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Ln most digital mmmunlcatioo systems, if we can afford to ~ n d  data below the  

modem transmission chm it is poa~ihle to achieve the system hit ermr rate 

a small as we desire by using error mntml m d n .  The RenCSolomon m d a  are 

such ermr motml mder. that u. widely used for forward ermr m m t i o n  due to 

their ~ p t i m a l  characteristics in both Hamming distance and structure, but most of 

all, their capacity for mmectiog bath random and burst errors. 

Finding a suitable mde for a communication channel, or trying to explain how 

the Reed-Solomoo mdrr work, or comparing various demdiog methods is not an 

eary task, hmcc this t h e i r  developed agcneral pu- Reed-Solomon (RS) coding 

and decoding (rndec) simulator br teaching as weu as mearch purpam. 

The RS cod= simulator ha. two versions that can be run under Microsoft Wio- 

dowr and Unix operating s.ntem. w e t i v e l y .  A friendly and easy-to-use graphical 

uaer interface (GO11 is provided for PC. Theurer can define a code by selecting the  

symbol length m fmm 3 to  8 bits and the ermr m m t i n g  capability T of up to  20. 

Ln the enmdrr. the systematic mdc generation and theself-mipmcal gm-tor 

polynomial are used. The noisy channel can be modeled by au ermr pattem. This 

enor pattem can either be entered by the - with the arbitrary weight or pa- 

ated by an external p m p m ,  which genwatra all possible ermr positions. In the  

demding procss, both the Petemon and Berlekamp-Mbuey algorithm are &Mil- 

able for finding the  ermr locator polynomial. The simulation results show that the  

Paernon's d i r m  method is better when T 5 6. Howrver. tbr BmlelrampMsrrey 



algorithm is much faster whm T > 6. Chieo rearch is lued for locating the mor 

p&tho in the received word. Although the -I ~ l u s  can be obtained by using 

either Gauss-Jordan elimination or Fomq'. Caw-Jordan elimination 

is prefemd wben T is small, i.e T 5 10, but as T iocr-d, i.e. T > LO. the 

Fomey algorithm shavld be used in order to minimize decoding time. 

It is f w d  that the periodicity algorithm conceived by S.LcNgoc and 2-Young 

[I] [2) is a special case of the LeNgoc-Ye Transformation Algorithm [3]. An im- 

p r o d  periodicity algorithm is proposed which can eliminatr the division operation 

required by the LeNgoc-Young algorithm. The analysis shows that the periodicity 

algorithm is valid for all value. of m. Furthermore. a new periodicity algorithm 

is also dewloped by using direct solution method to eliminate the iodcx table re 

quired in the proposed periodicity algorithm. It is shown that the new periodicity 

algorithm outperforms the look-up table. Chim search. binary decision [ f a ~ t  Chien 

search) and Olianelmd algorithms in t e rm  of of both memory apace 

and decoding time. The o m  periodicity ha. a simple structure and 

therefore it is well suited for VLSl irnplonentatiao. 
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Chapter 1 

Introduction 

1.1 Statement of the Problem 

Reed-Solomoo codes are extremely powerful mdct that s lay a major mC in ermr 

control codes. This claim is illustrated by the followillg inlportaot applicatims of 

Reed-Solomon code 141: 

The digital audio disc, or compact dirc uaes Reed-Solomoo code. far error mr- 

renioo and error mocealrncot to impmve the 6ignaCto-noise ratio at the output 

exceeding 90dB, thus assurlog the high-fidelity round of the compact disc. 

On the Voyager space c d t .  Reed-Solomon and movolutional m d a  were used 

io mncavoated systcmn, hence enormous mdiog gains were achieved. They were 

responnible for sending clear pictvw from the deep apace   la net hack to earth. 

RRd-Solomon m d a  are used in systems with feedback rucb mobile data 

transmission system P1[6] and high-reliability military mmmunication systems 

that allow the transo"ssiou of informatioo fmm the recriver back to the tnos- 

mitt-. 



Red-Solomon code  are a h  wd inspread-spectrums)~temsruch as frequency- 

happing spread spctrvm (FH/SS) rvld dimt-sequence spread spectrum (DSISS) 

171. 

Code  bavd on Rd-Solomoo m d a  am developed to mntml data Bow in com- 

puten [a]. 

Since every particular application has its own distinct rmuimnenta such as 

the error comctioo capability and the mdeword length, a general purpose Red- 

Solomon mdee simulator should be introduced to help the dsigner to evaluate the 

pdonnancc of various RS m d n  and choose the mo.t &cimt RS code far a partic- 

ular application. Such a cod= simulator will allow us to compare variovs eomding 

and demding algorithm of RS cod- m d  to investigate different properties of RS 

code and thus lead to development of mew encoding and demdiog algorithms. An- 

other motivalion of this -arch ia to demonstrate RS code encoding and decoding 

principle in the clssamoms w well sr in the laboratorin. 

Chieo search ir oorrnally used for obtaining th. ermr location number. for ryn- 

dmme h a d  Rd-Solomon decoding. Thi. method is the m a t  rime monrming 

pmass in the decoding pmcedure since i t  may he necessary. in the wont cabe, to 

-ch the mtire Gdois field. Thmfore. it is abo urn-ary to search for an efficient 

algorithm to subt i tute  the Chien seam% method. 

The motivations for this theis  -rch are t h d w  threefold: 1) to deign and 

developasimulator toaid the designer, 2) to allow the simulator dao to demonstrate 

RS amd ing  and demdiog principles in the classroom a. well a. in the laboratorie, 

and 3) to dewlop new algorithm to replace the Chien m d l  method. 



1.2 Literature Review 

In March and September of 1960, Bone and Ray-Cbaudhuri proposed a class of 

emr correcting binary mdes [9J[IO], which are now called BCH mdes. The "H" 

io BCH is for Hocquenghem, whose 1959 paper p-nted independent work that 

included a description of BCH codes as a "generalization of Hamming's work' [I I). 

Fhd-Solomou codes first a p p d  to theavtride world in June 1960, in a paper 

entitled LPolynomial Cods  over Certain Finite Field.." [I21 in JSIAM (Journal 

of tbr Society for lodustrial and Applied Mathematics). They are an important 

subclass of oon-bina~ BCH coda (1.31. The mder are optimal in the sense that it 

is impossible for any linear coda with tberame length to havea Hamming distance 

p t e r  than that of the Reed-Llomoo cods. For decades since their discovery, 

Reed-Solomon codes have found countla. applications. from compact disc players 

to deep space tdrcommuoications. 

1.2.1 Three Approaches to Constructing Reed-Solomon 
Codes 

There are three appmacha to mostructing Reed-Solomon code. The b t  is the 

oribinal appmacb by Reed and Solomon [121(14]. Suppore tb t  we have a packet 

of A' idomstion symbols. ma,rn,, . . - ,mn-_,, taken fmm the finite field GF(q).l 

These symbols can he used to mnstruct a polynomial Pi=) = m. + m,. + . . . + 
rnr-@-'. A Reed-Solomoo codeword l is formed by evaluating P(r) at each of 

'FLeed-%Iomm &a ur moatmcted and d e m d d  thmugh the ux 
of Roitc field uithmtic. 



the q elements in the finite field GF(q]. 

e = (s.~,. .... +-,I = [P(OI. P(-1. ... , P(**-')I (1.1) 

I t  was M t  for quite a long time that Reed and Solomon's original appmach failed 

to lead to ctticieut decoding dprithms. I n  1982. Tsfasmao. Yladur, and Zink, 

using a technique developed by Goppa, atended Reed and Solomon'. coost~ct ion 

to develop a class of cod- whose performance a d e d  the G i l be r t -Va rshw 

bound [IS]. The Gilbert-Varsbamw bound is a lower bawd  on the performance 

of error-correcting coder that. many wne beginning to believe. war also an upper 

bound. Tsfa.nuo. Vladut. and Zmk's w a k  broke open ao rntirely omr ficld of 

rnearch that continues to attract p a t  interest fmm =ding theorists. 

The geuerator polynomial moatrvction for Red-Solomon coder is the appmach 

most commooly used today in the mor control litnature. This appmach initially 

evolved independently fmlu Red-Solomon mds a. a meass for describing cyclic 

codes. which had led to the d'icooery of BCH mdes. I t  war Gomsteio and Zierler 

who generalized Bow and Ray-Chaudhuri'r work lo arbitrary Caloir fields of size 

p and developed a new w a n s  for describing Reed and Sobmon'r 'pdyoomial 

mdes" [MI. 

Cy=ti= Red-Solomon cod- with mdeword ry~nbolr front the finite field GF(q) 

uauaUy have kosh q - 1. The cyclic Reed-Solomon codes derign criterion is M 

followo: 

The generator polynomial for a T-ermrsamctiog code must have a. roots 2T 

consecutive powers of o. where 2T  < q -  1 and a is r primitive element in  GF(q). 

n 
G(z1 = I ( = - d l  

,=I 
(1.21 



Any valid mde polywmial must be a mvltiple of the generator polyoomial. It 

foUows that any valid polynomial must have m mots the same 2T mosecvtive 

powem of o that form the mots of G(r). This us with a very coovmient 

mean. to determine whether a - i d  word is a Mtid mdeword. The geoerator 

polynomial appmach leads to a m d  efficient set of decoding algorithm 

which are introduced later in Section 1.2.2, and d i s e d  io detail in Chaptm 2 

and 3. 

The thLd appmach to RsedSolomon mica uses the Fourier trandmrmr tech- 

nique to achieve the encoding m d  decoding pmccss. k t  o again bc a primitive 

elunent in the Galois field GF(q). The Galoir field Fourier transform (GFFT) of 

ao N-bit vector 1s (co,q, - - -  ,cN-,) is defioed a. follows: 

where C, = E2;'qo'J.j = 0.1,. . . , N - 1 and X < q. 

UoliLe the convcntiooal analysis of signals in a commun~catton system, it is not 

entire17 ckar what is marot by the t m  'time domain" and Ymqueney domain' 

when we am working with roardio&te mlun fmm finite fields. However. s i n e  the 

term. of transform- or spectral- or frequency-domains haw  bee" uwd for the same 

concept for maoy yean, the ~ r m .  are also used bre  interchaogeahly. It cnn be 

shown that the follawiog tun, cooditiol?or is the r imdomain and the frequaw- 

domain, rapectively, am equivalent. 

A word polynomial has 2T consecutive powers of a as mot. if and only if the 

spectrum of the mmponding ward bas ZT consecutive zero cmrdimata. 

The GFFT appr-h ir s dual to the generator polynomial approach. The 



transfsf relationship leads to a series of elfidmt mcoden and decoders. The 

pioneering work on transform techniques can be attributed to Blahut[l7l. 

1.2.2 Decoding Reed-Solomon Codes 

lo 1960 Peterno pmvided the Curt explicit description of a demdimg algorithm for 

binary BCH codes [18[. P e t m n  intmduad an algebraic d-ding algorithm rdy- 

ing on the rransformation of power sum symmetric functions (the syndmmal into 

elementary symmetric functions. This leads to a nlatrix quat ion relating thc =yo- 

dmws to the codficimts of an "error locator polyoomid" whaw mow specify the 

locatioos of ermneous na rd ina t e  in a meived word. Peterson's " d i m  solution' 

algorithm is quite useful for m m t i n g  rmaU ovmhers of c rmn  but b r m m .  mm- 

putationally intractable as the oumba of error. increases. Peteraoo a1.o redefined 

Reed-bbmoo coda  in a cyclic contert to complement his work in algebraic deod-  

ing [19]. A lot of coder. and their mdes owe their nams  and fa- to Peterson. 

An evaluation of Petenon's contribution i. given in [20]. Pet-ni algorithm w u  

improved and extended to noobinary mdes by Gorcnsteill and Zierla (1961) [MI. 

Chieo (1964) [Zl], and Forney (1965) [22]. 

The Peterson technique of using matrix ix~verriou to find tbr  mdficienrs of the 

nmr bcatar polyo~mial~ w u  far too complicated br the demdiog of large numben 

demon.  In 1967, Bedekamp demoortrsed his powerful iterative algorithm for d c  

coding both oonbinary BCH and M-So lomon  m d v  P3][24[. In I969 Mauey 

showed that &rlekamp'a algorithm is equivalent to the method of rynthaiang 

the shortest linear fmlbadr ahin register capable of generating a giveo seqvmce 

[25]. This shiR register-bared dlmding approach is now mmmonly referred to ar 



the BerlekampMmcy algorithm. Mi&dson aod Le-que [26] pointed out that 

the BerlelampMssey algorithm F m  a computational complexity that p w s  only 

linearly with the number of e r m  to be corrected, while that of the Pet-"'. alg- 

rithmgmws with approximately the aquareof thenumber of errors to be corr=ted. 

Lo 1975 four Japaoae mathematicians Sugiyame Karahan. Hiramwarn, and 

Namekawa s h o d  that Euclid's algorithm can also be used to 4cient ly  d-de 

BCH and Reed-Solomoo coda  [271. Eudid's algorithm is a method for finding the 

greats t  common divisor ( g d )  of two polynomials. Euclid's algorithm is well suited 

for VLSI implementation because of its modularity. The operations needed to mm- 

pvte the Euclidean algorithm generally rcqvire the computatio~~ of inverse elements 

io the finite field. A modified Euclidean algorithm [28) can amid the computation 

of inverse elements and it is very similar to the Bcrlekamp-Masrey algorithm. 

1.2.3 Syndrome-Based Decoding vs Rernainder-Based De- 
coding 

The BCH and R5 decoding methods can be divldd iota two categories: syndrome- 

bawd d-diag and remainder-bared demding. Both algebraic decoding and trans- 

form decoding bdoog to syodmme-bed decoding. 

In algebraic decoding, syndromes are evaluated using Equation (1.4): 

where R(z) = ro+r,r+-..+r~-~r'-' is referred to the received polynomial. Then. 

bawd on the rymdmmer, the m r  lovitor polyoo~nial A(=) is found by using one of 

the Pamon,  BerlekampMa.sey, or Euclidean algorithms. Once the error locatm 



in found, the Chien s m c b  method can be used 10 evaluate the mots. 

This method $imply mnrists of the computation of A(&) for 1 = 0.1.. - . . N - 1 

and swching for a w u l t  equal ta aem. Since the number of elements in a Galoir 

field ia finite, rhr Chien rearch method is feasible for evaluatirkg the mots of the 

polyoomid. 1.e. the locatiaos of the errors [21]. 

After evaluation of the mots d A(=), the m o r  values can be obtained by salving 

a system of 2T equations. Ao alt-tive &hod to find the rrror Val- is called 

Fomey'~ algorithm [ZZj. Forneyis algorithm is more efficient because it dimioater 

the extensive rompvtation required for the matrix inversion. 

lo the algebraic decoding algorithm, first the received -vector is t r d o r m d  

to the frequency domain by evaluating the ayodmmn. and then, based on the 

ryndmmrs, the rrmr locations and enor values are fouvd in thv time domain. This 

algorithm is romdi- called the hybrid demding algorithm [l:I]. 

With transform decodiug. the received vector is first transformed to the f r r  

qucncy domain with 2T syndmmn as the 2T conlponent, of ttr spectrum &om I 

to 2T. According to the co~xrtruetion of hd-Solomoo codes in the frequency da- 

main, out of N components of the spectrum of the error pattern, ?T can be directly 

obtained iron, the ryndmmes. For the given 2T frequency domain wmponents and 

the additional informatiom that at mart T components of the time domain error 

patern are om-, the decoder m n t  find the en t i e  transform of the mor  pat- 

lern. Finally an iov- Fourier traodorm is paformed to find the time domain 

ermr -tor. 

A fxe-qttency domaio decoder m Bnt pmpavd by Maodelbaum [29]. lmp l t  



mentation of transform domain demden can he also found in (30][31][321(33][34]. 

By using F-at th-retic transform m d  continued fractions to implnnmt a f r c  

quenq domain RS decoder. R e d  found that the tnmrfonnation method is f s t e r  

than the coonotional method (3.51. 

Welch a d  &rlckamp developed an algorithm that does not requireevaluarioo of 

%yndrnmes [%I. Instead this algorithm relies oo the m a m d e r  obtained 

hom the division of the recrived polynomial by the gmerator polynomial. T h e a m r  

locator polynomial can he obtained using the Welch-hrlekamp algorithm. Chien 

search cso a h  he perfomled to furd the roots of t t b  m r  locator polynomial. 

The determination of the error valves is quite difficult. There are four palyoomisis 

iovolwd in this algorithm compared to only two polynomial. in other decoding 

algorithms. Also this algorithm un only directly correct errors that occw in the 

infomation locations. Thoae ermn occurred in the parity-check locations can be 

found aft- correcting erron located in the information symbols. by -coding 

and comparing the recerved word and regenerated parity-check symbols. More on 

remainder-bmd decoding can he found in P71 [%I. 

1.2.4 Frequency Domain decoding vs Time Domain De- 
coding 

As mentioned in Section 12.3, transform decoding treats data completely in the 

frequency domain. Algebraic demding also d& with syndromes, which u e  the 

Fowim transform of the received d a t ~  

In 1980 Blahut p m p m d  time domain decoding [39]. The time domain demder 

works oo the rrmived data directly m d  Fourier trandarma are not w i r e d  in the 



time domain algorithms. Blahut fdt that t h e  abr i thms ere good candidate 

for uni-al decoders (401. The time domain decoding i r  based on a time domain 

equivalent of the BerlekampMmrey algorithm. The decoding algorithm involves 

N iterations instead of 2T in the BerlelampMassey dgo~itbm. In  the first 2T 

iteratioon the error locntorr are fonnd. In the next (N - 2T) iterations, the error 

pattern is calculated. Note that there a- to he no obvious advantages io decod- 

ing speed for time domain methods. However, the rrgular algorithm s t ruc tm of 

rime domain methods is wry suitable for VLSI implementation 1401. 

1.2.5 Evaluation of the Roots of the Error Locator Poly- 
nomial 

Syndromcbard decoding always require finding theerror locator polynomial, then 

solving for the roots of therrror locator polyoomial. One of the methods uara look- 

up table. A table coosirtiug of mow of the polynonlial 4 t h  the mefficirntr of 

polyoomial as accsr addrers is constructed in advance. When the number d the 

d c i e n t a  and tbc size of Galois field get larger, the memory sire will be too largc 

In 1961 Chin, I l l ]  ruggered that computing of tbr mots of the polynomial can 

he malied by evaluating the polynomial at d for j = 0, I. - - . . N - I and checking 

far reul t r  qua1 to zem. Since the number of elements in a Oaloir field is finite, 

the Chieo rearch method is femible far evaluating the mots of the palyoomial. 

I n  1987 Shayan, LcNgac. and Bhargam p m p d  a binary-decision f-t Chien 

a e ~ h  1411 which h a mixture of Chien search and Imk-up table method. The 

appmach divides the Galoir field into two halves. With a table -tabtished to 

indicate to which pan of the Galois field the mots belong, only half of the Gdois 



field ir searched and the required memory -ace ir l e a  than for the look-up table 

Mthod. 

In 1987 O h o  and lmai also p m p d  a mot search mthod  based on LSI 

implementation. By u ing  a certaia transformation, the look-up table sire can be 

mluced by O(N) for double n m r  correction or O(N2) lor mutiple error mrreaioo. 

In 1993 Yonng and Lt-Ngoc [I] 12) mnceived by cxperirneotal results that the 

mots of a quadratic polynomial over a finite field am not raudomly distributed. 

Consequently, they developed a periodicity akorithm bawd on this o h m t i o n .  

The algorithm needs O(N) size of mmory for mat index table. 

1.2.6 VLSI Structures 

Now, m have iotroduad to the reader tbc basic concept of Fed-Solomon ccda. 

but the prabkm of dsiigniug a lovr-mmpkxity. heh-bit-rate US encode and d r  

coder stdl remains on active area of research. Some work has already been done in 

developing VLSI encoders auld decoders for RS coda. 

In 1982 BerleluMp developed a bit-aerial RRd-Solomon encoder [43]. In his 

scheme. B e r l e h p  intmdured a bit-serial multiplier algorithm. which required ~ n l y  

shifting and exclusive OR operations for multiplication of two field elements by 

using a dual basis over a Galoi  field. A single VLSI (255. 223) RS encoder chip 

udng Berlekampi bit-serial multiplier, was m h d  in 1984 [MI. The mmdtr 

structure is more regular and simpler than the moveotional architecture. 

In 1989Serousi p m p d  e bypersystolic W-So loawn  encoder toachieve m y  

high sustained data ra ts .  h thegigabit p r  mend order af magnitude [45][46]. Ln 



1986 Bnlekamp a conceptual model of hypersystolic architectures [471. 

A systolic m a y  [48] is m array of mmputiig d s  with a regular intmono&ion 

patern in which every ceU commvniorta only with physically adjacent d l r .  In 

priociple, there mvld be oor global clock signal distributed to all the alk, a d  data 

transfer between adjacent cells could occur simultaneously throughout the array at 

d clock cyck. In a hypenyrtolic army [47][49), d o c h g  signals are p d  from 

ceU to adj-r cell along with the data rather tlnar~ being globally dbtributed. 

The w l t i n g  architect- is more practical than that of the systolic array since 

i t  can avoid clock skew, i f  there ace large number of a U r  in the array, and thus 

achieve higher data throughput. Bmkhmp, Semusri, and Toug had alpa patented 

the design of the bypersystolic ReedSolomon droder (HRSD) in 14-31. 

Based on tbr idea of Brenl and Kung that a pipdine architecture coold be 

used l o  mmpute the greatert common divisor (gcd) of two polynomials. a new 

pipdioe architecture for a trsodoform decoder using s modified Euclidean algorithm 

w- developed in 1985 [501. In 1988 Shao and Fled presented a time domain 

RS decoding algorithm and i ts detailed VLSl architecture. I t  was shewn that 

time domain drodiog is mew efficient than transform decoding in t- of VLSI 

impl-tation, s i ne  it cat, maintain the same t l~mugl~put  rate wit13 b s  circuitry 

1511. 

Fled.Solomon code. utilize the &rithmetic of the finite field. The opratbn. of 

addition and subtraction i n  the GdoL field are simply bicwire XORopentiws. 

However, multiplication and division in Galais field are more mmplex and di f6dt .  

h 1984 Yeh, Rrtd, and Tmong p-nted &dial-iu-rerialant systolic archim- 

for performing mvltiplicatiou i n  finite fields GF(2") &2]. Aftnwards, several meth. 



oda have been pmpwd to realize multiplication and division in finite fiddr. Wang 

rt d implemented a MaareyOmura normal h s i s  multiplier in 1985 1531. lo 1986 

Scott, T m ,  and Peppard developed a fast VLSI multiplier using the standard 

hsrir 1541. A comparison of the VLSI arcbitectuw of t h m  different finite fieid 

multipliers: the dual basis multiplier due to k k h p  1431. the Masrey-Omura 

normal bask multiplier, and the Scott-Ta-Peppud standard baris multiplier 

is presented in 1551. 

Inverter structure are very mmplrr. Wang cl ol presented a recursive pipeline 

inverter using Marsey-Omun parallel-type multiplier b a d  on the normal baris 

representation 1531. In 1992 Havan aod Bbagam pmpased a bit-serial systolic 

divider over GF(2'") 1561. The 3tructure ir independent of the primitive polynomial 

uwd to generate finite field and the baoi used to wpnseur the field element. 

1.3 Scope of the Work 

Tbe main objmive of this mearch is first ts develop a general purpose RS codec 

simulator. Since it was shown in 1571 that time domain algorithms are slower tban 

aodmmebeaed algorithms and fu r t hemre  traorform demdiog require mmput- 

iog invene Fourier era or font^, we decide to adapt an dxebraic demdinbxh-. A 

software RS cod- simulator 1581 is developed in C language under both U N K  and 

MS-Windows operating system. It can simulate an RS code with length betunen 

7 and 255. and with the ermr correcting capability of up to T = 20. Different 

decoding eo r i t hnn  are also investigated and compared. 

For ryndmrne-based RS decoding, Chim search is the widely used method for 



determining ermr locatiaor. This method will  take a great deal of time to locate 

error depending on the mor ~ositioo in the Galou field table. Periodicity properties 

of the distribution of the mots of the ermr l o ~ & ~ r  polynomials are shown bared 

on the mlatioorhip between coefficients and mots. A new periodicity algorithm 

is proposed for double error c o r n i o n  h w d  on [2][1] to replace the Chien search 

method. 

1.4 Organization of the Thesis 

This thesis is organized as follow: 

Chapter 2 first briefly reviews the mcodlg and drcodiog of RS codes. Then 

various RS decoding algorithm. are presented. 

Chapter 3 describes the structure of the software RS c o d s  simulator. 

Cllapter 4 first demonstrates the peciodicity pmpenio chat exist in the distri- 

bution of the roots of Caloir field polyoomiak. Then a new decoding algorithm 

for finding mots of the ermr locator polynomial in p r o p d .  Finally a hardware 

implementation of this algorithm is proposed. 

Chapter 5 compare. different demdiog a1go"thnu. Peterson's and B n l e h p -  

Masseyt methods, Forney's and Gauss-Jordan's methods. the periodicity algorithm 

and other methods. 

Chapter 6 mncluda tbr thesis with a rumnary of results and suggestions for 

further meanh. 



Chapter 2 

Reed-Solomon Codes Overview 

In this chapter, the fled-Solomon m d a  are described. Several important decodmg 

technique are xutmduced. 

2.1 General Description of Reed-Solomon Codes 

The Rex-Solomoo (RS) coda  a n  a . p e a l  rubclass of uonbioary BCH codes, 

obtained by choosing the ermr bcamr fidd to be rbesame aa the symbol field. The 

definition of an RS (N, 1;. T) mde is as follows [581[61]: 

A T-crror-cor~t ing Red-Solomoo mde with ryntbbolr from the Calois field 

GF(2") baa the followiog parameters: 

Block length = N = 2" - 1 

Number of parity-chedi symbols = N - I( = 2T 

Minimum distance = = 2T + I 

where K is the oumber of information or message symbols. The RS codes are 

capable of mmcting T random errors and me of the fallowing ermr bursts: 

15 



. I bunt of total IengL: h = (T - l )m+  1 bits 

. 2 bursts of total length: 4 = (T -  3)m + 3  bits 

. p bunt. of total length :b = ( T  - Zp + I)", + (?P - I )  bits, whew p is an 

integer .,umber snd (T-2p+ I)  is poritivl 

The generator polynomial G(r) of a T-emor-comectiog RS code of length 2'- 1 

is the polynomial of dearer .V - I< with mdficients from C.'F (Y"). To saw memory 

space. the self-reciprocal generator polynomial is preferred. It has 

**--l-T m2--LT+t,. , , , e2--s+T-L 

as its mots. where a is a primitive e l e m t  in GF('Tm) 

2.2 Encoding and Decoding of RS Codes 

Let iii= (mo,m,,.-..rnr-,) (h' is theoumberofdatasp~bolr)  bc thedatavector 

to be encoded. t l m  the data polynomial can be defined as: M ( r )  = rno + m l r  + 
. . . + rnp-,~"-'. A simple way to form the codeword polynonlial C ( r )  is C ( r )  = 

M(z)G(r). However. this mde is noo-systcrnatir because li daca nymbol= arc not 

explicitly p m r  in the codeword and thw necmaitatiug au rxtra step to extract 

the information from the cormred code word in tbr decoding pmcens. 

To inme-. the d-ding s p e d ,  a ryrtemtic code word is generated by: 

*= 
G(r) Q(=) + 2 (2.1) 



where A(=) is the parity cheek polynomial of degree ST - I .  

Whm a mdeword C(r) is rent fmm the transmitter to the receiver. mron 

occur due to channel noise. dirtortion and fading. These errors can be modeled 

and prnented as ao m r  pattern 

E(zl= c o + e t r + - - -  +eN-,rN-' 

Then tbe mtivrd word is gveo by 

R(*) = Clr)+E(r) 

= R + 7,z + r2** + . . . + ).N-**N-' 

The mefficieots of Clr). El.), and R(r) are elements (mm CFIF). The partial 

syndrome values of a received word can be obtained fmn? 

The mor pattern polynomial E(r) can he rewritte. as followa: 

where il is the actual location af the Ith m r  and Y, ir the ermr vllue. Y, E GF(F). 

Let Xc = o" be the field element ar~miated with this location, then its syndmme 

can be written as 

S,=xY,X;, j=T- ' -T .2" - ' -T+I  ...-. 2"-'+T-1 
,kt 

where X, is the ermr locator of the Ith n m r  symbol and ~ is the mnapoodinb 

error "due. 



Once E(r) i4 known. the estimated md-rd C(r) can bc obtained from: 

C(I) = R(r) + E(z) 

In the following seetion.. M will p-t -a1 RS dmoding schemes 

2.3 Error Locator Polynomials 

Foragiven received word R ( r ) ,  thesyodmmaS, for j =2"-'-T....,2'-'+T-l 

are giveo by 

s, = R ( d )  = C ( d )  + E ( d )  = E ( d )  

One of the aaeot id  RS decoding issues is M find the ermr locaton XI. X2, - .. .X,, 

from 4,s. where u in the number of actual ermn. 

2.3.1 Peterson-Gorenstein-Zierler Decoding 

Consider the polynomial iu r .  

B(r) = rW+o,r'-' + - . . + s ~ - , r + o .  

= ( z  + X,)(z+.U,). . .(r+r.) 

known as the error-locator polynomial, where X, for 1 = 1. -. -. v are ermr loaton. 

Another alternative reprermtatiou of the ermr locator p o l y o o d  is 

A(=) = I +A,z+...+A,-,='-' +A,=" (2.3) 

defined to have z- a t  the in-e ermr locator% X;' . for I = I,. . . . v.  Tha t  is. 

A(=) = (1 -zX,)(I-zX2)...(1 -zX*] 

= n ( l  -.xi, 
8-3 



In the following derivation, we adopt the error locaror polynomial in the form 

01 A(=). M ~ I ~ ~ ~ I Y  both $ider of ~ ~ ~ ~ t i ~ ~ ( 2 . s )  by fix:+" set = xi1, t hm 

the left ride of Equatioo(2.3) is rem and we have 

and 

f i ( x , ~ ~  + A,X;+~-' + -. . + A.-,x:+' + n,.u:) = o (2.5) 

I =  1.2, ..., " 

Sum up these equations from I = 1 to I = v.  This pva, for each ) 

f:r;x;+" + A, f:r;x;+"-' +...+ A"., f: \;X;*' +.\.&fix; = 0 (2.6) ,=, ,=I ,=, ,=, 
The individual sums am known as ryndmma, and thus the er~ttatioo bemma 

We can write t h e e  qnations in matrix form: 

s --,." sT-~."+, . .. SF-~LZ S,--L-, 

S T  s ... s,r+.-, %--.+"-A 
(2.9) 

Thme cam be solved by using the ordinary algebra except that mul- 

tiplication, division, and addition are done baaed on m l s  of GF(?). First we 





Fiy re  2.1: Linear feedbad shift register for generating a sequence of andmme 
values. 

In LFSR, we also call the equation 

the connection polynomial. For a given sequence of syudromr values, there are a 

detaminahleovmbnof m o n ~ t i o n  polynomials of various lengths that will generate 

the syndmma. This mrrespoods to the fact that t b m  are a ovmba of ermr 

patterm that can acmvot for a given set of syndome d u e s .  However, the task of 

bounded-distance decoding is to find the lowest weight mor pattern corresponding 

to the givm syndrome. Therefore, io the design of LFSR we seek the lowest degree 

of mnnectiao polynomial h( r )  that generata the syndromes. 

Now wc are going lo drnvc the mun ive  algorithm for pmdudog a minimum 

length LFSR which generates S,.S,, ....S*. WP define L, as the length of the 

LFSR that generate S,, S2, - - . . S,. T h m  k a Lrmma by Massey 1251 sbourimg the 

change of the length of LFSR with the generation of a sequence of nyndmme. 

Lunm. 1. If some LFSR of 1-h L,-, generates SI,S2,...,S, -I, but not 

S,,S*. ..-.S, then 

L. t mo.[L.-1.r - L.-I] 

If we can find a daigo that satisfie. the inequality of the Lemma 1 with equality, 



then i t  must be of the shortest leogth. 

As an inductive hrpothesis. arrume a set of LFSRs which pmduce Sl.S2,. . . , S,, 
with length L, a d  connection polynamial Al'l(o) are found with equdity 

We seek to find the LFSR that generate the ayodmmr values S,. .S2.. .. .ST. 

We have 

(2.111 

where the second term of Equation(2.11) computes the jth output of the (I. - 11th 

LFSR aod d.. c a l M  r k  rth discrepancy. k the differrncr h w e n  S, and the 7th 

output of the ( I .  - 1)th LFSR, which we have found to generace the first r - I 
syndrome values. If d, = O.L. = L..,, then A17'(r) = h"-'l(r). If d, # 0. a 

new LFSR must be found to gmmatc the fint I. syndrome values. Let m - 1 be 

the syodmme squcncr length befare the kt length chaoge iu the minimal length 

reg,rtcr. i.e. 

L,., < L,., 

L, = L,., 

W e  ha= 

L- s,+ E'n!m-~~s ,_,= { O  j = L , - t , . . . . m - l  
s = ~  d,#O j = m  

(2.12) 

By the induction hypothesis, form L m a  1 holds with 



We claim that the mnncction polyoomia! 

is a valid choice for Momwr, it bUowr fmnl Equation(".14) that 

Lr-, LI., 

S J + 5  AY's,., = S , + x  A!-"s,-,-&C,'[S,-.+~+ x ~ i ! ' " - " ~ ~ - ~ + ~ - ~ l  C2.15) 
.-I ,=, ,=, 

The Bnt two term. of the right-hand side sum up to: 

L.-r 
s,+xn;-als ,_,= {: ; I : - ' . " ' . ~ - ~  (2.16) 

e-1 

as described in Equation(Y.LL). We haw fmnl Equstion(Y.1Y) chat 

L"., 

S,-r+m + 1 A?-"s,.~+,-, = 
0 j = L  m.,+v-"L. . . . .?-I  

{ d ,  j = r  (2.17) 
.=I 

Fmm Equation(%.l:l). L,-, = m - L.-I 

L,_,+r-m=m-L,- ,+r-m=r-L.-15L..  

we obtaio 

'I.., 
S,.+m+ x A?"S ={:* ; I > . ' . . ' - '  (2.18) 

I=, 

Summing up the right-hand side of Equation(2.15). we get 

j=L . ; - - ,T -1  (2.19) 



A h  fmm Equation(2.14) the d a m e  of At')(=) is at m r t  

From the aboe  induction. an LFSR algorithm for wnthniting a shortat  LFSR 

to generate the ryndmmc sequence 4. S2.. . . . .% ir dacribed in detail helm. 

Masaey LFSR Syothnis Algorithm (Berlekamp Algorithm) 

1. Initialize algorithm ~ r i a b l e s  

Let L = 0.r = l.A(z) = l .D ( r )  = z 

2. Take in new ~ y o d m m ~  value and compute disnewocy 

d = s, +EL, A.S. .. 
3. T a t  discrepancy 

If d = 0, go to step 8. Otherwise, go lo step I 

4. Modified roonmtiao polynomial 

If d # 0, Let P ( z )  = .\(z) - dD( r )  

5. T n t  register length 

If 2L 2 r, go to step i ( k .  do not extend ngirter). Otherwise, go to step 6. 

6. Change register length and vpdate correction tern) 

Let L = v - L and D( r )  = A(r) ld  

7. Update conuection polynomial 

Let A(z) = A'(=) 



8. Update mmetioo tern, 

Let D( r )  = r D ( r )  

10. Test syndrome counter 

If r < 2T+ I. wbre T r e p m o t  far -r correction capability, go to step 2. 

11. Otherwise stop 

In the algorithm. for wery stager  when step 2 ha. just b- reached. then the 

quanritin produced by the algorithm bear the following relations to the quaotities 

appearing in the developing procedure: 

The algorithm stops after 2T iterations. The length L of the LFSR reflects the 

actual error number u. 1.e. u = L. If the algorithol termiuates with an LFSR 

connection polylxomial of degree p t e r  than T. that ir. L > T, thm we are 

not asured that the corresponding enor-locator poly~~olnial is correct, and m o r  

detection is announced. 



2.3.3 Improved BerlekampMassey Algorithm 

Rewrite the .am matrix a. Equation (2.10) for conveoimm. 

The matrix ir ooosingvlar if the number of ermrs is v.  and ~ i o y l a r  if the number 

Now assume the aaval ovmber of ermn o c c v r d  is v. v < T ,  m have 

be the column wctors of D. Fmm Equatioo(2.21). we have 



Sioccd,,j=v+l.~~~.p~~bef~mdbyd~,&.~-,d,h~ce,ifA~.A~,-~~.A. 

satisfy all T equations of(2.21), they would satisfy the set of equations: 

and r\,. A*, . . . . A. are the cmfficients of the ermr locatiott pol.momial 

We first review Berl&mpMassey's algorithm. In each stage of iteration. a new 

syodmme is uaal io the calculation of the discrepancy. At stage r the co&cienfa 

ef the A*)(=) =atir;fy a subset of Eqwitian(2.21) that contains S,. I 5 j 4 r- Sine  

u = L, at that stage, the o-bm of equations satisfied IS r. - v = r - L.. If 

r - L, = T, the co&cients of A('l(r) satisfy aU T ~ ~ ~ ~ t i o ~ l s  of (2.21). Acmrding 

to the statement above. Al')(z) would be the enor locator polynomial. Thedore,  

we have the fallowing modilied algorithm [BO]: 

I. Inltialhr algorithm variable 

Let L = O , r =  l .A( r )=  I .D( r )  = r  

2. Take in o w  syndronte valve and mmpute di-paucy 

d = S, +EL, A.S.-, 

3. Teat discrepancy 

U d =  0. go to step 8. Otbmise,  go to step 4 

4. Modified mooection polyoomid 



If d # 0. Let .A'(*) = A(=) - dD(r)  

5. Tert *strr length 

If rL r, go to rtep 71i.e. do not exteod register). Otherwise, go to rtep 6. 

6. Chanp  register length and update correction term 

Let L = r - L and D( r )  = A(z)ld 

i. Update connection polynomial 

Let I\(=) = .\.(I) 

8. Update correctiou t o m  

Let D( r )  = r D l r )  

9. Update syudmme muuter 

L e t r = r + l  

IO.Test syndrome counter 

If r < 2T + 1. snd r < T  + L go to step 2: otberwire. stop. 

All steps are the same a* in the BcrlekampMmney algorithm except step 10. 

The modified cawen the rteratioo procedure to stop at  an early stage 

when the number of erron that haw = c u r d  i less than T .  The modified algo- 

rithm require. a total of ( T +  u )  iterations. where u is the actual number of ermn. 

av compared to 2T itaatiorrr required in Berlekunp-Masrry's algorithm. The rr- 

duction of T  - v iterstions for u errom results iu thp inc- of decoding speed. 

The overall performanu of the improved algorithm depends on the probability 

distribution of the e m .  



Both the Peterson and &rlehamp-M-ey algorithm can bc u d  for finding 

m o r  locator polynomials. A time comparison bet- Peterson's and Berlekunp 

Marsey's algorithm will b. made in %ion 5.1. We will find that Bmlekunp 

lauey'r algorithm ir faster than .Peterson's for the correctioo of more than 6 

errors. 

2.4 Error Locators 

The mots of the ermr locator polynomial can be found vsiog Chien much. One 

simply aubstitutrs each ekmeot a' of GF(2'") into A(*) and checks for zero. Thvs 

the -r.locator polynomial can be decomposed as followr: 

A(Z]=JJ(I-.X,) l = l  .....r (1.23) 
,=I 

where X, is the ermr locator of the Ith error symbol. 

2.5 Magnitude of Error Pattern 

Once the error Iacatioos have been obtained. the ncxr decoding is to 

compute the -r magnitude. 

2.5.1 The Gauss-Jordan Elimination Method 

We return to the equations defining the syndmmrs. 

s, = Y,.u, +KX, + ..- + KX. 

sz=u,x:+Kx:  + - - . + v . x :  



The fimt v equations can be solved for the ermr magnitudes i f  the determinant 

of the matrix of meffitients is nonzero. Actually the matrix doa have r oanzm 

determinant if v -rs occur because XI. X,.. . . .X. are nonzem and dirtiob. I f  

this is the -c. the Gauss-Jordan elimination method can bc u d  for mlving 

thi. linear matrix equation. In the followiag subsmiou. wr shall introduce an 

alternative mahod for detrmoining ermr values, thereby eliminating the need for 

-king simultanau~ equations. 

2.5.2 The Forney Algorithm 

W e  have error-locator polynomial 

A(=) = n(l -&) I =  I.-.-.,,. 
,=I 

Define the syndrome polynomial 

lT * "  
S(Z) = 1 s#-' = K.Y:d-' 

,=I 1x1 *=I 

and define the emor-evaluator polynomial Q(r) in terms of thae known polynomi- 

al.: 

n(z) = S(z)A(=) (mod rZT). 

Expand each tam by the definition, we get 

7, '"  

n(,] = [ E X  x.x:i-'1. [nu- x , ~ ) ]  ( n ~ ~ d  PI 
,=I lil t-1 

= ku;x,[&x,.y-l(~ -x..Ilnc~ - X,.I m o d  .*I. 
.=I ,=I ,ti 



The bracketvd t e rn  is a factorization of ( I  - X,z~m). Thmfor .  

n (= )  = ~;x.z(I  - x w q n ( ~  - x,.) (mod z*~). (2.24) 
,=I I t .  

ARer this is modulo zZr, w e p t  

n(=)= xnx. . n ( ~  - x,.) (2.25) 
.=I t i .  

Substitute X;' in Equatiou(2:ZS) to get 

n(x; ' )= y,x, n ( l -  .Y,x;~) + n r ; .  nc~ - x,x;') (2.26) 
I* l I+! I*. 

Sine  I[;' is the met  of A(=) .  the semnd t m n  in the Equariou (2.26) is rem. and 

we get 

n c x y l ) =  u , x , . n ( ~  -.Y,x;') 
I+! 

Hence, tbe error magnitude can be given by 

Xirf l (Xi ' I  
m d l -  X,Xi') 

(2.2i) 

Moreover, the derivative of I\(=) is 

a'(=) = - ~ x , . ~ I I  -.,Y,I 
I=, If% 

Hence, another form of the Equalioo(P.P7) is 

y, = _no 
A'(x;') 

Tbe Fornry algorithm provides a considerable impmvn~~ent  over matrix inversion. 

We will make a demding ttme compariwn betwen Forney algortthm and Caw- 

Jordan elimination method io Section 5.2. We will find that for comctioo of more 

than 10 erron. Forney algorithm is  faster tbao Gauss-Jordan elimination. 



Chapter 3 

Reed-Solomon Simulator 

In this chapter. a software RS cod- rimulator is discussed. Fint, the overall 

rtructure of the simulator in dacribed. Then. tbp data r t r u n u m  used in this 

simulator ace introduced. Finally, some flowcharts of major submutina are also 

em. 

3.1 General description 

The RS code simulator ha. been implsmcoted in C under bath UNM operating 

system and MS-WINDOWS. A gcaphic user interface (GIII) is also pmvided for 

PC user vsiog Visual Basic. This roftware p+ ran b used to correct any 

random ermn wcurring in an N = 2"' - 1 symbol mdeword. whnr 3 9 rn 5 8 

and T 5 rnin((N - 1)/2.M). The ovnall basic structure of the simulator is given 

in Fig- 3.1. It is divided into 12 blocks. 

Block I: Thissubmutine allows u r n  to input the uumha m of hits per symbol. 

ermr correcting capability T, and a data word through a OUI. 



P ~ V n o l l ?  

Find *.m. h. p* Find e m .  I-,., pdy 

by P-"S rn.,hOd 

R d  m. h ' . r  un.. Chi.. rvrh 

& 
Figure 3.1: Overall Ewchan of riunulatox 



Block 2: For the loftware implemotatioo, the n-ary Galois field multipli- 

cations are performed using the address pointing approach. Thewfore, a table of 

both binary and power rep-otations of the Galais fidd GF(T) is formed here. 

The rlfrecipmcnl generator polynomial G(s) h also gemrated in this blodi. 

Blodt 3: In this step, the rimnlator enmder the data and fomu a rylitematic 

radnuord. It ako presents the user with the list of the data. the codeword. and the 

generator polynotnial G(r1. 

Blodt 4: Ilam can form the n m r  pattern aud add it to the garrated codeword 

to generate the mrmpted received word. 

Blodi 5: In case the corrupted m i n d  word is a cadcuord, the block will outpvt 

the mesage dim.31~ without going through the rrmr mrcrcci8rg proass. In this 

c a e  the deader  is blind if rhe ermr pattern is a codrwonl. 

Block 6: The fint 2T syudmma of the rmived word are calcvlaled io this step. 

Block 7.8: Theermr locator polynomial is determined by usingeithcr Berlekamp'ri 

or Peterson's metbod depending oo the wr's option. 

Block 9: Thp rrmr locators X , . X z ,  ..., Xr, where u is rllr actual number of 

errors. areevaluated using Chien -rch by substitutingeacll rletaeut of the GF(Zn) 

into the ermr I-tor polylnomial until a z a o  is found. The process repeats until 

the end of the Galoir field or all the roots comc out. 

Bloa 10.11: Tbr ermr valuer Yt,Y2,. . . .Y., whrrr 8, is tbr actual number of 

errors, am obtained wing either Gauss-Jordau elimination or Forney's method de. 

pnding on user's choice. Thus the enor patters E(z )  hem- knowo. 



Block I?: This step diictly obtains the estimated received mdcword C(r) by 

adding the e m  pattern E ( r )  to the w i v e d  word R(r). Finally the estimated 

mdeword is ohtaioed. 

B b *  I J: The demdiog pmcedure is finally e l i f i d  by hecling the remainder 

of the estimated word C(r) with the generator polynomial G(r). In care the a- 

timated codrword &) is not a codmmrd, the block will ootput the information. 

'Uncomectahlc mr. have occurred. Rnend the data." This helps to mnfirm the 

correctness of the program. as well s. to indicate that the number of m n  have 

exaeded the limits allowable by the demdm, i.e. v > T. 

3.2 Data Structure 

Eacbelcmeot of the Galois field GF(2") ha. two cepmpmtacionr. that is. the binary 

and power representation. The addition or subtraction of two elements can he easily 

performed in module2 operation by using the binary reprput>ration. The power 

representation makn multiplication become addition. 

For example. let n~ = I and let the primitiw polynomial P(r) = r4 + r + 1 

be selected LO mnrtruct the Galois field. Thr  elements of GF(Z4) are given in 

Table 1.1. 

The field element o' has m-tuple binary cepresentation of (0 I I a]  which mr- 

respond. to a 2 + n  and a' har of ( I  I 0 I), whew "4 is 4. 

Obviously, the addition d the two field elements can be wried out by simply 



Table 3.1: Galois field of GF(2') generat4 by p(r) = I + r + r4 

Power Polynomial reprrrrotatiiii 
repmentation oo o' o2 01' 

- 0 0 0 0  
0  1 0 0 0  
I 0 1 0 0  
I 0 0 1 0  
R n n n l  



adding the corresponding mmpaocnts of their m-tuple binary representations in 

mdulo-2 addition. To multiply two elements, we can simply add their exponents. 

For example, 

.I. J = ,,*' = .,I> 

Therefore, the foUming structure gfxlement is used to d a d b e  a Gabis field 

element in the software design. 

rtrud { 

'"1 powerzcp  

Two bok-up tabla. logo and olagu table are built such that 

 fog[^.] = i, for o 5 , 5 2'- - r 

log[O] = -1 

alag[z] = a', far 0 < r 5 2'" - 2 

aIw[-I] = 0 

where o is the primary element of the Gslois field GF(2"). aud i and o' refer to 

power and biuar?. representation of Galoir field element. Tbr d~tailed conrtruclion 

of t h e  tabla will be described in the o u r  sectiou. 

For any given two elemrota 6 =ac and 7 = cr', where ' . j  = -1.0.-. . ,T" - 2, 

let 8 = $ * .r and Q = 6 .  7.  The binary rep-tatiou of B IS 6 + 7 ,  in which 

bit-wise module2 operation is performed oo the binary representations of 6 and 7. 

The power representation of 0 uul be obtained fmm logo table. 



The power representation of Q is 

i f i = - l o r j = - I  { ;: j )  mod (21 - I) otherwise 

and the bioary representation of Q is alogfl. Thus Galois field multiplication 1s 

simply modulo-(2" - I )  summation of the powem of the multiplirands witb some 

canditionr. This method for Galok field arithmetic is widely used in software 

decoders in order to increaop the sped  of the multiplication in Galais fields. 

3.3 Generation of Galois Field 

in the p r o d i n g  section, n look-up table method w r r  l n t m d u d  for Galois field 

arithmetic. Lo this section. rhepooation of logo and .lqU table of C:aloin field is 

mnsidered. 

In th'a codec simulator, we use the six primitive pol.momiab iUustnted in Ta- 

hle3:%. We store t h e  polynomiak in a 6-elwenc primilive polynomial array. EaEh 

element storrr all the corfficieota of the primitive polyuoolial. except the highest- 

order coefficients. in binary farm witb ,be lovst-order coefficrent at the left. For 

example, let m = 8 and the primitive polynomial P(r) = rB + r' + o2 + r + I, the 

corresponding array element in bioary farm is L0000111. The primitive polynomial 

m a y  in abo shown in Table 3.2. 

The construction of thr  olqf l  table ia in agreemeut witb the construction of 

the GF(2') elenlents. i.e. determining the bioary represetttatioo far each a', i = 

-1.0,. . . .2'" - 2. It can be implrmeoted as folloun: 

1. Initialize olq[-I] = 0. olog(Ol = 1. and i = l 



Table 3.2: Primitive polpomial. for generation of GF(2") 

2. Ldr abift t b r  binary repraeotatmo of o' by I bit to ~t eta+'. 

3. If on+' < 2.". then go to 6. 

4. Othemire if n'+' L 2%. then XOR the m u l t  with t b  primitive polynomial 

array rlemvnt defined in column 3, Table 3.2. 

5. AND the result with 2"'-I to get m-bit binary repramtatioo. i.e. alog[t+I]. 

7. I f ,  < Y'* - 2, go to 2. 

Fig- 3.2 gives the Bowchart for the gennation of the Galois field 

The coostrurtion of tbr log[ table, i.e. determine the power q-tation 

of each Galoi. field element from ~ t s  binary representation, can be obtained by 

exchanging the motentr of the index and the entry of the ologu table. 



Initialize 

i = o  

$,%=-? * 
Stop 

Figure 3.2: The generation of finite field GF(2') 



3.4 Flowchart of Main Subroutines 

lo this section, the main rubmutines of the RS code simulator, such as the Peterson 

and Bnlelamp algorithm to computeemor locator polyoomial, Chien search to find 

error locators. and the Gauss-Jordan elimination and Forney algorithm to mmpute 

-r magnitudes, are treated in detail. 

3.4.1 The Peterson's Direct Method 

The evaluation d the coeBcirntr of the error locator involve. wlviog 

the fohwmg matrix equations (161 [IS]: 

The method for solving these linear equations involves two steps [13]. Fintly, the 

size of the matrix, which is eqval to the actual nunher of errom u is determined. 

Secoodly. the coefficients of A(=) can thrn be computed uriug the value of u and 

Equation 3.1. Tbc detailed dnmiption is treated io Sectiou 2.3.1. The Bowchart ir 

ohown in Figure 5.3. 

3.4.2 The BerlekampMassey Algorithm 

An alternate technique for obtaining the ermr locator polynomial A(=) is the 

Balekamp-M-y algorithm. This method warexplained previously in Section 2.3.2 

Fiure. 3.4 illustrates the Bowchart of the krlekampMassry algorithm. 



Backward substitution solving 
for Ai's 

Figure 3.1: Peterson's dire3 method solving for error locator polynomial 



Figure 3.4: Flaw dart of BslekampMzsrey Algorithm 



3.4.3 Chien Search 

Once the error locator polyoomisl is found, the Chirn search method can be uwd to 

evaluate the mots. and hrne  the m o r  locations can be determined. This method 

involves mmputacions of A ( d )  far j = 0. I .  .-. , N-  I and checking for mulC qua1 

to zero (211. Tbc method is shown as a Bowdart in Figure 3.5. 

Fiyre 3.a: T h e  Bowchart far the Chien search 



3.4.4 The Gauss-Jordan Elimination Method 

Aher mrnputation of the mots of A(=), tbc-r loutor X, = o" CLO be substituted 

into the follllowing equations: 

This is a ~ t m  of 2T linear equations and can he s o l d  for rhe s m r  value. 

K . j  = 1.2.. . - . u by the Gauss-Jordan elimination metbd. The Bowchart in rbown 

in Figure 3.6. 



r-&- 
Fiure 3.6: The Bowchsrt of the Csum-Jordso elilniuatioo m t h o d  



3.4.5 The Forney Algorithm 

A moreefficient method to find theermr dues is givm by using Wmey's algorithm 

[n]. The flowchart of the Forney algorithm is shown In Figure 3.i 

Form syndrome polyoomial 

S(l) = r;z0 s,.. 

Obtain ermr-evaluator polyuonial 

R(r)  = S(r)A(r)  mod ST 

l = O . l , . - - , u  

Figure $.i: The Bowchart of Forney algonthtn 

3.5 Simulation Results 

Several examples are listed below to show the cvmdilrg and decoding d the RS 

codes in diff-t cares when T = v, T c u. and T > u. 

Exampla 8.1 



. Given: m = 1.T = 2, and u = 2. 

Petemoi mthod is selected. 

Wmey'r algorithm ir selected 

. The inputs and outputs are listed below. 

Simulation -Its of Example :I.l 

RS CDDEC for 3 <= m <= 8 and T <- 20 

----==--=---------=-=.-= 

Input bits per tg.bol I or code l w h  N . (a or N): rn 

Pl-e select m (3 <= m <= 8):  3 

Please n e l e n  T (T <= 3) :2 

Generator polynomial: 

alpha-0 

+ alpha-4 1-1 

+ alpha-? r-2 

+ alpha-4 1-3 

+ alpha-a 1-4 

Roots o f  the generator polynomial: 

alpha-? 

. alpha-3 

, alpha-4 



S e l m  K symbols data based on the follorlng format: 

--=..-=I- -.-----_r__ 

1 -> P m m  m existing inpmt file. 

2 -, From keyboard : Enter symbol nolberr 

TI- inputs represent tha powers or alpha, valid rnpurs are -1 t o  6 .  

Enter your choice (1, 2 or 3) : 2 

entar ~ e s s y  value, leas t h  -1 stop 

Uerrage NO)  = 0 

eater nessage value, less than -1 stop 

Message U( l )  = 6 

enter Message value, less than -1 stop 

nessage W(2) = 4 

Encoding prosass: (m E d  

..----.- 
111 61 - 6 



Nolay channel modeling by creating the error pattern 

--Y--e=n=-JP.---mP -̂--* 

~ntar decimal n-be- for error location. 

v u l d  vanes a n  o to 5 .  -1 t o  stop 

The error values input in  Hex form, 

"did Inpots are 0 t o  6. 

Error locarlon - 2 

Error "aloe - 5 

Error location = 3 

Error ralne - 6 
Error location = -1 

Error pattern: 

-0rC61-0 

-or cs1.o 



-0rM1-0 

error 131 -6 

error Dl -5 

enor[ll-0 

enor[Ol=O 

Is It the right pattern, lf not t ry  agun: 

Print the b~nary representation of the following: 

Codesord Error pattern Received word (m Hex) 



S p d r e C  01 = alpha- -1 

~ p d r d r e C  11 = alpha- 1 

qndrdreC 21 = alpha- 6 

syndrome[ 31 = alpha- 3 

Select decoding methodm : 

1 .Berld=mp 

2 . P s t e ~ o n  

Enter yo- cholce : 2 

Yarning: Lrror partern may beyond arrorcorrection capability. 

since 2 4 2 matrzx 1 s  non zero ' 

Error losator polymomlal: 

----.---==-== 

1 

+ alpha- 5 r- 1 

alpha- 5 z- 2 

Chien search resal t :  (error losatrore) 

Select error value calculation methodm : 



1.F0rney 

2.0aussia.n elimination 

Enter your choice : 1 

Estimated amor pattern 

Cadesord Error pattern 

W E  61. 6 EC 61- 0 

W C  51- 5 EC 51- 0 

nr 41- 1 E C  41- o 

W C  31- 3 EC 31= 6 

n[ 21= 2 E C  21- 5 

a[ 11- 7 at 11; o 

W C  01= 0 EL 01- 0 

Received word 

RE 61- 6 

nc 51- s 

RC 41- 1 

RC 31s 5 

RC 21- 7 

RC 11= 7 

RC 01- 0 



. Given: m =1.T = 4. and u =?. 

Gauu-Jordan dimination is selected. 

The inputs and outputs are listed bdw. 

Sin~datioo reults of Exarttple R.? 

RS CODEC for 3 <- m <= 8 and T <= 20 

------=-=------.-.----= 

Inpnt b i t s  per symbol rn or code length I , (m or N): n 

Please select U (1 - 2 3  -1): 15 

Please select T (1 <= 7) :4 

Generator polynomial: 



Roots of the generator plgnomlal: 

alpha-4 

. alpha-5 

. alpha-6 
, alpha-7 

. alpha-8 
, alpha-9 

. alpha-10 
, alpha-11 

select K symbols data based on the follovlng format: 

=====------=-====-=-===----- 

I -> From an sxlstlng rnput flle 

2 -> From keyboard : Enter symbol numbers 

3 -) 111 zeros 

lae rnputs represent the poser of alpha, ralld lnputr are -1 to 14. 

Enter goru- choice (1, 2 or 3) : 3 

Encoding process: (m Hu) 



Noisy channel modeling by creating the error pattern 

=--======---.--.-=..=-----= 

Enter declmal rlmberr lor error locatron. 

val id values are 0 t o  14, -1 t o  stop 

The error rralnea input in H a  tom. 

val id inputs are 0 t o  a .  



Error l o u t i o n  = 7 

Error value = 9 

b r  location = 2 

Error value - a 

Error location - -1 

mror pattern: 

enor[l41-0 

-0r[l31-0 

error [l21=0 

error[lll=O 

error [lo1 -0 

errmt91=0 

errorCs1-0 

error Ol-9 

errar[6l-0 

error [5l-0 

error C4l-0 

error C31-0 

error C21-a 

ermrCII=O 

error[01-0 



Is ~t the right pattern, if not tr), again: 

1 for Yes, 2 f o r  No : 1 

mint the b i n q  representation of the fal losmg: 

Codasord Error patram Received word (in Hex) 

KC 141- 0 EC 141- 0 

n C l d -  0 EC131- 0 

nC 121- 0 EC 121- 0 

nC 1x1- o EC 111= 0 

nL tol- 0 EC 101- 0 

n[ 9]= o EC 911 0 

nc sl-  o EL 81- 0 

n[ 71- o EC 71- 9 

a[ el= 0 EC 61= 0 

H[ 51- 0 E[ 51- 0 

nC 41- 0 E[ 41. 0 

K C  31- 0 EC 31- 0 

nC 21= 0 EC 21= a 

H[ 11- 0 EC 111 0 

n[ ol- 0 EC Ol- 0 



spdr0.s ulculation results: 

sgndromec 01 = alphl- 7 

qndro.*c 11 = alpha- -1 

syndrome[ 2l - alpha* 1 

spdromeC 31 = alpha- 13 

sgndrlndrmec 4l - alpha- -1 

sPdr0m.c 51 . alpha- 7 

spdm..c 61 = alpha- 4 

spdromeC TI = alpha- -1 

Select decoding methods : 

1 . B S d e k i l . p  

2.Peterson 

Enter your sholcm : 1 

Error locator polponlal:  

I 

+ alpha- 12 x- 1 

+ alpha- 9 i 2 

Chien search ndt: (error locations) 



Select error value c a l d a t z ~ .  mehods : 

1 .Forneg 

2.0aoaaian elimination 

Enter yaw choice : 2 

Error vrluea 

Entimated emor pattern 

-=========.-.-- 

alpha- 9 1- 2 

+ alpha- 14 x- 7 

Codword Error pattern Reselvsd word Decoded word (in E d  

WC141- 0 E[141= 0 RC141- 0 DC141- 0 

n[ 131- o EC 131- o R C  131- 0 DC 131; 0 

n[ lzl= 0 EC 121= 0 RC 12l= 0 DC 121- 0 

H[ 111- 0 EC 111. 0 R[ 111- 0 DC 111= 0 

n[ 101- o E[ 101- 0 R[ 101= 0 D[ 101- 0 



Given: m = 4.T = 3, and v = 4 

ForneyS algorithm is selected 

The inputs and outputs are listed below. 

RS C O D E  f o r  3 <= m <= 8 and T <= 20 

~l=i=P-W-PP=li=31-i=-=---= 

hput bits per s p b o l  m or ccds l q h  I . (n or I): m 

Please select rn (3 <= m <= 8 ) :  4 



Root. of th. generator polpomlal: 

alpha-5 

, alpha-s 

, alpha-7 

, alpha-8 

, alpha-9 

, alpha-10 

select K spbola data based on the folloving format: 

I -> From sn existing input file. 



3 -> All zeros. 

The i q n t .  represent the posers of alpha, valid inputs are -1 to 14. 

Enter your choice (1. 2 or 3) : 3 

Encoding process: ( i n  Sex) 



KC 01 - 0 

Wo~sy &-el modelmg br creating the  error pattern 

Enter decimal numbers for error location. 

valid values are 0 to  14, -1 t o  stop 

Ih. error valuer znpvt m Hex form. 

r a i d  mputs are 0 t o  e .  

Error location = 2 

&For value = 4 

Error location - 5 

Error value = 7 

Error l o ~ l t i o n  - 9 

Error value = c 

Error location = 4 

Error value = 6 

Error location = -1 

Error pattern: 

error[i41=0 

errorCi31-0 

BrrorC121-0 



error[lll=O 

-or[lOl-0 

-or C91 -c 

error[aI-o 

error [TI-0 

mor[61=0 

error [51-7 

error [41=6 

enrrr[31=0 

arror[214 

errorC11-0 

srrorCOl-0 

Is i t  tha right pattern, ~f not t r y  again: 

1 far Yes. 2 for No : 1 

F n n t  the binary raprerantarion of the following: 

Codeword Error pattern Recaxvad sord ( in Hex) 



.yll&m.C 01 - alpha- 1 

v&o .eC 11 5 alpha- 5 

spdrmec 21 = alphs- 0 

sym4m.C 31 = alpha- 13 

.yll&ome[ 41 = alpha- -1 

.yll&neC 51 - alpha- 10 



Chlen search result: (error losatzons) 

--------.--.---= 

&or =amber beyond error correcflon capabxllty" 

Fasend message 

F i p  5.8 shows an example of running the simulator on PC. Lo this care 

m = 8.T = 4, all mesaage bits ue set to tom, errors are located at position 6. 7, 

8.9, and the m r  valus are 50, 100, 150, 200, mpmively. The upper half of the 

acreen displays the me==@ word, encoded word, received word. and  decoded word. 

The generator polynomial, ryndmma, oror locator polynomial, and -r vales  

are r h m  in the lo- one. 
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Chapter 4 

New Periodicity Algorithm 

In [2] and [I], a periodicity algorithm w s  introduced by LcNgoc and Y o u n ~  to 

eliminate the conventhoal Chien search method in filldtng r b r  mots of the e m r  

locator polyoomid. In this ~hapter ,  we prow that t h ~  periodicity features which 

edrt  bnw- the mots and their mefficientn in Gsloir field. Furthermore, the 

properties illustrated io Section 4.1 suggst  that theqttatiaa transform io Young's 

algorithm P] [I] is unn-sary. Thnda re  an irnpmwd periodicity alprithm is 

propwed in Section 42.1. In the last section. a nrw ~e~ iod i c i t y  algorithm "sing 

XOR operations to elimioafr the index table required for storing the head of the 

roe* chain is d i r c u d .  



4.1 Basic Properties 

To simplify the notation. let us start with the quadratic equation' 

.2+0,r+o,=~ 14.11 

in GF(?'). After both r i d s  d Equation(4.1) are divide& by oz, the loUowing 

equation is ohtainnl: 

~ + o * , r + o ~ r ' = O  (4.2) 

After listing the mots of aU the paarihle owl and o*, or,, for all € EGF(T"), 

Yonng and LeNgoc found that the mots of Equation(4.2) arc not randomly dis- 

tributed. T b d r e ,  they developed the periodicity algorithm. In this %ction, it 

will be shown that periodicity p r apmis  exist in the g ~ ~ e r a l  form of Equatioo(4.l) 

hccaune of the internal relationship herween roots and their coeffidencr. Thus the 

transformatxon from Equatioo(4.l) to Equatiou(4:2) is not marnary 

Suppwr r ,  = and r r  =a" are the roots of Equacion 1-I.1). where o is the 

~rimitive elenlent of GF(2'"). The following relations always exist betmen mots 

a d  their codficicnrs: 

0, = z,  +=2 

"1 = 'I - "7 

If we have roots + = rr . r ,  = a"+' and 4 = a. r2 = a'zt', the mmspod ing  

c d c i e n t r  wiU he: 



1. Galois field, multiplication of two operands can be w i l y  r e d i d  by modulo- 

N ( N  = 2" - I) addition of their p o r n .  T b d o r e ,  we crpe-zt when the powers 

d two mots inmar. by one individually. the powen of vI aod 02 wiU in-e by 

one and two respectively. All the iocmmect operations are modulo N. The above 

mentioned pmperty is further illustrated by Table 4.1. Table 4.1 lists all the mots 

of Equation (4.1) with repect to all possible valves of or and m2 in the cane of 

rn = 5 and pr imi t in  polynomial p(z) = =I+= + I .  

Table 4.1: The root table over GF(23) and p ( r l =  1% + + I 

-lo0 a' a2 d or as d"' 

Each element in Table 4.1 represents for thr power of a <:aloir field element. 

For example. the bottom rlght corner element in Table 4.1 is [1.5], which means 

that, for Equation (4.1). wbm m, = m e  and o2 = rr8, the two mots are o' and o'. 

If Equatioo (4.1) ha. no mot for given values of mt and s*, i t  is marked as [x]. 

AS rbowu in Table 4.1, when the root pair of [1,5] b-ma 12.6). its comepond- 

ing a's will from (06.06) to (4,0'), i+.(o*',o*'). If we keep iomssing 

both of the mat power values by I, we can get a root chain l o v n  below: 



[1.5] -[?.61-(0.31 -[1,4] -+[2.5] -P.6] -[0.4] -[1.51. 

The chain wiU b r  dosed because of modulo-N addition and there muat always be 

N distinct elemeob i n  the chain. 

Acmrding to the relationship beiween the roo- and their eo-onding c&- 

cieotr, a list of (a,, a,) pain of the above mot chain is shown below: 

( d . m 6 )  - (oo.n') - (n',a3) - (n2.d )  - (n3.d)  - (04.a2) - 
(m5,m4) - (n~,oe). 

Due to the uniqueness of the roots. the (*.oz) pain also form a clmed chain a d  

i t  also ha. N distinct elen~entn. Io the (a,,a,) pair chain. ol increass by one. 

while az increases by two. Thus, if we know oor dement in the mot chain and 

its corresponding a, and a,. the other roots in the same chain can be obtained by 

urimg shifting oprratioos. 

We assumed that (al,ol)= (aD.z) is the leadrr of the chain since each (a,.a.) 

pair chain passes thmugh n = oo and different chains cotltaiu ( a , . m z )  = (aa.+) 

with distinct 1, where j E [O.N - I]. 
There are N number of c pair chains altogether. wlme N =?'-I. Each chain 

ha. N a pairs. Because there are altogether N ( N  - I )/I possible root pain and 

they are distributed i n  ( N  - L)/2 number of root chains. all l h o ~  (al.orr) pain 

with roots will form ( N  - I) / I  = 3 chains which wr call cool chains. The other 

(N + I)/? = 4 chains without mots are called no-root chains. 

Auothcr useful pmperty is the addition of the powem of two mots (moduloN) 

equals the power of a,. These properties are suutmaripd ar follows: 

1. There are N number. of chains in total, of which ( N  - 1)/2 chains contrio 



mts. while the  other ( N  + 1112 chains contain no m c r .  

2. There are N distinct elements in each chain, and each element in the chaio 

repeats with a period of N, where N = 5= - 1. 

3. lo each (o,,nZ) pair =hain, p- of o,'s increase by one and ot'r i n m a r e  

by two. In the mot chains. both of the powen of the two mmspandiog mots 

i.cma3c by one. 

4. Each (r,,oz) pair chain contains a ( o , . o ~ )  pair of (nD.o')  with unique j .  

where j € [O,N - I]. 

5. The addition of the powem of the two r m t r  (modulo-N) qudr  the power of 

the crz in the Equatiott (4.1). 

In the above disrussioa. we lguore the C.LV rI = 0 or e1 = 0. because iu RS decoding 

procedure thr  quadratic m o r  locator polynomial muat have two distinct ooo-zem 

ermr brators. 

4.2 Improved Periodicity Algorithm 

4.2.1 Improved Periodicity Algorithm 

Fmm the properties dexribed in the previous section, au l~npmved periodicity 

algorithm for solving the quadratic equation rZ+ olr + = 0 in GF(2") can be 

obtained below. 

First, for any dven Galois field, establish au index table containing the bead 

of each mot chain and its co-onding (a,.a2) paira. S i n c ~  the corresponding 



(o,,02) pairs of each mot chain pa.. t h m ~ g h  a ( r , . r 2 )  = ( o o , d ) ,  the tableof the 

roo* of 

~ ' + r + d = O . j = O , l , . . . . T - 2  (4-3) 

o d s  to he found. Each entry in this table is only one of the mots of Equation (4.3) 

and the m e s s  to t h e  m t r i a  can be obtained by the iodex j. For example, the 

i ndn  table for or = 3 and p(p(r) = z' + r + 1 is given in Table 4.2. Hne. x stands 

fm oo mot chain. The Bowchart for the construction of the index table is shown in 

Figure 4.1. 

Table 4.2: The index table over GF(2') and )I(=) = r3 + r + I 
d I o 0 1 e L l d 1 4 1 e 4 J e ' l e e  
I k ] / X 1 2 1 4 1 X I I I X I X  

Now, the improved periodicity algarithm based on the preprocerred index table 

is give0 as fallows: 

I. For any give. o, and oz, determine the chain to wlliclr they belong. Let 

D, = n" and a* = o',, then we try to nlap the (at .a2)  = (o't,n'*) into 

(mo.m'-7)  with the mapping function given by: 

i,.. = (is - Zi,) (mod N )  

2. Look up the iodex table to get the mat value I[i,.,.,] 

3. If it happens to belong to a nomot chain, then tbr  given mor locator poly- 

nomial har no mot. 



Figure 4.1: The couatruction of the mot index tal,lr over GF(2') 



4. Otherwise. if it is on the mot chain, find the actual cmta according to the 

relationship among the mdficientr of each chain. Assume that the mots can 

he erpmed  as .Y, = d and X2 = 0'. Then the exponent of one mot XI 

can he obtained by: 

I = (l[i-,.I + it1 (mod Nl  

where in is the exponent of a,. 

5. By applying pmpmty (5 ) .  the other mot X, = o' can be found by: 

a = (i. - f )  (mod N )  

where C is the exponent of o2 

Figure 4.2 show. the Bow cha~t d the periodicity algorithm. 

4.2.2 The Okano-Imai Method 

In this section. we introduce the Olaoolmai ROM root search method I421 for 

comparison. 

Let ms consider the quadratic polynomial over GF(LV'): 

The appropriate linear translation 

==m,Y. S ! # O  (4.5) 

will yield 

X'(y) = y' + y + c, r = mz/o: (4.6) 



Mappins to get the 
the access number 
of the index tabk 

] Table look up 

I Find one of the 
mot by mvcrw 
,napping 

I Find the 0th- 
mot by X, = a 2 / X ,  

F i y r e  4.2: The Bow chm of the prriodicity algorithm 



a.ce the polyoomial E'(v) ha. just one m&cieot c, the rizc of the table for finding 

elch mat of X'(y) is N . m  bits. 

A f t s  one of the mot. of E'(y) is obtained, the mot of E(z)  can be calculated 

using Equation (4.5). The other mot can be obtained by applying X? = ~21x1. 

After we investigate the Bowchart of the Okan~lmai  method, we h d  that it L a 

similar algorithm to the improved priodidty algorithm. 

4.3 New Periodicity Algorithm 

Tbe ~ n r o d i ~ i t y  d~c r ibed  before requires a mot index tableof equation 

r2+ r+ .7 ,=0  (4.7) 

which needs a (2." - I )  x ",-bit memory. Thii table can now be eliminated by the 

following d i d  rolution mthod. 

Any element r of GF(Y") can be reprented as: 

r = z.. .,P-' +z,-~B"-'+ ...+ r 1 8 + r a  

where !?.I)';. is the standard basis of GF(LU) and r ,  E GF(2). Hence, r 

can also be denoted as vector (~,- , .z,-~. . . . .ro) undrr the basis B, 8'. . . . .P-'- 

The Equatio. (4.7) can he rewritten as follows: 

( . , , ~ , , ) ~ + ~ , ~ ~ , , ~ ~ + l ~ , ~ , - , ~ = 0  (4.81 

where a* = c.-,/?"-' +-..+COP. 

To fwthm iUurtrate the direct solution method, we limit our dianusiooa to 

GF(P ) ,  p(r) = 9 + z' + r? + r + 1 and standard basis a',. . - ,a'. However, 



the muhod can be extended to other cars accordingly. B a d  on Galoxs fidd 

pmpertia. fbe square of tbc ekmeot of the Glloir field equal. the rum of the 

square of each coordinate, which can be written =: 

Equation (4.9) can be rewritten lo matrix form: 

The quadratic quatiou (4.8) becom~s 

- 1  1 1 1 0 0 0 0 -  
1 0 0 0 1 0 0 0  
1 0 1 0 0 0 0 0  
1 I I l O I O O  
1 1 0 0 1 0 0 0  
O L I L O I I O  
l O O L O O l O  

. o  1 1 1 0 0 0 0 .  

-r; 

a 
Z-E 

r. 
r, 
s 
r, 

. s o -  

- - 

-c;- 
o 
q 
q 

D 
q 
c, 

- c o .  



ARer performing some matrix operations, we get 

As we can SR. I ; , Z ~ ,  - - . ,z, can be determined frmn h. 41.. - - . ca directly. The two 

mots of Equation(4.i) a m  (r;.rs,.. .,rl.O) and (r,.rs, .. . .a. I). The solution 

only exists when c; + + cs + 4 + ~3 + q + C, = 0. An implementditio~ circuit 

r fmnl Equatioo (4.i) can he shown in Figure 4.3. It is clear that the i n d a  

table Is not required a. shown in the periodicity algorithm. This table elimination 

advantage can he also utilized for Okanelrnai'r ROM method 1421. 

Fig- 4.3: Hardwired connections for 60diog mots of zl+r + n2 = 0 avrr CF(2') 

A mmsponding Bowchart for the software implemnltatioo is shown in Fig- 





Piad r* .LL~ 

Figure 4.4: Thr flowchart of new periodicity algotitb~n for nt = 8 and p(r) = 
P+r'+r'+r+I 



Chapter 5 

Comparison of Different 
Algorithms 

In thii chapter. different decoding whcmer are mmparrd. Solving the error locator 

polyoomial can be achieved by eithrr the Peterson "lethod or B e r l e h p M m e y  

algorithm. A time comparimn of t b a e  two e.lgorithtns is  .lade baed on the rimu- 

lation program. The mmpariron of diffmot technhniquez of determining ermr values, 

Gauss-Jordan elimiortiao and the Fomey algoritl~m a m  also made. At l a t ,  five 

different roat search techniques are compared for time and ROM mmplu~ty.  Thee 

indvdechim search. loah-up table, binary-decision fast Chien -rcb [ST] 1411, the 

pcr~odicity algorithm and new periodicity algorithm. 

5.1 The Peterson Method vs the Berlekamp- 
Massey Algorithm 

In Chapter'& we discvraed the Petmoo-Goreorttin-ZierIer decoder and the BerleLamp 

Ma~liey algorithm for hdiug error brator polynomials. Now, ruo our simulation 



program on a UBK workstation Pko'. .Assume that rn = 8 and the aetval error 

number u equal to T and let the error occur at 1.2.. ... T. respectively The raulrs 

are p b t t d  in F i  5.1. 

It is clear that when T j 6. the execution time of Permn's algorithm is 

slightly better than that of the Berlekp-Varwy algorithm. However. when T > 

6. the execution time of the P e t e m  algorithm exponentially increases. whik the 

execution time of the BerleLampYasey algorithm linearly increase. Hence. for 

any T > 6. the Berletamp-M-y algorithmshould be used to reduce the dewding 

time. 

Figure 5.1: Time mmpsriaoa b e m n  the Peterson and BerleLampM-y method 
for rn = 8 

1Pim k a m / l M  DEC station ondn OS Ult& 4.1. in CCAE. Fvv lR of Engineering and 
AppEd S t i d - .  Memorid UnimrritY of N e r t o m b d .  



5.2 Gauss-Jordan Elimination vs Forney's Algo- 
rithm 

.As shorn in Chapter 2. after having determined the ermr locaror kc using Chien 

search. the error v d u s  c a .  be obtained kc using either the Gauss-Jordan elimina- 

tion or Forney algorithm. Simulations were run under the same running conditions 

stated in Section 5.1. The d t s  are plotted as r h m  in Figure 5.2. It is o h m  

that when T < 10 the Gauss-Jordan method is a preferred method. vhile when 

T > 10 the Forne?, algorithm should be usd to cut dowm decoding time. 

Figure 5.2: T i e  comparison between the Ga-Jordan elimination and Fomey 
method for or m 8 



5.3 Comparison Among Different Root Search 
Methods 

In Chapter 4. the new periodicity algorithm was presented for solving the mor  

locaton. Lo Section 2.4, the traditional Chien search method war also d i r c d .  

R e d l y ,  two other methods for finding mots of Gdois 6eld polynomial have ap- 

peared in the literature. Oae is the Olan-lmai ROM method [4?] and the other is 

the binary-decision fast Chi- search pmplaed by Shayan. LcNgoc. and B h a r g a ~  

[41]. Anothm conventional way to evaluate the mots of polynomials over G F ( P )  

is to use a look-up table. The Okaodmai ROM method is identical to the im- 

~ m v e d  periodidly algorithm and has hem introduced iu Section 4.2.2. The lsrt 

two methods wiU be b d y  i o t m d u d  before we p m 4  with further comparison. 

of all these methods. 

5.3.1 The Look-Up Table Method 

Let us again consider the following polynomial: 

In the look-up table method, a table which contains the mapping relationship b e  

tween all the possible value  of the coefficients and the correspouding ermr locaton 

is constmcted in advance. Since codficieots 01 the polyoo~~lial contain all the infor- 

mation about the mots, wr can urc t h e  mcf6rientl as add-- and the roots d 

error locator polynomial as entries of a look--up table. This approach is the fatest, 

however, it also needs a large look-up table of rile O(W) bytes ( N  is the l a s h  

of GF(T")). Therefore, in most case, it is not feasible lor many applications, 



particularly high order finite fields such ar G F P )  

5.3.2 Binary-Decision Fast Chien Search 

This appmach is a b  called rgmmted -ch algorithm [41][57]. The algorithm 

can be explained ar follows. 

Let usmnsider the GF(2"). Wecan divide the field into Iequairegmeotr. where 

I = 2'. For each cotnbinatioo of two coefficients iu  Equation (5.1). a S q m n t -  

l d e n t i k  (SI) value in asiyed which indicates the .qment with nunt of rook 

Each SI entry in the table is I bits long. Hence the r i u  ai SI table is N' . i bits. 

To solve for the roots af the polynomial, first the two coefficients of the poly- 

nomial are applied M the SI table and the segment which has most of the crmc. is 

identified. Then a Chien search is applied to that segment. An woo ar the first mat 

is found, the semnd mat can be calculated by the L m ~ u l a  = X1X2. Clearly, 

this approach only takes approximately I/i of C b i e ~  search time. 

5.3.3 Comparison Among Different Root Search Methods 

The comparisons of execution t ime  and memory sivs d the Chien search, binary- 

decision search. Iwk-up table method. the periodicity algorithm. and the new p- 

riodicity algorithm a n  made for decoding double error correcting RS codes of any 

length, which can be rhowa in Table 5.1. For comparison, we consider the worst 

case only. In Chien search's worst m e ,  the polynontial should be edvated and 

compared with =em. ? * - I  times. In the regmuted =arch algorithm. we consider 

that the Galoir field i, divided by 2. In the wont case, the half Galoi. field needs 



to be d e d .  All the other methods go through the longest path in theexecution 

process. 

Time stimation is made b a d  oo the clock period of the lntd micmpmc-r. 

Information about theclockcycks each operation takes can be found in [59]. lo the 

last tmr rows of Table 5.1, we k t  the CPU eycks muired by the serial m d  par- 

allel implemrntatioos of the o m  periodicity algorithm. The mie l  implmvntation 

refers to go thmugh the Bowchart of F i p  4.1 one operation afkr  another with 

one pmcamr only. The parallel implementation time is estimated by assuming 

that ad t i p i c  proasson exist and oo mmmunicatian overhead betmeo the pmces- 

son. The number of the pmcesmn will depend on the code Irugth and the chosen 

primitivepolyna~rual. For the care introduced in Section 4.3. i adders are required. 

From Table 5.1, wr can re that with parallel implcme~xtatiou. the new periodicity 

algorithm reqvirrs no memory rpaceand only 62 CPll cycle inferior to the bok-up 

table method. It is dSrieot io t- of both memory size and demding t i m .  Ln 

fact, since no ROM is muired and ody additnons involve i!) rhr new periodicity al- 

gorithm, LSI arcllifecture cau be easily developed to schirw thr parallel processing 

m d  thus high spred d-ding 



Table 5.1: CPU cycle and m o r y  size of d a a t  mol warch methods 

wont-- Look-up 
o m b a  of memory size 
CPU cycla bytes 

Chien search 48N 0 

Binary-decision 
fast rhaen xarrb 24N + 8 O W )  

Look-up table 10 0(.N2) 

Periodicity algorithm 49 O(N) 
New Periodicity 
algorithm -serial 258 

0 

New Periodicity 
algorithm -parallel '' 0 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

Communication chaunels are normally affect& by vvaiour Lads of naira, inter- 

ference., dirt anion^ and fadiop. As a rrrult, error. occur in data transmission. 

Forward enor correction (FEC) is a common method to counteract t h e e  pmb- 

I-. 

Due to its optimal structure, highest mrmction capability and mont d all its 

ability of m m t i o g  both raudom and burst errors. hd-Solomon m d e  am widely 

used t d a y  for many applications. As the demaod for m o r  contml mding rapidly 

iomaser, for example io cellular telephone systmns, satellite comnlunicatioos. high 

ddnition television, mmpact disc etc.. the iauderntandiug of RS m d e  b blmrmng 

esentinl. Hmce. in this thesis, we examine two nl~jar aspens of RS code: 

I. A generd purpose Rd-Solomon mdec simulator 

2. New pcriodidty algorithm 



6.1.1 RS Codec Simulator 

The mervim of RS codes premted in Chapler 2 iotmduced and dkmssad the 

encoding and dsoding pmara s .  In the m c o d i i  p-. the emphasis was 

placed oo systematic encoder with the of self-ncipmcal generator polyoomial. 

While in the decoding pmmr.  theerror loator  polynomial was obtained by using 

three methods: the Petemu-Comrteio-Zierler, BerklumpMasrey and improved 

Berlekamp-Maswy ~ylgorithr~w. After having determined thr  error locator polyno- 

mial, Chieo =arch was used to find the mots, i.e. emr  locators. The error valves 

w- calculaed by tw diffmot approaches: t C  Gau-Jordan eliminatxon and 

Forney methods. 

Chapter 2 described the implementation of RS c e d ~  simulator which is ldeslly 

suited for teachiug aud the study of a wide rsugr of RS code.. 

The mdrc simulator starts encodiug the user's data message into a sptematic 

mdeword by mteriug thesymbol length m from 3 to 8 birr aud the m r  correcting 

capability T of up to 20. The data mewage can br selected as: all z w s .  or 

an input fik, or mtering through keyboard. The noisy channel is modeled by 

an error pattern. This ermr pattrm cau either be enled by the user with the 

arbitrary weight or generated by an external pmgranl. which pmvides all possible 

error positions. Both the Peterno and BerlekampMasscy algorithms am available 

for user. to coostruct the ermr locator polynomial. Tlte Chien d technique is 

used to obtaiu the e m r  locator. which are themotsaf t henmr  locator polynomial. 

ARer having detmnined the m r  locators, the e m r  values can beobtained by using 

Gauss-Jordan eli~nioatioo or Farney's algorithm. A decoded word is estimated if 



u c T and the decoded word (or estimated mdeword) is a mdnuord. However. 

whm v 2 T t b r  demded word must be checked by dividiog it by GI=). If the 

remainder is z n o  t hm u = T o r  the e m  pattern is a codeword. The latter case 

may happen whm v > T and the decoder is blind. U the d-ded word is na 

divisible by G(r). thegenerator pdyoomial, thm v > T and the received word wiU 

not be m m t e d .  It will be p-ed ro the data rink untouched because the demder 

wiU no1 m m t  tl* m o m 0  pmperly. 

The RS mdrr simulator wa. implonmted iu C lamgvag- and can be run un- 

der MicmaR Windows and UNlX operaling system. A friendly and easy-lo-use 

graphical user interface is pmvided for PC. 

6.1.2 New Periodicity Algorithm 

Unng analyses. ia Chapter I, we have shown and get~rralirrd the periodicity a b -  

rithm. conceived by LcNgor and Young (l][Z] a. follows: 

(i) The new farm of error locator polynomial. 

~ " ( z I  = r (=) l~~ = I + st= + 0 ~ ~ 2 '  

introduced by Young is not necessary and therrfore this also lneans an decrease in 

demdiog time. 

(ii) Using the standard Peterson's error locator polynonlial form: 

it w a  clearly demonstrated that there is a specific relationship between the mats 

( X I  =on and X, = n") and theconepoodingcaefficirntn (0, =on and* =dl). 



The mew periodicity algoritbm stat-: 

I. I f  The mot power valua (i, and ir) of X, and & increase by I ,  then the 

power value of 0, also in- by I, and the p o w  value of m2 inc- by 

2. Thus they form a clme root chain. 

2. There are IN - 1)/2 mot chains and (N+ I ) / ?  no mot chains. 

3. There are always N = 2- - I distinct mots in) a mot cham. 

4. Whmrver the co&cicnts (mt,m2) arr known, one of the two mots can be 

determined by mapping the curnot (m,.m2) = (dl, 0 ' 2 )  into the index o 

pair (no. "'-I) with i,.. = (i, -2il) (mod N). This is the m o o  that 

an ii.d~x table of N x m bit m-ry is required 111 121 to stom the mots of 

r2 +z + a'--. = 0. However. by using the d i re t  wlution method. we haw 

eliminated the N.m bit memory space. This is oneof the major contributions 

of this theis. 

5. The second mot is easily obtained by X. = o z / X , .  

(iii) Our analytical derivation alno pmvs  that the periodncity algorithm is -lid for 

all value of m. 

Chapter S ha. devoted to the mmpuiron of differat algorithms with respect 

to the demdiog time. For determining ermr locator poly~>oa~ial, the Berlekamp 

Massey algorithm is preferably used when the enor comrcting capability T > 6. 

while the Petenon's method is rearmmended when T < 6. 

For finding m m  valua, the Fomey's algorithm b normaUy r-ted to be uwd 



when T > 10. w h e w  the OaurisJordan elimination method is recommended when 

T 5 10. 

I n  searching for mots of the error locator one normally trades off be- 

c- execution time and memory shes i n  vatioua techniques. Table 5.1 in Chapter 

5 Eted the number of CP l i  cycles and memory siea among the diierort methods. 

I t  is clear that with parallel hard- impkmentation. the on, periodicity a l p  

rithm requirrr no memory space as Chien wanh and only 6'2 CPU cycler inferior 

to the look-up table method. I t  is in fact the moat optimal algorithm so far 

rn know. I t  can be that the new algorithm will take the p l s v  of Chieo 

warch, binary-dnisioo (fast Chien warch), look-up taLIc. and O h o - h l a i  method 

io the future M S I  design. This is the main contribution in thir thesis. 

6.2 Future Work 

As mentioned fmm the start of the theris, our work mucentrated oo algebraic 

demdiog. However, there are other kinds of d-diag, such ar transform decoding 

and time domain dmding. Therefore, one dimt ioa for future work would he to 

include there demding methods into the RS mdec rinlulator. 

Since the mew periodicity algorithm is .o optimal one in both memory sizes 

and decoding time for double error correcting R9 mder, our next step should be 

further developing a aigoritlrzn to adapt ta larger o r - ro r re t i ng  capabilities. Th- 

appmdes can be considerrd to rxllvc this pmblen,. One way is to decompcae the 

high order e m  locator polynomial into quadratic one .  Then the new periodicity 

algorithm will still be dlective. Another appmacb is to mmhiue Chien search with 



the periodicity algorithm to salve the palyoomid. The third ooc k to develop a 

mew algorithm which can dctmninc the mats d-tly fmm the co&cieots by uring 

=",= m-ry, 

The om, periodicity algorithm h a  no memory ~ q u w e m o t  and only additions. 

Therefore, it in e a y  to convert to hardware implemeoertioo. However. a mom 

&dent circuit deign will be involved in order to fabrioit- the dgorithm into 

VLSI chip. 
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