CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

THE PROBLEM OF DETECTING SMALL TARGETS USING
MICRCWAVE RADAR: A NEURAL NETWORK SOLUTION

By
Donald S. Bryant, B.Sc. (Hons.)

A thesis submitted to the School of Graduate
Studies in partial fulfilment of the
requirements for the degree of
Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
May 31, 1994

St. John's Newfoundland

Canada

I+ i atonalLbray Bibliothéque nationale
of Canada Canada

du

Acquisitions and

Direction des acquisiions el

Bibliographic Services Branch des services bibliographiques

235 Sweet 395, rue Wellngton
o Fanves
s)

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Yourtie Voo reitence

Orte Moveritence

L’auteur a accordé une licence

irré et non
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17574-X

Canadi

Abstract

A neural network technique has been applied to the marine
radar small target detection problem. It has been compared to the
conventional processing method of scan to scan integration. The
results of the analysis indicate that a neural network is capable of
providing performance that is at least as good as, and if the scanning

window is optimized for the pulse length being used, much better than

the ional processing techni for small targets embedded in

sea clutter.

TABLE OF CONTENTS

Abstract

Table of Contents

List of Figures iii
1.0 d 1
2.0 Literature Survey 6
3.0 Theory 11
4.0 Description of Problem 29
50E 32
5.1 Data Collecti 32

5.2 Neural Network D Methodol 40

6.0 Results and Di: 45
7.0 Concl 59
List of 62
11 o 64

A dix I 65
A dix IT 74

LIST OF FIGURES

Figure 1. Fully Connected Neural Network

Figure 2. Layered Neural Network
k i 26

Figure 3. B;
Figure 4. Radar Reflector Mooring System

Figure 5. Directional Waverider Mooring System
Figure 6. le of Target in Clutter. 41

Figure 7. Synthetic Radar Target 43

Figure 8. Performance Summary Dataset 1

Figure 9. Performance Summary Dataset 2oov.e..

Figure 10. Perfc S -y Dataset 3 49
Figure 11. Performance -y Dataset 4 51
Figure 12. Performance -y Dataset 5 52
Figure 13. Perfc y Dataset 6 54
Figure 14. Intel 80170NX 55

Figure 15. Target Detector Neural Network

iii

1.0 INTRODUCTION
The ability of radar to detect small targets at sea is typically
limited by the pi of i i from the ocean

surface. A significant amount of research has been conducted over the
years on techniques for improving radar performance, especially for
the detection of small targets embedded in sea clutter. The importance

of this problem as it pertains to collision avoidance and scarch and

rescue has i d hers to i i all aspects of radar
design and radar signal processing. However, there remains a
considerable void in the level of signal processing available in civilian
radar systems. One of the reasons for this is that, until recently, it has
not been possible to economically implement the desired processing in
areal-time system.

The introduction of advanced single-chip signal processors and

high speed memory has enabled the development of radar signal

processors that are able to i proven herent p ing
techniques. These techniques, such as scan to scan integration, have
been shown to be quite effective in improving radar performance in

clutter. Scan to scan integration effectively smooths the sea clutter

and noise backg d by i ive radar scans making
targets more visible on the radar display. This works best when the
target is stationary during the processing period. However, when both
the target and radar are moving the scan to scan integration process
becomes very complex, potentially limiting integration to only a few

scans. This will limit i imp! for this

type of processor.

In this thesis the neural network has been proposed as a
potential processor for the radar target detection application. The
neural network is modelled on the architecture of the brain and the
process of training the network to recognize a target in a background
of noise and clulter is similar to the process of teaching a student to
recognize the letters of the alphabet. The training enables the student
to read the writing of others, even when it is poorly written. Neural
networks have been found to be very effective in character recognition

applications, particularly when the characters are hand written and

In order to design and train a neural network to detect radar
targets, embedded in sea clutter and system receiver noise, it is
necessary to isolate the unique characteristics or attributes of the
target, sea clutter and noise signal. The sea clutter component of the
radar signal is a phenomenon generated by the reflection of the radar
signal from the occan surface waves. Sea clutter is a function of the
dircctional ocean wave spectrum. That is, the magnitude of the sea
clutter is modulated by the sea state. As the sea state increases so does
the magnitude of the sea clutter. The noise component of the radar
signal is generated by the radar receiver and is a function of the
hardware used in the design of this device.

A complete radar signal has three dimensions; range, bearing
and time. The magnitude of the signal varies with these dimensions.
The range characteristics of a target echo will depend on the target
shape and size and the radar pulse length. The bearing characteristics
of a target echo will depend on the target shape and size, the radar

antenna beamwidth and the pulse to pulse variation in propagation

path and target radar cross-section. Observations of targets, sea
clutter and noise indicate that discrimination of targets and clutter
from noise would probably be possible as a function of bearing (pulse
to pulse). However, discrimination between target and clutter as a
function of bearing will be much more difficult. For the scanning
radar situation the rotating antenna acquires new radar signals of the
same area every 2 to 3 seconds. The scan to scan (or temporal)
characteristics of the target echo may be sufficiently different from the
temporal characteristics of the sea clutter to permit discrimination.
This would be similar to the trained radar operator who often must
observe the radar display for an extended period of time over multiple
radar scans before deciding on the presence of a target.

This thesis 1 that a three di ional neural network

having spatial and temporal inputs could be trained to recognize a
target signature even when both target and radar system are moving.
The neural network would take advantage of the spatial (range and
bearing) and temporal (scan to scan) behavior of target, clutter and
noise to provide enhanced target detection.

This thesis represents the first phase of a threc-phase
development program which has been undertaken to assess the ability
of neural networks to detect targets embedded in clutter and noise.

The first phase of the is designed to i igate the basic

suitability of neural networks to the radar target detection problem.
Subsequent phases call for full protolype implementation and
commercialization.

Can a neural network provide radar target detection

performance and, if so, how does its performance compare with that of

conventional signal processing techniques? In the first phase it is
considered important to keep the analysis simple such that this basic
question could he answered. The approach is to focus on the stationary
target detection problem. This would simplify the structure or
architecture of the network and provide a foundation for the design of
a more advanced network for moving targets in a subsequent phase.

A high quality data set was required for use in training and
testing the prototype network. During July of 1993 a two week radar
data collection experiment was conducted at Cape Spear,
Newfoundland using a mobile radar unit owned by the Canadian
Coast Guard. Equipment for measuring wave height and surface
weather were deployed along with two reference radar reflectors in a
triangular pattern at a range of 2.5 to 3.0 nmi from Cape Spear. The
reference radar reflectors were Lunenburg lens type having radar
cross sections of 2 and 10 m%. A radar data acquisition system was

used to collect high fidelity radar data. During the period a reasonable

range of envir were ed from a low of 1
meter swell with virtually no wind up to 3.6 m significant wave height
accompanied by a 25 to 30 knot wind. Foggy and heavy rain

diti.

occurred. N vessels passed through the area

ranging in size from small wooden open boats and tour boats up to
container vessels. Overall, the 14 day field trial saw the collection of
about 100 Gigabytes of radar data.

The neural network kernel has been implemented on an HP
Apollo workstation and has been configured to accept radar data in
spatial and temporal domains. A set of programs have been created to

extract selected data from the raw data sets and to present the results

of the neural network in i with other pi ing

The software has been designed so that it is possible to quantify the
difference in performance between the neural network and scan to
scan integration. The detection performance of each technique is

directly measured using a common reference making it possible to

pare the network with scan to scan integration in a
statistically meaningful way.
In the sections to follow a survey of the current thinking in

neural and radar signal

hnology is p: d. A detailed
description of the problem is included, together with the experimental
plan and problem solution methodology. The results of the
development are presented graphically. Some conclusions are drawn
with respect to the future development of this work into a full

prototype unit.

2.0 LITERATURE SURVEY
The basic concept of marine radar is a simple one. A marine

radar i by radiati ! ic energy and detecting the

echo returned from reflecting objects. The range , or distance to the

object is calculated by using the inft ion found in the time it takes
for the radiated energy to travel to the object and back to the radar
antenna. The angular location of the object in the case of the scanning
marine radar is found by using the angular position of the scanner.
The marine radar is an active device. It uses a transmitter and does
not depend on ambient radiation, as do most optical and infrared
devices. Radar can detect relatively small objects at near or far
distances and can measure their range with precision.

Radar (radio detection and ranging) was originally developed to
satisfy a military need. Tt has been used by the military for
surveillance and weapon control. Military applications have funded
most of the development of this technology. However, radar has been
used extensively in civil applications for the safe travel of aircraft,
ships and spacecraft.

Objects having high conductivity such as metal ships are very
good reflectors of radio waves and as a result they provide very strong
radar returns. Objects with low conductivity such as wooden boats,
rubber life rafts and icebergs are all very poor reflectors of radar
signals. The shape and surface conditions are also factors in

determining the strength of the signal reflected from a target. The

d ion problem is ded by the requil to detect these

weak targets in a back d signal being refl d from the ocean

itself. This signal is known as sea clutter. The ocean with its salt

content may provide stronger radar reflections than the small targets.
Reflections from the ocean increase as a function of wind speed and
wave height making small target detection even more difficult in high
wind and wave conditions (Ryan 1992).

There are techniques which improve the detection of small
targets embedded in sea clutter. One of the best techniques is scan to
scan integration. This technique is based on the fact that the sea
clutter relative to the target may be viewed as a non-coherent process
(Ryan 1990). Scan to scan integration involves the adding together of
successive scans of radar data in order to reduce the sca clutter
component of the radar return. This processing scheme has been
proven to improve the detection of small targets at sea (Ryan 1990).
Techniques which are able to further absorb the nature of target and

sea clutter may be even more effective in the

This leads to an investigation of neural networks.

The motivation for neural network research is found in many
disciplines. Neural nets have their genesis in biology and psychology.
Indeed, in 1949, in his book The Organization of Behavior, a

psychologist Hebb, the following

When an axon of cell A is near enough to excite a cell B and'repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one of
the cells firing B, is increased.
In this book Hebb goes on to say that changes in synaptic strengths
between neurons are proportional to the activation level of the

neurons, This is the formal basis for the creation of artificial neural

networks with the ability to learn.

The theory of Hebbian learning describes a method for updating
synapse strengths in neural networks enabling them to learn. This
idea was incorporated into a two-layer natwork called a perceptron
(Rosenblatt 1957-1958). The learning rule formulated by Rosenblatt
slales that the weights should be adjusted in proportion to the error
between the output neurons and the required target values for these

neurons. R blatt later tried to a three-layer version of his

algorithm but failed as he was unable to deduce a sound method for
training the weights associated with the hidden layer neurons (i.e., the
layer between the input-layer and the output-layer). A device was
developed called the ADALINE (adaptive linear combiner) together
with a new learning rule which minimized the summed square error
during training (Widrow 1962). The ADALINE proved useful in
applications such as pattern recognition and classification.

Many problems could not be solved using the simple two-layer
networks. Multi-layer nets had to be investigated, however, three key
factors led to a decline in the research in this area and artificial neural
networks in general during this period. First, the lack of a

mathematical method for training multi-layer networks was a

significant problem. Second, the ively modest
power available to train these neural networks during this period
meant that only a few researchers had the ability to do work into the
training and testing of networks. Third, a book, Perceptrons, was
published by Minsky and Papert (1969). This book outiined in detail
the limitations of the two-layer design. The authors speculated that

while the multi-layer networks might be able to overcome most or all

of these difficulties the multi-layer architecture could not be trained
and therefore was also a dead end.
Some h into the two-layer design i A two-lay

net was used to build a content addressable memory (Kohonen 1984).
A content addressable memory system uses the item to be stored as the
index for its location in memory. Kohonen called this associative
memory. Associative memory is based on an unsupervised learning
method in which the weighis are changed only on the basis of the
training patterns presented without taking some desired result into
the equations.

During the 1960's and continuing into the 1980's Stephen
Grossberg had been developing models of the brain's function
(Grossberg 1982). His research has resulted in several unique neural
network models, which are able to do training on-line and have the
capacity for self organization.

However, it was not until the discovery of backpropagation by
Paul Werbos in 1974 that the field of neural nelworks experienced a
resurgence of research activity (Werbos 1974). Backpropagation allows
the training of multi-layer networks. Werbos discovered the algorithm
while working on his doctoral inesis in statistics. At that time he
called it the dynamic feedback techinique.

One of the latest developments in artificial neural systems is the
Cascade-Correlation Learning Architecture (Fahlman and Lebiere
1991). This is a new architecture for supervised learning in artificial
neural networks. The method does more than modify the weight values
of a fixed neural network structure it alters the topology of the net at

the same time. Cascade-Correlation begins with a minimai network

topology, then automatically trains and adds new hidden layer
neurons one at a time gradually creating a multi-layer structure.
When a new hidden layer neuron has been added o the network, its
input side weights are fixed. This unit then becomes a permanent

feature-detector in the network, only available for producing outputs

or for creating other feature-d The real ages of this
method are: it learns very quickly relative to standard

k i the network i its own size, ity and

topology, it retains the structures it has built even if the training set
changes, and it does not back-propagate error signals through the

connections of the network.

3.0 THEORY

A definition of neural networks might be written as follows:

Artificial neural systems, or neural networks, are physical
cellular systems which have the ability to acquire, store, and”
‘mafe use of experiential Enowledge. (Zurada, 1992)

The data or knowledge gained by a neural system is in the form
of a system state (stable or otherwise), or a mapping embedded in the
network itself. The information in whatever form may be recalled in
response to a particular set of cues or a set of patterns presented Lo the
system.

The current state of the art in artificial neural networks would
indicate that it is possible to describe them as a mathematical attempt
to model the way the brain functions, in order to harness its ability to
infer from i lete, or conflicting info

Why is there such interest in neural networks? In trying to

answer this question, consider how nature deals with the pattern
recognition problem. Animals, in general, are much better and faster
at recognizing images than are most digital computers. However,
digital computers outperform biological and artificial neural systems
for tasks based on precise arithmetic operations. Artificial neural
systems represent a very promising class of information processors.
Neural nets can add to the processing power of the von-Neumann
digital computer with the ability to make decisions and to learn, in

much the same way as animals, by ordinary experience.

Artificial neural networks have their foundations in biology and
as such this discussion would not be complete without discussing
briefly these biological neural systems. A biological neuron is

d of axons, dendri and p! These neurons undergo

excitatory and inhibitory signals. One excitory signal on its own is

usually tco weak to trigger an action potential in the postsynaptic

neuron. Its effect is said to be subliminal or below the hold level.
Many excitory signals may however be added together, a process called

Temporal ion occurs when repeated stimuli cause

new excitory signals to form before the previous one has faded. In this
way the neuron may be brought to firing level. Neural integration is
the process of adding and subtracting incoming signals and processing
to determine the correct response. Hundreds of stimuli may be
absorbed before an impulse is actually transmitted. Each neuron acts
as an integrator, sorting through the thousands of pieces of
information continuously received. The artificial equivalent neuron, or

the axons and dendrites of its biological

p ing clement, si
counterpart with electrical wires and models the synapses by using
resistors with weighted values.

Neural network models consist of processing elements,
interconnection topologies, and learning rules. The processing

h Ives consist of combinati of excitatory (generally

positive) and inhibitory (generslly negative) weights which act on the
inputs in a summation function driven by an activation function which
is based on the inputs to the processing element.

Each processing element may interact with the others in the

network depending on how they are interconnected. In a fully

connected network the topology dictates that each node or processing
element is connected to each other noce in the net (see Figure 1). In
practice the network is usually layered, that is, the network is
stratified into sets of nodes which are not connected to any other node
within its own set, but each node in the set is fully connected to the
nodes in the adjacent layer (see Figure 2). One of the key elements
required in setting up a neural net is the definition of the neiwork
topology. The architecture of the network is usually determined
experimentally through a process of trial and error,

To talk about the concept of learning in neural networks
requires a new set of terms and expressions. For example; a neural net.
is not programmed, it is taught. Consider the human cognitive process
and the network training problem. The human brain takes no longer
than a few milliseconds to complete most of its cognitive processing
tasks. It is a fact that individual neurons in the human brain compute

at a rate

pi to the time required to exccule a
single instruction in a digital computer. So, how does the brain
accomplish these tasks in such a relatively short period of time? The
answer lies in the brain's use of massive parallelism, that is, the brain
makes use of as many as 10 billion neurons and, of course, more than
1000 times as many interconnections, depending on the task at hand,
1

this massive llelism the

and the topology employed. To

artificial neural network sets up an interconnected array of processing

Cognections
N

TN

Figure 1. Fully Connected Neural Network

Figure 2. Layered Neural Network

]

elements. Each processing element has a number of inputs, together
with a set of mathematical states and an output that is generally a
non-linear sigmoidal function of the inputs. Each input to the
processing element has a weight value associated with it which
usually ranges from -1 to 1 although it may exist as any real number.
When an element is activated it looks at all the inputs to it and then
computes their respective weight values. If the calculated value is

above some prede! i level the ing unit will an

output value that is used as input by other processing elements. In
most learning rules the only element to be adjusted during training of
the neural network is the weight value. So, the training of a neural
network is a matter of adjusting the weights, this may be done
manually or automatically, using some set of mathematical or logical
rules which will be discussed later. In terms of graph theory a neural
net may be classified as a directed graph composed of a number of
nodes which we call processing elements. Each of the nodes has only
one output signal or value which is distributed to other processing
nodes, while each of the nodes must process the incoming signal based
on the values of the constants stored in it. The current ncural net
technology is based on the assumption that the update of any signal
within a node is done discretely, rather than continuously or

concurrently.

There are essentially three ways for neural net learning to take

place:

1. Supervised

2. Unsupervised

3. Self-supervised

In the first case the neural net programmer must provide trial
and error inputs to the network, thereby teaching the network the
correct and the incorrect responses. With unsupervised learning ihe
data is simply entered for access by the net without any programmer
intervention, In general this process should lead to an internal data
clustering which is the desired result.

Selfsupervised learning occurs when the network is actively
monitoring itself and dynamically correcting errors found in the
interpretation of data, this is usually accomplished by feedback
through the network. Training a neural system effectively synthesizes
a set of underlying rules from a body of data or set of patterns. It is in
the learning stage that the network encodes the required
transformation, which maps a desired set of input features to a specific
set of output features. In general, neural network topoiogies can be set
up to generate arbitrarily complex decision regions for stimulus-
response pairs. This inherent ability makes neural nets ideally suited
for use as detectors or classifiers. One of the real advantages of neural
networks lies in their parallel distributed processing structures.
Neural nets do not execute a predetermined set of instructions, but

I many ing b 3 imul ly, thus i

the processing speed. Neural nets provide other inherent benefits as
well, for instance, neural net classifiers are non-parametric and make

no ions about the probabilistic properties of the distribution of

the training data.

The layered network is a feed forward network and as such

provides for a reasonably fast supervised learning ability. The layered

nets are also easily ble, and can te arbitrary

It has been shown that the three layer network can form
arbitrary complex decision regions (Gibson and Cowan, 1990) that arc
not limited to convex shapes. Thus, it would seem that no more than
three layers is required to solve arbitrarily complex classification

problems

has shown two may

suffice.

The following is considered to be the general neural net learning
rule (Amari, 1990):
- Wit The weight vector at time t. The members of W(t),
wj; connect the j'th input value with the i'th
neuron. The j'th input can be the output from

another neuron or it can be an external input to the

system.
- o(t) The output vector at time t.
- X(t) The input vector at time t.
- v(t) The learning vector at time t.
- dy(t) The teaching vector or desired response at time t.
- Irate The learning rate (usually less than or equal to
unity).

- net;(t) The dot product of the weight vector and the
vector X.

- Rarg) The network activation function.

The magnitude of the weight matrix increases proportional to
the product of the input signal and the learning vector. The learning
vector is a function of, X(t) and in some methods d;(t):

v = v(W;(t),X(1),d;(£)) (¢Y]

The change in the weight matrix as dictated by the learning

step at some time t according to the general learning rule is:

AW;(t) = Irate (v(W;(£),X(£),d;(t)) X(t)) (2)

Wi(b+1) = Wi(t) + AW,0) @

The above holds for discrete-time learning, in the continuous

case, in place of equation (2) we would have:

AW;(t/dt = Irate V(W OXD,AO) XH) (4

The following are various techni that are used to put this

general learning rule into practice:

Hebbian Learning Rule

In the Hebbian method the learning vector "v" is chosen to be

equal to the neuron's output (Hebb, 1949);

v = W0 X(t)

and,
AW(t) = Irate fIW;(t) X(1) X(t)

This method of teaching the network requires that the initial
values of the weight matrix be set to small random non-negative

values before starting the process.
Perceptron Learning Rule
In this case the learning vector is chosen as the difference

between the desired and the actual neuron's response (Rosenblatt,

1958). This is an example of supervised learning and may be written

as:
v=dy(t) - o(t), 0;(t) = sgn(W(t) X(t)
and,
AW,(t) =Irate (v X(t))
so, Awu- = lrate (v X(l))xj(t) forj=123,..,n

It should be noted that for this rule there exist some serious
limitations on the neural response expected. The rule is only valid for
binary neuron response and since then the desired response could only

be 1 or -1, the change in the weight matrix may be reduced to,

AW{(t) = F2.0 Irate X(t)

the plus sign is applicable if di(t) = +1, and sgn(W;(t) X(t)) =-1, and a
minus sign when d;(t) = -1, and sgn(W(t) X(t)) = +1. In this method the

weights may be initially set arbitrarily.
Widrow-Hoff Learning Rule

This method (Widrow 1962) is used for supervised training of
neural networks. It is independent of the activation function used
since it minimizes the squared error between the desired output vector
d;(t) and the neuron's activation value net;(t) = W;(t) X(t). The learning

vector for the rule is given as follows:
v =d(t) - W) Xt

and,
AW{(t) = Irate (v X(t))

This rule is considered to be a special case of the defta learning

rule. It is sometimes called the LMS (least mean square) learning

rule. The weights may initially be set to any values.

20

Delta Learning Rule
This rule is valid for continuous activation functions, and may
only be used in the supervised training mode. The learning vector for

this method is called defta and is defined as,

i) - ROW,(0) XN £'CW (1) X ()

v=

f'is the derivative of the network activation function flnct;(t))
computed for nett) = Wi(t) X(t). This rule may be shown to be based
on the method of least squared error between d;(t) and the output
vector oy(t). This rule was introduced recently by (McClelland and

Rumelhart 1986).

Correlation Learning Rule

By substituting v = di(t) into the general learning rule it is
possible to obtain the correlation learning rule. The change in the

weight vector is defined as,

AW(®) = Irate d(t) X(1)

This rule is a special case of Hebbian learning.It states that if
d;(t) is the desired response due to X(t) then the required weight
change is proportional to their product. This method requires thal the

weights initially be set to zero.

The next set of learning techniques are best described in the

context of a layered neural network topology.

‘Winner-Take-All Learning Rule

This rule is idered an example of itive learning. It is
used for unsupervised network training. Most often this method is
used for learning statistical properties of the inputs (Hecht-Nielsen,
1987). Learning here is based on the principle that there will exist a
neuron in the m'th layer having maximum response due to the
presentation of X(t). This neuron would be declared the winner in this
case. As a direct result of this, the weight vector W, (t), would be the

only one adjusted for this step and its change would be given as,

AW (1) = Irate (X(t) - W,,(t)

The sclection of new winners is based on the following formula

of maximum activation among all n neurons in the competition:

W () X(t) = MAX [W;(t) X(t)] , for i = 1,2,

In this method the winning neuron is sometimes extended to the
winning neighborhood of neurons. This has the effect of increasing the
generalization of the final network. The weights are usually initially

set to random values.

3
3

Outstar Learning Rule

This rule is designed to produce a desired response di(1) in the
layer n neurons. The rule is used to provide learning of repetitive and

characteristic properties of sti T i The

method is oriented towards supervised learning. It allows the network
to extract statistical properties of the input and output vectors

(Grossberg, 1982). The change in the weight matrix is given by,

AW(t) = Irate (di(t) - Wi(t)), fori = 1,2,3

The weights are usually initially set to random values.

Another alternative learning method is called evolutionary
programming (Grossberg, 1982). This technique is a simulation of
natural evolution and as such is very similar in principle to the
Winner-Take-All method discussed earlier. In this technique each
weight vector (organism) is assigned a score based on how well it
performs. Each "parent" vector is modified (mutated) at random in

d with a G: i distribution having zero mean and a

variance proportional to its error score. These mutations or "offspring"
are then put in competition with the parents for survival to the next
generation. As this process iterates, superior vectors should emerge

from the evolution. Evolutionary programming can be directly applied

to the learning problem as it generates an optimal set of network

weights in much the same way as standard back-propagation does.

Back-Propagation Learning

The training method most commonly used is back-propagation
(Werbos, 1974). In this algorithm the weights of the network or

of the neural ions are modified i based

upon error changes which are propagated backwards through the
network, This optimization of the weight structure is essentially a
"steepest decent” search of the network weight space and while it may
be said that the technique itself is a numerically stable one, in that it
will always find a local minimum, it may fail to reach the global
minimum due to the inherently irregular shape of the search space.
Any neural network must compute by a process of spreading

activation. One way, to do this follows:

x(t) = X(t), 1<i<m

neti(t) = 2 Wit %), m<i<(N+n), 12j5G-1)
x;(t) = sig(net;(t)), m<i<(N+n)

V(1) = X,y (0), 1<isn

Y;(t) = Target Outputs 1<i<n

where the function described by sig(arg) is usually a sigmoidal

function such as:
siglarg) = 1/(1 +exp(-arg))

and where N is a constant which can be any integer, in a fully
connected network as long as it is no less than m. However in a
layered network, IN determines the number of neurons in the hidden
layers. The value of (N+n) gives the total number of ncurons in the
system. The value of net(t) represents the total level of yoltage
exciting neuron i, and x;(t) represents the intensity of the resulting
output from neuron i. This output is sometimes referred to as the
activation level of the neuron.

As can be seen, the real problem now in training the network is
to correctly choose the weights W(t) so as to suit the purpose. Back-
propagation, determines the weights by minimizing the following crror

function:
Error = 3, E(0) =(1/2) T, Z; (Y40 - Y;w)®
where, 1st<Tand,1<i<n.

This approach is shown in Figure 3.

25

Back-propagation Data Flow Diagram

| ERROR
—
— E(t)

Figure 3

The weights are initially chosen as random numbers, but it may
be better to estimate the weights, if any information about their values
exist. The next step is to calculate Y¥(t) and the errors E(t) for the
particular set of weights. The derivatives are now calculated, that is,
the partial derivatives of E with respect to each of the weights. The

effect of d. ically modifying or changing any and all of the weights

is now determined. A very simple approach is applied here. If
increasing a given weight would lead to greater numerical error in E
then that weight is adjusted downwards and visa versa. After
adjusting all of the weights in the system the process restarts and
iterates until some stopping criteria is reached. The stopping condition
may rely on the numerical value of the error function E. One may

dition based on satisfying the training data set.

choose a

However experience has shown that this can lead to very poor
generalization. It is better to rely on the underlying mathematical
principles of optimization (i.e. JE/OW;(t) = 0 or nearly so).

From the chain rule it follows that:

' Target/dz(i) = dTarget/dz(i) + ;9" Target/oz() 32(j)/dz(i)

with,

j=i+l,..Nandi=1,.,N
where the derivatives with the + superscript represent the total
derivatives, and the derivatives without il represent the ordinary
partial derivatives. This result is valid only for systems where the
values to be calculated can be obtained one by one in the order z(1),
2(2), %(3), ...,z(n), Target. As an example, consider a simple system of

two equations, in order:

22) = 6 z(1)
23) =2 z(1) + 5 z(2)

The partial derivative of z(3) with respect to z(1) is 2, to calculate this
value we need only look at the equation which determines z(3) directly,
however, the total derivative of z(3) with respect to z(1) is 32 because
of the indirect impact added by z(2). The partial derivative measures
what happens as we change z(1) and assume everything clse remnains
constant. The total derivative measures what happens when z(1) is
changed and also monitors all other changes related directly or
indirectly to the system.

Define T_z(i) as the total derivative of the target with respect to
2(i), which may be interpreted as the feedback in the system to z(i). In
backpropagation the target is the error function E, already defined, so

the required equation for the total derivative in this case is given by:

T_Y*;(t) = OE/AY*|(t) = Y¥(t) - Yy(1),

which follows from the differentiation of the formula for the E

function, so,
Txi(t) = T_Y*; (6) + X5 Wi(t) T_nety(t),
where, Jj=i+1,...,N+n, and, i=N+n,...,m+1
T_net(t) = sig'(net;(t)) T_x;(t) , i=N+n,..,m+1
and,
T_W; = X, T_net;(t) x(t), t=1,... T
where, sig'(arg) is the derivative of sig(arg)

It can be shown that;

sig'(arg) = sig(arg) (1 - sig(arg)),
which can Lbe beneficial during the implementation phase of the
method. To derive the weights, the equation in backpropagation is:

Wit +1) = Wi(t) - Irate T_W;.

4.0 DESCRIPTION OF PROBLEM

The ability of marine radar to detect small targets at seca is
typically limited by the presence of backscatter from the ocean surface
coupled with receiver noise. This phenomenon of ocean radar
backscatter is commonly known as sea clutter. The detection of small
objects at sea by marine radars is of interest for a number of reasons.

One is the issue of ice-infestation of ocean waterways, which is a
serious navigation problem. All ocean going vessels must rely on the

ships radar as the primary sensor for navigation purposes. In this

however, ional marine radars do not perform to
the satisfaction of the ships operator. It is known that as large iccbergs
melt they break into pieces called growlers and can weigh as much as
100 - 150 metric tonnes. Some of these pieces are still large enough to
be considered very hazardous to shipping. Growlers are very hard to
detect with marine radar as only 1 - 2 metres of the berg is actually
above the water. So, even in a calm sea (i.e., 1 - 2 metres significant
wave height) the radar return from a growler will clearly be difficult to
detect over the competing sea clutter return. As the wave height
increases the problem of growler detection becomes more severe,

The success of agencies responsible for search and rescue
operations at sea is severely diminished by the inability of current
marine radar technology to find small targets, such as liferafts, out of
sea clutter. In a 1987 search and rescue (SAR) experiment conducted
for the Canadian Coast Guard it was found that for four and six man
life rafts with no radar enhancement, the search track sweep width is
essentially zero (Dawe et al., 1987). This means that a search for

objects such as these which are the most common size life rafls in use

29

today, has little chance of success. This study concluded that there is
clearly a requirement for marine radars which are specifically
designed to detect weak targets embedded in sea clutter. It went on to
say that while optimizing the radar system parameters (i.e., scanner
speed, transmit power, pulse scheme, receiver design, etc.), might
improve the radar's response to weak targets in sea clutter, the most
effective scheme to improve performance would be tc concentrate on
signal processing techniques.

Traditionally, sea clutter has been modeled as a purely

ic process. N herent i hni such as scan

to scan integration have been shown to improve radar performance in

hni have ially when

clutter. However, these
integration is only carried out over a few scans. The scan to scan
technique performs a numerical average of n scans of digital data. The
decorrelation time of the sea clutter to be removed from the radar
screen is a function of a number of environmental parameters. The
dominating parameter at any instant in time however seems to be sea
state. It is not entirely clear how many scans should be integrated
under any icular set of envi 1 diti in order to
optimize small target detection in sea clutter. Also, it is clear that if

the target in question is moving, then in order to integrate the digital
scans of radar data they must first be registered spatially. This image
registration itself will be difficult to accomplish. The implementation

of these scan to scan requires signifi digital
power.
Techniques that take advantage of the temporal behavior of

target, clutter and noise, together with the spatial signature, may be

30

more efficient in this application. A neural network trained to extract

the temporal and spatial characteristics of targets in clutter and noise

may perform better than ional techni; Another ial
advantage of the neural techniques is the fact that they can now be
implemented directly in hardware. In fact, Intel Corporation has
introduced the Electrically Trainable Analog Neural Network (ETANN
80170NX) chip.

5.0 EXPERIMENT

In order to test the hypothesis that a neural network technique
applied to the radar small target detection problem might give better
results than conventional techniques (i.e., scan to scan integration)

digital radar data was gathered. Also, a suite of neural network

ft tools were designed and developed. The neural net tools
include routines to train a network based on standard
backpropagation as the learning method, as well as a Windows 3.1
based application for the manipulation of the digital radar data. The
Windows 3.1 application also has the ability to do the required test,

and i to ional techni of the trained

networks, on the radar data.

5.1 DATA COLLECTION

The radar station was established at Cape Spear near the
operational lighthouse. The orientation of the radar station relative to
the topography at the cape placed the area of study in the coastal
waters to the north east of Cape Spear. The digital radar data

llection system isted of an IBM ibl ipped
with a Precision Digital Images (PDI) 15 AT video capture board. The
PDI board will allow for a 1k x 1k x 8 bit single frame capture at a
sample rate of up to 40 Mhz. The radar data collection device gathers
digital data at 8 bits of resolution which translates into 256 digital
levels. The transistor-transistor logic (TTL) signals from the radar
itself are used as external syncs. The radar heading marker was used
as the vertical sync signal or start of scan. The radar pulse trigger was

used as the horizontal sync signal or start of scan line. For the

purposes of this study a subset of the total 120 gigabyte radar dataset

was extracted. There were 6 dataset: each i 100

scans of radar data. The first 3 radar datasets selected consisted of 100
scans of 100 lines by 100, 8 bit pixels the second 3 sets contained 100
scans of 100 lines by 200, 8 bit pixels. Each of the first 3 datasets
where chosen with 3 targets available for detection and the second 3
sets with 2 targets available minimum. The first dataset may be
characterized as a receiver noise dataset collected with the radar set to
long pulse, having a nil sea clutter component. The second, was a
medium clutter dataset with the radar set to long pulse, having a
significant wave height of 2.5 metres and an average wind speed of
less than 5 metres per second. The third dataset considered, with the
radar set to long pulse, was a high clutter dataset having a significant
wave height of 3.0 metres and an average wind speed of 13.5 metres
per second. The fourth to sixth datasets all were collected under high
sea clutter conditions, having a significant wave height of 3.6 metres
and a mean wind speed of 14 metres per second. The fourth datasetl
was collected with the radar set to long pulse. The fifth datasct was
collected with the radar set to medium pulse and the final dataset was
collected with the radar set to short pulse.

Two calibrated radar reflectors having equivalent radar cross
section of 2 square metres and 10 square metres, respectively, were
mounted on Alberglen fiberglass spar buoys to act as known targets.
The spars placed the reflectors about 3 metres above the sea surface.
The mooring system (Figure 4) was attached on the side of the spar
and buoyed at the surface with a large plastic fishing float in order to

eliminate any vertical torque that could cause the spar to tilt. A 200

33

Figure 4. Spar buoy mooring used for radar reflectors and WEATHERPAK

kilogram external ballast weight was attached to the bottom of the
spar to ensure that the attitude of the buoy would remain within 10
degrees of vertical.

Directional wave information was measured using a Datawell
Directional Waverider. This is a spherical 90 cm diameter buoy which
measures wave height, wave direction, and wave period. The buoy
transmits the collected data together with some processed data to a
shore-based computer receiving station. The complete wave monitoring
system consisted of the directional wave buoy equipped with data
telemetry transmitter, the data receiver, and an IBM compatible
computer for data logging and system control. The directional
waverider was moored at the site using a reliable mooring system
whose design has evolved over several years of offshore use (Figure 5).

The directional waverider measures translations caused by
wave motion. All calculations to determine the motions in fixed
coordinate directions (north, west, and vertical) are done onboard the
buoy. The determinations of spectral and directional data from the
time history of the translational data are also computed onboard the
waverider. Every 30 minutes, fast fourier transforms of 8 serics of 256
data points (200 seconds) are added to give 16 degrees of freedom on
1600 seconds of data. Every 0.78 seconds (1.28 Hz), the three
translational components and part of the most recent spectral data
summary are transmitted by the buoy. Transmission of the complete
spectral and directional data is completed in 250 seconds. During the
30 minutes between spectral analyses, translational data are stored to

determine a new spectrum.

Figure 5. Directional Waverider Mooring

36

Sea surface weather conditions were measured using a Coastal
Climate Company WEATHERPAK, a self-contained recording weather
station built to operate independently over extended periods in harsh
environments. The WEATHERPAK was installed on an Alberglen
spar buoy and moored in a similar manner to that described above for
the calibrated radar reflectors.

The WEATHERPAK is equipped with a data collection module
(DCM) which collects and processes sensor data and formats to ASCIT
code for storage and/or transmission. The suite of sensors on the Cape
Spear WEATHERPAK included an RM Young digital anemometer
measuring mean wind velocity and peak gust speeds, an air
temperature thermistor and a barometric pressure sensor. The
WEATHERPAK was also equipped with a UHF transmitter which
provided a telemetry link to the shore receiving station at the Cape
Spear radar installation. All data were also logged in the
WEATHERPAK itsell. The WEATHERPAK was programmed to
sample and transmit data every 15 minutes.

All i was mobilized for depl t on July 11, 1993

from the 20 metre steel fishing vessel ATLANTIC PRIZE. The day
before field deployment, the Alberglen spars with radar reflectors and
WEATHERPAK were individually ballasted in St. John's Harbour and
then moored alongside ATLANTIC PRIZE. Prior to sailing on July 11,
any remaining equipment was loaded, mooring systems were arranged
on deck, and instrumentation was initialized and checked using the
computerized receiving stations. Because of their awkward length and
heavy ballast, the spars were towed to the location. The wave buoy

was stored on the deck of the deployment vessel and lowered into the

37

water i diately prior to depl All i were installed by

streaming the surface buoy and mooring line away from the vessel at
the desired site and free-falling the anchor to the seabed. Weather at
the time was very good and no difficulties were experienced in
deployment. All buoys were positioned using the ship's Global
Positioning System (GPS) and were very close to their planned

ing buoy depl the outputs from the directional
waverider and the WEATHERPAK were monitored from the
deployment vessel. The computer receiving stations were. installed at
the Cape Spear radar site that evening.

All moorings were recovered on July 24, 1993, using the 20-
metre steel fishing vessel ATLANTIC SEA CLIPPER. Once again, the

waverider was stowed on deck and the spars towed to the wharf. The

ing i and s were d from the Cape
Spear radar facility on July 26, 1993.

During the field program it was observed that vessels did not
always stay within the ranges suggested by St. John's VTS and that
some vessels did indeed pass very close to the mooring area. To reduce
the chances of collision, VTS did warn most vessels operating in the
area of the buoy locations as part of routine management
communications.

A summary of the wave and weather data collected near Cape
Spear is presented here in Appendix I. The quality of data recovered
from the directional waverider was very high.

The wave data received from the buoy consisted of raw three-

dimensional accelerations along with directional spectrum and related

38

parameters computed on board the buoy. The data received at the

shore station have been sorted into daily data files.

Hs Significant Wave Height. Speciral approximation
of Hs or His, the average of the highest 1/3 waves
in a given sample. Hinis intended to be the

seastate that an experienced observer would report.

Tp Peak Period. This is the period associated with the

peak energy in the computed spectrum.

Tz Mean Wave Period.

Dir (Tp) The direction associated with the wave defined by

the peak period.

Weather data from the WEATHERPAK buoy was received reliably
until July 16 when the weather deteriorated and higher scastates
developed. From July 16 until the completion of the field program only
occasional weather data were received in real time via the UHF
telemetry link at Cape Spear. On recovery, the WEATHERPAK was
found to be completely operational with all data archived in the

instrument’s onboard memory.

5.2 NEURAL NETWORK DEVELOPMENT METHODOLOGY

The key to successful neural net development lies in the
training of the network. The dataset used for training must be of very
high quality and it must encompass the full range of scenarios the
network will be expected to perform under.

The first step in the neural network development process was to
design, develop, and test the standard backpropagation training
method as a software package. This was done in C on an HP Apollo
730 Unix workstation. The next step, because of the unique nature of
the radar data, was to design, develop, and test the required radar
image processing software package. This was done in C on a 486 DX2
66 Mhz IBM compatible PC running the Windows 3.1 operating
system. This platform was chosen for it's universal graphical user
interface. For complete software listings, see Appendix IL
Fundamental to the radar target identification application, the neural
network is required to distinguish between sea clutter, receiver noise
and the target itsell. By using the radar image processing program,
radar data samples were extracted into a format compatible with
Mathcad 4.0 where they were graphically displayed and analyzed (see
Figure 6). Based on the observed spatial nature of the radar target
signature together with the desire to minimize the neural network
complexity, the spatial size of the data sample window was chosen to
be 2 to 3 pixels greater in each dimension (i.e., length & width) than
the physical size of the radar target return. This window size varied
with the radar pulse length as this radar system parameter changes
the spatial size of the target signal, the longer the pulse, the longer the

target will appear to be in the image sample. The temporal size of the

40

Figure 6. Radar Target Embedded in Sea Clutter

41

radar data sample was arrived at as a function of the coherent nature
of the target, (i.e., the more scans the better), and the network
complexity together with the real physical time constraint, (ie.,
network complexity and time to get a processed image both increase as
number of radar scans increase). The network was trained using 2, 3,
and 5 scans of radar data. The objective of the neural network was to
lock on to the spatial and temporal signature of the target embedded
in sea clutter and receiver noise. This is possible since it is known that
the radar target signature is statistically different from sea clutter
and/or receiver noise on their own. In order to have the neural network
absorb the physical nature of the radar target, a synthetic idealized
radar target model was developed and used in the training phase. The
synthetic target was constructed so that spatially it closely
approximated what would be received by the radar system if it were to
encounter a near perfect target return using a receiver with a zero
noise figure and from a sea surface generating zero radar return
(Figure 7). For each of the six datasets extracted the neural network
was trained using a sample dataset consisting of 40 clutter plus noise
samples, 5 receiver noise samples, and 1 synthetic idealized target
model. The 40 clutter plus noise samples used in each case were taken
from a dataset having a numerically similar mean wind speed and
significant wave height as the datasets that would be used in the test
and verification mode. The 5 receiver noise samples were taken from a
dataset having a mean wind speed of zero metres per second and a
significant wave height of zero metres. A three layer neural network
architecture was used. The input layer size is determined by the size of

the input data sample. The desired response in this case is a simple

42

sy

Figure 7. Synthetic Radar Target

detect/nodetect which translates directly into a single output neuron
taking on values hounded between O - nodetect and 1- detect. This
output value may be iterpreted as the probability that there exists
target information in a sample being tested by the network., The
middle or hidden layer size, is in fact, a more complex issue. It has
been suggested that the hidden layer contain at least one neuron per
training pattern (Reed, 1993). For this application it was found that a
hidden layer containing between one and two neurons per training
pattern yielded the highest degree of generalization. The actual
oplimum number of hidden layer nodes was arrived at by using a
process of connection reduction or pruning. Each network was trained
using a very large number of hidden layer nodes, relative to the
number of training patterns, and then nodes were removed until the
network performance started to degrade. At the degradation point the
number of hidden layer nodes were increased until the networks
performance stabilized.

All networks were trained with an optimization step size
(learning-rate) of 0.55 and steepness coefficient of 0.10. The hidden
layer size in all cases was found to be optimum at 4 neurons plus the
number of training patterns (50 neurons). In the case of the long pulse
data the optimum neural network had an input layer consisting of 300
neurons, a hidden layer of 50 neurons, and an output layer containing
a single neuron. The training time in this case was 3 hours of
processing time on a workstation capable of 80 million instructions per

second.

6.0 RESULTS AND DISCUSSION

Six datasets were analyzed in the test and verification phase,
The data analyzed in the testing phase were not used in the training
phase although the trained networks were tested on data gathered
during similar environmental conditions. In other words, a neural
network was developed for a specific range of environmental
conditions. It was found that if the network was trained on high sea
state data that it performed well on data collected under similar
conditions, plus, it performed well or generalized itself to data
collected under much lower sea states.

The test and verification results have been summarized into a
standard format used in the radar data analysis field. That is, the
performance of the neural network together with that of the scan to
scan techniqgue has been plotted as "Targets Detected/Targets
Available" .vs. "Average False Alarms”. The y-axis is the number of
targets successfully identified L the technique divided by the number
of targets available for detection averaged over the number of scans of
radar data analyzed. The x-axis is the number of false alarms per scan
of radar data averaged over the number of scans of data analyzed.
Thus, for example, one would expect the detection rate to improve with
a greater number of false alarms. In this display format an ideally
performing radar would show a single point in the top left hand corner

of the plot indicating a probability of d ion of one, while ok

zero false alarms.
The noise data (dataset 1) when processed showed that the
neural net technique was only marginally better than the standard

scan to scan processing. However, both techniques performed very well

45

in this case. This is due largely to fact that the receiver noise is not
strong enough to obscure the targets from detection, regardless of
which processing technique is being used, as can be seen in Figure 8.

The performance summary for the second dataset , a medium
clutter dataset, shows that at the network's best it outperforms the
scan to scan processing. The performance gain is in the form of a
reduction of average number of false alarms per scan. It can be seen
from Figure 9 that at the peak of detection for the neural network that
it is presenting a false alarm figure of about 0.30 on average per scan.
By comparison, at the same detection level, the scan to scan technique
presents a false alarm figure five times greater. The baseline curve
indicating one scan of integrated data is the result for no processing at
all, itis included as a reference curve.

The third dataset contains higher magnitude sea clutter with
the significant wave height equal to 3.0 metres and the mean wind
speed at 13.5 metres per second. It can be seen in Figure 10 that for

both processors the ability to find targets in sea clutter is diminishing.

However, the neural network d ates a signi imp

over the conventional processor. The neural net using 5 scans of data
at the 50% detection level achieves a false alarm figure of
approximately 8 false alarms per scan. The scan to scan technique
using the same number of scans of data and at the same 50% detection
level shows a false alarm figure greater than 18 false alarms on
average per scan. In fact, the scan to scan processor only comes close to
the performance of the neural net if it is allowed to operate on almost

twice as long a time series of radar data. Again, the baseline curve

46

0om

ummary Dataset 1
s, Hs =

Performance S
Lang Pulss, Ws = 0

~a o NGQWTON O
o 06 oo o6 o o
eiqeleAy sjabie)/peioalaq siebie)

35 4 45 5

115 2 25 3
Average False Alarms

05

47

Performance Summary Datasei 2
Long Pulsa, Ws =5.0 m/s, Hs =

0 05 1 15 2 25 3 35 4 45 5
Average False Alarms

ummary Dataset 3

Si
Long Puise, Ws = 13.5 ms, Hs =30m

Performance

B 20

4 8 8 10 12 14 16
Average False Alarms

2

B
B o I I A A A

e|qejieay sjabie/pajosiaq siebie),

49

indicating one scan of integrated data is the result for no processing at
all, it is included as a reference curve.

The fourth dataset represents the highest sea state for which
data was collected with the radar set to long pulse. The significant
wave height for this data was 3.6 metres and the mean wind speed
was 14.0 metres per second. There is a further degradation of

performance in both processors as would be expected. However, once

again, the neural processor o the ional techni
(see Figure 11). In this particular case the scan to scan processor using
16 sc-ns of data can only equal the performance of the neural net
using 2 scans of data. In fact, the networks performance using 5 scans
of data is never approached by the conventional processor even if it is
allowed to consume more than 3 times as much time series data.

The fifth dataset was collected during the same environmental
conditions as the fourth except that the data were collected with the
radar set to medium pulse. With the radar set to medium pulse it can
be seen (Figure 12) that the overall ability to find target information
out of the sea clutter is improved. In this case, the neural technique
shows only very marginal improvement over the scan to scan
processor. At the 50% detection level the neural processor presents a
false alarm figure of 8 on average per scan while the scan to scan
processor shows a figure of 9 on average per scan. This may be due to
the fact that the synthetic target used in training for the medium
pulse data was optimized for the long pulse setting of the radar. Time
constraints prevented the optimization for the medium pulse setting.

The sixth dataset was collected during the same environmental

conditions as the fourth and fifth except that the data were collected

=36m
16 18 20

. Ws = 14.0 mis, Hs
10 12 14
Average False Alarms

8

6

Performance Summary Dataset 4
Long Pul =14,

4

2

38800 8o a
m_n_m__m>< sjabie poloalaq siebie)

Targets Detected/Targets Available
oo o000 00
cZRNGRmel®b ~

Performance Summary Dataset §
Medium Pulse, Ws = 14 m/s, Hs = 3.6 m

nets

scan5

3 12 14 16 18 20
Average False Alarms

with the radar set to short pulse. It can be seen (Figure 13) that the
overall ability to extract target information out of the sea clutter is
further improved, and once again the neural technique shows a
significant improvement over the scan to scan processor. At the 50%
detection level the neural processor presents a false alarm figure of 2.5
on average per scan while the scan to scan technique shows a false
alarm figure which is more than double that of the network.

The only real limitation to the i ion of the artificial

neural network technique is the processing power that it requires. A
complete scan of radar data would occupy 1024 pixels by 1024 lines by
8 bits. In order to apply the neural network in its current form it must
be scanned over the entire image stepping one pixel at a time. This
means that for a neural net which uses the 6 pixel by 10 linc by 5 scan
data array, it would have to execute 1018 x 1014 times and each time
it would have to process 15,050 connections. The total number of
connections that would have to be made is 15,535,392,600 in order to

process the entire 5 scan set of data for one scan of output. This huge

number of required ions could not practically be i
in real-time using an artificial neural network. However, it is possible
using a real analog neural network. The Intel 80170NX (ETANN) is a
silicon chip level implementation of a 64 neuron, 10240 synapse necural
network (Figure 14). The chip has a data propagation delay of at most
3 microseconds. The chip can simultaneously compule the dot product
of a 64 element analog input vector with a 64 by 64 synaptic array,
which corresponds to a processing rate in excess of 1.3 billion
interconnections per second. The ETANN can also be used in a multi-

chip configuration. In fact, the ETANN is available in a board level

53

Performance Summary Dataset 6
Short Pulsa, Ws = 14 m/s, Hs = 3.6 m

Targets Detected/Targets Available

6 14 16 18
Average False Alarms

nets

scan5

ao17oNx CPEHGHTAL

Figure 14. Chip Layout for Intel 80170NX Neural Processor

implementation from Intel. The Intel multi-chip prototyping board
(EMB) is a hardware system designed for rapid prototyping of large
high speed neural networks. The board may accommodate up to 8
ETANN chips and provides an IBM PC AT interface card. Similar to
biological systems the analog ETANN chip suffers from component to

variations and relatively low ision. However, the chip

can be trained successfully. The chip-in-loop (CIL) concept was
developed and demonstrated on the ETANN chip (Tam, Gupta, Castro,
and Hollar, 1990). Using this approach the ETANN outputs are loaded
back to the training simulator to determine the optimum weight
updates. The standard training method then integrates any
imperfections or minor defects that may be present on the chip into the
neural network weight architecture, which then becomes specific to

that particular ETANN chip or set of chips. This concept has been

ded to the multi-chip i where differences from chip to
chip may exist (Tam, Hollar, Brauch, Pine, Peterson, Anderson, and
Deiss, 1992). In order to implement the neural network developed
here, which is a 300-50-1 network, it is convenient to adopt an
architecture which uses a single ETANN per window of radar data (i.e.
60 neurons per ETANN) together with another ETANN used to merge
the neural signals (Figure 15). This 6 chip network would have a

capacity of approxi: ly 7.8 billion ions per second. The time
required to obtain a new full scan of radar data is about 2.3 seconds,
depending on the radar scanner speed. Therefore, this implementation
of the network could easily accommodate the 15.5 billion connection

real-time requirement, In fact, in the 2.3 seconds it takes the scanner

Target Detector Neural Network
As Implemented on Intel's 80170NX

60 Inputs S8inputs . 60 Inputs 60 inputs 60 inputs.

B e | B |]

1 sutput neuron

Fgure 15

to complete a single rotation, this network has a capacity of almost 18

billion connections.

58

7.0 CONCLUSIONS

A set of neural network synaptic architectures have been
developed and applied to the marine radar small target detection
problem. The neural network technique has been compared to the
conventional processing method of scan to scan integration with
results which favor the neural processing. The neural net clearly
equals or outperforms the conventional method on all datasets
analyzed. A strategy for the realization of a neural radar, with
superior detection ability in the ocean environment, has been
presented.

Data from four different days have been used to train and test
the neural network, covering the full range of wind and wave heighis

encountered. The results of the analysis indicate:

1. A neural network is capable of providing performance that is at

least as good as, scan to scan integration, one of the more powerful

| processing i If the neural net scanning window
is optimized for the pulse length being used the performance is much

better.

2. It appears that when the network is trained on the higher sea
state data it is capable of generalizing to lower sea states. The reverse
is not the case. It is not known at this point if one network will be

adequate for the full range of sea states to be encountered by a radar.

3. Comparison of results from different radar pulse lengths
indicates that it may be necessary to train the network for a particular

set of radar parameters.

A neural network shows great promise in the application of
radar target detection. In order to proceed with further development it

is necessary to review the potential of the neural network to provide

some benefit over ional pi i hnil These benefits
may be in cost, performance or versatility. The results of this study
indicate that performance and versatility may be key benefits of the
neural network. The implementation cost of the present neural
network today is in the order of $10,000 to $20,000. However, there is
great potential for lower costs in the next couple of years. The
performance improvements that have been demonstrated are
significant in that these represent cases that may not yet be optimized

for radar and envir I condition. Even if the results

presented are the best that may be achieved by the metwork it is
important to note that it performs as good as or better than one of the

most ful ional hni ilable, scan to scan

integration. The added benefit of the network architecture chosen is
that it may provide built-in capability to handle moving targets. This
ability in itself could justify the use of the network over other
techniques. Present signal processors must carefully align consecutive
radar scans before performing scan to scan processing. When the
radar is moving this requires that the radar data be converted to a
cartesian grid and realigned using vessel position data. This process

requires complex hardware and is subject to some losses. If the target

60

is moving then the number of scans that can be processed will be
limited by target speed. On the other hand, the inherent parallel
processing nature of the neural network may permit, the use of the
data without realignment and because the network essentially
processes the data in all directions at once it should be able to handle
moving targets.

A neural network processor for radar target detection may not
fit into the traditional concept of the radar display, which is also
required for navigation proposes. This may limit the neural processors
market to applications that require improved target detection

fc that 1 the bi

of the igation or

vessel traffic services radar, The neural processor embodies all the
features required in a high performance tracking radar system and as
a result it would be appropriate for vessels and systems requiring the
ability to detect and track many targets.

In effect the neural radar concept would be to provide a target

detection engine for use with more traditional radar display designs.

61

REFERENCES

Amari, S. I. 1990. "Mathematical Foundations of
Neurocomputing,” IEEE Proc. 78(9): 1443-1463.

Dawe, D. and D. Bryant, 1987. "Search and Rescue Detection
Experiment". Prepared for Transport Canada.

Fahlman, S. E. and C. Lebiere, 1991. "The Cascade-Correlation
Learning Architecture”, in D. S. Touretzky (ed.),
Ad in Neural T i ing Syst
Morgan Kaufmann.,

2,

Gibson, G. J. and C. Cowan, 1990. "On the Decision Regions of
Multilayer Perceptrons,” IEEE Proc. 78(10): 1590-1594.

Grossberg, S. 1982. Studies of Mind and Brain: Neural
Principles of Learning Perception, Development,
Cognition, and Motor Control. Boston: Reidell Press.

Hebb, D. 0. 1949. The Organization of Behavior, a
Neuropsychological Theory. New York: John Wiley.

Hechi-Nielsen, R. 1987. "Counterpropagation Networks,"
Appl. Opt. 26(23): 4979-4984.

Kohonen,T. 1984. Self-Organization and Associative
Memory. Berlin: Springer Verlag.

McClelland, T. L., D. E. Rumelhart, and the PDP k
Group. 1986. Parallel Distributed Processing.
Cambridge: The MIT Press.

Minsky, M. and S. Papert, 1969. Perceptrons. Cambridge,
Mass.: MIT Press.

Reed, R., 1993. "Pruning Algorithms - A Survey," IEEE Trans.
Neural Networks, 4(5): 740-747.

bl F. 1958. "The P : A Probabilistic Model
for Infc ion Storage and O ization in the Brain,"
Psych. Rev. 65: 386-408.

Ryan, J., 1992, "Iceberg Detection Using Microwave Radar".

Ryan, J., 1990. "Modelling Radar Sea Clutter". Prepared for
Defence Research } Ottawa, Dq ber 1990,
SSC Contract W7714-9-9257/01-ST.

Tam, S. and M. Hollar, Brauch, Pine, Peterson, Anderson, and
Deiss, 1992. "A Reconﬁgurable Multi- Ch|p Analog Neural
Network; R i and Back-Pi Training",
Intel Corporation.

Tam, S. and B. Gupta, H. Castro, M. Holler, 1990. "Learning on
an Analog VLSI Neural Network Chip", Proceedings of
the 1990 IEEE International Conference on Systems,
Man & Cybernetics.

Werbos, P. J. 1974. "Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences,”
Doctoral Dissertation, Appl. Math., Harvard University,
Mass.

Widrow, B. 1962. "Generalization and Information Storage
in Networks of Adaline 'Neurons'," in Self-organizing
Systems. M. C. Jovitz, G. T. Jacobi, and G. Goldstein.
eds., Washington, D.C.: Spartan Books, 435-461.

Zurada, J. 1992. Artificial Neural Systems. St. Paul, MN: West.
Publishing Company.

63

BIBLIOGRAPHY

Burden, R. and J. D. Faires, A. C. Reynolds, 1981. Numerical
Analysis. Boston Mass.: Prindle Weber and Schmidt.

Holler, M. and S. Tam, H. Castro, R. Benson, 1989. "An
Electrically Trainable Artificial Neural Network
(ETANN) with 10240 'Floating Gate' Synapses",
International Joint Conference on Neural Networks,
Washington, D.C.

Intel Corporation, June 1991.Experimental 80170NX data
sheel.

Skolnik, M. 1990. Radar Handbook, Second Edition. McGraw
Hill Publishing Company.

Appendix [

Environmental Data

The Directional Waverider Buoy record format is as follows:

Rec¢ord 1 Description
Position |
H
1 - 25 | Unused.
26 - 33. | Date of data sample collection, stored in YYYyMMDD

format.
34 - 39 | Time of day data sample collected, stored in HEMMSS
G format. All times expressed in UTC.

40 - 46 | Wave Height =- Hmo. (m)

47 - 53 | Wave Peried =~ Tz. (sec)

54 - 60 | Direction Associated with the Peak Wave Pericd.
(Degrees True)

61 - 67 | Peak Wave Period - Tp. (sec)

68 - 132 | Unused

UAYE WEIGHT

g PERICD

PERK PERIDY

CHes) 2

o s

To1s

SITE TIAWE: SIGMA RADAR GROUND TRUTIING CALIBRATED, QUALITY CONTROLLED

LATITUDE: 47" 32" 43" 1
LONGITUDE: 52° 33 31"
WMSTRUMENT 1D: 30004 /16 TYPL: DIRCCTIONAL WAVLRIDER BUOY
DELTA T: 30 min

Prepored by Seaconsull Limited
9.36 AUG 6, 1993

“
T T T v T T T T T T

10
T T T T v T T T T

0
T T T T T v T v T T

67

CALIBRATED, QUALITY CONTROLLED

33 srw
004/16 1Y

Prepored by Seaconsull Limiled
9:J6 AUG B, 1993

DIRECTIONAL WAVERIDLR BUOY

m{“) (TR TITE S A

:
m m ; ‘/\S.l\»\f)?i‘f\i.\.{,f\}. e N
E5 L M] g !
mn \...,.zi_,._.s_\w s e el .
% e v (Bl il e SR | 23 L) 25 S | IR] 29 ' a0 ETHREY) 4

JuLY 1993

68

The WEATHERPAX 100 weather station record format is as follows:

Record .| Description
Position |
1
1~ 25¢ Gnused.
26 - 33} Date of data sample collaction, stored in YYvviomop
Zormat.
34 - 39 | Tize of day data sample collected, stored in HEMMSS
format. All times are UTC.
40 - 46 | Air Temperature (°C).
47 - 53 | Mean Sea Lavel Pressure (abar).
54 - 60 | Maxinum Wind Speed, Gust. (m/s).
61 - 67 | i tion. (Degrses True).
63 - 74 | Mean Wind Speed. (3:/s).
75 - 81| N-S component of the Mean wind speed and direction,
(a/s).
82 - 83 | I-W compenent of the Mean wind speed and direction,
(a/s) .
89 - 95 | gma Theta, Standard deviation of the Wind
rection (°).
9G - 102 | tTher statiocn battery pcwer (Volts).
103 - 109 | al temperature (°C).
110 - 123 |
124 = 132 |

69

SIE MAME: SIGMA RADAR GROUND TRUTIINIG CALBRATED, QUALITY CONTROLLED
LATITUDE: 47 32' 43" 11

LONGITUDE: 52° 33 31w ?n%i- by Seaconsull Limited
TEIGHT ABOVE SEA LEVLL: 4 iy 15:34 AUG™ 5, 1983

METER I 207716 METER TYPE: WEATHERPAK=100

DELTA T: 15 min g

PO ST T O 10N O SO W TN TV, R LY JOU I | e (o T) L1
g%] == A
1os [
mm j _— :
ﬂ :. T T) T T I T T) T T T T T t
e | I
W B Vi ¥

1 T Tz T T Tas huic

70

PAI-=100

4

CAUBRATED, QUALITY CONTROLLED
IV .u_n.!_ by Seaconsull Limiled

AUG' 5, 1993

..g...:..a

JULY 1993

' R — ﬁ
enstin |
TN o o N
o .”,>, NN ﬁ

ET V[

SITE HAME: SIGHA RADAR GROUIID TRUTIIG
tATiuoe: Carl 3T AN

LOMGITUDE: 33 31
HEIGHT >ma<w m A LEVE
METER ID: 207/16 METER TYPE: WEATIERPAK-100
DELTA T: 15 min

CALIBRATED, QUALITY CONTROLLED

D\lhcm.ﬂﬂ rl—_vs-—-&
ki Aug” &,7683™ “

L 23 -3 1 44 S .1 61 73 04 9110 1 112 1 19 1 |
B, FIRYTW Y. IR
A paame i (T
e —— —
11 _
B A,
H
g o i
- —— ——r—t e
Ui
R R I AL T B TR TR TR LT T (o

72

e U SIGUA FADAR GROUHD TRUTIRIG CALIBRATED, QUALITY CONTROLLED

Prepared by Seoconsull Limited
15:04_ AUG™ 6, 1993
: WEATHECRPAK =100

a2 28 L

ey M \\;?;_: .

.mm : ~ I _E.,;_._.\E .&écé WEEETEEEE L
- ~ " Iy : M A |
3] LTV i_{){\ (W

" ...m

mm W_,,T_\hr’\?:sk ,iz%:}\ x_i r_

LI T T i T T T N T e S U T e “urc

JULY 1993

Appendix 11

Software Listings

74

/*Program Neural Engine*/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <float.h>

#define BYTE unsigned char
#define gl_ndim 1

#define gl_isign 1

#define Num_waves 4

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr
#include "netparm.000”

float WWINN-M+N+1]INN+1};

float fowwl(NN-M)+N+11INN+1j;

float ILSIZ|complex_datal2*(M+ D1;
float yhat!N+1lmyhatl TVART+ 1IN+ 11;
float datal TVART+1IM+1],maxval;
float desirol TVART+1IIN+1;

float normax{M+1],normax_result/N+1J;

unsigned int ythrIN+11,nndlgl_ndim+1];
/lwavelet transform
typedef struct {
int ncof,ioffjoff;
float *cc,*er;
| wavefilt;
wavefilt wiilt;

#define NRANSI
#include "nrutil.h"

void pwt(float al], unsigned long n, int isign)
(

float ai,ail,wksplMI;
unsigned long i,iij,jf,jr,k,n1,ni,nj,nh,nmod;

if (n <4) return;

nmod=wfilt.ncof*n;

nji+=2,ii+4) (
nmod+wfilt.ioff;
nj=i+nmod+wiilt.joff;
for (1 =wiilt.ncofik++) |
jf=n1 & (nivk);
jr=nl & (nj+k);
wkspliil +_ whilt. celkl*aljf+1l;

75

nj=i+nmod+wiilt joff:
for (k=Lk<=wiilt.ncofik-++) [
(n1 & (ni+k)+1;

1 & (njtk)+1;
whspljf += whilt.colkl*ai;
wksplr] += wfilt.crik *ail;

i
for (j=13j

j<=n;j++) aljl=wkspljl;
i
#undef NRANSI
void wt1(float al |, unsigned long n, int isign,
void (*wtx)(float |1, unsigned long, int))
{
unsigned long nn;
if (n <4) return;
if Cisign >= 0 (
for (nn=n;nn>=4;nn>>=1) (wtx)(a,an,isign);
| else
for (nn=4;nn<=n;nn<<=1) (*wtx)(a,nn,isign);

) 4
)
//end wavelet

void Load_Complex_Data(int t)
{

int index=

M;is+)|

complex_datalindex| = dataltllil;
complex_datalindex+1] = 0.0;
index = index + 2;

for (i=lji<=Mis+)|

complex_datalindex| = dataltl[il;
index = index + 1;

i
float sq(float 2)
(

return (z*2);
)

void complex_abs_val(int t)
(

j<=Mij++)
dataltlij] = abs(complex_dataljb;

void fftn(float datafft[],int nnlLint ndim,int isign)
(

int i1,i2,i3,12rev,i3vev,ip1,ip2,ip3,ifp 1,ifp2;
int i lim k1,k2,n,nprev,nrem,ntot;
float tempi,tempr;

double theta,wxi;

double wpi,wpr,wr,wtemp;

ntot = 1;

for (idim=1;idim<=ndim;idim++)
ntot *= nnfidiml;

nprev = 1;
for (idim=ndim;idim>=1idim--)
n = nnlidim};
nrem = ntot{n*nprev);
ipl = nprev<< 1;
ip2=ipl*n;
ip3 = ip2*nrem;
iorev=1;
for (i2:

2<=ip2;i2e=ipl)l
if 2 < 2rev)l

=i2rev +i3-i2;
SWAP(datafft|i3],datafftidrev]);
SWAP(datafftlid+1],datafMllidrev+11);

> 1;
wl-nle nh-z >=ipl && i2rev > ibit)(
t

i2rev -= ibil
ibit>>=1;
I
i2rev += ibit;
I
ifp1 = ipl;

tempr = wr * dnmﬁllkZl wxi i dammlk2+1],
tempi = wr * datafft/k2+1] + wxi * dataff/k2];
datafitik2| = datafftik1] - tempr;
datafftik2+1] = datafftik1+1] - tempi;
datafftik1] += tempr;
datafft{k1+1] += tempi;
1
1)
wr=(wtemp=wr)*wpr-wxi*wpi+wr;
Wxi=wxi*wpr+wtemp*wpi+wxi;

i
ifpl = ifp2;
|

nprev *=n;
Il
void readdata()
t

char fname| TVART+11(80];

FILE *1,*2,*f3,*fe;

int Pixel,Line,ig,t;

unsigned longint len,ct

char file|801,datel80], hmelﬂﬂl,smtelﬂ()l ,flypel801,templ| 801;
char infill 701;

12 = fopen(”result.dat
3 = fopen("train. fil

for (t=1it<=TVART;(++)
l

%

fscanfif3,"%s",infil);
1= fopentinfil, r");

/*read the header*/

(gets(file,65,01);
fgets(date,65,f1);
figets(time,65,f1);
fets(srate,65,
scanflf1,"%4d", &Pixel);
fgets(t1,61,f1);
fscanfif1,"%4d",&Line);
figets(t2,61,f1);
fgets(ftype,65,f1);
figets(temp,65,F1);

printfl"\n Reading> %s\n",infi
printfi"\n Pixels > %d",Pixel);
printfi"\n Lines > %d\n",Line);

fscanfif1,"%c" &dataltili);
count++;

1

printfl” Bytes Read into Buffer> %d\n",count):

for (i)
fscanf(f2,"%f " &desirolLI1iD;

felose(f1);

felose(f2);
felose(f3);

i

void readsignal()

1

char fnamel TVART+11180);
1,462,413, fe;

int Pixel,Line,ijt;
unsigned longint len,count;
char infill701;

")

fopen(‘result.da
£3 = fopen("train

for (t=1t<=TVART;t++)

fscanflf3,"%s",infil);

71 = fopeninfil, "),
/*read the header information*/
printfi“\n Reading> %s\n",infil);
printfi"\n Bytes > %d\n"M);
count = 0;

/* read the training pattern data */

for (i=1;i<=M;i++)

fscanflfl,
count+;

%" &dataltIfi]);
)
printf("\n Bytes Read into Buffer> %d\n",count);

1* get the result for the pattern just read in */
for (i=1;i<=Nii++)
t

fscanf(f2,"%f " &desirol tIfi

felose(f1);
I

felose(f2);
felose(f3);

1
intii(int imod)
1

return(imod-M);
I

void fxnetwork(fxyhat)
float fxyhatIN+1J;
I
it igmream;

float fxnet/TN+1];
Moat fxxITN+1[;

<=nmsia+) fixlil = 0.0;

i=Liic=n:i++) fxxli+nn| = fxyhatlil;

80

/* for i running backwards now (backpropagation) */
for (i=nn+n;i>=nn+ L;i--)
fxnetli] = frxlil*x[il*(1.0-xliD;

for (j=m+ Lij<=nmj++)
t

11j1 = fxnetlil*xljl;

for (i=nnji>=m+1;i--)

for (j=nn+1j<=nnene+)

fxxlil = fxxlil + wwlii()Ilil*fxnetljl;

fxnetlil = fxlil*xIi1*(1.0-xli);

fxwwlii(Dlljl = fxnetlil*xljl;

1

1

void network(ax,t)

int L

float axITVART+11IM+1};
1

unsigned int ij,n,nn,m;
float. net;

xlil = sxItllil;

for (i=m+ Lii<=nnji++)

81

|
net = net, + wwlii(i)IljI*xIjl;
|

xlil = 1.0/(1.0+exp(-net*LAMDA));
i

for (i=nn+Liic=nn+nji++)

0;
+ Lj<=nng++)

net = net + wwlii(i)IljI*xljl;
xlil = 1.0/A(1.0+exp(-net* LAMDA));
i
for (i=Lji<=n;i++)

yhatlil = xli+nnl;

I
int conver(ax,y,l)

int 1y TVART+1/IN+1];
float axITVART+1/IM+1];
t

it iik,tn,nn,m,tvart,conflg,check;
float Timit,ub,lb;

timit = 0.10;
0.90;

m
tvart = TVART,

for (i=m+ Ljic=nn+n;ji++)

for (j=
i (Bewwlii(i)1j] > imit)
|

k=0;
)

for (t=1;t<=tvart;t++)

network(ax,t);
check = 0;

i+

if (yhat[i] > ub)
ythriil=1;

else

l if (yhat(il < 1b)

ythrlil=0;

else

ythrlil=2;
1

iflythrli) != yltlliD
(

!
399: if((k==1) | (check == 0))
(

conflg= 1;
e
conflg = 0;
return(conflg);
)
{uid normsignal()

unsigned int t,i;
if (Norm_Var_by_Var == 1)
1

for

for
for (t=
{

5i++) normaxlil = -999999.99;
i4+-+) normax_resultlil = -099%
it<=TVART;t++)

for (i=L;i<=M;i++)
(

normaxlil = max(normaxlil,dataltllil);

i<=Mjie+)

maxval = max(maxval,dataltIfi]);

Nji++)

normax_resultli] = max(normax_result(i],desirol t][i});
I

i++) normaxli] = maxval;

An Signal MAX: %f\n",maxval);
)
|
main()
1
char fn1125],fn2125],datebufl 9] timebufl9];
int conflgsotfl,z,we;

float yITVART+1IIN+1J;

oot axITVART+1[[M+1fxyhatiN+1|Ixrate;
unsigned int n=N,nn=NN,m=M,tvart=TVART,tn=TN;
unsigned int._ij,maxpas,passnm,t,tend;

time_t 15,t6;
FILE *x,*fin1,*fin2,*fin3, find;
printfi"\n");
printf” <Optimizing neural ions please standb;

print"\n");

fin1 = fopen("neuron.dat”,"");
f:r:nnm'nl S &lxrate,&maxpas);
felose(fin1

find = fnpen(norm.000","w");

/% read the training data into memory*/
if (BinaryData ==
[

reddata();

84

\n");

(.<=’I'VART;M-+H

Load_Complex_Data(t);
lealeulate M.

fftn(complex_data,nnd zl_ndim gl_isign);
Ifcalculate power spectrum

complex_abs_val(t);

/% if FFTfla

if (FFTflag

//setun for WAVELET TRANSFORM
pwiset(Num_waves);

2 dn an WAVELET TRANSFORM on the inputs*/

for (t=1;t<=TVART;t++){
llealeulate WAVELET TRANSFORM
Load_Complex_Datalt);
wtl(complex_data,M,gl_isign,pwb);

complex_abs_valit);

1* perform normalization*/
normsignal();

for (t=1;t<=TVART;t++)
l

0.0
dataltlli/normaxlil;

axitllil = 0.0;

1) fprintfifind,"%f ",normax|il);
/* must normalize the data to be between 0.0 and 1.0 */

for (i=Lji<=nii++)

85

yltlli) = desirolti[i/normax_resultlil;
« 1) fprintfifin4,"%f ",normax_result[il);

|
1
felose(find);

srand((unsigned) time(&t5));

1=0;

for (i=m+ Li<=nnji++)
for (j=Lj<=mij++)
i

wwlii()I[j] = 2.0*rand(/32767.0-1.0;
=141

)

for (i=nn+ Lic=nn+n;i++)

[}
for (j=m+ Lj<=nnij++)
1

wwlii(i)llj] = 2.0%rand(/327617.0-1.0;
I=1+1;

)

conflg=0;

tend = TVART;

setfl = 0;

for (passnm=1;passnm<=maxpas;passnm++)

finl = fopen("neuron.dat","s");
fscanflfin1,"%f %d" &Ixrate,&maxpas);
felose(fin1);

for (t=1;t<=tend;t++)

network(ax,b);

si++) myhatltlli] = yhatlil;

fxyhatlj] = yhatljl - yltlljl;

fxnetwork(fxyhat);

for (i=m+ Lji<=nn+nji++)

86

Jesi-ljs)

z=
wwlzlljl = wwizlljHxrate*fxwwlzlljl;

1

/*enables remote monitoring of process*/

fx = fopen("monitor”,"w");
forintfifx,"\n PASS > %d ",passnm);

fprintflfx,"\n PATTERN> %d",t);

fprintff"\n");

i<=ni+) fprintff,” %" il*normax_resultlil);
fprintffx,"\n");

for (i=Lii<=n;i++) fprintf(fx," %f * yltlli*normax_resultlil);

)
fprintffx,"\n\n");
felose(fx);

/* write out current weight matrix "wwlillj|" disk file */
fn: i

W'y

we=0;
printf"\n The neural weight matrix has been created as> %s\n",n2);
fin3 = fopen(fn2,"w");

for (i=m+ Ljic=nn;i++)
(

for (j=1j<=m;j++)
! e+
fpvintfUfind,"%f ", wwlii()IljD;
)
for (i=nn+Ljic=nn+n;i++)

for (j=m+ Lj<=nnij++)

wek;
forintffin3,

", wwlii()I[j]);

1

printf"\n Total Number of Weights is %d",wc);
fclose(fin3);

) I*END #/

88

radarimg.c*/

#include "RADARVAR.h"
#include "RADARIMG.h"

#define HB 80

#define BYTE unsigned char

#define LAMDA 0.10

#define NORM 255.0

#define SWAP(a,b) tempr=(a){a)=(b)(b)=tempr

1 defines for directional ocean wave spectra
#define xscale 1

#define yscale 1

#define tscale 1

#define Sline 64

#define Spixel 64

#define Sscans 1

#define SpecScan 1

#define MAXS 128

#define mdo 4000

#define size mdo

#define xoffset 236

#define yoffset 285

#define gl_ndim 2

#define gl_isign 1

#define INIT Spixel*Sline*Sscans*g)_ndim

float huge of5limdo+11;

BYTE huge oflagimdo+11;

float sxIMAXS];

float syIMAXS;

float sdMAXSI;

float huge af{INIT];

float huge complex_datal INIT+4;

float huge plt_datalSpixel llSline};

float huge afft,_2d|SpixellISlinel;

float k_inside,k_outside,kx,ky,xstart,ystart;
float pic, maxt, mint, tempsz;

int nm1, index = 1, index1 = 1, test_size, nnd|gl_ndim|, xxsiz, yysiz;

//for the scan-to-scan average routine

BYTE huge *pReadAvgBuffer;
HANDLE hReadAvgBuffer;
BYTE huge *pToReadAvgBuffer;
HANDLE hImageAvgBuffer;
float huge *pImageAvgBuffer;

float huge *pTolmageAvgBuffer;
unsigned int sysres, gdires, useres, memarg;
Tong int ‘memint;

DWORD memres;

89

HRGN

char
int

int GetScanMemFlag = 0, TextY;
long int sdismemx,sdismemy;

* Series evaluation */

int ImageMax, Imageli
int GraphicMax, GraphicMin;
float GraphicStep, ImageStep;
float, EvalStep;

BOOL EvalSeriesFlag = FALSE;
BOOL labelflag = FALSE;

char GraphFileTempl128];

1+ statistics */

#define TargetNumber 200
#define PixelNumber 400
#define MarkTargetNumber 6
#define MarkPixelNumber 400

itk

int CheckCoord;

int huge *pPixelRecord;
HANDLE hPixelRecord;
int huge *pPixelRecord2;
HANDLE hPixelRecord2;

1 palette stuff
ANDLE
BOOL LSE;
HPALETTE hpallmg, hpnlOld
LPLOGPALETTE IppalData;
LPBITMAPINFO IpbmInfo;

/* correlation */

int Firl, Fir2;
int huge *pAddFirRecord];
HANDLE hAddFirRecordl;
int huge *pAddFirRecord2;
HANDLE hAddFirRecord2;
int huge *pCoorelate;

HANDLE hCoorelate;

it LinesPrinted = 0, Page = 1, YLine;
long int targetsG, targetsI, temptar;
long int targetpixels;

it nFalseAlarml;
it nFalscAlarmG;

it TargetFoundl;

it TargetFoundG;

flont targetsGAvg, targetsTAvg;
float nFalseAlarmlAvg;

float nFalseAlarmGAvg;
float TargetFoundIAvg;
float TargetFoundGAvg;
char Ntarstr(50];

char Ntottar[10];

char Nfalsealarm(50];
FILE *don,*sp,*fp3,*p4;
FILE *Targetdat;

int ScanPos;

int MarkCount = 0;
int TargetNo=0;

int arraysizel6l; /* sizes of target position arrays */

ing [Mar
ini Targel

1i
int PnsSubX, PosSubY, CheckPos;
int CurrPixel;
WORD MarkX, MarkY, LowLefiX, LowLeftY;
BOOL AverageEvalFlag = FALSE;
BOOL LastBatchFlag = FALSE;
BOOL StatsHeaderFiag = FALSE;
BOOL ULflag = FALSE;
BOOL ULflaglmage = FALSE;
BOOL ThresholdAvgFlag = FALSE;
BOOL CorrelFlag = FALSE;
BOOL SpectraFlag = FALSE;
ImageTar = 0, ImageTarIndex = 0;
I‘ End of the stats */

char Decimall20];

float huge *Iptemp;

float huge *pScanWinNorm;

HANDLE hScanWinNorm;

unsigned int huge *pSeanWinCopy;

HANDLE hScanWinCopy;

long int neuron,neuronstotal,memory1,memory3,mtarpix;
int testdon;

char herex[10];

char herey[10];

char FileName[128];
char scanlabel[128];
char TempFile[1281;
char TempFile2[128];
char NextFile[128];
char PathName[128];
char OldName[128];
char OpenName[128];
char DefPath[128];
char DefSpec(13];
char DefExt(4];

char str(255];

int ExtNum;

int TextPosX;

int TextPosY;

9

it XRgn;
int YRgn;
int xhi,yhiylo;
int bytesread;
char stringl30l;

/* Global variables */

char SSizel4];

char NumberScans(4];

char NumberLayersi5);

char NumOutstri5];

char evaluation|25;

char amtnoisel20];

char amtclutter|20];

char amttarget/20l;

char Noxx[5],Lexxl5],Mexx| 51, Hexx|51,Stxxi5], Ltxx| 51, x| 51
char WindowNamel128];

int count = 0;

char classstr|201;

it pernoise,perclutter,pertarget;
int pernoisel,perclutterl pertargetl;
it pernoise2,perclutter2,pertarget?;
int GraphicSize;

i GraphicNumber, FileNumber;
Tong int memory2;

HWND hWndTarThres,hWndTarLabel hWndTarVal;
HWND hWndAvgThres,hWndAvgLabel hWndAvgVal;
int ThresholdVal = 180;

int TarVal=305;

float TarValFloat;

float_ThresholdValFloat:

FARPROC IpfnAvgThresinfo;

FARPROC IpfnTarThresInfo;

BOOL AvgDraw = FALSE;

char avgtbuffer|20];

HANDLE hHourGlass; /* handle to hourglass cursor */
HANDLE hSaveCurso /# current cursor handle */
static HCURSOR hDornieCur;

HCURSOR hArrow;

int hTile; /* file handle *

OFSTRUCT OfStruct; /¥ information from OpenFile() */
OFSTRUCT OfStruct2;

struct stat FileStatus; /* information from fatat()

BYTE huge *pTempl25};
BYTE huge *pScanBuffer|25); /* Buffer to storc each scan individually /
py

HANDLE hScanBuffer(251; /* handle to editing buffer
HANDLE hRepBuffer;

BOOL ShowAlIFlag = FALSE; /* When flag is false only target bit map is drawn */
BOOL bChanges = FALSE;

BOOL bSaveEnabled = FALSE;
BOOL bNew = TRUE;
BOOL ScanWinAlloc = FALSE;

92

BOOL GraphicFlag = FALSE;
BOOL ImageFlag = FALSE;
BOOL ImageDraw = FALSE;
BOOL Batch = FALS
BOOL First = FALSE;
BOOL BitMap0 = FALS
BOOL ClearAll;

BOOL ShowFileName = TRUE;

BOOL Updatelmage;

BOOL AvglmageFlag;

BOOL NetLoadedFlag;

BOOL Threshold;

BOOL EvalAvg = FALSE;

BOOL MarkTarget, VideoFlag=FALSE; /flag to toggle video on or off
int. BitmapCount=0;

HANDLE hDisplayBuffer|251;
BYTE huge *pDisplayBuffer(25];
BYTE huge *pToDisplay|25];
BYTE huge *ImageBufer;

int fileoffset;

HANDLE hAverageBuffer;
flont huge *pAverageBuffer;
int huge *pToAverage;

BYTE huge *pAverageByte;
HANDLE hAverageByto;
BYTE huge *pToAverageByte;

DWORD available;

BYTE huge ‘plmageAvgByte;
BYTE huge *pTolmageAvgByte;
BYTE huge *pSpecImage;
BYTE huge *pToSpecimage;
HANDLE hlmageAvgByte;
HANDLE hSpecimage;

int huge *pTolmageAvg;

BYTE huge *pTolmageByte;

H{BITMAP hBi hOIdBi
HBITMAP hRepaintBitmap, hOld|

hOldBitmapImage;

HDC hDC, hMemoryDC, StretchhDC; ~ /* handle for the display device
HANDLE hBitInfo;

LPBITMAPINFO pBitinfo;

BOOL bTrack = FALSE; /* TRUE if left button clicked */
int OrgX = 0, Org = /* original cursor position ¥/

int PrevX = 0, Prevy = 0; /¥ current cursor position */
WORDX=0,Y=0; /*last cursor position ¥/
RECT Rect; /* selection rectangle #

POINT ptCursor; /¥ x and y coordinates of cursor */

93

*

int repeat = /* repeat count of keystroke ¥/

int VectorSize, VectorDii
POINT pLPSize;

int SerX = 0, SerY=0; /* source of bitmap rectangle ¥/
int nSerX = 0, nSerY = 0;

int nScanCount;

BOOL EndRow,EndFlag;

RECT MSL

int T

int Eat,chNumber

int WinIne=1;

int PosDecrement;

/* OrgX and OrgY holds the pixel position to copy. Copy data accordin to
pixel size and number of scan lines ¥

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevinstance, LPSTR
IpszCmadLine, int nCmdShow)
(

iy
/* HANDLE hlnstance; handle for this instance "
/* HANDLE hPrevinstance; handle for possible previous instances */
/# LPSTR IpszCmdLine; long pointer to exec command line v
/#int_ nCmdShow; Show code for main window display N
S
MSGmsg; /* MSG structure to store your messages
intnRe; /* return value from Register Classos */

strepy(WindowName,”Smart Radar Display");
strepy(szAppName, "RADARIMG");
hinst = hnstance;
iftthPrevInstance)|
/¥ register window classes if first instance of application */
if ((nRe = nCwRegisterClasses() == -1){
7* registering one of the windows failed
LoadString(hInst, IDS_ERR_REGISTER_CLASS, s2String,
sizeoflszString));
MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);

+

return nRe;
]
i
/* create application's Main window '/
"hWndMain = CreateWindow(
szAppName, 7* Window
classname ¥/
WindowName, 1 Window's
title */
WS_CAPTION | /*Titleand
Min/Max ¥/

9

WS_SYSMENU | /* Add system
menu box A

WS_MINIMIZEBOX | /* Add minimize
box W

WS_MAXIMIZEBOX | /* Add maximize
hox *

WS_THICKFRAME | I* thick sizeable
frame *

WS_CLIPCHILDREN | /* don't draw in

child windows areas */

WS_OVERLAPPED |

WS_MAXIMIZE,

CW_USEDEFAULT, 0, /* Use default X,
Y “

CW_USEDEFAULT, 0, /* Use default X,
Y Y

NULL, /* Parent window's
handle ¥/

NULL, /* Default to Class Menu
"

hinst, /* Instance of window
“

NULL), /* Create struct for

WM_CREATE */

ithWndMain == NULL){
LoadString(hInst, IDS_ERR_CREATE_WINDOW, szString,
sizeoflszString));
MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
roturn IDS_ERR_CREATE_WINDOW;
|

/**¥+* Threshold Bar for the GRAPHIC window ****/

hWndTarThres = CreateWindow ("scrollbar”, NULL,
WS_CHILD |

WS_VISIBLE | WS_TABSTOP | SBS_VERT,
GetSystemMetrics(SM_CXSCREEN)-75, 65,
GetSystemMetrics(SM_CXVSCROLL), 300,

"hWndMain, 501,
hinst, NULL) ;

hWndTarLabel = CreateWindow ("static", "Neural Processor”,

WS_CHILD |
WS_VISIBLE | SS_CENTER,
GetSystemMetrics(SM_CXSCREEN)-105, 20,

85, 5,
hWndMain, 502,
hinst, NULL) ;

hWndTarVal = CreateWindow ("static", "305",
WS_CHILD |
‘WS_VISIBLE | SS_CENTER,

GetSystemMetrics(SM_CXSCREEN)-81, 380,
40,20,
hWndMain, 503,
hinst, NULL) ;

IpfnTarThresInfo = (FARPROC) GetWindowLong (hWndTarThres,
GWL_WNDPROC) ;

SetScrollRange (hWndTarThres, SB_CTL, 0, 400, FALSE) ;
SetScrollPos (hWndTarThres, SB_CTL, TarVal, FALSE) ;

/**** Threshold Bar for the AVERAGED window ****/
hWndAvgThres = CreateWindow ("scrollbar”, NULL,

WS_CHILD |
‘WS_VISIBLE | WS_TABSTOP | SBS_VERT,
GetSystemMetrics(SM_CXSCREEN)-155, 65,
GetSystemMetrics(SM_CXVSCROLL), 300,

hWndMain, 504,
hinst, NULL) ;

‘hWndAvgLabel = CreateWindow ("static", "Scan-To-Scan Integration”,

WS_CHILD |
WS_VISIBLE | SS_CENTER,
GetSystemMetries(SM_CXSCREEN)-192, 20,
90, 45,
hWndMais . 505,
hinst, NULL) ;
hWndAvgVal = CreateWindow ("static”, "180",
WS_CHILD |
WS_VISIBLE | SS_CENTER,
GetSystemMetrics(SM_CXSCREEN)-161, 380,
30, 20,

hWndMain, 506,
hinst, NULL);

IpfnAvgThresInfo = (FARPROC) GetWindowLong (hWndAvgThres,
GWL_WNDPROC) ;

SetScroliRange (hWndAvgThres, SB_CTL, 0, 255, FALSE) ;
SetScrollPos (hWndAvgThres, SB_CTL, ThresholdVal, FALSE) ;

hHourGlass = LoadCursor(NULL, IDC_WAIT);
hArrow = LoadCursor(NULL, IDC_ARROW);

96

hDonnieCur = LoadCursor(hInst,(LPSTR)"'DONNIE");
ShowWindow(hWndMain, SW_SHOWMAXIMIZED); /* display main window

by

UpdateWindow(hWndMain);
hAccel = LoadAccelerators(hlnst, szAppName);
while(GotMessage(&msg, NULL, 0, 0)) /* Until WM_Quit message %/
i
lichck system resources & memory
GetFreeSystemResources(0x0000);
GetFreeSystemResources(0x0001);

useres = GetFreeSystemResources(0x0002);
memres = GetFreeSpace(mernarg);

memint = memres/1024;

hDC = GetDC(hWndMainy,;
itoa(sysres, sstr, 10);

TextOut(hDC, 20, 425, sstr, strlen(sstr));
itoa(gdires, sstr, 10);

TextOut(hDC, 50, 425, sstr, strlen(sstr);
iton(useres, sstr, 10);

TextOut(hDC, 80, 425, sstr, strlen(sstr);
itoa((intmemint, sstr, 10);

TextOut(hDC, 110, 425, sstr, strlen(sstr));
TextOut(hDC, 465,400,'<Sensitivity Controls>",22);

ReleaseDC(hWndMain, hDC);

if (ImageDraw){
GetGraphicthWndMain);

hDC = GetDC(hWndMain);

TextOut(hDC, 8,5, FileName,strlen(FileName));
ToxtOut(hDC, 125,5,"Scan-to-Scan",12);

TextY = (Line + 19);

TextOut(hDC, 3, TextY,"Neural Processor,16);
ReleaseDC(hWndMain, hDC);

ImageDraw = FALSE;

if (AvgDraw)|
SetCursor(hHourGlass);

iftDo j
AvglmageFlag = TRUE;
AvgDraw = FALSE;

97

I}
else
AvglmageFlag = FALSE;
SetCursor(hArrow);
)

ift!TranslateAccelerator(thWndMain, hAccel, &msg)
[TranslateMessage(&msg);
DispatchMessage(&msg);
)
}

/* Do clean up before exiting from the application*/

CwUnRegisterClasses();
return msg.wParam;

} /* End of WinMain */
s “
/* Main Window Procedure *
. */

/* This procedure provides service routines for the Windows cvents ¥/
/* (messages) that Windows sends to the window, as well as the user */

/* initiated events (messages) that are generated when the user sclects a

/# the action bar and pulldown menu controls or the corresponding

/* keyboard accelerators. *

! ¥

LONG FAR PASCAL WndProc(HWND hWnd, WORD Message, WORD wParam,
LONG IParam)

(
HMENU hMenu=0; /% handle for the menu *
int nRe=0; /* return code /A

FARPROC IpProcAbout, IpOpenDlg, IpSaveAsDlg;

int Success; /¥ return value from SaveAsDig() */
int i
int nSIZE;

long int memory;
char szbuffer(101;

switch (Message)(
case WM_COMMAND:

switch (wParam)
case IDM_O_SPECTRA_ON:

hMenu = GetMenu(hWnd);

i
(CheckMenultem(hMenu,IDM_O_SPECTRA_ON,MF_UNCHECKED)

MF_UNCHECKED)|

CheckMenultem(hMenu,IDM_O_SPECTRA_ON,MF_CHECKED);
SpectraFlag = TRUE;
'

else
SpectraFlag = FALSE;

break;

case IDM_O_REPLAY_DATA:
/imust. replay radar data scans and pass each scanline on
/to the FFT function-> then the FFT result must be
displayed
//Call OpenDlg0) to get the filename

labelflag = FALSE;
strepy(DefSpec, "*.*");
IpOpenDig = MakercInstunce((FARl’ROC) OpenDlg,
hinst);
hFile=DialogBox(hInst, “Open”, hWnd, IpOpenDIg);
FreeProcInstance(lpOpenDlg);

iftthFile)
return (NULL);
Temp = WinInc;

FARPROC
IpOverlapDig;
IpOverlapDlg = MakeProcInstance(FARPROC)OverlapDlg, hinst);
nRe = DialogBox(hlnst, MAKEINTRESOURCE(820),
hWnd,IpOverlapDlig);

FrecProclnstance(lpOverlapDig);
I
if (inRe)

break;
FileNumber = WinInc;
Winlnc = Temp;
Replay_data(hWnd);
break;
case IDM_F_OPEN:
/* Call OpenDIg0) to get. the filename
v
labelflag = FALSE;

strepy(DefSpec, “*.*");
IpOpenDig = RPROC) OpenDlg, hInst);

99

hFile=DialogBox(hnst, "Open”, hWnd, IpOpenDig);
FreeProcInstance(lpOpenDIg);
ifithFile)
return (NULL);
if (GetFile(hWnd)
ImageFlag = TRUE;

break;
case IDM_T_CAPTURE:

(
FARPROC IpCaptureDlg;
IpCaptureDlg = MakePraclnstance(FARPROC)CaptureDlg, hlnst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(300),
'hWnd,IpCaptureDig);
FreeProcnstance(IpCaptureDlg);

l}
if (InRe)
break;
hDC = GetDC(hWnd);
PPSize.x = ScanSizeX;
.y = ScanSizeY;

ReleaseDC(hWnd,hDC);
break;

case IDM_T_REPAINT:

SorX = 0;
InvalidateRect (1Wnd, NULL, TRUE);
UpdateWindow(hWnd);
break;
case IDM_T_CLEARALL:
ClearAll = TRUE;
SerX
nSIZE=((nScanCount)*(Pixcl+4));
hDC=GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);
CreateC: ibleBi DC,
nSIZE,nSIZE);
hOldRepaintBitmap =
SelectObje DC, i i
PatBlt(hMemoryDC, 0, 0, nSIZE, nSIZE, WHITENES
BitBI(hDC,ScrX,ScrY, Pixel, Line, hMemoryDC, 0,
0,SRCCOPY);

yDC,
hOldRepaintBitmap);
DeleteObject(hRepaintBitmap);
DeleteDC(hMemoryDC);
ReleaseDC(hWndhDC);

SetCursor(hSaveCursor);
FreeMemory(hWnd);
ClearAll = FALSE;

break;
case IDM_T_SHOWALL:

hMenu = GetMenu(hWnd);
i (CheckMenultem(hMenu,IDM_T_SHOWALL,MF_UNCHECKED)
_UNCHECKED)|
CheckMenultem(hMenu,IDM_T_SHOWALL,MF_CHECKED);
ShowAllFlag = TRUE;
)

clse

ShowAlIFlag = FALSE;
break;

case IDM_T_AVERAGE:

SetCursor(hHourGlass);
iDoThel

AvglmageFlag = TRUE;
clse
AvglmageFlag = FALSE;
SetCursor(hArrow);
break;
case IDM_T_THRESHOLD:

hMenu = GetMenu(hWnd);

if (Check IDM_T_T OLD,MF_UNCHECKED)
MF_UNCHECKED)(
Cl IDM_T_T!)LD,MF_CHECKED);
Threshold = TRUE;
]
else
Threshold = FALSE;
break;

case IDM_T_CORRELATE:
hMenu = GetMenu(hWnd);

101

if
(CheckMenultem(hMenu,IDM_T_CORRELATE,MF_UNCHECKED)
== MF_UNCHECKED){

CheckMenultem(hMenu,IDM_T_CORRELATE,MF_CHECKED);

CorrelFing = TRUE;
1
else
CorrolFlag = FALSE;

break;

case IDM_F_SAVE:

/*1f there is no filename, use the saveas command to get
one. Otherwise, save the file using the current
filename. */

if (bNew)
goto saveas;
if (bChanges)
SaveFilehWnd);
break;
case IDM_F_SAVEAS:
saveas:

strcpy(’l‘empFlle,FdeName)

Ig, hinst);
/* Call the SaveAleg() function to get the new filename */

Success = DialogBox(hInst, "SaveAs", hWnd, IpSaveAsDig);
FreeProcInstance(lpSaveAsDlg);

if (Success == IDOK)
File(hWnd);
strepy(FileName, TompFile);

break;
case IDM_F_EXIT:
FreeMemory(hWnd);
break;
case IDM_F_ABOUTRID:
IpE = Mal About, hInst);
DialogBox(hInst, "AboutBox", hWnd,
IpProcAbout);
FreeProcInstance(lpProcAbout);
break;

102

case IDC_EDIT:

if (HIWORD (1Param)
bChanges = TRUI
return (NULL);

case IDM_N_CLICK:
hMenu = GetMenu(hWnd);
if (CheckMenultem(hMenu,IDM_N_CLICK,MF_UNCHECKED)
== MF_UNCHECKED)|
CheckMenultem(hMenu,IDM_N_CLICK,MF_CHECKED);

1
else

Click = TRUE;

Click = FALSE;
break;

case IDM_N_NETLOAD:
strepy(str,"*.*");

FARPROC IpfiNETLOADMsgProc;
IpmNETLOADMsgProc =
MakeProcInstance((FARPROCINETLOADMsgProc,hlnst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(100),
hWnd,IpfnNETLOADMsgProc);

Free TLOADM:

1
if (nRe

GraphicFlag = TRUE;
ptPSize.x = ScanSizeX;
ptPSize.y = ScanSizeY;

if (pScanWinData = NULL){
GlobalUnlock(hScanWinData);
pScanWinData = (BYTE huge

*GlobalFree(hScanWinData);
ScanWinAlloc = FALSE;

)

if (NumSeans > ScanScans){
memory = (long int)
ScanSizeX*ScanSize Y*(NumScans+1);
Jelsel

103

memory = (long int)
ScanSizeX*ScanSizeY*(ScanScans+1);
1

if (hScanWinData = GlobalAllocGMEM_MOVEABLE |
GMEM_ZEROINIT,

MessageBox(hWnd, "Memory Allocation
“Error 8.1", MB_OK | MB_ICONHAND);
break;
)

if ((pScanWinData = (BYTE huge *)GlobalLock(hScanWinData)) ==
NULL)(
MessageBox(hWnd, “Global Lock Failed.”, "Error 9", MB_OK |
MB_ICONHANDY);
break;
}
else
SeanWinAlloc = TRUE;

SetCursor(hDonnieCur);
nettst(hWnd);

break;
case IDM_N_EVALUATEIMAGE:
First = TRUE;
Evaluate(hWnd);
First = FALSE;
hRgn =
CreateRectRgn(0,20,Pixel+1,Pixel+21);
InvalidateRgn(hWnd,hRgn, TRUE);
DeleteObjectthRgn);
break;
case IDM_N_EVALAVG:

hMenu = GetMenu(hWnd);

i
(CheckMenultem(hMenu,IDM_N_EVALAVG,MF_UNCHECKED)
== MF_UNCHECKED)|

CheckMenultem(hMenu,IDM_N_EVALAVG,MF_CHECKED);
EvalAvg = TRUE;

else
EvalAvg = FALSE;

break;
case IDM_N_LOADGRAPHIC:
labelflag = TRUE;

FARPROC IpfnLOADGRAPHICMsgProc;
Ipfnl.OADGRAPHICMsgProc =
MakeProcInstance((FARPROC)LOADGRAPHICMsgProc, hlnst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(600),
hWnd,IpfnLOADGRAPHICMsgProc);

F OA HICMsg]

if (tnRe)

break;
GelGraphichWad)
GmphmF]ng TRUE;

)
GetWinCoord(hWnd);

iIGetFile(hWnd))
reak;
if
DoT i ject(hWnd
AvglmageFlag=TRUE;
else

AvglmageFlag=FALSE;

PptPSize.x = ScanSizeX;
ptPSize.y = ScanSizeY;

break;
case IDM_N_BATCH:

1pOpenDIg = MakeProcInstance((FARPROC) OpenDIg,
hinst);

hFile=DialogBox(hInst, "Open", hWnd, IpOpenDlg);
FrecProcInstance(IpOpenDig);
if (thFile)

break;

Batch = TRUE;
ShowFileName = FALSE;
Temp = Winlnc;

(
FARPROC IpOverlapDlg;

IpOverlapDig = MakeProcInstance(FARPROC)OverlapDlg,
hlast)

105

nRe = DialogBox(hinst, MAKEINTRESOURCE(810),
hWnd,IpOverlapDig);
FreeProcinstance(lpOverlapDig);

if (fnRe)

BatchNumber =
Winlne = Temp;

ji<=BatchNumberis+)|
if (GetFilehWnd))
brenk;
sprintflstring,"Processing %d of Fd:

BatchNumber);
Evaluate(hWnd);

First = FALSE;
GotNextFile(1);
strepy(FileName,
NextFile);

1
Batch = FALSI
ShowFileNam;

RUE;
break;
case IDM_N_REPLAY:
labelflag = TRUE;
strepy(str,"7722%0ut.*");

Batch=TRU
LastBatchFlag = FALSE;

|
FARPRT IpfnlLOADGRAPHICMsgPrac;
IpfnLOADGRAPHICMsgProc
=Mal "ARPROC)L 'HICMsgProc, hInst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(600),
hWnd,IpfnLOADGRAPHICMsgProc);

FreeProcinstance(lpfnLOADGRAPHICMsgProc);

if('nRe)
break;
Temp = Winlnc;
FARPROC
1pOverlapDig;
1pOverlapDig = FARPROCX
hinst);

nRe = DialogBox(hInst, MAKEINTRESOURCE(820),
hWnd,IpOverlapDig);
FreeProcInstance(IpOverlapDig);
i
if (InRe)
break;

GraphicNumber = WinInc;
Winlnc = Temp;
Replay(hWnd);
ptPSize.x = ScanSizeX;
ptPSize.y = ScanSizeY;

break;
case IDM_N_PERCENTOVERLAP:

FARPROC

IpOverlapDlg;
1pOverlapDlg =
MakeProclnstance(FARPROC)OveriapDig,hlnst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(800),

hWnd,IpOverlapDlg);
FreeProcinstance(lpOverlapDig);

]
if (InRe)

PrevY = Line+20-ScanSizeY;
/*Changed Imagesize to Line */
break;
case IDM_S_MARK:
for(i=0;i<Mark TargetNumber;i++)
for(j=0;j<MarkPixelNumbersj++)
TargetPosillj] =-1
for(i=0;i<MarkTargetNumber;i++)
for(j=0;j<MarkPixelNumberj++)
Winlilljl =-1;
nScanWindows =
nXScanWindows*nYSeanWindows;
PosSubX=SeanSizeX/2;
PosSubY=SeanSize¥/2;

Check Pos=Pixel*PosSubY+PosSubX;

107

Menu = GetMenu(hWnd);
if (CheckMenultem(hMenu,IDM_S_MARK,MF _| UNCHECKED =
MF_UNCHECKED){

CheckMenultem(hMenu,IDM_S_MARK,MF_CHECKED);

MarkTarget = FALSE;
break;

case IDM_S_GO:

if (1DoStats(hWnd))(
MessageBox(hWnd, "Stats not done.","Error",MB_OK | MB_ICONEXCLAMATION);
break;

)

if ('WriteStatsthWnd)){
MessageBox(hWnd, "Error writing Stats.", "Error",MB_OK |
MB_ICONEXCLAMATION);
break;
)

if (1SaveStashWnd))|
MessageBox(hWnd, "Error savings stats file.”, "Error’,MB_OK |
B_ICONEXCLAMATION);
broak;
|

if (pPixelRecord != NULL)(
GlobalUnlock(hPixelRecord);
pPixelRecord = GlobalFree(hPixelRecord);

if (pPixelRecord2 = NULL){

GlobalUnlock(hPixelRecord<;
i For i

break;
case IDM_S_IMAGEMAX:

ImageMax = ThresholdVal;

108

break;
case IDM_S_IMAGEMIN:
ImageMin = ThresholdVal;
break;
case IDM_S_GRAPHICMAX:
GraphicMax = TarVal;
break;
case IDM_S_GRAPHICMIN:
GraphicMin = TarVal;
break;
case IDM_S_STEPS:
Temp = WinInc;
‘FARPROC IpOverlapDlg;

IpOverlapDlg = MakeProcInstance((FARPROC)OverlapDig,
. nRe = DialogBox(hinst, MAKEINTRESOURCE(840),
hWnd,lpOverlapDlg);
FreeProcInstance(lpOverlapDlg);
-

break;
BvalStep = (float)WinIne;
Winln = Temp;

break;
case IDM_S_EVALSERIES:
strepy(str,"”

Batch=TRUE;
LastBatchFlag = FALSE;

FARPROC IpfnLOADGRAPHICMsgProc;
IpfnLOADGRAPHICMsgProc
=MakeProcInstance((FARPROC)LOADGRAPHICMsgPrac, hinst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(600),
hWnd,lpfnLOADGRAPHICMsgProo);

F fnLOADGRAPHICMsgProc);
)

if (!InRe)

break;
Temp = Winlne;

FARPROC

IpOverlapDig;
1pOverlapDig = Mal 'ROC)O 3
hinst);
nRe = DialogBox(hInst, MAKEINTRESOURCE(820),

hWnd,lpOverlapDig);

FreeProcInstance(lpOverlapDigl;

I
if (InRe)
break;
GraphicNumber = Winlnc:
Winlnc = Temp;
GraphicStep = (floatXGraphicMax-
GraphicMin/EvalStep;

‘TarVal = GraphicMax;
TarValFloat = (float)TarVal;
‘ThresholdVal = ImageMin;
loat = (float 1dval;
EvalSeriesFlog = TRUE;

femp, P d
for (i=0ii<=EvalStepii++)l

SetScrollPosthWndTarThres,SB_CTL,TarVal, TRUE);

b gThres,SB_CTL | TRUE);
itoa (TarVal, szhuffer,
105
SetWindowText
(hWndTarVal,szbuffer);
itoa (ThresholdVal, avgtbufTer,
105
SetWindowText
(hWndAvgVal,avgthuffer);
strepy(GraphFileName,
GraphFileTemp);

if (TarVal>=GraphicMin &&
ThresholdVal<=ImageMax)
ReplayhWndj;
TarValFloat = TarValFloat-
GraphicStep;
TarVal =
(int)TarValFloat;
ThresholdValFloat =
ThresholdValFloat+ImageStep;
ThresholdVal = (int)ThresholdVal Float;

EvalSeriesFlag = FALSE;
SummarizeData("stats.da

110

pPSize.
ptPSize.

= ScanSizeX;
=ScanSizeY;

break;

efault:
return DefWindowProchWnd, Message, wParam,
IParam);

I
break; /*End of WM_COMMAND *

case WM_CREATE:
/* The WM_CREATE message is sent once toa window when

the #
7% window is created. The window procedure for the new
window */
/#* receives this message after the window is created, but
]
/* before the window becomes visible. *
NumSeans = 5;
ScanSizeX = 9;
SeanSizeY = 9;
pLPSize.x = ScanSizeX;

pLPSize.y = ScanSizeY;

hMenu = GetMenu(hWnd);
EnableMenultem(hMenu, 0, MF_BYPOSITION);

break; /* End of WM_CREATE *
case WM_MOVE: /* code for moving the window K
break;
case WM_SIZE: /* code for sizing client area b
break; /*End of WM_SIZE 4

case WM_VSCROLL:
=GetWindowWord (HIWORD (1Param), GWW_ID) ;
if (

switch (wParam)
{

case SB_PAGEDOWN :
TarVal += 10 ;

case SB_LINEDOWN :

R0

‘TarVal = min (400, TarVal + 1);
break;

nse SB_PAGEUP:
TarVal-= 10;

case SB_LINEUP:
TarVal = max (0, TarVal - 1);
break ;

case SB_BOTTOM :
TarVal = 400 ;
break ;

case SB_THUMBPOSITION :
case SB_THUMBTRACK :
TarVal = LOWORD (IParam) ;

break ;

default :
break ;
1

SetScrollPos (hWndTarThres, SB. CTL. TarVal, TRUE) ;
(TarVal, szbufTer, 10);
Sev.vrnduw’rexl.
(hWndTarVal,szbuffer);
ImageDraw = TRUE;
I

else(
switch (wParam)

case SB_PAGEDOWN :
ThresholdVal +=

case SB_LINEDOWN :
ThresholdVal = min (255, ThresholdVal + 1);
break ;

case SB_PAGEUP :
ThresholdVal -= 10 ;

case SB_LINEUP:
ThresholdVal = max (0, ThresholdVal - 1) ;
break ;

case SB_TOP:
‘ThresholdVal = 0

mn

break ;

case SB_BOTTOM :
ThresholdVal = 255 ;
break ;

case SB_THUMBPOSITION :
case SB_THUMBTRACK :
ThresholdVal = LOWORD (IParam) ;

break ;
default :
break ;
)
etSer (hWndAvgThres, SB_CTL, , TRUE) ;
itoa (ThresholdVal, avgtbuffer, 10);
i Text gV

AvgDraw = TRUE;
)
return 0;
case WM_LBUTTONDOWN:
iN(tmageFlag | | Updatelmage) && MarkTarget)

if (MarkTarget)|
MarkX = LOWORD(IParam);
MarkY = HIWORD(IParam);
/* changed Imagesize to pixel and line */
if (MarkX>Pixel | | MarkY<20 | | MarkY>Line+20){
MarkCount=0;
return 1;

|
MarkCount++;

if (MarkCount == 1){
LowLeftX = MarkX;
LowLeftY = MarkY;
return 1;

else(
MarkCount = 0;
hDC = GetDC(hWnd);
MoveTo(hDC, LowLeftX, LowLeftY);
LineTo(hDC, MarkX, LowLeftY);
LineTo(hDC, MarkX, MarkY);
LineTo(hDC, LowLeftX, MarkY);
LineTo(hDC, LowLeftX, LowLeftY);

13

hinst);

ReleaseDC(hWnd, hDC);
test_size = (MarkX-LowLeftX)*(Mark Y-LowLeftY);

ifitest_size > MarkPixelNumber)|
MessageBox(hWnd, "Target Area is Too Large”,
"Try again",MB_OK | MB_ICONEXCLAMATION);
break:
)

|
FARPROC IpMarkDig;

nRe = DialogBox(hInst, MAKEINTRESOURCE(830), hWnd,

IpMarkDlg);

FALSE;

FreeProcinstance(lpMarkDlg);
1

illnRe)
MarkTarget =

return 1;
1

PrevX = LOWORD(IParam);
PrevY = HIWORD(1Param);

if ((wParam & MK_SHIFT)){
OrgX = LOWORD(IParam);
OrgY = HIWORD(IParam);
)

/* Get the current mouse position */
OrgX += ptPSize.x;
OrgY += ptPSize.y:

/* changed Imagesize to pixel and line */
if (OrgX>Pixel | | Org¥<20+ScanSizeY | | Org¥>Line+20)
by

reak;

hDC = GetDC(hWnd);
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);
ReleaseDC(hWnd, hDC);

fileoffset = (Line+SerY-OrgY)*Pixel + (OrgX-ScanSizeX);

/* changed Imagesize to pixel and line */

iAvgimageFlag)
SerX =2*(Pixel+20);

114

else
SerX = Pixel+20;
SerY = 20;

ift!PunchThru(hWnd))
break;

ak;
if (!Click)

reak;
StoreScanWin(fileoffse, hWnd);
blocktst();
WritelmageClass();
DisplayText(hWnd);

break;
case WM_MOUSEMOVE:

RECT rectClient;
int NextX;
int NextY;

if (bTrack)
NextX = LOWORD(IParam);

NextY = HIWORD(IParam);

7+ Do not draw outside the window's client area */

GetClientRect (hWnd, &rectClient);
if (NextX < rectClient.left)

NextX = rectClient.lefl;

) else if (NextX >= rectClient.right) |
NextX =
rectClientright - 1;

1

if (NextY < rectClient.top) |
NextY = rectClient.top;
) else if (NextY >= rectClient.bottom) {
NextY = rectClient.bottom - 1;
if ((NextX != PrevX) | | (Next != PrevY))
/* Get the current mouse position ¥/

PrevX = NextX;
PrevY = NextY;

break;
case WM_RBUTTONDOWN:
ift!GraphicFlag)

115

break;
bTrack = FALSE; /* No longer creating a selection */
bChanges =TRUE; /* Saves the current value */
X = LOWORD(Param);
Y = HIWORD(IParam);
/# changed Imagesize to pixel and line /
xhi = GraphicSize*n¥ScanWindows;

XA 11 e ylo 1Y yhi
break;

XRgn = Pixel+1;
YRgn = Line+21;
if (AvgTmageFlag)|
XRgn = 3*Pixel+41;
YRgn = Line+21;
)
GetlmageBlock(X,Y);
SetScanWinhWnd);
DisplayTextthWnd);
/* changed Imagzesize to pixel and line
iflAvglmageFlag)

SerX =2*(Pixel+20);
else
SerX = Pixel+20;
SerY=20;

if!PunchThru(hWnd))
break;

break;
case WM_LBUTTONUP:

bTrack = FALSE; /* No longer creating a selection */
bChanges = TRUE;
X = LOWORD(IParam); /* Saves the current value ¥/
Y = HIWORD(IParam);

break;

case WM_ACTIVATE:
if ({GetSystemMetricsSM_MOUSEPRESENT))

if ((HTWORD(1Param))
|

if (wParam)
{

ptCursor.x =X;

ptCursor.y = Y;

ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);

116

ShowCursor(wParam);
I

}
break;

case WM_PAINT:
i
PAINTSTRUCT ps;
hDC = BeginPaint(hWnd, &ps);
if (hBitmaplmage != NULL){
/'hDC=
GetDC(hWnd);

hMemoryDC=
CrenteComptibleDC(DCY;
SelectObjectthMemoryDC,
hBitmapImage);
BitBli(hDC,0,20, Pixel Line,hMemoryDC, 0,0, SRCCOPY);
DeleteDC(hMemoryDO);
J/Ralease DC(hWnd,hDC);
)
if (plmageAvgByte = NULL)|
//hDC =
GetDC(hWnd);
hMemoryDC =
CreateCompatible DC(hDC);
SelectObjecthMemoryDC,
himageAvgByte);

BilBli(hDC, 120,20, Pixcl, LineiMemoryDC, 0,0,SRCCOPY);

DeleteDC(hMemoryDO);
//ReleaseDChWnd,hDC);
i}
if (pSpecImage '= NULL){
hMemoryDC =
CreateCompatible DC(DC);
SelectObject(hMemoryDC,

hSpecTmage);
BitBlt(hDC, 240,20, xxsiz,yysiziMemoryDC, 0,0,SRCCOPY);

DeleteDC(hMemoryDC);
l

for (i=0;i<nSeanCount;i++)

1

if (hBitmaplil =
NULL){

/ADC = GetDCthWnd);
hMemoryDC =
CreateCompatibleDC(hDC);

SelectObject(hMemoryDC, hOldBitmaplil;

BitBIt(hDC,ScrX,SerY, Pixel,Line hMemory DC, 0,0, SRCCOPY);

DeleteDC(hMemoryDC);

/ReleaseDC(hWnd,hDC);

if(OrgX != PrevX | | OrgY != PrevY)(

/MDC=GetDC(hWnd);
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

/ReleaseDChWnd hDC);
|
EndPaint (hWnd, &ps);
|
break;

case WM_CLOSE: /* close the window Y

/* Destroy child windows, modeless dialogs, then, this window */

FreeMemory(hWnd);
break;
default:

1+ For any message for which you don't specifically provide a */
/* service routine, you shauld return the message to Windows
/*for default message processing.

return DefWindowProc(hWnd, Message, wParam, "‘nmm),

return OL;

| /*End anndec)
[*'This function loads the file from FileName */
int GetFile(HWND hWnd){

FILE *f1;
char date[HB],fileHB|,time[HB],t2[HB-4];
char temp/[HB],sratel HB|,ftypel HB],t1[HB-4];

18

HANDLE _hBuffer;
PSTR pBuffer; /*address of read/writ buffer *
PSTR pToBuffer;

int bytesread, 7
long [OStatus =
int ij,n;

float freq;

yytesmoved; /*result offilei/o */

/*read the header first */
if ((f1 = fopen(FileName,'r"))==NULL){
MessageBox(hWnd, "Image File mur","Erm 20", MB_OK |
MB_ICONHAND);
return NULL;
)

if (ShowFileName)|
licheck system resources & memory

sysres = GetFreeSystemResources(0x0000;
gdires = GetFreeSystemResources(0x0001);
useres = GetFreeSystemResources(0x0002);
memres = GetFreeSpace(memarg);

memint = memres/1024;
hDC = GetDC(hWnd);

TextOut(hDC, 8,5,FileName,strlen(FileName));

if (labelflag) TextOut(hDC, 125,5,"Scan-to-Scan",12);
TextY = (Line + 19);

if (labelflag) TextOut(hDC, 3,TextY,"Neural Processor",16);
‘TextOut(hDC, 465,400,"<Sensitivity Controls>",22);

itoa(sysres, sstr, 10);

TextOut(hDC, 20, 425 sstr, strlen(sstr));
itoa(gdires, sstr, 10);

TextOut(hDC, 50, 425, sstr, strlen(sstr));
iton(useres, sstr, 10);

TextOut(hDC, 80, 425 sstr, strlen(sstr));
itoa((int)memint, sstr, 10);

TextOut(hDC, 110, 425, sstr,)

ReleaseDC(hWnd, hDC);

fets(file,65,11);
fgets(date,65,11);

fgets(time,65,f1);
fgets(srate,65,1);

1ne

fscanflfL,"%4d", &Pixel);
fiots(t1,61,f1]
fscanfifL,"%4d" &Line);
YLine = Line;
fgets(t2,61,f1);
fgets(ftype,65,71);
fgets(temp,65,1);
felose(f1);

MemSizeX =
MemSizeY = Line;
while (MemSizeX%4)
MemSizeX++;
while (MemSizeY%4)
MemSizeY++;

strepy(OldName, FileName);
GlobalCompact(0);

if (1GetMemFlag)|
if (1GetAvgMemory(hWnd))(
MessageBox(hWnd, "Unable to Allocate Scan-to-Scan
Memory",
“Firror 69", MB_OK |
MB_ICONHAND);

i
/% Allocate bitmap bufTer to the size of the image + 1 */

if (pScanBuffer|0] != NULL){
GlnbalUnlocvx(hScunBuffcrl0])

)

if ((hScanBuffer(0] = GlobalAlloc GMEM_MOVEABLE |
GMEM_ZEROINIT,
(MemSizeX*MemSizeY))) == NUL.LVI
, "Memory Allocation Err
"ErrorBZ" MB_OK | MB, ICONIIAND],
return (NULL);

I
hSaveCursor = SetCursor(hHourGlass);
if = GlobalL = NULL)(

Messagean(hWnd "Global ank leed
"Error 9.2", MB_OK | MB_ ICONHANDV

return (NULL);
)
pTempl0] = pScanBuffer{0;

hBuffer = LocalAlloc(LMEM_MOVEABLE | LMEM_ZEROINIT,1024);
if (thBuffer){

120

, "Memory Allocati
"Error 8.3", MB_ ox | MB. ICONHAND).
return (NULLY;

1
pBuffer = LocalLock(hBuffer);

if (tpBuffer){
MessageBox(hWnd,"Local Lock Failed.","Error 9.3", MB_OK |
MB_ICONHAND);
return (NULL);
|

pToBuffer = pBuffer;

close(hFile);

if (Pixel < 1024 && Line < 768)
Se

hFile = OpenFile(FileName, (LPOFSTRUCT) &OfStruct, OF_READ);

if (hFile == EOP)|
MessageBox(hWnd, "Image File Error”,
"Error 21", MB_OK | MB_ICONHAND);
return NULL;
|

fstat(hFile, &FileStatus);
bytesmoved = _liseek(hFile, 512L, 0); /*read the header off first */

nScnn(‘nunLD

whlle (lOStaLus < (FileStatus.st_size-bytesmoved)){
for (n=0;n<Line;n++) [

/* changed Pixel and line */
bytesread = read(hFile, pBuffer,Pixel);
for (i=0;i<bytesread;i++)(

if (SpectraFlag & n < Sline)l
if (i < SpixeD){
complex_datalindex] = 255.0 - ((float
huge)(BYTE)pBuffer|iD)/511
complex_datafindex+1] = 0.0;
i index + 2;

1
*pScanBuffer[nScanCount] = (BYTE)255 -
pBufferlil;
pScanBuffer[nScanCount}++; /* tag it to the tail */
i
10Status += (long)bytesread;
pBuffer = pToBuffer;

121

nScanCount++;

ll'(pScanBuﬁ"er[nScnnConnLI NULL)(

Countl);

ScunBuﬂ'er[nScanCountl
G|ohanrae(hSnanEuﬂ‘er[nScnnCounL

if ((hScanBufferfnScanCount] = GlobalAllocGMEM_MOVEABLE |
GMEM_ZEROINIT,
(MemSizeX*MemSizeY))) == NULL){
MessageBox(hWnd, “Memory Allocation
Error.",
“Error 10", MB_OK |
MB_ICONHAND);
return (NULL);
)

hSaveCursor = SetCursor(hHourGlass);

‘ount] = GlobalL Count)) ==

if
NULL)(
MessageBox(hWnd, “Global Lock Failed.",
"Error 11", MB_OK |
MB_ICONHAND);
return (NULL);

P ount| = ount;

}

LocalUnlock(hBuffer);
LocalFree(hBuffer);

clnse(hFlle)
for (i=0;i<=nScanCount;i++)
pScanBuffer]i| = pTemplil;

if (PalFlag == FALSE) SetUpPallette(hWnd);
DoSwapVideo();

SerX =0;
SerY =20;

if (hBitmapImage != NULL)
DeleteObject(hBitmaplmage);

if (nScanCount == 1){

hDC=GetDC(hWnd);

hMemoryDC CreateCompatibleDC(hDC);
hDC,(LPBITMAPINFOHEADER)&(pBitInfo-

i
>bmiHeader),
CBM_INIT, (LPSTR)pScanBuffer(0], pBitInfo,DIB_RGB_COLORS)) == NULL) (

122

MessageBox(hWnd, "Not enough memory for

bitmap.",
"Error 12, MB_OK |
MB_ICONHAND);
ReleaseDC(hWnd,hDC);
DeleteDC(hMemoryDC);
return NULL;

)

SelectObject(hMemoryDC, hBitmaplmage);
BitBItthDC,0,20,Pixel, }Line hMemoryDC, 0,0 SRCCOPY);
ReleaseDC(hWnd,hDC

DeleteDC(hMemoryDC);

else
for (i:

;i<nScanCount;i++) {
WriteBitmap(hWnd, pScanBufferfil, SerX,

SerY, i);

SorX += Pixel+5;

|
BitMap0 = TRUE;

1=0&&n’
if (NXScanWindows != nYScnnWmdows)[
/lthis is not square so make it so number one!

Get_Spec_ ;
i)l
j<sdismemyzj+-+)(
if(k < i o i &&j<
pSpecImagelr] =
(pImageDatalk|*255.0);
=k+ 1
Jelse(

pSpecImagelr] = (BYTE) 250;

rer+l;

lelse(

/fdisplay probability distribution

Get._Spec_: i n’

123

pSpeclmagelil = (BYTE)
(plmageDatalil*255.0);

DoTheSpectralmageDisplay(hWnd,240,20);

Free_Spec_mem();

return 1;

! !
” *

/* Dialog Window Procedure *

" *

/* This procedure is associated with the dialog box that is included in ¥

/* the function name of the procedure. It provides the service routines */

/* for the events (messages) that occur because the end user operates */

/* one of the dialog box's buttons, entry fields, or controls. /

L *

/* The SWITCH statement in the function distributes the dialogbox */
/¥ messages to the respective service routines, which are sct apart by */
/* the CASE clauses. Like any other Windows window, the Dialog Window */
/* procedures must provide an appropriate service routine for their end */
/% user initiated messages as well as for general messages| (likethe */
/% WM_CLOSE message).
/* Dialog messages are processed internally by windows it passed to the/
/* Dialog Message Procedure. IF processing is done for a Message the */
/* Message procedure returns a TRUE, else , for messages not explicitly */
1+ processad, it returns a FALSE *
*

/

BOOL FAR PASCAL NETLOADMsgProc(HWND hDIg, WORD Message, WORD
wParam, LONG 1Param)

char bslashi5] = "\\";

switch (Message) |
case WM_COMMAND:
switch (wParam) {
case IDC_LISTBOX:
switch (HIWORD(IParam)) {
case LBN_SELCHANGE:

124

/* Ifitem is a directory name, append "*.*" */
strepy(str, "w*.*");
if (!DigDirSelect(hDg, str, IDC_LISTBOX))

t
SetDlgltemText(hDlg, IDC_FILENAME, str);
SendDlgltemMessage(hDlg,
IDC_FILENAME,
EM_SETSEL,

NULL,
MAKELONG(0, 0x7f));

)

clse

|
streat(str, "w*.*");
DIgDirList(hDlg,str,IDC_LISTBOX,

IDC_DIRECTORY, 0x4010);

|
break;

case LBN_DBLCLK:
goto getfilename;

return (TRUE);

case IDOK:
getfilename:
GetDlgltemText(hDlg, IDC_FILENAME, NetFileName, 128);
if (strehr(NetFileName, ") 1 | strchr(NetFileName, ‘7))
SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) NetFileName);
i (stri0D)
strepy(DefPath, str);
ChangeDefExt(DefExt, DefSpec);
UpdateListBox(hDlg);
roturn (TRUE);
!

if (INetFileNamel0)) {
MessageBox(hDlg, "No filename specified.”,
“Error 14", MB_OK | MB_ICONHAND);
return FALSE;

GetDlgltemText(hDlg, IDC_DIRECTORY, str, 128);
if ((GetScanSize(NetFileName)) == 0){

MessageBox(hDlg, "Not a Net Arch File","Error 15",
MB_OK | MB_ICONINFORMATION);
return FALSE;

else(

iton(ScanSizeX,SSize, 10);
streat(str,bslash);

125

streat(str,NetFileName);
strepy(NetFileName,str);

Dig, NetFil , "Network Archil File Name",
MB_OK | MB_ICONINFORMATION);

)
EndDialogthDlg, TRUEY;
return TRUE;

case IDCANCEL:
EndDialog(hDlg, NULL);
return (FALSE);

break;

cuseWM INITDIALOG: 1* message: initinlize 4/
UpdateListBox(hDig),
SetDlgltemText(thg, IDC_FILENAME, DefSpec);
SendDlgltemMessage(hDIlg, /* dinlog handle

*
IDC_FILENAME, /* where to send
message */
EM_SETSEL, /* select
characters */
NULL, /* additional

information */
MAKELONG(O, 0x7f); /* entire contents
*
SetFocus(GetDlgltem(hDlg,

IDC_FILENAME)); /*keyboard focus is set to here*/

DigDirList(hDlg, str,IDC_LISTBOX, IDC_DIRECTORY, 0x4010);

DigDirSelect(hDlg, str, IDC_LISTBOX);

SetDlgitemText(hDlg, IDC_FILENAME, str);

return (FALSE); /* Indicates the focus is set to a control */

i
return FALSE;

int MakeFileName(HWND hWnd)

char *chrtest;
char *period;
char stratal3];
char strdat|3];
intprd="%

stropy(FileName,GraphFileName);
strepy(strata,"ata”);
strepy(strdat,"dat”);

period = strehr(FileName,prd);
period -= 8

126

chriest = period;

if (*chrtes "
period = period + 5;
strnepy(period,strata,3);

else if (*chrtest == '¢')[
period = period + 5;
strnepy(period,strdat,3);

clse
return NULL;

return 1;
i

int GetScanSize(char *NetFileName)
i

int prd
char *period;
char umnnol,

period = strchr(NetFileName,prd);
period = period - 2; /* point to letter */
if (isdigit((int)*period))(
period = period - 5;
strnepy(temp,period,2);
templ 2
NumScans = atoi(temp);
period = period + 2;
strncpy(temp,period2);
temp| 2=
ScanSizeX = atoi(temp);
period = period + 2;
stmcpy(mmp,penod 2);
templ 21;

ScanSizeY = atoi(temp);
period = period + 2;
strncpy(temp,period, ;
11

period = period + 2;
strncpy(temp,period,3);
templ(31=";
NumLayers = atoi(temp);

else(
period = period - 5;
strnepy(temp,period,2);
temp|2]="";
NumScans = atoi(temp);
period = period + 3;
strnepy(temp,period,2);

127

period = period + 3.
strncpy(temp,period,1);

NumOut = atoi(temp);

period = period + 2;

strnepy(temp,period,3);

temp(31="";

NumLayers = atoi(temp);
1

return 1;

/
/* WriteImageClass() Function *

-
% This unction writesthe classfcation of the image component to */
fxasereen box as the image is being scanned. *

*

int WriteImageClass(void)
float Hval,Lval Sval pertargetfloat;

if (NumOut ==

Hval = (float)(TarVal);
Hval/2;

Lval
Sval = Hval/4;

if (ythr(1] ==

strepy(evaluation,"clutter ");
else if (ythri2] ==

strepy(evaluation,noise *);
else if (ythrl3] ==

strepy(evaluation,"target ");

else
strepy(evaluation,"undefined ");

perclutter = (intXyhat/ 11*100.0);

pernoise = (int)(yhati2|*100.0);

pertarget = (int)(yhat[31*100.0);

if (pertarget >= (int)Hval)
strepy(classstr, Hexx);

else if (pertarget >= (int)Lval && perclutter <30 && pernoise <30)
strepy(classstr, Ltxx);

else if (pertarget >= (int)Sval)
strepy(classstr,Stxx);

else if (perclutter >= 50)

128

strepy(classstr, Hexx);
else if (perclutter >= 40)
strepy(classstr,Mcxx);
else if (perclutter >= 10 && pertarget < (in)Sval && pernoise <30)
strepy(classstr, Lexx);
else if (pernoise >= 30)
strepy(classstr,Noxx);
else
strepy(classstr,Noxx);

itoa(pernoise,amtnoise,10);
AddDecimal(amtnoise);
itoa(perclutter,amtclutter,10);
AddDecimal(amtclutter);
itoa((int)yhat[31100.0),amttarget, 10);

return (TRUE);
i
clse

Hval = (float)(TarVal);
Lval = Hval/2.0;
Sval = Hval/4.
if (ythrl1] == 1)
strepy(evaluation,"Target ");

else
strepy(evaluation,"No target);

pertarget = (int)yhat(1]#100.0);
pertargetfloat = (yhat{11*100.0);
if (pertargetfloat >= Hval)
strepy(classstr,Htxx);
else if (pertargetfloat >= Lval)
strepy(classstr, Ltxx);
else if (pertargetfloal >= Sval)
strepylclassstr,Stxx);
else
strepy(classstr,Noxx);

/*Show only target or noise */
if (!ShowAllFlag)
if (pertarget >= Sval)

strepy(classstr, Htxx);
itoa((int)(yhat| 11*100.0),amttarget, 10);

return (TRUE);
)

int CreateOutFileName(void)
|

129

int prd
char *period;

strepy(OutName,FileName);
perio strchr(DuLNnme prd);
period -
strnnpy(venod,"au')',a\;

return 1;

int pause(int waittime)
(

long int. §;
float xy:

for (i=0ji<=waittime*10000;i++)
x = exply);

return (1);

BOOL FAR PASCAL LOADGRAPHICMsgProc(HWND hDlg, WORD Message,
‘WORD wParam, LONG 1Param)
(

char bslash[5]= "\\";

switch (Message)
case WM_COMMAND:
switch (wParam) (
case IDC_LISTBOX:
switch (HIWORD(1Param)) (
case LBN_SELCHANGE:
/* If item is a directory name, append "*.*" */
if (IDIgDirSelect(hDIg, str, IDC_LISTBOX))

SetDlgltemText(hDlg, IDC_FILENAME, str);
SendDlgltemMessage(hDlg,
IDC_FILENAME,

EM_SETSEL,

NULL,
MAKELONG(0, 0x7f);
)
else
I

DigDirListhDig,str.IDC_LISTBOX,

IDC_DIRECTORY, 0x4010);

break;

130

case LBN_DBLCLK:
goto getfilename;

return (TRUE);
case IDOK:

getfilename:
GetDlgltemTeskhDig, IDC, FILENAVE, GmphFllcName, 120
") |

Sepnranx]e(hD]g, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) GraphFileName);

if (str[0))
strepy(DefPath, st);

ChangeDefExt(DefExt, DefSpec);

UpdateListBox(hDig);

return (TRUE);

)

if (1GraphFileName[O] {
MessageBox(hDlg, "No filename specified.”,
“Error 16", MB_OK | MB_ICONHAND);
return (TRUE);

GetDlgltemText(hDIg, IDC_DIRECTORY, str, 128);

streat(str,bslash);

streat(str,GraphFileName);

strepy(GraphFileName,str);

MessageBox(hDlg, GraphFileName, "Graphic File Name",
MB_OK | MB_ICONINFORMATION);

EndDialogthDlg, TRUE);

return (TRUE);

case IDCANCEL:
EndDialog(hDlg, NULL);
return (FALSE);
|
break;

case WM_INITDIALOG: /* message: initialize */
UpdateListBox(hDlg);
SetDIgltemText(hDlg, IDC_FILENAME, DefSpec);
SendDigltemMessage(hDlg, /* dialog handle

IDC_FILENAME, /% where to send message
+
EM_SETSEL, /* select characters ¥/
NULL, /* additional information */
MAKELONG(0, 0x7ff1)); /*entire contents */
SetFocus(GetDigitem(hDIg, IDC_FILENAME)); /*keyboard focus is set. to
here*/

DigDirList(hDlg, str,IDC_LISTBOX, IDC_DIRECTORY, 0x4010);
DigDirSelect(hDlg, str, IDC_LISTBOX);
SetDigltemText(hDlg, IDC_FILENAME, str);

131

return (FALSE); /* Indicates the focus is set to a control ¥/

return FALSE;

” ki
/* This function get the coordinates of the cursor and displays the */
/* network classificated %'s for the clutter,nnoise, and target. */
” *

int GetimageBlock(int X, int Y)
(

float xflo, yflo, clu, noi, tar;
int xint, yint, sector, imageoffset;
long million=1000000;

xflo = (float)X/GraphicSize;
xint = X/GraphicSize;
if (xflo > xint)

xint++;
Y=Y-ylo;
flo = (float)¥/GraphicSize;
yint = Y/GraphicSize;
if(yflo > yint)

intid;

yint = n¥ScanWindows - yint;
sector = (yint}*nXScanWindows+xint;
imageoffset = sector*NumOut-NumOut;
fileoffset=pScanWinCoord[sector-11;
if (NumOut == 3)

= 100.0*pImageDatalimageoffset];

noi = 100.0*pImageDatal(imageoffset+1)];
tar = 100.0*pImageDatal(imageoffset+2)];
itoa((int)elu,amtelutter,10);
itoa((int)noi,amtnoise, 10);
itoa((int)tar,amttarget,10);

else |
tar = 100.0*pImageDatal(imageoffset)l;
itoa((int)tar,amttarget, 10);
AddDecimal(amttarget);

}

/* Section to determine corresponding block of radar image */
/# changed Imagesize to pixel and line

if (yint+1 == nYScanWindows)
Yorg = 20+ScanSizeY;
else
Yorg = Line+20-(yint)*Winlnc;
XScanWindows)
Xorg = Pixel-ScanSizeX;

if (xint

132

else
Xorg = (xint-1)*WinInc;
SerY =20;

return I;

* SetScanWin draws a square on the radar image I:orrespondmg *
/* o the current cursor position on the graphic

void SetSeanWin(tHWND hWnd) {

gn = CreateRectRgn(0, 20, XRgn, YRgn);
InvalidateRgn (hWnd, hRgn, TRUE);
DeleteObject(hRgn);

UpdateWindow(hWnd);

hDC = GetDC(hWnd);
MoveTo(hDC, Xorg, Yorg);

LineTo(hDC, Xorg+ScanSizeX, Yorg);
LineTo(hDC, Xorg+ScanSizeX, Yorg-ScanSizeY);
LineTo(hDC, Xorg, Yorg-ScanSizeY):
LineTo(hDC, Xorg, Yorg);

if (AvglmageFlag)l

Xorg#+=120;
MoveTo(hDC, Xorg, Yorg);

LineTo(hDC, Xorg+ScanSizeX, Yorg);

LineTo(hDC, Xorg+ScanSizeX, Yorg-

ScanSizeY);
LineTo(hDC, Xorg, Yorg-ScanSizeY);
LineTo(hDC, Xorg, Yorg);
}
ReleaseDC(hWnd, hDC);
l
/' This function gets the graphic info from Lhe *

/¢ network output file.

int GetGraphicc HWND hWnd)(

int nidk;
char Flest|40];
float bigest=-1.0;

if (TmageSet == TRUE)(

GlobalUnlock(hImageData);
plmageData = GlobalFree(hImageData);

133

)

if ((graph = fopen(GrnphFﬂeNnme "t")) == NULL)(
NULL;

!

if ((fscanflgraph,"%s",&Ftest) 1= 1){
MessageBox(hWnd, "Graphic File error.”,"Error 18.1",
MB_OK | MB_ICONHAND);
felose(graph);
return NULL;
)

if (Ftest[0] == ‘a"){
AverageEvalFlag = TRUE;

felose(graph);
if (graph = fopen(GraphFileName,"r")) == NULL)
return NULL;
if
" d d%d%d%d%d" &Ftest i &FileNa
&Winl; &N Out, i ;
&n i &Pixel &Line) t= 12)(

Messachox(hWnd “Graphic File error.
"Error 18.2', MB_OK | MB_ICONIIANDY;

felose(graph);

return NULL;

else |
AverageEvalFlag = FALSE;
felose(graph);
if ((graph = fopen(GraphFileName,r
return NULL;

NULL)

ifl(fscanfigraph,"%s%s%d%d%d%d%d%d%d%d %", &Net FileName,&FileNa
‘me,&Winlnc,

& &NumOut, &n
&ScanSizeY,&Pixel,&Line)) = 11)(
MessageBox(hWnd, "Graphic File error.","Error
18.3", MB_OK | MB_ICONHAND);
felose(graph);
return NULL;

|
SelectGraphicBitmap();

if ({ShowAllFlag)(

134

SerX=0;
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindowhWnd);

hDC = GetDC(hWnd);

MoveTo(hDC, 0,Li icSize*n i ;
LineTo(hDC, 0,Line+40);

LineTo(hDC, GraphicSize*nXScanWindows-

GraphicSize,Line+40);
LineTo(hDC, GraphicSize*nXScanWindows-

GraphicSize,Li
LineTo(hDC, 0,Li icSize*n
ReleaseDC(hWnd, hDO);
}
memory?2 = (long i ut* i n i g

int)sizeoflfloat));

if ((hImageData = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT,
memoryZ NULL)(

ory Allocati
ErrorBé" MB _OK | MB ICONHAND).
return (NULL);

if = (float huge *)GlobalL Dat: NULL)
MessugeBox(hWﬂd "Global Lock Failed.",
‘Error 94", MB_OK | MB. lCONFAND),

return (NULL);

ImageSet = TRUE;

i=0;

SebCursor(thurGlnss)

UpdateImage = TRUE

while ((fscanfigraph, %", &value)!= EOF)|
pImageDatalj++] = value;

bigest = max(value,bigest);
}

for (k=0;k<j:k++)l
Datalk] = pImageD:
yhach++l pimageDatalk];
if NumOut+1))(

i ('Cormll"lng)l
WriteImageClass();
if (*classstr == 'H' || *classstr =
DisplayGraphics(hWnd,n++J;
else

N+

)

SetCursor(hArmrow);
UpdateImage = FALSE;
felose(graph);

return 1;

/* This function gets the second graphic info from the
7* network output file when correlation is requested.

¥
bi !

/

int. GetGraphic2(HWND hWnd)(
int idik;

char Ftost{40}

float bigest=-10;

if (hImageData2)(

GlnbnlUnluck(hlmageDaLa2)
Im: ta2 = GlobalF

|

if ((graph = fopen(GraphFileName, "))
return NULL;

if (fscanflgraph,"%s",&F'test)) != 1)

Data2);

MessageBox(hWnd, "Grephic File error.”,'Error 18.1",
MB_OK | MB_ICONHAND);

felose(graph);
return NULL;
Il

if (Ftest[0] ==)
AverageEvalFlag = TRUE;
felose(graph);
if(graph = fopen(GraphFileName,"r")) == NULL)
return NULL;
if
5 d " &Ftest,&NetFileName,&FileNa
me,&WinInc,& &NumOut,& indows,
&n i izeY &Pixel &Line)) I= 12)(

MessageBaxthnd "Graphic File error.

“"Error 18.2", MB_OK | MB_] ICONHAND)

felose(graph);

136

return NULL;

else [
AverageEvalFlag = FALSE;
felose(graph);
if ((graph = fopen(GraphFileName,"")) == NULL)
return NULL;
. T . &FileNa
me,&Winlnc,
&NumOut,

" & :
&ScanSize Y, &Pixel,&Line)) 1= 11)(

MessageBox(hWnd, "Graphic File error.","Error
18.3", MB_OK | MB_LICONHAND);

felose(graph);

return NULL;

!
SclectGraphicBitmap();

if (!ShowAlIFlag)(
SerX= 0;
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow(hWnd);
hDC = GetDCthWnd);
MoveTo(hDC, L.m40+Gmph|cs.ze*nyanmw.ndows),
LineTo(hDC, 0, Line+
LineTo(hDC, Grapthlze‘nXScnnWmdows-

GraphicSize, Line+40);
LineTo(hDC, GraphicSize*nXSeanWindows-

GraphicSize, Line+40+GraphicSi: i
Lin¢To(hDC, 0,Line+40+GraphicSize*nYScan Windows);
ReleaseDC(hWnd, hDC);

memory? = (long int)
(Nundut*nX: Y

if ((hImageData2 = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT,
‘memory2)) == NULL){
, "Memory Allocati
"Error 85", MB_OK | MB, ICONHAND),
return (NULL);

if ((pImageData2 = (Noat huge ")GlnhalLock(hlmugeDat&Z)) ==NULL)(
Messngean(hWnd "Global Lock Failed.",
‘Error9.4", MB_OK | MB, lCONHAND),
return (NULL);

ImageSet = TRUE;
j=0;

SetCursor(hHourGlass);

Updatelmage = TRU

while ((fscanfigraph,"%f",&value))!= EOF)(
pImageData2|j++ = value;
bigest = max(value,bigest);

for (k=Osk<jike-+)!

yhatfi++] = pImageData2lk;
if (i == (NumOut+1)(

i=1;
if (CorrelFlag)|
WriteImageClass();
if (classstr == "H' || *classsir == "T")

DisplayGraphicshWnd,n++);

clse
n++;
|
l

1

SetCursor(hArrow);

UpdateImage = FALSE;

felose(graph);

return 1;
}
/
’* 5
/* nCwRegisterClasses Function /4
T *

/* The following function registers all the classes of all the windows */
/* associated with this application. The function returns an error ode */
/* if unsuccessful, otherwise it returns 0. o

*

int nCwRegisterClasses(void)

'WNDCLASS wndclass; /* struct, to define a window class *
memset(&wndclass, 0x00, sizeof WNDCLASS));

/*1oad WNDCLASS with window's characteristics i
wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_BYTEALIGNWINDOW;

138

wndelasspfnWndProc = WndProc;
I* Extra storage for Class and Window objects *
wndelass.cbClsExtra = 0

wndclass.cbWndExtra = 0;

wndelasshInstance = hInst;

wndclass.hlcon = LoadIcon(hinst, "RADARIMG);

wndelasshCursor = LoadCursor(NULL, IDC_ARROW);

I* Create brush for erasing background

wndelasshbrBackground = (HBRUSHYCOLOR_WINDOW+1);

wndclass IpszMenuName = szAppName; /* Menu Name is App Name */
wndclass.IpszClassName = szAppName; /* Class Name is App Name */
ilRegisterClass(&wndelass))

return -1
return(0);
1/* End of nCwRegisterClasses K
/
/* CwUnRegisterClasses Function *
” *
/* Deletes any refrences to windows resources created for this ¥/

1* applicaton, frecs momory, deletes instance, handles and does “
/* clean up prior to exiting the window
”

/
void CwUnRegisterClasses(void)

WNDCLASS wndclass; /* struct to define a window class
memset(&wndelass, 0x00, sizeol WNDCLASS));

UnregisterClass(szAppName, hinst);
| /% End of CwUnRegisterClasses ¥

FUNCTION: SaveAsDIg(HWND, unsigned, WORD, LONG)
PURPOSE: Allows user to change name to save file to
COMMENTS:

‘This will initialize the window class if it is the first time this

application is run. It then creates the window, and processes the
‘message loop until a PostQuitMessage is received. It exits the

application by returning the value passed by the PostQuitMessage.

int FAR PASCAL SaveAsDIg(HWND hDIg,unsigned message, WORD
wParam,LONG 1Param)

139

char TempName[128];

switch (message) [
case WM_INITDIALOG:

/* If no filename is entered, don't allow the user to save fo it */
if ({FileNamel0D
bSaveEnabled = FALSE;
else (
bSaveEnabled = TRUE;
/* Process the path to fit within the IDC_PATH field ¥/
DigDirList(hDlg, DefPath, NULL, IDC_PATH, 0x4010);
/#Send the current filename to the edit control */
SetDlgltemText(hDig, IDC_EDIT, DefSpec);
/# Accept. all characters in the cdit control ¥/
SendDlgltemMessage(hDlg, IDC_EDIT, EM_SETSEL, 0
MAKELONG(0, 0x71);
)

/* Enable or disable the save control depending on whether the
* filename exists.
]

ind Igitem(hDig, IDOK),
/* Set the focus Lo the edit control within the dialog hox */

SetFocus(GetDlgltem(hDIg, IDC_EDIT));
return (FALSE); /* FALSE since Focus was changed ¥/

case WM_COMMAND:
switch (wParam) [
case IDC_EDIT:

J*If there was previously nofilename in the edit

* control, then the save control must be enabled as soon ns
*a character is entered.

*

if (HIWORD(IParam) == EN_(CHANGL && 'hSnvchnahlml)
i g RI

1DOK),
return (TRUE);

case IDOK:

/* Get the filename from the edit. control */

140

UE);

GetDlgltemText(hDlg, IDC_EDIT, TempName, 128);
/* If there are no wildcards, then separate the name into

* path and name. If a path was specified, replace the
* default path with the new path.
*

if (CheckFileName(hDIg, (PSTR) FileName, (PSTR) TempName))
SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) FileName);
if (stri0))
strepy(DefPath, str);
/#Tell the caller a filename was selected */
EndDialog(hDig, IDOK);
)
return (TRUE);
case IDCANCEL:
/*Tell the caller the user canceled the SaveAs function */

EndDialog(hDlg, IDCANCEL);
return (TRUE);

]
break;

|
return (FALSE);

FUNCTION: CheckFileName(HWND, PSTR, PSTR)
PURPOSE: Check for wildcards, add extension if needed
COMMENTS:

Make sure you have a filename and that it does not contain any

wildcards. If necded, add the default extension. This function is
called whenever your application wants to save a file.

BOOL CheckFileName(HWND hWnd,PSTR pDest,PSTR pSrc)
{

PSTR pTmp;
if (!pSrel01)

return (FALSE);, /* Indicates no filename was specified */
pTmp = pSre;
while (*pTmp) { /% Searches the string for wildcards */

switch (*pTmp++) |

141

Messngean(hWnd "Wildcards not allowed.",
"Error 2", MB_OK | MB_] ICONEXCLAMATION)
return (FALSE)
1

]
AddExt(pSrc, DefExt); /* Adds the default extension if heeded */
if (OpenFile(pSrc, (LPOFSTRUCT) &OfStruct, OF_EXIST) >= 0) {
strepy(str, "Replace existing ");
streat(str,pSre);
streat(str,"
if (MessageBox(hWnd, str, "RID",
MB_OKCANCEL | MB_ICONHAND) == IDCANCEL)
return (FALSE);

strcpy(pDest, pSre);
return (TRUE);

FUNCTION: SaveFile(HWND)
PURPOSE: Save current file
COMMENTS:

This saves the current contents of the Edit buffer, and changes
bChanges to indicate that the buffer has not been changed since the
last save.

Before the edit buffer is sent, yo» must get its handle and lock it

to get its address. Once the file is written, you must unlock the

buffer. This allows Windows to move the buffer when not in immediate
use,

BOOL SaveFile(HWND hWnd)

BOOL bSuccess;
lnng ArrPosiLian;

oun
HANDLE hBulT
FILE *fp;

BYTE huge *pToBuff;

BYTE huge *pBuff;
BYTE huge *pArr;

pArr = pTemp|0];
bNew =FALSE;

142

fp = fopen(FileName, "w");
if (fp && (SerY 1=20)) /* make sure another smaller bitmap was not
opened ¥/

hSaveCursor = SetCursor(hHourGlass);
WriteFileHeader(fp);

I* sereen only has space for 713 hnes title and menu take up the rest */
ArrPosition = (long)(Line-713-1)*P:
ArrPosition += (long)(713- 0‘gY)’P)xe]+(0rgX ScanSizeX);
WriteToFile(pArr, ArrPosition, fp);

felose(fp);

SetCursor(hSaveCursor);

bSuccess = TRUE; /* Indicates the file was saved ~ */
bChanges = FALSE; /* Indicates changes have been saved */

return (bSuccess);

1
else iflfp && (ScrY ==20))
i

hSaveCursor = SetCursor(hHourGlass);
WriteFileHeader(fp);

/* DI Bitmap origin in lower left corner of screen*/

ArrPosition = (long)(Line+ScrY-OrgY)*Pixel + (OrgX-ScanSizeX);
WriteToFile(pArr, ArrPosition, fp);

if (hBuff = GlobalAllocc(GMEM_MOVEABLE | GMEM_ZEROINIT,
FileStatus.st_ s!ze 512 UL)|

“Error 8.6", MB_OK I MB_ICONHAND);
return FALSE;

if ((pBuff = (BYTE huge *)GlobalLock(hBuff)) == NULL)(
MessageBox(hWnd, "Global Lock Failed.",
"Error 9.5", MB_OK | MB. ICONHAND),
return FALSE;

pToBuff = pBuff;

for {
GetNextFile(count);
hFile = OpenFile(NextFile, (LPOFSTRUCT) &O0fStruct, OF_READ);
_llseek(hFile, 512L, 0); /*read the header off first ¥/
_lread(hFile, (LPSTR)pBufY, FileStatus.st_size-512);
WriteToFile(pBuff, ArrPosition, fp);
pBuff = pToBuff;
close(nFile);

143

GlobalUnlock (hBuff);

GlobalFree(hBuff);

felose(fp); /*output file */
SetCursor(hSaveCursor);

bSuccess = TRUE; /* Indicates the file wassaved */

bChanges = FALSE;
return (bSuccess);

!

/* Indicates changes have been saved */

else
(
sprintflstr, “Attempt to save file failed!");

MessageBox(hWnd, str, NULL, MB_OK | MB_LICONEXCLAMATION);
return (FALSE);

FUNCTION: OpenDIg(HWND, unsigned, WORD, LONG)

PURPOSE: Let user select a file, and return. Open code not provided.

HANDLE FAR PASCAL OpenDIg(HWND hDlg,unsigned message, WORD
wParam,LONG IParam)

HANDLE hFile;

switch (message) [
case WM_COMMAND:
switch (wParam) (

case IDC_LISTBOX:
switch (HIWORD(1Param))

case LBN_SELCHANGE:
/1f item is a directory name, append ™.+ */
if (IDigDirSelect(hDlg, str, IDC_LISTBOX))
| SetDlgltemText(hDlg, IDC_EDIT, str);
SendDlgltemMessage(hDlg,
IDC_EDIT,
EM_SETSEL,

NULL,
MAKELONG(0, 0x7F));

|

clse
streat(str, DefSpec)
DigDirListthDlgstr, IDC_LISTBOX,

144

IDC_PATH, 0x4010);
)

break;

caso LBN_DBLCLK:
golo openfile;

return (TRUE);

case IDOK:
openfile:
GetDlgltemText(hDlg, IDC_EDITT, OpenName, 128);
if (strchrOpenName, *') | strchr(OpenName, '?) [
SeparateFile(hDlg, (LPSTR) str, (LPSTR) DefSpec,
(LPSTR) OpenName);
if (strl0D)
strepy(DefPath, str);
ChangeDefExt(DefExt, DefSpec);
UpdateListBox(hDlg);
return (TRUE);
l

if (1OpenNamel0]) (
MessageBox(hDlg, "No filename specified.’,
“Error 3', MB_OK | MB_ICONHAND);
return (TRUE);
|

AddExt(OpenName, DefExt);

/* The routine to open the file would go here, and the */
/* file handle would be returned instead of NULL. ¥

if ((int¥hFile = OpenFile(LPSTR) OpenName,
(LPOFSTRUCT)&OfStruct,
OF_READ)) == EOF) (
sprintstr, "Error %d opening %s.",
OfStruct.nErrCode, OpenName);
MessageBox(hDlg, str, NULL,
B_OK | MB_ICONHAND};
l
else (

fstat(hFile, &FileStatus);
sprintfistr, "File size is %Id bytes.", FileStatus.st_size);

MessageBox(hDlg, str, OpenName,
MB_OK | MB. ICON]NFORMATION)

strepy(FileName, OpenName);

EndDialog(hDlg, hFile);
return (TRUE);

145

1

case IDCANCEL:
EndDialoghDlg, NULL);
return (FALSE);

break;
case WM_] lNlTDlALOG’ /* message: initialize */
UpdateListBox(hDlg)
SutDlgltomToxt(hDig, IDC_EDIT, DefSpec);
SendDigltemMessage(hDlg, /* dialog handle
¥
IDC_EDIT, /* where to send
message ¥/
EM_SETSEL, 1* select characters
K
NULL, /#* additional information
*

MAKELONG(0, 0x7fl0); /* entire
contents ¥/
SetFocus(GetDlgltem(hDlg, IDC_EDIT));
return (FALSE); /* Indicates the focus is set to a control */

)
return FALSE;

FUNCTION: UpdateListBox(HWND);

PURPOSE: Update the list box of OpenDig

void UpdateListBox(HWND hDlg)
DigDirList(hDlg, str, IDC_LISTBOX, IDC_PATH, 0x4010);

/*To ensure that the listing is made for a subdir. of
* current drive dir...
*

if (!strchr (DefPath, ")
DigDirList(hDlg, DefSpec, IDC_LISTBOX, IDC_PATH, 0x4010);

/* Remove the .’ character from path if it exists, since this
* will make DigDirList move us up an additional level in the tree
* when UpdateListBox() is called again.

lf(strstr(DefPath =)
DefPath(0] =

SetDlgltemText(hDlg, IDC_EDIT, DefSpec);

146

FUNCTION: ChangeDefExt(PSTR, PSTR);

PURPOSE: Change the default extension

void ChangeDefExt(PSTR Ext,PSTR Name)
PSTR pTyptr;

pTptr = Name;
while (*pTptr && *pTptr !=")
PTptre+;
ifit, Iptr)
if (strchr(pTptr, ') && 'strchr(pTptr, 7))
strepy(Ext, pTptr);

FUNCTION: SeparateFile(HWND, LPSTR, LPSTR, LPSTR)

PURPOSE: Separate filename and pathname

/

void SeparateFiletHWND hDlg, LPSTR IpDestPath, LPSTR IpDestFileName,LPSTR
IpSrcFileName)

LPSTR IpTmp;
char ¢Tmp;

IpTmp = IpSrcFileName + (long) Istrlen(IpSrcFileName);

while (*IpTmp = ' && *IpTmp != "\\' && IpTmp > IpSrcFileName)
IpTmp = AnsiPrev(lpSrcFileName, IpTmp);

if(+lpTmp 1= && *IpTmp 1="\\') |

IpDestPathi0] =
return;

i
Istrepy(IpDestFileName, IpTmp + 1);
¢Tmp = *(IpTmp + 1);
Istrepy(IpDestPath, lpSreFxleName)
*(IpTmp + 1) = cTm
IpDestPath|(IpTmp - lpSrcFﬂeName) +1]=
|

FUNCTION: AddExt(PSTR, PSTR);

147

PURPOSE: Add default extension

void AddExt(PSTR Name, PSTR Ext)
PSTR pTptr;

pTptr = Name;

while (*pTptr && *pTpts
pTptre+;

if (*pTptr 1= ")
streat(Name, Ext);

Vs
/* Dialog Window Procedure
i

*
b 4
*

/* This procedure is associated with the dialog box that is included in */
/* the function name of the procedure. It provides the service routines */
/* for the events (messages) that occur because the end user operates */
/# one of the dialog box’s buttons, entry fields, or controls, */

”* ki

BOOL FAR PASCAL CaptureDlg(HWND hWndDlg, WORD Message, WORD

wParam, LONG IParam)
{

int MyFlag;
switch(Message)

{
case WM_INITDIALOG:
ewCenter(hWndDig, 0);

/* initialize working varinbles '/
SetD] Dig, scx, 9);
SetD] dDlg, scy, 9);
etD, Dlg, pi, 5%
return FALSE;
/* End of WM_ lNITDlALOG /4
case WM_CLOSE:
/* Closing the Dialog behaves the same as Cancel +

PostMessage(hWndDlg, WM_COMMAND, IDCANCEL OL);

break; /* End of WM_CLOSE

case WM_COMMAND:
switch(wParam)

{

148

case sox: /' Edit Control L)
= (int)GetD! g, scx, &MyFlag, 0);

break;

case soy: /* Edit Contrel
ScanSizeY = rmumrDlgmmmuhwﬂdmg scy, &MyFlag, 0;

break;

case pi: /* Edit Control *
=G Dig, pi, &MyFlag, 0);

break;

case IDOK:
EndDialog(hWndDlg, TRUE);

break;

case IDCANCEL:
/* Ignore data values entered into the controls *
/* and dismiss the dialog window returning FALSE ¥/
EndDialog(hWndDlg, FALSE);

break;
l
break; /* End of WM_COMMAND L4
default:
return FALSE;
!
return TRUE;
| 7+ End of CaptureDlg *
e K
/* Dialog Window Procedure L
* b

/* This procedure is associated with the dialog box that is included in */
/* the function name of the procedure. It provides the service routines */
/* for the events (messages) that occur because the end user operates */
/* one of the dialog box's buttons, entry fields, or controls. */

” *

li
BOOL FAR PASCAL MarkDIg(HWND hWndDlg, WORD Message, WORD wParam,
LONG IParam)

(

int StartPixel, CurrPixel, CheckCoord;
inti, j, k, n;

149

switch(Message)
case WM_INITDIALOG:

return FALS]
/* End ni‘WM INITDIALOG #H

case WM_CLOSE:
/* Closing the Dialog behaves the same as Cancel ~ */
PostMessage(hWndDlg, WM_COMMAND, IDEND oL);
break; /* End of WM_CLOSE

case WM_COMMAND:
switch(wParam)
(

case IDOK:
StartPixel=(Line+ScrY-LowLeftY)*Pixel +
LowLeftX;

CurrPixel=StartPixcl;
ImageTarlndex = 0;

TargetPos(ImageTarlImageTarindex++ = CurrPixel;

;::r(-LowLeftY;i>=MarkY;i--)|
for(j=LowLeftX;j<=MarkX;j++)(
CheckCoord=CurrPixel-CheckPos;
for(k=0;k<nScanWindows;k++)
iflCheckCoord == pScanWinCoordikD(

TargetWin[TargetNolIn++]=]

break;
CurrPixel++;

TargetPos(ImageTarll mageTarIndex++| = CurrPixcl;

CurrPixel+=Pixel-MarkX+buw]Lel\X;

ImageTar++;
TargetNo++;

EndDialog(hWndDlg, TRUE);
break;
case IDCANCEL:

EndDialogthWndDlg, TRUE);

150

NULL)

"%

(j=0;j<MarkPixelNumber;js+)

1

", TargetPoslillj);

break;
case IDTARSAVE:
if ((Targetdat = fopen("target.dat”,"w')l=

for (i:

<ImageTar;i++)|
fprintATargetdat,"1

for

if (TargetPoslillj1
break;

else
fprintfTargetdat,"%d

)
felose(Targetdat);
|

else
MessageBox(hWndDlg, “File crror”,"error opening file",
MB_OK | MB_ICONINFORMATION);

break;
case IDEND:
TargetNo=0;
EndDialogthWndDIg, FALSE);
break;
!
break; /*End of WM_COMMAND Ll
default:
return FALSE;
X
return TRUE;
| /* End of MarkDlg *
/
" !
/* Dialog Window Procedure */
" !

/# This procedure is associated with the dialog box that is included in */
/* the function name of the procedure. It provides the service routines */
/* for the events (messages) that occur because the end user operates ¥/
/* one of the dialog box's buttons, entry fields, or controls. */

151

” 3

BOOL FAR PASCAL OverlapDIg(HWND hWndDlg, WORD Message, WORD
wParam, LONG IParam)
{

int MyFlag;
switch(Message)

{
case WM_INITDIALOG:

cwCenter(hWndDlg, 0);
/¥ initialize working variables *
SetDlgltemInt(hWndDlg, wi, Winlnc, 1);
if (Batch){
SendDlgltemMessage(hWndDlg, /* dinlog handle

K

IDC_EDIT, /* where to send
message */

EM_SETSEL, /¥ select characters
*

NULL, /* additional

information */
MAKELONG(0, 0x7fM);
SetFocus(GetDlgl:em(hWndDlg,

wily

1

return FALSE;

/* End of WM_INITDIALOG A

case WM_CLOSE:

/* Closing the Dialog behaves the same a3

Cancel "
PostMessage(hWndDlg, WM_COMMAND,

IDCANCEL, 0L);

break; /* End of WM_CLOSE
*

case WM_COMMAND:
switch(wParam)
case wi: /* Edit Control
*,
Winlnc = (int)GetDigltemInt(hWndDlg, wi,
&MyFlag, 0);
break;
case IDOK:
EndDialogthWndDlg,
TRUE);
break;
case IDCANCEL:

152

/* Ignore data values entered into the

contrals*/
/* and dismiss the dialog window returning
FALSE */
EndDialog(hWndDlg,
FALSE);
break;
l

break; /* End of WM_COMMAND

L4
default:

return FALSE;
return TRUE;
1/* End ofOVerlaleg L 3

void ewCenter(t HWND hWnd, int top)
I

POINT pt;
RECT swp;
RECT rParent;
it iwidth;

int iheight;

7/ get the rectangles for the parent and the child L
GetWindowRect(hWnd, &swp);
GetClientRectthWndMain, &rParent);

/* calculate the height and width for MoveWindow o
iwidth = swp.right - swp.lefl;
ihoight = swp.bottom - swp.top;

/* find the center point and convert to screen coordinates *
pl.. (rParent.right - rParent.left) / 2;

(rParent.bottom - rParent.top) / 2
(‘lanTnScreen(hWnden &pt);

/* caleulate the new x, y starting point *
PLx = pt.x - (iwidth /2);
PLy = pt.y - (iheight/ 2);

/* top will adjust the window position, up or down Lk
ifttop
pL.y = pt.y + top;

/* move the window h
MoveWindow(hWnd, pt.x, pt.y, iwidth, iheight, FALSE);
1

153

FUNCTION: About(HWND, unsigned, WORD, LONG)
PURPOSE: Processes messages for "About” dialog box
MESSAGES:

WM_INITDIALOG - initialize dialog box
WM_COMMAND - Input received

BOOL FAR PASCAL About(hDlg, message,wParam, IParam)
HWND hDlg;

unsigned message;

WORD wParam;

LONG IParam;

switch (message) {
case WM_INITDIALOG:
return (TRUE);

case WM, COMMAND
if (wParam == IDOK

|| wParam == IDCANCEL) (
EndDialog(hDlg, TRUE);

return (TRUE);
)
break;
|
return (FALSE);
|
/* GetWinCoord Function *
” o
/* Purpose: *
*

/% 1) To calculate the number of scan windows necded to process ¥/

/% an entire image

/% 2) To determine the starting position for each scan window */

” and store them in an array pScanWinCoord| | *
*

"
/* Main Variables: . 4

" *

/% nqScanWindows - local, contains # scan winows per scan line 4

/¥ nrScanWindows - global, contains # bytes remaining at end of line */
/¥ nScanWindows - global, total number of scan windows *

154

/* TempWindow - running count of number of scan windows 4
/* Row - identifies current row number 5

/* CurrRowPos - identifies position of the pointer in the current row */
/* RowBegin - offset in bytes of the current row *

/* pScanWinCoord - array to hold various starting points ¥
” *

/* Description: o

” *

/* This function obtains the quotient and remainder for the division */

/* ImageSize by ScanSize to determine the number of scan windows. If the */
/* result has no remainder then the number of scan windows per row i */

/* ngScanWindows else the number of scan windows per line is incremented. */
” o

/* When storing the positions in the array both the beginning and end *
/* of the row are checked to see if a scan window will fit exactly. If */
/* it will not, the position is decremented such that it will fit exactly.*/

+

v +

* Return: ¥
- +

/% This function will return the total number ol‘scan windows or -1 */

/* on error.
. ¥

int GetWinCoord(HWND hWnd)
{

int TempWindoy
int CurrRowPos
int i=0;

, Row
), RowBegin=0;

/* changed Imagesize to pixel and line */
for (i=0;Pixel- Wmlm: i>ScanSizeX;i++)

nXSeanWindows = i+ 1;

for (

ine-WinInc*i>ScanSizeY;i++)

nYScanWindows = i+1;

W = n 1
iGetScanMemFlag)(

pS:nnWmConrd pToScanWinCoord;
<nScanWindows; i++)
pSeanWinCoordlil=0;

1
else
GetScanMemory(hWnd);

/* Calculate the starting positions of each scan window */

while (TempWindow < nScanWindows) {

155

if (Line-Row < ScanSizeY)
W= Line»SmnSizeY;
RowBegin = Pixel*Row.

for (Cs =0;Pixel-C: i =Wi

2 - I
P! P! 3

]
Curarans = Pixel-! ScnnszeX

pi ‘oord[Temp' gi
Row+=WinInc;

return nScanWindows;

) /*End of GetWinCoord *
/* StoreScanWin Function *

” *

/* Purpose: +

~ *

/* 1)To store the data from the scan window indicated by the function*/
/* argument into an array for the specified number of scans, ¥/

" K

” *

/% Main Variables: */

” *

/% TempOffset - temp var to store the original offset +

/* ScanWinData - global, array to hold the scan window data for ~ */
’” specified number of scans *

/* NumScans - global, specifies the number of scans *

” +

” *

/* Description: &

” *

/% This fanction will store in an array the data for a given scan */
/* window. It will also, for the number of scans specified, open the */

/* appropriate radar data files and append the scan window for cach file */
/* to'the array. This code resembles the code for the SaveFile function. +/

~* *

/* Return: 3.

i *

/* This function will currently has no return value. It should, */

/* however, be modified to return 0 if successful or -1 if the funclmn *
/* failed. 4
)

int StoreScanWin(int Offset, IWND hWnd)
{
int =0, j, numlines, x=0, nScanRow=0, TempOfTset,bytesread;

it Limit, Length, TempScans;
long int VectorSize;

156

BYTE huge *pTempWin;
int posfound, ExtNum,count;
char NextFile[128];

char FileTemp[128];

char FileExt{4];

char FileExt2[4];

BYTE huge *IpSWB;

char *pchar;

pTempWin = pTemp[0];
TempOffset = Offset;
while (nScanRow < ScanSizeY) |
pTemp[0] += Offset;
for (i=0;i<ScanSizeX;i++)
pScanWinDatalx++] = *pTempl0];
pTempl0l++;

1
Offset = Pixel - ScanSizeX;
nScanRow++;

)
pTempi0] = pTempWin;

/* Code to append successive scans to the array. ¥/
VectorSize = FileStatus.st_size-512;

if ((hScanWinBuff = GlobalAlloc(GMEM_MOVEABLE |
GMEM_ZEROINIT,
VectorSize)) == NULL){
MessageBox(hWnd, "Memory Allocation Error.,
“Error 8.8", MB_OK | MB_ICONHAND);
return NULL;
)

if ((pScanWinBuff = (BYTE huge *)GlobalLock(hScanWinBuff)) == NULL){
MessageBox(hWnd “Global Lock Failed.",
"Error 9.7", MB_OK | MB. ICONHAND):
return NULL;
1

IpSWB = pScanWinBuff;

pehar = strstr{OldName,".");
d = pchar - OldName;
-posfound;i++)
NextFileli] = OldNameli];
NextFilelil ="\0';
strepy(FileTemp,NextFile);

while (OldNameli] != "\0")
FileExt[j++] = O)dNamel[i++];
ExtNum = atoi(FileExt);

157

iflEvalAvg)

TempSeans = ScanScans + 1;
else

TempSeans = ScanScans;

for (count=1;count<TempScans;count++)
xtNum+4+;
if (ExtNum < 10)
streat(NextFile,"00");
else if{ExtNum <100 && ExtNum >=10)
streat(NextFile,"0");

itoa(ExtNum,FileExt2,10);
streat(NextFile,FileExt2);
hFile = OpenFlle(Nextl“lle, (LPOFSTRUCT) &OfStruct,
OF_READ);
if (!hFile)(
MessageBox(hWnd, "File Open Error!","Error 33", MB_OK |
MB_ICONHAND);

return NULL;
1

ifli(bytesread =_llseck(hFile, 512L, 0))(/* read the header
off first */
MessageBox(hWnd, "File Open Error!",

“Error 33", MB.OK |
MB_ICONHAND);

return NULL;
)
ifll(bytesread=_lread(hFile,

(LPSTR)pScanWinBuff,FileStatus.st,_size-512))
MessageBox(hWnd, “File Open Error!",

"Error 33", MB_OX
MB_ICONHAND);
return NULL;

)
pScanWinBuff = IpSWB;
Offset = TempOffset;

for T i 5 : &

pScanWinBuff += Offset;
for (i=0ji<ScanSizeX;i++)|
pScanWinDatalx++| =
*pScanWinBuff;
pScanWinBuff+;
Offset = Pixel - ScanSizeX;
|

strepy(NextFile,FileTemp);

158

pScanWinBuff = IpSWB;
_lelose(hFile);

)
pScanWinBuff = IpSWB;
GlobalUnlock(hScanWinBufh;
GlobalFree(hScanWinBuff);

if (EvalAvg)l
ScanSizeX*ScanSizeY*(TempScans-1);

mi
Longth = ScanSizeX*ScanSizeY;

P inDatalx+Length-

;
12);

return 1;
I /* End of StoreScanWin *

void DisplayGraphics HWND hWnd, int window)
I

nSerX = ((wil 1 i
nSerY = (40¢L| ne+nYScanWi ndows”GmphlcSlze)-
(intX(window+1

if (ShowAllFlag || (*classstr =="H' | | *classstr == T
hDC=GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);
hBitmapGraphic = LoadBitmap(hInst, classstr);
if (hBitmapGraphi)

DeleteDC(hMemoryDC);
ReleaseDC(hWnd,hDO);
return;

1
SelectObject(hMemoryDC, hBitmapGraphic);
BitBILhDC,nScrX,nSerY, GraphicSize,GraphicSize,iMemoryDC,
0,0,SRCCOPY);
DeleteDC(hMemoryDC);
ReleaseDC(hWnd,hDC);
DeleteObject(hBitmapGraphic);

void MoveScanWin(HWND hWnd, int window)
int check;

DoSwapVideo();

159

check = (window+1)%(nXScanWindows);

if (PrevY-Winlne >= 20 && EndRow) {
OrgY -= Winlng;
PrevY -= Winlnc;
EndRow = FALSE;

)

if (PrevY-WinInc < 20 && EndRow) |
Prev’ 3

=20;

OrgY = PrevY+ScanSizeY;
EndRow = FALSE;

if (check || 'window)(
S

erX=0;

if (tBateh){
hRgn = CreateRectRgn(0, 20, XRgn, YRgn);
InvalidateRgn (hWnd, hRgn, TRUE);
DeleteObject(hRgn);

|

else
InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow(hWnd);

hDC = GetDC(hWnd);
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);
ReleaseDC(hWnd, hDO);

PrevX+=Winlnc;
OrgX+=Winlne;

I

if (Icheck && window) {
OrgX = Pixel;
PrevX = OrgX - ScanSizeX;

ifltwindow != nScanWindows-1)
EndRow = TRUE;

SerX=0;
if ('Batch)(
hRgn = CreateRectRgn(0, 20, XRgn, YRgn);
InvalidateRgn (hWnd, hRgn, TRUE);
DeleteObject(hRgn);

else

InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow(hWnd);

hDC = GetDC(hWnd);
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, Org¥);
LineTo(hDC, OrgX, Org¥);
ReleaseDC(hWnd, hDC);

PrevX=0;
OrgX=ScanSizeX;

void WriteFileHeader(FILE *fp){

int numchar,j,i;

fprintRip,"%5u",ScanSizeX*ScanSizeY*ScanScans):
numchar = 5;

J = forintflfp,"x");
numchar += j;

j = fprintf(p
numchar += j;
while (numchar < (5*64))
[j=fprintfifp,"x");

numchar += j;

%4d pixels”,ScanSizeX);

j=fprintfifp,"%4d lines",ScanSizeY);

numchar += j;

while (numchar < (6*64))

| j=fprintfifp,"x");
numchar +-.

|

while (numchar < (64+8))
j = fprintfifp,"x");
numchar += j;
) /* header 512 bytes */

!
void WriteSpecFileHeader(void){

int numcharj

161

f'prml.ﬂsp,"%ﬁu" ,Spixel*Sline);
numchar =

45 4);i++)
fprintflsp,'x");
numchar += j;

for (i=6;i
(

)

j = fprintflsp,'%4d pixels",Spixel);

numchar += j;

while (numehar < (5460

{ jefprintfisp,"x")
‘numchar += j;

}

J=fprintfsp,"%4d lines" Sline);

numchar

while (numchar < (6*64))

1 j=fprintflsp,"x"),
numichar +=

i

/* header 512 bytes */

int GetNextFile(int count)

int i,j=0, posfound;
char FileTemp[128];
char FileExt[4];
char FileExt2(41;
char *pchar;

pehar = strstr(OldName,".");

posfound = pehar - OldName;
for (i=0;i<=posfound;i++)

NextFileli] = OldNamelil;
NextFilelil = '\0';
strcp_y(Fl!eTemp,NenFﬂe)

while (OldNamelil
FileExtlj++| = OldNameli++};

ExtNum = atoi(FileExt);

ExtNum+=count;

if (ExtNum < 10)
streat(NextFile,"00");

else iflExtNum <100 && ExtNum >-10i
streat(NextFile,"0");

itoa(ExtNum,FileExt2,10);
streat(NextFile,FileExt2);
return 1;

162

void WriteToFile(BYTE huge *pScanData, long position, FILE *fp)
[
int i, k, numlines;

for (k=0jk<position;k++)
pScanData++;
for (numli numlines < ScanSizeY; numl| (
if (numlines != 0)
[for (i=0;i<(Pixel-ScanSizeX);i++)
pScanData++;

1
for (i:0;i<ScanSizeX;i++)
|

fprintfifp,"%c", *pScanData);
pScanData++;

|
int WriteToBuffer(int fileoffset, int count, HWND hWnd)
{

int i, numlines,x;
int hFile bytesread;
long bytes =
BYTE huge *pToRead;

if ((hReadBuffer = GlobalAllol GMEM_MOVEABLE | GMEM_ ZLROINIT
File eSLBlus st_size-512)) U

‘Memory Allocation Err
"Ermra 9", MB_OK | MB_] ICONHAND)
return NULL;

NULL){

i = (BYTE huge *)GlobalLock(
MessageBox(hWnd, "Global Lock Failed.",
"Error 9.8", MB_OK | MB_ICONHAND);

return NULL;

pToRead = pReadBull

P ((hFile - OpenFile(NextFile, (LPOFSTRUCT) &0fStruct,

EAD)) =:

MessageBox(hWnd, "Error openmg file.", "FAILED!", MB_OK |
B_ICONINFORMATION);

)
bytes = _lseck(hFile, 512L, 0); /*read the header off first */
if (tbytes)l
MessageBox(hWnd, "seek error.",Error", MB_OK |
MB_ICONINFORMATION);
return NULL;

bytesread = _| ile, (LPSTR! il st,_size-512);

163

if (bytesread)(
MessageBox(hWnd, NextFile,"Error reading NextFile", MB_OK |
MB_ICONINFORMATION);
return NULL;
)

PReadBuffer = pToRead;
PReadBuffer-+=fileoffset;
x=0;

/* changed Memsize to Line*/

numlines < MemSizeY; numlines++)(
if (numlines != 0)
PReadBuffer+=Pixel-ScanSizeX;

for (numlines=(

i)
1 Fill in white space

*pDisplayBuffer|count |=(BYTE)250;
pDisplayBuffer(count |++;

pAverageBufferlx++}+=BYTE)250;

elsel

*pDisplayBufferlcount | =
*pReadBuffer;

pAverageBuflerlx++| +=
*pReadBuffer;

pDisplayBufferlcount|++;

pReadBuffors-+;
Il
else
for (i=0;i<MemSizeXi++)l /*Fill in while

space ¥/

*pDisplayBufferlcount |=(BYTE)250;
pDisplayBufTerlcountl++;
pAverageBuffer|x++ 1+=(BYTE)250;

)
pReadBuffer = pToRead;
close(hFile);
GlobalUnlock(hReadBuffer);
GlobalFree(hReadBuffer);
return I;

int WriteBitmap(HWND hWnd, BYTE huge *data, int X, int Y, int count)

hDC=CetDC(hWnd);

if (hDC == NULL)
Messangux(hWnd "GetDC failed",
r 13", MB_ OK | MB_LICONHAND);

return NULL;

|
hMemoryDC = CreateCompatibleDC(hDC);
if (hMemoryDC == NULL)(

, "CreateCompati
"Error 13", MB_OK | MB, ICONHAND),
return NULL;
L
DC,
(LPBITMAPlNFDHEADERY&(pB|tInfo->hm|Henrler 5
CBM_INIT, (LPSTR)data,
(LPBITMAPINFO)pBitinfo,DIB_RGB_COLORS)== NULL) {
MessageBox(hWnd, "Not enough memory for

bitmap.",
“Error 13", MB_OK i
MB_ICONHAND);
ReleaseDC(hWnd,hDC);
DeleteDC(hMemoryDC);
return NULL;
! SeleetO!

B|LBluhDC XY MemSlzeX MemSlzeY hMemnryDC 0,0,SRCCOPY);
electObject(C, hi

DelewOhject(thmnpl'caunU).

ReleaseDC(hWnd,hDC);

DeleteDC(hMemoryDC);

return 1;

)
void DisplayTextHWND hWnd)

it AvglmageFlag)
TextPosX=2*(Pixel+20);
else
TextPosX=Pixel+20;

TextPosY=ScanSizeY+30;
hDC = GetDC(hWnd);
if (NumOut == 3)(
TextOut(hDC,
TextPosX,TextPosY,evaluation,strlen(evaluation));
TextOut(hDC, TextPosX,TextPosY+20,strcat(amtclutter, " % Clutter
)
,strlen(amtclutter));
TextOut(hDC, TextPosX,’ TexansYMO ,streat(amtnoise, " % Noise *)
strlen(amtnoise));
TextOut(hDC, TextPnsX,TextPnstG(] strcat(amttarget, " % Target

Jstrlen(amttarget));

165

TextOut(hDC, TextPosX,TextPosY,streat(amttarget, " %
Target, ")
strien(amttarget));
ReleaseDC(hWnd,hDC);
i

int Evaluate(HWND hWnd)
{

int i.test;

iflimageFlag)
return NULL;

SetCursor(hHourGlass);
if (First)
GetWinCoord(hWnd);

SelectGraphicBitmap(;
CreateOutFileName();
fin2 = fopen(OutName,"w™);
if(Mfin2)(
MessageBox(hWnd, "Error opening file.","Error X', MB_OK |
MB_ICONHAND);
return NULL;

1
if (EvalAvg)
fprintffin2,"average\n";

fprintf1fin2,"%s\n" NetFileName);
fprintf{fin2,"%bs\n", FileName);
fprintffin2,"%d\n" Winlnc);
fprintflfin2,"%d\n",NumScans);
fprintf(fin2,"%d\n",NumOut);
fprintffin2,"%d\n",nXScanWindows);
fprintRfin2, "%d\n",nYScanWindows);
fprintflfin2,"%d\n",ScanSizeX);
fprintflfin2,"%d\n",ScanSizeY);
fprintffin2,"%d \n", Pixel);
fprintfifin2,"%d\n",Line);

ScanSizeX;
ine+20-ScanSizeY;

OrgY = Line+20;

nSerX=0;

XRgn = Pixel+1;
YRgn = Pixel+21;

VideoFlag = ShowAllFlag;

for (i=0;i<nScanWindows;i++)|

if (VideoFlag) MoveScanWin(hWnd,i);

ifBatch)l
TextOut(hDC, 130, 20, string, strlen(string));
TextOut(hDC,
137,45, FileName,strlen(FileName));
i

ifi(test = StoreScanWin(pScanWinCoord{il,hWnd)) ==

NULL)
MessageBox(hWnd, "Null,NULL, MB_OK |

MB_ICONIHAND);

blocktst();
if (fin2){
d<=NumOut;j-
fprintflfin2,’ "'M\n".yhalljl)
forintRfin2,"\n"),
|
if (!Batch)l
WriteImageClass();
DisplayGraphics(hWnd,i);
DisplayTexthWnd);

1

if (felose(fin2) != 0)
MessageBox(hWnd, “Error closing file.", Error 6", MB_OK |
MB_ICONIIAND);
elsc ift!Batch)l
strepy(GraphFileName,OutName);
if (GetGraphichWnd))
return NULL;

)
return 1;

!
/* Code to free all allocated memory on WM_EXIT or WM_CLOSE */
void FreeMemory(HWND hWnd){

inti;

ResetPallette();

FreeAvgMemory();
GlobalUnlock(hPixelRecord);

pi =
GlobalUnlock(hPixelRecord2);

P =
GlobalUnlock(hImageAvgByte);

167

G!obalUnlock(h]nMonst.erArrl)

GlobnlUnlock(hScBnWlnCWrd)

GlobalUnlock(hlmngeDam)

GlobalUnlock(hImageDamZ);

GlobalUnlock(hScanWinData);

inData = inData);
DeleteObject(hBitmapImage);
DeleteObject(hOldBitmaplmage);
unlock_ram();
GlobalUnlock(hBitInfo);
pBitlInfo = GlobalFree(hBitlnfo);

T (i=0;i<nScanCount;i++)|
DeleteObject(hBitmaplil);
DeleteObject(hOldBitmaplil);
GlobalUnlock(hScanBufferlil);

il = GI

|
if (!ClearAll) (

Destroy Window(hWnd);
if ("Wnd == hWndMain)
PostQuitMessage(0);

)
/* Determined the Graphic size to use for the cartoon */

void SelectGraphicBitmap(void){

nSerY=| L|ne+40+Graph|cS|ze'(nYScanW|ndnws 1;

if (nSerY > 440)(
GraphicSize=8;
nSerY=Line+40+GraphicSize*(nYScanWindows-1);

|

if (nSerY > 440)(
GraphicSize=6;
nSerY=Line+40+GraphicSize!(n¥ScanWindows-1);

|

if (nSer > 440)(
GraphicSize=4;
nScrY=Line+40+GraphicSize*(nYScanWindows- 1);

)

if (nSerY > 440)(
GraphicSize=3;
nSerY=Line+40+GraphicSize*(nYScanWindows-1);

168

if (nSerY > 4401
Graphi

nSerY=!
|

ize=1;
Line+40+GraphicSize*(nYScanWindows-1);

switch(GraphicSize)l
case 12:

case 6:

case 4:

case 3:

strepy(Noxx,"No12");
strepy(Lexx,"Le12");
strepy(Mexx, Me12”
strepy(Hexx, "Hel2
strpy(Stxx,"St12');
strepy(Ltxx,"Lt12");
strepy(Htxx,"Ht2");
ook

strepy(Noxx,"No08");
strepy(Lexx,"Le08"
strepy(Mexx,"Me0!
strepy(Hexx,"He08'
strepy(Stxx,"St08"
strepy(Ltxx,"Lt08");
strepy(Htxx,"Ht08");
break;

strepy(Noxx,"No06");

strepy(Lexx, "Le06");

strepy(Hexx,"He06");
strepy(Stxx,”"St06");
strepy(Ltxx,"Lt06");
strepy(Htxx,"Ht06");
break;

strepy(Noxx,"No04");
strepy(Lexx,"Nob4
strepy(Mexx,"No04
strepy(Hexx,"No04
strepy(Stxx, Tri4")
stropy(Ltxx, Tr04");
strepy(Htxx, Tr04");
break;

strepy(Noxx,"No03".
strepy(Lexx,"No03
strepy(Mexx,"No03");
strepy(Hexx,"No03");
strepy(Stxx, “Tr03");
stropy(Lixx, Tr03");

169

strepy(Htxx, “Tr03");
break;

case 1:

strepy(Noxx,"No01™);
strepy(Lexx,"No01");
strepy(Mexx,"NoOL');
strepy(Hexx,"No01");
strepy(Stxx, Tr01"
strepy(Lixx,"Tr01"
strepy(Htxx, "Tr01’
break;

|
}/* End of SelectgraphicBitmap */

void network(void) {

int id;
longint ref=0L;
double val,net;

l‘msert. inputs*/
neuron;i++)

pSeanWinNormlil = (loat huge) ((float huge)
pScanWinCopy[i 'NORM);

for (i=neuron+1;i<=neuronstotal;i++)
(

for (j=1ij<=neuronij++)
val = (doublelplpMonsterArr1lrefl;
net = net + val*(double)pScanWinNorzljl;
ref = ref + 1L;

1
pScanWinNormlil = 1.0/(1.0+exp(-net*LAMDA));

for G 1L NumOutii++)

{

net = 0.0;

for (j=neuron+ 1ij<=neuronstotal;j++)

(
val = (double)plpMonsterArr i refl;
net = net + val*(doublelpScanWinNormjl;
ref=ref + 1L;

1
pScanWinNormlil = 1.0/(1.0+exp(-net*LAMDA));

170

for (i=1;i<=NumOut;i++)
yhatlil = pScanWinNormli+neuronstotall;

| /* End of network function */

int neurons(HWND hWnd) (
int i
float ww_val;
FILE *finl;

long int dex=/

L;
fin1 = fopen(NetFileName,"r");

if (finl)(
MessageBox(hWnd, "No finl.",

"Error 6", MB_ OK | MB_ICONHAND);
return NULL;
|

for (i=neuron+1;i<=neuronstotal;i++)(

sj<=neuronzj++)|
fscanf(finl,"%f ", &ww_val);
plpMonsterArr1[dex] = ww_val;
dex = dex + 1L;

for (i i -NumOut;i++){
for (j=neuron+Lj<=neuronstotalj++){
fscanf(fin1,"%f ", &ww_val);
plpMonsterArr1[dex] = ww_val;
dex = dex+ 1L;

1
1
felose(fin1);
return 1;
|/*END ¥
int nettst HWND hWnd)
neuron = (long xnnscnns.zex's:ansﬂev*NumSmns.
1 =(long
memoryl = uongmn
(N NumOut+ 1L NumL NumOut+1L));

if (plpMonsterArr1 I= NULL)(
GlobalUnlock(hlpMonsterArr1);
1=G)

171

if ((hipMonsterArr1 = GlobalAlloc(GM EM_MOVEABLE |
GMEM_ZEROINIT,
memory 1 *sizeofldouble))) = NULL)(
(hWnd, "Memory Allocation Error.
"Error 8.11",MB_OK | MB. lCONHANlJ];
return NULL;

if (plpMonsterArr1 = (double huge *)GlobalLock(hipMonsterArr1)

MessageBox(hWnd, "Global Lock Failed.",
"Error 9.9", MB_OK | MB, ICON"I\ND)

return NULL;

)

testdon = donnicarraysthWnd);

if (plpMonsterArr1)
neuronsthWnd);

return 1;
i

void blocktst(void)
(
int i

for(i=l;i<=neuron;i++)

P! opylil= igned int huge) inDatalil;
network();
for (i=1ji<=NumOut;i++)
if(yhatli] > 0.5)
ythrlil= 1;
else
ythrlil= 0

]

void unlock_ram(void){
GlobalUnlock(hScanWinNorm);
pScanWinNorm = GlobalFree(hScanWinNorm);
GlobalUnlock(hScanWinCopy);
pScanWinCopy = GlobalFree(hScanWinCopy);

)

int donniearraystHWND hWnd) {

172

memaryl = (long int)
((Numlayers+NumOut+1L)*(neuron+NumLayers+NumOut+1L);
‘memoryd = (long int) (neuronstotal+NumLayers+NumOut+1L);

if (pScanWinNorm != NULL)(
Global Unlock(hScanWinNorm);
pScanWinNorm = GlobalFree/ScanWinNorm);
)
if ((hScanWinNorm = GlobalAlloc(GMEM_MOVEABLE |
GMEM_ZEROINIT,
memoryl*sizeofldouble)) == NULL)(

MessageBuxth¥nd, Memory Allocation Error.”
rror 812", MB_OK | MB_ICONHANDY;

return NULL;
|

if ((pScanWinNorm = (double huge *)GlobalLock(hScanWinNorm))

NULLI
Mesﬁageﬂnx(hWnd "Global Lock Failed.",
‘Error9.11", MB_OK | MB ICONHAND);
return NULL;
)
if (pSeanWinCopy '= NULL){
GlobnlUnlack(hScnn\VmCopy),

inCopy = Globi inCopy);

1

if ((hScanWinCopy = GlobalAlloc(GMEM_MOVEABLE |

GMEM_ZEROINIT,
(neuronstotal+1L)*sizeoflunsigned int))) ==

NOULLI
Mesxagcﬂnxthnd "Memory Allocation Error.”,
"Error8.13", MB_OK | MB_ICONHAND);
return NULL;
|

if ((pScanWinCopy = (unsigned inlhuge *)Global LockhScanWinCopy))
ILL)

Mvs%ageﬂnxthnd "Globa] Lock Failed.",
"Error9.12", MBLOK | MB ICONHAND);

return NULL;
)

returnl;

VND hWnd)

int DoTh ionFor TheSmart RadarProject(

char TempAvgFilel80);
long int iJ,n,bytesread bytesmovedx;

173

BYTE AvgVal;
float avemax;

PpReadAvgBuffer = pToReadAvgBufler;

plmageAvgByte = pTolmageAvgByte;

for (x=0;x<(i ‘MemSizeY);x++) pl =0.0;

x =0L;
strepy(TempAvgFile,FileName);

&OfStruct,OF_READ);

if (hFile == -1)(
MessageBoxhWnd, "Image avg file Brror”,
“Error 21", MB_OK |
MB_ICONHAND);
return NULL;
1

bytesmoved = Ilsuek(hFllo, 512L, 0
if (bytesmoved == -1)[
MessageBoxhWnd, " liseck error”,
“Error 98", MB_OK |
MB_ICONHAND);
return NULL;

_Irend(hFile, (LPSTR)pReudAvgBuﬂ'er Pixel
if (bytesread
MessageBox(hWnd, "_Iread error”,
"Error tr", MB_OK | MB_ICONITAND);
return NULL:

|
pReadAvgBuffer = ploReadAvgBufler;
esread:je)l

plmageAvgBullerllongs] 4o (oat
huge)pReadAvgBufferljl;

x+4

_close(hFile);
strepy(OldName,FileName);
GetNextFile(1);
strepy(FileName,NextFile);
pReadAvgBufTer = pToReadAvgBufler;

avemax = -1000.0;
for (i=0;i<Pixel*Linc;i++)|

& il(float

hugre)SeanScans;
1

i=0;i<Pixel*Line;i++){

avemax = max(avemax,pImageAvgBufler(il);

for (i=0;i<Pixel*Line;i++)(
1 B

flerli| = i)*255.0;

i

for (i=0;i<Pixel* Line;i++)|

iflThreshold){
ThresholdAvgFlag = TRUE;
AvgVal = (BYTE huge)plmageAvgBufferlil;
itAvgVal>ThresholdVal)
pImageAvgBytelil=220;
else
plmageAvgBytelil=45;
else |

ThresholdAvgFlag = FALSE;
pImageAvgBytelil = (BYTE
hugelpmageAvgBuflerlil;
i
1

if (himageAvgByte = NULL)
DeleteObject(himageAvgByte);

DoSwapVideo();

hDC=GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);

Pixel*Line;i++)|
plmageAvgBytelil = (BYTE)255 - pimageAvgBytelil;

for (i=

if
«h SreateD] DC,(LPBITMAPINFOHEADER)&(pBitInfo-
>bmileader), CBM_INIT, (LPSTRiplmngeAvgByte PpBitInfo,DIB_RGB_COLORS))
NULL) |

MessageBox(hWnd, "Not enough memory for bitmap.",
"Error 14", MB_OK | MB_ICONHAND);
ReleaseDC(hWnd, hDC);
DeleteDC(hMemoryDCY;
return NULL;
|

SelectObj yDC, hi

175

BitBIt(hDC, 120,20, Pixel,Line,MemoryDC, 0,0, SRCCOPYY;
RelenseDC(hWnd hDC)

DeleteDC(hMemoryDC);

strepy(FileName, TempAvgFile);

strepy(OldName, FileName);

return (1);
int DoTheSpectralmageDisplay(HWND hWnd, int xpos, int ypos)
l

long it ij.n,x;

if 1= NULL) DeleteObjq

DoSwapVideo();

hDC=GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDC);
if
i DC,(LPBITMAPINFOHEADER /&(pBitinfo-
>bmiHeader), CBM INIT (LPSTR)pSpeclmage, pBitinfo,DIB_RGB_COLORS)
NULL) {

MessageBox(hWnd, “Not enough memory for Spoctra

bitmap.",
“Error 14-1", MB_OK | MB_ICONHAND);

ReleaseDC(hWnd,hDC);
DeleteDC(hMemoryDC);
return NULL;

1

SelectObject(t DC, b

BitBIhDC, xpos,ypos, xxsiz,yysi yDC, 0,0 SRCCOPY);

if (SpectraFlag){

StretchhDC = GetDC(hWnd);
StretchBlt(StretchhDC,xpos,ypos+yysiz+20,175,175,hDC, xpos,ypos,xxsiz,yysiz,SRCC
OPY);

ReleaseDC(hWnd,StretchhDC);

)

if (1SpectraFlag) TextOut(hDC,235,5,"Neural Distribution”,19);
ReleaseDC(hWnd,hDC);
DeleteDC(hMemoryDO);
pBitInfo->bmiHeader.biWidth = Pixel;
pBitInfo->bmiHeader.biHeight = Line;

176

pBitInfo->hmiHeader.biSizelmage = (Pixel"Line);

return (1);

int PunchThra(HWND hWnd){
int i, MaxScans;

MemSizeX = ScanSizeX;
MemSizeY = ScanSizeY;
while(MemSizeX%4)
MemSizeX++;
while(MemSizeY%4)

MemSizeY++;
pBitInfc i biWidth =
PpBitlnfc i bifeight = s
pBitInfc i iSi = i lemSizeY;

if {thAverageBuffer = GlobalAlloc(GMEM_MOVEABLE |
GMEM_ZEROINIT,
(MemSizeX*MemSizeY*sizeoflfloat)))) ==

NULL){
, "Memory Allocation Error.",
"Error 8.17', MB_OK | MB_ICONHAND);
return (NULLY;
)
if ((pAverageBuffer = (float huge *)GlobalLock(hAverageBuffer)) ==
NULL){

MessageBox(hWnd, "Global Lock Failed.",
“Error 9.15", MB_OK | MB_ICONHAND);
return (NULL);
|

pToAverage = pAverageBuffer;

if ((hAverageByte = GlobalAllocl GMEM_MOVEABL |
GMEM_ZEROINIT,
(MemSizeX*MemSize)) == NULL)
hWnd, "Memory Allocation Error.
"Error 8.18", MB_OK | MB_ICONHAND);
return (NULLY;

1

if ((pAverageByte = (BYTE huge ‘lGIoba]Lock(hAverageByl.el) = NULL)(
MessageBox(hWnd, "Global Lock Failed.",
"Error 9.16", MB_OK | MB ICONHAND);
return (NULL);

177

pToAverageByte = pAverageByte;

MaxScans = min(5,! SennScnns),
for(i -ScanScans;i+-
hDisplayBulTer[lI = GlabulAllne((‘Ml' M_MOVEABLE |
GMEM_ZEROINIT,

(MemSizeX*MemSizeY));
if (hDisplayBufTer|i] == NULL){
MessageBox(hWnd, "Memory Allocation

Error.,
“Error 6", MB_OK | MB_ICONHAND);
return NULL;
) i] = Global Lock(hDi; :
|f(pD|splayBufferl y
MessageBox(hWnd, "Memory Allocation
Error.”,

"Error 7', MB_OK |
MB_ICONHAND);
memurhn.splnynulrmm)
return NU

i
pToDisplaylil = pDisplayBufferlil;
strepy(OldName, FileName);
GetNextFile(i-1);
WriteToBuffer(fileoffset, i, hWnd);
pDisplayBufferli] = pToDisplaylil;
SetCursor(hSaveCursor);
ifli<=MaxScans){
WriteBitmap(hWnd, pDisplayBufferlil, ScrX,
Ser, i);
ScrX += ScanSizeX+5;

l
pAverageBufler = pToAverage:

for (i=0;i<MemSizeX*MemSizeY;i++)

pAverageByte = pToAverageByte;

SerX 4= ScanSizeX+10;
iteBi ; , SerX, Ser¥, n;

pBitinfo>biteader bitidth = Pixel;
pBitinfo->bmiHeader.biHeight = Lin
pBitInfo->bmiHeader.biSizeImage = [P|xn|'l»mc),

i<=MaxScans+1i++)
GlobalUnlock(hDisplayBufYerlil);
GlobalFree(hDisplayBufferlil);

for (i=:

178

pAverageByte = pToAverageByte;
pAverageBuffer = pToAverage;
GlobalUnlock(hAverageByte);
GlobalFree(hAverageByte);
GlobalUnlock(hAverageBuffer);
GlobalFree(hAverageBuffer);

return 1;

” o
/¥ function ScanGraphic *
” K
/# This function seans an image to determine how many non- ¥/
- connected objects are prescnt. ki

\

int huge ScanGraphic(HWND hWnd,int number){

ixethit,Hval OldHit;

i (mageSet)
return NULL;

if (number =:
mtarpi;
(long)T 1*(long)(Pi (]
if (pPixelRecord == NULL)|
if ((hPixelRecord = GlobalAlloo(GMEM_MOVEABLE
IGMEM_ZEROINIT,

i

mtarpix)) = NULL){
, "Memory All rror.",

“Error 8. 19", MB_OK |

MB_ICONHAND);

return (NULL);
i
if (pPi: = (int huge *)GlobalL i ==
NULL)
MaossngeBox(hWnd, "Global Lock Failed.","Error 9.1", MB_OK | MB_ICONHAND);
return (NULL);

)

1
/* resct PixelRecord array */

179

ber;i++)
j<PixelNumberg++)

for (i=0;i<TargetNum|
for

pPixelRecord|i*PixelNumber+j] = -1;
]

if (number == 2)(
mtarpix =
(long)(1*(long)(Pi D*(long)sizeofint);
if (pPixelRecord2 == NULL){
if ((hPixelRecord? = GlobalAlloc(GMEM_MOVEABLE
|GMEM_ZEROINIT,

mtarpix) == NULL){
“Memory Allocation Error.","Error 8.20", MB_OK |

MB_ICONHAND);
return (NULL);
)

f (pPi = (int huge *)GlobalL i ==

NULL)(

MessageBox(hWnd, "Global Lock
Failed.",

"Error 9.1", MB_OK |
MB_ICONHAND);

return (NULL);
!

/* reset PixelRecord array */

for (i=0i<TargetNumber;i++)
for (j=0;<PixelNumber;j++)

pPixelRecord2|i*PixelNumber+j| =
)

Hval = (int)(float)TarVal)/4.0;

for (i=0;i<nScanWindows;i++)(

1

Pixelhit = (int)100.0*pImageDataliD;
if (number == 2)

Pixclhit = (int)(100.0*pImageDnta2lil);

if (Pixelhit < Hval)
Pixelhit = 0; //Pixelhit is 1 for a Larget

if (Pixelhit)
OldHit = CheekOldHit(i,number);
if (10ld il
targetpixels
IdentifyBliphWnd,i,number);

180

targetsG++;
if (targetsG>TargetNumber){

targetsG =
TargetNumber;
return NULL;
i
)
I
l
return 1;
!
" hed
1% function SeanImageAvg U
" *
/* This function scans an averaged anf thresholded L
/* image to determine how many non- connected objects */
/' are present. Y
*

int huge ScanImageAvg(HWND hWnd)|

long int i,j,Pixelhit, Hval=100,01dHit;
targets
targetpixels = 0;

Pixelhit=0;
OldHit=0;

if (plmageAvgByte == NULL)
roturn NULL;

if(pPix::chmrd = NULL)|

mtarpix = (long) 1
i (hPixelRecord = GlabalAlloo(GMEM MOVEABLE
|GMEM_ZEROINIT,
NULL)
, "Memory Allocat

mtarpix))

Error.",
"Error 8.21", MB_OK |
MB_ICONHAND);
return (NULL);

il ((pPi: = (int huge *)GlobalL i == NULL){
MessageBox(hWnd, "Global Lock Failed.",
“Error 9.1", MB_OK | MB_ICONHAND);
return (NULL);

181

1
/* reset PixelRecord array */

for (i=0;i<TargetNumber;i++)
for (j=0;j<PixelNumberij++)

pPixelRecord!i*PixelNumbers+jl

for (i=0;i<Pixel*Line;i++)(

Pixelhit = (int)(pImageAvgBytelil);

if (Pixelhit > Hval)

Pixelhit = 0; //Pixelhit is 1 for a target.

if (Pixelhit){
OldHit = CheckOldHit(i,1);
if (101dHit)|
Largetpixels
ldcnufylmngcl)hp(hWﬂd i
targetsl++
if (targetsI>TargetNumben|
targetsl =
TargetNumber;
return NULL;
)
)
)
|
return 1;
)
/ 1
" “
/* function IdentifyBlip “
*
% This s a recursive function which determines the extents */
r and location of each object in the seaned image. ~ */
A4
/‘ *
1
int huge IdentifyBlip(HWND hWnd,int HitPosition,int number)|

int Pixelhit,Hval,OldHit;

if (HitPosition < 0)
return;

182

Hval = (int)(float)TarVal)/4.0;

if (number == 1)

Pixelhit = (int)(100.0*pImageDatal HitPosition]);

if (number

if (Pixelhit < Hval)

)
Pixelhit = (int)(100.0*pImageData2[HitPosition]);

Pixelhit = 0; //Pixelhit is 1 for a target
if (Pixelhit)
/*if (IFirstPixe)*/
OldHit = CheckOldHit(HitPosition,number);
/* Record new hit */
if (101dHit){
if (number == 1)
pPi (F ixels| = Hi
if (number ==
P ixels] = HitPosition;
targetpixels++;
if (targetpixels>PixelNumber)|
targetpixels =
PixelNumber;
return NULL;
i
/* Lower left corner */
if (ScanPos == 0){
3 ber);
ip(hWnd,HitPositi 1,number);

IdentifyBlip(hWnd,HitPosition+1,number);

nXScanWindows){

l
/* Lower right corner */

else if' (HnPosmnml ==

-1,number);

1dentifyBlip(hWnd,HitPosition-1,number);

183

 number);

)

/% Upper left corner */

nScanWindows-nXScanWindows)(

else if (HitPosition ==

1,number);
IdentifyBlip(hWnd, HitPosition+1,number);
fyBlip) ,number);
)
1* Upper right cornor ¥/
else if (HitPosition+ 1 ==
nSeanWindows)(

IdentifyBlip(hWnd,HitPosition-1,number);

;) number);
| HitP -1,number);
retern 1;
1
/* Against left side */
else if’
((HitPosition%nXScanWindows)==0)(
dentifyBlip E number);
 HitP s+1,number);

IdentifyBlip(hWnd,HitPosition+1,number);

1,number);
ifyBlip number);
/* Against right side
clse
it 1+1

s-1,number);

IdentifyBlip(hWnd,HitPosition-1,number);

,number);

1,number);

184

number);

/* Last Row */
else if (HitPosition >=
nScanWindows-nXScanWindows)(
IdentifyBlipthWnd,HitPosition+ 1,number);
ifyBli A 1,number);
IdentifyBlipthWnd,HitPosition-1,number);
,number);
1,number);

/* First row */

else if (HitPosition+1 <
nXScanWindows)(
L HitP 1,number);
number);
 HitPositi i 1,number);

IdentifyBlip(hWnd,HitPositions 1,number);

IdentifyBlipthWnd, HitPosition-1,number);
1

/* Inside ¥/
elsel
1,number);
Y number);
ipthWnd, Hi 1,number);
IdentifyBlip(hWnd,HitPosition+1,number);
i 1,number);
(yBlip) ,number);
D HitP 1,number);

identifyBlip(hWnd,HitPosition-1,number);

185

1

return 1;

/ /
” *

/* function IdnetifyImageBlip *

” *

/* This is a recursive function which determines the extents */

/* and location of each object in the averaged thresholded */
/*image. *

” *
”* *

int huge IdentifylmageBlip(HWND hWnd,int HitPosition)|
int Pixelhit, Hval=100,0ldHit;
Pixelhit = (intXpImageAvgBytel HitPosition|);

if (Pixelhit > Hval)
Pixelhit=0; //Pixelhit is 1 for a target

if (Pixelhit)(
OldHit = CheckOldHit(HitPosition,1);

/* Record new hit */

if (101dHit){
P! « HitPosition;
targetpixels++;
if (target pixels>PixelNumber)|
targetpixels =
PixelNumber;
return NULL;
1
/% Lower left corner */
if (SeanPos == 0)(
liphWnd, HitPosition+Pixel);
2 Pixel+1);

IdentifyImageBlip(hWnd,HitPosition+1);

186

/* Lower right corner */

else if (HitPosition+1 == Pixel){

Pixel-1);

osition+Pixel);

IdentifylmageBlip(hWnd,HitPosition-1);
]

7% Upper left corner */

else if (HitPosition == Pixel*Line-
Pixel){

IdentifylmageBliphWnd,HitPosition-Pixel+1);
IdentifylmageBlip(hWnd, HitPosition+ 1);

IdentifyImageBlip(hWnd,HitPosition-Pixel);

/* Upper right corner ¥/

else if (HitPosition+1 == Pixel*Line)(
IdentifyimageBlipthWnd, HitPosition-1);
IdentifyImageBlipthWnd,HitPosition-Pixel);
IdentifyImageBlip(hWnd.HitPosition-Pixel-1);

return 1;

!

/* Against left side ¥/

else if ((HitPosition%Pixel)==0)(
IdentifylmageBlip(hWnd, HitPosition+Pixel);
IdentifylmageBliphWnd, HitPosition+Pixel+ 1);
IdentifylmageBlipthWnd, HitPosition+ 1);
IdentifyImageBlip(hWnd, HitPosition-Pixel+1);

Pixel

}
1* Against right side ¥/

else ift(HitPosition+1)%Pixel

187

IdentifyImageBlip(hWnd,HitPosition+Pixel-1);
IdentifylmageBlipthWnd,HitPosition+ Pixel);
IdentifylmageBlip(hWnd,HitPositiop-1);
IdentifylmageBlip(hWnd,HitPosition-Pixel-1);
IdentifylmageBlip(hWnd,HitPosition-Pixel);

|

/* Last Row */

else if (HitPosition >= Pixel*Line-
Pixel)(

IdentifylmageBlip(hWnd, HitPositions 1);
IdentifylmageBlip(hWnd, HitPosition-Pixel+1);
IdentifyimageBlip(hWnd,HitPosition-1);
IdentifylmageBlip(hWnd HitPosition-Pixel);

IdentifylmageBlin(hWnd HitPosition-Pixel-1);
1

/* First row */
else if (HitPosition+1 < Pixel)|
IdentifylinageBlip(hWnd,HitPosition+Pixel-1);

IdentifylmageBlip(hWnd HitPosition+Pixel);

osition-+Pixeb 1);
IdentifylmageBlip(hWnd, HitPosition+1);

IdentifylmageBlip(hWnd,HitPosition-1);
|

1# Inside #/
else|
IdentifylmageBlip(hWnd, HitPosition+Pixel-1);

IdentifylmageBlip(hWnd,HitPosition+Pixel);

HitPosition+ Pixel+1);

188

IdentifyImageBlip(hWnd, HitPosition+ 1);
IdentifyImageBlip(hWnd,HitPosition-Pixel+ 1);
IdentifylmageBlip(hWnd,HitPosition-Pixel);

IdentifyImageBlip(hWnd,HitPosition-Pixel-1);

IdentifyImageBlip(hWnd,HitPosition-1);

return 1;

" *
/* function CheckOldHit b
b {
/‘ This function checks the PixelRecord array Lo see if the */
/% current pixel has already been mc]udcd g
”

! '/

int huge CheckOldHit(int HitPosition, int number){

OldHit,
1 Chock if already found */
OldHit = 0;

if (number == 1)
for (i=0;i<TargetNumber;i++)
for (j=0;j<PixelNumberj++)
il (pPixelRecord|i*(PixelNumber)+j|

-1
break;
else |f'(pl’lxnmccnrd[l’U’lxclNumhcr}n! =
HitPosition)

OldHit = 1;

;i<TargetNumber;i++)
ir(ppixemccardmmmxemumhumjl =

<PlchNumbnr_|
|NnP)xelRacnrd2‘v'(P:xclNumhuml

for (3=

189

3=0;
break;

|
else if (pPixelRecord2li*(PixelNumber)+jl ==
HitPosition)

OldHit = 1;

if (number == 3)
for (j=0;j<PixelNumber;j++)
if (pAddFirRecord1lj

break;
else if (pAddFirRecord1lj]
OldHit = 1;

if (number == 4)
for (j=0j<PixclNumbersj++)
if (pAddFirReeord2lj! -

-1

break;
else :r(pAddnrRewdzm
Hit = 1;

return (OldHit);

int huge PaintBlack(HWND hWnd, int window)
|
int Ystart,line,Xpos;

Ystart = nYScanWindows*GraphicSize+Line+40;
line wmdow/nXScanWmdaws

Vsmrt (lmc’(}rnpth:zc) Grnp}ucSlzc,

hDC=GetDC(hWnd);
hMemoryDC = CreateCompatibleDC(hDO);
hBitmapGraphic = LoadBitmap(hInst, “BlackBox");
if (hBitmapGraphic == NULL) {
DeleteDC(hMemoryDC);
ReleaseDC(hWnd,hDC);
return NULL;

1

SelectObjeet(yDC,

BitBIt(hDC,Xpos,line,GraphicSi: icSi yDC,
0,0,SRCCOPY);

DeleteDC(hMemoryDC);

ReleaseDC(hWnd hDC);

DeletcObject(hBitmapGraphic);
return 1;

/* Statistical evaluation routine */
int DoStatstHWND hWnd) {
intigk;
/* initialize TargetPos */
for(i=0;i<Mark TargetNumber;i++)

for(j=0;j<MarkPixeINumber;++)
TargetPoslilljl = -1;

for(i=0;i<MarkTargetNumber;i++)
for(j=0;j<MarkPixeINumber;j++)
TargetWinliljl = -1;

TargetNo =
CurrPixel
ImageTar = 0;

ImageTarIndex = 0;

if (Targetdat = fopen(“target.dat","r")) != NULL){
while (CurrPixel != -1)|
if (fscanfTargetdat,"%d",&CurrPixel) != 1)

reak;
else if (CurrPixel == -1)
TargetNo++;
1
while (fscanft Targetdat,"%d",
if (CurrPixel
TargetNo++;
ImageTar++;
ImageTarIndex = 0;

&CurrPixel) != EOF)(
-Df

1

else
TargetPos|ImageTar || ImageTarlndex++| = CurrPixel;

)
)
else

return NULL;
felose(Targetdat);

/* Set up the TargetWin array */

i = n i s;
PosSubX=ScanSizeX/2;
nSizeY/2;
ixel*PosSubY+PosSubX;

for (i=0;i<MarkTargetNumber;i++)
for (j=0;j<MarkPixelNumber;j++){
CurrPixel = TargetPosfilljl;

if(CurrPixel ==-1)

CheckConmdearePixel CheckPos;
for(k=0;k<nScanWindowsk-++)
iftCheckCoord

pScanWinCoord(k)

TargetWin[i
by

ak;
)
CurrPixel = 0;

if (1TmageSet){
MessageBox(hWnd,"ImageData not
loaded.","Error",MB_OK | MB_ICONHAND);
return NULL;
!

SetCursor(hHourGlass);

if (CorrelFlag)
if (!ScanGraphicthWnd, 1))
MessagsBox(hWnd, “ScanGraphic
error.","Error",MB_OK | MB_ICONHAND);
return NULL;
)

/¥ Loop to check I'or tnrgets *
nFalseAlarm
TargetFound
for(i= .|<Mark'rargemumber i+4)
;j<MarkPixelNumber;j++)
if (CheckOldHit(TargetWinlil[jl, 1)(
TargetFoundGr+;
break;

I

if (ThresholdAvgFlag)|
targetsl = 0;
if (!ScanImageAvg(hWnd))|
MessageBox(hWnd, "ScanImageAvg error.",
“Error’, MB_OK | MB_ICONHANDY);
return NULL;
!

/* Loop to check for image average targets */

nFalseAlarmi
TargetFoundl

0;

192

for(i=0;i<MarkTargetNumber;i++){
for(j=0;j<MarkPixelNumber:j++)
if (CheckOldHit(TargotPostilljl, 1Ml
TargetFoundl++;
reak;

1

return 1;

/* Function to write the stats information to the screen */
int WriteStatstcHWND hWnd){
hDC=GetDC(hWnd);

/* Do stats for the Graphic */
/* Print number of objects */

strepy(Ntarstr, Statistics for the Network");

TextOut(hDC,GraphicSi i 20,Line+40,Ntarstrstrlon(Ntarstr);

temptar = targetsG;
itoa(temptar,Ntarstr,10);
streat(Ntarstr," objects found. ");

TextOut(hDC, icSi indows+20,Line+60,Ntarstrstrlon(Ntarstr));
/* Print number of targets */

itoa(TargetFoundG,Ntarstr,10);
streat(Ntarstr,’ targets found of);
itoa(TargetNo,Ntottar, 10);
streat(Ntarstr,Ntottar);

TextOut(hDC, icSi i 20,Line+80,Ntarstr,strlen(Ntarstr));

/* print number of false alarms */

mG = targetsG-T
itoa(nFalseAlarmG; Nfalscalarm, 10);
streat(Nfalsealarm,” false alarms.

TextOut(hDC, icSize*nXScanWindows+20, Line+100, strlen(Nfals
alarm));

/* Do stats for the Image */

193

if (ThresholdAvgFlag)
/* Print number of objects */

strepy(Ntarstr,"Statistics for the Image.");

TextOut(hDC, icSis i 20,Line+140,Ntarstr,strien(Ntarstr));

temptar = targetsl;
itoa(temptar,Ntarstr,10);
streat(Ntarstr,” objects found. ");

TextOut(hDC, icSi canWi 20,Line+160,Ntarstr,strlen(Ntarstr));

/* Print number of targets */
itoa(TargetFound],Ntarstr,10);
streat(Ntarstr,” targets found of ");
itoa(TargetNo,Ntottar,10);
streat(Ntarstr,Ntottar);

TextOut(hDC,Gi icSi: i 20,Line+180,Ntarstr,strlen(Ntarstr));

/¥ print number of false alarms */
nFalseAlarml = targetsl-TargetFoundI;
itoa(nFalseAlarml,Nfalsealarm, 10);
streat(Nfalsealarm," false alarms.

TextOut(hDC,Gi icSi: i 20,Line+200,
alarm));

ReleaseDC(hWnd,hDC);

SetCursor(hArrow);

return 1;

/* Function to save the statistics evaluation to a file */
int SaveStatstHWND hWnd){
FILE *stats;

float DetectEM=
float FalseAENG=0.0,PerformI=

0,Detect EffG=0.0,False AEf1=0.0;
.0,PerformG=0.0,Batchss=0.0;

'‘a+")) == NULL)

if ((stats = fopen("stats.d
return NUI

194

Batchss = (float) max(GraphicNumber, 1);

if (StatsHeader Flag){
targetsTAvg = 0.
targetsGAvg =
nFalseAlarmlAvg = 0.0;
nFalseAlarmGAvg = 0.0;
TargetFoundlAvg = 0.0;
TargetFoundGAvg = 0.0;
SetUpLaserJet(stats);
fprintfistats,"\t\t\tPAGE %d \n",Pago);
fprintflstats,"\nName of weight file ... %s\n",NetFileName);
fprintfistats,"Starting file ... %s\n",FileName);
forintf(stats,"The number of processed files ..

%2.0\n",Batchss);
fprintflstats,"The Network threshold = %d\n",TarVal);
fprintflstats,"The Scan-to-Scan threshold =
%d\n",ThresholdVal);
fprintfstats,"The number of identified targets =
%d\n",TargetNo);
LinesPrinted=10;
if (Correl Flag){
fprintfistats,"Graphic correlation ON\n");
LinesPrinted++;

|

if (AverageEvalFlag)(
fprintfistats,"Average evaluation ON\n");
LinesPrinted++;

)
fprml.ﬁsbabs,"\n").
if (IEvalSeriesFlag)
fprmmsml.s "\E\EAL\E\tObject\LTarget \tFalse
alarm\n");
ilFormFeed(stats))
fprintfistats, "\t\e\PAGE %d\n", Page);
StatsHeaderFlag = TRUE;

1 mG = targetsG - Targ G;
Larget,sGAvg = targetsGAvg + (float)targetsG;
nFalseAlarmGAvg = nFalseAlarmGAvg +
(float)nFalseAlarmG;

[= Targ +

(float)TargetFoundG;

if (ThresholdAvgFlag)l
nFalseAlarm = targots! - TargetFoundl;
+ (foat)argetsl;

nFnlseAlurmlAvg = nFalscAlarmIAvg +
(floatinFalseAlarml;

TargetFoundlAvg = TargetFoundlAvg +
(float)TargetFoundT;

195

if (tEvalSeriesFlag)(
fprintfistats,"\n%s\n" FileName);
fprintfistats, Neural net MAt\MAL %d\t\t %d\t\t
“%d\n",targetsG, TargetFoundG,nFalseAlarmG);
LinesPrinted +=3;

if (ThresholdAvgFlag)(
fprintfistats,"Scan to scan\t\E\L %d\t\t %d \t\t
%d\n" targetsl, TargetFound],nFalseAlarml);
LinesPrinted++;
iftFormFeed(stats))
fprintfistats, "\t\t\tPAGE %d\n",

Page);
1
i
if (LastBatchFlag)(
targetsTAvg = targetsIAve/Batchss;
targetsGAvy zargeszAvg/Bauhss,
lseAlarmlAvg =
AlarmG.
Targe Avg g
Targy = Targ
DetectEffl = TargetFoundIAvg/TargetNo*100.0;
DetectBAG = TargetFoundGAvg/TargotNo*100.0;
100.0;
FalseAEfG = nF’nlseAlnrmGAvg/nScanWmdnws*lOO0
Performl =
100*(Targ Avg*Targ TargetNo*TargetNo*(1.0+nFalseAlarml
Avp);
PerformG =
100*(Targ Targ (TargetNo*TargetNo*(1.0+nFalseAlarm
GAvp);

/* print summary *

fprintfistats,"\n\nSummary of results\n\n");
fprintfistats,"\t\t\tObject\tTarget\tFalse A\tT Ef\t\tFA Eff\tPerform\n");
fprintfistats,” Neuml net\t\t %.3M\t %. 3}\(.% 3\t %. 10\ t\t

%.ANL%T.20\n" D Fals
©AENG,PerformG);

fprmtﬂsmts,"Smn to scan\t %.3M\t %.3M\t %.: af\r. % II\L

% AN%T.2\n\n", 1A False

AETL, Perform);
LinesPrinted = 100;
FormFeed(stats);
LastBatchFlag = FALSE;
StatsHeaderFlag = FALSE;
Page = 1;

felose(stats);

return 1;

)
void AddDecimal(char *str)
' int len,i=0,=0;

len = strlen(str);

for (i=0i<=len;)
if (i == (len-1)

Decimalfi++]
else
Decimalli++] = strij++];

Decimallil="\0’;
strepy(str,Decimal);

/* The function will coorelate the objects in the two */
/* object arrays. *

int CorrelGraphicCHWND hWnd)

t
long int i,j,k,m, pixel;

if (pCoorelate == NULL)(
if ((hCoorelate = GlobalAlloc(GMEM_MOVEABLE
|GMEM_ZEROINIT,
(TargetNumber*sizeoflint))) ==
NULL)

, "Memory Allocation
Error.”,
"Error 8.22", MB_OK |
MB_ICONHAND);
return (NULL);
1

if ((pCoorelate = (int huge *)GlobalLock(hCoorelate)) ==
NULL)(
MessageBox(hWnd, "Global Lock
Failed.",
“Error 9.1", MB_OK i
MB_ICONHANDY);
return (NULL);

)
KillTheClone(pPixelRecord);
KillTheClone(pPixelRecord2);

197

start:

1* Main fuzzy AND loop */
i=

if i<TargetNumber)|
for (j=0;j<PixelNumberj++){
i pPixeRacord*(PixelNumber)51 < O

gam start;
I
else(
pixel =
pPixelRecord|i*(PixclNumber)+jl;
k=0;
start2
|f(k<angatNumher)(
for
(m=0;m<PixelNumber;m++)[
if
(pPixelRecord2|k*(PixelNumber)+m| < 0)f
Kk}
goto

start2;

pixell

-1;

start;

}
if (pPixelRecord2[k*(PixelNumber)+m] ==

pCoorelateli] =
i+
goto
i
)
k4
goto start2;

/
ik
goto start;
)
i+
goto start;
1

/* pPixelRecord will only contain the coorelated objects */
/* after this loop *
i=0;

startd:

if (i<TargetNumber)(

if (pCoorelateli]
for

)
j<PixelNumber;j++)(
pPixelRecord(i*(PixelNumber)+j] = -

198

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Table of Contents
	009_List of Figures
	010_Introduction
	011_Page 2
	012_Page 3
	013_Page 4
	014_Page 5
	015_Chapter II - Page 6
	016_Page 7
	017_Page 8
	018_Page 9
	019_Page 10
	020_Chapter III - Page 11
	021_Page 12
	022_Page 13
	023_Page 14
	024_Page 15
	025_Page 16
	026_Page 17
	027_Page 18
	028_Page 19
	029_Page 20
	030_Page 21
	031_Page 22
	032_Page 23
	033_Page 24
	034_Page 25
	035_Page 26
	036_Page 27
	037_Page 28
	038_Chapter IV - Page 29
	039_Page 30
	040_Page 31
	041_Chapter V - Page 32
	042_Page 33
	043_Page 34
	044_Page 35
	045_Page 36
	046_Page 37
	047_Page 38
	048_Page 39
	049_Page 40
	050_Page 41
	051_Page 42
	052_Page 43
	053_Page 44
	054_Chapter VI - Page 45
	055_Page 46
	056_Page 47
	057_Page 48
	058_Page 49
	059_Page 50
	060_Page 51
	061_Page 52
	062_Page 53
	063_Page 54
	064_Page 55
	065_Page 56
	066_Page 57
	067_Page 58
	068_Chapter VII - Page 59
	069_Page 60
	070_Page 61
	071_References
	072_Page 63
	073_Bibliography
	074_Appendix I
	075_Page 66
	076_Page 67
	077_Page 68
	078_Page 69
	079_Page 70
	080_Page 71
	081_Page 72
	082_Page 73
	083_Appendix II
	084_Page 75
	085_Page 76
	086_Page 77
	087_Page 78
	088_Page 79
	089_Page 80
	090_Page 81
	091_Page 82
	092_Page 83
	093_Page 84
	094_Page 85
	095_Page 86
	096_Page 87
	097_Page 88
	098_Page 89
	099_Page 90
	100_Page 91
	101_Page 92
	102_Page 93
	103_Page 94
	104_Page 95
	105_Page 96
	106_Page 97
	107_Page 98
	108_Page 99
	109_Page 100
	110_Page 101
	111_Page 102
	112_Page 103
	113_Page 104
	114_Page 105
	115_Page 106
	116_Page 107
	117_Page 108
	118_Page 109
	119_Page 110
	120_Page 111
	121_Page 112
	122_Page 113
	123_Page 114
	124_Page 115
	125_Page 116
	126_Page 117
	127_Page 118
	128_Page 119
	129_Page 120
	130_Page 121
	131_Page 122
	132_Page 123
	133_Page 124
	134_Page 125
	135_Page 126
	136_Page 127
	137_Page 128
	138_Page 129
	139_Page 130
	140_Page 131
	141_Page 132
	142_Page 133
	143_Page 134
	144_Page 135
	145_Page 136
	146_Page 137
	147_Page 138
	148_Page 139
	149_Page 140
	150_Page 141
	151_Page 142
	152_Page 143
	153_Page 144
	154_Page 145
	155_Page 146
	156_Page 147
	157_Page 148
	158_Page 149
	159_Page 150
	160_Page 151
	161_Page 152
	162_Page 153
	163_Page 154
	164_Page 155
	165_Page 156
	166_Page 157
	167_Page 158
	168_Page 159
	169_Page 160
	170_Page 161
	171_Page 162
	172_Page 163
	173_Page 164
	174_Page 165
	175_Page 166
	176_Page 167
	177_Page 168
	178_Page 169
	179_Page 170
	180_Page 171
	181_Page 172
	182_Page 173
	183_Page 174
	184_Page 175
	185_Page 176
	186_Page 177
	187_Page 178
	188_Page 179
	189_Page 180
	190_Page 181
	191_Page 182
	192_Page 183
	193_Page 184
	194_Page 185
	195_Page 186
	196_Page 187
	197_Page 188
	198_Page 189
	199_Page 190
	200_Page 191
	201_Page 192
	202_Page 193
	203_Page 194
	204_Page 195
	205_Page 196
	206_Page 197
	207_Page 198
	208_Blank Page
	209_Blank Page
	210_Inside Back Cover
	211_Back Cover

