CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

NOTE TO USERS

The original manuscript received by UMI contains pages with
slanted print. Pages were microfilmed as received.

This reproduction is the best copy available

A General Purpose Reed-Solomon CODEC Simulator
and New Periodicity Algorithm

By
© Ying Ye

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

1 il Universivy iof Newlsundlaad

July, 1995

St. John's Newfoundland Canada

i~l

National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and Acqui 'S et ;
Bibliographic Services services bibliographiques

395 Wallington Street 395, rue Wellington
Ottawa ON K1A ON4. Oftawa ON K1A ON4.
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Vour e Vare rferance

Our e Nors rironce

L’auteur a accordé une licence non
exclusive permettant 4 la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-36194-2

Canadi

Abstract

In most digital communication systems, if we can afford to send data below the
modem transmission speed. then it is possible to achieve the system bit error Fae
as small as we desire by using error control codes. The Reed-Solomon codes are
such error control codes, that are widely used for forward error correction due to
their optimal characteristics in both Hamming distance and structure, but most of

all, their capacity for correcting both random and burst errors.

Finding a suitable code for a communication channel, or trying to explain how
the Reed-Solomon codes work, or comparing various decoding methods is ot an
easy task, hence this thesis developed a general purpose Reed-Solomon (RS) coding

and decoding (codec) simulator for teaching as well as research purposes.

The RS codec simulator has two versions that can be run under Microsoft Win-
dows and Unix operating system, respectively. A friendly and easy-to-use graphical
user interface (GUI) is provided for PC. The user can define a code by selecting the

symbol length m from 3 to 8 bits and the error correcting capability T of up to 20.

In the encoder, the sy ic code ion and the self-reci 1
polynomial are used. The noisy channel can be modeled by an error pattern. This
error pattern can either be entered by the user with the arbitrary weight or gener-
ated by an external program, which generates all possible error positions. In the
decoding process, both the Peterson and Berlekamp-Massey algorithms are avail-
able for finding the error locator polynomial. The simulation results show that the

Peterson’s direct method is better when 7' < 6. However. the Berlekamp-Massey

algorithm is much faster when T > 6. Chien search is used for locating the error
position in the received word. Although the error values can be obtained by using

either G. Jordan elimination or Forney’s algorithm, Gauss-Jordan

is preferred when T is small, i.e. T < 10, but as T increased, i.e. T > 10. the

Forney algorithm should be used in order to minimize decoding time.

It is found that the periodicity algorithm conceived by S.Le-Ngoc and Z.Young

(1] [2] is a special case of the LeNgoc-Ye Transformation Algorithm [3]. An im-

A e s Bl

proved is d which can eliminate the division operation

required by the LeNgoc-Young algorithm. The analysis shows that the periodicity

sodicity algorith

algorithm is valid for all values of m. Furth a new
is also developed by using direct solution method to eliminate the index table re-
quired in the proposed periodicity algorithm. It is shown that the new periodicity
algorithm outperforms the look-up table, Chien search. binary decision (fast Chien

search) and Okano-Imai ithms in terms of optimization of both memory space

and decoding time. The new periodicity algorithm has a simple structure and

therefore it is well suited for VLSI implementation.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Son Le-
Ngoc. Without his stimulating my interest in this exciting field and his constant

and guid h the course of this research, this thesis

would not have been possible. I also wish to thank the examiners for their careful
reading of the thesis and for their useful comments that led to the improvement of

the thesis.

The financial support by Natural Sciences and Engineering Research Council of

Canada. the Faculty of Engineering and Applied Science of Memorial University,

and Wilson Technologies Inc. is k ledged

The last but not the least, I would also like to thank my parents Mr. Yulin Ye

and Ms. Bingqing Chen for a joyful dawning in the quest for truth and knowledge.

Contents

-

Abstract

Acknowledgements

List of Figures

List of Tables

Introduction

1.1 Statement of the Problem

1

121

122

3

1.2.4

1.2.5

Literature ReVIEW: 2 ¢ dpmnd @ 5 5 & 5 5 4 5 9o srramiatie ¢

Three A hes to C ing Reed-Sol Codes

P g
Decoding Reed-Solomon Codes

Based Decoding vs Remainder-Based Decoding
Frequency Domain decoding vs Time Domain Decoding . . .

Evaluation of the Roots of the Error Locator Polynomial . .

»

e

1.3

14

126" VLSI SEPUCITES o soonsine s 510 6 o o s o s o w2 o8 0 2 0

Scope of the Worko oot

Organization of the Thesis

Reed-Solomon Codes Overview

2.1

2

23

2.4

o
o

General Description of Reed-Solomon Codes

Encoding and Decoding of RS Codes

Error Locator Polynomials

2.3.1 Peterson-Gorenstein-Zierler Decoding

2.3.2 The Berlekamp-Massey Algorithm

2.3.3 Improved Berlekamp-Massey Algorithm

Etror LOCAOIE' « = v o wsnvess s o 5 5 5 5 % s« 5 % 5 % 0 5 v sowimmen

Magnitude of Error Pattern

25.1 The Gauss-Jordan Elimination Method

2.5.2 The Forney Algorithm

Reed-Solomon Simulator

3.1

@

2

33

34

General description

DataSEructure .« . cwvsvivin s s w5 v 6 8 5 5 6w ¥ & 5 8@ e

Generation of Galois Field

Flowchart of Main Subroutines

vi

29

30

32

'S

3.4.1 The Peterson’s Direct Method . - 41

3.4.2 The Berlekamp-Massey Algorithm 41
343 Chien:Search oy s s s o en w285 & % 6 5 44
344 The Gauss-Jordan Elimination Method 45
3.4.5 The Forney Algorithm 47
3.5 Simulation Results 47
New Periodicity Algorithm 69
4.1 Basic Properties . - . - « < s oot e 70
4.2 Improved Periodicity Algorithm 73
4.2.1 Improved Periodicity Algorithm 73
4.2.2 The Okano-Imai Method 76
4.3 New Periodicity Algorithm 78
C ison of Diffe Algorith 83
5.1 The Peterson Method vs the Berlekamp-Massey Algorithm 83
5.2 Gauss-Jordan Elimination vs Forney’s Algorithm 85
5.3 Comparison Among Different Root Search Methods 86
53.1 The Look-Up Table Method 86
5.3.2 Binary-Decision Fast Chien Search 87
533 Comparison Among Different Root Search Methods 87

vii

6 Conclusion and Future Work 90

Bl JCOBERIBION . » 4 « 5+ w svwmsnaris s & % % M6 6 B B ¥ w @ BRI 90
6.1.1 RS Codec Simulator 91
6.1.2 New Periodicity Algorithm 92

62 TUtUreWOrK:: « v v moowvasmn v v s v % % % 8 5 B S ¢ ¥ SEEEE S 94

List of Figures

w

Linear feedback shift register for generating a sequence of syndrome

VAIIEEL ;5§ o B 2 SRR B Y R SRS e 21
Overall flowchart of simulator 33
The generation of finite field GF(2™) 40
Peterson’s direct method solving for error locator polynomial 42
Flow chart of Berlekamp-Massey Algorithm 43
The flowchart for the Chien search 44
The flowchart of the Gauss-Jordan elimination method 46
The flowchart of Forney algorithm 47
Example of RS (255,247,4) simulator 68
The construction of the root index table over GF(2™) 75
The flow chart of the periodicity algorithm 77

Hardwired connections for finding roots of z* + z + 07 = 0 over GF(2%) 80

4.

o

=

The flowchart of new periodicity algorithm for m = 8 and p(z) =

P4 4Tl e 82

Time comparison between the Peterson and Berlekamp-Massey method

Time comparison between the Gauss-Jordan elimination and Forney

methodform=8............................ 85

List of Tables

&
iv

»

IS
i

o

Galois field of GF(2*) generated by p(z) =1+ +2z' 36
Primitive polynomials for generation of GF(2™) 39
The root table over GF(2*) and p(z) = 2 +z+1 71
The index table over GF(2%) and p(z) = 22 +z+1 4
CPU cycles and memory size of different root search methods . . . 89

xi

List

Az)
BiCMOS
T
CCAE
G
C(z)
C(z)
Codec
E(z)
F
FEC
GF
GUI
G(z)
K

LSI

M(z)
MS

of Principal Symbols and Abbreviations

Parity check polynomial

Bipolar y metal oxide
codeword vector

Center for Computer Aided Engineering
jth Fourier transform coefficient
codeword polynomial

Estimated codeword polypomial
Coding and decoding

Error pattern polynomial

Fourier transform

Forward Error Correction

Galois field

Graphic User Interface

Generator polynomial

Number of information symbols

Large Scale Integrate

Symbol length of 2 Galois field element
Information or message vector
Message polynomial

Microsoft

Code length

xii

VLSI

A(z)

(=)

S(s)

Primitive polynomial
Quotient polynomial
Read-only memory
Reed-Solomon code
Received word.pulynomial
Syndrome polynomal
Syndrome

Error correction capability
Error locator

Error value

Very large scale integrated
Primitive element of GF(2™)
Error locator polynomial
Actual error number

Error evaluator polynomial

Error locator polynomial

xiii

Chapter 1

Introduction

1.1 Statement of the Problem

Reed-Solomon codes are extremely powerful codes that play a major role in error
control codes. This claim is illustrated by the following important applications of

Reed-Solomon codes [4]:

The digital audio disc, or compact disc uses Reed-Solomon codes for error cor-
rection and error concealment to improve the signal-to-noise ratio at the output
exceeding 90dB, thus assuring the high-fidelity sound quality of the compact disc.

On the Voyager space craft, Reed-Solomon and convolutional codes were used
in concatenated systems, hence enormous coding gains were achieved. They were

responsible for sending clear pictures from the deep space planet back to earth.

Reed-Solomon codes are used in systems with feedback such as mobile data

transmission systems [5][6] and high military jcation systems
that allow the transmission of information from the receiver back to the trans-

mitter.

o

Reed-Solomon codes are also used in spread-spectrum systems such as frequency-
hopping spread spectrum (FH/SS) and direct-sequence spread spectrum (DS/SS)
(-

Codes based on Reed-Solomon codes are developed to control data flow in com-
puters [3].

Since every pasticular application has its own distinct requirements such as

the error i bility and the cod length, a general purpose Reed-
Solomon codec simulator should be introduced to help the designer to evaluate the
performance of various RS codes and choose the most efficient RS code for a partic-
ular application. Such a codec simulator will allow us to compare various encoding
and decoding algorithms of RS codes and to investigate different properties of RS
codes and thus lead to development of new encoding and decoding algorithms. An-
other motivation of this research is to demonstrate RS code encoding and decoding

principles in the classrooms as well as in the laboratories.

Chien search is normally used for obtaining the error location numbers for syn-
drome based Reed-Solomon decoding. This method is the most time consuming
process in the decoding procedure since it may be necessary. in the worst case, to
search the entire Galois field. Therefore, it is also necessary to search for an efficient
algorithm to substitute the Chien search method.

The motivations for this thesis research are therefore three-fold: 1) to design and
develop a simulator to aid the designer, 2) to allow the simulator also to demonstrate

RS encoding and decoding principles in the cl as well as in the laboratories,

and 3) to develop new algorithm to replace the Chien search method.

1.2 Literature Review

In March and September of 1960, Bose and Ray-Chaudhuri proposed a class of
error correcting binary codes [9][10], which are now called BCH codes. The “H”
in BCH is for Hocquenghem, whose 1959 paper presented independent work that

included a description of BCH codes as a “generalization of Hamming’s work” [11].

Reed-Solomon codes first appeared to the outside world in June 1960, in a paper
entitled “Polynomial Codes over Certain Finite Fields,” [12] in JSIAM (Journal
of the Society for Industrial and Applied Mathematics). They are an important
subclass of non-binary BCH codes [13]. The codes are optimal in the sense that it
is impossible for any linear codes with the same length to have a Hamming distance
greater than that of the Reed-Solomon codes. For decades since their discovery,
Reed-Solomon codes have found countless applications. from compact disc players

to deep space telecommunications.

1.2.1 Three Approaches to Constructing Reed-Solomon
Codes

There are three approaches to constructing Reed-Solomon codes. The first is the
original approach by Reed and Solomon [12]{14]. Suppose that we have a packet
of K information symbols, mq,my,---,mg_,, taken from the finite field GF(g).'
These symbols can be used to construct a polynomial P(z) = mg + myz + --- +
mg_1z5!. A Reed-Solomon codeword is formed by evaluating P(z) at each of

!Reed-Solomon codes are constructed and decoded through the use
of finite field arithmetic.

the q elements in the finite field G F(q).

16q-1) = [P(0), P(a). -+, P(a®™")] (LY

= (co, 1,
It was felt for quite a long time that Reed and Solomon’s original approach failed
to lead to efficient decoding algorithms. In 1982, Tsfasman, Vladut, and Zink,

using a techni developed by Goppa, extended Reed and Solomon’s construction

to develop a class of codes whose performance exceeded the Gilbert-Varshamov
bound [15]. The Gilbert-Varshamov bound is a lower bound on the performance
of error-correcting codes that, many were beginning to believe. was also an upper
bound. Tsfasman, Vladut. and Zink’s work broke open an entirely new field of

research that continues to attract great interest from coding theorists.

The generator polynomial construction for Reed-Solomon codes is the approach
most commonly used today in the error control literature. This approach initially
evolved independently from Reed-Solomon codes as a means for describing cyclic
codes, which had led to the discovery of BCH codes. It was Gorenstein and Zierler
who generalized Bose and Ray-Chaudhuri’s work to arbitrary Galois fields of size
p™ and developed a new means for describing Reed and Solomon’s “polynomial

codes™ [16].

Cyclic Reed-Sols codes with cod: d symbols from the finite field GF(q)

usually have length g — 1. The cyclic Reed-Solomon codes design criterion is as
follows:
The generator polynomial for a T-error-correcting code must have as roots 2T

consecutive powers of a. where 2T < ¢ — 1 and a is a primitive element in GF(q).

2T
Gz) =Y (z -o) (1.2)
=

Any valid code polynomial must be a multiple of the generator polynomial. It
follows that any valid polynomial must have as roots the same 2T consecutive
powers of a that form the roots of G(z). This provides us with a very convenient
means to determine whether a received word is a valid codeword. The generator
polynomial approach leads to a powerful and efficient set of decoding algorithms
which are introduced later in Section 1.2.2, and discussed in detail in Chapters 2
and 3.

The third approach to Reed-Solomon codes uses the Fourier transforms tech-
nique to achieve the encoding and decoding process. Let o again be a primitive
element in the Galois field GF(q). The Galois field Fourier transform (GFFT) of
an N-bit vector & = (co, ¢y, -+ ,cn—1) is defined as follows:

Fleo,c1.- - en1) = (Co, Cr. -+ . Cn—a)s (1.3)
where C, = SN5'cia, j=0,1,--- . N —land N < q.

Unlike the conventional analysis of signals in 2 communication system, it is not
entirely clear what is meant by the terms “time domain” and *frequency domain”
when we are working with coordinate values from finite fields. However, since the
terms of transform- or spectral- or frequency-domains have been used for the same

concept for many years, the terms are also used here interchangeably. It can be

shown that the following twa diti in the time-d in and the freqy
domain, respectively, are equivalent.

A word polynomial has 27" consecutive powers of a as roots if and only if the

spectrum of the ding word has 2T ive zero

The GFFT approach is a dual to the generator polynomial approach. The

transform relationship leads to a series of efficient encoders and decoders. The

pioneering work on transform techniques can be attributed to Blahut[17].

1.2.2 Decoding Reed-Solomon Codes

In 1960 Peterson provided the first explicit description of a decoding for

binary BCH codes [18]. Peterson introduced an algebrai g algorithm rely-

ing on the transformation of power sum symmetric functions (the syndromes) into
elementary symmetric functions. This leads to a matrix equation relating the syn-
dromes to the coefficients of an “error locator polynomial” whose roots specify the
locations of erroneous coordinates in a received word. Peterson’s “direct solution”
algorithm is quite useful for correcting small numbers of errors but becomes com-
putationally intractable as the number of errors increases. Peterson also redefined
Reed-Solomon codes in a cyclic context to complement his work in algebraic decod-
ing [19]. A lot of coders and their codes owe their names and fames to Peterson.
An evaluation of Peterson’s contribution is given in [20]. Peterson’s algorithm was
improved and extended to nonbinary codes by Gorenstein and Zierler (1961) [16],
Chien (1964) [21], and Forney (1965) [22].

The Peterson technique of using matrix inversion to find the coefficients of the

error locator poly was far too d for the decoding of large numbers
of errors. In 1967, Berlekamp demonstrated his powerful iterative algorithm for de-
coding both nonbinary BCH and Reed-Solomon codes (23][24]. In 1969 Massey
showed that Berlekamp’s algorithm is equivalent to the method of synthesizing
the shortest linear feedback shift register capable of generating a given sequence

[25]. This shift register-based decoding approach is now ly referred to as

the Berlel M ith fichel and L [26] pointed out that

the Berlek M: lgorithm has a ional lexity that grows only

linearly with the number of errors to be corrected, while that of the Peterson’s algo-

rithm grows with approximately the square of the number of errors to be corrected.

In 1975 four Jap hematici gi Kasahara, Hirasawa, and
Namekawa showed that Euclid’s algorithm can also be used to efficiently decode
BCH and Reed-Solomon codes [27]. Euclid’s algorithm is a method for finding the
greatest common divisor (ged) of two polynomials. Euclid’s algorithm is well suited
for VLS implementation because of its modularity. The operations needed to com-

pute the Euclidean algorithm generally require the ion of inverse elements

in the finite field. A modified Euclidean algorithm [28] can avoid the computation

of inverse elements and it is very similar to the Berlekamp-Massey algorithm.

1.2.3 Syndrome-Based Decoding vs Remainder-Based De-
coding

The BCH and RS decoding methods can be divided into two categories: syndrome-
based decoding and remainder-based decoding. Both algebraic decoding and trans-

form decoding belong to syndrome-based decoding.

In algebraic decoding, d are eval d using Equation (1.4):

-7 (1.4)

N=-1
S, = Rl@)= Y ria, j=12
=

where R(z) = ro+r1z+- - -+rn_1z¥ " is referred to the received polynomial. Then,

based on the syndromes, the error locator polynomial A(z) is found by using one of

the Peterson, Berlek Massey, or Euclid Igorith Once the error locator

polynomial is found, the Chien search method can be used to evaluate the roots.
This method simply consists of the computation of A(a”) for j = 0,1.---, N — 1
and searching for a result equal to zero. Since the number of elements in a Galois
field is finite, the Chien search method is feasible for evaluating the roots of the
polynomial. i.e. the locations of the errors [21].

After evaluation of the roots of A(z), the error values can be obtained by solving
a system of 2T equations. An alternative method to find the error values is called
Forney’s algorithm [22]. Forey’s algorithm is more efficient because it eliminates
the extensive computation required for the matrix inversion.

In the algebraic decoding algorithm, first the received vector is transformed
to the frequency domain by evaluating the syndromes, and then, based on the
syndromes, the error locations and error values are found in the time domain. This

algorithm is sometimes called the hybrid decoding algorithm [13].

With transform decoding, the received vector is first transformed to the fre-

quency domain with 2T syndromes as the 2T components of its spectrum from 1

to 2T. According to the ion of Reed-Sol codes in the f do-

main, out of NV components of the spectrum of the error pattern, 2T can be directly
obtained from the syndromes. For the given 27 frequency domain components and
the additional information that at most T components of the time domain error
pattern are nonzero, the decoder must find the entire transform of the error pat-
tern. Finally an inverse Fourier transform is performed to find the time domain

error vector.

A frequency domain decoder was first proposed by Mandelbaum [29]. Imple-

mentation of transform domain decoders can be also found in [30][31](32](33][34].

and inued fractions to i a fre-

By using Fermat
quency domain RS decoder. Reed found that the transformation method is faster
than the conventional method [35].

Welch and Berlekamp developed an algorithm that does not require evaluation of

syndromes [36]. Instead this algorithm relies on the remainder polynomial obtained

from the division of the received polynomial by the polynomial. The errar
locator polynomial can be obtained using the Welch-Berlekamp algorithm. Chien
search can also be performed to find the roots of the error locator polynomial.
The determination of the error values is quite difficult. There are four polynomials
involved in this algorithm compared to only two polynomials in other decoding
algorithms. Also this algorithm can only directly correct errors that occur in the
information locations. Those errors occurred in the parity-check locations can be
found after correcting errors located in the information symbols, by reencoding
and comparing the received word and regenerated parity-check symbols. More on

remainder-based decoding can be found in [37] (38].

1.2.4 Frequency Domain decoding vs Time Domain De-
coding

As mentioned in Section 1.2.3, transform decoding treats data completely in the
frequency domain. Algebraic decoding also deals with syndromes, which are the

Fourier transform of the received data.

In 1980 Blahut proposed time domain decoding [39]. The time domain decoder

works on the received data directly and Fourier transforms are not required in the

10

time domain algorithms. Blahut felt that these algorithms are good candidates

for universal decoders [40]. The time domain decoding is based on a time domain

lent of the Berlekamp-Massey ithm. The decoding algorithm involves

q
N iterations instead of 2T in the Berlekamp-Massey algorithm. In the first 2T
iterations the error locators are found. In the next (N — 2T) iterations, the error
pattern is calculated. Note that there seems to be no obvious advantages in decod-
ing speed for time domain methods. However, the regular algorithm structure of

time domain methods is very suitable for VLSI implementation [40].

1.2.5 Evaluation of the Roots of the Error Locator Poly-
nomial

Syndrome-based decoding always requires finding the error locator polynomial, then
solving for the roots of the error locator polynomial. One of the methods uses look-
up table. A table consisting of roots of the polynomial with the coefficients of
polynomial as access address is constructed in advance. When the number of the

coefficients and the size of Galois field get larger. the memory size will be too large.

In 1964 Chien [21] suggested that computing of the roots of the polynomial can
be realized by evaluating the polynomial at o’ for j = 0,1.---,N — 1 and checking
for results equal to zero. Since the number of elements in a Galois field is finite,

the Chien search method is feasible for evaluating the roots of the p L,

In 1987 Shayan, Le-Ngoc, and Bh: d a binary-decision fast Chien
search [41] which is a mixture of Chien search and look-up table method. The
approach divides the Galois field into two halves. With a table established to

indicate to which part of the Galois field the roots belong, only half of the Galois

11

field is searched and the required memory space is less than for the look-up table
method.

In 1987 Okano and Imai also proposed a root search method based on LSI
implementation. By using a certain transformation, the look-up table size can be
reduced by O(N) for double error correction or O(N?) for mutiple error correction.

In 1993 Young and Le-Ngoc {1] [2] conceived by experimental results that the

roots of a quadratic polynomial over a finite field are not randomly distributed.

C ly, they developed a periodicity algorithm based on this observation.

The algorithm needs O(N) size of memory for root index table.

1.2.6 VLSI Structures

Now, we have introduced to the reader the basic concept of Reed-Solomon codes,

but the problem of designing 2 I lexity, high-bit-rate RS encoder and de-

coder still remains an active area of research. Some work has already been done in

developing VLSI encoders and decoders for RS codes.

In 1982 Berlel i d a bit-serial Reed-Sol encoder [43]. In his

scheme, Berlekamp introduced a bit-serial multiplier algorithm, which required only
shifting and exclusive OR operations for multiplication of two field elements by
using a dual basis over a Galois field. A single VLSI (255, 223) RS encoder chip
using Berlekamp’s bit-serial multiplier, was realized in 1984 [44]. The encader

structure is more regular and simpler than the conventional architecture.

In 1989 Seroussi proposed a hypersystolic Reed-Solomon encoder to achieve very

high sustained data rates. in the gigabit per second order of magnitude [45][46]. In

12

1986 Berlekamp presented a conceptual model of hypersystolic architectures [47].

A systolic array (48] is an array of computing cells with a regular interconnection

pattern in which every cell icates only with physically adjacent cells. In
principle, there could be one global clock signal distributed to all the cells, and data
transfer between adjacent cells could occur simultaneously throughout the array at
each clock cycle. In a hypersystolic array [47]{49), clocking signals are passed from
cell to adjacent cell along with the data rather than being globally distributed.
The resulting architecture is more practical than that of the systolic array since
it can avoid clock skews if there are large number of cells in the array, and thus
achieve higher data throughput. Berlekamp, Seroussi, and Tong had also patented

the design of the hypersystolic Reed-Solomon decoder (HRSD) in 49}

Based on the idea of Brent and Kung that a pipeline architecture could be
used to compute the greatest common divisor (gcd) of two polynomials. a new
pipeline architecture for a transform decoder using a modified Euclidean algorithm
was developed in 1985 [50]. In 1988 Shao and Reed presented a time domain
RS decoding algorithm and its detailed VLSI architecture. [t was shown that
time domain decoding is more efficient than transform decoding in terms of VLSI
implementation, since it can maintain the same throughput rate with less circuitry
[51].

Reed-Solomon codes utilize the arithmetic of the finite field. The operations of
addition and subtraction in the Galois field are simply bit-wise XOR operations.
However, multiplication and division in Galois field are more complex and difficult.
In 1984 Yeh, Reed, and Truong presented serial-in-serial-out systolic architectures

for performing multiplication in finite fields GF(2") [52]. Afterwards, several meth-

13

ods have been proposed to realize multiplication and division in finite fields. Wang
et al implemented a Massey-Omura normal basis multiplier in 1985 [53]. In 1986
Scott, Tavares, and Peppard developed a fast VLSI multiplier using the standard
basis [54]. A comparison of the VLSI architectures of three different finite field
multipliers: the dual basis multiplier due to Berlekamp [43], the Massey-Omura
normal basis multiplier, and the Scott-Tavares-Peppard standard basis multiplier
is presented in [55].

Inverter structures are very complex. Wang et al presented a recursive pipeline
inverter using Massey-Omura parallel-type multiplier based on the normal basis
representation [53]. In 1992 Hasan and Bhargava proposed a bit-serial systolic

divider over GF(2™) [56]. The structure is independent of the primitive polynomial

used to generate finite field and the basis used to represent the field element.

1.3 Scope of the Work

The main objective of this research is first to develop a general purpose RS codec

simulator. Since it was shown in [57] that time domain algorithms are slower than

drome-based algorithms and furtk form decoding requires comput-
ing inverse Fourier transforus, we decide to adopt an algebraic decoding scheme. A

software RS codes simulator (58] is developed in C language under both UNIX and

MS-Windows operating systems. It can simulate an RS code with length between

7 and 255, and with the error correcting capability of up to T = 20. Different

decoding algori are also i d and d

For syndrome-based RS decoding, Chien search is the widely used method for

14

determining error locations. This method will take a great deal of time to locate
error depending on the error position in the Galois field table. Periodicity properties
of the distribution of the roots of the error locator polynomials are shown based
on the relationship between coefficients and roots. A new periodicity algorithm
is proposed for double error correction based on [2][1] to replace the Chien search

method.
1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 first briefly reviews the encoding and decoding of RS codes. Then

various RS decoding algorithms are presented.
Chapter 3 describes the structure of the software RS codes simulator.

Chapter 4 first demonstrates the periodicity properties that exist in the distri-
bution of the roots of Galois field polynomials. Then a new decoding algorithm
for finding roots of the error locator polynomial is proposed. Finally a hardware

! ion of this algorithm is p d

Chapter 5 different Peterson’s and Berlekamp-
Massey’s methods, Forney’s and Gauss-Jordan’s methods, the periodicity algorithm
and other methods.

Chapter 6 concludes the thesis with a summary of results and suggestions for

further research.

Chapter 2

Reed-Solomon Codes Overview

In this chapter, the Reed-Solomon codes are described. Several important decoding

techniques are introduced.

2.1 General Description of Reed-Solomon Codes

The Reed-Solomon (RS) codes are a special subclass of nonbinary BCH codes,
obtained by choosing the error locator field to be the same as the symbol field. The
definition of an RS (N, K. T) code is as follows [58][61]:
A T-error-correcting Reed-Solomon code with symbols from the Galois field

GF(2™) has the following parameters:

Block length = N =2™ -1

Number of parity-check symbols = N — K = 2T

Minimum distance = dmin = 2T +1
where K is the number of information or message symbols. The RS codes are
capable of correcting T random errors and one of the following error bursts:

15

o 1 burst of total length: & = (T —1)m + 1 bits

© 2 bursts of total length: b, = (T — 3)m + 3 bits

o p bursts of total length :b, = (T — 2p + 1)m + (2p — 1) bits, where p is an

integer number and (T — 2p + 1) is positive.

The generator polynomial G(z) of a T-error-correcting RS code of length 2™ ~ 1
is the polynomial of degree N — K with coefficients from G'F(2™). To save memory
space. the self-reciprocal generator polynomial is preferred. It has

QF"TIT IS L Q2T T
as its roots, where a is a primitive element in GF(2").

G(z) = (z =" T)(z = a?™ " TH) (z — oY)
2.2 Encoding and Decoding of RS Codes

Let 7t = (mo,my.---.mx—1) (K is the number of data symbols) be the data vector

to be encoded. then the data polynomial can be defined as: M(z) = mo + miz +

-4+ mg_ 2871 A simple way to form the codeword polynomial C(z) is C(z)
M(z)G(z). However. this code is non-systematic because A’ data symbols are not

Licith d d

present in the and thus itating an extra step to extract

the information from the corrected code word in the decoding process.

To increase the decoding speed, a systematic code word is generated by:

2TM(z) _ A(z)
e - Qz)+ @) 2.1)

C(z) = Q(z)G(z) = 2*" M(z) + A(z) (2:2)
where A(z) is the parity check polynomial of degree 2T — 1.
When a codeword C(z) is sent from the transmitter to the receiver. errors
occur due to channel noise. distortion and fading. These errors can be modeled
and presented as an error pattern

E(z)=eo+eiz+---+eyoyz¥"
Then the received word is given by

R(z) = C(z)+E(z)
1

= ro+mzHragt ety

The coefficients of C(x), E(z), and R(z) are elements from G F(2™). The partial

syndrome values of a received word can be obtained from
S;=R(e’)= E(c’) € GF(2™), j=2""'_T.2" ' _T4].....2"'4+T—|
The error pattern polynomial E(z) can be rewritten as follows:

E(z) = Yiz" + Y327 4 .- + Yoz

where i is the actual location of the lth error and Y is the error value, ¥; € GF(2™).
Let X; = o be the field element associated with this location, then its syndrome

can be written as

Yixi, j=omT T am Tl e T
i
i=1

where X is the error locator of the Ith error symbol and Y; is the corresponding

error value.

Once E(z) is known, the estimated codeword C(z) can be obtained from:

C(z) = R(z) + E(z)

In the following sections. we will present several RS decoding schemes.

2.3 Error Locator Polynomials

For a given received word R(z), the syndromes S; for j = 2"=' =T, ... 2"~ 4 T—1
are given by

S; = R(e?) = C(e) + E(e) = E(e?)
One of the essential RS decoding issues is to find the error locators X1, X2, "+, Xu,

from Sy, 83, - - -. Sy, where v is the number of actual errors.
2.3.1 Peterson-Gorenstein-Zierler Decoding

Consider the polynomial in z,
S(z) = +oz M+ +o,ar+o,
= (z+X)(z+Xa) (£ + X))
known as the error-locator polynomial, where X; for / = 1.-- -, v are error locators.
Another alternative representation of the error locator polynomial is

A@) =1+ Mz +-+ Az + A" (2.3)

defined to have zeros at the inverse error locators X' , for [=1,---,v. That is,
Az) = (1-zX)(1—zXs)--- (1 —2X,)

0 -=x)
I

[

19

In the following derivation, we adopt the error locator polynomial in the form
of A(z). Multiply both sides of Equation(2.3) by ¥ X{*" and set z = X;™', then

the left side of Equation(2.3) is zero and we have

0= VX (L + AXT + -+ A X7 AXTY) (2.4)

and
V(X7 + M X T e A X ALK =0 (2.5)
I=1,2 v

Sum up these equations from [= 1 to | = v. This gives, for each j

T A M VX T o AL VX ALY VX =0 (26)
p= =

=1 =1
The individual sums are known as syndromes, and thus the equation becomes

Syp+ MiSjavct + AaSiuca + o+ A5, =0 @7

or

AiSisvi F KaSimg boe NS5 = =Siis (28)

|

We can write these equations in matrix form:

Spmiey Sgmeiopmr c0r Sy Speein A, ~ Syt
Spipny Sgmeiwa o Smon S Ao || S
Sgmorzy Gapr ves Symtgpey Sgmaigeg L My Syt

(2.9)

These equations can be solved by using the ordinary algebra except that mul-

tiplication, division, and addition are done based on rules of GF(2™). First we

20

find the appropriate value of v as follows. Set v = T, which is the error correcting
capability, and compute the determinant of the above matrix. If it is nonzero. then
we have » > T. If it is zero then v < T, reduce the trial value of v by 1 and
reduce the trial order of the matrix by 1. Repeat it until 2 nonzero determinant is
obtained. We might assume that the actual number of errors occurred is v. Then

the reduced equations can be solved using the ordinary algebra over GF(2™). This

is called Peterson’s direct solution method [16][18].
2.3.2 The Berlekamp-Massey Algorithm

For correction of moderate to large numbers of errors (i.e. ¥ > 6) with an RS code,

Peterson’s direct method of solving for the of error locator p:

from the synd becomes b and ineffici

due to the large number of
multiplications and divisions that must be performed. It is better to use Berlekamp-

Massey algorithm to solve error locators.

For the simplicity of the notation, we start to solve the problem as follows:

St S o S S Ay =Sen
Sy S3 0 S Sen Ay =Su42
S5 S¢ vt Sert Siwa || A [= | —Sun (2.10)
S Sum Saez Sz A =5

The Berlekamp-Massey algorithm can be derived as a problem in the design of
a linear feedback shift register (LFSR) with initial states Sy, Sy, -, S, and tap
connections —Ay, —As, - -, —A, [25]. A diagram of an LFSR is shown in Figure 2.1.

The length of the LFSR is v.

21

@ o
T st

Figure 2.1: Linear feedback shift register for a of
values.

In LFSR, we also call the equation
A(z) =1+ Mz + Apz? +--- + Auz”

the connection polynomial. For a given sequence of syndrome values, there are a

d inable number of i 1 jals of various lengths that will generate

the syndromes. This corresponds to the fact that there are a number of error
patterns that can account for a given set of syndome values. However, the task of
bounded-distance decoding is to find the lowest weight error pattern corresponding
to the given syndrome. Therefore, in the design of LFSR we seek the lowest degree

of ion pol ial A(z) that the synd

Now we are going to derive the recursive algorithm for producing a
length LFSR, which generates S, S, -+, Syr. We define L, as the length of the
LFSR that generate Sy, Sy,---, S,. There is a Lemma by Massey [25] showing the
change of the length of LFSR with the ion of a of synd

Lemma 1. If some LFSR of length L,_, generates Sy, S;,---,S,-1, but not
51,82,-++,5; then

L, 2 maz[L,_y,r — L]

If we can find a design that satisfies the inequality of the Lemma 1 with equality,

9
(M

then it must be of the shortest length.

As an inductive hypothesis, assume a set of LFSRs which produce Sy, Sy, -+, S},
with length L, and connection polynomial AU (z) are found with equality
Ly =maz[lym1,j = Lim), j=12--r—1
We seek to find the LFSR that generates the syndrome values Sy Sz.--+. S,.
We have

Leos
S+ 3 AUsL = { (2.11)
=

where the second term of Equation(2.11) computes the jth output of the (r — 1)th
LFSR, and 4, called the rtk discrepancy, is the difference between S, and the rth
output of the (r — 1)th LFSR, which we have found to generate the first r — 1
syndrome values. If d, = 0.L, = L,_,, then AU)(z) = A""U(z). Ifd. # 0, a
new LFSR must be found to generate the first r syndrome values. Let m — 1 be

the syndrome sequence length before the last length change in the minimal length

register. i.e.
Loy < Loy
L=t
We have
8 +Li? Al = { S e Exsirenml (212)

By the.induction hypothesis, for m Lemma 1 holds with equality

L = Ly—1 = maz[Lm_1,m — L.,

23

Because of Ly < L,_1, this gives
Lecy=m— Ly (2.13)

We claim that the connection polynomial
AD(z) = AT (z) — d.d7'z A (z) (2.14)

is a valid choice for At")(z). M it follows from Equation(2.14) that

L. Leay Len—1
SH A = S5+ T ATTIS i dd (S remt 3 ATV o] (215)
= = =

The first two terms of the right-hand side sum up to:

Sy 0 r=1
S, + g‘ PNl ¥ ={ i T (2.16)
as described in Equation(2.11). We have from Equation(2.12) that
Lm—t
et 0 j=Lum+r—mocr=1
Sjrem + g A SJ_W,.-.={ i (2.17)
From Equation(2.13). Lm—y =m — L,y
Lyoy+r—-m=m-—Ly+r—m=r—L; <L,
we obtain
s, +Lf'A""-"s [0 j=Laeear—1 @iE
v+ 3 M S = g, Gy E
Summing up the right-hand side of Equation(2.15), we get
L, +
2 e _f0 j=Layr—1
s,+;1\‘ s,_‘-{ &= dydzidy =7 (2.19)

24

Also from Equation(2.14) the degree of A()(z) is at most

maz[L—y,r —m+ Lpoy] = maz{Ley.r —m+m— L]

= maz[L,_1,r ~ L]

From the above induction, an LFSR algorithm for synthesizing a shortest LFSR

to generate the syndrome sequence S, Sy, -, Sor is described in detail below.

Massey LFSR Synthesis Algorithm (Berlekamp Algorithm)

Initialize algorithm variables

Let L=0,r=1,A(z) = 1,D(z) =z

o

Take in new syndrome value and compute discrepancy

d=S, +TL AS,

b

Test discrepancy

If d = 0, go to step 8. Otherwise, go to step 4.

oy

Modified connection polynomial

Ifd # 0, Let A*(z) = A(z) — dD()

o

Test register length

If 2L > r, go to step 7(i.e. do not extend register). Otherwise, go to step 6.

L

Change register length and update correction term

Let L =7 — L and D(z) = A(z)/d

o

Update connection polynomial
Let A(z) = A™(z)

25

Lo

Update correction term

Let D(z) = zD(z)

©

Update syndrome counter

Letr=r+1

s

. Test syndrome counter

Ifr <27+ 1, where T for error i bility, go to step 2.

11. Otherwise stop.

In the algorithm. for every stage r when step 2 has just been reached, then the

duced by the algorithm bear the following relations to the quantities

in the developing d

Mz) = A7)
L = L
d

"

d-

D(z) = dilzrmAm=D(z)

The algorithm stops after 2T iterations. The length L of the LFSR reflects the
actual error number v, i.e. v = L. If the algorithm terminates with an LFSR
connection polynomial of degree greater than T. that is. L > T, then we are

ding error-l 1 jal is correct, and error

not assured that the

detection is announced.

2.3.3 Improved Berlekamp-Massey Algorithm

Rewrite the same matrix equation as Equation (2.10) for convenience.

S 8 -0 Suat S A, =Sup
S 8 - S Sem Ay —Si42
S S o Semt Sewa Az | = | —Suss (2.20)
S, Sew v+ Sm-z Sa-r A —Sa,

The matrix is nonsingular if the number of errors is v. and singular if the number

of errors is less than v.

Now assume the actual number of errors occurred is v. » < T, we have

51 S S S, A, —Su1
s, - g
Sy S 2 Surr A,.. _ e (221)
St Star -0 STee-2 ST Ay =SFiv
Let D be matrix ;
S$i Sy e Sun S
B B e S Gy

Su Suxr v Swea St
where v +1 < p < T, and
dj=

Situ-t

be the column vectors of D. From Equation(2.21), we have

A, +daApat o A =don

A, +d3Aprt 0 Hde Ay =dogs

dymshs + dympirDuci o HdusiAy = d,,

w0
S

Since d;,j = v+1,---, u can be formed by dy, dz, -- -, d,, hence, if Ay, Az, -+ Ay

satisfy all T equations of (2.21), they would satisfy the set of equations:

S+ Sahumr + o+ SA =Son
S$2Au + Sahucr 4 o S = Soga

Suvho 4+ SymvitAumy + o+ S =Sy

and Ay Ag, -+ A, are the coefficients of the error location polynomial.

We first review Berlekamp-Massey's algorithm. In each stage of iteration, a new

Y is used in the calculation of the di At stage r the coeffici

of the A")(z) satisfy a subset of Equation(2.21) that contains S;,1 < j < r. Since
v = L, at that stage, the number of equations satisfied is r — v = r — L,. If
r— L, =T, the coefficients of A")(z) satisfy all T equations of (2.21). According
to the statement above. A")(x) would be the error locator polynomial. Therefore,
we have the following modified algorithm [60]:

1. Initialize algorithm variables

Let L=0,r=1,A(z)=1,D(z) =z

2. Take in new syndrome value and compute discrepancy

d=S5,+ Tk AiSei

3. Test discrepancy

If d = 0, go to step 8. Otherwise, go to step 4.

4. Modified connection polynomial

28

1fd#0, Let A*(z) = A(z) — dD(z)

5. Test register length

If 2L > r, go to step T(i.e. do not extend register). Otherwise, go to step 6.
6. Change register length and update correction term

Let L =r— L and D(z) = A(z)/d

7. Update connection polynomial

Let A(z) = A*(z)

8. Update correction term

Let D(z) = zD(z)

9. Update syndrome counter

Letr=r+1

10.Test syndrome counter

Ifr <2T +1.and » < T + L go to step 2: otherwise. stop.

All steps are the same as in the Berlekamp-Massey algorithm except step 10.

The modified algorithm causes the iteration procedure to stop at an early stage
when the number of errors that have occurred is less than T. The modified algo-
rithm requires a total of (T + v) iterations, where v is the actual number of errors,

as d to 2T iterations required in B p-Massey's algorithm. The re-

duction of T — v iterations for v errors results in the increase of decoding speed.

The overall perf of the improved algorithm depends on the probability

distribution of the errors.

29

Both the Peterson and Berlekamp-Massey algorithm can be used for finding
error locator polynomials. A time comparison between Peterson’s and Berlekamp-
Massey's algorithm will be made in Section 5.1. We will find that Berlekamp-
Massey's algorithm is faster than -Peterson's for the correction of more than 6

errors,

2.4 Error Locators

The roots of the error locator polynomial can be found using Chien search. One

simply substitutes each element o’ of GF(2™) into A(x) and checks for zero. Thus

the error-locator polynomial can be d: d as follows:
Az =[[(1-2X) I=low (2:23)
=

where X; is the error locator of the /th error symbol.

2.5 Magnitude of Error Pattern

Once the error locations have been obtained, the next decoding procedure is to

compute the error magnitude.
2.5.1 The Gauss-Jordan Elimination Method

We return to the equations defining the syndromes.

Si=YXi+nX: + -+ VX,

S, =NXI+Y2X; + -+ V.X]

Sar = VXTI + X377 + -+ VX

The first » equations can be solved for the error magnitudes if the determinant
of the matrix of coefficients is nonzero. Actually the matrix does have a nonzero
determinant if v errors occur because Xy, Xa,-+-. X, are nonzero and distinct. If
this is the case. the Gauss-Jordan elimination method can be used for solving
this linear matrix equation. In the following subsection. we shall introduce an
alternative method for determining error values, thereby eliminating the need for

solving simultaneous equations.
2.5.2 The Forney Algorithm

We have error-locator polynomial

Mz) =TT -2X) I=1Le

i
Define the syndrome polynormial
2T 2T v
S(z)y=Y Szt =Y Y vXio
= ==
and define the error-evaluator polynomial () in terms of these known polynomi-
als:

Q(z) = S(z)A(z) (mod z*T).

Expand each term by the definition, we get

) = BoXvxio- (10 - X)) (mod 27
i=ti=1 =1

=1

v T
= ZY.'X-[‘Z(X.I)’“U—XJ)]H“—Xlll (mod z7T).
=1 1#i

31
The bracketted term is a factorization of (1 — X?7z*7). Therefore
Q(z) = i YiXiz(l - X721 [[(1 - Xiz) (mod 7). (2.24)
=1 i
After this is modulo =37, we get
Qz) = ZyjY;X. -II(I - Xiz) (2.25)
i=1 #i

Substitute X;' in Equation(2.25) to get
i

X =YnX 10 - XX + T XGTT0 - XG50 (2.26)
w#l #E

Since X[is the root of A(r), the second term in the Equation (2.26) is zero. and
we get
XY =YX, - [J0 - X, X7
J#
Hence, the error magnitude can be given by

X0

V= e 2.27,
S Tl - XX 22
Moreover, the derivative of A(z) is
Nz = - X [I0 - =X,
(=
Hence, another form of the Equation(2.27) is
x)
Yi=-
TR
The Forney algorithm provides a considerable imp over matrix inversion.

We will make a decoding time comparison between Forney algorithm and Gauss-
Jordan elimination method in Section 5.2. We will find that for correction of more

than 10 errors, Forney algorithm is faster than Gauss-Jordan elimination.

Chapter 3

Reed-Solomon Simulator

In this chapter, a software RS codes simulator is discussed. First, the overall
structure of the simulator is described. Then, the data structures used in this
simulator are introduced. Finally, some flowcharts of major subroutines are also

given.
3.1 General description

The RS code simulator has been implemented in C under both UNIX operating
system and MS-WINDOWS. A graphic user interface (GUI) is also provided for
PC user using Visual Basic. This software package can be used to correct any
random errors occurring in an N = 2" — | symbol codeword. where 3 < m < 8
and T < min((N — 1)/2,20). The overall basic structure of the simulator is given

in Figure 3.1. It is divided into 12 blocks.

Block 1: This subroutine allows users to input the number m of bits per symbol,

error correcting capability T, and a data word through a GUI.

32

13

G

¥
‘ Input m, T, and message word [

Generate Galois field, self-reciprocal generator poly.G () [
¥

{ Generate systematic codeword C(z)]

| Input error pattern E(z) to simulate noise ‘

Remainder of

R(z)/G(z) = 07
Syndrome calculations
Find error locator poly. Find error locator poly. "
by Berlekamp’s method by Peteson’s method "
!
-
[Find error locator using Chien search |
Estimate error values Estimate error values
by Gaussian elimination by Forney algorithm 4
[I
-
[Correct errors C(z) = R(z) + E(z) |
N Remainder of

C(z)/G(z) = 07

‘ R(z) is the estimated codeword | | C(x) is the codeword |
[T

Figure 3.1: Overall flowchart of simulator

33

34

Block 2: For the software implementation, the necessary Galois field multipli-
cations are performed using the address pointing approach. Therefore, a table of

both binary and power representations of the Galois field GF(2™) is formed here.

The self-reciprocal lynomial G(z) is also { in this block.

Block 3: In this step, the simulator encodes the data and forms a systematic
codeword. It also presents the user with the list of the data. the codeword, and the
generator polynomial G(z).

Block 4: Users can form the error pattern and add it to the generated codeword
to generate the corrupted received word.

Block 5: In case the corrupted received word is a codeword, the block will output
the message directly without going through the error correcting process. In this
case the decoder is blind if the error pattern is a codeword.

Block 6: The first 2T syndromes of the received word are calculated in this step.

Block 7,8: The error locator polynomial is determined by using either Berlekamp’s
or Peterson's method depending on the user’s option.

Block 9: The error locators X, X2,---,X,, where v is the actual number of
errors, are evaluated using Chien search by substituting each element of the GF(2™)
into the error locator polynomial until a zero is found. The process repeats until
the end of the Galois field or all the roots come out.

Block 10,11: The error values ¥;,Ys,--,Y,, where v is the actual number of
errors, are obtained using either Gauss-Jordan elimination or Forney’s method de-

pending on user’s choice. Thus the error pattern E(z) becomes known.

35

Block 12: This step directly obtains the estimated received codeword C(z) by
adding the error pattern E(z) to the received word R(z). Finally the estimated

codeword is obtained.

Block 13: The decoding procedure is finally verified by checking the remainder
of the estimated word C(z) with the generator polynomial G(z). In case the es-
timated codeword C(z) is not a codeword, the block will output the information.
“Uncorrectable errors have occurred. Resend the data.” This helps to confirm the
correctness of the program, as well as to indicate that the number of errors have

exceeded the limits allowable by the decoder, i.e. » > T.

3.2 Data Structure

Each element of the Galois field GF(2™) has two representations. that is, the binary
and power representation. The addition or subtraction of two elements can be easily
performed in modulo-2 operation by using the binary representation. The power

makes become addition.

For example. let m = 4 and let the primitive polynomial P(z) = z* + z + 1
be selected to construct the Galois field. The elements of GF(2%) are given in
Table 3.1.

The field element a® has m-tuple binary representation of (0 1 1 0) which cor-

responds to a? 4+ a and o7 has of (1 1 0 1), where m is 4.

C+a =(a*+a)+(@@+a+l)=a*+a’ +1=a®

Obviously, the addition of the two field elements can be carried out by simply

Table 3.1: Galois field of GF(2%) generated by p(z) = 1+ z + z*

Power Polynomial representation
representation o® o' a? o

= 0 0 0 0
0 1 0 0 0

1 0 1 0 0
2 0 0 1 0
3 0 0 o0 1

4 1 1 0 0
5 01 1 0
6 0 0 1 1

T 1 1 0 1

3 1 1] 1 0
9 0 1 0 1
10 1 1 1 0
1L 0 1 1 1
12 1 1 1
13 1 0 1 1
14 1 0 0 1

37

adding the corresponding components of their m-tuple binary representations in
modulo-2 addition. To multiply two elements, we can simply add their exponents.

For example,

e g s g

Therefore, the following structure gf.element is used to describe a Galois field
element in the software design.
struct {
int power _rep
int binary_rep

} gf-element

Two look-up tables. log[] and alog(] table are built such that

logla’) =i, for0<i<2m—2
log[0] = -1

alogli] =o', for0<i<

alog[-1]=0

where a is the primary element of the Galois field GF(2™), and i and o refer to

power and binary representation of Galois field element. The detailed construction

of these tables will be described in the next section.

For any given two elements § = o' and v = o, where i,j = —1,0,---,2™ — 2,
let 8 = 3+ v and ¢ = 8- 7. The binary representation of § is 4 + v, in which
bit-wise modulo-2 operation is performed on the binary representations of 4 and 7.

The power representation of § can be obtained from log[] table.

The power representation of ¢ is

-1 ifi=—lorj=-1
(i +j) mod (2" — 1) otherwise

and the binary representation of ¢ is alog[]. Thus Galois field multiplication is
simply modulo-(2™ — 1) summation of the powers of the multiplicands with some
conditions. This method for Galois field arithmetic is widely used in software

decoders in order to increase the speed of the multiplication in Galois fields.

3.3 Generation of Galois Field

In the proceeding section, a look-up table method was introduced for Galois field
arithmetic. In this section, the generation of log[] and alog[] table of Galois field is

considered.

In this codec simulator, we use the six primitive polynomials illustrated in Ta-
ble 3.2. We store these polynomials in a 6-element primitive polynomial array. Each
element stores all the coefficients of the primitive polynomial, except the highest-
order coefficients. in binary form with the lowest-order coefficient at the left. For
example, let m = 8 and the primitive polynomial P(z) = £3 + 7 + 22 + z + 1, the
corresponding array element in binary form is 10000111. The primitive polynomial

array is also shown in Table 3.2.

The construction of the alog[] table is in agreement with the construction of

the GF(2™) el i.e. determining the binary ion for each o, i =

=1,0,---,2™ — 2. It can be implemented as follows:

1. Initialize alog[—1] =0, alogl0] = 1, and i = 1.

39

Table 3.2: Primitive polynomials for generation of GF(2™)

m | Primitive polynomials | Binary store representation
3 Do+l 11

4 ' +r+1 11

5 T+t +1 101

6 +z+1 11

T T4+ +1 1001

8| B+ +r4z+1 10000111

i+l

Left shift the binary representation of a by 1 bit to get o

o

If a**! < 2™, then go to 6.

Otherwise if a'+' > 2™ then XOR the result with the primitive polynomial

ok

array element defined in column 3, Table 3.2.

AND the result with 2™ — I to get m-bit binary representation, i.e. alog(i+1].

o

o

L i=i+1

Hi<2" —2,goto2.

%

Otherwise stop.

Figure 3.2 gives the flowchart for the generation of the Galois field.
The construction of the log[] table, i.e. determine the power representation
of each Galois field element from its binary representation, can be obtained by

exchanging the contents of the index and the entry of the alog[] table.

Initialize
alogl—1] =0

alogli] =1

——

Shift alog[z] 1 bit left
to get alogli + 1]

<T@+ 12T

Lalog[i‘f 1] — alogli + 1]XOR ‘
12

rimitive polynomial element m

alogli + 1] — alogli + 1]
AND (2" — 1)

Figure 3.2: The generation of finite field G F(2™)

40

41

3.4 Flowchart of Main Subroutines

In this section, the main subroutines of the RS codes simulator. such as the Peterson
and Berlekamp algorithm to compute error locator polynomial, Chien search to find
error locators. and the Gauss-Jordan elimination and Forney algorithm to compute

error magnitudes, are treated in detail.
3.4.1 The Peterson’s Direct Method

The evaluation of the coefficients of the error locator polynomial involves solving

the following matrix equations [16] [18]:

S S . S S A —Sutt
$ S . S Sen Aumt Syt
S Si o Sum Sisa A | = | —Sus 3.1)
S, Serr oo Sz Sma Ay =S

The method for solving these linear equations involves two steps [13]. Firstly, the
size of the matrix, which is equal to the actual number of errors v is determined.
Secondly, the coefficients of A(z) can then be computed using the value of v and
Equation 3.1. The detailed description is treated in Section 2.3.1. The flowchart is

shown in Figure 3.3.
3.4.2 The Berlekamp-Massey Algorithm

An alternate technique for obtaining the error locator polynomial A(z) is the
Berlekamp-Massey algorithm. This method was explained previously in Section 2.3.2.

Figure. 3.4 illustrates the flowchart of the Berlekamp-Massey algorithm.

42

Construct syndrome matrix (aj;, b;)
from syndromes S;, =
e -

J
v—1

Wamin%‘; error number
may be beyond error
correction capability

Backward substitution solving
for A;'s

Figure 3.3: Peterson’s direct method solving for error locator polynomial

Initialize variables

Az) = A*(z)

D(z) = zD(z)

Figure 3.4: Flow chart of Berlekamp-Massey Algorithm

43

44

3.4.3 Chien Search

Once the error locator polynomial is found, the Chien search method can be used to
evaluate the roots, and hence the error locations can be determined. This method
involves computations of A(c”) for j = 0,1,---, N—1 and checking for results equal

to zero [21]. The method is shown as a flowchart in Figure 3.5.

45

3.4.4 The Gauss-Jordan Elimination Method

After computation of the roots of A(z), the error locator X; = a* can be substituted

into the following equations:

NX]+ Y2 Xj+---+ VX, j=1,2,---.2T

This is a system of 2T linear equations and can be solved for the error values
Y;,j = 1,2,---, v by the Gauss-Jordan elimination method. The flowchart is shown

in Figure 3..

46

Construct matrix (as;, b;) from error
locators X; and syndromes S;,j = 2™~ — v,
2"y -1

T
i

Backward substitution solving for b;. i =
-.0bi = (b = Tizh, aisb;)/aa

Figure 3.6: The flowchart of the Gauss-Jordan elimination method

3.4.5 The Forney Algorithm

A more efficient method to find the error values is given by using Forney’s algorithm

[22]. The flowchart of the Forney algorithm is shown in Figure 3.7.

Form syndrome polynomial

S(z) = L, S,

)

Obtain error-evaluator polynomial

Q(z) = S(z)A(z) mod 23T
)
XZlxst)

Y, = n_a_.n_ﬂ_
B S]

1=0,1,"--,v

Figure 3.7: The flowchart of Forney algorithm

3.5 Simulation Results

Several examples are listed below to show the encoding and decoding of the RS
codes in different cases when T =»,T < v,and T > v.

Example 3.1

o Given: m=3,T =2 and v =2.
o Peterson’s method is selected.
o Forney's algorithm is selected.

o The inputs and outputs are listed below.
Simulation results of Example 3.1

RS CODEC for 3 <= m <= 8 and T <= 20

Input bits per symbol m or code length N, (m or N): m
Please select m (3 <= m <= 8): 3
Please select T (T <= 3) :2

Generator polynomial:

alpha“0
+ alpha“4 x°1
+ alpha“2 x°2
+ alpha™4 x°3

+ alpha“0 x"4

Roots of the generator polynomial:
alpha“2
, alpha~3

, alpha”4

48

49

, alpha"§

Select K symbols data based on the following format:

1 -> From an existing input file.

2 -> From keyboard : Enter symbol numbers

3 -> All zeros.

The inputs represent the powers of alpha, valid inputs are -1 to 6.

Enter your choice (1, 2 or 3) : 2
enter Message value, less than -1 stop
Message M(0) = 0

enter Message value, less than -1 stop
Message M(1) = 6

enter Message value, less than -1 stop

Message M(2) = 4

Encoding process: (in Hex)

M[6] =6

M[8] =5
M[4] =1
M[3] =3
M[2] =2
M[11 =7
M[0] =0

Noisy channmel modeling by creating the error pattern

Enter decimal numbers for error locationm,

valid values are

The error values

valid inputs are

Error location =
Error value =
Error location =
Error value =

Error location =

Error pattern:
error(6]=0

error(5]=0

0 to 6, -1 to stop

input in Hex form,

0 to 6.

[ZI)

error[4]=0
error[3]=6
error[2]=5
error[1]=0

error[0]=0

Is it the right pattern, if not try again:

1 for Yes, 2 for No : 1

Print the binary representation of the following:

Codeword Error pattern Received word (in Hex)

M[6]l= 6 E[L 6l= 0 R[6]= 6

M[s]= 5 EL s1= 0 R[5]l= 5

M[4]= 1 EL 4]= © R[4]= 1

M[3= 3 E[3]= 6 R[3]= 5
M[2= 2 E[2]= 5 R[2]=

~ o~

M[1]= 7 E[11= 0 R[1]=

M[0]= o EL 0l= o R[0= o

Syndrome calculation results:

syndrome[0] = alpha” -1
syndrome[1] = alpha” 1
syndrome[2] = alpha” 6

syndrome[3] = alpha~ 3

Select decoding methods :
1.Berlekamp

2.Peterson

Enter your choice : 2

Warning: Error pattern may beyond errorcorrection capability,

since 2 by 2 matrix is non zero !

Error locator polynomial:

1
+ alpha” 5x° 1

+ alpha” 5x° 2

Chien search result: (error locations)

root[1] =alpha~ 2

root[2] =alpha~ 3

Select error value calculation methods :

52

1.Forney
2.Gaussian elimination

Enter your choice : 1

Error values

error[2] = 5

error[3] = 6

Estimated error pattern

alpha” 6 x° 2

+alpha” 4x° 3

Codeword Error pattern Received word Decoded word (in Hex)
M[6l= 6 E[6l= 0 R[6]= 6 DL 6l= 6
M[s]= § E[5]= 0 R[5]= 5 D[5l= 5
M[4]= 1 E[4= © R[4]l= 1 D[4]= 1
M[3]1= 3 E[3]= 6 R[3]= 5 DL 3]= 3
M[2]= 2 E[21= S R[2]= 7 Dl 2]= 2
M[1]= 7 Z[11= o0 R[1]1= 7 bl 11= 7

M[ol= o E[5]- 0 R[0l= o bl ol= o

Example 3.2

o Given: m=4,T =4.and v =2.
® Berlekamp-Massey’s method is selected.
o Gauss-Jordan elimination is selected.

o The inputs and outputs are listed below.
Simulation results of Example 3.2

RS CODEC for 3 <= m <= 8 and T <= 20

Input bits per symbol m or code length N , (m or N): n
Please select N (N = 2°m -1): 15
Please select T (T <= 7) :4

Generator polynomial:

alpha~0
+ alpha~2 x°1
+ alpha™8 x"2
+ alpha®13 x°3
+ alpha~14 x74
+ alpha~13 x°5
+ alpha™8 x°6
+ alpha=2 x°7
+ alpha™0 x°8

55

Roots of the generator polynomial:
alpha-4

, alpha®s

, alpha®6

, alpha~7

, alpha“8

, alpha-9

, alpha~10

, alpha~11

Select K symbols data based on the following format:

1 -> From an existing input file.

2 -> From keyboard : Enter symbol numbers

3 -> All zeros.

The inputs represent the powers of alpha, valid inputs are -1 to 14.

Enter your choice (1, 2 or 3) : 3

Encoding process: (in Hex)

M[14] = 0
M[13] = 0
ML 12] = 0
ML 111 = 0
M[10] = 0
M[9] =0
M[8] =0
ML 71 =0
M[6] =0
M[5] =0
M[4] =0
M[3] =0
ML 2] =0
M[11 =0
M[ol =0

Noisy channel modeling by creating the error pattern

Enter decimal numbers for error location,

valid values are 0 to 14, -1 to stop

The error values input in Hex form,

valid inputs are 0 to e.

Error location
Error value
Error location
Error value

Error location

Error pattern:
error[14]=0
error[13]=0
error[12]=0
error[11]=0
error[10]=0
error[9]=0
error(8]=0
error(7]=9
error[6]=0
error[5]=0
error[4]=0
error[3]=0
error[2]=a
error[1]=0

error[0]=0

o

Is it the right pattern, if mot try again:

1 for Yes, 2 for No : 1

Print the binary representation of the following:

Codeword Error pattern Received word (in Hex)

M[14]= 0 E[14]= 0 R[14]= ©
M[13]= 0 E[13]= o R[13]1= o
M[12]= o E[12]= R[12]= o
M[11]= 0 E[11]= R[11]= 0
M[10]= o E[10]= o R[10]= ©
M[9]= o EL 91= o R[L 91= o
M[8l= o E[8= o R[8l= 0
M[7]1= o EL 71= 9 R[71= 9
M[6]= 0 E[61= o R[6l= 0
M[sl= o E[sl= R[5]= 0
ML 4]= o E[4l= R[4]= o
M[3]1= 0 E[3]= o R[3]= 0
M[2= 0 E[2]= a R[2I= a
M[1]= o E[1]= o R[1l= 0

M[0]= o E[o0]l= o R[0]= 0

Syndrome calculation results:
B
syndrome[0] = alpha~ 7
syndrome[1] = alpha” -1
syndrome[2] = alpha~ 1
syndrome[3] = alpha” 13
syndrome[4] = alpha~ -1
syndrome([5] = alpha~ 7
syndrome([6] = alpha~ 4

syndrome[7] = alpha~ -1

Select decoding methods :
1.Berlekamp
2.Peterson

Enter your choice : 1

Error locator polynomial:

1
+ alpha” 12 x° 1

+ alpha® 9x° 2

Chien search result: (error locations)

root[1] =alpha~ 2
root[2] =alpha~ 7

Select error value calculation methods :
1.Forney
2.Gaussian elimination

Enter your choice : 2

Error values

error(2] = a

error(7] = 9

Estimated error pattern

S ———
alpha” 9 x~ 2

+ alpha” 14 x° 7

Codeword Error pattern Received word Decoded word (in Hex)
M[14]= o E[14]= 0 R[14]1= o D[14]= o0
M[13]= 0o E[13]= o R[13]= o D[13]1= o
M[12]= o E[12]= 0 R[12]= o Dl 12]= o
M[11]= o E[11l= 0 R[11]= o o[11]1= o
M[10]= o E[10]= 0 R[10]= o D[10]= o

M[9]= o E[
M[8]= o E[
M[71= o E[
ML 6]= o E[
M[s1= o E[
ML 4]= o E[
ML 3]= o E[
ML 2]= o EL
ML 1]= o E[
M[0l= 0 E[
Example 3.3

o Given: m =4,7 =3, and v = 4.

o Berlekamp-Massey’s method is selected.

9l= o
8l= o0
71= 9
6]l= .0
51= 0
4l= o
3l= o
2]= a
11= o
ol= o

RL
RC
RL
RL
RL
RL
R[
RL
RL
RL

o Forney’s algorithm is selected.

o The inputs and outputs are listed below.

RS CODEC for 3 <= m <= 8 and T <= 20

9=
8l=
7=

61=

4]=
3]=
2]=
1]=
0]=

ol
D[
]
ol
ol
o
oL
b1
bl
ol

9l=
8]=
71=
61=
sl=
4]=
3]=
2]=
1]=
ol=

Simulation results of Example 3.3

Input bits per symbol m or code length N , (m or N):

Please select m (3 <= m <= 8): 4

61

Please select T (T <= 7) :3

Generator polynomial:

alpha“0
+ alpha"14 x°1

+ alpha“7 x°2

+

alpha”1 x°3

+

alpha“7 x4

+

alpha~14 x°5

+

alpha=0 x°6

Roots of the generator polynomial:
alpha"s

, alpha“6

, alpha"7

, alpha"8

, alpha"9

, alpha~10

Select K symbols data based on the following format:

1 -> From an existing input file.

62

63

2 -> From keyboard : Enter symbol numbers

3 -> All zeros.

The inputs represent the powers of alpha, valid inputs are -1 to 14.

Enter your choice (1, 2 or 3) : 3

Encoding process: (in Hex)

B e —

M[14] =0
M[131 = 0
M{ 121 =0
ML 11] =0
M[10] =0
M[9] =0
M[8] =0
ML 71 =0
ML 6] =0
M[51 =0
M[4] =0
M[31 =0
M[2] =0

M{ 1] =0

M[0] =0

Noisy channel modeling by creating the error pattern

Enter decimal numbers for error locatiom,

valid values are 0 to 14, -1 to stop

The error values

input in Hex form,

valid inputs are 0 to e.

Error
Error
Error
Error
Error
Error
Error
Error

Error

Error

location
value
location
value
location
value
location
value

location

pattern:

error[14]=0

error[13]=0

error[12]=0

64

65

error(11]=0
error[10]=0
error[9]=c
error[8]=0
error[7]1=0
error[6]=0
error[5]=7
error[4]=6
error[3]=0
error[2]=4
error[1]=0

error[0]=0

Is it the right pattern, if not try again:

1 for Yes, 2 for No : 1

Print the binary representation of the following:

Codeword Error pattern Received word (in Hex)

M[14]= 0 E[14]= 0 R[14]1= ©

M[13]= 0 E[13]= o R[13]= 0
M[12]= o E[12]= 0 R[12]= ©

ML 11]= o E[11]=
M[101= o© E[10]=
ML 9l= o© E[9l=

ML 8l= o E[8l=
M[7= o0 E[7=
M[6]= o E[6l=

M[sl= o E[51=
ML 4l= o E[4]=
Ml 31= o Ef 31=
ML 2]1= o E[L 2]=
M[11= o E[1l=
M[ol= o E[o0l=

0

0

o &

RL 11]1=
R[10]=
R[9=
R[8l=
R[71=
R[L 6]=
R[sl=
R[4]=
R[31=
RC 2]=
RL 11=
R[0l=

Syndrome calculation results:

syndrome[0] = alpha”
syndrome[1] = alpha”
syndrome[2] = alpha”
syndrome[3] = alpha”
syndrome{ 4] = alpha”
syndrome[5] = alpha~

13

10

Select decoding methods :

1.Berlekamp

66

2.Peterson

Enter your choice : 1

Error locator polymomial:

P
1

+ alpha” 14 x~ 1

+ alpha” 12 x~ 2

+ alpha” -1 x 3

Chien search result: (error locationms)

No roots!

Error number beyond error correction capability!!

Resend message

Figure 3.8 shows an example of running the simulator on PC. In this case
m = 8,T = 4, all message bits are set to zero, errors are located at position 6, 7,
8, 9, and the error values are 50, 100, 150, 200, respectively. The upper half of the

screen displays the message word, encoded word, received word. and decoded word.

! 1

ial, and error values

The generator polynomial, error locator p

are shown in the lower one.

Eile Help
Input K symbol Enror Pattern Recsived Estimated
data in Hex CodewordinHex in Hex word in data In
Hes Hes
Index + Index + Index| + Index | + Index +
AL T o] T« =8 3 0[] 5 ORI 1
2.8 2 o 5 0 4 0 2 0
a0 3 0 - 5 0 25y
4 0 4 0 7 64 § 4 0
5 0 5 9 8 9% 7 4 5 0
6 o € 0 9 8 8 % E 0
7 o || 7' 0] 0 o || s || 7 e
8 o [+ 8 o[+ 10 [+ 1o [+ 8 o [+
Genarator S.;hu-
polynomial G 2T syndromes. it
a”i l}i) sum{alpha”j =71}
[| T [SI[+ [*
o o] T 68 || [E
1M 2 s |[] 1 m
22 |[+] 3 3|+ 2 4 |[¥
Developed By :
WILSON TECHNOLOGIES INC.

Figure 3.8: Example of RS (255,247,4) simulator

Chapter 4

New Periodicity Algorithm

In [2] and [1], a periodicity algorithm was introduced by Le-Ngoc and Young to
eliminate the conventional Chien search method in finding the roots of the error
locator polynomial. In this chapter, we prove that the periodicity features which
exist between the roots and their coefficients in Galois field. Furthermore, the
properties illustrated in Section 4.1 suggest that the equation transform in Young’s

algorithm [2] [1] is y. Therefore an improved periodicity algorithm is

proposed in Section 4.2.1. In the last section, a new periodicity algorithm using
XOR operations to eliminate the index table required for storing the head of the

roots chain is discussed.

69

4.1 Basic Properties

To simplify the notation. let us start with the quadratic equation'
ozt =0 (4.1)
in GF(2™). After both sides of Equation(4.1) are divideds by o2, the following
equation is obtained:
l+ouz+ 0,22 =0 (4.2)
After listing the roots of all the possible o,1 and a,2, oy, for all 0,2 € GF(2™),
Young and Le-Ngoc found that the roots of Equation(4.2) are not randomly dis-
tributed. Therefore, they developed the periodicity algorithm. In this section, it
will be shown that periodicity properties exist in the general form of Equation(4.1)
because of the internal relationship between roots and their coefficients. Thus the

from Equation(4.1) to Equation(4.2) is not necessary.

Suppose =, = o't and r; = a'? are the roots of Equation (4.1). where a is the

primitive element of GF(2™). The following relations always exist between roots
and their coefficients:

o = T+

0y = Ty-12
If we have roots ¥, = & r; = o+ and 7j = a - z; = a'**!, the corresponding
coefficients will be:

4 Tty =a-ni+a -z, =00

TAn error locator polynomial has two forms:
Lz24+aiz+or=(z—Xi)(z - Xz) or
2 1+ Mz + Az? = (1 — X,2)(1 — Xoz)
where A, = o and A = o

71

o) = z-Th=a-z1-a -7, =0’

In Galois field, multiplication of two operands can be easily realized by modulo-
N(N = 2™ — 1) addition of their powers. Therefore, we expect when the powers
of two roots increase by one individually, the powers of o, and o, will increase by
one and two respectively. All the increment operations are modulo N. The above
mentioned property is further illustrated by Table 4.1. Table 4.1 lists all the roots
of Equation (4.1) with respect to all possible values of oy and o; in the case of

m =3 and primitive polynomial p(z) = 2%+ z + 1.

Table 4.1: The root table over GF(2®) and p(z) = r* +z+ 1

o2 |[o® ot o o ot o o]
o° x 2645 x 13 x x
al X x x 0356 x 24
o 35 x x _x 1406
& 25 01 x 46 x x X
ot x x 3612 x 05 x
o 16 x x x 0423 x
o8 34 x 02 x x x Lj

Each element in Table 4.1 represents for the power of a Galois field element.
For example, the bottom right corner element in Table 4.1 is [1,5], which means
that, for Equation (4.1), when o1 = ® and o, = a®, the two roots are o' and a®.
If Equation (4.1) has no root for given values of o) and oy, it is marked as [x].

As shown in Table 4.1, when the root pair of [1,5] becomes [2,6], its correspond-
ing o’s will change from (a®,a®) to (% a'), i.e.(@*!,a®*?). If we keep increasing

both of the root power values by L, we can get a root chain shown below:

[1,5] —> [2,6] — [0,3] — [1,4] —> [2,5] — [3.6] — [0.4] — [1.5].
The chain will be closed because of modulo-N addition and there must always be

N distinct elements in the chain.

According to the relationship between the roots and their corresponding coeffi-
cients, a list of (o1, 03) pairs of the above root chain is shown below:

(a®,a%) — (a%a!) — (a},0®) — (a%.0®) — (e®.a") — (a'a?) —
(a®,a') — (a®,a®).

Due to the uniqueness of the roots, the (o1, ;) pairs also form a closed chain and
it also has NV distinct elements. In the (o1,02) pair chain. o increases by one,
while o, increases by two. Thus, if we know one element in the root chain and
its corresponding o, and ;. the other roots in the same chain can be obtained by
using shifting operations.

We assumed that (1, 0;)= (a®,z) is the leader of the chain since each (o1, 07)
pair chain passes through o, = a° and different chains contain (01.02) = (a®,0?)
with distinct j, where j € [0.N = 1].

There are N number of o pair chains altogether, where N = 2™~!. Each chain
has N o pairs. Because there are altogether N(V — 1)/2 possible root pairs and
they are distributed in (N — 1)/2 number of root chains. all those (oy,07) pairs
with roots will form (N — 1)/2 = 3 chains which we call root chains. The other

(N +1)/2 = 4 chains without roots are called no-root chains.

Another useful property is the addition of the powers of two roots (modulo-V)

equals the power of o;. These properties are summarized as follows:

1. There are N numbers of chains in total, of which (N — 1)/2 chains contain

73

roots. while the other (V + 1)/2 chains contain no roots.

0

There are N distinct elements in each chain, and each element in the chain

repeats with a period of N, where N = 2™ — 1.

L

In each (01,02) pair chain, powers of o;’s increase by one and o,'s increase
by two. In the root chains, both of the powers of the two corresponding roots

increase by one.

-~

. Each (01, 0,) pair chain contains a (0y,02) pair of (a®.c’) with unique j,

where j € [0, N — 1].

. The addition of the powers of the two roots (modulo-N) equals the power of

o

the o, in the Equation (4.1).

In the above discussion, we ignore the case oy = 0 or ¢, = 0. because in RS decoding
procedure the quadratic error locator polynomial must have two distinct non-zero

error locators.

4.2 Improved Periodicity Algorithm
4.2.1 Improved Periodicity Algorithm

From the properties described in the previous section, an improved periodicity

Igorithm for solving the quadratic equation 22 + 012 + 0, = 0 in GF(2™) can be

obtained below.

First, for any given Galois field, establish an index table containing the head

of each root chain and its corresponding (ay,7) pairs. Since the corresponding

T4

(01, 02) pairs of each root chain pass through a (01,02) = (a° o), the table of the
roots of

P hr+ad =0,j=0,1,---,2" =2 (4.3)
needs to be found. Each entry in this table is only one of the roots of Equation (4.3)
and the access to these entries can be obtained by the index j. For example, the
index table for m = 3 and p(z) = 2% + z + 1 is given in Table 4.2. Here, x stands
for no root chain. The flowchart for the construction of the index table is shown in

Figure 4.1.

Table 4.2: The index table over GF(2%) and p(z) =23 +z + 1

Now. the improved periodicity algorithm based on the preprocessed index table

is given as follows:

1. For any given o, and o,, determine the chain to which they belong. Let
oy = o and 0; = a, then we try to map the (0y,03) = (a®,a®) into

(a®,a®mer) with the mapping function given by:

imap = (2 —261) (mod N)

2. Look up the index table to get the root value I[isnap]

3. If it happens to belong to a no-root chain, then the given error locator poly-

nomial has no root.

=
o

Initialize index table]
1)
ji=0.

Get binary represent of #
8 =1 - alogli]

Figure 4.1: The construction of the root index table over GF(2™)

76

4. Otherwise. if it is on the root chain, find the actual roots according to the

among the coefficients of each chain. Assume that the roots can

be expressed as X; = of and X; = o’. Then the exponent of one root X;

can be obtained by:
[= (Ilimap] +41) (mod N)

where 7, is the exponent of 7.

&

By applying property (5), the other root X, = a* can be found by:
s=(iz— f) (mod N)
where i, is the exponent of a;.

Figure 4.2 shows the flow chart of the periodicity algorithm.

4.2.2 The Okano-Imai Method

In this section. we introduce the Okano-Imai ROM root search method [42] for

comparison.

Let us consider the quadratic polynomial over G F(

Sz) =2+ oz + 02 (4.4)
The appropriate linear translation
T=ay, 1 #0 (4.5)

will yield

@) =1*+y+c c=a/ol (4.6)

Mapping to get the
the access number
of the index table

7 Table look up

Find one of the
root by reverse
mapping

Find the other
root by X, = a3/X,

Figure 4.2: The flow chart of the periodicity algorithm

78

Since the polynomial £'(y) has just one coefficient c, the size of the table for finding
each root of £(y) is N - m bits.

After one of the roots of £(y) is obtained, the root of £(z) can be calculated
using Equation (4.5). The other root can be obtained by applying X2 = a2/ Xi.

After we i i the flowchart of the Okano-Imai method, we find that it is 2

similar algorithm to the improved periodicity algorith

4.3 New Periodicity Algorithm

The periodicity algorithm described before requires a root index table of equation
P rz+o=0 (4.7)

which needs a (2™ — 1) x m-bit memory. This table can now be eliminated by the
following direct solution method.

Any element r of GF(2™) can be represented as:

I =2 B T B+ 2o

where 8°,8'.---. ™" is the standard basis of GF(2™) and z; € GF(2). Hence, z
can also be denoted as vector (£m—1,Zm—2," " *+Zo) under the basis 4° 8',---, ™"
The Equation (4.7) can be rewritten as follows:

(Tm=ts T2+ 1 20)? + (Em1,Tm=2,"** 1 20) + (Cmu=1, Cumzy -1 C0) = 0 (4.8)
where 03 = c1 ™ + -+ - + o0

To further illustrate the direct solution method, we limit our discussions to

GF(2%), p(z) = 28 + 2" + 2% + z + 1 and standard basis °,---,a’. However,

the method can be extended to other cases accordingly.

9

Based on Galois field

properties, the square of the element of the Galois field equals the sum of the

square of each coordinate, which can be written as:

(Z7,Zg, - - 1 Zo)? = z7a™ + zga'? + - -+

=z +a’ +a' +a® +a') +zea’ +a +at + P +a’ +1)

+ Zo

+zs(a’ +at +aP + 1)+ z4(a” +a’ +a+ 1) + z30° + ma’ + 20 + 1

= a(z6 + 25 + £4) + a®(z7 + 76 + 73) + *z7 + a* (27 + T + 75 + 72)

+ (27 + 25) + o (26 + 25 + T4 + 1) + @' (27 + £4) + a0(Ts + Ts + T4 + To) (4.9)

Equation (4.9) can be rewritten in matrix form:

(2. L6+ x0)? =

(RN

The quadratic equation (4.3) becomes

C—o -

—omrm~oo—

oo o —

O O

coo~oco~o

co~o~ocoo

—_O O -

o-m—~ococooo

~o~0r~o0o0o~—

cocococococoo

1
0
0
0
0
1
1
1

coocococo~o

cooco~ocoo

£7
s
g
4
3
2
L2l
Zo

co—-~cocooco

~oococoocooo

cr

s
s
=
€2
a

(4.10)

(4.11)

80

After performing some matrix operations, we get

10000000 z7 10000001 cr
01000000 ES 01001000 cs
00100000 zs 10100001 cs
00010000 f_(1l 1101000 “l 41
00001000 zz| |1 1000001 c3 o
00000100 z2 10010000 e
00000010 EA 10010101 <
0000000O0O0 zo 11111110 co

As we can see, z7,Zg, - -, 1 can be determined from c;. cs. - - -, ¢o directly. The two

roots of Equation(4.7) are (z7,Zs,"*+,£1,0) and (z7.Z6,-++. 21, 1) The solution

only exists when cr + ¢6 + €5 + ¢4 + €3 + ¢ + ¢ = 0. An implementation circuit

solving z from Equation (4.7) can be shown in Figure 4.3. It is clear that the index

table is not required as shown in the periodicity algorithm. This table elimination

advantage can be also utilized for Okano-Imai's ROM method (42].

co
a

“if 1, no
solution”

XOR 2
XOR 2
—
XOR

Ty
XOR 2

XOR
—{XoR l .
XOR -

Figure 4.3: Hardwired connections for finding roots of 2 + z + 0, = 0 over GF(28)

A corresponding flowchart for the software implementation is shown in Fig-

ure 4.4,

81

82

Mapping to
24z +a =0

No solution

Find the reference root
by XOR operation

Find one of the
root by reverse
mapping

Find the other
root by X = 03/ X

Figure 4.4: The flowchart of new periodicity algorithm for m = 8 and p(z) =
Bttt

Chapter 5

Comparison of Different
Algorithms

In this chapter, different decoding schemes are compared. Solving the error locator
polynomial can be achieved by either the Peterson method or Berlekamp-Massey
algorithm. A time comparison of these two algorithms is made based on the simu-
lation program. The comparison of different techniques of determining error values,
Gauss-Jordan elimination and the Forney algorithm are also made. At last, five
different root search techniques are compared for time and ROM complexity. These
include Chien search. look-up table, binary-decision fast Chien search [57] [41], the

periodicity algorithm and new periodicity algorithm.

5.1 The Peterson Method vs the Berlekamp-
Massey Algorithm

In Chapter 2, we discussed the Peterson-Gorenstein-Zierler decoder and the Berlekamp-

Massey algorithm for finding error locator polynomials. Now, run our simulation

83

84

program on a UNIX workstation Pico'. Assume that m = 8 and the actual error
number v equal to T and let the error occur at 1.2.---, T respectively. The results
are plotted in Figure 5.1.

It is clear that when T < 6. the execution time of Peterson’s algorithm is
slightly better than that of the Berlekamp-Massey algorithm. However. when T >

6. the execution time of the Peterson algorithm exponentially increases. while the

time of the M i lineariy i Hence. for

any T > 6. the Berlekamp-Massey algorithm should be used to reduce the decoding
time.

10

Time (us)

os|

Figure 5.1: Time comparisor between the Peterson and Berlekamp-Massey method
form =8

'Pico is a 5000/120 DEC station under OS Ultrix 4.4, in C-CAE, Faculty of Engineering and
Applied Science, Memorial University of Newfoundland.

835

5.2 Gauss-Jordan Elimination vs Forney’s Algo-
rithm

As shown in Chapter 2. after having determined the error locator by using Chien
search. the error values can be obtained by using either the Gauss-Jordan elimina-
tion or Forney algorithm. Simulations were run under the same running conditions
stated in Section 3.1. The results are plotted as shown in Figure 5.2. It is shown
that when T < 10 the Gauss-Jordan method is a preferred method. while when
T > 10 the Forney algorithm should be used to cut down decoding time.

x10°
2|
15|
H Fomey
' ‘Gauss Elimination
osf
2 4« 6 8 10 12 14 16 18 2

Figure 5.2: Time comparison between the Gauss-Jordan elimination and Forney
method for m = 8

86

5.3 Comparison Among Different Root Search
Methods

In Chapter 4, the new periodicity algorithm was presented for solving the error
locators. In Section 2.4, the traditional Chien search method was also discussed.
Recently, two other methods for finding roots of Galois field polynomial have ap-
peared in the literature. One is the Okano-Imai ROM method [42] and the other is
the binary-decision fast Chien search proposed by Shayan, Le-Ngoc. and Bhargava
[41]. Another conventional way to evaluate the roots of polynomials over GF(2™)
is to use a look-up table. The Okano-Imai ROM method is identical to the im-
proved periodicity algorithm and has been introduced in Section 4.2.2. The last
two methods will be briefly introduced before we proceed with further comparisons

of all these methods.
5.3.1 The Look-Up Table Method

Let us again consider the following polynomial:
S@) =2 +az+o (5.1)

In the look-up table method, a table which contains the mapping relationship be-
tween all the possible values of the coefficients and the corresponding error locators
is constructed in advance. Since coefficients of the polynomial contain all the infor-
mation about the roots, we can use these coefficients as addresses and the roots of
error locator polynomial as entries of a look-up table. This approach is the fastest,
however, it also needs a large look-up table of size O(N?) bytes (N is the length

of GF(2™)). Therefore, in most cases, it is not feasible for many applications,

particularly high order finite fields such as GF(28).

5.3.2 Binary-Decision Fast Chien Search

This approach is also called segmented search algorithm [41][57). The algorithm

can be explained as follows.

Let us consider the GF(2™). We can divide the field into [equal segments. where
I = 2'. For each combination of two coefficients in Equation (5.1). a Segment-
Identifier (SI) value is assigned which indicates the segment with most of roots.
Each SI entry in the table is ¢ bits long. Hence the size of SI table is N i bits.

of the poly-

To solve for the roots of the poly ial, first the two
nomial are applied to the SI table and the segment which has most of the errors is
identified. Then a Chien search is applied to that segment. As soon as the first root
is found, the second root can be calculated by the formula o, = X;X,. Clearly,

this h only takes v 1/i of Chien search time.

5.3.3 Comparison Among Different Root Search Methods

The comparisons of execution times and memory sizes of the Chien search, binary-
decision search, look-up table method, the periodicity algorithm, and the new pe-
riodicity algorithm are made for decoding double error correcting RS codes of any
length, which can be shown in Table 5.1. For comparison, we consider the worst
case only. In Chien search’s worst case, the polynomial should be evaluated and
compared with zero, 2" — 1 times. In the segmented search algorithm, we consider

that the Galois field is divided by 2. In the worst case, the half Galois field needs

88

to be searched. All the other methods go through the longest path in the execution
process.

Time estimation is made based on the clock period of the Intel microprocessor.
Information about the clock cycles each operation takes can be found in [59]. In the

last two rows of Table 5.1. we list the CPU cycles required by the serial and par-

allel implementations of the new periodicity algorithm. The serial impls
refers to go through the flowchart of Figure 4.4 one operation after another with

1 time is estimated by

one processor only. The parallel i

that multiple p exist and no ication overhead between the proces-

sors. The number of the processors will depend on the code length and the chosen

duced in Section 4.3. 7 adders are required.

primitive poly jal. For the case i
From Table 5.1, we can see that with parallel implementation. the new periodicity
algorithm requires no memory space and only 62 CPU cycles inferior to the look-up
table method. It is efficient in terms of both memory size and decoding time. In
fact, since no ROM is required and only additions involve in the new periodicity al-
gorithm, LSI architecture can be easily developed to achieve the parallel processing

and thus high speed decoding.

Table 5.1: CPU cycles and memory size of different root search methods

Worst-case Look-up

number of memory size
CPU cycles bytes

Chien search 48N 0

Binary-decision

fast Chien search AN +8 o(N?)

Look-up table 10 o(N?)

Periodicity algorithm 49 o)

New Periodicity 258 0

algorithm - serial

New Periodicity 79 0

algorithm - parallel

89

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Communication channels are normally affected by various kinds of noises, inter-
ferences, distortions and fadings. As a result, errors occur in data transmission.
Forward error correction (FEC) is a common method to counteract these prob-

lems.

Due to its optimal structure, highest correction capability and most of all its
ability of correcting both random and burst errors. Reed-Solomon codes are widely
used today for many applications. As the demand for error control coding rapidly
increases, for example in cellular telephone systems, satellite communications, high
definition television, compact disc etc., the understanding of RS codes is becoming

essential. Hence. in this thesis, we examine two major aspects of RS codes:

1. A general purpose Reed-Solomon codec simulator

2. New periodicity algorithm

91

6.1.1 RS Codec Simulator

The overview of RS codes presented in Chapter 2 introduced and discussed the
encoding and decoding processes. In the encoding process, the emphasis was

placed on systematic encoder with the use of self-reci I pol. ial.

While in the decoding process, the error locator polynomial was obtained by using

three methods: the Peterson-G in-Zierler, Berlek: M and i d

Berlek Massey algorith After having d. ined the error locator polyno-

mial, Chien search was used to find the roots, i.e. error locators. The error values
were calculated by two different approaches: the Gauss-Jordan elimination and

Forney methods.

Chapter 2 described the impl ion of RS codec simul; which is ideally

suited for teaching and the study of a wide range of RS codes.

The codec simulator starts encoding the user’s data message into a systematic
codeword by entering the symbol length m from 3 to 8 bits and the error correcting
capability T of up to 20. The data message can be selected as: all zeros, or
an input file, or entering through keyboard. The noisy channel is modeled by
an error pattern. This error pattern can either be entered by the user with the
arbitrary weight or generated by an external program. which provides all possible
error positions. Both the Peterson and Berlekamp-Massey algorithms are available
for users to construct the error locator polynomial. The Chien search technique is
used to obtain the error locators which are the roots of the error locator polynomial.
After having determined the error locators, the error values can be obtained by using

Gauss-Jordan elimination or Forney's algorithm. A decoded word is estimated if

92

d d

v < T and the decoded word (or estimated codeword) is a c However,
when v > T the decoded word must be checked by dividing it by G(z). If the
remainder is zero then v = T or the error pattern is a codeword. The latter case
may happen when » > T and the decoder is blind. If the decoded word is not
divisible by G(z). the generator polynomial, then v > T and the received word will

not be corrected. It will be passed to the data sink untouched because the decoder

will not correct the errors properly.

The RS codec simulator was implemented in C language and can be run un-
der Microsoft Windows and UNIX operating system. A friendly and easy-to-use

graphical user interface is provided for PC.

6.1.2 New Periodicity Algorithm
Using analyses, in Chapter 4, we have shown and generalized the periodicity algo-
rithms conceived by Le-Ngoc and Young [1]{2] as follows:

(i) The new form of error locator polynomial,

S(x) = S(2)/0r = | + oy + ot

introduced by Young is not necessary and therefore this also means an decrease in
decoding time.

(ii) Using the standard Peterson’s error locator polynomial form:

S(z)=2*+oz+0;

it was clearly demonstrated that there is a specific relationship between the roots

(X1 = o™ and X; = o) and the corresponding coefficients (7, = o' and oy = o).

The new periodicity algorithm states:

L. If The root power values (i; and i) of X, and X; increase by 1, then the
power value of o, also increases by 1, and the power value of o increases by

2. Thus they form a close root chain.

I

. There are (N — 1)/2 root chains and (N + 1)/2 no root chains.

Lad

There are always N = 2™ — 1 distinct roots in a root chain.

. Whenever the coefficients (0,,032) are known, one of the two roots can be

-

determined by mapping the current (0y,03) = (@', &) into the index o
pair (a®. a'™%») with imep = (i2 —2i1) (mod N). This is the reason that
an index table of N x m bit memory is required [1] [2] to store the roots of
z? + z 4+ a'™® = 0. However, by using the direct solution method. we have
eliminated the NV -m bit memory space. This is one of the major contributions

of this thesis.

5. The second root is easily obtained by X, = a2/ X,.

(iii) Our analytical derivation also proves that the periodicity algorithm is valid for
all values of m.

Chapter 5 has devoted to the comparison of different algorithms with respect
to the decoding time. For determining error locator polynomial, the Berlekamp-
Massey algorithm is preferably used when the error correcting capability T > 6,

while the Peterson's method is recommended when T < 6.

For finding error values, the Forney’s algorithm is normally suggested to be used

94

when

when T' > 10, whereas the Gauss-Jordan elimination method is

T <10.

In searching for roots of the error locator polynomial, one normally trades off be-
tween execution time and memory sizes in various techniques. Table 5.1 in Chapter
5 listed the number of CPU cycles and memory sizes among the different methods.

algo-

It is clear that with parallel hard impl ion. the new
rithm requires no memory space as Chien search and only 62 CPU cycles inferior
to the look-up table method. It is in fact the most optimal algorithm so far as
we know. It can be predicted that the new algorithm will take the place of Chien
search, binary-decision (fast Chien search), look-up table, and Okano-Imai method

in the future VLSI design. This is the main contribution in this thesis.

6.2 Future Work

As mentioned from the start of the thesis, our work concentrated on algebraic

decoding. However, there are other kinds of decoding, such as decodi

and time domain decoding. Therefore, one direction for future work would be to

include these decoding methods into the RS codec simulator.

Since the new periodicity algorithm is an optimal one in both memory sizes
and decoding time for double error correcting RS codes, our next step should be
further developing a algorithm to adapt to larger error-correting capabilities. Three
approaches can be considered to solve this problem. One way is to decompose the
high order error locator polynomial into quadratic ones. Then the new periodicity

algorithm will still be effective. Another approach is to combine Chien search with

95

the periodicity algorithm to solve the polynomial. The third ane is to develop a
new algorithm which can determine the roots directly from the coefficients by using
some memory,

The new periodicity algorithm has no memory requirement and only additions.
Therefore, it is easy to convert to hardware implementation. However, a more
efficient circuit design will be involved in order to fabricate the algorithm into

VLSI chip.

Bibliography

(1

S. Le-Ngoc and Z. Young, “An Approach to Double Error Correcting Reed-
Solomon Decoding without Chien Search”, Proceedings of Midwest Sympo-
sium on Circuits and Systems, Detroit, Michigan. U.S.A. pp. 534-537, Aug.
1993.

Z. Young, A Reed-Solomon Code Simulator and Periodicity Algorithm.”
M.Eng. thesis. M ial University of Newfoundland, St.John’s, Newfound-

land. Canada, 1994, pp. 87-111.

S. Le-Ngoc. Y. Ye. and T. Banerjee, A Novel Approach to Quadruple Er-
ror Correcting Reed-Solomon Decoding without Chien Search”. Submitted
to Seabright Corporation Limited, (Patent Pending). Memorial University of

Newfoundland. July, 1994.

S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and their Applications,
New York: The Institute of Electrical and El ics Engi Inc., 1994,
pp- 8-12.

Y.R. Shayan, T. Le-Ngoc, “Design of Reed-Solomon (16,12) CODEC for

North American advanced train control system”, [EEE Trans. Vehicular Tech.,

96

vol.39, no.4. pp. 400-409, Nov. 1990.

(6] S. LeNgoc. T. Le-Ngoc. and V.K. Bhargava, “Design aspects and perfor-
mance evaluation of acts mobile data link”, IEEE Trans. Consumer Electron-

ics, vol.38, pp. 842-849. Nov. 1992.

[7] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and their Appiications,
New York: The Institute of Electrical and Electronics Engineers, Inc., 1994,

pp. 175-204.

8] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and their Applications,
New York: The Institute of Electrical and Electronics Eugineers, Inc.. 1994,
pp. 272-291.

[9] R.C. Bose and D.K. Ray-Chaudhuri, “On a Class of Error Correcting Binary

Group Codes,” Information and Control. vol.3, pp. 68-79, Mar. 1960.

{10] R.C. Bose and D.K. Ray-Chaudhuri, “Further Results on Error Correcting

Binary Group Codes.” /nformation and Control, vol.3. pp. 279-290, Sept. 1960.

{11] A. Hocquenghem, “Codes correcteurs d’erreurs.” Chiffres, vol.2, pp. 147-156,

1959.

(12] LS. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J.
Soc. indust. Appl. Math., vol.8, pp. 300-304, 1960.

[13] R.E. Blabut. Theory and Practice of Error Control Codes, Reading, Mass:
Addison-Wesley, 1983.

98

(14] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and their Applications,

New York: The Institute of Electrical and Electronics Engineers, Inc., 1994,
pp- 2-6.

[15] M.A. Tsfasman, S.G. Vladut, and T. Zink, “Modular Curves. Shimura Curves
and Goppa Codes Which Are Better Than the Varshamov-Gilbert Bound,”

Mathematische Nachrichten, n0.109, pp. 21-28, 1982.

[16] D.C. Gorenstein. and N. Zierler, “A Class of Error-Correcting Codes in p™

Symbols,” J. Soc. Indust. Appl. Math. vol.9, pp. 207-214, 1961.

[17] R.E. Blahut. “Transform Techniques for Error Control Codes.” [BM Journal

of Research and Development, vol.23, pp. 299-315. 1979.

[18] W.W. Peterson, “Encoding and Error-Correction Procedures for the Bose-

Chaudhuri Codes,” IRE Trans. Inf. Theor., IT-16. pp. 459-470. Sept. 1960.

(19] W.W. Peterson, Error-Correcting Codes, Cambridge. Mass: The M.L.T. Press,

1961.

(20] LF. Blake, Algebraic Coding Theory: History and Development. Dowden:
Hutchingon & Ross Inc., 1973.

dhuri-He b

[21] R.T. Chien. “Cyclic Decoding Procedures for Bose-Cl
Codes,” IEEE Trans. Inf. Theor. IT-10, pp. 357-363, Oct. 1964.

[22] G.D. Forney, “On Decoding BCH Codes”, IEEE Trans. Inf. Theor. IT-11,
pp.549-557, Oct. 1965.

23]

[24]

23]

[26]

(27

(28]

[29]

[30]

B1]

fs2)

99

E.R. Berlekamp. “Nonbinary BCH Decoding,” paper presented at the 1967

I ional Synposium on ion Theory, San Remo, Italy.

E.R. Berlekamp. Algebraic Coding Theory, New York: McGraw-Hill, 1968.

J.L. Massey. “Shift-Register Synthesis and BCH Decoding,” [EEE Trans. [nf.
Theor, IT-15, pp. 122-127, Jan. 1969.

AM. Michelson, and A.H. Levesque, Error-Control Techniques for Digital

Communication, John Wiley & Sons, New York, 1984.

Y. Sugiyama, Y. Kasahara, S. Hirasawa, and T. Namekawa, “A MEthod for
Solving Key Equation for Goppa Codes,” Iuformation and Control. vol.27, pp.
87-99, 1975.

H.M. Shao, T.K. Truoung, L.J. Deutsch, J.H. Yuen, and LS. Reed, “A VLSI
Design of a Pipeline Reed-Solomon Decoder,” JEEE Trans. Comput., vol.C-34,
pp.393-403, May 1985.

D. Mandelbaum. “On decoding of Reed-Solomon Codes.” [EEE Trans. [nform.
Theory. IT-17, pp. 707-712, 1971.

C.M. Rader, “Discrete C: lution via M Transfe " IEEE Trans.

Comput., vol.C-21, pp. 1269-1273, Dec. 1972.

W.C. Gore, “Transmitting Binary Symbols with Reed-Solomon Code,” Johns-
Hopkins, EE report, no. 72-5, Apr. 1973.

A.A. Michelson, “A New Decoder for the Reed-Salomon Codes Using a Fast

Transform Technique,” Systems Engineering Technical Memorandum No.52,

33

[34]

35]

36]

(37]

(38]

100

Electronic Systems Group, Eastern Division GTE Sylvania. Waltham, MA,
Aug. 1975.

A.A. Michelson, “A Fast Transform in Some Galois Fields and an application
to decoding Reed-Solomon codes,” IEEE Abstr. of Papers: IEEE International

Symposium on Information Theory, Ronneby, Sweden, 1976.

R.L. Miller, T.K. Truong, em et al, “Efficient Program for Decoding the (255,
233) Reed-Solomon Code over GF(2") with Both Errors and Erasures Using
Transform Decoding,” [EE Proc., vol.127, Pt.E. no.4, pp 136-142, Jul. 1980.

LS. Reed, R.A. Scholtz. T.K. Truong, and L.R. Welch. “The Fast decoding
of Reed-Solomon Codes Using Fermat Theoretic Transforms and Continued
Fractions.” [EEE Trans. Inform. Theory, vol.IT-24. no.1. pp. 100-106, Jan.
1978.

D.L. Whiting, “Bit-Serial Reed-Solomon Decoder in VLSL" Ph.D. Thesis,
School of Engineering and Applied Science, University of California, Los An-

geles. 1985.

T. Yaghoobian, “On Reed-Solomon and Algebraic Geometry Codes,” Ph.D.

Thesis, Department of Electrical and Computer Engineering, University of

Waterloo, Ontario, 1993.

M. Morii and M. Kasah “Gi lized Key-Equation of Remainder De-

coding Algorithm for Reed-Solomon Codes,” IEEE Trans. Inform. Theory,
vol.IT-38, no.6, pp. 1801-1807, Nov. 1992.

101

[39] R.E. Blahut, “Transform Decoding without Transforms.” Presented at the

Tenth IEEE Communication Theory Workshop, Cypress Gardens. FL, 1980.

[40] R.E. Blahut. A Universal Reed-Solomon Decoder.” IBM J. Res. Develop.,
vol.28, no.2, pp. 150-158, Mar. 1984.

[41] Y.R. Shayan, T. Le-Ngoc, and V.K. Bhargava, “A Binary-Decision Approach
to Fast Chien Search for Software Decoding of BCH Codes.” [EE Proc.,
vol.134, pt. F, pp. 629-632, Oct. 1987.

[42] H. Okano and H. Imai, A Construction Method for high-speed Decoders Using
ROM's for Bose-Chaudhuri-Hocquenghem and Reed-Solomon codes,” IEEE
Trans. Comput.. vol:36. no.10, pp. 11651171, Oct. 1987.

[43] E.R. Berlekamp, “Bit-Serial Reed-Solomon Eucoders.” [EEE Trans. Inform.
Theory, vol.28, no.6. pp. 869-874, Nov. 1982.

[44] T.K. Truong, L.J. Deutsch, LS. Reed, J.S. Hsu. K. Wang, and C.S. Yeh,
“The VLSI design of a Reed-Solomon Encoder Using Berlekamp's Bit Serial
Algorithm,” IEEE Trans. Comput., vol. C-33. pp. 906-911, Oct. 1984.

[45] G. Seroussi, *Hypersystolic Reed-Solomon Encoder,” U.S. Patent No.

4,958,348, issued May 30, 1989.

[46] G. Seroussi, “A Systalic Reed-Solomon Encader,” [EEE Trans. Inform. The-
ory, vol.37, no.4, pp. 1217-1220, Jul. 1991.

[47) ER. “Hy lic C " JASON Workshop on Advanced

Computer Architectures, La Jolla, Calif., 1986.

48]

[49]

50]

(51]

(52]

53]

(54]

58]

102

H.T. Kung, “Why Systolic Architectures?” IEEE Computer Magzine, vol.15,
pp- 972-980, 1992.

E.R. Berlekamp, G. Seroussi, and P. Tong, “Hypersystolic Reed-Solomon De-
coder,” U.S. Patent No. 4,958,348, issued Sept.18, 1990.

H.M. Shao, T.K. Truong, L.J. Deutsch, J.H. Yuen, and LS. Reed. “A VLSI
Design of a Pipeline Reed-Solomon Decoder.” [EEE Trans. on Comput.. vol.C-
34, n0.5, May 1985.

H.M. Shao, .S. Reed, “On the VLSI Design of a Pipeline Reed-Solomon De-
coder Using Systolic Arrays,” IEEE Trans. Comput., vol.37, pp.1273-1280,
Oct. 1988.

C.S. Yeh, LS. Reed, and T.K. Truong, “Systolic Multipliers for Finite Fields
GF(2™)," IEEE Trans. Comput., vol.C-33, pp.357-360. Apr. 1984.

C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch. J.K. Omura. and LS. Reed,
“VLSI Archi for C ing Multiplications and Inverses in GF(2™),"

IEEE Trans. Comput.. vol.C-34, pp.709-717, Aug. 1985.

P.A. Scott, S.E. Tavares. and L.E. Peppard, “A Fast Multiplier for GF(2™),"
[EEE J. Select. Areas Commun., vol.SAC-4, Jan. 1986.

LS. Hsu, T.K. Truong, L.J. Deutsch, and LS. Reed, “A Comparison of VLSI
Architecture of Finite Field Multipliers Using Dual, Normal, or Standard
Bases”, IEEE Trans. Comput., vol.37, no.6, Jun. 1988.

103

[56] M.A.Hasan and V.K.Bhargava, “Bit-Serial systolic division and multiplier for
finite fields GF(2™),” [EEE Tran. Comput., vol.41, no.8, Aug.1992.

[57] Y.R. Shayan, “Versatile Reed-Solomon Decoders,” Ph.D. Thesis, Concordia
University, Montreal, Canada, 1990.

(58] S. Le-Ngoc, T. Banerjee, and Y. Ye, “A PC-Based General Purpose Reed-

lator”. P d fe

Solomon Codec Si S ing of Canadian C on Electrical

and Computer Engineering, Halifax, Canada. pp. 751-754, Sept. 1994.

[59] Intel Corpotation, 8086/8088 User’s Manual - Programmer’s and Hardware
Reference,, 1989.

[60] C.L. Chen, “High-Speeding Decoding of BCH Codes.” /EEE Tran. Inf. Theor.
IT-27, pp. 254-256, 1951.

[61] S. Le-Ngoc,“Information Theory and Coding”, Lecture notes, Faculty of En-
gineering, MUN, Canada, 1994.

	001_Cover.jpg
	002_Inside Cover.jpg
	003_Blank Page.jpg
	004_Note To Users.jpg
	005_Title Page.jpg
	006_Copyright Information.jpg
	007_Abstract.jpg
	008_Abstract iii.jpg
	009_Acknowledgements.jpg
	010_Table of Contents.jpg
	011_Table of Contents vi.jpg
	012_Table of Contents vii.jpg
	013_Table of Contents viii.jpg
	014_List of Figures.jpg
	015_List of Figures x.jpg
	016_List of Tables.jpg
	017_List of Symbols and Abbreviations.jpg
	018_List of Symbols and Abbreviations xiii.jpg
	019_Chapter 1 - Page 1.jpg
	020_Page 2.jpg
	021_Page 3.jpg
	022_Page 4.jpg
	023_Page 5.jpg
	024_Page 6.jpg
	025_Page 7.jpg
	026_Page 8.jpg
	027_Page 9.jpg
	028_Page 10.jpg
	029_Page 11.jpg
	030_Page 12.jpg
	031_Page 13.jpg
	032_Page 14.jpg
	033_Chapter 2 - Page 15.jpg
	034_Page 16.jpg
	035_Page 17.jpg
	036_Page 18.jpg
	037_Page 19.jpg
	038_Page 20.jpg
	039_Page 21.jpg
	040_Page 22.jpg
	041_Page 23.jpg
	042_Page 24.jpg
	043_Page 25.jpg
	044_Page 26.jpg
	045_Page 27.jpg
	046_Page 28.jpg
	047_Page 29.jpg
	048_Page 30.jpg
	049_Page 31.jpg
	050_Chapter 3 - Page 32.jpg
	051_Page 33.jpg
	052_Page 34.jpg
	053_Page 35.jpg
	054_Page 36.jpg
	055_Page 37.jpg
	056_Page 38.jpg
	057_Page 39.jpg
	058_Page 40.jpg
	059_Page 41.jpg
	060_Page 42.jpg
	061_Page 43.jpg
	062_Page 44.jpg
	063_Page 45.jpg
	064_Page 46.jpg
	065_Page 47.jpg
	066_Page 48.jpg
	067_Page 49.jpg
	068_Page 50.jpg
	069_Page 51.jpg
	070_Page 52.jpg
	071_Page 53.jpg
	072_Page 54.jpg
	073_Page 55.jpg
	074_Page 56.jpg
	075_Page 57.jpg
	076_Page 58.jpg
	077_Page 59.jpg
	078_Page 60.jpg
	079_Page 61.jpg
	080_Page 62.jpg
	081_Page 63.jpg
	082_Page 64.jpg
	083_Page 65.jpg
	084_Page 66.jpg
	085_Page 67.jpg
	086_Page 68.jpg
	087_Chapter 4 - Page 69.jpg
	088_Page 70.jpg
	089_Page 71.jpg
	090_Page 72.jpg
	091_Page 73.jpg
	092_Page 74.jpg
	093_Page 75.jpg
	094_Page 76.jpg
	095_Page 77.jpg
	096_Page 78.jpg
	097_Page 79.jpg
	098_Page 80.jpg
	099_Page 81.jpg
	100_Page 82.jpg
	101_Chapter 5 - Page 83.jpg
	102_Page 84.jpg
	103_Page 85.jpg
	104_Page 86.jpg
	105_Page 87.jpg
	106_Page 88.jpg
	107_Page 89.jpg
	108_Chapter 6 - Page 90.jpg
	109_Page 91.jpg
	110_Page 92.jpg
	111_Page 93.jpg
	112_Page 94.jpg
	113_Page 95.jpg
	114_Bibliography.jpg
	115_Page 97.jpg
	116_Page 98.jpg
	117_Page 99.jpg
	118_Page 100.jpg
	119_Page 101.jpg
	120_Page 102.jpg
	121_Page 103.jpg
	123_Blank Page.jpg
	124_Inside Back Cover.jpg
	125_Back Cover.jpg

