.ioIlS. ~en'rill corre~polltling numerical procedurcs wcn~

]J(,rrorrl1l:<l: 11) I':ll(:h pl\lId Oil th,~ !I(,x;hle parl or 1.I11~ roil 111l.H a rclalivc \'elocity. Tllis

l"('IIILi\'t: \'dodty WilS cillclllliled Ily dilrerentiilting Cll. (7.1) wH.]1 respect to time I. hl
Tllis l'dalivc I"doc:il)" !las to he added 10 the lotat n:locity after iI t rausfonnalioll

rl'01I1 lll(~ hody friH!W 10 the glohal rranll:; and 1:) As tire ~hapc of the foil varies

w;!.11 (~iI\:h !.;Il\e Sl(~ll, 1h(~ il1lhwnCl: (lullhlel alld source codlident malrices have 10 he

re-(~\'ilillaled ilt ('adl linlt~ sll~l'.

7-A-2 Deflexion equations for spanwise flexibility

FiveSflalll\liS{~ddll:xiull (''1ll1ltioliS were [orllled hy lIsing a ciLtll;le\'l:r bcalll ddtcxioll

rundion, and lhey art~ ~ho\\'n ill ligllre 7.2.

The slamlard (letlexi()ll formula for a uniform cantilc\'('r beam willI a uuiformly

(li~lriIJlllc:(l loau is



Chapter 7. Results and discussion: flexible oscillating fojJs

z = 2~~f{61y2 - 4y3 +!1~/11·

As the dimension of I, E and Ware:

1_ i1, E_ NI/2 and W _N,

132

(7.2)

the unit of the fraction outside the brackets of equation (1.2) is /-2. Therefore,

equation (7.2) can be rewritten for a time dependent oscillation, ill a form of

z = 6.[2(7)2 =F ~(T)3 + ~(T)~IITI'.'ljll(wl +$.). (7.3)

In el]untion (7.3), 6. is the maximulIl denexioll, 6. = 6'0/, It product of spanwise

denexion factor 6'0 and half span length t. <\I. i~ the spallwisc deflexiolJ pha.o;c angle

relative to pitch. ( is taken a.'l 0, 0.5, I, 1.5 and 2.

The second lerm in the brackets of C1luatioll (1.:J) has to be negalive for the left

llalr span and positive for the righl half span to hav{~ a symmetrical ddlmdon. Tlw

maximum deflexion occurs al the SrHl1l till al y = i, and :'.eto ddlexion occurs ilt l.hl~

root chord at y = O.

Though lhere arc altogether five sp.mwisc ddlcx;oll cquations available in tlll~

OSFDEM.FOR, only three of them will be Iliscusscd here; as it will he l;CCn later,

the shape function of the spanwise Ileflexion hn.'! a negligible c/rcet all the propulsive

performance compared with the amplitude of lIle spanwis{~ dc/lexion.

7-A-3 Determination of instantaneous effective angle of atM

tack

As thtllst and eHiciellcy aredepcndant 011 tile instantllnoolls allgle of aLtack Oi...ln~l."'u,

this instantaneous allgle of altack is useful in explaining the rc1<ttiolls hetween forces

ane! deOexioll. a;n.l~nl,,,,.r is also important for boundary layer separatioll cOlllrol.

Instantaneous angle of attack is lhe dilrerence between the instantaneous pitell

angle a and the instantaneous angle of the foil's kinematic velocity au, i.e., OJ,ulnn{ =
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0" - O. III au oscillation with pure chordwise flexibility, thc instantancous pitch angle

c1lallges hut the o. "" /(1/1-1 VJ~'~h' remains constant.

In 2-D foil t.heory the crfective angle of attack, when a wing s~~ctioll is ddormed,

(:an be dclennined by finding the angle of 7.ero lirl. A numerical implementation wa...

dOlW in the present method to lind the angle of ;lora lift hy \Ising Glauert's expression

following Pankllllrst (IIB'I). In this Illclhod, the angle of ;lcra lift of each sediOIl was

ohtained lirst; 1I1en the augle of zero lift of llll~ whoh~ foil wa.~ foulLd Ii)' \Ising

r:f_l(C/o<.d,(oo); ( )
0,,.,,, "" r:!:l{Cl....I), . iA

For a symmetrical, rigiJ foil, tll() angle of zero lift Om. is zero. However. tlw

dlUnlwise dcllcxiull lrJillll: LIlli sylllilictricill M~di(Jn ht:cortle a camhcrcd one. ThcrcfOlc.

tlu~ illigle of zero lift .... ,,,,, was no louger zero. The inslanlaneous pilcb augle (~

im:reasl·d at il value of (\".•• I. Th[~ lift anti the thrust were t.hen del('Tlnined illherenlly

Ily the panel method.

For it Ilou-!.wistP.lI foil, each sediou has thl~ same ilugle of z('ro lift; so docs the

whole foil. The fe"thering parameter, as 11](~ pitch 1I11lplil1lde °0 increases due to the

f1(ixihi1ity. illtreilSl:5 hecallS[~ of C<\. (G.l)

lut:reasing (-) will prodtlo~ a higher efficicncy and il smaller thrust; thcrdore, when

the dlordwist~ all1plit.udl~ iucreased, the efliciem;y illcrea.o;ct! ami the t.!lrUS[ dropped.

IlolI'e\"cr, when the chordwisc ddlexion became sllllicicntly large so that 0 wall greater

than l.0, I,he illSlallln1ll~JIls allglt~ of aUack changed its signj then, a negative thrust

is gmlCrated. 'I'llen:forc. a lilrge choruwisc amplitude deftexion of a foil may mix botll

positive and ncgative tllfustj hence, a lower efficicncy and thrust lIlay bc obtaincd;

01", whim the ilislantil11t~lIIS allglc of atlack is dose to zero, a small amount of drag

will cancel l1w large porlioll of gencfall.'(lthrusl; this results in a lower villue of the

dJiciellcYllalll1 thcthrllsl. codliciCIl1.CI ·

1111 this tillie. the instantanoolls pitch an!:lc is u = (lrir;~-<t....
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7~A~4 Graphical representation of fin whale flukes in mo

tion

In order to have an idea of 1Ile instantaneous denexioll shape and the shoo wake

patterns behind the fin whale's nukes, graphics for a combination of 19 chordwise and

spallwisc denexion fundions governing the nexible flukes are presented in Appendix

11.
Calculations were also made to observe the propul~ive performance for the~e H)

cases. In the computations, the following parameters were used: 0'0 = 0.1; li.o == 0.1;

*0. = _300
; !P, = 900 (small nap); liD = Ii/G, = 1.305/0.87 = 1.5; 0 0 = 200

;

!Pp~ur. = 90"i X;il<h = l.0; w =O.2l1'"; k = O.hi e =0.1610 .1nd 0 = 0.:1701.

Table 7.[ tabulates some resulls from a series of calculations.

Tlle resulls shown in tahle 7.1 show thal:

• The higher 1I1eorder or (in the chordwisedenexioll, the higher the instantaneous

pitch angle. This was obviolls because the slope of the denexioll shap(~ fUlletion

dose to the trailing edge increased when tlte value of ( incl1!aseu, allll, Ilcm:e,

the value of the angle of ?,ero lift of the ci\moer :;(.'<:tion increased.

• A larger ( in the chord wise deflexion equation increMcd the installlallcoull pitch

angle, and, hence, decreased the value of maximum angle of attack. III oUler

words, the value of instantancolls pitch angle was closer to the velocity slope

Vl~':~' when ( was increased. This is the rca.~o!l wIlY the overall fe.lthering

paramcler Wrul higher with the increa.~e in (,

• Maximum efficiency wa.~ ohlaincd by using chordwisc dcfI(!xioli C1lulltioll #3 iUlll

spallwise deflexion equalioll #2.

• '1'00 large a value of ( in the case or the sllallwisc ddlexion prOllllccd hath slIlall

efficiency and thrust. The best thrust was obtained (rom the rigid foil, rollowcd

by the Ica.'llllexible foil govcrned }JY CIS'J. When ( was small, the elficicllcy

increased with an increase in the chordwisc flexibility; however, when (was too

large (greater than 4), cfficiency dccreased with all increase or the value in (,
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Elln. C, CIIl//e, 'I J} w/C, 0./1 ". Omm", 0./1
COSO 0.2600 0.2539 0.8098 0.7D69 20.00 43.30 2:1.:10 0.'\619
r,lSI 0.1173 0.10110 0.83!)4 0.8147 30.63 4:1.30 12.67 0.707,\
CI52 0.1431 0.137U 0.8>102 0.8155 30.63 43.30 12.67 0.707,1
(.,'IS3 0.1102 0.1341 0.8>10,1 0.8153 30.63 43.30 12.67 0.707,\
C251 0.1310 0.1216 0.8430 0.8152 32.04 '13.30 11.26 0.7100
C2S20.12@ 0.1207 0.8,139 0.8159 :12.0>1 '13.30 11.26 0.7400
C2S:i 0.12:19 0.1178 0.84,12 0.8158 32.0,1 '13.30 11.26 11.7400
CaSI 0.1174 O.llll 0.8141 0.81:12 33.26 '1:l.:l0 10.0/1 0.7681
(;:1."'2 0.1 I:!:! 0.1072 0.IH51 0.81:19 a~I.2G ..1:1.30 10.04 a.7GSI
Clsa 0.1104 0.104;1 0.S455 0.813S 33.26 1\:1.:10 10.04 0.7(~SI

C'1S1 0.1056 0.0993 0.8126 0.8086 :H.:lrJ 1:1.:10 8.%0 0.7!J:I:I
(.,',1820.IOW 0.mJ5!") 0.8'];17 O.80!}(l :11.:15 ,la.30 a.D5D O.7!j33
e,IS:! 0.m187 D.O!J26 O.SHI 0.8086 :H.35 4:1.ao 8.950 0.7933
Cil.')1 U.O!J50 U.0888 0.8:186 0.8009 :\5.:12 ,13.:10 7.USO 0.8157
C!,S20.0DII D.08,1f) O.B:19fi 0.8009 :15.:12 '\3.30 7.980 0.81.')7
C5S:! 0.OS82 0.08'22 0.8a!}') 0.80ilO :1:1.:12 '13.30 7,lJ80 0.8157
efiSI 0.088:1 0.08'20 0.8a1O 0.7!lO6 :lfi.21 4a.30 7.090 0.83G:1
C'fiS2 0.0881 0.0783 0,8;118 0.7DOS :16.21 ,\:\';10 7.090 O.S:lG:I
(,'{i.'J:i O.081G 0.07;-,.') O.8~20 0.78% :16.21 <la.30 7.090 O.S:lG:1

'1';\1,11' 7.1: COmfll1ri~oll of nilleteell combinations of del1exiolJ equations for a fill
wllnle's f1l1kes. [n ~lw tabl,', COSO means that there is no del1exion lind CIS2 in
dicat()~ ~lla~ tIll) chordwise ~hare function \Va.~ (,'(Iualioll number one and the ~ranwisc

~111lr>e function was equatioll Ilumber two. II ami C/ are efficiellcy and tllrllst and
~w/Cl" lIleilll~ thaI. tile valtle~ lI'ere ohtained after the re<llIdion of the ~kil1 frictioll.
UrI! is the crfcdiVC' pit<:h angle due to the l1exibility. This angle, however, is all overall
\'alllt) for the whole plMlfotl11 if lhe chordwise ddlexioll is notlluiform and is both an
m'I'ralt illIll local value if the governing equiltioll is the sallie for all the sectiOlls. Q u is
tIll' kinematic velocity of the foil's pitching axis, and it is obtained by neglecting the
lIoll-uniform Ilea\'e amplitude due to the spallwise dcflexioll. Strictly, each section has
ib own (lu at I)ach time for a foil wiLh spallwisc flexibility. The value of Q mu is the
maximum iUstalltancolls .1ugle of attack and it was obtainr.cl by aS~lIlT1ing the phase
i\ngle $phMe = 1r/2. 8 e1/' the dfcctivc large iIlnplitude feathering parameter, was
clllclllalCiI ba~ed on fi.. 1\1111 fl'll' All the angular values above for cach local section
ill ('nch timc ~tep were obtnine<! ami recorded in the oulput file OSFDEi...I.I,OG.



C/Uipter 7. Ilesults ,lnd discussion: flexible asci/lilting foils 136

• The larger the maximum instantaneous angle of atlack, the larger the thrust

ctXfficient.

• The best efficiency ('I = 0.845) was obtained at the maximum instantancolis

angle of attack of about 100
•

It was found that a combination of the heave amplitude factQr II~, ilud the phase

augle of the spanwlsc dcflexion phase illlgle $. had a strong c1[ed Oil the selection of

the spallwisc (Icncxioll amplitude to yield a positive thrust. Normally, a combinatioll

of a higher heave amplitude and a spanwise deflexiol1 phillie angle of about $, = 1800

(the active control of dcltexion) along with a large spanwise Jellexion amplitude 6.

gave the best efficiency and t1ITllst (sec page 139). Tile selection of shape functions

that governed the <leflexion in both directions showed a much smaller effect than the

amplitude of deflexiolJ all the efficiency and thrust.
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7-B Effect of the chordwise deflexion phase angle

on efficiency and thrust

A graphical Illllllysi~ of a flexible foil for tile chonlwisc t1cnexion was done and it

suggested that It phase allglc betwccn the start of the deflexioll alld the pitch is

necessary for flexihle rojl~. This is evidenced hy the fact that a flexihle foilllCCds time

to luljust th,! hending e'lllilihriufn itself and, consequently, tIl(! maximUlil ddlcxion

t1lJl~ !lot occlIr at the satrlc instant as the hC/l(1ing moment reaches it~ maximum.

Fignre 7.:1: Elfccl of the chonlwi~e ddlcxion pitasI' llllglc $" 011 tile dlickllcy II awl
the llirllsl ':odliciclil. C, for II rl:{:langlll,lr lHllf da~tic chord oscillatillg foil.

Fig1ll"e~ II.:,!;I throngll 1J.28 in Appendix II show the installtancollS chordwisc lIe

flexion ant! the wake paUern with different dcrlexion [Ihasc angles ranging from 00

to _[..no. The geometry and motion pnramclers of the oscillatillg foilllhowll arc also

listl:d ill Appendix B.
J\S !:aIL be seen in fignre:; 1I.2:! tllrongll 11.28, thll trailing I:dge of the sixth foil

positioll is highN 1I1Ol1l tile lllilximulil hcigllt (T.E. WilS taken as the location of the

pitching axis). This lrllilillg edge position ~radlla!ly bccallle lower thall thc extreme

poiuts. The wake patterns, howcver, do not "p)lllM Illlll:h dilfcrellt from each other

in the gt.'OTr1clry shown.

" 1l11l11bcr or rakulatious were doue 1.0 detcrrl1iuc t.he clfcet of the cllOrdwise phase

;lIIglc: on thrust lind efFiciency. Figme 7.3 shows that llw maximum crricil!1lcy wa~

obtained at $e = _<\00
, with a thrust t!le same as it was at $c = 0°. \Vhcli $c is
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greater than 40°, efficiency drops rapidly at abou~ the same ra~e 1\9 the increase in

thrust. As can be seen in ~gure B.25, the shape of the chordwise dcnexion at the

peak and the trough seems practical.
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7-C Effect of the spanwise deflexion phase angle

on efficiency and thrust

To tcslthc ciTed of tile pll1lSe ilugte of spallll'isc deRcxion (III the dlidcllcy alld thrusl,

performance of a fin whale's f1ukcs wa.~ calculated, by Il~illg the following rmralllclcrs:

• pl11.nforl1l itlill .~cctiOll gcometry were tile same liS those ill Chapter 4-11;

• r.hordwisll dcllexiorl (~lllation 110. 0, no den(~xi(lll:

• ~r>illiwisc dellcxioll equiltioll no. I wjth amplitude of 0.1;

• oscillating frcqllellcyw::; 0.211":

• I,itchillg axis position at the T.E..l·;irch = 1.0;

• 11l:avI~ amplitude of the rool chonl Ito ::; 1.0;

• lilrge amplitude fealhering parameler uase(l Oil the root chord 8 = 0.62:.13;

• the SI'HIlWisc t1dtcxioll pllilSC angle ranging from -ISO" '" 180°.

[t Will! lIot(:d that wIlen 11 foil has a spanwisc flexibilit)" the inslantmwolls heave

l'docity of each sed ion \"l.ti(:s across the sllan. This is due 1.0 the I,itching axis being

Ill! IOllgl:r a str;light line; the Ildgllt of the pitching axis is 1101 uniform illong the

span. Tllercfore, the secolill lerm uf input. polI'er of C{Iualiol1 (3.58), 1.;1, has lo be

re-(:villual.cu for cilch Sl!ction instc'ld or for !.lit! wllolc foil.

As the dlordwise Rcxibility dues llnt arfeclthe pitching axis' kinemat.ic velocity,

t.llt! lotal rc1"tivt: velocit.y due to the lll~,(ibility Cl\llllOt be taken int.o account for t.he

dliciellcy. In tIle present ll1elhotl, t}111 vertical velOl:ilY line to the Sl11l11Wise dc-f1exio!l



Cll1iptcr 7. Results and discussiol/; flexible w;cillafing foils

l-------Iu·' --"<-" "'5:: . "u,l,ooIl".... C,

"M.' '. . . . .
.:.:.,., SpM""edol.,,,,.nr'.'."'l0,el.,,,ot.po.ch o'U'

140

Figure 7.'1: Effed of the spauwisc dcflexioll pha.~e 41. all the efficiency 'I and lhe thrust
coefficient C, for a fill whale's flukes.

at all the control points of all pancJs of each S{.'Ctioll at each time step were averaged

for it mean vertical velocity of the section. As this mean velocity was evaluated based

all the body frallle coordinates, it had to be transformed to the inertia fnmll~ before

itwi\.S subtracted from the root chord pitching axis' hea.ve velocity.

H the velocity duc to spanwise flexibility al ellch control point is II;,j, where i is the

ith number of chordwise panel and j is the jthe Ililmher sections, tlu~ mean velocity

of each section is then:

,
Vj;;;Ev;J.

;=1

The term I,it in the input power for the whole foil at each tirJl(~ stt~p is tlil~ll

,
l';npu',11 = Lit = E(ci "..~lJ[-Vj+ il,oo,l·

;::1

(7.[i)

(7.0)

A number of calculations IVcre also (lolle for different ph.lse angles ranging (mill

41. = -180· lo 180·. Figure 7.4 shows the effecl of the spallwise ddlcxioll pllU.st~ illlgle

all 'I and C,. Ik'SILlh show that when the spanwisc dcflexioll did not ltavC a muscle

conlrol, Le., tile phase angle 4'. was ahout 0· ...... 30·, lIle prediclell efficiency \lias lhc

minimum and the thrusl was also at the boHom lille. III this ca..~c, co1l1pared wilh

tIle rigid foil, span wise deflexion produced both low thrust and small efficiency.



Chapter 7. Jle~ults lind dj~cussion: flexible oscillating foils 141

When the foil's sp,1.nwisc dcRcxion is under all ac.l.ivc control, especially al all

Illlgll:of J80', the efficiency and thethrusl had asubslantial increasc.

The hest cllicicncy of rJ = 0.8319 wa.~ obtained at $. = ±11l0" with it thrust

mefJici{~nl of G'l =O. J332; and the l)(~sl (hust, coefficient of 0.11\82 with a good f] of

O.83Z2occarcdat<f.l.=J20".
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7-D Effect of the chordwise deflexion amplitude

on efficiency and thrust

To observe tbe effect of the chordwise dcBexion ampliLude on T/ and Gl' (l\kulation~

were done for a half chonl clastic rectangular foil. Geometry and motion parameters

were t.akcn as the same as those in Yamaguchi (1992) and they were itemized in

Appcndix n. The chordwisc defiexion equation, the pitching axis location and the

deflexion phase angle, howcver, wcre f10t available, hence, thcy IVerc taken as CI,

X;';t'A and -30', respedi\'ely.

t-~-~---J()O. • • __•• '",! :; '. .,~":,o.,..pp< .... (,

::~.","'dellt<h".fO<I'f(,cm' ••t<ho:'.) •

~... ." "" 0 >

Figure 7.5: Effed of the dwrawisc deflcxion fador 8a> 01\ the efficiency II and 111n

thrust cocfficien~ Cl for a rectangular half clastic chord oscillating foil.

Figure 7.5 sholVs the changes of T/ and C/ with t.he diITerent chordwiSl: Ilerlcxioll

amplitude. When the amplitude factor 8'0 was less than 0.2, cllicicncy illcrcased

linearly but the thrust droPI>cd rapidly. This trelld agT!.'~ wi~h Bose's 2·1) work

(1992). Whcn the chordwise dellexion fador 8,. was greater th;ln 0.2, the thrust

il.pprooched zero quickly with l\ large droll ill elndellcy.

As there arc IiO maay parameters affecting the propul~ivc performance, [jgtlr~ Hi

indicates that an overall rropulsivc performancecanllot hcohlained Ily ac.Jjnsting onl)'

the chordwise deAcxion amplitude itself. In many Ci\SCS, a large altlount of thrust lias

to be sacrmced to obtain a higher cfficicncy.

Figurcs 7.610 7.8 show tile chordwisc pressnre distribution a1 each scdioll, for a

ddlcxion amplitudes of 0.0 (no deflcxion), 20% chord am] 28% chord, rC!\pt'Ctivcly.

The instantancous position wastakcll at the 240th lime step (a total number of lime
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Figure 7.1i: J're~surl~ distrihlltioll C, nl X<lro r:1rordwisl! trcrlexiorr for a rl!ctangular half
di~~tic dIUI'd oscillating foil.

Stl:PS c<J1wls '256) ilt all ;urgular di.~plaecrrlClit llf 7.5 II'" and a lil!le disriacernnnt of

17A!H8 st:conll~.

At tlri.~ illslilutilrreous time step, tlre maximulIl h)"tlro(l)"tlarnica\ forces ill a cyelc

fur l.hc~l! thrcc difr(:rcnt i1mlllit\lde~ of ddlt!xion were ohtailwd. The value of these

fot<:!!'!; shoulll he 111llllipli{~1 hy the t1yrmmic [Jrcssnrc ~"VA;,kl and the area of the

pllUlfoflll. TIle units of \.hese forces arc t.herefore ill Newtons.

These lIon-dimcHSioTlill forces arc as follows:

\. Totll\ lift is -51:!.!'7'2, -125.986 ilnd -7I.:I2i!J.

2. Totalthrllst is -:H 1.70!l, -100.300 alld ·;'\2.2584 (roil goes to til,! lle~alive x

dircdion; this is Jlosit.iveillstarrtallcom lhrust relativc to the motion of tlu~ foil.

The IlW1UI thrust, howevcr, should bc positive dlle to tire formulation of tire

mdhud.).

:1. Friction drag is 2J'0524, 2.99726 lind 2.!J8881.

.1. Tolill pi1.dr moment 13017.57, [297.88 and 1030.63.

5. C/, is 1.'198460, O.:I673011 and 0.207953.
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6. CT is -0.996235, -0.292419 and ·0.152357.

7. Skin friction coefficient is 0.00&164, 0.008775 and 0.008437

8. CT with skin friction is -0.987765, -0.293681 and -0.143&13.

The ncgat.ive CT shows a posit.ive thrust because theoscillll.ting foil was a.'l!IUlned

to move in the negll.~ive x-direction.

When there was no dcflexion, the pressure distribution had a profile sirnilar to

t.hat for a steady foil. At a larger cIiordwisc IlellexiOJl of 0.2, the prcssurc coclJicicllt.

C p on the prcssure side dropped dramatically on the lIexible part of t.he foil. As Lhe

dcllexion cOlltinued La increase, this drop incrclUicd. Therefore, the lift and thrusi.

were small for these larger dellexions.

The efficiency. hm,evcr, kept incrcuing wilh the increa.se of the dcfle;<ion. bCl:ll.u.'iC

the t1eflexion increased the inslar,tancolls pitch a.ngle, ilO that the tlirrcrence hetll'a~11

the instantanCQus pitch angle and the instantaneous pitching axis' kinematic vdot;ily

became smaller; i.e., the instantancoll~ angle of athck lx.'Cal1le smaller. Therefore,

the lift and thrust dropped.

U can be secn that, even lhough the foil had such high lifl, thrust and pitch

moment. at 11.is lime ltep, the pressure difference!' <\t the trailill~ oogC'!l, for botll tile

rigid llnd the nexible foil, were very small. This again indicates th<\t as long a... the

time step aizc, the lolal number of lime stepa and proper lIuTlk.Tical (ltoCl-'dure Ut:

carefully chosen, the \'alidity or the steady KuUacolldition will remain in a /low round

i\ f1cxible unsteady roil. However the pressure diITerel1cealthc trailing alge may not,

in practice, be 1.cro in certain CIISCS, and thi~ has lo be tested by somewhat advanced

and sophisticated ('xpcrimental studies.
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7-E The effect of spanwise deflexion amplitude

on efficiency and thrust

Calculations lVere done for a fin whale's nukClllo exalllilic the clrcel. of amplitude of

the spanwisc denexiofl 011 1J IIlld C 1 and the l'C!Iults IIrc presentt'd in figure 7.!J. The

fol1owing parameters of motion were !locd:

• Plan form gcomdry was the same as that in ChapLer 5.

• Chordwise dellexioll amplitude fador 6(0 =O.

• Spanwilil: t1c11cxioll equation WilS 51, tIll: basic normalizecl cllnl.ill:v(:r heilm de

flexion fUl1ctioli.

• OscillaLing frcqucncy w<lsO.271".

• Pitching illnplillllic a" = 20".

• !leavc IImplitudc factor II" = hh...oIC, ::= 0.87 m10.87 m = l.0.

• Fluke swilnllling spl:cd Vili.~hl = V/liyhl/C, = 0.87/0.87 = 1.018(:('.

• The correspollllilig slllall and largc arnpliLlillc fealhering pllrarnet(~rs0 = O.r.r.56

and e = 0.6222.

• Spallwisc deflcxioll pha~l: angle lagging pilch 0".

• Pitch axis position faclor x;ilch = XpitchlC, = 0.87/0.87 = l.n.

Figure 7.!1 indicalt'S that when the nukes dit! not have a ltOsilivc lh:xihility, ill

creilsillg the spanwi:;c deflexion will d(~creasc the clficicllcy 1Iml thrust. As d ill

cquatiorl (7.Ii) is part of the denominator in 1~![Uatioll (a.59), the sign or ''i and ;',oot

idfeclthe value of Pinf•l.,\. For a spanwisc denexion llliasc angle of ;',cro d(~grl.-'(.'!I, dw

siglls of \'i ilntl it~""l IVcre OPllO~itc .."It all timCll so that the e£/icicllcy was large (set!

figure 7.1 0); lit a large degree of phase allg]c, l'i and i"ool may Ilavr.1tad Lhc salllc sign
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Figure 7.~; Elrt!ct of Iht~ spalllvisc dcflexion far.Lor Ii~a nn the cffil:it:ncy I} ilnd the
thr1lS1mcflici/llll C, fOri\ fill whale's IIllk/!N.

lit. a c/:rlllin illslallt so thal they ilild lip. Therefore, the largl'r the Npilnwise dellcxioll,

lIw NlIlalicr lI11~cHicit:tlq (Iigurt! 7.10).

h i~ sllggt:sletl I.hil\ 10 oblilill it higlwr dricieur.y for II Pilssivc dt:llcxioll, lhc span·

wise: ddlcxioll arnplitlulc should Ill' conlrollcll al arOlllltl zero (rigitl spall). In the

Cil."t! of hird tlights, iUull~spccialJ}' in thl: case of Nwillllllilig of Whill/:, IIOWI'\'cr, 11(;

liv(! ddlexioll wn1.rollllcr.!lauistl1 ilIa,}' ha\'l! a plinsc i\Hp,le of l8W (lips go tlown un

downslrokc wlilm foil is gllillg 11]1 aile! vif!' \,(!rsa).

"(unl.rollilh)t, dllmlll'isc illlt! spililwist: man-lilildt! oscillating foil, if it iN praclical

in rt!illily, i." ttl he tk~igtl('d 10 have all flcliVt: spatlwise ddll'xioll (sl'anwiSt! nap of

it I'igid h'llfspml hingl:cl at the rooL chord} 'lud n passivc chordwisc tldl('xioll wilh it

pIHls,' la~ of ilro1lllf.1 :ma (rt:dndllp; ilJ(~ IO~ll by tll!l".ft'asing lilt: ifislanlillleoliN angle of

a1.1.mk due to till: dlOrtlll'iNt! flmdhility).

Figure 7.10: 1':frer1. of l.!tl' SpllllWi~c dcl1cxiulL amplitude faclor li~a il11tl the phose angle
l~. on LIlt: drkil'lIt:y 'I ~lId tlll~ 1I1tllsl (:odficiclll Cr ror Cl fin whak's flukeR.
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For an apilropriate phase angle control (41. = ISQ-), & biu;er spanwisc deflexion

amplitude rador 6. was desired lo yield & higher efficiency and thrust, but. the ratio

or 6.th. hM lo be controlled to obtain a positive thrusl. However, the best ratio

ror bolh the efficiency II and the thrust coefficicnt Cl may not he obtained ror all

c.aSelI, becausc this ratio depends on the shape or the Illanrorm, chonlwise deflexion

paramcLers /lud t.he motion paramcteri'l.
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7-F Propulsive performance of a rectangular flex

ible foil

Ctllllplltalioll1\ were dOIlr: for a n:dangular foil witli anll wiLhout dLordwisc llel1exion.

The rnot.ion raramctcl':-; (Yarnll.gLll:hi 1992), lI'erc sd a.s follows:

• Pitdlin~ alllpliLudl: flD = 15.8D and rlD = I!J.7~, for the rigid ami flcxihle plan·

forms, rcspedively;

• Pltas(' illlgll: of pilch 11:,1rling heave <\Iphu~ = 1050 aut! $,,/''''' :::: 10.1", ror t.he

rigid and flexilJlc planrorms, respcct.il·cly;

• H('ave iUllplitudc rlll:IOf Ita =hh."vr./G'. = ,1.:1 11I/7 TIl =0.6.

• Oscillating ([('((lICHer w wa.~ sd ali 0.62'11, 0.i6'H, 0.90'13, 1.0-17, iULd 1.12:1 for

t.he rigid foil.md 0.7562, O.!J.I:J.I, 1.1265, 1.31'.!fl, I..lO!17 for th,: ~elT\i chordwise

P1a-~lic roil.

• The swimming fOf\\'anl vdodly \///;,h, WiUl oillilined as ·\.:1822, 5Aii, ii.57:l,

7.mj!J and oS.21i 11//", n:.•per.lil·dr.

The pil,chillg axis position was MSlllllCd at X;i/c/o "" 1.0. The chordwisc Ildlcxion

l'h;1Se ;\Ilg1c $<, was taken <IS -30". The ddlexioll a1l1plitlldl' was assumed to he 5%
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Fit;Ull! 7.12: ThrustoocUicicnt C, versus ~wimmi"g speed of i\ rccti\ngular rigid/c1lll1tic
prolllllsor from Yamaguchi (1!)lJ2), a 2·0 theory with 3·1) modification antI the present.
method with 2% amI 5% chordwisc dcncxions.

of chord Icngth. As thesc par/l,rnetcr3 were nol givcn ill Yamaguchi 1992, they wcrc

pre·llll~umed.

Figure 7.11 and 7.12 show the 2-0 1l\Imcricai results versus the re~l\1lb prcIlictcd.

by the present method in delerimilling efficiency for thc rigid and c111sLic foil. TIll:

prediction for the rigid foil from the prescnt method ~how(.'(l a higher thl"ll~t and

dllciency than those frolll Yamaguc!li 1992. As the rigid foil ;11 hi5 study IIAd ft.

pilch amplitude 0_:: 15.8", the mllXimum \'Clocity angle n-. of the foil Wall abont

31- and the Ilhi\SC all~le 4',IOIw•• WILl H-, aud the maximulII ilistantanCOllS angle of

aUack was about. 0;• .,... , ..... 16- (!ICC fl,!llrc 7.13 or 7.[<1). Sueh A large instantailOOU!I

Angle of allack 0;,,01••' would probably have led to a houndary layer 5Cllilration and

hence a reduction or u\(~ elliciency lind the thmst fOT the 2-1) calculations. As tile

l~ ~~~i;;~~~~~:>:~C~~'~:=~~~~~;~;
"' .... ':.:~::::::::g'~ ..."9'.......lIloc~t>'IO<II"'~~

-'"
I~igur(] 7.13: Comparison of the instantancous anglc of aUnck, liflli.llclthrllsl. bdwccll

a rigid and a nexible (5% chord), il sj1.C of >'111m x 7 111, rectangular foil at VJi;,~t =
[8.217 tn/slleT = 1.17<1/.,.
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I'igllm 7.1~: COlnllatison ofLhe instantaneous angle ofaltack, lift and lhrnst hetWCCl1
a rigitl amI a flcxihle (2% dlOrd), ,I size of 4[1 III x 7 III, redangular foil at Vj/i,hl =
(R.217 tn/PolleT = 1.1711j.~.

Jlr!:~c!ll. method Cll1l1l0t take the lift tcdlletioll Iluc to lhc bOUllllary lnYI:r ~ernratioll

iutu account, it. gave higher \'lIlrWS of dricicllcy ali(I thrust Howevcr, the present

lIlethud W,l~ ahle tn gilll) !.Ill: mlilc of fiin.d"'" at each lime stclJ \0 warll for a r.ossiblc

1'()\Indn.ry InYI~r s(~lli\rali{)lL.

Prcdictiolls for the claslil: p];U1form hy tbe prescnt mctllod .~how lhat a vC'ry small

dumtwise dcllcxion did not re~mlt in <I not.iceahle gtlill in cflid(~ncy COl11lliltl~d wilh Lhc

rigid foil. 1\5 the thrllst frolllthc 2-0 panel method II'llsoblaincd at thcsamc velocity

for thcse \......0 IJlatlforms, thl\ thrust c(K~Hicicnt for both the tigill and lhc t:l<Uitic foils

\\'C'r;\the sarnc (the solid li11cin figures 7.1:1 aliI! 7.1'1. Tlwrdore, there are four ClItVes

n:prl'Mmting fillc Iluantil.ies. It can he seen that a small ilmount of chordwisc ddlexion

Jlrl)dtll:l~d lIegligibleclillllgc ill efficiellc)' hut. yielded a signil1cant c:hallge in the thrust.

HM' a rdHtivdy larg!\ chordwise ddlcxioll (Oed = 0.0,»), the thtllsl c1ecrea~d slightly

with abont. the same jlurl.ioll liS tlw ill(:n~asc of the dlicienc)'.

Figun:s 7.la aud 7."1 pn:sclLtthe ilistimtallL'Ulis allgleof illtllCk, lirt amI t.hrust for

1.11!~ pl<lIIforrns with 5%alld 2%c110rdwisc flcxihility, IlfL'IlictclI hy thc present method.

[n Hgufe 7.1:1, lIlC graph of the illl\til\ltalleOIlS lifL was rathcr flat for lllcf,% uellcxioll

foil wllile tlml, of the rigid foil looks like a silillwicJal wave. 1\1I the ilislant,lll\.'OtlS

pitdl an~le n was illl:rei\SI:lllluc to the chol'llwise Ilexihilit)· (so that it waR clo~r

I,ll the: instllillancolis kinellliltic vdocity 0'" of the pitching axis), the ill~tantallL'OlIs

nugt\\ of attack hild a (,Iir amollllt of mluction; depending on the chordwisc: dclkxion
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amplitude ( fJ~ = 0.05'" 0.2 ), this reduction usually ranged frorn 5~ to 20~.

Figure 7.14 shows a rather irregular behaviour for a foil wilh a very ~tlIall chord

wise dcllcxion. This sl11all amount of dellexion increased the pitch angle so that the

instantaneous angle of aUack ~hOllld normally be smaller than the rigid foil. llerc, Lhe

instnlltancous illlglc of aUack was llugcr because the chordwise dellexion phase anglc

wa.<; taken as _300 (ll slight coutrol of the deflcxioll). Thi~ pattern also elli~lcd with

the 5% deflexioll planform. Howcver, as the inslnlltal100U~ angle of atlilck dropjlt'il

rapidly at about every half ;f rad of illigulnr di~placcmellt for the [1% cliortlwise Ill:.

flcxioll foil, the mean thrust lVa~ much Nl1Iallcr than that of a rigid foi\.
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7- G Propulsive performance of a fin whale's fiukes

To examine the Ilropl11shoc performance of a fin whale'! nukes i\.'I" propclla, com·

IlIllat,ions were dOIl() by using a IIIlnlber 0( lIlotion I",ramctm blUCClon the !Ludy 0(

Hose amI Lien (1992). Some motion parameters are:

• heave amlllilucle factor h. = 1.72:J hecausc 0( h hcill~ takcll as 1.5 lIlclcn;

• Ilildl axi~ positioll ~lllrl.il1t: alll1(J 'I'.E., X;irrit = 1.0;

• (J~filililillgfn:qm;lIryw =:lwl/st'I:;

• swimming forward \'('lodl}' Vl1il/ h '=: ,I, Ii, S, 10 iU1I1 1211I/'''''1.'.

Ill:sid~ t.ll(: llhove Illolion !'arilllwlf:rs, SOIIlI: lllhlil ;olllllpllr<llTldl'!'S W(:n'lI:11:'11 for

Iht: fk~ilJitit.y;

• (;hlJf,lwisc dcllt:xiolllul1lllitutlc fat:tur 6", = 0.05;

• SIMllwise Ilclh'xioll iUllpl;ludc factor li... = 0,1;

• sjlllllwisc IldK'xiolll~H\SCilll';lc lI>~ = -:ro<> alii! -ISO-:

• Iidbioll ShilllfJ fllllrlillll !II!! c:tSa.

Ca1r.llliltiollS (or il f1c~;hlc planforlll m:rr. IIl<ull: fOf lwo fllses; II) for 41, '" -:to",
IHllh 1.111: SjliliIWiSl: alltl tht, dwnlwisr Ilcxibilil.y \\'f'H' flssllilled a~ p~ssi\'r.IIcfl(:xioll

(110 1I111sck~ cOl1trol); h) A l)flSS;\'(: rliordll'iSl' alld 1111 M:t.i\"l' SPltllWisc conlrol for the

llc'fll:xioll,

1\ nUIHlilllC'lIsimlHI ndVl\lIc.:tl raliu Willi Wil~l i\mllldhwc1I1H

r _ VJli.,hl
- <Jf', . (7.7)
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V/lighl (m/s) 4.0 6.0 8.0 10.0 \2.0
VJIi9~1 (knots) 7.8 1I.7 15.6 19.5 23.3
0" (deg) 48.37 36.86 29.58 24.2:1 20.56
J" =~ 1.71 2.56 3.'12 4.27 5.1:1
C\' (deg) 28.12 16.61 9.33 4.!J8 2.31
(\'in"4nl,mQZ (deg) 15.50 12.75 11.65 10,69 9.77fi
6 0.5816 0.'1507 0.3180 0.2057 0.1124
Table 7.2: Dekrminalioll of all appropriate pitch amplitude for the flexible IJlanforms
with and w;L1I01lt llctive control.

The pitch amplitudes for the clastic planform were determined hy considering the

efficicncy, thrust and boundary layer I>cp1lration; that is, 1.0 (lse a maximum possiblc

illsialltalleolls angle of auack. This maximum possiblc valnc wal> set at abont J2~,

with a consideration that this value may be ",Hawed to be slightly largllr bl!CaIJSI! this

maximum value occllrrClI only in a slIlall rangc of onc oscillating cyclc so that, eveu

if boundary separation occurs in that filllgC, it \\'ou!tl prohably !Jot alfed l.hll overall

pl)rrOrlllancc.

Using a pitch amplitud,; or ,"jQ0 as it was takcn ill Bose iiI)11 Lien (I!lS!J), it is

nol possiblc for this large amplitude theory 10 yield R positive thrust. If slH;1I il

large pilch itlllplilude Ims to be used, eithcr 1he heaw: amplitude 01' the oscilliltinp;

ffi..'1I111:Jlcy sllould be inneased or the swim velocity ~hollid be dcne,lsl~fl to hil\'f~ iLn

insl,illltaneous large amlJlitude feathering parameter !loss tlHUI J.0. As Cllli III~ .~Ilell in

table 7.2, the maximum angle of the illSLIH)tarK'OU~ kinl'nmtic velocity or till: I'itdl

a.xis was 48.:n°. AllY pitch angle that is grcatllr 1llaH thi~ \'Illuc yiddllil it negatiw~

thrust. This was obvious when tile large ampli1ude was wllsil\l:rcl! (Chapter (i).

niL~ed 011 the ahove considerations and It 1Il1lnber of trial c<1flljlntatiolls, the pitell

amplitudc for each forward speed was selected and SOllW rdatc~d q\lalltitil~S art~ tl,ll1l

latell in tahlp. 7.2.

For it rigid foil, jf 11 lksircd maximulII ;lIIgle of attack is 12Q
, the pitell iIlnplitllde

shonld he set as 48.37° _12" = 3fi.:l7" al il forward velocity of ,I m/.•. lIoWj~Vflr, for 1.111)

fill whale's flukes section with a 5% chonlwisc Iidlexioll, thc dlallge of till: maximulll
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VIIi,., (m/J) '.0 6.0 8.0 10.0 12.0
IYiotlul.-u(dcg) 15.50 12.75 11.65 10.69 !:I.776
e 0.5816 0.1507 0.31SO 0.2U57 0.112-1

"
0.78O(i 0.81&1 0.8278 0.8292 0.8180

C, 0.1<109 0.1108 0.0935 0.010\9 0.051:i
'I'hrusl (kN) 1.69 2.'" -1.019 5.62 6.21
I~"~or (ractOf) l.0i!! I.'tl'l 1.:i51!1 1.:\633 1.2829
Powcr (kW) 8.oJ 22.0 "3.'1;1 GB.li 92.:11
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'I'~hle7.:I; I'rormlsh'C Ilcrforllllllll:r.nrlbefillwh"lc's nukes lI'itliolllall acti~','srlAlL\\'iSl'

rldlexioll control (ell, "" -:10") IIllll with /l skin friction cOI1~i,I(:fllliull.

\111i"~1 (rilM '1.0 6.0 8.0 10.0 12.0
1I;."4",.",",(llc)1;) 1;1.i",0 l'l.i;j II.o!'j 10.6!! !I.77G
(; {HISlfi 0.'1507 0.:IlS0 o.wn 0.112·1

'I D.SOi!1 0.8G70 0.8!1fi!1 D.S!}·l'l O.8:j.'j!1
(:r D.lfi'll 0.l:12i 0.1122 U.USfiI 0.0619
TIITII~t (kN) 1.!.I'i :U18 5.:19 GAG (WI
J~,,,,,, (faeille) \.079·1 1.:IHl 1.5Q:I!I 1..1."12·1 1.:11&1
l'o\\w(kW) 8.6-1 2U:I ,IS,Ia i'2.60 !J.1.!l:I

Talll,' 1.1: l'rnplllsi\'C III'ffoflllill1CC of tll\: lill whak-'s flukes with an actire conlrol
,•• = 180") ;lUll ,,,illla skin rriction oo:.sille~liofl,

illIXlt: of iltti!ck was al101I1 1:J.Z5", i.e., iUII:xlra IJ.:m"lialll)C('1l adm·d 10 lhe Ilitch

Ilue: Lo tim nexilJiliLy. 'l'hen'fore, 10 conlrol tlie llIaximum lu~ll: of lI.11ll.ck at about

1:!'.llw I,itd, i1l1lplitlldl' 1ta,IIClIN'sct ill ·18.37" -11" - l:t25~ =2:1.11".

III "ddilioll, il.llhit.'i(' allgl,:of -:10" ill chord\\i'iCciclIexiOll ~hirled the IJOin1 illl\·l.ich

1111: lllaxillUlIllllilfh ilugh' 0 and llle m....SiulllHi n:lorit}· " ..gIl' 0 .. coincidc. Tllis shift

"~luced till: Illlf.Xirunlll augll' or If.llack by ilbont 5·, 'I'hcrcfOl'C, tlie [,itcll amplitudl'

II'ilS Sf.:l al 2::\.11" inllnll:r to eSlJL'f.tll maximum ills1~ntalleOlls Ilugle of ~Uaf.k close

till:.!".

The IJITgc iLlllplitude fCi~therillg II~ralllctcr f:)/I'J'jw< \\'H.~ obtaiulod by lIcgk'Ciing

till: SlllIlIwim: dcl\cxiulI, though tile sl'aliwiSl: tldlexiolL had affcclt'lllhe pitchillg axis'
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Figurc 7.15: Prcssllrc distribution C~ for a fin whale's flukes with a spanwisc (Idlexioll
phasc angle of 011. = _;100 (passive Jellexion) and l = 17..1918 sec (the 240lh lime
step).

velocity. For a large spanwisc deflexioll, a valuc of 0'f<ribl< that is grcntcr' 1,11<"1.11 :-'CI'O

alld less than olle may 110t producc a positive thrust due to loo small an av(~rilge

hC;\I'c amlllilude.

Tables 7.3 and 7.'1 show the result:; from a fin whale's flukC!l with al)(l willlOllt

an act..ive dellexioll control (thc clcllexioll Jlha.~e angles were ~ero). In tile tables,

efficicncy, thrust coclficicllt and Pil1PUl wcre obtained after a rednclioll of skin frictioll.

The thrust wa.s obtained by multiplying the willg area 5' and tIle rcf.·.rt:llcC dynamic

pre~surc ~pVllighl' TIle rcqlliroo input power wa.~, tllen, a producl of thc /'il1PUI fador,

the planform area S ilnd the rdcrence dynamic pressure ~pV'~i!1hl'

The prediclcd efficiency in tahles 7.3 nlHI 7.'1 sllow thaltll(~ hcsl efficiency occurred

at the maximum inslalilancous angle of allack about IO~. This is the SillIlC with the

observations made for the rigid I'ectil.ngular anI.! the swept plilllforms.

It call be seen lhatwhcn the flultcs had iT. positive rlexi .... ility control, both I'fliciency

and thrust had a substantial incrcase. /n a normal range of the inslantilllt'Oll!l angle of

allack, the smaller the value of 0, the higher the efficiency and the low(!r tire thrust.

When tIlt! mean thrust was very small at a large rorward speed (12 m/s), tll(~ skill

frictioll cancellcd i1. largc portioll of the thrust anti, helll:e, the predicted cfrieiellcy
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Figurc 7.16; Pressure distrihution Cp for a nn whale'li nnkt~s witli a lipanwisc dCnl~xion

phase angl(~ or l\l. =18lY' (l,di~l~ dc!h~xion mlll",l) amI f =:n.5 ~r)r.

bl~filtl)C xtltllllt:r, C\'I:II tllullgh tli,~ I'alue of 0 Wa,<; very srnall.

Figure; 1.15 1111117.](; silO\\' tile prt's~urcdistrib\ltiollsofthe lill whale's 1I11kcs with

allli wi~ho\lt nctive spallwiS(~ ddlexion control. The x,ordillatcs at where ~he Cp value

;~ loclItecl were lIormalizcJ to proV;dl~ a dear l'isualiZlllion.

II, (:an he ,(~II thai when the I,lallform rliJ 1I0t have /Ill aail"~ (Idlexioll coutrol

(simulating il fla~si\'t' (Iellexiou), the pf{.'ssure cOeInciclit Gp Ilad a small ,Ii/fcrence

Iwtll"et~1l the pressun! IIml tlte slldion ~idcs, t~s!)cdallyat the f1ukt'S's tips. The chord

1'~lIgth or the I.ill of th\~ plilllform was set at 0.012 III, which is alloni IA% of the root

,·!Ion!. This small donilcligth was sd to approximate a point lip of the Jllallfottn.

I':\'cnwith ,lid aSllIall rclativc local chord, the predicled pressllrcllistri!JUtionfrom

tll(~ prt'SI~I:t meLho': appeared normal.

When tlll!SI'llllwisclle{lexion had allacti\'~dencxioll control at a pha,e angle of

ISIl", ihe differt:llce ill (,',. increased ai all secliolls and, hencl~, so did the cfliciellc)'

;(fld tile tlll'IIS~. As the Ilfl:dkled Ilrlllisure difference ;l~ the traiJilig edge is \'er)'

slIlnll (ROC figllrcs 7.15 Mid 7.16), the 1\lItta condition uscd in lhis mcLhod along with

lhl~ S(~lcdioll of th~ number of lime steps aml the time step size were considered

;lCn~piahic.
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Conclusions

TJlis is the first aUcmpt Lo evaluate the propulsive performance from an oscillating

propeller with both spall wise and chordwise flcxibi1i~y. A new system of approachcM

Wil3 developed ba:scd on a dassicaltimc domain panel method, to calculate the perfor

mance of a non-zero sedional thickness, umll'!ady, f1exihle, three-dimensional, large

amplitude oscillating propulsor including the oonsidcrdion of vi:lCOl\lI skill friction

and the allowance of a 1I01l-zero trailing edge thicknCliS. In order to obtaiu rclinblc

rcsult.s. l\ series of lcsls was done covering a rigorous convergence study and a careful

verification analysis. When the method was proven accurate ;uul dependahle, it WI\ll

then used to predict. the propulsive performance.

A large amplitudethcory was developed and the instantanc..'Ous angle of attack, the

large amplitude feathering parallleler And the illstanl.llnCOIIS large AlIIplitude feather

ing parameter were de~ncd.

As previous rcsultll on 3-D rigid oscillating foils were obtained based 011 IIlT1all

amplitude theory without considering the sectional lhicknellS and the effect of skin

friction, a paramcLric study W1llI dOlle Lo fe-examine tILe clrt.'Ct of gcolTletry anti motioll

parallleters on the proplll~ive performance of a 3·D rigid o~cillatillg foil.

For flexible 3-D foils, a number of deflexioll equations in both the chofllwise !lnd

the spanwise directions were pre-assumed to simulaLe Lhe lin whale's flukes or the

flexible wing. Propulsive perrormance WiLS evaluated for oscilll\ling propellers with

158
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different amplitudes of the chordwise ant/the spanwise clencxion. The I'hao;c lags of

hoth chof(lwi~e anJ the spanwise dcflexion were introduced to examine their effect on

the efficiency and thrust. Prl...Jictiolls were also obtaincd for a tl9 m x 7 m rectangular,

sellli-chordwisc flexible foil and rcsulh werc compared with those from a 2-D panel

method. Finally, a fill whale's flukes with both spanwise and chnrdwise nexibility wa<;

llsed 1.0 evaluate its propulsive performance.
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In steady flow, ~his low order, Dirichlet boundary condi~ion 3·» panel me~hod was

proven reliable, when the foil under consideration did not have a very small aspect

r",tio. The predicted TCliuh.1I were accuraLc and reliable for the hydrodynamic loads

and pressure distribut.ion. The steady Kutla condition worked well for the steady

flow when ~he time sLcp Si1,c was taken sufficiently IIl11all. In the steady flow, ollly

two U.ings need to be collHidcrcd in order lo obtain accurate n:Bulls: a) the number

of chordwisc and spallwisc panels should be largc enough to convergc; b) the totAl

uumber of time steps should be large cllough to keep 1\ slllall time step lIi~e IUIlI

to minimil,e the effect of the starlill~ vortices in order to have I\. realistic pressure

distribution.

Applicatioll of the potential jump due to the kinematic velocity at the trailing edge

ell",bled this method to allow a non·zero thickncss trailillg euge wing gcometry. The

quadratic function curve fils for the surracc doublet distrihution in both the c.honhvisc

and spanwisc directions were formulated and the tangenti",llIclocitiC9 were obtaillrd

by differcll~iating ~he Iie(;ond order polynomial exactly a~ both lIliddll~ points amI

tlte liurface boundaries. Tllcsc approaches illlprm'cci ~lle prClL1UfC distrilllltioll wilen a

IItTlicturcd panel arrangcrnell~ ill II~.

A !lumber of approacha were implemented into the unsteady flow calculation:

a) The time variant. doublet strength at. each panel were polyfilted to a (IUadratic

fUllction and tllc differcntialion with respect t.o time was ~hell obtained from thill

(jui\dratic function exactly. This scheme improved the steady Kut.t.1l condition when

it was used in the ullstei\dy now; b) The doublet strength of thl! last atlll tILe prClllmt

s!Jed wake panel at the lrailing edge .....ere a.veragl.'(! for (~i1.ch time slep. Thi~ also

improved the convergencc bclHlvlour or rcducl.'(1 1I11~ lotal 1I111ubl!r of l'CIjuired tiltlf~

Hteps for the same degree of I\ccllracy. c) As llle stlet! vortices behind the oscillating

foil were also a runction of tIle oscillat.iug frequency w, 11. 1I0n-dimell~iollal timl: I n~

uscll ill previous studies is 1I0t sufllcient to be generally used to determine lhe timc

Htep size. Therefore, a l1ll1nber of lests werc dOlle and the timelltep Ilizc wiUllluggelited
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to he detcrminL't1 uasc<1 011 lhc period 'J' :: 2trlw. Al a small oscillating frequency,

llie time step si~e call be taken .18 it large valuc, anti viCI! versa, i.e., 6t :: TIN!> where

N, is the tolal nUlllhcr of time steps. The value of N, greater than ur (~I]ual lo 256

wa.<; helievCiI acceptahhl in the consideration of botl1 tllt~ accuracy alld the CPU time

on it Pl20 (Intd Pentiull1 120 Mllz processor) PC. Tile scheme that uses the period

T along with Nt :: 256 to determine the size of lhe timC' stcp is advantagcolls to

maintAin the validity of the steady KUlla condition in unsteady flow.

A cOl1vergel1\;estlldy for unsteady now was also !10m:. i\ higger number of spanwise

Jlll1lCls NSplnt irnproVl'11 till: convergellcl~ lIIore effectively than 10 increasc the numher

of chordwisl~ piltlds, hut too bip; a vahw will significanlly usc lip more memory ami

add more manipulatiolls. i\ slable prelJiction 011 cyclical tIl rust alld lift was ohtl\ined

1'[(,I:r tllfl~~ t:ycll~s of osdllalion. ·nercforl~. t.he total numher of cycles of all oscillating

propellers WilS takell as ,1 ('1 Iwriods 01' 811" rad of angular displacement). Values in

1J1l~ last ,-ydc \\'er(~ 11.<;1'11 In ohtain l,he c ,iciellcy ami the mean thrust.

1\ lHrge H1I1plitllde t.hl!ory WIlS developl.-'tl. III the tlll.'ory, the instilutiUlL'OIIS angle

of IIt.t.ack of th(~ IIsdllill.il1g foil was ddi111:d all the inlltantl'll1coull !'Iugle hctWI:l:!1l the ill

stiUltlll1l:0US pilell angle (llll~ illst.ill1taJlcolls positiou of tIll: foil) 1\ud tlw instantaneous

illlgle of till' kirll~rnati,~ vdocity vector of the foil's pilch ilxis. The large amplitude

fl~anWI'illg pariHllcll~r Hml it.~ illstanlarll'olls vi.llle lI'ere abo Jdincii. TIley were l1S1ld

to pr('scnl, the prediction cllld to analyze the propulsive performallce.

For il foil wit.h c!I(Jrdll'isl: llexibility, the illsl11ntIH1collll "itdl angle dlilugt·s due to

till' I:hauge of the sllilpe of the foil .<;edion. A numerical procedure was illso established

t,o determine lh(!dfecti\'e ins1alltancous I,itch angle I\nd hence the inslantillll'QUS angle

of at.t.il(:k.

TIle delcrl1linal,ioll nf Ihl' iusllllllalll'tJ!lS angle of attllck was fOllnd to he a nlll~ of

1,IIUII1U ill ill1illySl~s of 1.1w cl1illlgcs ill lift, thrust, large amplitude feathering pafill11llters

wil,11 i1 variation of hmw i1I1lplit.ude, pil.l:h i1.mplil,ulle, ilud the chord wise denexioll.

This is hccause thc instantancous angle of a.tlack has a definite value corrclipollding

to n cOlllhillalion of tile abovc paramdcrs allli the efficiency lIud l.hrust arc found

dil"l:t:tly dependent 011 this ddiuite value. A preliminary design of all oscillating foil
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in terms of parametcfll can be easily done by properly selecting this instantaneous

angle of attack without doing a hydrodynamic computation. It was also lIseful to

warn of a possible boundary layer separation due to too large an instantaneous angle

of aUack, for both rigid and flexible foils.

A numerical procedure was also developed and applied to the calculations of the

foils with the spanwise flexibility. Spanwise flexibility affected the heave velocity, i.e.,

the vcrtical velocity varicd across thc span for each section. IIlstead of evaluating the

!.it term for a whole planforrn, sectional Lh was obtained ilnd summed for the whole

planform in the efficiency calculation.

A numerical scheme to calculate the skin friction coefficicnt for a a-D, unstelHly,

flexible foil was also formulated based 011 a 2-D flow assumption at each section.

The velocity gradicnt along eaell section was used to determine the flow patlern, ill

terms of laminar, laminar separation, turbulent transition, turbulent and turbllhmt

separation, and the skin friction coefficient C, .

The computer prograll1 OSFBEM can be 1150<1 wllcn the DRAM is small ill which

case binary files arc created to store the matrices, instead of a very slow virtual

memory swap. However, when there is cnough ORAM run tillles am ahont live

timcs faster. A reliable, fil...'lt matrix solver by applying the Bi-CGS'I'AB method WIlS

implemcnted. By using thc steepest descent steps, the Bi-CGSTAB mctliOlI givC!i it

smooth amI fast convcrgence \\Ihileavoidillg thc oflen irregular convergence patterns of

allier non symmetric linear system solvers, such R.'1 the BiCG (fliConjugale Uradi\lut)

method and the CGS (Conjugate Gradienl Squared) method. Tllis method \\las then

med to solvc thc linear systclll ileratively. Thc usc of tllis welilod significill1t1y

increased thc computing efficicncy.
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S-B Verification of the method
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Re~lIlts for a 2-D foil l;eclioll were first verified. When llie aspect ratio of a 3-1)

rectangular foil was set 1.0 1000, predicted lif! and pressure distributions were com·

pared with those or a 2·D foil obtaincd from a theoretical approach. Tht! method

showe<! a g()()(! accuracy amI reliability (even tllough a small number of Jlanels was

llsed) in terms or the pressure distribution illJ<lthc value of tile Iirt coelricit~llt (3% in

diffcrcm;e).

The preSSllr(~ di~tri1JllLiol1 at the extreme ]loiut, at the tip (!J8.75% halfspall) of a

:l-[) [oil, wa.~ olllailled and compared wilh t~xpt~ri1l1cl1tal rC!ll1lt~. The present 1l1cLhotl

had a good overall agreement, except at the trailing edge, where tlw experimental

results {lid not ;lgTf.'e with 1.11e Kulla COllditioll (non.y.ero pressure differellce).

Comparisons were abo made for a ;j0~ swept. k laper, 2% thickness thin wing

with all asr{~d ratio of 6. This method showed a general agrccmcnt among others

Hnd a beHer trailing edge Kulla l:Onditioll (less all1oun1. of lhe trailing edge prt..'lisure

difference) was ohtililll~d which urtell implies a hdter accuracy.

Filmlly, ,1S there werc 110 theoreticIl1 results lIlat Ilrc hased on a large amp]i·

tll(ll~ assumption i\Yililllhlc. prt~dicliol1s of dlici(!!Ic)' alld thrust from a rectangular foil

WI~I'C l:olllpared with the results from ,\ liJwarized lirtillg surface tllcory. Tllere was

a slight different·c bdwetm the methods ;It a small reduced fTf'queuc)' O~ < 0.5) bul

a suhslalilial (Iirrerellc(~ ,It higher reduced frctlucncy (k::::: 2). Itesults indicated tlla\.

\. he lincari'l,ed lifting S\lrraCI~ theory applied to eVilluale the propulsive performance

hilll it li1l1ih~t1 ~',llidity ill a Slllllll range. The present mclhod, llatl an illcolllpllra·

hle_slJJaller thrust l,han preyiolls ones, in the IVorking r<luge of tht, reduced frequency

allOul, 1... "" 1.0. I\S the previuus method used in comparison was a small amplitude as·

sUlllption (the instil.llli\lIt~)IlS;1l1glc of attack rOt the small amplitude theory was about

liS twice as large (12.ll8" vs. 20.!12~), which was tile major cause of lile difference in

thrnsl protlUclioll) and tlid nol consider the [oill,hickncss, the thrust prediction by

present method is believed lIloreaccurate and more reliable.
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8-C Large amplitude analysis and parametric study

of a rigid oscillating propeller

As the results from ~ method that takes the large ampJitu<le, thickness cITed, 3-D

geometry and viscous'skin friction into account were not available, a parametric study

for a rigid roil was round necessary and was hence con<luctcd.

A large amplitude analysis was performed and it was used to determine the large

amplitude feathering paramcler and llw instantaueous anglc of attack. This indicated

that the small amplitude theory lit a large reduced fr('{Juency alld a lnrgc feathering

parameter (8 = 0.'1 and k = 1.8) predicted an il1stanlaliCOIl~ angle of attack ahout

twice that of large amplitude theory and, hence, it had a very large thrust production.

A comparison was done fllld it showc<l that the small amplitllue assumption hall a

thrust oyer prediction about five times at the aboy(: values or 8 and k. Meanwhile,

the value or the instantancolls angle of attack at e = 0.8 and k = 1.8 for the small

amplitude theory was too 11trge (20.68°). Such hig all angle or attack would cnllse a

severe boundary layer separation evell in a steady flow.

III adllitioll, the iustantaneous lIugle or attack is usually closc to ~ero at a large (-)

ilud a. lllnllll k ror I,he large amplitude theory. Therdore, the calculated drag hy llie

present method cancelled a large portion or the small alllollnL of the pn:diclcd thfll~l

~o that the present lIlethod yielded a smaller efficieucy and a milch lower thrl1.~l.

At a large reduced frelJucncy, significant errors in eflicicncy and thfll"t were found

for the small amplitude approximatiou. The: flrror for the thrust protllletiull could

be as much as 50%. As a rcsult of the large amplitude study, the pitch amplitude i~

Hilt suitable to he 118m] to determine its clfect on the proplll~iYe eHicielll:y. In~tcaJ,

the maximulII instantaneous angle or attack defined hy the prescnt method plays iUl

important role lI.1I101lg otller propulsive para1l1eler~. Predictions show that ror cililer a

reclangular or 1\ swept wing, for either a rigid or a flexible pJallforrn, the best dficilmcy

occurreu al the maximum inslalltaneOUll angle of attack O"in.'ftlll"nftJ:: ahout 10°.

The Iinding of the optimal angle, the maximum instIl.Tltan<''Olls angl(~ of attack

provides a {Iirect conLml of a combination of the molion parameters to oh1.ain the
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oest efficiency. This means that a comoination of 1lI0tion parameters for rigid foils

can oe approximntcly optimized by adjusting lhe maximum instantancolls angle of

IlHack without performing a tedious hydrodynamic calculation.

Indication of the instantaneous angle of attack (or the illstanlancow; ff>l\tltering

parameter) wa.~ also fOlllld llseful lo obwrvc till: sign of the generated thrust. I\n

instantaneous fcatlll:rillg paTi.,l1cll:r grealer tllan 1 will lead to a llcgati\'f: gf~llcratcd

iTJstanlallcolls thrust. Tlwrcforc, if this is lI](~ cnsc, the prohlem can he solvell so

that dtll(:r thc pilch amplitude, or phase allgl!: (pitdl leading IIC.1V1:), or the ratio

of lhe w:locity dl:rivativf! j(1) to Vjli,I'l (I.e., the denominat.or of eq. (G.I» needs to

hl~ adjusted t.o mainlain an illstallllllll..'Ous feiltherillg parameter less thllli 1. The

philsl~ iUlglc (pitch leads heave) had lUI dfect. Oll the instantancolls lilTge ,\mplilUde

fC/lthcriug patillncler. 1\.'1 the phase angle lias a Ilirect cffed on Hie illst.alltancolI~

piLc:11 i\rtgll~, tlw il1~1.lllllll.lI!:f)u.~ 1l1rgc nmpliltltlc fcathering pnTiuHI:lcr mllY hi: gl'Cltter

t.han [, if tIle pI, ".'II' augle is fill' away from !)O" r:Vl:1l if all overall value of tIll: large

ILi1ipHtlllle feallwring ll,lfiUlw!er is 1es.~ llmll I (colH(laring ct]. (6.1) willi l~ll. (6.a)).

1';xalllinaliolL of till: df,:cl of tile llcllve amplihllh: on the thrnst nUll eHiciclicy

.~lil)\\'c(l that incl'ea~illg tlll~ lle<1vc 1I1l1plitude raised tlw thrust. significanlly, hccausc

of tIle illcreilsed yah\!! of the inlltalllalleoll~ angle of attack. This suggests that an

o.~cillatillg foil should he sel al the IlH1Ximlll11 possible heave amplitude fill' the best

possihle thrust.

For a foil with alljllll'l1llldl:rs lixed and \lIdy I,he pitch amplitude o~ <IS a variable,

I.h(~ l.hmst dCCrt:11SI:d \I'lli'll till: pitch amplitude n~ illtfellScd, because illcreasing t.hc

pill:h ilmplitude reducl'N I_he insLalllmwOllS <Ingle of <ll.tack. Tlte hl:sl. dllcicl1cy, how·

I!\"l!r, occllrred al a l:(:r1.nln pitch amplitude wi'l! II smaller It1l1011nt of thrusl. III any

(<lSI', tIl(' bl:sl dlidcncy was ohtaillcd at the maximum inslnlllimcolls angl<: of al tack

of "bout lOa.

Whcn other jlnTilllleh!rs heing fixed, all optimuill pitch ampitude I\'il~ found for the

IJl'st efliciency. HOlI'c\"cr, this olltimulTI pilch amplitude is only valid in II parliclllar

I~0111hinatioll of par,tmders. Thc best efliciellcy, in fact, was again controlled by the

1llilXillllllH insU,utall(.'Olis lingle of altack. AI. the optimulIl pitch amplitudc poinl,
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increasing the pitch amplitude, both the efficiency and the thrust were increl\.<;cd,

though in most ca.c;es, increasing efficiency will reduce the thrust output.

As in previous sludie~, a good pitching axis position for the best efficiency Wl\.~ ill

it range from 50% to 100% root chorcl from the leading edge.

The best efficiency CiHl be obtained at an oplimizcd phRsc angle. TIle lhrust,

however, had not much c1lange in a wille range of the phase angle values. From

wl'~u, = 04 Lo 180", the rdalion, ~the higher the efficiency, the lower the thru:it" did

not appear as it was stated in previous studiC!!. In fael, after the point where Lhl'

elTicicncy reached llighest value (at the maximum instantancous angle of attack of

IO~), the higher the efficiency the higher the thrust. This reversed relationship cxists

.lfter the point at which the maximum elficiellcy occurred (sec figure (l.5).

SecLiollal thickness ratio had little effect on thedliciency for a series of NACA <1.

digit symmetrical wing sectiolls. The best efliciellcy occurred around 9% .... 12%. 'I'hl~

thrust, however, had a gOlld value 0(0.1 (about tile sallwas that for G% thick secliou)

'tt it thickness of t = 12% ..hard. When L < 9%, tllc slTlallcr tbe thickuc.~s l'ittio, till"

higher the thrust. This may be c,loused by the sharp le'lding I:dge 1.11;11. hllluglit a big

teading c(lge suction, This larger increase in thrust due to the relludion uf thickneK~

llIi1J !lOt be practical due to "he prr.ssurc drop wllf~lI th(~ pressure at HIC 11~i1llil1g f'tlgc

below the vapour rHl~ssurc. When I > 15%, thrust droppcd dnulliltiCitl1y witli all

increllsl) of t,

Comp.trison hetwccn the lil1earb:ed lifting surfa(:c 111cory ilnd l,ht: larw) ilmplitude

[litllc1 method Wl\.~ also done for both a man-made lunate tidl alill il fill wllal(~'s lIukl~.

The present method gave a. smaller ellicicllcy predictioll allil much lower thl'U1\t val

ues. Becanse the prescnt mclhod considered the st:ction thicklielul clfed, till) large

amplitude a.qsumplion aud the skill friction dfed, results from tile prcsl.!nt IIwtllOfl

arc believed morc I)ractical. The extremely large C j vallie from the lifting slirfilce

theory indicates that this vallie was over estimatf.'11 due to too hig (irnpraclic.ll) an

instantaneous angle of aUack and that the assumption or a zero-thickness wing sec

tion had a disadvantage ill calculating thrust because it oVf~r·pr(~dicted the leading

edge suction.
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Sllltly of lhe t%..>t:l o[ llw swept plallrorms Oil lhe thrust and dlicicllcy gives lhe

following condllsions:

• A lunate plallform hat! a much beller cflicicncyovcr that of a rectangnlar plan'

form, at a feathering parall1der of 0,,", O. Althis value, the IOilll of till' propeller

WilS maximulIl. The thrust from I.lw Innate tail lVas sliglltly smaller.

• At a llip;lll~r fcathl~rillg parameter of 0.'1 , the rectllngular planfol'lll gaVI) a slightly

higlll~1' dliciellcy but it lower thrust in a working range of rr~[llcl~d frCCIIl<'lIcy k

(U.;I '" I.rl). Again, llntkr C~)(j rmm~ loall collllitiollS (very light [oad al k $ 0.·1

01' \"(~ry Iwavy IOild k ~ 1.8),1 hI' m'\II-madc lunate tail hdlilVt,t1 I,dtl:r in tc~rll1S

of holh \.hl~ clliciclII:y and thrust.

• Thl~ fin \\'hall~'s r1llkl~s ga\"l~ higllC~r dficicncy lhlln that or 11 rt~l:li\llg\llar foil

tllrollgholl1. Ull~ rilltge of nd\'allcl~ ralio.l, c~spcciillly at a lli.e;llcr ndvillice ratio

(.I ~ fi) at which I.lll' loml is gcHing lighwr. Tlw fill wlHlI.,'s flukes showed an

C')(:dlenl, crll~rgy dliekllt:y (allIIn!. If :00 SO% alld C', == 0.1 at J "" ,'j}J ) at I:ruising,

al whidl a 1l1initlHlt1l illpnl. pOlVl:r is f(~ql1if(~d to Ilwintaiu thl~ cruising spe"ll.

• Tlil) red,lIIgulill' plaurorrn prodlln:tl a. slightly higher thrust over tile fluke:'!.

Ilo\Vl~vl:r, \.I11~ Ui\1.\Inllly oCI:mr1ug p!;mform Imd a helter overall pC~l"forll1i1llcc.

Tbe hI:!!!. dfit:it:ul'Y, ngnin, occnrrl~d when till: maximum instll1l1alleOlls allgle or

al.1m:k was ill Ill". for Imtll redilligular HUt! s\\"qH plalirorlllS.

Tlw skin fridioll cm,flidel1L C'/ Wils ohl,aifll~(] from 1lie hound,lry layer cHlcnlatiol1

nnd WilS dc~tluctt'd from t.he lhru~\. ('odlit'it'nl C,. lb\\"t:\'er. it IHld liu.le dfed Oil

<:il.l1l'1' the dlidcucy til' the l_hrllsl.. 1\ signilicnlll l'Ifcd occurred ill. a vc:ry lo\\' reducc(]

rrt:'quclII:y ~', Hl II'hkh vllhll:, tll(~ gl'lwr;llt·d I.hr1lst. \\'ilS \'I~fY s:II<111 .~o I,lllll tIl': (//

l'iUwel1t~d out a Iilrgc~ portion of UIl: thrllsl..
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B-D About flexible oscillating planforms
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To simulate both it possihle muscle control and a passive ncxibilily of a fin whale's

flukes, live chonlwisc and three J'ipallwise dellcxion c1lualions were tested,

Chord wise defll?xioll was a~sumed to slart at the Ilalf local chord position ,uld

the I]eflexion wa~ uniformly controlled hy one equation for all sections anI.! the local

("hurd lelll;th for llilCh sllcLion. Sllall\vise dcflc"ioll equations were postulated based

on it citntilevl!r hc:al1l with a uniform di.~trihutlld load. Calculations showed that the

sdt'diou of the I;uvernillg I:quatloll hat] lillie effect un the efficiency illlt! thrllsl.

A I:hordwise ddlexioll phase lag relativc to the pitch 1Va.~ introduced and l,he study

sho\\',~,ll.hat i\ phast: 1;1; or ahout :lij" gave the lwst ellic:iency (about 0,75) aud about

the saJllllthrust coefficient (aIJtJI1t. 0,:1.'"1). The graphic presentatioll of the motion alld

LIlt! wake of a f(~dllngillilr pJanform sllowecl that a pha;:c lag ahollt 30" st:l~Jf](~llI1orc

prilctirill aud doser to t Ill: shaw: of It tml llfill dellcxioll, This is ~howlI in Appelldix n
thilL, 1111: lld\exioll of 'lll da,~til; sClclion Cclllllot hawl atl 11l1deforrned shape at the trough

ilnc! JWilk when: thll I'c'rtirill \'clocity is Illilxinmnl when pitch leads heave ilhollt 90°.

'J'Iw itls1.iltllH1ltXJII~ all,;1t~ (Jf attack or tile instantmuxlIIs I'lrge amplitude feathering

l'arilITwtl'r ,:hilllgt,c! dtle In a) thc change of thc chordwi~e flexibility of the foil hecausc

tlul ~erti(lilill ~hHPC WilS c'hallgc~cl or Iwi~\t'cl. II) the change of the pllilsc lag between

Ihl~ chordwi~c ddlexioJl !lml the pitch 'Pn hecllu~c the SI::cl,ional twist varies with timll

nllll e) the dl1lllge of tlw phaS" ,mglc (Ilp',~,<, In a uormal case, al 4lrl,",< '= !JO° (hea.vc

hlg~ pilch), ¢Ie '= 0" ..... :\0", the cllotdwi~I' 11(!xihility played thl~ most importa.nt role

in Lhe dlilllgC1\ tlftlll' instmltill)I~)\IS angle: of allark 0,"".,1/, TILe effective value of thc

instuntancOllS illigle of /IUl\ck dc'crca~C'{1 whenlhc lIcxiLility or thc nmpliludc of llLc

dll)f(lwise dcflexioll !I,. increasell. Therdorc, it lighter load hall a higher efficiency ami

It IlIl\Ier thrust. Whcn tl;e chord wise dcllexion amplitude 8'0 continued to incrcase,

1.11\: dlicicllcy 'I dropped (llll~ 10 the generatetl negative tllfllst; the total thrust also

d"c:reilsell. The d(.'t;reasc of the thrust due to the illcn::llse of the chordwise dcflcxion

;1ll1111itIHle factor 0,." was approximately linearly proportional, but lhe best efficiency

Il'ns oht,aincd at about a cliordwise tlcflexiull aUlpliludcof 20% local chord, lIowe~'er,
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al such a large dencxioll, the thrust coefficienl was very small (0.3). A medium

denexion of 10% chord gave a good overall thrust and efficiency (" = 0.i5 and C,:::::
0.53 for a rigid span recl..anAUlar planform).

The pressure dislribution for a rectangular semi·c1utic chordwisc foil showed that

the steady Kulla condition has been carefully applied and the present method is

reliable for both tile ullsteady rigid and flexible foil. Though the value of the predicled

prcuurc difference at lhe trailing edge varied from one time step to another Alld

for different panel !'pacings, the pressure difference C" at the maximum lin point

(C, ::::: 10) is about 0.01. A1 a larger amplitude chortlwisc dellexioll, the prC8surc

uistribution on the pressure side became Ilcgative due to the substantially increased

now velocity. This negative vallI(: reduced tile lifl. of the flexible seelion and hcnce the

t11rust. However, as thc pitching moment had reduced !'igniRcl\ntly dtle to dlOrdwise

flcxibility, the dficiency had lin increase until the feathering parameter approached

1.0, at which points negative thrust was generated at ccrtilin instantancolls f>O!litions.

A spanwisc deflexion phase angle (rderring to the pitch) 41. was also introduced

and was uMXI to study the propulsive performance of il fin whale's flukes. Thill

phase angle ell. Ilad a substantial cffect on thc thrust ami cfficiency. Whcn the pha.'IC

angle was about 0", thc nukes always gave a lower valuc of oolh cfficicncy" ami

thrusl Gil compared with lhose obtained al spanwisc tlencxion amplilude 6_ (rigid

tpan). Especially, at a medium heavc amplilude (about hie. ::::: 1.0), and a lower

oscillating frequency w (0.21'), thc nukes hardly produced a positive t1Jrust whcll

both the chordwisc and spanwisc dcflexion amplitude were sct at 10% of chord and

10% half span respeclively. Increasing either the heave amplitude, lhc oscillilting

frequency, or decreasing the swimming "elocity will allow a larger degree of both

chordwisc and spanwisc dCnCKion. In any ca.<;c of a foil having a passive flexihility,

lhcre should be a largc enough rigidity of illl oscillating foillo yield a good propulsive

performancc in terms of both thrust and cfficiency. However, whcn the pha.~e angle

$. was sel at aboull80D, at which value the nllkC8 deflect dowllward whcn they hcave

upward and vicc vena, both the cfficicncy 1/ and thrust C, had a substantial increase.

Such active dcnexion control mechanism (controllable ncxibility), if it is possiblc for
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an oscillating foil, can achieve a superior propulsive performance.

Thc amplitude of the spanwisc defiexion factor ~. also had OJ. noticeable effect on

the efficicncy Tj and thrust. CI' At. a smAll angle of phase lAg (about. 4'~ = 0-), the

amplilt.deof a pure spanwisc dcnexion had little effect. on the dJiciency Tj and thrusL

CI , and increasing t.he !'ipanwisc dcncxion fador 6. decreased both the clneiency

'I 1111<1 1Ilrust. C I • A large ehordwisc denexion amplit.udc 6... and spallwisc denexioll

amplitudco. at a small heave amplitude produced a negative CI (needC(1 extra thrust

lo keep Vj1i,ItI)' However, as itw1l., mentioned before, if tllc spanwise t.Idlexion philllC

angle $~ dlilUgL-d to about mure than !K)o, a large spanwisc del1exion amillit.ude 6'0

gavc a much larger efliciellcy Tj lUll! t1,rust CI'

The propulsive perforlllll.lICe for a rl·<:tangular semi·clasti<: foil I\'(IS ilbo pTl~di<:tcd

lind the results were r.olllpared wilh II. prcvious 2-D u\llllerical study with a 3-D

modification. The present method gavc slightly higher vIIlllCll of the diicicll<:y '11I11d

thrust Ct.

A lin whale'~ IIllkC!'i wa., linally used to evaluate the oscillating propulsonl' per

formance by using several c:arefull)' selecled motion llnd nexihiliLy paramelers. A

t:olllrollahlc spallwisc flexihility lJcing sel at a phasc angle of ± 180" (sec iigurc B.35)

gilve it snperior eflkiency ;\IId til rust over the same plan form wilh a passive dl.'!Iexion

(:IC..'C figure 11.37) which Ilad About -60" pha:>c "ngle of spallwisc dcnexion. The fin

\Vllale, when an ol>timal Acli\'C ddlcxion control (lhe phase Anglc or lhe span\Visc

<Idlexion \ViL' sel At about. ±18O") was employed, had an excellent efficien<:y ranging

from 80% at. 7.8 knolll to 86% at 23 knots. The best efficiell<:Y, Ihe Silme iL'I any other

I'lanfoTllls examined ill thiN tCliCaTch, occurred at lhe maximum ilistalltanl'Ous angle

of aUa<:k or about 10°.
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Appendix A

Determination of doublet / source

coefficient matrices

Reliability and accuracy of this melhod depend very muell on how to program lhc

rdated subroutines. Understanding the theory, making a mathematical model were

only lL part of the whole work. There were also many thinglJ to do with the program

ming. For engineering applications, the most important thing ill to obtain the correct

rcsulu.

As it. was discussed in Chapter 3, Newman's (1986) formulation is for the panel

based coordinalCl, for a simple mathematical formulalion. To transfer inertia frame

coordinates to the pancllocal coordinates, a Fortran subroutine called GI2Lo.1NC was

written. I To save the DRAM, this subroutine did not declare any array. COMMON

blocks, in WATCOM F77/386, though they have a fast data lran.dcr ralc, were not

used for any array becausc ~hey did no~ allow a program to declare allY dynamic

array.

The 9ubrou~ine Gl2l.o yields the transferred panel local coordinates, the central

point of a panel and gomeother measurements for velocity calculation. Figure (A.I)

shows the geometry and the legends.

IThe ~INC" file eXlension for the OSFIlEM Wall (or 'included' subroutinCll. ThCll<! ~llbmlllin,'11

were Rparaled from the main program for .. betler Itructuro :lnd ~lldllbility.

179
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Pand 00. Comer Poin~ I Corner Point 2 Corner PoinL 3 Corner Poin~ 4
pand I. (0,1,0) (O, -.6, .866) (I,O,O) (0,1,0)
pimcl2. (0, -.6, .866) (0, -.6, -.866) (1,0,0) (0,-.5,.866)
pi'lllel3. (0, -.6, -.866) (0,1,0) (I,O,O) (0, -.6, -.866)
panel". (0,1,0) (-I,n,O) (0, -.6, .866) (0,1,0)
pand ;1. (0, -.5, .866) (-1,0,0) (0, -.5, -.866) (0, -.5, .866)
l'ancl6. (n, -.6, -.866) (-1,0,0) (0,1,0) (0, -.5, -.866)

Table A.I: Olfscls of a 3-1) body with Ii faces and lIix corner points.

Twelve valuCll of the coordinllte of fOllr r.orllr:r pointll on the world frame were

irl]l1ltted (sec the suhroutine below). This subroutine al~o take Il triangle panel, ill

wllir.1I ca.sc, coordinat,! of the fourth (Orller point arc the SMIlf! liS that of t,he first

I",illl. [t wa." noted that for triangle piwc1s, lIle cClitroid of the panel callnot he

c~Vallllttcd by the way as it did for thl! 'luadrilatcral panel or a Ilumerical error would

OI·cllr. The th(:ory iSlIimplc hut it ill easy to be ignorL-tl.

Althc early stage of the develolllllent of OSFIJEM, it Ivas notel[ that it Wall very

illlllOrtilnt to ohtillill the correct doublet ilInd source cocllicient matrices. The proper

\'l\lncs of these coefficicnt were hillnl to lind for a vcrification. These could be vcry

hdpflll to beginTlcrs who arc doing a lIimilar study. This appendix intended to scn-c

ror Ihis purpose.

To \'erify the obtainCl.1 .lollhlet and source cocllicicnl matrices, a 3-D body wilh

~ix corncr points and five C<luilaterallrilll1A:le fillcC!l wa.!l used. The coordinates of the

!IiI( panels are i\lI follow~:

The order ofthesc six panels wa!1 arbitrary. A sample fortran program is attached

to t.lli~ Appendix and thtl resulh arc l\.." follows:

DOll.bbt c:oaHidlllt Katrh

0.281246170.281257000.152073830.142710280.14271350

1.000000000.281250510.142711710.15207548 0.14271171

0.28124517 0.14271356 C.ln71C2e 0.15207383
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Figure A.I: Schcmatic diagrall1 for coordinate transformation from the glohal rramc
lu t!l( pnncl lowl frame.

0.142710300.142713581.00000000 0.28125709

0.142711710.162076460.142711730.28126054 1.000000000.28126064

0.1427135',0.142710310.162073860.28126709 0.28124517 1.00000000

SoureeeceiUeientllatrh

-0.54000479-0.23351721-0.23352423-0.21327"70-0.16198219-0.t8198614

-0.23362198 -0.54000056 -0.23352195 -0.16198525 -0.21327181 -0.16198523

-0.23362426-0.23351724-0.64000473-0.16198614-0.16198219-0.21327470

-0.21321466 -0.16198222 -0.16198613 -0.64000473 -0.23351720 -0.23362422

-0.16198526 -0.21327186 -0.16198522 -0.23352197 -0.64000050 -0.233621117

-0.16198614-0.16198221-0.21327466-0.23352422-0.23351720-0.54000473

0.968234480.968217430.96823448 0.96823448 0.96821"'43 0.96823448

The samplc main I'rogrnm to nnd the matriccs along with subroutinc 'codfphi'
mil.! 'gI210' arc I;~tcd below. It is noted that a good programming prncticc is to lise
thc dynamic array allocation, if the compilcr lliis this option. A huge amollnt of time
will be saved in creating the executable file frequently.
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PIREISIP. V1Co<nr818.12) .C.r".r~o(8.IJ).

WICoA'••(6.12) ••k(8.3l,d(6.3l •• JI6.31 .....(6l

PIRtlSIO',••onb(6,6l

P1UUID.D.NoC.hI6.6l

d.IO«W1C.rorl(l,J).j ol.l2l.lol.6110,.I.,O.,0 .• -,5,.&66.

1 .•O.,O.,O.,I.,O.,O.,-.S •. llll6,0,,-.S.-.e.6(I.I..O.•o .•
O. ,-.5 •• 666.0 . •-.5,~.B66.0 .• 1. ,0 .• 1, .0, .0 ..0 .•-,S.-.866.

0 .• 1..0.• -I,.0 .•0.,0.. -.S •. 866,0 .. 1..0.•0 .. -,5,,866.

-1.,0 .•0 .•0 .• ·.5.-.6OO.0.. ·.S.866.0 .. -,5.-.65(I,

-I .•O.•O..O.. I ..O..O..-S,·.BG/ll

OP£IIJ.bG••I.tlh"·PPPPP· •••

lTU.d,-e

DUlwl.IlPB.dy

,loWIC:OrO'8(1.ll

.2·WIC••••8{1.4)

.J.WIC....8(I.T)

.4·nC.ro.I(I.IOI

yl.WIC....811.2)

,2,W1Co.n.11(1.5)

,JoWleo'n.11(1.81

,t.Wle.....8(1.111

,loWle••nr8IJ.3l

'loWleor",811.6l

'3·VICororBll.91

.,.V\Cornr811.12)

Clt~ UL2LDI,I,.2 .•3 .• t.,I.r2 .r3,,4,.1 ,.2 ••3,.t .... c•. r,.c,.

uh •••,.uk.,ub.uIJ.obtl,l,.uJ,.oj,.ChN..LoS.

SpNaLoS.Sld.2DJ,SI402Dll

C:OrnOf~.(l.l)o.1

C.r...~.1I.4l·.2

Co,.octo(i.')·,3

CornorLo(i,IOlo,4
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CO IA(I, 21-r1

CO IAU,51-r2

Cor..rt..oU,')-r3

Co....IAU.ttl-y4

CO IA(I.n·at

CO IA(I." ...2

co L.CI."-aJ

Co CI.I2I_a4

V1CoM.,lI.I)"Ca

VIC"'t,CI.2).."

VIC"",(J.~)"Ca

~.(I.j)..h

dU,2)"'.,
a.(1,3)-uh

'JU.ll_ja

aJ(I.2I_j,

aJ(I.31..Ja

.1(1,11..1a

.1(1,21-.1,

al(l,31-.11

001_,,1",_,

OOJ·I,I1'I'_,

uoIlICnttl(j.l)

c,-'lIC.••rl(J.2)

q._V1Con"BU.l)

q,_V1Contrl(I.21

c._VIContrB(J,3)

qao V1Coftt.B(I,3)

ra-q.-c.! (c....olpol.t)-pOlld, I.IUII,UU_,
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......I(J.I>+.,...I('.2).,...0I(j.31 1'1.<1 n •••Iath•••r. &rI<I

'I'.'''.J(J.ll'",''j(J.3)+'''''JIJ.3) I ... p...II.cal co••<lI......

......UJ.l) • .,. .... (J.2)· ......(J.3)

k1-e. (J.ll
.2-c. (j ••1

a300:: {j,11

.,-e:.'."""J.10)

'IOC.....t..'J.'1
,200c..nut..(J.51

,'.c t..(j.8)

,'.C L.(J.llJ

.1.C L.(J.3l

.2oc t..(J,Sl

.'OO:: L.(J,'1
••-c (J.12)

cnL ...trplllt.l.12.13.1'.,I"J"3.r4.',,,'"

& l.j.r1Doo~lt,rt'o.r<d

_ ...II(I.j)""'ld••l>lt

,.lIlula(I,J).,.'J!Sn.u

lIunUoWl..41'I_.c.

1I&'TlU_U1FlOooI>H

IIUttUobOo.t1 ,.j·J!.h" O'Wht/....". oo.... i ... d.to01OI•• II.. '

.rlhlJol>O.tl •• I'_bl.tcodttch"te".l.'

DOI'I.ITPllodr

wrlh(J.~~tl.'(6FI2.ll·l(Doh.rhU,Jl ,J-I ,IIPIo<I,1

EJIlIlO

wrl ..U.l>OUtl,·)

••II.U.blluU,ol'S•••u ...flltlo"tN".h'

DOI.l,ITP_,

••tuO.bonl.'tsFl2.ll'I(I.IIU ... hll,JI.'''',ITI'8ocI,)

UDIlO
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ult.(JobOull,o)'Arul'

ult.(JobOutl,'C61't2.6)') (u•• (I),tot,Unodyl

do•• OobOotl)

STOP

'"

50UOUTIIIGL2LD(d,a2,<3,x4,JI,J2,J3,J4,zl,.2.z3,d,a.cz,cy.

I cz,uh.u\y,uh ••h,ujy,uiz"J.,ojJ,uJ.,C).M.L~"

I SpN.L."lid.2PJ.Ud.~Dll

'J .I-t, JI-tudd-t ••• th.lIloboicoordl••l .. oflbc..... oj

oJ p.l.h, U-t ••dJ1-t.Ul b. roploc.d bJUo"oolocol .J
oJ u.rdln.u ••h .. , .I-t Ih.uldb••bollt x..... z 11 Ih..... oJ
oj ,'th. pan.l.c•• cy ..dc. u. lho c.ntr.U.rdlnotu of th. 01
01 p.nd. uh, .\y .~d uh tho 'oapo~uU.f the un u .... l 0/

./ ..clo... thop••• l th....npln".f•• t.U.p.nal.

dd·.J-.IIThx c0"P.u.t ofth.t1Utdilll.ul.flh.po.nol

do2·.4-.2

dJI·JJ~yl

dJ2-J4-J2

cr<l••_dylod.2-.1y2odd I hc"relOh croup••ductofdl ••dd1

cr<l_y_.h2'dlt_dIlo4a2

cr<l.z"",xt'dy2-d.1Odyl

"'cr,L.O<lI2.llr...,thoplnll

.h'cr<LI/crd.-O<l I Jh.co.po"utoul th...U oo...I'.cu.DI

'_Y'c.d.J/crd.-O<l
u_..c.d••/ ••d....d

.dl-SQIlT(C.2-ol )"2oCJ2-yl )oo20Co~-olloo21

Id2·SQU«(03-o2).07;oCy3·y2).02oC03-dl oo,)

Id3·S11U(Co4·03),02oCy4-y3)oo,oCo4-03l ••2)

Id4-SQIlT(CoI-04l''20 Cyl-y4)oo,oCol-otl ••21
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IF (.~I.LT.O.OOOO)1lTin

u-(d+.3..4)n. I T~. <uu.l~ .f 'h_.h (..... ) po••l

<1-(J1+,3+,4)/3.

<._(22·.3·,4)/3.

u-(xl••3••4)/3. !n_unUoIGof .10. (...n) p••d

e,-(,I·13+y4)/3.

c,_(,I·<3·.4)/3 .

••_(><1+11.,4)/3. I Th. eo.troU.f e"ol.... ) p... l

.,_(,!',2.,U/3 .

• ,"(><1·.2·.4)/3.

e,"(&1',3••1)13. ! Tko co.uolG ot .10. (UIR) ~ ••o\

.,-(,1',3.,2)/3.

"·(.11'13+.1)/3 .

••_(.1'.2..3+.4)/4.1 Th••o.lfold of U.I_".)p"ol
.,-(,(.,2+,3+,'1)/4 .

••• (.1 ..2'13·.4)/4.

oj._«3••41/2._u

oj,_(,3+,4)/2.·.,

oj._h3..4)/2._••

oj.SQHnoj...j'''jJo.j,••j''oj.)! IIodol... t th••lGdl. p.lnt

I ••• l ••• j

o,....j./.j! Cup...Ma.f H ...1t .....,llJ.

oj,·.j,loj

oj'-.J./oj

d.-uj"oh-ok,.nJ.1 eo"po•••IO.f '100 ..11 •••••,UI

ol,·uh..j.-uj•••h

nl'_\lj"'~'_\lk""J1

Th toll..1n,...oth 10c.1 ",.MH1..

•,.-,1-',.,2..,2-.,
r,3_,3·.,,,4_,._c,
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ul·.l-c~

..d·.3-cz

..~4·.4-cz

.t-"t'''!1...,I'dy.''"lodl! X afr.mer nc.upraJtc.odon UI

.2·n2o"t1•.,2''''J...llo.b

.3'n30"11'r,3.uly·..~3'utl

.4',,40.. 1.or"'uly.u4••I.

yl-"t o"j"r,I·.Jy.ul"J'

y2·n2o"j.orf1'uJy.u2"J'

y3',,3o.. j.or,3'.Jy.u3"J'
y4·n4... j ••,,4·.jy·u4"J'

zl.nlO"k••r,I...~y..nl••h ! The .~... f 'ho pond It potu I

.2·u2.llk1.r,2.uky....~lo.u
~3...3 k••r,30"ky.r.2o.h

z4.,.4 kur,4••tyor13 ••h

SpH.Laa X-(13'd)/2.

SpHoLaI,-(,3.,U/2.

SpHot·lz,o{o3,"U/2.

C~I&Lnlll-h3'd)/2.

ChX.LnS'.. C,J.,2)/2

ChX.LaI1."C13+.2)12.

SpX.LaS-SQlTUplaLns·oSpIoLnS··SpHoLoI,oSpKaLoI'·

I SpH.LaSt'SpHaLnSZ)

Chl.LoS-SQIT(CIlI.LnllloaoJloLna··C~I·I.III,oC~H""S'·

• ehK.LnIZteU.Lngl:)

Sld.1U"ABS(ChkoLnIlT)

Sld.1DI"ARS(Cl,hL·Sl)

SI18IllUTIB&C.otfpH{ol,.2,.3,1'l.yl,f1,yJ,y4,I,J,Z.

• I,J.F!D."blt,rlto ....c.)
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nh .qbru\l.. ule.hU. \h. 1nd.<od ••1 ...1\, pounhl n .f
1'.1011'("".11 due to •• lnUntU ••or ot ..lfo••ly .,

dhtrlb..Uddl".,u o""qudrihl..a1 1""1. I,ot .,

101..p..'UI d.«OIdt"II.J '.f ".I1 /
(DI.tribuU '.ou nd no...ldlpolo••••• a .,

q••4t11 ..Un' p I, In,••1 of Enll ••~.·t"l ~a1h,.ulco. 20. ./

19M1. loh: Ihnquo....t Ih. tl.r.or.... ".l••• lobCCI/;.'

'0 un 1;h.r...lt .ndto.dd. ftOltllv••11' 0'
./

d,,1••2-0I! Pu..'c"l ..u ..h .. til., 0111 b. "..d.oro.h••

dll:2••3-.2! ••• plac.to .... tll.CPtlti..

,'-3',4-13

dyl 0 ,l·,1

d1,o,3-,2

")"30,1-,3

dy4",I·,4

.d'·SQU(d,,1.4.I'd"'d)"l)

.d2·$QU(d,,20<t.l'dj'2'd)"2)

.d3'S~.t(d,,3'4.30d,Jod)"3)

.d4'SQlT(d,,4'd.4'dJ4ody4)

.'t.qtt(('-"I).(.-oIl'(y-,I).{,-,l)"'1l

r2_.qttH._,,2).{.·.2).(y·'2).{'_y2) •••• )

rJ_.qrt((._I<3).{.·.3).(y·'3).{'_'J) •••• )

r4._.q,IH._.41.{._.4).('·'4).{y_y4) ....)

.!DIII{lH.<kn Do"blolc.lcuhtl••

IF (\.oq.J) T~61

ELSE IF (~\l!H.I.~T .0.000001\ TIKI

F1D••b11_0.0

ELSE

0:01·h-<1)·(.-.I)·.·.

""2.(.·01)·(.·.2)·.·.
0:03_(.·.3)·(.·.3)·.·.

11;4,(",4)'(0·.1)',,"

Iyl_h_dl'{y_,ll

ly2.(o-.2).(y-,2)

",3.(,-13).(,-,31
.,4_h_d).(,_y,)
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.It''rl'&at~II'trt

"ll_.I',·<ld

.n""rl....2:~II.t,.l

"12:·",,,'<1..1

ul-oIl ... I2:-.n..11

"el..I,""I2:-.U·.ll
0,1_.10.•1(.. 1,,,0:11

Jr 10<12:.10.0._1) tID

0\2:00 •

• 1'''''r1·ul...Il2··r1

..11'''''''<1.02:
,'1.r1' t a3'-u1o·r'

..2...11'..12-''''<21

",,2-0:"21.,,"·.21••11

0,1.01..2:(0.1,«1)

.31""r3'.a3~d··r'

c:31·.3',·<la3

·:;n""r3•..4-<ld··r4

,,31-,4,,'403

••3_.21'<31_.21'<31

«3..31'<31·.31_.31

0.3·.U.1(..3,0<3)

liD l'

Jrh44.1o.0.000001l7llrl

DU_O •

• 41'4r4'&&4-404··r 4

,,41 0,4 4.4

.42.4,4 1-4.4.,,1

<41·.1,,'4.4

..4·.41'<41-.41·,41

«40041'041+,41••42
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Dt4_.t..2(..4,cc4)

tlDlt

FiDoublto((lt1+lId'llt3.0t4l/12.686:)7011\! Add. '-'.lln f.,CCW

.EIO(Bloc::l<llPO..bIaICa!c .. l ..I ..-_ _--_.__.._-_ _-_. __ _-_ _--_ _._--_ _--
••I:GII{Block 21 SO"~co Cal l ..tl .

IF (.dl.l •• O.01l0000 T~tl

512-0.

ELSE

S~2-< (1-.21odJ'·(r-J2)'dI2)/od2.LOll ('~'rJ"d:l.)/t<lO,3-od211

ElOIr

IF todJ.l•. O.01lOOO\) TUI

"3-0.

ELSE

SU-<b-.JhctJ3·(J-rJJodIJ)/.dJ.LOlI«(<J·" ..d3J/lrJ••4-adJ»

E.OIF

IF (od4.14.0.00000I)Tfl£1

514-0.

ELSIE

h4_«I·.41'dJ4-(,-rU ' d,,41/.d4.Lllll«(.4"I"d.,J/(,t.,I-ad4»

ElDIF
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Graphical presentation of some

oscillating propellers in motion

This Appcndill lists a 1I11lnbcr of srllphics obtained numerically for different O1l(illaLing

foil planforms with different parameters. The fil'llL scriC! of ll:raphics described the fill

whale nukes wil.1I HI combinations of dcflcxion equations; the second list i!l (or a

rectangular hair clastic foil in lenns of the (.hordwisc ddlcxioll pha.'IC angle.

B-A Instantaneous positions and wake paths of a

fin whale's flukes

Six chordwisc and three spanwisc dcficxion equation!! ""~re llsccl. [llchulilll: the ;tcro

dcllcxion in both directions, there arc 19 combinations in lite selection of o"!Uatiolis.

It is noted that. Cl ~tand5 fOf the chordwisc dcflcxioll (''fJuation number one and

51 for the first spanwiMl (unction, and so on in IUccnding order of tile exponent <,

As it was mentioned I,c(orc, the time step sit.cs used in the graflliic prcscntation

i~ much larger than the actual values that were inpulled lo lile coTnpliler program,

to keep lhe validity or the sleady KUlla condition for a reliable pn:dictioll.

191
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Irl these figures, foil swimming velocity towards thc ncgative x-direction, and z

axis points 1l1lWard. The values of the view point indicate the directional vector

pointing from the origin to tlll~ viewer.
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F'igurc n.l: Denexion of a fin whale's flukes by a combinlltion of CO and SO, where
CO and SO stand for ll. rigid planrorm (no defIexion). View point i~ I\t (-1,-10,3).

Figure B.2: Dencxion 0(11 fin whale's flukes by acombinatioll orCI and Sl, where
CI and $1 stand for (=),5 ami (= 0 in cqn. 7.1 and cqn. 7.3, respectively. View
lloint isal(-I,-I0,-3).
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Figure 11.3: Dcllcxion of ~ fin whale's nukes by a combination of CI and S2, where
(,'1 and 82 stand ror (== 1.5 anti (.:: 0.5 ill CfjU. 7.1 and t~lll. 7.3, respectively. Vic\\'
[Ininl. is ~L (-1,-10, :1).

l·'igllrc Bil: Ddlcxion of i1 lill whale's nukes by a combiualioll of CI and 53, where
(,'1 <:-nd 83 stand for t:.:: 1.5 all\l t':: 1 ill t'<llL. 7.1 ~lld ClJll. 7.3, Tcs!lcctivcly. View
lIoint isal{-I,-lO,-:I).
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Fig11fC 8.5: DcllexiolJ of a fin wf1ille's nuke!! hy a combination of C2 and Sf, wIler<!
C2 and 51 sland for t = 2 amI t = 0 ill cql1. 1.1 Ilnd l:ql1. 1.3, respectively. Vicw
point is at (-1,-10,-3).

Figure !l.G: Dcflcxiol1 of l~ fill whale's flukes br a comhi nation of G2 all(1 52, where
C2 alld 52 stand for ( =2 anll ( = 0.5 in L'(lll. 7.1 alld ClJ1!. ;.3, respectively. View
point is al (-1,-10,-3).
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Figure B.i: Ddlexion or il fill whale's llllke~ hy 11 comhinatioll or G'2 <lnd 83, where
C'2 and 83 stan,1 for c =2 alld I = 1 in eqn. 7.1 and cqll. 7.a. re~pccti\'c1y. View
puinl is ilL (-1,-10,-:1).

Figure B.R: DdlcxiOll or a liIL wllalc's flukes liy a combination or C:I il.lld St, where
(,':1 iUld 81 stalld for (= 2.b auu t. = 0 in cqu. 7.1 and cqn. 7.:1, respectively. View

l'0iul. is at (-1,-10,-:1).
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Figure 13.9: Dcfiexion of a fin whale's lIukes by a combination of C3 and 52, where
C3 and 52 stand for (= 2.5 and (= 0.5 in cqn. 7.1 and cqn. 7.3, respectively. View
poiut is al (-1,-10,-3).

Figure B.lO: Dcncxion of a fin whale's flukes by a combination of C3 alld 5:1, where
C3 and 53 stand for {= 2.5 and {= 1 in cqn. 7.1 and cqn. 7.3, respectively. View
point is at (-1,-10,-3).
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Figure B.1 [: IJcflexioli of;l fin whale's flukes hy a combination of Gil and SI, where
C,llUlll 51 stllnd for, "";) and, := 0 in eqn. 7.[ and eqn. 7.3, respectively. View
poinl is at (-1, -10, 'I).

Figure 1l.12: Dcflexion of a fin wl.ale's flukes by a combination of C1 and 52, where
C,I and $2 sland for t = 3 and, = 0.5 in ctl". 7.1 and eqn. 7.3, respectively. View
poinl isal (-[,-10,-1).



Appendix B. Graphical presentation of some oscillating propeJlers in motiun 199

Figure 8.13: Deflcxion of a fin whale's flukes by a combination of C4 and 53, where
C4 and $3 stand for { =3 and { = 1 in eqn. 7.1 and cqn. 7.3, respectively. View
point is at (-1,-10,4).

Figure 8.14: Defiexion of a fin whale's flukes by a combination of C5 and 51, where
C5 and $1 stand for {= 3.5 and (= 0 in cqn. 7.1 and eqn. 7.3, respectively. View
point is at (-1, -10, -4).



Appendix n. Graphical presentation of some osci/Jating propellers in motion 200

Figure B.15: Deflexion of It fin whale's flukes by II combination of C5 and 82, where
eli ilnd $2 stand for (= 3.,'j and (= 0.5 ill eqn. 7.1 aud eqll. 7.3, respectively. View
point isat (-1,-10,11).

Figure B.lfi: Denexioll of It fin whale's flukes by a combination of C5 and 53, where
C5 IlTld 83 sland for ( = :l.5 ami ( = 1 in cqn. 7.1 and eqll. 7.3, respectively. View
poinl is al (-1,-10,3).
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Figure D.17: Dencxion of a An whale's nukes by a combination of C6 and 51, wbcre
CG and 51 stand for ( = Ij and ( = 0 in cqn. 7.1 and eqn. 7.3, rC8pectively. View
point is a1 (-1,-10,-4).

Figure B.IS: Denexion of a An whale's nukes by a combina1ion of CG and 52, where
CG and 52 sland for f = 4 and (= 0.5 in l'<ltl. 7.1 and eqn. 7.3. respectively. View
poin1 isa1 (-1,-1O,1j).



Appendix fl Graphical presentation of some o.~cil1ating propel/ers in motion 202

Figure n.!!J: Dellexioll of i\ fin whale's flukes by a {ombillation of C6 and 83, where
G'6 and sa stand for, =: <[ ami, ::= [ ill I~qtl. 7.1 and eqn. 7.3, respecth·c!y. View
poinL is aL (-I,-IO.-'[)'

Figure D.20: Path of tile flukes with 111cir wake by a combination of CO and SO, where
CO 1111(1 SO stlllld for a rigid plan form (no del1exion). View point is at (- L. -10,1).
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Pigure B.21: Path of the nukes with their wake uy a combination of CJ ami SI,
where Cl aud 51 stand for eqn. 7.1 alld Cqll. 7.3 at (= 1.5 and (= 0, respectively.
View point is at (-1,-10,-4).

Figure 0.22: Path of the flukes with their wake by a eOll1binatioll of CI aud 82, where
CI and 52 stand for equ. 7.1 and e'Ill. 7.3 at (= 1.5 and (= 0.5, respectively. View
point is al (-I, -10,4). The wake patl, )ols for other combillatiollsof cquations an:
looked similar to this aile so that they,,/:.: omiUctL
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B-B Variation of phase angle of chordwise deflex

ion

The following foil geometry and motioll parameters were ll~cd for graphics ill tlii~

section:

• Section thickncss distribution is NACA 63A015,

• Span is i]!] III and chord is 7 Hl 1I1ld hence aspect ratio is Ai =- 7.

• Spanwise deflcxioll is Ii, =- 0.0.

• (hcillating fr(:{llwnr.y is w ::= ! .;H68.

• Equatioll of c110rdwjsl~ t]dlc.lCioll is (lid;(2x - 1ft.

• DI'[JI)xioli starling:r.::= ;lO% "" 100% is referring to the local dlcm!.

• The maximum delll'xioll r,u:tor is Ii,,, =: 0.2.

• CII{)rdwisl~ ddlcxillll phase lag is -:10".

• Heave a1l111litudl) factor is II" =: 0.7.

• Phase anAle (Ilikh kallillg heave) is !/Jl'h<U< "" illl".

• Pitch amplitude is (I" =1!J.7",

Agaill, the ilcltlal lillie step size in the COlllplltation~ for efficiency and thrust is

Illuch slllaller than sllown,
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Figure 0.23: InstnntnncoUll pooitions or a rectangular roil with a ~elI1ichord deflcxioll
a1 0" phase lag. View poin~ is at (O,-i,O).

F'igure 8.24: Instantnnt'OlIs posi1ions or a rectangular roil wilh a scmichord deflcxiolL
at -20~ phase lag. View pojll~ is at (0, -i, 0).
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Figure B.25: InstantillleOlls pO!'Iilions of I!. rectangular foil wilh It selllichord t1eflexioll
al -'1O~ phase lag. View poinl is al (0, -1,0).

.. ··r)·
./ ;--,

~'
I/II!!J. ilklI.".r:..7/j [:}'lIP

Fig11l'C 13.26: Wake and pnl.!! of Il. rectllllgulnr foil wilh n sclllidiorcl dcllcxion al ()<'

plmse lag. View point is al (1,-10,3).
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Figure 8.27: Wake and path of a rectangular foil with a semichord de£lexiOll al _'laO
phase lag. View point is at (1,-10,3).

Figure B.28: Wake and path of a rectangular foil with a sclllichord dcflcxioll at _~OO

phase lag. View point is al (1,-10,3).
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H-C Variation of phase angle of spanwise deftex

ion

B-C-l Small change in phase angle for a rectangular foil

To simulate the phase lag or the spanwisc dcflcxion of a rectangular oscillating proplll.

sor, thc following paramctcrs wcre Ilscd:

• oscillating frcqucncy w = I.:H68 rad/sec.

• l'<lllatioll of spalllvisc dcJ1cxion bcing D."".. [2. (y/I)~:f Hy/W + ~(YII)·'J.

• maximum dcflcxioTl rador ti,a = 0.2 and 6, = ti,o • I, wllcre I is thc scmispll.l1

Icngth.

• scdioTl1l1l.11ickul"'Ss distrihlltiol1 IIsing NACA G:IAOJ.'i

• s[Jan S =·19 fIl, chord Cr =7 m ilnd ill'pcrl ratio III = 7.

• chordwisc ddlexion amplit\ute tic = 0.0, no dcl1cxion.

• 11cavcmnplitlHlcho = 0.7.

• phase angle (pit<:h leading heave) is ¢Iphuc = 10'1°.

• pilch Ilrnplillllic is no = Hl.7°.

• S1liUlwisc dcllcxioll phasc 11Ig 41. ranging frol1l 0& ..... 50".

• llumhcr of totllilimc st.ep 01 10.

• time stcp size til ='/"r-:,;<>J/S ='br/w/H =0.58:11 .~cc.

A !lumber of total c:hordwisc pllnds wa.~ 1aken ill' 20 ami spanwise panels a.~ 10.
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Figure 13.29: Instantancolls positiollS or 11 reclangular roil with a spallwi.~c t1el1cxion
al OQ phasc lag. Vicw point is at (1,-S,O.5).

Figure It:tO: Instantancous positions of a rectangular roil with 11 spallwise t1cllexioll
al -30Q phasc lag. Vicw point is al (I, -5,0.5).
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Figuw B.31: [ustantallt'O\lS positiolls of a rectangular foil with a spanwisc dcllcxion
at -50" phase lag. View poilll is at (I, -5,0.5).

Figure B.3:.!: Wake lll1t! path of a rectangular foil with a spanwisc deflexioll at OQ
plla~l~ lag. Vicw poinL i~ al {I, -5, 0.5).
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Figure 8.33: Wake ancl path of a rectangular foil with a spanwise deOcxioll aL _30 0

phase lag. View point is at (1,-5,0.5).

F'igure 9.34: Wake and path of a rectangular roil with a spanwise dcllcxioll at _500

phase lag. View poinl is al (1, -5,0.5).
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B·C-2 Large change in spanwisc deflexion phase angle for

a fin whale's flukes

To simulate thc pha.'lC angle of the spanwisc dc£lexioll of a fin whale's nukes as all

oNcillating propulsor, 111c following parameters wcre llsed:

• oscillating frequency w = 0.211" mel/sec.

• (Xlwltion of spallwisc dcncxioll being IJ'1"',,[2 * (y/I)2 T 5(VIl):1 +.Hv/I)4].

• maximum dd1cxiol1 factor 6'0 = 0.1 and 6. =lJ,o '" I, where I is the scmi~pan

length.

• sectional thickness distributioll hcing the same as thal of a real fin whale's

lIukCll,

• dwrdwise dellexioll amplitude (,r = 0.0, no dcflexioll.

• heave amplitude 11 0 = 1,0.

• pha.~() angle (pitch lcading hCilve) is 111""... = DO',

• pitch illllplitll(lc is ern = :W",

• spaflwiS() dellcxioll pllilSC lag lfl, rangiug from _180 0
",. 180~.

• l11llllhcrof tolllllilllc step of 10.

• timcstcp size li, = 'l'p<'io,J/IO ='br/w/IO = 1.0 sec.

A ll\llilber of total chonlwisc panels Wi1..~ taken as 20 and spanwise Imnch; M 10.
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Figure 0.35: JllstantlUlt'OuS positions of & rin whllle's llukt'9 with n~panwisc dcflexioll
at -180" phascanglc. View point is at{-I,-10,4).

Figure 0.36: Instantaneous pmilions of a fin whale's flukCll with a spallwisc dcflexiotl
at -120" phase angle. View point is ai (-I, -10,4).
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Figure 1J.37: InsLanLllllt'OllS posiLions flf a fin whale's flukes with II spanwisc dcflcxion
/It -60" pbao;c ~Ilglc. View poinl is al (-I, -ID,'I).

Figure 13.38: Instanlancous positiollli of a nn whale's flukes wilh II spanwisc deflcxion
ill 00 phase /Il1gle. View IJoinl is lit (-1,-10"1).
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Figure 13.39: Instantanoolls positions of a fin whale's flukes wilh a spanwise ,Ieflcxion
III 600 phllSC alll:[c, Viewpoint il~t(-I,-10,4.1.

Figure DAO: Instantancous position! of a fill whale's nuke! willi a spanwisc dcilcxioll
aL 1200 phase il.lIglc. View point isat (-1,-10,4).
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Figure llA I: rll.~talltancOliS positioll~ or a fill whale's flukes wilh a spanwisc Ilcncxioli
lit 1'10" [lbase angle. VicwrlOillt isal(-I,-rO,4).

Figure BA2; Wake and il~ path of a fin whale's flukes witli a span wise defJexion al
_IlIDO phase angle. View poillt is al (-I, -10,11).
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Figure 8.43: Wake and its path of a fill whale's f1ukcs with il spanwi~~deflexioll at
-120" phase angle. View point is at (-1, -10,4).

Figurc 8.44: Wakc and its path of a fin whale's flukes with a spanwisc ucflcxion at
-60· phase angle. View point is at (-I, -10,1\).
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Figllre 13.'15; Wake ami il~ paLh of a lin whalc's nuke~ with a ~panwj~r. derJcxion at
OOplinse an!:!c. Vi(~wroillti~at. (-1,-10,1).

Figure 13.46; Wa.ke and its path of a fill whale's nukes with a sranwisc denexioll at
60" phase 'l.lIglc. View point is at (-1,-10.4).
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Figure B.4 7: Wake and its path of a fin whale's nukes with a spanwisc dellcxion at
1200 phase angle. View point is at (-1,-10,4).

Figure B,48: Wakc ami its path of a fin whale's nukcs with a spanwisc tlellexion Il.t

1800 phase angle. View point is al (-[,-10,4).
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