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Abstract

Research surrounding aCOustic resonanre properties of ice has increast""i and now a

practical method for depth profiling has been developed. Experiowfi(s \\"fl' per­

fOfmed in fNII-time \\ilh high sensitivity. biaxial. \'.idE' bandwidth accelerometers (10

f\Hz bandwidth). which encompassed a high sampling rate of 200 Kb;sec/chaulI+:1

with a 12-bit Tt'SOlution (36 dB). The implementation of signal processing producro

a st'lsmir and tl:"SOoant signature. Initially repeated results n'\"('aINl an accurate cor­

relHtion bNWf'{'ll ice depth to its characteristic frequ('nc~·. The requirro \"('Iocit~· W~

J('termined using the timt" of arrh1l1 and the crOS£ocorrl.'lation between transducers

Thrort'tical ;lnaJ~"Sis hl\.~ indic-Rted that the system willlx> capaulc of rt'SOking \nlue.;

clost" to the throTNically calculated error of It.'SS than 6 'It: this d('\"icc therf.'forf.' f."UI

hI.' rf.'adjl~" r('alized as a compaCt portable field instmmem
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Chapter 1

Introduction

1.1 Research Rationale

Th£' purpOS(' of ttus thesis is to prow' and demonstrate that seismic and resonan~

nJNhodolog." i" a viab]1;' tlO"Chniqut' for dett'rmining ict' depth. The prohlem statement

roncl'rn" dl'termining specific ice properties. such a.<; tn" drpth. using al.'ouslic sensing

on let' sh{'('!" whil£' dt'wJoping ('(lSt efl'ecti\"(', prE'Cision instrumentation to conduct

the cxpl'riments. A po;;sibJe setup prop(.l5('(j can be st't'n in Figure: 1.1 and Figurt'

l.~

Through development in the area." of both computer hardware and SOftware the

1C'S..<; in\'a.~i\"(' ffiNhod" of ice profiling. which weft' only throretically possible. are now

practicall.\" achit'\'abJI' using seismic and resonant techniques. The first is a small scale

SC'Lsmic technique which measures the time from an initial ('xcitation pulSE' to th{' first

rett('('tion. The second method matches the resonant characteristics of an it(' shet't to

its gl'Oml'tric dimensions. Although hoth method~ arp theoretkall~· straighrforward.

in.~trumentation challenges manife:;t in th" coll('("tinn of data ar sufficiently high sam­

pling spt"l'ds. verining transdut('r prt'Cision. ensuring suitable wide band\\idth in the

acruators. and minimizing the signal to noi$(' ratio.

Rapid. lo\\' cost ice thickness profiles are required for transportation. safety. and

e(nironmental applications. Ice thickness infonnation ~StS ships in route planning

when na\igating in ice covered waters. Thick ice may pose a hazard for offshore

drilling. \\"hile thin iCt' is dangerous in areas when> the ice surface L" used for ice

roads and snowmobiles. Sillce the heat budget of the ocean is highly correlated with



the thicknl.'S." of the iet' co,..er. iet' thicknes:; is also a ,-ensitin' meltSun' of global wann­

ing. Though modern iet' profiling methods havE' been dE'velopl'd. dirl.'Cf mE',L"ur('ment

through drilled hole> rE'mains most common due to its simplicit.\·. co:<t. and aC'("urac~'

AIR

Ice Oeplh

WATER

Figure 1.1: Possible Setup t:sing Timt'" Anal~"lii.~

1.2 Previous Work

In previous rE'ports. [11 [21 acoustic anal~'5isof icE' dE'pth lI.~dSsaid to be fcasihlf' despitt'"

the f"ct that experimE'nultion hao,; onlr bffon attempled in a wr;.· rudimentar;.' fonn.

In 1%9. Lan~leben [3) claimed thaI dut' [0 tl)(> lack of prl.'Cision instruments. this

trpe of expenmf'fltation was impossible. Ho\wwr. thirt~· ~'ean; latt'r. instrument

ll.'Chnology ha.~ progrl'SSt'd to the poim that acollStie measurements can bE' mad!'

with the ncroed precision.

B!'ron' this in\1"Stigation could be eonducted a rl."\'iew of the pre\iou"ly published

work lal actuators style>. (bl \ibration characteristics. (c) modulw;, (d) sound

\'t'locity. and (el attenuation/meter has ~n carried out.

The field of it'(' acoustics and st'ismology can hI;' divided into a liCries of areas

including it'(' noise. ice properties, and seismic tl.'Chniques. Although there is no

published research directly imulwd with the resonance of ice shl'Cts. there is signif.

ieam data which suggestS that this technique is a possible method for detennining
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W.4.TER

Figure 1.2: Possible Setup Using Ice Resonance

iet' sh('et depth [~l. 151. The theory will be presented mathematically in Chapter 2

In lhe follo\\;ill~ St'Ctions. a qualitative investigation of past researd. concerning let'

acoustic:; and relevant topics \\ill be addressed.

1.2.1 Properties of Ice

ke propertil.':i frequentl~' measured are Young's modulus £ [{ill,]. acou.';lic velocit.\·

(P and 5 \\~dVes). density and acoustic attenuation. Frankenstein j81 t'xpJains that

Young's modullLS is dependant on p·\I.'aw~ velocity and ice deIL~i(y CD = (~f- Also

velocity and P-wa\'l' are hath. in pan. dependant on salinity and temperature 181.
In his experimentation Franken.;;tein used piezoelectric transmitlcrs and rt'<"ei\'ers

connected to an oscilloscope where this de\'ice \\-as tuned to 20 KHz in order to

measure the \"f.'locitie:; ill differing types of ice bars (Le. different :salinity. temperature

and orientation). This experiment determined velocity to ohtain the modulus from

Equation 1.1 and c is (he \"('!ocity. E is Young's modulus. and p is the density

(1.1)

\\'ith the data collecled. an equation of horizontal velocity for columnar ice (Equa­

tion 1.2) and an equation for vertical \'l'locity in granular ice (Equatioll 1.3) was



cif'termined. Th{'S(, equations can be related to relations ofYoung's modulu:< of brine

filled iC('. Additiollall~·. Willian1.S [61 discusses a very similar methoclolo~\' for de­

termining E where the experimental methodolO&'" is very similar to FntnkenstE'in's

work

E == {9.8S - 0.29· l"~)G.v/m2

E == (11.8 - 0.002· l·,.)GS/m2

(1.2)

(1.3)

The variablE' ,. in Equations 1.2 and 1.3 is defined as ppt salinity pan~ pl'r

thousand.

Ringer's [9! im'estigations into ice propenies used a similar 5etup ,L" the previ­

ously outlined Oll'thOtb. thl' difference being the implementation of both fresh and

nwthanol -dapN" ice. In this ('xperiment. the signal was received and transmitted

wit h Holfre! ;j lOA transducers (l.I a currirr frequency of 2 .\IHz. The results obtainl'fl

were an undoped i("(' velocity of 3780 m/s. and E == 8.60GX/m2• whereas for the

dopM ice. the \"('lodt~· was ffieasurl'd at 1700 m/s and E = 1.5GX/m2.

Alphonso [IOJmeasured Ihe acoustic ";,nX' \"(~lacity of undoped ice b~' placing

3.2·') 10-3 m ice sheets in betw('('n aluminum plates using a pulst' frequency of 5

:-'IHz at -26 "c. and found \1\lues of p == O.9168g/cm-3 .1:-'1""""""'" = 39.JOm/.,

and \~~.". = 1990m/s. All of the values determined in lab and actual experim('ntaJ

,.;et tings n'\"('al a oonsistl'nt rt»;ult for wlocity and density \1l1ues. meaning that this

t('('hniqul' is an ('!fecti\"(' method for dE'lermining icE' \'f.-'Jocity.

An additional area of interest "ith ice acoustics is cross-crystal sound attl'nuation.

This concept is important to ,.;eismic and resonance calculations b('Cause a signal must

Iran-! through the ice sheet. During this passage it may travel through multiple

reRections before returning to transducers. therefore the attenuation/meter/Hz of

ice in conjunction with the se[1.Sithit~· limit of a transducer v.ilJ limit the r('S()h-abl('

depth of ice. ~everthe!ess. if iCt' dl'pths of 0.10 m to 10 m were m('asuroo then using

Equation 1.6. pf('\iously determined \~Jocities and densities. thr frequ('ncy ranges

ar(' found to be between 0.15 KHz and 20 KHz. What remains to be solved is the

signal attenuation in these frequency runges.



Of th£' thrPl;' papers rt'\iewf'd. the signal los." below 20 KHz wa.'" abo hdo~· 1.5

clBim. Langl£'ben lui determined that a signal los.'i in the ror('l;of S('a iet' and t::lacier

ic£' 10 llf' less than 1.5dB/m at 20 h:Hz and a signal IllS:" of O\"E'r SdB/m abo\'e 200

KHz: this signal follo~"t'd equation i .... Other experiment;:. such as Bogorodskii':; [I::!]
work of attenuation of sound abon> 100 KHz. demoO!;trate that if th€' anemmtioll

aho\"E' 100 KHz is projected 10 0 KHz. the attenuation would approach OdB:III. Th£'

slopt' extrapolated followed the Equation 1.5. In Equations 1... and I.S. (1 b the

al1enuation. f is the frequency. and Cr is a constant determined from tht' graphical

til of thE' data.

(i ... )

(1.5)

Another experiment b.\· Langleben 131. approaches tran~mission coefficients of ice­

water hOUlJdarie,; al different angles..-\t frequencies les.s than 1, KHz. the reAl"Ction

coefficient of thE' icp-water boundar;.' WR." found to be no lCS!; than 2O'i( measurro at

angles R.'" small 11.." i5° and up to ,50 whefE' the reflection coefficient was as high as

W'/( This experiment \l.'a;; condllctt'd b~' placing a hydro-actuator and a hydrophont'

throup:h two separatt' holes in an iet' sheet. Tht' the actuator ··pinged~ up at the iet'

whilf! the h.\·drophone ft'Ceh"t'd the signal and calculated the los.; of energy. howevt'r.

it should be tlOted that the calibration techniques were not refrrTed to.

1.2.2 Ice Noise

ICt' n(li.se. specifically let' cracking. COntains an immen,;e amount of acoustic informa­

tion (131 [l-tj Large Quantities of data have been collected and have been used for

dctermining information about iet"s cltaracterb-r:ics. For example. work by Farmer

and XiI' [5] consisted of placing 20 KHz hand"ll.idth hydrophones below first ~"ear

sea iet' and then lea\;ng the ice to drilt and break up while recording the crack­

ing noise. High frequency componenLS were discovered and in particular. a peak

near the fundamental frequen~' of the ice-air iee-watE.'r resonance was recorded of 5

KHz. Tht' fundamental frequency \l,1IS proven through the wa\'l:' equation as stated



by Frankpn,;tein IS):

(1.6)

Information relating to large low frequency components. wind interaction. alHl

"·aLer interat·tions were correlated \Iith thl' ice-·s :;urfa«> cracking. Other examplE':> of

acoustical emissions and microcracking measurements are published h.,- Sinha !I~i

HL~ experiment determinf.'d that acoustical emissions werr ab!t' to be implemenlNI

a...~ a ;;call' for measuring the state of itt' under compression. howewt. it should be

lIott'tl that these' experiments were conducted in a laborator:'· setting.

Otller researchers who conducted experiments in the collt'Ction of ice noise indud!'

Cadrlo and GUSf'\·. Their cxperiments dealt \lith thl' concept that the noise in ict'

wa~ creatM using surfact' impactors. Ga\Tilo and GIJS('\· [151 conductE'd experimcnts

wh('rt' ;;nUII· CO\"t'f1."d ice was treatl."d \lith thret' differem impactors. The three appa­

ralll.~ used \I·ere a plate. a rod. and a parallelepiped. The testing took place on a

suow ru\·crt"<! lake jet' after a "pel! oflo\\" temperatures (-20 to -30 C): the lakr was 3

to 3.5m deep and tht' experiments wcre 350 m from shorc. The measuremcnts \\"ere

re<'Orded using contact \ibrographs and h~'drophones suspt'nded below the ice. The

infurmiltion collected sho\\"f'd that impact durations that lasted approximately 0.02

,;('('ollds. Tilt' modulus of the ice being 9.5.\1 S/m2 • the velocit~' of the P-waw 3200

mos. and having a \1u)ing natural frequency 0.050 to 1.0 KHz. Ice- sheet dt'pths

\\"{'Tl' not recorded.

1.2.3 Seismic Techniques, Transducers, and Actuators

Techniques

Seismic Refltx'tion Profiling (SRPj is a commonly used ttx'hnique for \it'\ling un­

derground rock structures through sound wave manipulation. \\-idely used b~· goo.

;;dentists. it plays an important role in oil exploration. SRP can be perfonned

011 either land or sea. Below in figuf(' 1.3 is a marine example of SRP. A sound

\I·ave {red line) is creared by an ··air gun- on the boat. The \ibrations tra\oel in

the \I'ater (blue) and penetrate into tht' layers of sediments (light brown) and rocks

to



(Li)

(dark brown) tbat make up tbe ocean Boor. Parts of this sound reflect off tbe dif­

ferent .Iayen;. and consequently travel back up to the sea surface where the~' are

recorded by the hydrophones (black bat) which are dragged behind the ship. rrfer­

ffiCl'; fhtf,p.//roinbow.ldeo.columbia.edu/u!/lithosphen/sonar/!(JfIar.html}.

Figure 1.3: Seismic Sonar Example

Another technique of measurement is refraction. A wave traveHing through one

mediwn intersects a change of medium ( i.e. sand stone to marble) at its critical

angle resultiDg in a wave whicb travel~ alODg the material boundary!. The critical

angle is then determined using Snell's Law of Refraction:

ain(6tl sin(~)

--v;-==~

For example. wbere layer.; of granite rock end and a layer of sandstone layer

begins. an impact wave could travel along the sand-granite boundal)·. However. this

technique is only useful when the separation distance of source to receiver is high

[16..

Impactors and Receivers

Seismic signals are produced using a series of different teebniques. Examples listed

by Sberiffln [16) are'

• BulIalogwz

II



• Sledge Hammer

• Bean Bag (136 KG IIo-eight droppNI from 3 ml

• 1 KY Piezo eJectl"lC' stack

• E;-.:plosh-es

• Air Gun

Yet this doe: not aru;ll.l!r hollo' \ibrations att' r~h1.'d. Historkalh'. thE' mo:<t

rommon ft'Cei\"('t'S art' goophones that consist of either mo\"ing coil E'lcctromagnrlics.

capacitance, or wriable-reluctance de\ires. How('\l!r. for smaller scRle vihrations

(i.('_ th(' automotiw industry), other types of dp\ires such as piezoeJt"Cuic. ;;tram

Sllngt;':;. lllSt'r \ibrom('teNo. fiber opti<' transducers. lind !IOJid statr silironp S('n!lOr~

Imicro-machinesj fl';'] art' l;I\llilahlp. The:.e snlllller de\';ce; haw thp adl1mlag(' of II

largpr frt>qu('ncy respol1SE' and higher sensithity.

Experiments

r pan (l'\"l('''' of the basic seisnuc technique;;. some research l'OnCfflling the 5rof'lt' of

thi:. the;L" is that of Xiang 1181 and Fanner Hl Xiang".. thesi;; companod impulsh'p

and \-ibrator !iOurces thai art' portahJ(, and applicable for neat-surfare hi;h resolution

.>eismic studies. An emphasis IIo-as pIacPd on the frequency spt'C'trum and on ~K"

k-\rl; in th(' attempt to impfO'o-e resoh-ing: po..-n. The ",,'element of Xiang·,. anlllysis

110"8-" an in\"t'rsP C'Oh\'OIuuon that dptermined the transfpr function of Ihr rock. Tht>

publisht'd findings of Farmer sho'<\' tbat ~ments \\-erE' conducted using a J.G

kg hammer on 1.75 m thick first-year iCE' 100 m from the four \"ertically hanging

hydrophones. 5 m to 70 m belov.. the ice. The result \I'IIS a natural freqUE'IlCY of 0.516

KHz. IUtd lhe p-\\'!WE' \l!locity was 2630 m/s. He took thE'S(' experimental values and

u...oo Equation 1.6 lI..hich does not correlale to the depth of 1. 75 m but 2.5.\ m.



1.3 Acoustical Ice Depth Measuring Products

Available

CUH('ntl~·. Inret.' campanili'S. ASL En\;ronmental Scien('('S. POilU" Tech Ltd. and Can­

polar Consultants Ltd han' in\'E'Sti~iued this panicular type of measuremt'nt. The

first. ASL EmironmenlaJ Science:;. is located in Sidney. British Columbia. CaM<!a.

.-\SL-~ de\"ice. The Ice Profilcr. is plael'd on the bottom of the Qrean for periods of up

10 6 months. The profile of the Ice flO(' m-er thE" top is then tracked using ullrasonk

amustkal puiS(';;. Dnct' the desired data has Jxoen colleCted. th(' de\i«' is ff'lti('\-ro

from tnl' ocean floor and the data can be downloaded to a computer. This «(',ice is

cuw:ntly in US(' today

The SE'Cond company Polar Tech Ltd. no longer e:osts. However. their product.

th(' Portable Acoustic Thickness Sensor (PATS]. is capable of detemlining iC(' sheE'!

depth. It consists of an electronic acoustical actuator. thre<' accderometel'l; and <l

very ~implt' romputer. The dt'\"ire would "chirp- the ice with its actuator ilnd then

r('{'rlve Ihe data at the three ac«leromrlefS. However thE' algorithm wa.... not puhlic

bllt tllf' delice u,'ould require O\"('r eight minute;; to make each measurement.

Finally. the third company re\iewed. Canpolar Consultant,; Ltd_ has nOI pro­

Ull(t'<1 an~' ire characteristic measuring instruments. but Canpolar Consultant~ ha....;

suggt'Sted alternatiw opportunities a\'ailable. Canpolar Consultants' rE'port. titled

"Redell' of Floaring Ice Thickness :'.[easuremE'nt Capability. Tl'Chnologies and Op­

porrunitie:<" was prE'pared for thE' Canadian DE'partffiE'nt of FishE'ries and OcE'allS in

Janllllry of 1985. ThE' three pO:iSible method.... for measuring ice thickness SUgl:t'Sted

ar{' radar pulSE':' (SAR). acoustical resonance. and acoustical time of rrf!l'Ction

1.4 Technical Difficulties

ThE' technical difficulties discolwed from this literaturE' and thPOrNical celiE'\\' are

~'ith instrumentation. and computE'r equipment_ Common to all prE'\iOllS il1\'estiga­

tions in ice llCOusties. hydrophones were USE'd. HO\\"('I·er. hydrophones arE' not tlSE'ful

for this experiment because drilling into the ice "ill defeat the non-invasiw investiga­

tion's purpose. Additionally. the main difficulty \\ith goophones is that they are not

designed for the high frequE'ncy sensing [16]. OthE'r challenges have been instrument
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~ign~l s~(Uratioo as i:;,;('('o \\ilh Xiang·s [181 and Fanner·s [-I] experimentation. This

limitation has made transfer function (h(t)) investigations enremeJy difficult. Th"

fina.! limiting technical difficult~· to ow~rcome is low computer sampling rAtl.':.<.

1.5 Scope of Thesis

The pos..~ibilitiessurrounding th(' inl"e'Stigation of this topic are vast. and a narro\\in~

of the field was nl'C'l'SSary. The targt'! goals accomplished in this investigation are 10:

I \Iathematica.!ly prove that i<-e- resonanct' and time reflections are a viable

method to delcrminl' iet' properties.

_. D!'\·e!op a method of instrumenting iet' \ihrations.

3. Cr...at(' software for the data acquisition system.

-I. COllt'Cl experimental dati< on actual ice.

5. De\-eJop a functioning algorithm to automalicall~'calculate iet' properties.



Chapter 2

Theoretical Background and Feasibility

InlerprNin!: tnt' depth of ice using acoustic resonanCE.' and timing reflections requires

som(' pnor knowledgl.' of geoscienCE.' and signal processins_ In order !O pro,,\, that iN.'

depth CilO be determined using acou,,:tiDi. ll. throretical fea:>ibility will hE' conducted

in rhi" chapler. !wgilllling \\;th Ii physical des<:ription of waH'S in solids. followed h~'

iln rxplanalion of signal processing techniquES nefficd. and ending with som(' sp<'(:ific

f("asihilit\" ralcuilltions

2.1 The Wave Equation and Wave Propagation

[n an elastic solid. thl' [1,,,0 types of deformation.~ which result from an eXlt'rnai

fOf("(' aT€' compression and shear. From th{' l"lasticity and d.nlamics throries. thl'

ddormations [l'=illlt in two principal independent w:w(' propagations \\'here the first

and fo:stest [orel'S are compressional wan~s (P-\\-l\\"es) and th(' slower forces ar€' shear

IVfI'·e;; \';'-Wfl\"t'»}. Th{" wan' equation is d{"rh't'd from :\e\\.1:oo·s Seocond Law of ~Iotion

which ~tates that an unbalanCE'<! forcE' on a mas;; produce; acrel{"ration (F = mal

A,;;;uming that """e ar<' dealing \\;th an isotropic material. in similar t{"nru;. when

the- properties of the- mate-rial do nOl depend on orie-ntation. thl.' wan' equation can

the-n bf' expre;sM in the Equations 2.1 and 2.2. In the following equations. ~ is the

dilational potential Ou + On + O~= and e is the rotational \"l:'Ctor potential

(2.l)
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/~,2)

(l and J are constant", of p and s "'aV{' WIOc1ties equaling l~ and \: rt':'Pf'('tiwl.\·.

Furthermore. each wa\"e \ ~ and \ ~ can be further defined in equation~ 2.3 <llld ~.·t

\\-!ler{' the \"ariabll"S). and Jl art' the Lamt"s ela.stic constants which compl('lel~' spl'<:i(v

thE' nature of an isotropic solid [19!

I'-~
'-V~-p-

\" - ~•- Yp

(~.31

(2..1\

l ~ and \: indicate that the compressional wave "'ill always be faster than tIl('

shear Wl\\"t". It i.~ important to not£' that shear waves do not exist in liquid mediullIs.

Howf'wr. from theSt' two velocities. the elastic constants of ice. Young's :\Iodulus. E.

and Poisson's Ratio. CT. may lJ.E' found from Equation~ ::l.C, and 2.6

u=-'­
2().+Ji)

(2.5)

(2.G1

Di\iding 3 in to 0 (Equation 2.7) results in a reduction in a fonn where if 3.

Poisson·.~ ratio. decreases from it's ma.ximum of 0.5 to O. tn£, ratio .....ill then increase

from U [0 1;.,12. fn other words. \: can newr be greater than ;0 'k of \~. EXpl.·r­

inLt'ntallv. both w:n"t"S "ill be \·it'wed. yt't thC' wa\'t' of interest is til(' compres.sional

.....ave. \ ~

:'.-,"-~~(io-V)'.,.2Jl-y--r=-;;:- V3

2.1.1 Huygen's Principle

(2.7)

In an isotopic .....an·front from a point source. Huygen's Principle states that every

point on the I\~d\'efront can be regarded as a new source of .....ave activity. The physical

16



rationalt' behind this i.~ that (a) e<lch particle located on i\ w'l\"(~front hns mowd from

it~ equilibrium position in. approximatdy. the;;ame manner. (ul the elnstic forces

on neighboring particle art' thereby changed. and (c) the fesultant of tht' changes in

forct' due to tht' motion of all the points on the wavefront produ('(':; tho:' motion that

forms the nE'xt waveffont [161-p.~_ Ht'n('('. HuygE'n's Principle is u.>eful for predicting

ttlt' future positions of wan-fronts

2.1.2 Snell's Law

\\"h('n waw-fronts reach a homogeneous surfatt' boundary. part of the wan' t'nergy

i$ r('f1eeted and part of tilt' wave energy is transmitted. As \\1'11. the ray paths are

bem IICX'ording to Snelrs Law as outlined in Figurt' 2.1 and equation 2.8. At some

incidences. there is a critical angle in which all the incident energy is reflected. This is

known iL'i the c:ntlcal angle: however. because \\'3,\('r has II slower P-WIIVl;' \"elocit~" than

ice (.... \..lao m/s \"s -3S00m.'sj there is no critical angle fOf an iC('-water boundary"

(2.8)

Mlltenll12 -..~

e, "'-

Figure 2.1: Snell's Law

In the case of a normal incidence "ith a boundary" (8 = 0). the reflection and

transmission coefficients (R and T). deri\-ed from thE' Zoeppritz equations. afe stated

in Equation 2.9 for reflection Equation and 2.11 for transmission. 2 1 and 22 are the



characteristic impedances of each material when- Zz = Pr 1~ and the reffected em-rK"

and transmitted cn('rgy are obtained from Equations 2.10 and :2.1:2. To calcuhu('

USf.' the>!' formulas. Z~ refers to the medium the wave in Zl is about to enH'r into.

Additionally. ER and E r nre normalized meaning that E R + Er = 1

(2.91

(2.10)

(2.11)

(2.12)

2.1.3 Fresnel Zone

Horizontal timing resolution is Iimitt'd by th(' siz(' of th(' tirst Frl.'Snel zone (16]. As

~n from Huygen's principle. points on a Wll\'t" front are sources of secondary wm'e

fronts. Therefore. the reflected enerK" \ic"..ed b~' a traM<!uct'r on an ice sheN is nm

from on(' singll' point. but from a numher of reflected point.'i. This art'u. or zone.

is termecl lIS th(' Fresnel Zone. and can bE' \iewed in Figurl:' 2.2. From thi;; zone.

the t\.\"O way path length from source to recei\'t"r is at its most ),/~ longer than tht'

nominal path length. The intensity spread from points in the first Fresnt'l Zone then

arril"l'S 1('5$ than a quaner period after the nominal arri\1d. thus. thl' ('nt'rgy interferes

constructively. The shape and sizt' of thl:' Frt'Snel Zoot' is dt'peodent on the position

of the source and the r('('"('h't"r. the \'t"locity. and the wave !('ngth [161 (18)_ Thl:' rltea

which effecti\'el~' contributes to a reflection is somt'times referred to as the -(,ffective"

Fresnel Zon(' (Equation 2.13) wherl' h is the \'t'rtical depth. and), is th(' dominant

wlwelength.

R = (,::::: ~f¥ (2.13)

For ice resonance this m('ans that the Fresnel Zon(' represents the horizontal

18
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FigUT(' 2.2: fresnel Zoot'
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circular footprint that the expNimE'nt "1\;11 oo\'er, Hov.'e\1'r. in thf' C<\:it' of determining

thE' dE'pth of ice from thE' tirst reflection time. the signal can only ut" a.~ accuratE' a.~

a 1/-1 the minimum wll\'elength

2.1.4 Standing Waves and Resonance

O'Alembert has shown that the solution of the wa\'(" equation consists of tht" super­

position of tWO terms. which ar", tht" functions h(ct+.x) and fdet-I}. Each functioll

dt"flOtes II wan' mo\'ing to tht" right or to the left. For example. an exprf'SSioll of II

string displacement of fl(et -'-.1') (Equation 2.1-1)

(2.1-1)

Where k = 2~/>' is the ",-",venumber. and>. is the w3\'elength ill meters. A sheet

of ice call be st'eu as a string of length l \l.ith its ends rigidly tied \'ertically at the

iCl."-air houndary and the ice-water boundar~:. The displacement y on the string at

an~' paim can therefore be expr~'SSt"d by Equation 2.15.

12.15)

\\'he[(> A and B are complex constants to be dl"termined from the houndary

conditions at l' == 0 and l' == l. These boundary conditions for a clamped string are

11== 0 at .r = 0 and l' = / results in ..t = -B from equation 2.15. This condition

means. physically that a 'I'l!\'l" is rellecteci at each end with a ISO" phase change

The rt'sult of II = 0 at I = 0 and I = I for all times t sin(kI) = 0 where 1.:/ = n~

(n=1.~.3.. ) or I.: = /I~/l. which as un angular frequency that h('(omes..:" = nr-ell

Tht'>;(" frequencies are called Natu.ral Frequencus.

The natural frequency of an ice sheet can be visualized as a string tied at both

end.-; as explained in the previous e:cample. The resultant equation for the natural

frequency of an iCE' sht."et is addressed in Equation 2.16 where [ is the depth. and n is

the mode integer. A graphical repre:>entation of Equation 2.16 can be seen in Figure

2.3.

(2.16)
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2.2 Digital Signal Processing

[sing the time and frequency {'valuation techniques specified in T"bl(' :!.L ie'(' prop­

erties can be determined. For frequency analysis. the Fourier transform i,; l~"'{"(! to

lake a time domain signal to its frequency domain. For determining the Ice tfansfc[

function h[uj. discrete decon\"Olution L~ used. Finally. the tedmiqut'ti tb('(! for tlnll'

analysis an' FIR filter dt:'Sign. cf03."'>-Correlation. geometric time dif[erenc('. fUld mini­

mum/ma.ximum :>eareh. In the following 5eCtions. sampling throry. and the function"

in tahle 2.1 will be discussed carefull~·.

Third 5'.....

0'iC'".«I -
:;,lCJ>~.,.

~!iE" -
~lul" PQ~

B..ndP_
FlRF,lt.,

Donunan'

rr::::t

_ 1.,&ndZand _

~l&ll Pul< ,',.,.".-
....l"..d<vtb

k.D.pth

Tablt" 2.1: :\Iethod of Digital Signal Analysis

2.2.1 Sampling and Resolution

\"hen dl.'Signing an analog (rontinuous or not rompllterizl.'d) to a digital (dL-;cretiZE'd

or computerizE'dj sampling system. care must be taken to ensure that the s~'Stem has

a sampling frequency that i:; adequate to prevent pos:;ible high frequeney aliasing and

that the system has the d~'namic range to resoh-e the signal's amplitude \'ariability.

Acrording to the .\"yquist Sampling Theorem. if .rAt) is a bandlimited signal with

X~Url) = 0 ( XcUrl) is .r~(tJ's frequency amplitude) for Irll 2: O,\" Then .l~{t) is

uniquel~' determined by its samples .IfnI = .l~(nT).n = O.±1.±2.... if n. = ¥ 2:
2rl,\"_ The frequency f!,\" is commonly known as the Syquist Frequency which is

the minimum sampling frequency that can be used without corrupting the sampled

data In practice. sampling rates above the >'yquist Frequency are used to allow



for DOD-ideal filtering, For example. Figure 2..1 shows a signal being represented at

multiple levels of the sampling period. T. where x[n. = ,r.(nT) i!'i le!'i.<; than t....itt

the '\)·quL<;t Frequency. Because the sampling £requenc}' L<; less than the t-Oyquisl

Frequency. a type of signal corruption called aliasing occurs where two frequencies

can be represented by the same points.

:/ \" 1,/\,/,//\\\\,j \ //,'\jl
t \ 1 1\ i 1\ \ / /\

\'\',/\/' I/\,i/
\.", / \. ,/ \,.\ /./

.1 '----,,-,O'-'---~:.L-c---'>.L._-'..,.-'--

Figure 2..1' Aliasing: T ....o Frequencies Represented b}· the Same Samples

The bit resolution of a sampled !lignal dictates the amplitude tl.Je computer can

resolve. The signal amplitude resolution of the 'nw

bit system ....1)uld be as in Equa­

tion 2.17. For example. 8 bits .....il1 result in a resolution of 24 decibels (dB). whereas

12 bits represents 36 dB. and 16 bits represents 96 dB.

Resolution = 2Olog(2")dB (2.17)

For example. a 12 bit system ~dtb a 0 to 5 volt range can resoh·e 212 = 4096

points or a voltage no smaller than~ = 1.2mV.

2.2.2 Fourier Transform

Equation 2.16 requires the detennination of the lowest resonance frequency hannooic

of an ice sheet to determine tbe thickenss. Hence. the time sampled vibration needs to

be viewed in the frequency axis. The discrete fourier Transform is used to transform
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iI time domain signal to the freq\ll:'nc~' domain rl:'presemation. Thl' trilnsform is

acromplishl:'d by calculating the sum of all thl:' products of a function at point ··n­

\\ith the cosine w!lxe and sinl:' wave at point -n·· in reference to il spt'Cific frequency.

All fr('quencil:'S arl' set between 0 to 2;:- where 27:" is equal to the sampling freqw.'ncy

The result~ for l:'ach frequl:'ncy are a real and imaginar:y valuE'S (Equation 2.18). Thl'

squared sum of thl:' tWO values .\·il:'lds thl:' magnitudl:' of the specific freqUl:'ncit>S.

(2.181

HOWeVl:'L Equation 2.18 is for continuous infinitl:' signals where this experiment',;

sampling time of a discrete time. A sampled signal \lindowed at a finitl' iml:'l"\1u

contains undesirable high frequency artifacts at its sharp discontinuous ends. Thi:,

phenomenon i:< called the Gibbs Effec!. To reduce the Gibbs Effect. 11 windowing

function can be muldplied onto the signal such as Hamming ami HlInning typl'

windows as illustrated in Figure 2.5. The:>(' \\indowsslowly taper a signa!"s <lfnpJitude

ill each end to zero. thereby diminishing the end of each window·s discontinuit.\"

cau."ing a significant rNuction in thl:' Gibb" Effect. While all the windows listN

effecti\"E'I~' rl:'ducl:' the Gibbs Effect. the most commonly used is the Hamming window

due to its consistentl~· eXCf'llent results. The windo\\ing addition toa discretised finite

lpni;thsamplecan be seen in Equation 2.19.

(2.19)

2.2.3 Digital Filtering

OnCt' a signal is sampled. bandpas:;; filtl:'ring can be conducted to furtht'r remon' any

unwanted frequency components such as transdu('('r and electronic oscillations. There

are two possible techniques in which filtering can be conducted. The first technique

im'olves the application of a Fourier Transfonn. followed by the multiplication of the

frequency based signal by a step function at the desired frequency. The final step

im"Oln-s the application of an inven>e Fourier Transform. The second method requires

the con\·ohing of a signal with a bandlimited tra!"lsfer function hlnJ. Con\"Olution is



I

........

Figure 2.5: Hamming and Hanning Windows (5000 points I

shown in Equation 2.20 where x[n. is tbe input signal and yIn! is the output signal.

(2.20)

These t'V>"O metbod.~ of signal manipulation are depicted in Figure 2.6. Although

the transformation of a signal to a £requeue)' domain is visually the simplest method

of filtering. coovolution is the most direct method.. Convolution also requires the

least calcwations: therefore. for filtering, convolution will be used.

The two principle types of convol~1ng filter designs are tbe Finite Impulse Re­

sponse (FIR) filter and the Infinite Impulse Response (IIR) filter. FIR filters are

based on the Fourier transform and windo.....ing, where as IIR filters apply tbe im­

pulse response of analog filters such as Butterwonh and Elliptic filters. An essential

feature of an fIR filter is that it cootaillS the desirable property of coostllOt group

delay. therefore. for tbe experiments in this thesis, the FIR filter method will be used.

Like the Fourier transform. FIR filters require windowing, win], to reduce unwanted

corruption, and once again, the Widely used Hamming wind()'ll,' function will be used



.rln] .....,,·01~""" y[nl

FigurE' 2.6: Com·olution to Fourier Relationship

lOrl."duC1'theGibUsl.'ffl.'Ct

Till.' s<.>nl.'ralized linear phas<> FIR filter is designed staning with thl.' following

f'quations. ror a low pa....... filter. the boundary conditions arl.' set as follows in equation

2.21

Then from tht'Se boundary' conditions. hinl is determined using Equation 2.22.

"1 [n] = -.!.- r-'< e-J~·\Ii~eJ--"'a ...: = sin[_'.(n - .11/2)] (2.:!":!)
p 2::- J___ ::-{'l .11/2)

\\"hl.'fr _', is the cut off £requene).· and ~l h< the number of points {pole>;). However.

to rOOuce the Gihbs effect. a windo\\ing function U·['l) is multipliOO into the Equation

2.22 a." in Equation 2.23.

1l11'[nj = Sin~~'~in ~;~~2)lu.[nj

For a high pass FIR filter. the equations are as follows

(2.23)

(2.241

ThE' corresponding impulse response. h(n]. can bt> dE'termined hy evaluating the

invl.'fSt> Fourier Transform of H11'(f-J-) Of ObsefVing that

(2.25)



\\1Iere H,pleJ"') is seen in equation 2.22. so hA,ln: is:

(2.26)

The group delay of the high pass and 10,," pass filter is defined in equation 2.27

where the function ·ARG· determines the phase of the function by taking the real

arid imaginary portion... of H(~) and calculating the angle between them. In the

case of FIR filters. the group delay ( grd ) will be constant.

r( .•:) =:: grd\H(e""T =:: -~{arg[H(e"")!} (2.27)

For example. when a low pass filter with a cut off frequency at r./4 is designed

with 100 poles the resultllJlt btn] is 8 sinc function as seen in Figure 2.7 IIJld the

resultant group delay can be seen in Figure 2.8 a... being delayed by 50 samples.

Figure 2.7: Low Pa.o;s Filter h(n: at ~ Example
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Figure 2.8: Low Pas.<; Filter Group Delay of Figure 2.7 Example

2.2.4 Inverse Convolution

Another method for determining the characteristics of a system such as an ice sheet

IS to find the transfer function or H(I'/'"'). More clearly. tbe transfer function of a

system is its frequency response over all frequencies. For an ice sheet. the most

dominant rrequenc~' ....,ould be its depth resonance. figure 2.6 shov.'S the paths that

can be taken to determine H(e"") from x[n: and )'[0: where the simplest route is to

take the Fourier transform of xln. and yIn! tben divide the two /L<; seen in eqllll.tion

2.28. for this experiment with ice. directly obtaining x[nj is not possible. hut an

approximatioo can be made by inserting instnunentation on or Dear the source of

impact [1S:.

(2.28)
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2.2.5 Cross-correlation

Cross-<omhuion PO] is efil'Ctln' for comparing tu'Q u1\\".fomL<: for slmiJarit~·. Thl'

a(h'afltag~ofCf'OS,jK'OtTPlalion istbat it matches 5ignal shapes rt'gardlcs.<:o(thl'si~

a!nplitudl'. For ~pJe.. if [IioU dt'<:a~;ng siDe "1\\1.'S of tht' same frequency Md

differE'n! :>taning smplitudt'S u""' CTos-r<:orrelatrd togetht'1". the :nron~e.."t rotTeul.Iion

...-ould IX' lIo'hen thE' stan of [he first ...-a\"l.' malched Ihe $[Mt of the SE'COnd "·a,,,.. Thl"

fannula for Cl"O'lS-COrrelation can bE'seen in Equation 2.29. lIo'here g and z are eadl

~ignals of lhe same length. The rf'SUltant output kongth i;; 2·:\1·1 "here :\1 is the

It'llgth of the anginal [U"O functions.

(2.29)

2.3 Impact Bandwidth

For a shl!f.'t of ice to -ring* al its resonance frequency. an impulse must Iw addl'ti 10

the iet' that rontains the frequeQcy component of lhe resonance. Such an impu15e can

rome from a hammer. a bullet or an~' type' of similar impactor. For example. for a

frequency band,,;dth from 0 KHz to 10 KHz. the t~1K'ofimpulserequired can bE' Sf'('lJ

by conducting 'he in\"l"nit" Fourier transform as ~n in ~uil.lioD 2.30. The rt'Sult is

the sinc function a5~ In equation 2.31. therefore. fora hammer impu1seof 10 KHz

to IX' eff«th".. an impul.:;r the shape of a 10 KHz sine function is required though

other linear lime invariant functions can c!(N'ly match this requirement. :O;ole that

in Equalion 2.31 .., represents a band limited function "itb a CUt off frequency IU I.

(2.30)

(2.31)

However. a sine function is a non causa]·y../l.,,,.. and there is no impactor capablto

of creating such an impulse. A morf:' likel~' impulse Yo"Ould be a -:-:/2 shifted sine

(FigurE' 2.9). But to demonstrate that this discontinuous function still contains th{'

required band\\idth. the Fourit'r transform of lhis function [211 art' illustrated in
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Figure 2.9: 10 KHz Impact Example

2.4 Feasibility

Feasibility calculations to determine the system specificatiollS are made from the

existing theory. To start. from Equation 2.16 and Figure 2.3. the acoustical range

between 0.2 and 10 KHz corresponds to 1\ typical ice depth of 0.2 m a.nd 10 m of ice.

\...·jth a !requenc)' range of 10 KHz. the t\yquist frcquenC)' is 20 KHz and then ten

times the fillmpling frequency to ensure that alia.'iing will not be present with unideaJ

filters. puts the minimum computer sampling frequency at 200 KHz.
Reflection energ:,' loss is calculated from Equation 2.9 with the H20 ILlld air

characteristics in table 2.2. The results are summarized in table 2.3 belo"...

The losses in table 2.3 indicate that poor air coupling of a transducer and actuator

to an ice surface must be eliminated for this experiment to be viable. The otber

indication is the reflection losses at the ire-water boundar).' are -8.0 dB per re6ectiOD

~..bich indicates that if the mechanical wa\l!S reflect only from ODe point source (worst
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Frequency (Hz) • ,,'

figure 2.10; fourier Transform of tbe 10 KHz impact Example

Substance
Air

Water
lee (fresh .5C)

Ice (salt 5%-5C)

Velocity (m/s)

328
\435
3780
3100

Density ( KgjmJ )

1.26
1000
917
813

m
143H[t3
3461).]ftl
2520·10-"

Table 2.2: H20 Characteristics
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C3.."(' scenario). thl.' re:;olvable reHection..~ with an 8 bit system (2-1 dbl llff' 3 r('fl('('tion....;

and l\ith II 12 bit s~'Stem (36 dB) -I to.) reflections_ For thest' experim"'nts. a 12 to

J{j bit system will h", adl.'quat'" as long lIS th", background noL"t' is low.

Transmission/Reflection
:\ir-ice(ire-air)

(ct>-water rcHectio!:
Ict>-\\·ater transmission

0.0006;
0.16

0."

Loss in dB
-32
-8.0
-0.;

Tilb!", 2.3: ke--:\ir. lce-\\"ater Refl'Ction and Transmission

2.5 Conclusion

The throrNica! background indicates that the ic", resonance mNhorl is a \"illble

methodolo~,· to clelerminl' ice depths. Thl.' resoh;ng limits are with-in computer

capabilities and t'lectronic sensiti\;ty as 12 bil digital resolution is an industry ,;('l1SOr

in~trurn"'ntation standard and 1000 :o.IHz computer samplinll: rau'S are \·e~· ('Ommon

Additionally. impaetinf: and sensing band"..idths art' realistic \-aluf.'S to be dl.'\~lopt'd

This stage of rf.':'E'arch indicates a ··go:rahead- with further dt'\"{'lopment of I.'lectronic

hard"-an' and ("QmpUfl"r software for tht' sp«ificlHions determint'd.
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Chapter 3

Design Implementation

:\I('asuring i('(' T(':;Qnane<' requires a \"C~. particular s~"Slem, HowE'\'er. with prop('T

:'E."lfftion of part;; lind IICCIlrIHt' calibration II \"I'T)" dO:*' approxim:uion can 1>(' mildt',

Imerpr('ting this ~r,;tem r('(juires the implementation of wide bandwidth aClIHl.tOrli,

:it'nsilh'f' transduct'n;. and a computerized sysl('m, \nthin tht' romputeriz('(! :>~"SI("m

tbert' must al"O be r€'SOlution Iwailable (0 resoh't" the' signal"s d.~'Ilamic rangE' as well

a.~ softwarr tool~ to ("\'a!uatl' thl' data.

The desjgn process sHIned as a high level s~'Stem diagram (Figuu' 3.1). ",h('rl'

each part i~ acIdres."t"d as an indh,;dual problem "'hieh must b<- soh't'd. Onct' thl'

:<u~poilentS "1:'re completed. they ••("re intt&rated bad into the original plan.

ttw s~~tem as II ,,-hall:' v:a..... drbugged and then the s~1item design was continued to

rompl('tion.

ChOO5in!: the correct components v:a.;; an iler.tl\~ Proc'f'SS 9:hich began lli;lh a

rollKtion of specificalion." ll."quiring each compoorDt to tuwt" a basis Ihat it could ~

hmil from. Th~ spt'Cific:ations lli"l."T(, delt'nninoo~' manipulalion of Ihe cakulalion.~

in Chapt('f ~ and a re\;rw of Ihe pTeviously publishrd material:>. found in ChapteT 1.

and plllC"f'd in Tllble 3.1. The infonnation in the titbit' sets the boundary conditions

which lI."t'Tt' ust'd to design thr setup fOT this rxpmment.
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Figure 3.1: High Le\'el Design

3.1 'fransducer

3.1.1 Electronics

A:\spt'Cified. the desired sensor i.~ a bia.xial accelerometer with the resohing capahility

of 10 KHz that is aL.;o cllpahll' of retaining a high \ibrational sensiti\'it~·. Some of

tile products considerE'd ""-ere: BJ: K. Entranm. Analog Oedccs. and generic piezo

electric seru;ors. The final choiC"i' began with tht:' most COSt effecti\'e product and

prOCE'e'ded b~' conducting a series of experiments. which tested the' effidenc.\· of the

proposed products

ThE'E'xperiments stll"f"d I\'ith a gE'fleric 3.KHz piezo electric de\·i~. Thl.'Sede\'ices

comlllerl"ially,;old haw a natural resonance frt"quenc~' of 2.5h:Hz to 3 KHz. hut as

st'('n in Figure 2.3. resonance at this frequen~' range correspon<b to an ice depth of

approximateJ~' 1 m .....hich is undesirable. Additionally. after conducting some shoTt

experiments on 0.12 m lab ice at -3C. the ceramic ""'as found to contract and crack

which rendered the accelerometer non-functional.

The next de\'iCt' e\'aluated was the Analog De\ices. .-\.DXLl05. surface mount

chip. ( Figure 3.2. Appendi." OJ. This de\ice is a capaciti\'t:' accelerometer suspended

in silicon. it also includes a calibration and frequency response graph (Figure 3.3).

According to tht' manufacturer's spec'ifications. the ADXLI05 has a flat response



Part Spec Requirement

Transducer Temperature Ran!1:(' I -m 0 C

Axis I Bia.xial (x+1.)
Frequency Response 1200Hz -10 KHz

Power La\\" Imiliwat1~ I

~Iass == U9 rrf: ice Sht't'l

Coupling to Ice Transparenl
Actuator Impact Type I Impulse

Actuator Instrumentation Frequrnc~' 110Khz
~lass I ::::: 09 rrf: actuator mas.~ ,

Se1l:iiti\ity I Impact
Temperature! ··m 0 C

Data Acquisition Device Resolution I > 3fJdB (12hits)
Sampling Frequency >200Khz/ch

I :'\umber of Channels I 6
Software Tools I Data Acquisition I LabYiew

i Computation I ~latlah
, Storage I >IOGh

Tf\blf' 3.1: Srecification..~

dial i:< dose (0 tht' rl'gion:< of intl'rcst for thi~ I'xpt'riment. It is sensiti\"t' up \0 2

mg \"olt of \·ihration. and was rated to function in temperatures -40 C.

,.1,.:< the ADXLl05 \\'as able to accommodate the rl'<tuired ~pecilications it ~"3S the

usffi for this in\·e:>tigation. HO\\l'\l'r. lht> chip required a circuit .....hich needed to hI.'

huih indrpendcntl.\·.fFigure 3.41. Additional eircuit~· nOI sho';!"n in Figure 3A is th£'

supput! for the de\'!cp'" poll.1'f nl'eds, a double pole low pas..o;; filter (8 KHz). and an

omput low impf'danCl' amplifier (nft'ded for noi:w suppression on long cablesl. As

tht.' ADXLl05 is only singlt' a\:ial, tWO chips \\'1.'11' plact'd perpendicular to each other

ill tht, same packaging to accommodate x and z components. ,A.n important asid('

penaining to tht> design is the analog low pass frequency filtering. The twO reasons

for using 10..... pass liltpring are to rt"duce the signal to noise ratio and to prevent high

frequency aliasing



OUTLINE DIM[~T10J\"SOFTHE .4.DXllO~

Figure 3.2: ADXLl05 Dimensions
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I
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Figure 3.3: ADXLi05 Calibration
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ADXLtOS

..--n..-.-.0

Figure 3A' Basic ADXLl05 Electronic:;

3.1.2 Packaging

A ~"'Or. "'hl"fl used properly. should ~ unnoticed by the en\"ironm~t it seru;c:>.

han'il minimum effect on the ice. and the packaging should be as minute lIS possibk-,

yet it should still contain the necessill')' electronics. As specified in Figure 3.1. the

device must be able to function (i.e. not crack or St'\'erely contract) in f'Xtrl."ml."ly

cold conditions. a\"Oid resonancr in thl' desired frequmc:l' rangl', and ha\'t' oearly

transparent roupJinZ ""ith itt and l'k-cuonics circuit bo..mis (i.l.". Wr:" hard material).

Rt'SOnanC't' is present in all matl'rials buill. Xl."\'t'rtheless apparatus can be de-­

signed 10 ledUCE' the resonanCE' produced as much as possible and slill l'xclooe it from

thl' frequency of interest. In this experiment. resonanCE' should be ab01.e the 10 KHz

rangl'. This is accomplished through sell'Cting a \'t'r:" rigid material and keeping its

dimensions as small as possible.

The current options available for such analysis are off-the-sht'lf small plastic bo.''Ct'S.

epoxy ft'Sin enclosures. custom ple.'.;:iglass and aluminum oo."Cl'S. Of these four options

thl' off-the-shelf boxes arl' the softest. having \'e/}' thin edges making them utlSuit­

abll' to ~ considered any further. Epoxy resin hardt'tlS. therl'fore post construction

a!tl'rations or electrical malfunctions would be impossible to repair. Remaining are



the: plex.iglass aDd the aluminum. Both are ripd and rel&ti'llely inexpensive. boa-oever

each had unique features DOt~t in the other appartus.

Aluminum is a sood ronductor and~ to Man."eIrs equAtion 1 (Gauss'

ta..·). Equation 3.1. the electrical field in.side a coodueting surface is zero. For the

tran.e;ducer. tbL.. would mean that all external electrical ooise could be stlppr~.

hence. increasing the signal to noise ratio.

f E8A =!! (3.1)
<-

The p1c:xiglass. bowevet. is transparellt. PbysicalJy this feature is not import&Ilt.

but in the field. simple m&inteDaDee is paramount which makes transp&l'eDCY a de­

s.irable option. Cbeckin&: for ..-ater I~ seal problems. b~ ";rf:S. and chip

failures can be quiddy evaluated and comcte:d with a clear eIldosure. Therefore,

from this simple evallWiOIl of available materials the: best cboice ~Id be the: plex­

igJa.r;s.. The p1exiglass box ....... desig»ed to be as s:mall as po&sib'e wbile retaining

its strength and ability to contain tbe e1ectronia. The: device built is illustrated in

Figure 3.5.

Figure 3.5: Packaging
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3.1.3 Calibration

Calibrations consisted of three steps:

I Yerification of electrical characteristics (i.e. no electrical resonance and cort('Ct

frequency rcsponS('"

_. \"erification of ADXLl05 frequency respoflS(' and S('nsith"ity

3. Entire packagM s~"Stelll frequency respollS('.

Electrical Characteristics

To en~ure that the electrical circuitr~- functioned as designed_ using linear amplifi­

cation and an S KHz low pass filter. the subsequent experiment was COndllnM. A

frequency generator was connected to the output posts of an unconnected ADXLlu.'j

to simul<\te the output of this chip. The frequency generator·s frequency was then

increased from 0.010 KHz to 20 KHz and the voltages were recorded at the sen.:;()r-~

plug. TIl(' result was a flat response. With an unmeasurable signal to noiS(' ratio

This result indicated that no electrical alterations were neroed.

ADXL105 Characteristics

The suppliE'd graph for the ADXLl05 is shown in Figure 3.3. This figure shows that

the dl'\-ice has a lIat frequency sensith"ity up to G KHz and from this point it has a

linear gain from a dB to 3 dB at 8 KHz. Xote that the calibration of thi:; de\"iCt' is

dependant on the de\"ice being securely mounted 10 the circuit board to v,hich it is

\\"ired

Physical Analysis

Following the prementioned trial. the completed transducer was placed in a linear

calibrator. SA.: K -t291. However. the calibrator is only ~in calibration- at D.DiS

KHz and any other frequency recorded is in reference to a.DiS KHz. Although the

frequency can be a1ten-d. upon alteration thede\"ice does not stay in calibration. An

example of this OC{'urroo when a single ADXLl05 1I;as epoxied ontO a small screw

and then plac«l on the SA.: K calib~ator. The frequency ~·as altered o\-er a range
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bet"'"eeIl 0.010 and 10 KHz. These observations meant tbe IU.: K calibruor would

resonate 19-·bKh was distinetl~· beard and seen as tbe device 9--auld enter oscillatiooJ

OVftasernsoi frequencies.

Although a frequency S9-'eq) ic; DOt panicularly useful. tbis calibrator is useful ror

t\Iol) re&SODS. The first iJ, to find the tran.sd.ucer sensitivit)l' at 0.078 KHz and ta make
tbe appropriate amplifier alterations; tbe seoood is to illSure that there is a ~iDt

sensitivity for the device that is needed ror signal power calculations.

Figure 3.6: BI.: K Calibrator witb Transducer

The 1&.<;( na&e in caJibratioo "'1iS to dftennine tbe package resonance from I.D

impulc;e. The test was completed by hanging the transducer ~. it.'i electrica.l wires

(the weiPt of tbe wires being neglipble) and tappiD.& tbe transdllCer witb • small

metal ball.peen hammer. The signal ",-as then recorded and a 4096 point Fourier

Transrorm Il,as conducted I15mg the data (Figure 3.8). The points or interest are the

resonance points and the decay time. First. the.serle.<; of resonaoces at 6. 7, ll, 13.5.

14.5. 15 and 17.5 KHz and p&rticularly, the peaks at 6, 7 and 17.5 KHz ~re very

strong. The resonance at 6 f\fu: is of IfKl8t interest because it limits the frequency

re;olvahility of the transducers to a bandwidth of 6 KHz, which corresponds to an

ice deptb or no 1es..'1 tban 0.32 m. AdditionaJ.ly. the dtoca.y time of tbe transducer's

resonance is of the oreler of 15 ms for a 3 dB change in pcIIa'er. When the device is
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frozen onto a large ice sheet. the decaying signal wa..~ to the order of 2.5 m/s (500

sample;). Figure 3.9.

Figure 3.7: Hammer lmpulsc on Sensor (Time)

In term!' of this area of re;earch. it is important to distinguish if these resonances

caD be removed or altered. Option.~ for such research within the scope of thi.~ project

are to either redesign the transducer package. which due to the size of the electronics

i!' not rea..'iOnable. or to determine if the proposed experiments caD be conducted

regardless of the resonance using digital and analog filtering.

(( the receiving signaL~ in an experiment are large enough in Milplitude to over­

come fel;Onance amplitude; without saturating the sensor. the resonance oomlptioo

will [lOt effect the experiment. Additionally, the received signal can be digitally

filtered to remove aU corrupting information and a time signature can tb.en be Db­
tainC(1.

The final infonnation to be considered is the device's signal to noise ratio. In

laborator)' conditions. the noise created by the device is 24 mV corresponding a

signal to noise po'ft1!J" of 26 dB (figure 3.9 ).



Figure 3.8: Hammer Impulse on Scn.~r (FIT. 4096 points)
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Figure 3.9: Sensor Noise



3.2 Actuator

The 8It:tuator i!l. needed to appl)' Ion impulse to "'ring- the ice. Other options such ..~

a -chirp- dev~ could have beeu used. bowewu. tbe impulse _1lS used because of four

constraints. PO\Io'U consumption. complexity. 116;. and .l'lU1abiIi~·are all commonly

rons.idered "'beD rooductiDg seismic research. A perfect impulse it> impossible to

rea.1i%.e. but the desired impulse needs ooly to cont.a.in the harmonics of a 10 KHz

bandwidth. This type of impulMo u a realizaMe impect. l:pon invt:Stigation ol

impact device; to I!.'le. a ~. of the geophysicist's toots \1111lS checked [16:. (IS:

a.... seen in Section 1.2.3. A.... previously mentioned. sei:smoIogists use tooLo; sudl IL<;

d)'Ilamite. jackhammers. large weights (1/2 Tonns). and sledge hammers. In scaling

these devices to the size of this experiment. the device emerged. as being a simple

hlWlmer. The question ""hieb remained was tbe type of hammer to be used.

The options available were 8 small metal ball.peen hammer. a pla.'ltic-headed

hammer. or a heavier rubber·headed hammer. The decision was made after evalu­

ating ha.rdness. The less stiff tbe sub5tance. the lower the bandwidth of the impulse

delivered 10 tbe ice. Therefore. tbe hardelit material. lbe metal ball-peen h&mmer

was used. [sing thi.'\ hammer created a risk of aadc..iog the ice. but it i... assumed

thai cracking does DOt affect resonance measurements. ~nbeless attention will be

paid Il,hen otRrving timiD& information.

Figure 3.10: Impact Hammer



3.2.1 Electronics

The desired goal is [0 mstntment the hammer 50 that:

• Timing information caD be collected (ie. computer data acquisition triggering)

• Power spectrum. and hence an impulse response. h(t). of the ice can be deter­

mined.

To complete the;e two tasks. an impact sensor .....a!; added to the bead of the

hammer (Figure 3.10). Tbe device's characteristics were chosen as specified in table

3.1. Sucb a device wa.~ the B& K type 8200 impact ~n.o;or and its as.o;ociated Bk K

amplifier (Figure 3.11. The frequency tespoase of the sensor supplied by B& K ",,-as

flat between O.oI and 8 KHz.

Figure 3.11: Hammer Setup

3.2.2 Calibration

An advantage of tbe B& K impact sensor is its own supplied calibration. Unfortu­

natel)', tbe impact device wa.., discovered to saturate upon impact with hard surfaces.
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This i:; undesirable and nullilie:; the detection of an impulse rf'SporlS(' ponion in this

experiment. AdditionaJly. timing infonnation is f~y. hO"''('\,er. \\ith th(' IN' of twO

tran3durers instt'ad of one. accurate timing infonnation \\<1.5 (fett'rmiDf'd.

3.3 Data Acquisition

As ,;pecifiro in Table 3.1. the s~-stem required must sample th(' data at ~ast t\\i('('

\l.11h tht' bandwidth of inlerest (aliasing prevention) and bE' al !t>ast 5 II S«'Onds p<"l"

sample. for a liming error or less than 1 percent \I.·ith a signal amplilude rE'SOllIIion

or grt'at('f Ihan 12 hits (or 30 dB • see degradlltion of acouslical signalsl. Also. till'

system must ~ ablt' to SIOr!' multiple t'xperiments and ~legabytes of data.

The data acquisition de\"ire chosen was a pentium class rompllter \\it h !\

SI1tIOIl(ll!n.,trumcntsT.1/ 12 bit dara acquisition intemnl card. The card hR.~ S

differential channels fit I:! bits multiplexed over 1.2 ~Iega .samples per st'C"OI1U. SiuCt'

Ihis experiment onl~· ('alb for fi\"l.' high ,;peed channels and anI,' low spet'd chaunt'l

(Hammer. Transducerl l . Trllnsdllccr!,. Trunsducer2,. Tran.~duc~r2,.tcmpcrQturc).

II sampling frequt'ncy of 200 KHz is possible

3.4 Data Processing Tools

Data processing rontllms twO le\"l:,1:; of analysis. The first is ronduct~ io the fit'ld

and the S('('Ond is required for poi>"t prOC't"SSing and precision analysL... In t~ fit>lu.

More experimentation is heglm. it is t'SSE'ntial to conduct high spE'ed data sampling.

parsing. calibrating. s~"Stem S('lf test. and storagt'. This process \\1\... lI;ritten using

:\ational InslrumffilS Lab\'ie\\' 5.x soft\\l\fe and a picture of Ihe program v.rilten

an bE' St't'n in F"igurt' 3.12.
Acquisition process slant'd \\ith a ";."'Stem S('J( test of the pO\1;er supply. transducer

functionality. and it sample of outsirll' temperature. The program Iheu waits until II

rising signal roge trigger. the hammer. bE'fore acquiring 70.000 points of data using 5

channels at a rate of 200.000 samples/second. Once the dnta is acquired. all data is

displayed through graphs depicting the time and frequency domain (5000 pt FFT)

F"inally. the data is then \\·ritten to a :\Iatlab readable data file for later nnab-sis.



Part twO of the data proct'SSing is. as mentioned. the post-processing using :\latlab

5.x. The functions of interest are filtering. Fourier Transform,;. ue>s-.....cortelations. and

con\"Olution. An additional feature of ~Iatlab is its ~export to C++" option which

allows for later realization of the conct>pt in software

3.5 Cold Temperatures, Humidity, and Enclo-

sures

Cold weather dynamics of electroni~ and computer equipment is a \'('r:-. important

factor especially with the type of equipment being mowd in and Out of cold temper­

aturt'!;. Ther('fore a careful evaluation has been dedicil-ted to ensuring lemperaturp

tolerance. The identified cold weAther considerations arc:

• Cumputer health

• Transducer water proofing. and reaction to cold temperatures

• Actuators functioning in cold temperatures

• Cabling and Plugs

:\ PC computer packaging j... ob\'iously not dt'Signffi to be taken outdoors or in

wet snow)' conditions. To a\"Oid all problem,; in\"Olwd with pr('Cipitation. frost and

cold. a hot bar to contain the computer. monitor. UPS. and junction bo.'t(('5 was built.

The keyboard and mouse hlld to be ('xternal to the box. ThO;' mol1St' .....a,-\ all optical

mouS(' with no mo\ing parts to freeze. The keyboard W11.-\ tesU'1:! in a-:!O C lllborator:-'

cold room for functionality. The box was made from ahlmirmm shl't't lllt'tal with a

p!t'xiglass \\indow so that the monitor could be \iewed (Figure 3.13). The interior

of the box was insulated I\ith 0.0-1 m of foam where it was then lined with a heat

blanket.

The transducer's plexiglass lid and \\ire exit holes ""ere sealed using silicon. PrE"­

liminary laboratory-induced cold temperature experiments were run on the bOo" by

placing the box in a -20 C room for 2-1 houts. The sensor was then checked for

physical deformations or cracks and gh-en a functionality test on the Bi: h: calibra­

tor (ll tf'St for =I g). The actuatOr was immediately brought into a +20 Croom



Figurl' 3.12: Data Acquisition Program



Figure 3.13: The Computer Box

TIle functionality test wa.c; repeated three times, 1be devioe showed no noticeable

deformatioD.." or signal degradation.

Finally, tbe lIctuator and its amplifier were te5ted similarly in laboratory induced.

cold environments, The two devices were again checked for functionality by placing

tbe amplifier and tbe hammer in a -20 C room for 24 hours. 'iI'here the cables were

checked for brittleoe~s and a data triggering experiment was run. Tbe test wa...

repeated three times with no ob!;erved change in performance.

3.6 Power System

The electronics for this experiment required a 20 volt DC supply for the transducers

aDd a 110 volt 400 watt AC suppl}' for tbe heating b<oc. monitor, and computer. This

was achieved using a standard Honda generator in series with 300 feet of electrical

'iI;re. and an uPS (uninterruptable power supply) to remove diny electrical noise

from the generator.



3.7 Cabling

All t'lf'Ctronics cabling was ~ther double sbil'lded cold tem~rature rated (tflUl:5duC't'r.'

- (>O""er and signall. son ro-a."tial cable (actuator) or standard outdoor 30 Amperr.;

high ruITl.'1l! wi.tl' (computer and heal b~l

3.8 Experimental Integration

The physical :>etup of tht' design of the experiment can be S('('n in figure: ;U~.

Thi.... design is II. micr~\"('fSion of II. larger scale St"ismic system. additiooall~·. II''\)

transdUCI'N are used instead of one for timing a«:urllCY.

AIR

ICE

WATER

Figure- 3.1~: EXp('rimental De;ign

3.9 Conclusion

This experimental setup has achieved II. large portion of the minimum requirements.

Critical SUCC€S-«f!S are the :>cnsor band\\;idths and rnulti-channel. high frequency sam­

pling. All other requirements art' exCE't'ded or are close to the criterion. Some inferior
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components of the dt":>ign includE' thl' impact senor saturation and signal to noi:;(' ra­

tio of the transducers. Though preliminar:-. experiments meet the specifications. ttl£'

ability 10 resoh"f' ice;' resonanct' can only bE.' pron'n on actual iCl:' sh('('t:<
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Chapter 4

Simulation

EWfoT(' processing actual ice data. simulation can lead to insight for pn:'<iicting if

calculation processes will or will not reveal the dcsiroo result. \\nett" thl" ObjPC'liw'

i:< to tak{' arrival dllta from {\\"O transducers and calculate iet' characteri~tics. such

11-'; \"I:Jocit~·. and then from the resonance. caJculat{' depth. 5t'\'eral signal processing

tt'chniqut'S will IX' re\'i{'\\'ed and relined. Tht' signal processin~ techniques experi­

lIIt'nted with art' digital filtering (FIR). fast fourier transform. cfOss-correlation. and

Sltnplt· point to point matching.

The construction of the simulator was madt' in the ~Iatlab en\ironment when'

th(' data lL<;l'(j to construct the simulator u; Ii collt'Ction of infonnation aJrE'ady known

about the experiment and iet· characteristics_ Abnonnalitie; of the transducer and

rolllputer pquipment such IL., rE.'SOnanC'eS. noise platform and quantization wert' re­

vil;'wro and addro. In the follO\\ing sections. thl;' construction. anal~·sis and results

\\ill ~ redewed in morl:' detail

4.1 Construction

Construction of the simulator consisted of three parts. the first being the theoretical

signal arrhing from the impulse. tht' second pan is the corrupdon created by the

tra.nsducer and computer. and tht' third is adding alllht' parts of thl;' signal together

lO create a complete theoretical signal
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4.1.1 Signal Impulse

The arri\'ing signal. the ponion of the signal to be extracted t"rom the corrupted

signal. cousists of four parts. The first is the original signal constrUCtion, the second

is fint arrival from the surface wave, the third is the reflection from the ice-water

hound~'. and the fourth is tbe decay of the resonance bet\lleen the ice-water ­

ice-air boundlU1'. Imponant consideratioD.<; are the s-wave (shear) and p-wave (com­

pression) arrival times. However as tbe !\-wave travels approximately 1700 mis and

tbe p-wave travels at apprmcimately 3780 mls [5~. bence tbe 5-9,laVe is only 4-1% the

speed of the p-wave. Therefore for tbis simulator. the s-wave will not be considered.

During some initial experiments on simple ice sheets in a lab setting.

typical ""ave-forms were recorded 8.<;

seen in the example in Figure ';.1 and

upon zooming ioto the arrival wave

fonn. the fint wave has a period of 0.6

msec or J.i KHz ....·itb smaller cycles of

0.2 lll.<;ec indicat ing,) KHz component.

To tr:' to recreate a wide bandwidth

impulse of,) KHz. a I{.;'r. shifted sine

function is used a.~ an impulo;e to rep­

re>enl the time domain bandwidth of

It. ,) KHz impact show'll in Figure 4.2. Figure 4.1: TnJi<:a1 o..c.~. TilJll: f.l<amplt-
Sirnilaril}" after the fint arrival from the surface wave the fint reflection arrives

The time of the first reflection is the geometrical difference between the surface and

the direct reBectioo multiplied by the p-wave velocity as mathematically described

using simple geometr:' a.~ seen in equation .1.1. This wave will be a decayed \'ersion

of the lim sine pulse of 70% as determined by Langleben in 1221

~tv~::: 2;(~)2 + D~~ (4.1)

Where ');,'1 is tbe distance between tbe hammer impact and tbe the first transducer

IUld D_ is tbe vertical depth of the ice sbeet.

The next measurement to calculate is the resonance of the compression wave.
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Figure 4.2: Sincf.r./-l- xl at 2OOh:~/!leC for 5KHz bandvddtb

RE'!'Onance i<; explained in Chapter 2 bOOillever. in !>wnmuy. tbe fe!iOOMC\" if; depen­

dant on sound \-elocity and depth of the ice: f.__ =~.

4.1.2 Sensors and Noise

During the calibratioo of lbe sensor.> (Figure 3.9). tM wbite DOise produced by a

tTlU15dllC'ef is 0.025 Volts pea.k difference (-23 dB). Hence the ..-hile noise signal

added to tbe simulator i<; • randomly genemed signal of amplitude 0.025 \'Olts.

Additionall~·.tbe sensor has. series of re;oOan<::e5. The four most dominaDt re;ooance

peaks as can be seen in Figure 3.8. 1nesr peaks ~re added to tbe signa.! £requencie5

of: 6000.7000.14500 and ITaOO having oormalized ampliludesof: 0.8.0.6.0.25. and

1 respectively.

4.1.3 Signal Decay

Figure 4.1 is a typical impact 00 an ice surface wbere the sensor mea.<;uremeot has. a

gI"O'lo'th time and a decay time. For this particular envelope. tbe Donna! distribution



.....l\.~ uS('(1 a;: all l\."",umption for Ih(' E'm't'lope using equation -I..:!. Tht' ti:<l.' tinlt' and

dt'C<lY tim.. wert' on('(' again taken from this graph as 2 mS('(' for tht' ri:;<> timE' and

5 m.;;e(' fot thE' dt'Ca~· timE'. :\ote that from thE' design procedurE'. th(' :<ampling

ft['(IU('IJC~· 10 lit' used for all experiments is 200Ks!St'C. Henre all data creatM i~ in

refl'r('nC'f' 10 this sampling ratE'.

-t
Enl"eiopc.£hafJf' = exp(7)

Attribute Type Value
:\oist' \\ltite 0.001

6KHz 0.8
7KHz 0.6

14.5KHz 0.25

c-------+-----'l-ii'.';;;-~ii:·H:=_,-I--i'I----i
: 118kHz, 1
, :'\01,;(' En\-elope I After first wm·t' i 0.001 sec

I Decay from ma.'i: I 0.001:ieC I

I First \Yaw Frequency Lj and 5KHz
Amplitude 1

Table -1.1· Simulation Information

(..1.2\

In the tal,ll' -1..1 is a summary of the characteristics of the simulator. In addition.

in FiguTt' -1..3 i~ II pictuTE' of th(' signal in the timE' domain

4.2 Simulation Evaluation

The simulator effecti\"('n("S.-; can bE' b{':it demonstrated hy running a.u examplE' pyalua­

lion of an let' ~h('{'t. For this E'xample. the variables are as follows in Table -1..2 whE'r{'

t\'pical iC1'characteristics \\-ere chosen such as O.j m iCX'. 200 KHz sampling ratE'and.

0.5 rill transducer separation. The evaluation process starts with a frl'quen~· anal­

ysis using a fast fourier transform. then lime lUlalysis b~· first filtering then running

a cross-correlation and wa\"{'lt'! analysis
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Figure -1.3: Simulated Signal

4.2.1 Frequency Analysis (FFT)

Frequency analysj.<; is the heart of this experiment where a correlation is to be made

.....ith icc depth. FiN;t one must convert the data from the time domain to frequeue:.'

domain using the Fourier Transform as seen in Equation 2.18. A Hamming win­

do.".. ';l,'a.~ u.<;ed to reduce the Gibb!i Phenomenon. Although other windows such as

Blackman and Hanning would a!so work, the Hamming window wa.~ used. 123:
A 65.000 point Fast Fourier Transform v:as made for a frequency resolution of

3 Hz/point (200.000/65.000 "'" 3). However. because the actual signal energy is

contained in under 2000 points of the 65.000 taken. the noise power overpowered

any infonnation about the transducer and ice signature. The only methods for

overcoming this boundat}· L<; to reduce the Ildndow of signal in the Fourier Transform.

Reducing the window size increases the Hz/Point. increasing the accuracy of the

evaluation. For example. if a 4096 point Fourier Transform is performed on the

data. the frequency resolution will be: 200.000/4096 = 49Hz/sample whieb is II.

depth error of 2% at 0.5 rn. lncidentall)·, the 4096 point Fourier transform wa.<; the

highest value that could be transformed before the desired signal was absorbed into



Characteristic Attribute Value

I",
D, 0.; m
I; 3;50 m/s

Computer
!",,,,,,,,ng ~OO KHz
Tl",,,,pt<<t 66000 poims

Transducer and Hammer
T1-H 0_5m
T1-T2 O.5m

Table -1.2: Simulation E."ample Data

the random lIoise platfonn. shown in Figure -1.-1. Funner clarification of th£' "i!!:nal

in timE' domain through filu"ring can be St"en in the next section.

4.2.2 Digital Filtering (FIR)

Low Pass Filter

As the actual sensors contain onl~' singlE" pole 8.0 KHz filters. some unwanted noiS('

can Pi\....." through the Sl'nsors' filter. and the electronics and cabling can cauSE' noiS("

Funher digital filtenng I\ill reduce tht" sensor 11.01.."('. Similarly fOf the simulator.

a multi-polE" FIR filtt"f can be l.L'SE'd to r!"duct" un90,uHed noi~ fun her and as the

:i{'llSOP.< aft" onl~- calibrated umil 8.0 KHz. a low pass filtt"r \\ill bf' a hent"fic The

ft"ason for implt"n1eming a FIR filter inSlead of other filters like HR BUllerworth or

Chphysht"\· Iilters is to achieve a constant group dela~' and linear phase shift. For

more information on filtering definitions. Sl."(> Theort'tical Background Chapter~. For

this simuhuion. a 500 pair filter at a cut off of i.O KHz is U5t'd to remon! all noise.

High Pass Filter

As thr design of the sensor should be bandlimited between 0.190 and ;.0 h:Hz. a

high pass filter was implemented to remow excess noise. Similar to the Low pass

filter. a 500 pole FIR high pass filter v.iIl be implemented with a cut off frequency

at 0.190 KHz. The resultam filtering can be St'en in Figure -1.5. The result was

a decreased DOisf.-" energy as seen in the Fourier Transform of the signal as seen in

5;
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F'igure 4..1: 4098 Point F'F'T of Simulaled Signal

Figure 4.6. t<Ootice tbe signal's group dela.y \tiL'l shifted by 250 potnt.'l a.<; expecled as

seen in Chapter 2.

4.2.3 Time or Reflection

tnlike seismk rdkctions "'hich take seooo.ds. tbe lime scale of reflection in ice is

significantly smaller.•f" simple experiment "'85 run to demonstr&te tbe position 01

the first signal and. tbe fint. reflection with I. transducer and. hammer separation of
0.; m as seen in figure ·D. This geometrical1y calculated time delay (DOl. includilll

fresnel smearing) is only 50 samples apart (from Equation 4.1. l.n the followilll

section. Cross-oorre!ation will be experimented with 10 extract timing information.

4.2.4 C~CorrelatioD

Cross correlation 1201 is effective for comparing two waveforms for similarity. There

is a risk that with significant decay in the reflected signal of interest and with in·

tense resonance amplitudes, the reBected signal may Dot be resolvable. A3 seen in
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Figure 4.5: Filtered Simulated sipW (190-7000 Hz)

"



F~IHz) .,0"

of

01 ;z o. u' U 1.4 ,... !
Figure 4.6: FIT of Filtered Simulated Signal (190-7000 Hz)

F'igure 4.7: Simulated P-wave Reflection and Surface Arrival
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Chapter 2. etOS."i correlation is determined from the Equation 2.29. Onti! the eros,<;

correlation function ""1l5 completed. a simple search for first and second maximum of

the correlation was conducted. The maximums correlate to the first surface arrival

and first reflection.

Figure -\.8 sOO'o\-1\ the cross correlation of the simulated signal "dth iL<; self is

a perfect match at 0 as expected. The first reBection placed in the data is not

revealed. However. it is reasonable to expect that with more random data from the

true experiments. first reflections will be more obvious. However. frequency domain

will remain the most accurate measuretllent because of the time domain's accllrnc~'

limitation caused by the first Fresnel Zone at a frequency of 6.5 KHz

'or
'0

~ °

t~r
-.;-••---c•.-----.:.---c•.-----=,o,-".;;--;:;---!-

Figure ·1.8: Cross Correlatioo of Simulated Data

4.3 Discussion and Conclusion

Thi'i simulator has proven to be an excellent tool and guide for developing an ef­

fective method of refining data processing techniques_ Table 4.3 contains a list of

tbe proces.'ieS used which delivered promising indication of successful signal analysis.
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From the results. there ~·ere some important ob,;el'\'ations made. first of which wa~

a r~lliredlow point fourier Transfonn of ·H)96 points opposed to 65.OlXJ points. A$

the simulated data demonstratoo that the decay of the signal would onh· be in the or­

der of 300Cl samples. the random noise power in the remaining 62.000 s..1mples would

sum to overpower the signal of interest. The second obsenOl.tion is the importanct> of

signal filtering for Cross-correlation analysis. The filtering remove; corrupting data

iLwl will impro\1' the at'Curacy. The third obsen-ation is the closeness of the tirsl ,md

>'eCond reflections. for at a depth of 1 m. the time bet"-een the reflected \\"11\'(' and

tf<lIiS\'ersf' wave is only 50 sample;. Cross-correlation may still be able to r{'SOh'e thL"

data though perfectly predicable data prowd difficult to display the inserted signak

Hi,e;her sampling rates will decrease the error between the samples, H()\\'e\·er. the

fin;l P-wa\"(' arrh"al time is the most important feature for this experiment while

OIher timing information is an asset and will only reinforce frequency domain data

anal.\·sis. The total computational time of all calculations run at onct> on a pemium

<"la..,,; computer was less than fiw seconds.

Though simuhuion is only an Ilpproximation of the actual signal experimt;>ntally

ohst·n·ffi. thi.... mNhod has proven 10 be an effectiw tool for II -Ite<lds-up~ on the

hurdl(",; to o\'t'rcome in the analysis of true data.

- 1~1~~:' - :::;~~.
ando<e<kp<h

_ l<.o.pth

Table -1.3: Working ),Iethods of Digital Signal Analysis



Chapter 5

Experimental Results

With the theory. design. and simulation preparation completed. the Deee5Ml'Y

grolwdwork for proving the theol1' as II realistic model is in place. The original

goal was to determine ice propertie; particularly depth from acoustical impul5e'l.

But the question of where to find such ideal ice depths has not been solved. From
Figure 5.1 we can see there L.. II. ~sweet spot~ labelled which is the optimal location

for the experiment to function.

Ice depths which are less thaD

0.50 m place the lI5SOC;iAted frequency

range \'e!}' close to the l'e5On&Dre fre.

qUeDe}' of the sensor. while ire depths

greater than 2.0 m approach pclf&ble

~proce:ssiIll:f~'resolving

limits. This means that if a signal

is sampled at 200 Khz and a .ro96
point FIT is conducted. the resoI ...·

able !requeue}' L~ 0.050 KHz which

corre'lponds to II. depth error of ±0.12

m at 2 m. For proof of this concept. Fiture 5.1: The Ideal Ice Conditions
the specified range from Figure 5.1 represents an optimum range to begin witb.

During experimentation, two experimental expeditions were completed. The first

involved artificially created granular laboratory ice at the Institute for Marine Dy.

namics (IMD). The second. was conducted outdoors nn freshwater granular lake ice.
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\\bile this thesis doe;: not contain experiments on st'a ief'. there h: no fort'Sf'eablt'

reason 115 to why this ex:perim€.'lIl cannot be conducted there as well.

The laboratory e.>.-perimems wer€' conducted in order to:

I Capture timing and frequency information for II. ice block

2. Fin{'-tune the algorithm before going on actual field tests.

3. Debug the hard\\1U"e. and €.'mluate s~-stem performance in cold en\ironment~.

Once the laboratory results were succe>sfully evaluated. the ice field tesl~ were

planned. A listing of experimental data testS can be found in Appendix A as well ;L~

rea..;oos for field experimentation location choice.

5.1 Laboratory (IMD) Experiments

5.1.1 Experiment Description and Evaluation

A.~ spt'Cifioo. a block of iN.' thick€.'r than 0.50 m was desirt'd. howewr. in the laboratory.

blocks of granular icl.' rould only ix· grOVlil to a size of o.~:! m dt"ep X O.3:! m u·icl('

X lAO m long. The traru;dut'e["5 u·ere placed onto the center of the ice at distance>

0.60 m apan using a la~"('t of water to {'ouple th€.'m to the iet'. The blocks of ice W{'fe

th€.'n lifttd h.l· cran€.' imo a large freshwater tank maintained at room lemperaturt'.

Hammer strikes were made at distances of 0.65. O.~5. and 0.15 m from the first

transducer. Each tE'S1 was rt'peated a minimum of 5 times. E;\:periments were setup

as shown in Figure 5.::?

5.1.2 Experiment Results

As this experiment was conducted on a block of ice and not an infinite plane as seen

in Figure 5.3. there arE' J modes of resonance expected lI·ith a second harmonics and

a po:;sibility of the test tank itself producing resonance. Additionally. thE' transducer

orientations can be 5een in Figure 5.3. The peaks are found on the th.ree major axis

x. y . z and the minor a.xis on the x~·. Xl. yz. and xyz planes: where z is the \-enicaJ

depth Additionally. the tank where the ice block was tested had dimensioltS of

appro;\:i.mately 1.5 meters deep. 3 meters VI;de. and 6 meters long. The tank had a
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Figure 5.3: The Ice Block Dimensions and Transducer Orientation



wMer sound \"E'locit~· of I..SO m/s. therefore tank resonance was ablE' to be calculated

usin~ Equation 2.16. Frl'Quencies expected "ith a theoretical icl? acoustic n>locity of

37S0mis are as follo""5 in Table 5.1

Substance Mode Dimension 1'1 Harmonic 2"d Harmonic

I" 1.-10m 1.35 KHz 2.7 KHz
O."lm -1..5 KHz 9.0KHz
0.32m 5.9KHz 11.81\Hz

X-"· 1.-I.6m 1.3KHz 2.6 KHz
0.52 m 3.57KHz 7.1 KHz

'" l.-I3m 1.3KHz 2.61":Hz
X")"Z 1.52m l.21\Hz 2.51":Hz

Tank 7.3Im 0.101 KHz 0.2021\Hz
1.82m 0.-111 KHz 0.822 KHz, 0.8 m 0.925 KHz 1.850 KHz

~. 7.53m 0.098 KHz 0.196 KHz
1.97m 0.375 KHz 0.751 KHz

'" 7,35 m 0.100 KHz 0.201 KHz
m 7.57m 0.097 KHz 0.195 KHz

Table 5.1· ExpecU'd Frequency Spectrum

In Figure 5.-1 the frequency characteristics closely parallel the- expected rt>Sults

(Table- 5.1) with a dominant peak lit 6,0 KHz which is near the tram;e{u('('r's r~

nance. also therE' is a peak at 4.5 I\Hz which fl?prf'S('nts tht' y resonance mode-. Other

peaks visible were the largest at 0.925 KHz for the z mode of the tank rt:'SOnance

amlO.-I11 KHz for the y mode of tank rE'$Onance. Additionally. a peak at 2.7 I\Hz

repre5t"nts the- x. xy. Xl. and ~"Z second hannonics of resonancc. Frequency compo­

nents in the I KHz range overlap each othe-r and art' difficult to indi\·idually resolve.

For example resonance modes x. xy. and xyz from Table 5.1 ha\·e frequencies so close

together that individual peaks can not be seen in Figure 5.4.

Conversely. the timing information was difficult to determine due to the many

reflections in the ice. Howe\"t'r. \\ith the current values. velocity can be seen with

reference to the cross-correlation of the x components of transducer one and t.....o

The time of first arrival in the x direction is slurred \lith the time of first reflection

of the y and z direction (figure 5.5). The vertical bar on the graph cros:ses the first

hump of the direct path at (1.6· 1O-~) seconds. corrt'Sponding to a velocity of 3750
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Figure 5A: FIT or IMD Experiment
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m/s. which is in the expected range.

..-
Figure 5.5: Cra;.....COrrelation of xl and x2 Transducers

5.1.3 Discussion

The experiment provided important information 00 the properties of transducer re­

sponse. The first is the inter~bannelcross-talk between x and z accelerometers. The

signal of the first arrh·ing surface x component wave W&S observro. to be coupled to

tbe vertical z &CU'lerometer. Thi.c; correlation .....as DOt revealed during calibration

so one is led to believe that the reasoning for such a phenomena is the squeezing

of tbe ice pressure '-ave on tbe transducer which results in a 3 dimensional elastic

defonoatioo of tbe block. In a 3D solid. tbe requirement that the displacements are

continuous and single valued puts a constraint on the strains. known as the strain

compatibility equation. and expressed in formal tensor notation as:
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(5.1)

The subscripts twfore the comma designate the component of :strain. and th~

subscripts aftPf the comma sholl' pania! derhath-es _ith resp«t to the' indkatrd ~

ordinate direction. Th~ ph~"Sical manifestation of Equation 5.1 is that a ~fonn:Hion

in onE' dirt'("tion is a1U"8.ys ACC'Ompanied ~. d~formatiom in other directions. 12~1

A similar km.w timescalt analogy uuuld bto a cubE' of Jell - o® being sqUE't"Zed

and re1t'asro. The cube ';l'Ould deform in all 3 dim~nsions iostE"ad or thE' one dim~nsion

sqUt'e'loo. When conducting field ,,-'Ork. x and z component,;; lII.ill now bE' considered

similarly /lJld not independently.

)'lulti-mOOes of reflections appeared in thE" system ",ith some of the; predicted

resonance; \·i~ibl('. Ho"'"('\"('r. peaks wert' \"~ry do:>e together and they were no! reo;oh"

able. especially in the I KHz range where the lowes! first threE' peaks represent thE"

energy Spf.'CtntlTl$ of man~' moot'S. This phenomena occurred because thf' fuquency

~paration lII.·as very close to the FFT resolnng limit. On field ice. this phenomenon

is nOt expected to happen "S then' uill bt> only one Wl\\"(' channel (other Ihl\O the

possibililY of cracksl in which re;;onanct' can occur. Finall:,'. the cross rorrelation's

two interfering c~"CIe< from the y component,;; reA«tion and the first x reflt'("tion inter­

fere lII.ith t"acn oth~r producing \isibly d~u·Ctable \-alues. Yet, as in I\('tual field data

thi>; is expt'("too to be more clearly d~fin«f. thereforE' tM y compant'llt ';lill not exist,

Y romponent Tt"Aections U't're at first not expected to be resoh't"d. hOlll."t'\-er. as th~

transdurer's coordinates "''t're coupled. they component is the logical exp«tation.
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5.2 Field Tests (Moosehead Lake)

~Ioosehea.d Lake is located nCaf ''vabush. Labrador in province of f\ev.iound­

land and Labrador. as seen in the figure bela...·. This lake Wll.5 ("ho­

sen due to it!> closenes.~ to Wabusb. its reduced chance of city pollutiou

lmineral~ and beal). and most imponantly. the

depth of the ice .....hich ranged between 0.51 and

0.71 m.

Depth measurements \\~re made b~' drilling

the ice and lL~ing a. ruler-string. The snow cover

was an average of 0.1T m of granular snow at an

average density of 215 kglm3 with II. standard

deviation of 3-1 k91m3• The density gradient of

the snO?' was continuous with lighl flakes on the

lOp and den.<;e icy SDO", found on tbe ice surface.

The ice densit~· in some areas (near heavil~' lL<;OO

snowmobile tracks) was 937 kgjm J while les.'lef

snowmobile tracked area." had an ice density of 881 k9/m 3
, However. as tbe theo­

retical maximum ice density is 920 kg/m 3 the mea.<;uremenl of 937 "91m 3 indicate-;

inaccuracy in the free-board measurement or inaccuracy in the OleilllurCOlCfiI of depth.

First. the lake was Slln-eyed for depth profiles. The deepest ice. 0.71 m. was

found at the ea.'>t side of the lake. in the center the ice was a depth of 0.60 m. and

at the Il,est side there "'as a depth of 51 em. Although difficult to detect. the under

ice profile "'8.5 suspected to vary locally. Therefore tbe ice "'as profiled 5 times in

a circumference of 5 meters (center. and -I perpendicular comers). the variation in

depth .....as lip to ±4 cm. The measured depth of the lake at all test points was fonnd

10 be greater than 6 meten;. The temperature ranged from -30 to _15°C. and at the

surface of the ice (probed through tbe snow) the temperature wa.~ found to be _8°C.
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5.2.1 Experiment Description

Experiments were conducted over a series of -I day1i in a consistent manner.

T ..ll transducers ....-ere £razeD. with cool

water from a thermos to the ice with a

separation of 0.60 m at a magnetic N-E Figure 5.6: Expmrnenl 5<-tuP.(X",Stl'ib- P,-"l

orientation. The reasoning for the t\-E Clnrtd Itt
orientation w&.~ that t\-E is parallel to

the shape of most cracks on the lake that

"''ere eveI')' 2 - Sm. The hammer strike

W8.~ made at a distance of 0.60 [II in -I

points around the sensors (Figure 5.6).

Other experiments conducted included

different orientation of the sensors and
hammer strike location.~of lip to 3.5 m.

The \'arying strike locations were performed in order to investigate bow impact loca­

tion affected frequeocy response. as weU as to \-erify the cross-talk of the transducers.

Each strike w&.o; repeated 5 times at each location.

5.2.2 Time Evaluation

Each e:q>eriment was p:ocessed with a 500 pole band pass FIR filter between 0.5

Hz and 6.5 KHz. followed by a cross-oorrelation. A search for the CT05....correlation

maximum and second ma;.cimum sample count was made between tran'lducer 1 and

transducer 2. From the first maximum, the velocity was calculated. Then with a

cros....correlation oftransducer 11\;th itself, depth can be determined. Figure 5.7 is an

example of cross-eorrelations of the first transducer with the secoo.d transducer over

a series of tests which were then overlapped upon each other and graphed for visual

comparison. The domiwwt signal corresponds to the first P-wa.'Ve time difference

from the first transducer. The crossing happened at an average of 42 samples after

the initial. The velocit)' was calculated to be 3600 mjs for 0.51 m. 3810 mls for 0.60

m. and 3650 for 0.71 m with an error of ±lOO m/s The 0.6 m site was heavily

travelled upon by stlov.-mohiles and was oriented in the lake center where &.'1 0.71 and

0.51 m were both at the lake edges and had little snowmobile travel.
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Figure 5.7: Velocity Cros... Correlation of Transducer I with 2

Ouce the velocit~· ",-a,,; calculated. tran.~lIcer I wa.<; cross-correlat.ed " x to deter­

mine an ice depth-time correlation. ThL<; experiment was automated to collect datil

from groups of the ~ix cross-correlating experiments adding all six cros.<;-correlatioos

together. and then a search for the se<:ond maximum peak was conducted. The re­

sults of the 0.60 m cros~-<:orrelation are described in Figure 5.8 with the experiment

setup.

The time differenre was calculated from the geometric difference of the first arrival
time from the first reflection time as follows in equation 5.2 "'here HToq i~ Hammer­

Transducer separation.

(v~ - HToq) SamplingFrequency
LiSamp[es - Via (5.2)

The results are summarized in Table 5.2. Note tbat in Table 5.2 title Actual
Value refers to characteristics directly determined.. For example, P·wave velocity

was used as a typical velocity in fresb water ice and tbe depths were detennined. by

drilting tbrougb the ice sheet. Additionally, the title Experimental Valuell refers



" ......
Figure 5.8: Cross-Correlation Summing of 5 Tests at 60 em

to cros.<;-COITclated data measured with the sensors.

Measurement
P_I"lllve Velocity

Cross-Correlation

% Error
0.8'1"
-1.4%
2.5%
217"

Table 5.2: Cros.~ Correlation of Experimental Data vs Tnlc Values

5.2.3 Frequency Evaluation

To reduce tbe random noise and augment non-random signals with each depth mea­

surement (each hammer strike), groups of 10 data set's x and z frequency components

were summed together [16;. However, toS seen in Figure 5.9 {O.71 m} tbe decay of

tbe impuL..e signal occupies less than toOO samples. a danger existed that the 4096

points of data lIII"Ould oollect 100 much noise power aIid comJpt the results. Therefore

the experiment was reduced to a 2048 point FIT (compared in Figure 5.10) which

bas a stronger peak.
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Figw-e 5.9: Typical ~100se Lake Signal Decay

,-------­'-
F'igure 5.10: 2048.4096 Poinl FIT Comparison



The data for all three diffttent depths ""&5 tben e,'8luated using this metbodoklgy

(Figure 5.11). The tim. dominant fnqueDCy peala will~ to e8d:J of tbe
depths. Higher frequeocy peaks are rerults from impurities in the ice ~cb M cracks..

Thedommant frequency peaks for depths of 0.71. 0.60 and 0.51 m an 2800. JJOO. and

3200. mpecti~ly. To view a collection of some individual results of each experiment.

go to Appendix B. As determined in the previous section. the velocity of a p·"..ve

in ice is 3750 m/s. Substituting the dominlLtlt ~ueocies and velocity into Equation

1.6. the corresponding results as compared to the physical measuremenu can be seen

in Table 5.3.

Measurement
Depth (frequenc~' domain)

% Error
5.6%
3.2%
12';{

Table 5.3: Frequency CorTeIaliori to Aetual Vah~

~.

1.. _ _ _ __...
figure 5.11: frequency Evaluation of 3 Depths 71. 60. 51 cm
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5.3 Error Analysis and Anomaly Discussion

An analysis of the accumularin> error s~"Stem will further verif~' the \'alidity of th£'

test,; and build a basis for future designs to consider. The sourc~ of l'rror in thi~

experiment can be generalizt"d into thret' specific areas: physical propertie:< of ice me­

chanics. sensor characteristics. and signal processing. The follo\\ing sections ('\'alu3tt'

"\1('h characteristics of lhe experiment

5.3.1 Physical Characteristics

Before starting the physical characteristic:>. a brief list of somE' terms will be definro

in th(' following list

Frazil: super cooled water, often mO\;ng. forms into tiny. randoml~' orientoo. spher­

ical crystals under ice sheets.

Large Cracks: cracks with \"isible air spac('S.

Small Cracks: small meaning \isibh' wilh no air space.

Floating if."{' is subject to many endronmenta,l disturbances. Water currents are

almOlSt always present in the o«>an and also wr:o-· common in lakes. Currents caUS<'

~frazir· build-up and non-uniform subsurfacri' ice fonnation. As well. currents and

thermal expansion produC<' f0rcf."S on the ic{'·s horizontal axis which results in a

constant appcaranC(' of cracks. Since snow has a typical density of :!50 kg/TIl J its

weight adds II substantial \"1!rtica,1 pressUl{' to the iet' and also causes crocks. Figure

0.13 is an example of belol\" icri' surface variability in the Arctic Ocean.

In the case oflhc experiment'" conducteO \\ithin this thesis. the laborator:o-- exper­

iments were condueted on crack-fret> iet'. \\"hereas iet' in the field experiments was

compOlSed of of hubbIes and \"t.'rtical cracks wnich frequently appeared. Attempt",

\\"E'rl" made to avoid large cracks. howe\·er cTack avoidance pro\"t'O difficult and ex­

periments were conducted near large cracks (within 1 meter) and over some ~mall

cracks. Core samples were a considered possibility for ice characterization. however

a bubble distribution would not effect the experiments as the 10\\"t'St frequency will

always be the bottom of the ice and second order iet' dynamics are negligible.
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HOl\T\'t'f". Ihe most noticeable \1l.riabilil~· efft'Cts on ire nleasurments "'-as Ihick­

ne:;,s \1triabilil~' of lhe subsurfaC't" planes and "i~'- snow on the ict" surfact-. As

I"'Xplaint'd in -The ~IOOSt"ht'ad Lakt"- ~perimen[al procedure. the ice depth in Ihe

60 cm arra varied by and absolutr error of :!::-ICT1l. As the experimt'ntal \':l.Iue of thl'

I:.... i.~ 3810 ± loom/.! [he error can be cakulatE'd from the frequrn~'-d('pth{onnula

l.fi (Equation 5.3). resulting in the \1l.lue.o seen in Table 5.01. E..xtrl\ notiCl' should u('
pllid to the error of measurement which incn'ast'S as the depth of the icc uecrell.SCS

6f I af -d)' of -,- ).'" V(ad=o .... -+(0\:.,.° ON'

Depth Error
,I cm ± 0.160 KHz

~: I~~::~~~
Table 5...1: Frf'quency Errm-

(5.3)

The l('St~ suggest that thl' iet' in :\Iooschead Lake is nonunifonn below the foot­

print covered. The footprint of resonancl' helo\\' the t(':it area can Ix> dNcrminoo.

from the Frr.:;nellOliesofthc icrdt-pth

Largr lilt fillt'd cracks would po>e a definite signal boundary. hO\\"t'\"l"f. smaller

cracks arl' al<:o not a perft'Ctly cleaved ,",urfact' and the horizontal planl' "'uuld also

two ufillf't rompI"l"SSion. Yet a si!llal can :>IiII w'I\"f'1 through tht'1ll. In reference to the

l"'XpE'rimcnt3Uon. thete is no delt'Ctablr t"\idenCE' that the crack" had any affect on

tht'rt"Sults.

HO\\T\"er the effects of bubbles and small bubble density are 1l.1H't'length depen­

dant. Acoustic "'11\'(' scattering can ocr-ur from bubbles. hO'i\"t'\"E'r. tbe ad\atItage of

resonanct' ml'asuremt'nt is that the IOWl'St resonance frequency lIoi11 indicate the depth

of the ice and the bubble clouds \\ill be seen as higher frequency harmoniCll (figure

5.12).



Figurt' 5.1'!: Bubble Clouds In Ice

5.3.2 Signal Processing Limitations

Fourier Transforms have a iimited resolvable frequt>!lcy. To capture a frequcncy

rt.,;olutioli of 1t"SS than 0.050 KHz/point tht> Fourier Transform will havl.' to e),'tcud

into the tlo-slgrlal region where the noist' of the instruments will bt>gin to dominl\l(,

tllP measurt>ment. Then-fort>. the error ill mpa:;urement growf; al lower frequencit'S

(Equation 5..1). The FFT error on expt>rimental depth arp explaint'd in Table 5.5.

(5.-l)

Timing crrors aft> caused by a sampling disC'rl'tisation t>rror. which is a simple

calculation of error/sample. For instance. the error in the wlocity Equation 5.5

calculation can be St'en in Equation 5.6. With the experimental sampling frequency

of 200.000 KHz/Sl'C. the differenct' corresponding to one sample causes an error of

±i2 m/s lhat is dt>tt>rmined through Equation 5.6 and corresponds closely to the

statistical t>xperimental error of ± 100 m/s Thl' value of this error indicates that
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2.8';;;:
2.5'lt:
2.1%

Table 5.5: FFT Error

dIP limitation of this ml'asurement is caused by slo'l\' sampling frequenc~"

(5.51

,;\" = "4.BS(~';(I!f...mpl.,n9)) (5.6)

The error in it one sample delay for depth r~adings can b!' calculatE'd from Equa­

tiOll ::..': a", S€(!n in Equation 5.8. \\"ith a timt> between each sample at of t!tsampling

frt"1ul'm'~') and depths of 0.51. 0.60. 0.71 m. thE' resultant !'rrors an' shown in Tabl!'

Hi

(5,7)

(5.8)

1.19'"
1.3::' 'It:
1.-1 ~

Table Hi: Timing Reflection Error

The final error to discuss is tnt' tht> FresnE'1 Zone error The fresnl'l zone {16J

statl'S that the resohing time capability can tx> no greater than rJ as dl'SCribed in

Equation 2.13. As the signal for C'ross.-correlation is filtered at 6.5 KHz. the \.1!nical

resoh"abll' limit. rJ" in the time domain is 0.1-1 m.



5.4 Conclusion

Frequency and time evaluatioo5 demonstrated consisteDt results between tbe CtoL....

correlation a.nd Fourier Transform. which included an incorrect high frequency and

time correlation at 8 depth of 0.51 m. This measurement orO.SI m was made ...·itbin

100 OJ. of the sh.Jre and in line v.ith a brook wbich could be an indication that ice

frazil Of other deposits may have c:oUected at the bottom of the ice. Additiona.ll~·.

frequenc:~.. peaks &ll' IIOl s.harp which indicates a po!Ilible variation in the ice boUam

layer shape. This is \'ef)' commoo for sea ioe aod is possible for lake ice if there is

significa.at IDOViDg curmn hel0V0' tbe ice. Frazil buildap~"U suspected as the profiling
measurements around eacb site re\'ea1ed a ±O.025m \lIliation and a feeder Str!8m

wa... near~·. figure 5.13 i5 an extreme uample of such l'lUiatioDs in ice layeB and

frazH buildup on tbe ocean boU.OOl of arctic -. ice.

figure 5.13: tinder Ice • Am.ic Ocean

This method of teSOll&Ilce has proven a viable technique for the detenni.Datioo of

ice depth and ice block characteristics. Timing calculations required high sampling

frequencie!l in order to calculate correct errors. However, frequency analysis was

able to sample efJectiYclY at much lower frequencies. Croa<orrelation in the time
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domain is an extremely useful function as its results are not dependam on signal

amplitude but signaJ shape. Howe\"{'r. because x and z components on ('ach sensor

9."ere discovered to be coupled I\·hen frozen OntO the ice surface. one component

was disregarded meaning that higher sampling frequencies could bE' used. With thE'

rf.'duction of each transducer·!' z component. the opportunity E'xists to either extend

tht' sampling frequency to 400 KHz. or to add two more transducers to incrt'a..;e the

data·;;:accuraC\·

One remaining point of interest is the differenct' between the resonance bandwidth

in tht' ~perfE'Ct~ iet" block created in the laboratory and the field ice block.'i. The

fr('quenc~· content of -perfect- ice had a sharp bandwidth of less than 0.20 KHz

whilE' th(' FFT limitation ""·as 0.050 KHz/point implying a sharper peak than \"isible

(Figure 5 ..1). Con\"erst'ly. the resonant'E' peaks found in the field exceeded 0.50 KHz.

suggesting a nonuniform bottom in the footprint area.

Thest' results suggest the authenticity of the resonanct' calculatioll. and further

experiments to complet(' a full e\"a1uation of different depths would be an lISSt't for

thL~ tOpic

A.dditionally. eITor analysis has indicated that th(' sources of ('Hor are in the

actual variations of the ice depths ±O.Q.l.m which resulted in a broad frequen~· peak

for each depth instead of a db..tinet sharp point. As well. the Fourier Transforms

haw an error region of up to 0.025 m and a timing error of up to 0.0087 m. Howen'r.

I\ith the error of \·e!ocity included in this measurement. the result is increased to a

\1l,luE' of 0.02 ID. Yet. the primary limitation remaining is still the Fresnel Zone limit

of 0.042 ffi. III summar~ ... the errors of this experiment are most significant 9.ithin

th(' FrE'Snel limitation. fourier Transform limitation (caused by sensor noil;e). and

within the sampling frequency
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Chapter 6

Conclusion

In previous feports. [1] [2) acoustic analysis ofi~ depth ~'asdetermined to be feasible.

although at the time of such reports. analysis had never been llttemptffi. In this

thesi~. till.' evaluation of iC{' depth through acoustic analysis has pro\"en 10 hl> a

\'iablt' method. As .....ell. the refinement of instrument and computer technology has

n'3('hed a level where acoustic ,;ensing instruments deli\'Ct precise data in regards to

i('(' vibration measurements.

Fulfilling cach of thE' target ohjectives incorporated a sucressfull'Xt'Cution of the-­

ory. de\'l'loprnent. simuldtion. and experimE'lltation: whetI' each stagt' wn,_ dependant

upon the completion of the predous stage. In revie..... of the target goals of this thesis.

1ht' target goah accomplished were to

I. ~Iathematicallypro\'('- jet' resonanct' and time reflections are a viablE' method

to detennine ice propenies

2. Dt!\-elop a mClhod of instrumeming ice \;bratioDS.

3. Create software for the data acquisition s~·stem.

..I. Collect experimental data on actual ice.

5. DE'\-elop a functioning algorithm to automatically calculatE' ice propenies.

The ice resonance method pro\-ed successful as an excellent method in determining

ice depths. \\ltere Equation 2.16 and figurE' 2.3 indicate that the acoustical rangE'

bt>tween 0.2 and 10 KHz corresponds to an ice depth of 0.2 m and 10 m of ice.
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On«.> this v.as established theoreticalJ~·. it was further prown experimentall~·. It:;ing

a fn'qucncy bandv.idth of S h:Hz. and a sampling frequency set at 200 KHz

Reflection energy loss was calculatM using Equation 2.9 where this "''as a good

estimation duE' !O thE' Sf'nsors being capahle of re::ohing thE' icE' resonan("(' power.

TIle reflection and the transmission COt'fficients were calculated anti can tw st't'n in

Table 2.3. The values in Table :!.3 indicate that poor air coupling of a tran:>ducer.

a:; "'·ell as an actuator to tht' ice surface must bf.' eliminated for this experiment te>

he \·iablc. The freezing of the transducers to the ice swfaCE' accomplished this.

The experimental setup was capable of achie\ing a large portion of the rl'quire­

ments. The critical successes are the sensor band..... idths and multi-channel. high

frt'Quency sampling. All other requirements either exceeded or were quite close to

thE' required specifications. Two such components of the design which "'..ere inferior

includt' the impact senor saturation and the signal to noise ratio of the transduct'rs.

Furthermore. preliminary experiments roN the nE't'ded spf'(:ifications. the abilit~· of

tht' system to rcsoh-e ice resonance was able to be proven on actual ice sheets

Additionally. Lab\·iev•. the choice of data acquisition softv.art' was ideal for thL~

application. LabVi('II.·s hardware accompaniment .....ll::i capable of both undergoing

quick experiment setup and last minute alterations.

A particularly interesting point to notp i..~ the ff'C"eh1ll method of Ihe data files

to the pOSt processing program: :-'Iatlab. The data file·s head('r infonnation starts

pach linp with 9t until the first line of RCtuai data bE'gins where the text: ·A=[" is

placro that signifies the stan of the ~Iatlab matrix_ Also. the last t.....o characters in

the matrix are .J;. which signify the end of the matrix. The a(h"antagE' of this file

tyPf' is that a data file is able to be imported directly OntO :-'Iaf lab as a matrix·.Jr.·

simpl~· b~' typing -dataJile.ltame.m~ III the ~latlllb prompt.

The simulator has confinned to he an exc~lIent tool and guide for the devdop­

ment and an effective refinement method of data processing techniques. Tabl.. ~.3

contains II- list of the proces.-;es u.sed which deJi\"ered ptomising indication of suc­

ct'SSful signal analysis. from the results. there \\"ere various imponant o!>senations

that were madE' the first of which was that a required low point Fourier Transfonn

of -1096 points opposed to 65.000 points \I,'as needed. coinciding to what was pred­

ouslye).-pected. Also. the simulated data demonstrated that the decay of the signal

\l,uuld be in the order of 3000 samples. ~1"t the residual the random noise po\l,-er in
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th(' remaining 62.000 samples summed to a number o\-er the powcr sp('('"trum of the

signal of interest. The second obsen<ltion stresses the imponanC't' of signal filtering

when dealing ~·ith correlation analysis. The filtering r('mO\~ all corrupting data

and. th ... refore. impro\'es the accuracy of the correlation by eliminatinl: non-signal

oscillations. The third obsen:ation is the closeness of the first and second reflections.

for at a depth of I m. the time between the reflected ",<lve and tmn,,'verst' .....ave

b only .)() samples. Cross-correlation was capable of resolving this data. how('\·er.

during simulation of this data. cross-correlation proved to bE' not effKtin' with the

inst'rted artificial signals. Although simulation is onl~' an approximation uf the 3ctual

signal experimentally obst'nw. this method is an an eff{'(th-e tool for all insight in

the analysis of true data.

Frequency and time evaluations also demonstrated consistent results regarding

the cross-correlation and the Fourier Transform such as an incorrect high frequl'ncy

and time correlation at a depth of 0.51 ffi. ThL" measurement of 0.51 m was made

within 100 m of the shore and in Hnl' with a brook. which is belil'\w to ht> an

indication that ice frazil or other deposits had collected at tllf' bottom of the iet'.

:'<Ioroo\·er. frequency peaks ",-ere not sharp. indicating a possible \<lriation in the

bottom layer shaPE' of the ice. For most ice. this is common and is in correspondence

to measurements .....hich sho~' a :: O.O~5 nl variation. Figure 5.13 is an examplt> of

such \ariatiotlS in ice la\'ers with frazil buildup on tilt' oet'an bottom of arcti{' sea ice

This experimentation using iet' resonancc has prow'n to be a good technique in tl1l'

dctermination of both ice depth and ice block characteristics. Timing nuculations

required high sampling frE'Quenei~ in order to cakulau-' the correct errors. Howe\·er.

frequency analysis was able to be sampled effectively at lower frequencit'S. Cross­

correlation in the time domain was an extremdy useful function wh('rN\S its rE'Sult~

are not dependant on signal amplitude, b~1t on signal shape. Yet. because x and

z components on each sensor \\'E're coupled together ~'hen frozen onto thl' ice. one

component was disrt-'garded which means that a higher sampling frequen{'y was able

to be used. With the reduction of each transducer's z component, the opportunity

existed to (a) extend the sampling frequency to .,100 KHz. or (b) to add twO more

transducers which would increase the data's accuracy

A final. point of interest involves the difference between the resonance bandwidth

in the ~perfect~ ice block (created in the laboratory) and the field ice. The frequency
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contcnt of ··pcrfl'Ct"· icc had a sharp bandllidth bt>ing less than 0.20 KHz. whil.. Ih£>

FFT limitation was 0.050 KHz/point this implied a sharper pE'ak than II"dS lisible

(Figure 5..1). Com1"rst'ly. the resonan~ peaks found in the field exCff'ded 0.50 KHz.

suggesting a nonunifoml bottom in the footprint area. Error analysis indicated that

tht' source:.:. of enor Wl're in the l-ariations of the iCt' depths ( ±O.()..Im ). ~lorl"O\-er. the

significant errors encountered ~-ere thl' Fourier Transforms that had an enor region of

ur to 0.015 m and a timing enor of up to 0.008, rn. Yet. the primar:--' timing limitation

remaining was still thl' Fresnel Zone limit of 0.1.1 ill. In summary. the ..rrors found in

thi.~ experiment arlO most significant ~ithin the Fresnel limitation. Fourier Transform

limitation (caused hy sem;or noise). and within the sampling frcquenc~·

Timing and resonant methods lI,-ert' prol1"n theoretically and prllCticfllly. Addi­

tionally. effccti\-e instmments were developed for accurate analysis of the required

spffifications. The opportunity exists for further de\-elopmem of a delict' which

i.~ hand-Ilcld and therefore a marketable product. A markE'ting assessmem is he­

yond the ;;ropE' of this thesis. the opportunity remains for fmure experiment,llists to

ronsider

85



Chapter 7

Future Research

Thc data colll:'Cted in this experiment proves that iet' profiling through resonance

and timt> mea.~\Iremems is a \iable method for routine. practical and industrial IISC.

HOWt·\'{'f. impro\"{'ffil.'nts and other experiments can still he made to the original

tran;;dUCf'f design. Further testing using the existing setup wlll continul" 10 push the

experimental rchnemenB a..~ dose 11$ possible to a final product. Additionall}" "ith

the anal~'Si~ of depth. analysL-; of each indhidual transducer could No made instead

of stacking all (>omponems of all tran.'iducers together.

Limitations encountered dUring the experimE'ntation dealt primaril}" with the re:o­

ooanet' of the transdu(:er,; and tht' signalLO noist' ratio. To reduce these shortcoming:;.

II higher Ordl'f analog filu'r can bt> utilized to aid in the signal saturation producffi by

re:;onance. Careful expe-rimcmation should be conducted with a simpl(" transducer

so that further reduction of its signal to noiS(' ratio can be achieved. For example. h~·

placing- the capacitor hanks closer to the power and ground lines a further reduCtion

of noise ma~·()(.'('ur.

Futurt' designs should also consider the cost effectiveness of a ··laser optical \i­

bration measurement s~'Stem- which will product" a \irtually noise fret' and linear

signal. The usage of different material types to reduCE' the transducer size and trans­

ducer·" support frame may reduce this resonance problem. For example. this could

be achieved by sealing the electronics in epoxy resin instead of a milled plastic block

To further prm"(' this methodology an extension of the current experimental data

penaining to first-year and multi-year sea ice and a depth range beyond 1 m of ice

is required.
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Crack.... lUId bubbles apPE'al to caUS!" link- degradation of thl' tl'::itt'd signals. ho",-·

l"\-eT. \11riahll' frequeocy experiments on cracktd and bubblt'd 1('(" ma~' m1'a1 tM

tran.:.--pare=l.CY of crack and bubbll' boundaries.

Finally. soft~1lJeaUlomation dl'\~lopment~"OlI1d be lUI a.ssf't for futu"" f'l'St'archeTS

in this field. For eAAmple. in this e,,:perimem data ~-as collectt'd and preproce...-..ed in

Lan\ ·il''<\' follou.~ ~. fun her processing in )'Iatlab U this system ~"t'Tt' to bl'- dl'\?i·

0Il<"d intO a single iioft\\1\Tl' instrumemalion package in C++ and then impontd into

Lab\·ie so that a final hardll.-art' implementation could be de\l!loped. thl' l('('(l\l.'t!·

of data ould beromf' much quicker and more efficienl.

7.0.1 An Experiment With Wavelet Analysis

An extension of Cros.-;.correlation. and the Fourier analysis theory is tOl' \r8\'('IN

Theory. Wavelets arc commonly used in seismology to extract timing and frl'C\uenc~'

information from It signal burit'd in noist'. Therefore. wa\'t'let analysis seem;; to Ix> thl'

mo;;:t aPiX"alillg choiC't' for US(' in experimentation. A diagram of timE' \"5 frl'C\uellc~'

i.. sho....n in in Figure 7,1.

Re:;('Itrdl v:as ronduett'd using simulatt'd

data experiment in effons to e....-tract urn·
ing infOl"mation. The hasfo "'"3\'t'ler chO!ien

W US(' U-a:i tht' DaubKiUes ;9 II."3wJet bfo.

cau;;p of It... lillf'ac pha..;e delA~' and 109.- pass

filtt'rin~ charactE'risucs.

ThE' Contmuous \\"a\l!lel Transform

(C'\\I) """as dE'\1'1optod as lUI alternative 81>"

prooch in O\-ercoming the resolution prob­

lem of thE" Shon Timt' Fourier Transfonn

(STFTl. ToE" e\\! Malvsis is carried out
similarl\" to the STFT a~!lh"'Sis. in that the Figure 7.1: \\'!lvelet: Frequency \"5

signal ~ multiplied uith a 'function (similar ~i~t' "ind01\' function in the STFT).

Additionally. the transform is computed separately for differing segments of the time­

domain signal. Ho":e\'er. there are ttl.·o main differences between STFT and CWT:

1 Toe Fourier Transfonns of the ....indo",'ed signals are not taken, and therefore.



a single peak ...ill bf' seen as rorresponding (0 ft simL"Oid {Le. negathT frrqllenci~

Mf' not rompUl~I.

2. For CWT. the ...idth of the ...ind09.· is changed as: the transform i.... oomputoo

for t'\~. indi\idllal spectral oomponent. This is the mw significant char.tC"teTisl:ic

of the W~l\'t'let Transfoml.

The oontinuous "'""3\"("let transform is defint'd I\S foI1O"-""5:

('.11

:b sE'en in the abo\"{' equation. thl' transformed signal is a function of tw'O \1Iri­

abies. -:- and s. the transhttion and scalI' parameters. rl'Sp«ti\"("ly_ l:(t) is the trlUlSo

forming functioll and is called the ~~Iother Wa\'det" The "11\"("let function is It

built-in feature of ~lfttlab.

l'sing the simulated data. the known insertion impulse i!l It 5 KHz sine func_

tion. Therefore an e:\:pe<:ted strong correlation to the reflected data is on wfwelet

Ilumher :?O and abo\-r (100.000/5.000 :::: 20) when using W8\"(" number in the wan'let

dPromposition. HO"-"("\'t'r. upon examination. the "1l\"E'let analysis "lIS too noisy to

hto abl£' to retain any reliable information (Figure 7.2). The reason for this bf'ing thar

the filtrring of the Daullt"Chies \\·i\\-elt'l. is not a perfect 10"-' pass filter and results

in corruption from the inserted rl'SOtl&n<'t'. There are mRny OIher t:\-pe" of Ilo'aVt'lelS

that could be used. and a tborough investigation of different "1I\'t'lelS may te1o?a!

intl'rt'Sting results.
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FiguJ'e 7.2: Wavdel Experiment Data

89



Appendix A

Field Test Description

A.I Institute of Marine Dynamics

A.I.l Environment

Thf' In~litul(' of ~Iarinl' D~'1lamics (l~JD) j,; located in St. John·s. Xewfoundland.

Canada. The facilitie< amilable at the n.[D consisted of a cold-room. a small jet"

gro"-ing tank. and a pool of room temperature freshwater. A photograph of the ice

block prior to being lifted into its tank is shown in Figure A.1.

A.1.2 Experiment 1 Procedure

The jet" tank was filled \\;th freshwater and left in the cold-room at a temperature

of -20 C for IU days in order to achieve a maximum iet' thickness of 1l..t2 m. Tht'

progress of the freeze \I.'a.;; monitored periodically by drilling into the- iCE' hlock. Till"

typ(' of ice ('["('art'<! b~' thi.« method was granular. The quality of the iet.' was \'inuall~'

bubble free. without any \isible cracks.

Onct' th(' let' was frozen to its maximum thickness. transducers were frozen to

the top of the ice. This was achieved by pouring a small amount of water onto the

ice surfaet' followed by placement of the transducers onto the ice. Whell water lI.·as

poured ontO the ice. the ic'" cracked loca.ll~· in approximately a 0.10 m diameter area.

The transducers were placed 0.60 m apan and were not moved from their original

position. Hammer strikes occurred at distances of 0.15. 0.30. and 0.60 ffi.
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Figure A.l: Ice Block at IMD
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ThE' hammer strikes caused con::>iderable local cracking of all are" of approxi­

matel~' 10 em in diameter. The frozen tran::>ducers demonstrated excellent acoustic

collpling to the ice surface. In this cold en\ironment. the transducers and the el{'('­

tronic cabling functioned consistently

A.1.3 Experiment 2 Procedure

A::> in Experiment L the ice tank was again filled with freshwater and left in the cold­

room under the same conditions in order to achie\oe a tlU\l(imum ire thicknes.-; of 0...12

m. The type of ict' crt'ated by thi::> method was. as in E.xperiment I. granular. Again.

the quality of the ice was \'irtually bubble free without \'isible cracking. How('n!r. in

thi::> experiment. the ice tank contained side and bottom heaters that were wsPd to

ensure a linear freeze from the ice bottom.

Once thE' ice was frozen. the ice tank was taken out of the cold-room and main­

tained at room temperature for 2-1 hours with the tank's heaters on. The heaters

scn'ed the purpose of melting the sides of the ice block so that it could be lifted out

oflhe tank by crane (Figure A.1 ).

The transducers wert' placed on the ice 0.60 m apart. Out' to tht' icc heing at

room temperature the tran:>ducers were not able to freeze to tbe surface and remained

coupled only by a thin layer of water. The transducers remained in their original

position through out the experiment.

Hammer strikes occurred at distances of 0.15. 0.30, and 0.60 m. The hammer

strikes. again. caused local cracking in an approximate diameter of 0.10 em. The

transducers demon::>trated excellent acoustic coupling to the ice surface. as \\oell they

appeared to resonate.
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A.2 Moosehead Lake

A.2.1 Test Description

~Ioosehead Lake wac; chosen as the location of this experiment due to for its idCl\J

ice condition.'l of 0.5 to 0.7 m and exceUent acce!l..or;ability. :'.loosebead Lake i.~ located

il.t 53D iO" Easl and 67"52' t\ortb.

Figure A.2: !-.10n0;ebead Lake
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Site: .\2

Datt'
Air Temperature
Ice Surface Temperature
Ice Density
Densit'· ~Iethod
Ict'Depth
Snow Density
Skidoo Traffic
Date
.\ir Temperature
Ice Surface Temperature
Ice Densitv
Density ~iethod
lee Depth
Snow Density
Skidoo Traffic
Date
Air Temperature
Ice Surface Temperature
Ice Density
Deru;itv ~Iethod

let' D('pth
Snow Densi,,·
Skidoo Traffic

~Jan-Ol

-23C
";C
93j~·gJm3

Freeboord
O.6m
206kgJm3

High
22-Jan-Ot
-15C
-8C
858kgJm 3

Freeboard
O.71m
'138kgJm 3

Lo.
'J.3..Jan-Ot
-15C
-8C
S81 kg/m l

Fret'board
O.51m
'1+1kg/m 3

~Iedjum

Tabl(' A.1: Site Experiment Data



fi~ A.3: ~I~bead Lake Experiment Area. X ~Iarks the Test Spots
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Tabll' A.2: "Iooselake General Equipment List
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Appendix B

Individual Transducer Data From

Moosehead Lake

General seismological theof)' [16; suggeU..~ adding multiple transducers and multiple

lests together to reduce transducer error and random noise. However, for general

interest. below is a compa.ri!iOo of the two transducer frequency relPOnses on 0.71 m.

0.6 m. and 0.51 m ice depths.

{~J f ...J
'UII~

Figure 8.1: Four Individual X Components of 0.51 m Resonance Data (Set 1)
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Figllre B.2: Four Individual X Components of 0.51 m Resonance Oats (Set 2)
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Figure 8.3: Four Individual Z Components 0.51 m Resonance Data (Set 1)
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Figure BA: Four Individual Z CompoDeDlS 0.51 m Resonance Data (Set 21
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Figure 8.5: Four lndividual X Components 0.60 m Resonance Data (Set I)
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Figure 8.6: Four Individual X Component.~ 0.60 m Re50nanoe Data {Set 21

Figure 8.7: Four Lndividual Z Components 0.60 01 Re50oll.lloe Data (Set 1)
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Figure 8.8: Four lndividual Z Components 0.60 Dl Resonance Data (Set 21
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Figure B.9: Four lndividual X Compollents O.71m Resonance Data (Set I)
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Figure B.IO: Four Individual X Components 0.71 m ResonanCJe Data (Set 21
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Figure B.ll: Four individual Z Component5 0.71 m Re!iOnlUlce Data (Set I)
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Figure 8.12; Four lndividual Z Compooetlts 0.71 m ResoOllDCle Data (Set 21
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Appendix C

Transducer Circuitry

12V

FigUfl' C.l: Transducer Pou'('r Supply

10-1

~01Uf

LT1000

LTl009

5V

01 uf



D.' uf

FigurE' C.:!: Transducer ~Iain Circuit

From_
onADXL105

SignIITo
Compoa.

Figure C.3: Transducer Impedance Reduction For Long Cable !':oise Reduction
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Appendix D

ADXL105 Data Sheet
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Appendix E

Simulator Matlab Code

J:.a".~l&t.~ for u_acon 00 ..0 .~"'

~.k. v..."'~. &"...1 2001

xnnunnmnnut

~i~~~~~~~~~m

c".;>Uur.....pl.q.froqu••• ,.1OOOOO:
.oo;putor"""P1od..pou...-SOOO:

O.......""'.f'l· ...p.o.l.·.·.upal.·C· ...pal..·D' ...JDL\.· ...I.... •...po.ll

:~:::~:::~~:;::~;:~~:~~:.~::O~:~:~;~~:~~:;::~·.O.7)

'_."""',...ur... (l,<_ter.•_l«l.po••""
f.r'.\:<""P"'....."""lod..po ..

' ....UT.Jr'j.'.(I/._' ..,hq.U-".yl:

"""•• olut.......ruetf'n ' ... ·.O.(l(l(l'J.·n.._loc:.u ..... 1,'doo<.o1.,,,,',O,OOI,'de••y.I •••uo.'
.O.OI1S.·u.dopo· O ••_'....oap.Lod..po....lJ;

xunnnunll11nU
1."1"'......&1>100:
nuurnnnnnnn

,_'.....,I ..·C.. froq"""'r:lOO(l(lO):
,_ur.o_lo<l.pol.ll"·SOOO:

••o.dopU-<l.1,<._,_rot....__ l~

" ....1""",.-3T50

110



..,.....Ilqo t....<l.OOO6OIO.OOO1

.......Ilqo I.ca....,-1
""'.obapo.clo"y.t -o.OO:lSO
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1«""....<y.do &bs{fUltoq>.npal)l:
l<oquoo<y.t l·-:1ODOO;
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loti·'''••
Ir~{I)-t1'I)'<:IOOOOO/o);

nmnuunnl:UUl:
UullocuooU••
UUl:UUUUUUl:U

ttl"'(2'("'I."'{{tno.d~r.r.k_t.tR.«...1121·:l-.<o.""p.k·2')/......lo<"f'·
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.'204':
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noplotI2311.plot(hnt.ut..a.I ........'(O:300J).Uth(·I'ro. ut,Yol·J.
Ll.bol(·S8pl.. ·):

'ubplotI232J.pln(l"'!IO:2001.1roqu&l>c,.doau.IO,2001).Utlo
(·Fr.q.oo<,&A&1""ot ..,,,orr..o_.·l.I.l.boU·FI_Oq·):

,ooplOtCl33I,pl<l,10001O•• ,l1&po .....olopoIO:UOOI1.tltl.
I'Seuor A.a.OIlLO<O Doc., EaYol0po·1.olaM1C·SMpl.. ·);

.obplot{U(I.plotlcorT'Optu l IO'l10011.tltlo
(·A.a.ll.lt hlO./A.a.otlLO,••,<II l<Ipo·l.l.1.bol{·S8pl.. ·):

,uoplotI23S1.plot(hrot.r.ll.ctlO•. &IT.,IO:29'iI·
l,rot &1.an-.yIO,2H)).uU.C·fu.t UT,.al·
I, UO<<1o.·l ••l.boll'SMpI•• ·):

'''bplot(2]fi}.plotUr ... IO,200).<0rnll't l.<ll-0ou.(O,2001).Uth
('hrot rofl.ctloo'I ••lol>oll·S-PI.. ·l:

buoplotI231i1.plotCI"...«<fl.....0II .......y(O:2!9)).
I "tl.(·I".. rollo,uOIl·).d.boll·S-PI•• ·);
lnoplot(2.1.1). <Vt(l,lt.........p&1(200,SOO).I'l20.
t ·O~S·.· .....I.t of <OlTUP"'.oc 00... '1.
l.ouOPlOtC2,1,21. plotChltor.o."p&1(:lO{l,SOOll.
I utl.(' ......lt h,..rA.a'OOIUIc••"h.o..lopo·1.
I dabolt'Supl•• ·):
buOPlot(3U).plotlt2III.I"HII.t ••1.(· .....l.".2S·1
: • .,oplot Cl2II.plOtClroq{O:200J.fr_ocy.dOlU.J.OIO:200ll.UU.
II'F.oquoocyOl>&1,.lIof ••o,or •••"""",c.·).
t <hboll'Fr.......c"L
toubplotC2221.plo'ClnqIO,1OO1.lroquoocr. h l<..od....p.olIO,200)}.
I "tlo{'F.oq...o<, LO&1,," ol ••uor ro.oooo,.·l.ll.boll'Fr_<r·);
!plOt Iuoc I p.n.. u arnrU' 2OO1.2.p Iroqu.ocy) I
to ..oplotClll).plot(ucolT(~'lSOOO)):
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