THE COMPUTER-AIDED OPTIMAL HEATING Schedule of Forging ingots using the finite element method

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

BHIMA VA RA PU SUBBA REDDY

THE COMPUTER-AIDED OPTIMAL HEATING SCHEDULE OF FORGING INGOTS

USING THE FINITE ELEMENT METHOD

Bhimavarapu Subba Reddy

A thesis submitted to the School'of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Science Memorial University of Newfoundland

July 1985

St. John's

Newfoundland

Canada

Permission has been granted Canada to microfilm this thesis and to lend or sell. copies of the film.

The author (copyright owner) has reserved other publication rights, and' neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her permission. written

L'autorisation a été accordée to the National Library of . à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film. .

> L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; la thèse ni de longs ni extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN Ø-315-31026-X

ABSTRACT

This thesis presents the computer simulated thermal stress analysis of forging ingots during the heating and soaking periods. These results are then used to obtain the optimal heating schedule of these ingots.

The equations for the transient nonlinear temperature distribution within the ingot due to the convective and radiative heat flux are derived using the nonlinear finite element analysis. The nonlinearities due to the variation of material properties have been taken into account by calculating the temperature at different time steps first and then at each time step the elemental property matrices are recalculated. The nonlinear algebraic equations are solved using three techniques and then the best technique is selected from these three for further analysis.

The mathematical model for the thermal stress analysis has also been formulated using the finite element analysis. The temperatures obtained from the heat transfer analysis are used to calculate the force vector for the stress analysis. These finite element models are then used to calculate the effects of axial heat flux, the slenderness ratio of the ingot, and the linearization of the heat flux on the transient temperature and stress distributions within the ingot. The optimal heating schedule has been obtained considering two types of constraints; the first type of the constraint is that the stresses developed should not exceed certain value established by some of the commonly known failure theories; and the second type is that the temperature in the ingot during the heating or soaking period does not exceed a specified value for a particulat type of material. The method of optimization of the furnace heating schedule is selected after considering three alternate ways of carrying out the optimization.

iii

ACKNOWLEDGEMENTS

The author is deeply indepted to his supervisor Dr. Anand M. Sharan for his continued guidance and encouragement during the course of this investigation. His contribution of time and technical expertise have helped me immensely.

I express my gratitude to the Memorial University for the award of a Graduate Fellowship.

The author appreciates the use of VAX.11/780 computing facilities of Memorial University. Finally, I thank Mrs. Levinia Vatcher for her care and patience in

typing this thesis.

To My Mother

TABLE OF CONTENTS

Page ii

vi

ix

xiv

xv

ABSTRACT ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

INTRODUCTION AND LITERATURE SURVEY

1.1 The Forging of an Ingot 1.2 The Literature Survey 1.2.1 The Heat Transfer Analysis 1.2:1 The Thermal Stress Analysis 1.2.3 The Optimal Studies of the Heating Processes 1.3 The Objectives of the Present 10 Investigation CHAPTER 2 THE TRANSIENT HEAT TRANSFER ANALYSIS OF THE INGOT 2.1 Introduction 14 2.2 The Mathematical Formulation 15 The Formulation of Elemental Matrices 24 2:3 The Capacitance Matrix [C1 e] 24 2.3.1 2.3.2 The Conduction Matrix [K1e] 25 2.4 The Formulation of Elemental Force 'Vectors 27 .2.4.1 The Force Vector, [Foe] Due to 27 the Heat Generation 2.4.2 , The Force Vector, [F,"] Due to 28 the Heat Flux The Force Vector, [F.e] Due to 29 2.4.3 the Convection 2.4.4, The Force Vector, $\{F_r^e\}$ due to 29

the Radiation

		· · · · · · · · · · · · · · · · · · ·	Fuge
	2.5	The Solution of the Nonlinear Tran	sient 32
		Heat Transfer Problems.	
		2.5.1 The Transformation of the	. 32
		Simultaneous Differential E	quations
	8	2.5.2 The Iteration Method	35
		2.5.3 The Newton-Ranhson Method	36
		2.5.4 The Nonlinear Optimization	Method 38
	. 26	Numerical Example	40
	2 7	The Computer Simulation of the Hea	+ /
	~ • • •	Transfer Process Within the Ingot	
		2 7.1 The System of Equations for	the 49
		Heat Transfer Within the In	ant
		2 7 2 The Temperature Distributio	51
		Within the Ingot	
	×.,	2 7 2 The Comparature Cradient	en en
		2.7.5 The remperature Graduent	01
		Conclusions	70
	4.0	Concrusions .	,
12		dia papp 2	
		CHAPTER 3	
-	-	ANT LOW TO ANT THE THE THE	07
TH	E THERM	OELASTIC STRESS ANALISIS OF THE ING	or
		Tatashatian	- 70
	3.1	Introduction	
	3.2	"The Mathematical Formulation .	13
	3.3	The Failure Theories	
	3.4	The Three-Dimensional Finite	81
1.0		Element Analysis	
<u> </u>	3.5	The Verification of the Axisymmetr	10 . 82
		Finite Element Model	
	3.6	The Comparison of the Axisymmetric	83
ι.		Finite Element Analysis With the	Α
1.1		Finite Difference Analysis.	
10	3.7	The Linearization of Heat Transfer	96
÷.,		Equations	4
	.3.8	The Effect of the Slenderness Rati	.0. 98
	. 3.9	Conclusions	
			102
		CHAPTER 4	
1			X
TH	E OPTIM	AL HEATING SCHEDULE OF THE INGOT	
	1 .		
1.0	4.1	Introduction .	105
	4.2	The Furnace Temperature Paths	_ 107
		and the Thermal Stresses	
		4.2.1 Discussion on the Various	107
1	· · ·	Furnace Temperature Paths	
ą		4.2.2 The Constant Furnace Temper	ature 107
		Heating	

.....

			Page
51		· · · · ·	11 mar 1 1
		4.2.3 The Variable Furnace Temperature Heating	112
	4.3	The Optimal Heating Schedule	119
		4.3.1 The Description of the Heating	119
	8,91	Cycle of the Ingot	
	1.0	4.3.2 The Analysis of the Various	125
		Methods of Obtaining the	
		Optimal Eurnace Temperature	a., 1
		Path	
		4 3 3 The Single Variable	1 1 1
	1	Ontimigation Mathod	131
		Conclusions	126
	4.4	Concrusions	130 ~ -
		arrangen F 2	1
		CHARTER 5	
	CONCLUSIO	NS AND RECOMMENDATIONS	
	5 . 1	A Brief Discussion	. 141
	5.2	Conclusions	142
	5 3	Limitations of the Present	145
		Investigation and Recommendations	
		for Buture Nork	· · · ·
		. IOL FUCULE WOLK	
	DEPEDENCE		146
	REFERENCE		140
		ADDENDTY A	
		APPENDIX A	1
- °.,		AND AD WARDING AND URGRODA	150
	DIFFERENT	TATION OF MATRICES AND VECTORS	150
			·
		innom mo (m)	
	WITH RES	PECT TO (T)	· · · · · ·
		ADDINOTY D	• 10100
		APPENDIX B	
- 1	THE EXPRE	SSIONS FOR THE ELEMENTAL MATRICES	152.
	AND VECTO	RS OF THE SOLID	· · · ·
		APPENDIX C	
	1.0		
•		e	inclusion of the
- 1	THE REPRE	SENTATION OF T IN THE MATRIX FORM	156
	2.	APPENDIX D	
	5		28
12	DESCRIPT	ION AND LISTING OF THE COMPUTER PROGRAMS	158
	1.0	and a second second and second beautiful to the second sec	
		· · · · · · · · · · · · · · · · · · ·	

....

viii

LIST OF FIGURES

DESCRIPTION

Schematic Arrangement of the Vaccum-Casting Installation, Employing the Stream Degassing Technique (after McGannon [1]).

NO

1.2

1.3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.10

2.11

The Diametral Cross-section of the Cylindrical Ingot.

The Rate of Heating of the 1.016 m Dia. Ingot under the Programmed Heating Practice (after Sun [8]).

The Details of the Axisymmetric Triangular Element.

The System Configuration with Various Boundary Conditions.

The Discretization of the System into Finite Elements.

20

43

46

56

The Time-Temperature Plot of the Ceramic Body.

The Time-Temperature Plot at the Node 1.

The Time-Temperature Plot at the Node 13.

The Time-Temperature Plot at the Node 23.

The Discretization of the Ingot into Finite Elements.

The Time-Temperature Plot of the Ingot Corresponding to the Furnace Heating Rate of 0.014*K/sec (51.5*K7hour).

The Time-Temperature Plot of the Ingot Corresponding to the Furnace Heating Rate of 0.017°K/sec (64.375°K/hour).

The Time-Temperature Plot of the Ingot Corresponding to the Furance Heating Rate of 0.024 K/sec (85.833 K/hour).

DESCRIPTION

PAGE

58

63

67

68

69

75

คว่

The Time-Temperature Plot of the Ingot Corresponding to the Furnace Heating

Rate of 0.0355 K/sec (128.76 K/hour) The Time-Temperature Plot of the Ingot Corresponding to the Furnace Heating Rate of 0.071°K/sec (257.5°k/hour). The Time-Temperature Plot of the Ingot Corresponding to a Constant Furnace Temperature of 810°K. The Variation of the Radial Temperature Gradient Along the Section AB (TF = 810°K).

The Variation of the Radial Temperature Gradient Along the Section CD (Tp = 810°K).

.

The Variation of the Radial Temperature Gradient Along the Section EF(TF = 810°K).

The Variation of the Axial Temperature Gradient Along the Section AB(T_F=810°K).

The Variation of the Axial Temperature Gradient Along the Section . CD(T_F=810°K).

The Variation of the Axial Temperature Gradient Along the section EF(Tp=810°K).

The: Elemental Stresses in the Cylindrical Coordinate System.

Finite Difference Subdivision of the Cylinder.

The Comparison of the 2-D Finite Difference and 3-D Finite Element of Results of T_F = 1000°K.

The Comparison of the 2-D Finite Difference and 3-D Finite Element d. Results at Tr=1000°K.

No. 2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

3.1

3.2

3.3

3.4

	1	X1 ,			
NO.	•	DESCRIPTION	Ξ.	PAGE	
3.5	÷.	The Comparison of the 2-D Finite Difference and 3-D Finite Element σ_n' Results at T_=1000°K.	÷	89	
		and a special second		•	
3.6		The Comparison of the Two and Three Dimensional Finite Element σ_d ' Results at T_F =1000°K.	,	92	
3.7		The Comparison of the Two and Three Dimensional Finite Element σ_g' Results at $T_E=1000$ K.	•	93.	
3.8		The Comparison of the Two and Three Dimensional Finite Element σ_n ' Results at T_F =1000°K.		94	1
3.9		The Distribution of a . a. and a		97	
-		Along the Radius of the Ingot, AB, at $T_F = 1000$ K and t = 2 hours.		2	
3.10	1. •	The Comparison of the Linearized and Nonlinearized σ_d ' Results at $T_F=1000$ K.		99	
3.11		The Comparison of the Linearized and Nonlinearized $\sigma_{\rm g}'$ Results at $T_{\rm F}$ =1000°K.		100	
3.12	S.	The Comparison of the Linearized and Nonlinearized σ_n' Results at $T_p=1000^{\circ}K$.		101	
3.13		The Effect of the Slenderness Ratio on σ_d values.		103	
1.1					
4•1.	4	The variation of the Normalized Stresses and Temp. as a Function of Time Corresponding to $T_F = 500$ °K.	•	109	
4`.z	.	The Variation of the Normalized Stresses and Temp. as a Function of Time Corresponding to ${\rm T}_{\rm R}=800^{\circ}{\rm K}$.		110	
4.3		The Variation of the Normalized Stresses and Temp. as a Function of		111	
	e i	rime corresponding to T _F = 1100°K.		× ×	

, xii

DESCRIPTION

No.

PAGE

114

4.5

4.6 :

The Vafiation of the Normalized Stresses and ΔT as a Function of Time Corresponding to the Furnace Heating Rate of 0.035 K/sec and Final T =800 K

The Variation of the Normalized Stresses and AT as a Function of Time Corresponding to the Furnace Heating Rate of 0.070°K/sec and Final T =800°K.

The Variation of the Normalized Stresses and ΔT as a Function of Time Corresponding to the Furnace Heating Rate of 0.037 K/sec and Final

т =1100°К. F

4.8 .

The Variation of the Normalized Stresses and ΔT as a Function of Time Corresponding to the Furnace Heating Rate of 0.056*K/sec and Final

т =1100°К.

T =1100 K:

1.9

The Variation of the Normalized Stresses and AT as a Function of Time Corresponding to the Furnace Heating Rate of 0.112*K/sec and Final

4.10

The Stress and Temperature Variations in the Ingot.

4.11

The Minimum Heating Time of the Ingot.

121

118

115

, 116

xiii

No.	DESCRIPTION	PAGE
4.12	The Constrained Minimum Heatng Time of the Ingot.	124
4.13	The Initial Value Multistage Decision Problem.	126
4.14	One of the Feasible Paths in the Multivariable Optimization.	130
4.15	The Optimal Furnace Heating Path Considering o ' as the Failure d Criteria.	133
4.16	The Optimal Furnace Heating Path Considering q' as the Failure	134
1.1	Criteria.	1 A A
4.17	The Optimal Furnace Heating Path Considering σ ' as the Failure	135
5 00	Criteria.	
4.18	The Optimal Positive Slope Furnace Heating Path Considering σ ' as the d	137
	Failure Criteria.	
4.19	The Optimal Positive Slope Furnace Heating Path Considering σ ' as the s	138
	Failure Criteria.	
4.20	The Optimal Positive Slope Furnace Heating Path Considering σ ' as the	.139
•	n Failure Criteria.	
1	· · · ·	

١

NT.-

LIST 'OF TABLES

No.

DESCRIPTION

95

2.1 The Variations of ΔT_{max} , t* and t_s for . Different Rates of Furnace Heating.

3.1

The Absolute Normalized Stresses and Their Locations at Different Instants of the Heating ${\rm Time} \gtrsim ({\rm T}_F = 1000\,^\circ {\rm K})$.

NOMENCLATURE

	{ }	vector .
	[]	matrix
	Ae	area of the triangular element
	[A]	Jacobian matrix
	(B ₁)	thermal gradient matrix
	[B ₂] -	elastic gradient matrix
1	c .	specific heat
	[c ₁]	capacitance matrix
	à .	diameter of the ingot
	[01]	thermal material property matrix
	[D ₂]	elastic material property matrix
	Ë	modulus of elasticity
	{f ⁱ }	residual vector
	{F}	elastic force vector
	{F _c }	force vector due to convection
	{Fq}	force vector due to the heat flux
	{F _Q }	force vector due to heat generation within the body
	{F _r }	force vector due to radiation
	h	convection heat transfer coefficient
	i, j, k	nodes of the triangular element
	k _r , k _z	thermal conductivities in the r and z directions respectively.
-	[K]	elastic stiffness matrix
	[K]]	thermal conduction matrix

xv

lr, lz	direction cosines normal to the surface
L _{ij} , L _{jk} , L _{ki}	length of sides i-j, j-k, k-i of the triangular element
ⁿ 1	total number of elements
ⁿ 2 -	total number of nodes
[N1]	shape function matrix
q	heat flux
Q	heat generated within the body
Ē.	coordinate of the centroid of the triangula element in the r-direction
r _i , r _j , r _k	coordinates of the nodes i, j, k of the element in the r-direction
Δr ·	distance between two nodes
s ₁ '	surface experiencing heat flux
s ₂	surface experiencing convection and radiation heat transfer
t	time
Δt	time increment
t _s	time required to reach steady state temperature
t* .	time where ΔT_{max} occurs
t ⁺ ,	time required for T_g to reach the finishing temperature
т	temperature
{ T }	nodal temperature vector
TF	furnace temperature
Ti,Ti,Tr	temperature of nodes 1, j, k of the element

maximum ingot temperature

x v i

xvii

surface nodal temperatures

temperature difference between nodes A and B

ΔT ΔT_{max} ΔT₁

To

[Tc]

u,v

{u}

11 . .

{e}

[co]

TS

maximum temperature difference of nodes A and B $\ensuremath{\mathsf{B}}$

difference between the temperature of an element and the initial temperature

optimization temperature vector

calculated temperature vector .

displacements of the element in r and z directions respectively

displacement vector

objective function for the optimum furnace temperature path to be minimized

work done

coefficient of thermal expansion

emissivity of the body

Er' Ez'EB' Yrz

radial, axial, circumferential and shear strains respectively

strain vector

initial strain vector

objective function to be minimized for the . solution of nonlinear heat transfer equations

strain energy

Poisson's ratio

Potential energy

density of the material

Stefan-Boltzmann Constant

principal stresses

°1' °2' °3

radial, axial, circumferential and shear stresses respectively

σ_d, σ_n'

dr1

distortion energy stress and normalized distortion energy stress respectively

maximum normal stress and normalized maximum normal stress respectively

maximum shear stress and normalized maximum shear stress respectively

yield stress of the material

variational functional to be minimized

The superscript e refers to the element and G, the global matrices and vectors.

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 The Forging of an Ingot,

A large number of primary or secondary metal forming processes involve complex heat transfer and stress analysis calculations. The solutions of such problems require enormous computations which are possible now with the advent of the fast digital computers. The benefits of these computations are that these processes can be done safely and within much shorter time thus saving a large sum of capital. One of these processes is the heating of ingols in a soaking pit.

In conventional steel mill practice, the molten steel is first poured into a preheated ingot molds which can be vacuum degassed as shown in Fig. 1.1 and left to solidify for several days before the ingot is stripped away from the mold [1,2]. Then the ingot is sent to a soaking furnace for heating to a convenient temperature for hot working. A large number of steels are heated to a temperature around 1225°C for forging. After initial forging, the ingot is reheated in preparation for further work such as forming, rolling, annealing, drawing, etc. During the heating of the ingot in. a furnace the surface gets heated fairly vapidly whereas the

Fig. 1.1: Schematic Arrangement of the Vaccum-Casting Installation, Employing the Stream Degassing Technique (after McGannon [1]).

core remains at a comparatively lower temperature. Thus, the thermal stresses are developed in the ingot due to the temperature variation within the ingot.

In practice, these ingots are charged into a -furnace maintained at a lower temperature in the first stage, and then the furnace temperature is raised to 1498'K(1225'C) along a certain path such that the thermal stresses do not cause tracking failure of the material. One can heat the ingots to a higher temperature range without causing thermal cracking by choosing different furnace temperature paths. But, this heating process has to be carried out in an optimum time in order to minimize the production time as well as production cost. This problem involves the calculation of the transient temperatures and the corresponding thermal stress distributions within the ingot and then the optimal furnace temperature path is obtained.

1.2 The Literature Survey

1.2.1 The Heat Transfer Analysis

The numerical studies of the heat transfer process of a solid exchanging heat with the surroundings have been carried out [3,4]. In [3], the heat balance of the system was formulated using the finite difference method. The temperature decay rate in the gases in an annealing furnace was studied. The numerical results were obtained by using an

implicit method In the investigation carried out in [4], the transient temperature distribution within an I-beam was analyzed using the finite element method. The radiative as well as convective heat transfer from the surrounding fluid medium was represented by an equivalent convective heat transfer coefficient, which if multiplied by the temperature difference between the boundary node and the ambient temperature equalled the total amount of heat transfer. This amounted to lineasising the boundary condition.

The calculation of the internal temperature distribution within the cylindrical ingot during heating is a problem in unsteady-state heat conduction and the equations governing this heat transfer process are given in [5,6]. Hunt [7] outlined a numerical method for the solution of the internal temperature distribution in a heated ingot which involved the knowledge of the initial temperature distribution in the ingot, the variation of the ingot skin temperature with time, etc. The heat transfer process within the cylindrical ingot has been studied by several other essearchers also [8,9]. In these studies, the temperature distributions within the ingot were obtained using the finite difference method. A number of assumptions were made in these investigations which can be written as

(a) The whole of the ingot surface was at the same temperature and the absorption of the heat was symmetrical.

- (b) The ingot was assumed to be infinite in length so that the heat flow was radial, i.e. there was no heat input to the flat surfaces which are the top and bottom surfaces of the ingot.
- (c) Each temperature zone was sufficiently small so that a single temperature could be assigned to it and over a small time at, the difference of temperature between the adjacent zones was regarded as constant.

1.2.2 The Thermal Stress Analysis

In recent years considerable amount of effort has been devoted towards calculation of the thermal stresses in infinite and semi-infinite solids, thick plates and infinitely long cylinders. Adequate references on these types of work can be found in [10]. There are numerous processes in the ceramic as well as in metallurgical engineering fields where one has to have a very good idea about the thermal stresses. These stresses are usually generated by the creation of temperature variation within the body due to the imposed surface conditions; these stresses can also occur if there is a heat source within the body. The solution of such problems involves simultaneous solution

of the elasticity and thermal problems. The thermal stresses generated by nonuniform temperature distribution during the heating of large-diameter Hasteallov X ingots were studied in [8]. In this study, the temperature distribution and the corresponding thermal stresses along the horizontal section AB (refer to Fig. 1.2) were calculated. In the temperature distribution calculations, the heat flux in the axial direction was neglected. , The equations for the thermal stress calculations given in [11] were used. The thermal stresses along the vertical axis at the centre of the ingot (in tension) was selected as the critical parameter, and a maximum allowable stress of 90 per cent of/0.2 per cent yield strength was considered as the fracture criteria. The effect of the variation of material properties, which change with temperature, on the thermal stresses in the cylinder was studied in [12]. In [13], the uncoupled thermoelastic brittle fracture problem has been discussed in terms of the types of stress fields produced by surface heating or cooling.

1.2.3 The Optimization Studies of the Heating_Processes

Any industrial operation should be carried out in an optimal manner. For example, in the case of heating of alloys, ceramics, etc., the process should be done in the minimum time and in doing so, all the constraints must be

Fig. 1.2: The Diametral Cross-section of the Cylindrical Ingot

satisfied. In a heating process care should be taken that the material temperatures at various points in the solid do not exceed a certain specified value, and the thermal stresses during the heating should not cause failure of the material. In the forging operation of steels, the hot working is carried out in the higher austenitic range. If a close control on the finishing temperatures are notmaintained then the solid temperatures can rise into the two-phase region where one of the phases is liquid or, even within the solid-phase temperature range, the problem of burning or oxidation can occur if the finishing temperature is exceeded. Thus, this operation requires a very close control on the solid temperatures.

Meric [14-19] has done quite a considerable amount of work in optimizing the heating time of solids. In [14], an infinitely long solid slab having temperature dependent thermal conductivity was heated optimally under certain ambient conditions. The objective in this work was to heat the slab to a higher temperature level at the end of a fixed time period, while keeping the ambient temperature as low as possible. The boundary control problem of optimal heating of an infinitely long slab with temperature-dependent thermal conductivity, subjected to a convection and radiation boundary condition, was analyzed using the finite element method in [15]. In [16], a stationary variational

1 .

formulation of the necessary conditions for optimality was derived for an optimal control problem governed by a parabolic equation and mixed boundary conditions. A simple model problem in optimal boundary heating of solids was analyzed in [17]. The objective of this study was to achieve a desired temperature profile along a segment of solid boundary with a minimum amount of a boundary heat flux which acts as the controlling function. The conjugate gradient method of optimization was used in the minimization process. In [18], the unsteady optimal heating of solids by a boundary heat flux was formulated for a solid of arbitrary geometry. Through the use of the Lagrange multiplier, the problem was reduced to an unconstrained optimization problem. An optimal steady-state control problem governed by an elliptic state. equation was solved by several finite element methods in [19]. A nonlinearly constrained problem which involved minimization of the energy consumption of an industrial furnace was formulated in [20]. The variables of the optimization method represented the profile of fuel consumptions along the furnace. The sum of these variables was minimized. The constraints were formulated to satisfy the functioning limits of the furnace and the desired characteristics of the product. In all these analyses, constraints such as the thermal stresses were not considered. In [8], the thermal stresses were included in the

)

optimization of the furnace heating schedule but the optimum furnace path was approximated by a series of finite-length constant-slope paths which is shown in Fig. 1.3. In this study, the temperature and thermal stress distributions were calculated using two-dimensional finite-difference analysis. This analysis has two drawbacks: The first one is that the optimum path should be a continuous smooth curve rather than, a series of straight lines and the second one is that axial heat flux should also be considered. This is because in actual practice, the heat flows from both the radial as well as the axial directions.

Based on a review of the available literature, it can be inferred that the nonlinear three-dimensional transient thermal and stress analyses of the cylindrical ingot during heating in the furnace, and the optimum (minimum) time heating cycle of the ingot considering the thermal cracking of the material have not been done so far. These are the objectives of the present investigation. A brief description of the objectives is presented in the next section.

1.3 The Objectives of the Present Investigation .

In this thesis, the equations for the transient temperature distribution within the cylindrical ingot due to

Fig. 1.3. The Rate of Heating of the 1.016 m Dia. Ingot under the Programmed Heating Practice (after Sun [8]).

the radiative and convective heat flux from the furnace have been obtained using the finite element method. This problem has been formulated as an axisymmetric field problem. The thermal stresses due to nonuniform temperature distribution of the ingot are calculated using the linear elasticity theory. The heating rate of the ingot has been varied with a view to optimize the heating schedule of the ingot. Therefore, the following are the objectives of the present investigation:

- The derivation of the temperature distribution equations in an ingot using the nonlinear finite element analysis.
 The study of the temperature distributions within the ingot due to various furnace heating paths.
- The study of the thermal stresses due to the various furnace heating paths.

4. The optimal heating schedule of the heating process.

In Chapter 2, using the finite element method, the equations for the nonlinear thermal analysis of the ingot during heating in the furnace are derived. The Crank-Nicholson finite difference method has been used to express the system of differential equations as a system of nonlinear algebraic equations. Several numerical methods are discussed for solving these nonlinear equations. The effect of the heating rate of the furnace on the ingot temperatures has also been studied.

In Chapter 3, a mathematical model for the axisymmetric thermal stress distribution within the legot due to nonuniform temperature distribution has been established using the finite element method. The thermal stresses are calculated using the linear-elasticity theory. To demonstrate the importance of The three dimensional model, the thermal stresses of this analysis are compared with those of the two-dimensional model. The effect of linearizing the heat transfer equations and slenderness ratio of the ingot on the thermal stresses are also studied.

In Chapter 4, the temperature and thermal stress distributions are analyzed for various feasible constants as well as linear slope furnace temperature paths. The different optimization methods applicable for the study of minimum heating time are discussed. The optimum heating furnace temperature path is obtained by maintaining the thermal stress energies at 90% of the 0.2 per cent yield stress of the material throughout the heating period. This optimum path is achieved by carrying out the single variable optimization at each stage during the heating of the ingot.

The conclusions and recommendations for future work are presented in Chapter 5.

.13
CHAPTER 2

THE TRANSIENT HEAT TRANSFER ANALYSIS OF THE INGOT

2.1 · Introduction

The cylindrical ingots are heated in a furnace to higher temperature range for hot working. The heat flux enters into the ingot through the top and bottom flat surfaces as well as the cylindrical surface during heating. In the ingot, the thermal stresses while heating are developed due to the nonuniform temperature distribution. In the study of optimal heating of the ingot without the thermal cracking of the material, one always has to consider the magnitudes of maximum thermal stresses within the ingot. The calculation of the thermal stresses involves, at first, the determination of the transient temperature distribution at certain instant of time, and then these are used for the corresponding stress calculations. Therefore, in this chapter as the first step, the transient temperature distributions are calculated. A mathematical model for the nonlinear transient heat transfer analysis within the ingot has been formulated using the three dimensional finite element method, where the boundary elements exchange heat with the surrounding furnace, by the convection and radiation mechanisms. The resulting first-order matrix differential

equation is expressed as the system of nonlinear algebraic equations by using the Crank-Nicholson finite difference method. This system of equations are solved for nodal temperatures of ingot by using an iteration method. Finally, the effect of rate of heating on the ingot temperature is studied. The mathematical formulation of the finite element heat transfer analysis is presented in the next section.

2.2 The Mathematical Formulation

The diametral cross-section of an ingot is shown in Fig. 1.2. When this ingot is charged into the hot furnace the heat flows both radially and axially. The governing heat transfer squation for the heat flow can be written as [21.22].

$$k_{r} \frac{\partial^{2} T}{\partial r^{2}} + \frac{k_{r}}{r} \frac{\partial T}{\partial r} + k_{z} \frac{\partial^{2} T}{\partial z^{2}} + Q = \rho c \frac{\partial T}{\partial t}$$
(2.1)

- with the boundary condition

$$k_{r} \frac{\delta T}{\delta r} l_{r} + k_{z} \frac{\delta T}{\delta z} l_{z} + q + h(T-T_{p})$$
$$+ \sigma \varepsilon \left(T^{4}-T_{p}^{4}\right) = 0 \qquad (2.2)$$

where

r, k_z = thermal conductivities in r and z directions respectively

T = temperature

Q = heat generated within the body per unit volume ρ = density of the material

c = specific heat

t = time

 k_r, k_z = direction cosines normal to the surface g = heat flux per unit area

h = convection heat transfer coefficient

 T_{p} = furnace temperature

σ'= Stefan-Boltzmann Constant

 ε = emissivity of the surface

It can be shown by calculus of variations [21] that the solution to the above differential equation, Eqn. (2.1) and boundary condition, Eqn. (2.2), can alternately be obtained by minimizing the corresponding variational functional and solving the resulting set of algebraic l equations. Therefore, we seek a functional such that its first variation with respect to temperature, T. is zero. Eqn. (2.1) can be rewritten as

$$-k_{r} r \frac{\partial^{2} T}{\partial r^{2}} - k_{r} \frac{\partial T}{\partial r} - k_{z} r \frac{\partial^{2} T}{\partial z^{2}} - r(Q - \rho c \frac{\partial T}{\partial t}) = 0 \qquad (2.3)$$

Similarly, one can rewrite Eqn. (2.2) as

$$k_{\tau} \tau \frac{\delta T}{\delta t} k_{\tau} + k_{z} \tau \frac{\delta T}{\delta z} k_{z} + \tau q + \tau h (T-T_{p}) + \tau \sigma \epsilon(T^{4}-T_{p}^{4}) = 0$$
(2.4)
Multiplying Eqn. (2.3) and Eqn. (2.4) by the first variation of T which is δT , and integrating over the domain, we get

$$\delta \chi = \int [-k_{\tau} \tau \frac{\delta^{2} T}{\delta \tau^{2}} - k_{\tau} \frac{\delta T}{\delta \tau} - k_{z} \tau \frac{\delta^{2} T}{\delta z^{2}} - \tau (Q - \rho c \frac{\delta T}{\delta t})] \delta T dv$$

$$+ \int [k_{\tau} \tau \frac{\delta T}{\delta \tau} k_{\tau} + k_{z} \tau \frac{\delta T}{\delta z} k_{z} + \tau q + \tau h(T-T_{p}) + \tau \sigma \epsilon (T^{4}-T_{p}^{4})] \delta T dS$$
(2.5)
Eqn. (2.5) can be reatranged as

$$\delta \chi = \int k_{\tau} \tau \frac{\delta T}{\delta \tau} k_{\tau} \delta T dS - \int k_{\tau} \tau \frac{\delta^{2} T}{\delta \tau^{2}} \delta T dV - \int k_{\tau} \frac{\delta T}{\delta \tau} \delta T dV + \int g k_{z} \tau \frac{\delta T}{\delta z} k_{z} \delta T dS - \int V k_{z} \tau \frac{\delta^{2} T}{\delta z^{2}} \delta T dV$$

$$- \int \tau (Q - \rho c \frac{\delta T}{\delta t}) \delta T dV + \int \tau q \delta T dS + \int (T - T_{p}) \delta T dS + \int T \tau \sigma \epsilon (\tau^{4} - \tau_{p}^{4}) \delta T dS$$
(2.6)

expressed as

be

18

$$\int_{S} k_{r} \tau \frac{\delta T}{\delta \tau} k_{r} \delta T dS = \int_{V} k_{r} \tau \frac{\delta^{2} T}{\delta \tau^{2}} \delta T dV + \int_{V} k_{r} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \frac{\delta T}{\delta \tau} \delta T dV + \int_{V} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{V} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{V} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{V} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{V} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{V} \tau \delta T (0 - \rho c) \frac{\delta T}{\delta t} dV + \int_{S} \tau \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{S} \frac{k_{r}}{\delta \tau} \tau \delta (\frac{\delta T}{\delta \tau})^{2} dV + \int_{S} \frac{\delta (\tau - \tau_{p})^{2} dS + \int_{S} \tau \sigma c \delta (\frac{\tau}{S} - \tau_{p} t) dS - (2.9)$$
The above equation can be rearranged as
 $(\delta \chi = \int_{V} \delta [\frac{k_{r}}{\delta \tau} \tau (\frac{\delta T}{\delta \tau})^{2} + \frac{k_{\pi}}{2} \tau (\frac{\delta T}{\delta \tau})^{2} - \tau \tau T (0 - \rho c) \frac{\delta T}{\delta t}] dV + \int_{S} \delta [\tau q T + \frac{\tau h}{2} (\tau - \tau_{p})^{2} + \tau \sigma c (\frac{\tau}{S} - \tau_{p} t)] dS$
(2.10)
The variational operator \delta can be removed from both sides of Eqn. (2.10) and then it becomes

•.

•

$$\chi = \int \left[\frac{k_{\rm T}}{2} r \left(\frac{\partial T}{\partial r} \right)^2 + \frac{k_{\rm Z}}{2} r \left(\frac{\partial T}{\partial z} \right)^2 - r T \left(Q - \rho c \frac{\partial T}{\partial t} \right) \right] dV + \int S_1 r q T dz$$

+
$$\int_{S_0} \left[\frac{rh}{2} (T-T_F)^2 + r\sigma\varepsilon \left(\frac{T^5}{5} - T_F^4 T\right)\right] ds$$

where

S, is the surface experiencing heat flux

S₂ is the surface experiencing convection and radiation heat exchange

Let T^e represent the temperature of an axisymmetric trianglar element shown in Fig. 2.1. Defining the following elemental matrices

 $T^{e} = [N_{1}^{e}] \{T^{e}\}$

(2.12a)

(2.12b)

(2.12c)

(2.12d)

 $\begin{bmatrix} D_1^{e} \end{bmatrix} = \begin{bmatrix} r & k_r^{e} & 0 \\ 0 & r & k_z^{e} \end{bmatrix}$ $\begin{bmatrix} \frac{\partial N_1^{e}}{\partial r} & \frac{\partial N_1^{e}}{\partial r} & \frac{\partial N_r^{e}}{\partial r} \end{bmatrix}$ $\begin{bmatrix} B_1^{e} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_1^{e}}{\partial r} & \frac{\partial N_1^{e}}{\partial r} & \frac{\partial N_1^{e}}{\partial r} & \frac{\partial N_r^{e}}{\partial r} \end{bmatrix}$

 $\{g_1^e\} = \frac{\partial f^e}{\partial T} \quad \frac{\partial T^e}{\partial z} J^T$

= [B₁^e] {T^e}

19

(2.11

(2.12e) ۵. $\frac{\partial T^{e}}{\partial t} = [N_{1}^{e}] \frac{\partial \{T^{e}\}}{\partial t}$ One can express Eqn. (2.11) for an element as $\chi^{e} = f \cdot \frac{1}{2} \left\{ T^{e} \right\}^{T} \left[B_{1}^{e} \right]^{T} \left[D_{1}^{e} \right] \left[B_{1}^{e} \right] \left\{ T^{e} \right\} dv - f \tau Q^{e} \left[N_{1}^{e} \right] \left\{ T^{e} \right\} dv$ $+ \int_{\mathbf{e}} \mathbf{r} \rho c^{\mathbf{e}} [\mathbf{N}_{1}^{\mathbf{e}}] \frac{\partial [\mathbf{T}^{\mathbf{e}}]}{\partial t} [\mathbf{N}_{1}^{\mathbf{e}}] [\mathbf{T}^{\mathbf{e}}] dv + \int_{\mathbf{e}} \mathbf{r} q^{\mathbf{e}} [\mathbf{N}_{1}^{\mathbf{e}}] [\mathbf{T}^{\mathbf{e}}] ds$ $\int_{S_2^e} \frac{rh^e}{2} \left(\left[N_1^e \right] \left\{ r^e \right\} \right]^2 ds - \int_{S_2^e} rh^e r_p \left[N_1^e \right] \left\{ r^e \right\} ds$ $\int_{S_2^e} \frac{rh^e}{2} T_F^2 ds + \int_{S_2^e} \frac{r\sigma\varepsilon}{5} ([N_1^e] \{T^e\})^5 ds$ $\int_{S_2^e} r_{\sigma \varepsilon T_F}^4 [N_1^e] [T^e] ds$ (2.13)

The functions for temperature T are not continuous . over the region but, are defined over the individual triangular elements.

Minimizing the variational functional x with respect to {Te} will yield a stationary Falue of x that will satisfy the differential equation, Eqn. (2.1), and the boundary condition, Eqn. (2.2). This can be mathematically written as

and

$$\frac{\partial \chi}{\partial \{\pi^{0}\}} = \frac{\partial \chi^{1}}{\partial \{\pi^{0}\}} + \frac{\partial \chi^{2}}{\partial \{\pi^{0}\}} + \dots + \frac{\partial \chi^{n}}{\partial \{\pi^{0}\}} = 0 \qquad (2.14)$$
where n₁ denotes the total number of elementa.
Differentiating Eqn. (2.13) with respect to $\{\pi^{0}\}$, using the relationships given in the Appendix A, and adding, the contribution of each of the elements as shown in Eqn. (2.14) we obtain

$$\frac{\partial \chi}{\partial \{\pi^{0}\}} = \frac{\partial \chi}{\partial \pi^{0}} \int f(E_{1}^{0}e)f(E_{1}^{0}e)f(\pi^{0})dv - f = 0^{0}(K_{1}^{0}e)f^{0}dv$$

$$+ f = e^{-1} \int e^{-1} \int f(E_{1}^{0}e)f(E_{1}^{0}e)f(\pi^{0})dv + f = 0^{0}(K_{1}^{0}e)f^{0}ds$$

$$+ f = e^{-1} \int e^{-1} \int f(E_{1}^{0}e)f(E_{1}^{0}e)f(\pi^{0})dv + f = r g^{0}(E_{1}^{0}e)f^{0}ds$$

$$+ f = r h^{0}(N_{1}^{0}e)f^{0}(\pi^{0})f(\pi^{0})f^{0}ds - f = r h^{0} T_{1}(N_{1}^{0}e)f^{0}ds$$

$$+ f = r h^{0}(N_{1}^{0}e)f^{0}([N_{1}^{0}e]f(\pi^{0})]f^{0}ds - f = r \sigma e^{-1} f(N_{1}^{0}e)f^{0}ds$$

$$+ f = r \sigma e [N_{1}^{0}e]f^{0}([N_{1}^{0}e]f^{0})ds - f = r \sigma e^{-1} f(N_{1}^{0}e)f^{0}ds] = 0$$

$$S_{2}^{0} \qquad (2.15)$$
The above equation can be expressed as
$$[C_{1}^{0}e]\frac{A(T^{0}e)}{\partial t} + [K_{1}^{0}e]f^{0}(f^{0})$$

$$= \{F_{0}^{0}e\} - \{F_{0}^{0}e\} + \{F_{0}^{0}e\} + \{F_{0}^{0}e\}$$

$$(2.16)$$

where [C, G] and [K, G] refer to the global capacitance and conduction matrices respectively; $\{F_0^G\}$, $\{F_q^G\}$, $\{F_c^G\}$ and $\{F_{a}^{G}\}$ are the global force vectors due to the heat generation, heat flux, convection and radiation respectively. The expressions for the elemental $[C_1^{e}]$, $[K_1^{'e}]$, $\{F_c^e\}$ and $\{F_r^e\}$ are $[c_1^{e}] = \int \rho c^{e} r [N_1^{e}]^{T} [N_1^{e}] dv$ (2.17a) $[\kappa_1^e] = \int [B_1^e]^T [D_1^e][B_1^e] dv$ $f = r h^{e} [N_{1}^{e}]^{T} [N_{1}^{e}] ds$ (2.17b) $\{\mathbf{F}_{\mathbf{Q}}^{\mathbf{e}}\} = \int_{\mathbf{v}_{\mathbf{e}}} \mathbf{r}_{\mathbf{Q}}^{\mathbf{e}} \left[\mathbf{N}_{\mathbf{1}}^{\mathbf{e}}\right]^{\mathbf{T}} d\mathbf{v}$ (2.17c) $\{\mathbf{F}_{\mathbf{q}}^{\mathbf{e}}\} = f \mathbf{r} \mathbf{q}^{\mathbf{e}} [\mathbf{N}_{\mathbf{1}}^{\mathbf{e}}]^{\mathrm{T}} \mathrm{ds}$ (2.174) $\{\mathbf{F}_{c}^{e}\} = f \mathbf{r} \mathbf{h}^{e} \mathbf{T}_{F} [\mathbf{N}_{1}^{e}]^{T} ds$ (2.17e)

$$\{F_{\mathbf{r}}^{\mathbf{e}}\} = \int \mathbf{r} \ \sigma \ \varepsilon \ \mathbf{r}_{\mathbf{p}}^{\mathbf{4}} [\mathbf{N}_{1}^{\mathbf{e}}]^{\mathsf{T}} \ \mathrm{ds}$$

$$S_{2}^{\mathbf{e}} = -\int \mathbf{r} \ \sigma \ \varepsilon \ [\mathbf{N}_{1}^{\mathbf{e}}]^{\mathsf{T}} ([\mathbf{N}_{1}^{\mathbf{e}}][\mathbf{r}^{\mathbf{e}}])^{\mathsf{4}} \ \mathrm{ds} \qquad (2.17t)$$

$$S_{2}^{\mathbf{e}}$$

24

2.3 <u>The Formulation of Elemental Matrices</u>
 2.3.1 <u>The Capacitance Matrix</u> [C₁^e]

Fig. 2.1 shows the location of várious nodes of the axisymmetric triangular element. Using the volume coordinate system to integrate over the volume, the Eqn. (2.17a) can be written as

$$[c_{11}^{e}] = \frac{\pi \lambda^{e} \rho c^{e}}{90} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{22} & c_{23} \\ c_{23} & c_{33} \end{bmatrix}$$
 (2.18)

where

 $c_{11} = 12 r_1^2 \mathbf{\hat{r}} 2r_j^2 + 2r_k^2 + 6r_1r_j + 6r_1r_k + 2r_jr_k$ $c_{12} = 3r_1^2 + 3r_j^2 + r_k^2 + 4r_1r_j + 2r_1r_k + 2r_jr_k$

 $c_{13} = 3r_i^2 + r_j^2 + 3r_k^2 + 2r_ir_j + 4r_ir_k + 2r_jr_k$

$$C_{22} = 2r_{i}^{2} + 12r_{j}^{2} + 2r_{k}^{2} + 6r_{i}r_{j} + 2r_{i}r_{k} + 6r_{j}r_{k}$$

$$C_{23} = r_{i}^{2} + 3r_{j}^{2} + 3r_{k}^{2} + 2r_{i}r_{j} + 2r_{i}r_{k} + 4r_{j}r_{k}$$

$$C_{33} = 2r_{i}^{2} + 2r_{j}^{2} + 12r_{k}^{2} + 2r_{i}r_{j} + 6r_{i}r_{k} + 6r_{j}r_{k}$$

25

(2.21)

2.3.2 The Conduction Matrix [K1e]

. The expression for the conduction matrix $[{\kappa_1}^{\rm e}],$ can be written as

$$[\kappa_1^{e}] = [\kappa_k^{e}] + [\kappa_h^{e}]$$
 (2.19)

where

. . r

$$\begin{bmatrix} [K_{\mathbf{k}}^{\mathbf{e}}] = \int [B_{1}^{\mathbf{e}}]^{\mathrm{T}} [D_{1}^{\mathbf{e}}] [B_{1}^{\mathbf{e}}] d\mathbf{v} = \begin{bmatrix} B_{1}^{\mathbf{e}}]^{\mathrm{T}} [D_{1}^{\mathbf{e}}] [B_{1}^{\mathbf{e}}] \int d\mathbf{v} \\ \mathbf{v}^{\mathbf{e}} \\ \mathbf{v}^{\mathbf{e}} \\ \mathbf{v}^{\mathbf{e}} \end{bmatrix}$$
(2.20)

The volume integral f dV can be evaluated as

$$f dV = f 2\pi r dA = 2\pi \overline{r} A^{e}$$

where

$$\bar{r} = \frac{r_1 + r_1 + r_k}{3}$$
e = area of the triangular element

Now the Eqn. (2.20) can be written as

1.5

 $\begin{bmatrix} \kappa_{k}^{e} \end{bmatrix} = \frac{2\pi^{b} \bar{r}^{2} \kappa_{r}^{e}}{4k^{e}} \begin{bmatrix} b_{1} b_{1} & b_{1} b_{j} & b_{1} b_{k} \\ b_{j} b_{1} & b_{j} b_{j} & b_{j} b_{k} \\ b_{k} b_{1} & b_{k} b_{j} & b_{k} b_{k} \end{bmatrix}$ $+ \frac{2\pi \bar{r}^{2} \kappa_{g} e}{4k^{e}} \begin{bmatrix} c_{1} c_{1} & c_{1} c_{j} & c_{1} c_{k} \\ c_{j} c_{1} & c_{j} c_{j} & c_{j} c_{k} \\ c_{k} c_{1} & c_{k} c_{j} & c_{k} c_{k} \end{bmatrix}$ (2.22)

26

The expressions for b_i , b_j , b_k , c_i , c_j and c_k are given in the Appendix C.

The $[K_h^e]$ matrix is due to the convective heat transfer. This matrix is zero if none of the triangular element sides exchange heat by convection mechanism. For elements having convection boundary condition, this matrix is dependent on the side of the element experiencing convective heat transfer. In this case

 $\begin{bmatrix} \kappa_{h}^{e} \end{bmatrix} = \int r h^{e} \begin{bmatrix} N_{1}^{e} \end{bmatrix}^{T} \begin{bmatrix} N_{1}^{e} \end{bmatrix} ds \qquad (2.23)$

Using area coordinates, the above integral for the side i-j of the element can be evaluated as

$$\begin{bmatrix} \kappa_{h}^{e} \mathbf{J}_{ij} &= \frac{2\pi \tilde{r} \ h^{e} \ L_{ij}}{12} \begin{bmatrix} 3\mathbf{r}_{i} + \mathbf{r}_{j} & \mathbf{r}_{i} + \mathbf{r}_{j} & 0 \\ \mathbf{r}_{i} + \mathbf{r}_{j} & 3\mathbf{r}_{j} + \mathbf{r}_{i} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2.24)

27

Similarly, for the convection on side j-k of the element one can write

 $\begin{bmatrix} r_{h} & r_{j} \\ r_{h} & r_{j} \\ r_{k} \\ r_{j} \\ r_{k} \\ r_{j} \\ r_{j} \\ r_{k} \\ r_{j} \\ r_$

$$\begin{bmatrix} \mathbf{L} & \mathbf{L} & \mathbf{L} \\ \mathbf{L} & \mathbf{L} \\ \mathbf{L}$$

where

 L_{ij} , L_{jk} , L_{ki} = length of sides i-j, j-k, k-i of the element respectively.

 h^e = convection heat transfer coefficient of the element

.2.4 Formulation of Elemental Force Vectors

2.4.1 The Force Vector $\{F_0^e\}$ Due to the Heat Generation

Using the volume coordinate system to integrate over the volume, the Eqn. (2.17c) can be written as

$$\{P_{Q}^{e}\} = \frac{2\pi \bar{r} \ Q^{e} \ A^{e}}{12} \left\{ \begin{array}{c} 2r_{i} + r_{j} + r_{k} \\ r_{i} + 2r_{j} + r_{k} \\ r_{i} + r_{j} + 2r_{k} \end{array} \right\}$$
(2.27)

2.4.2 The Force Vector, $\{F_q^{\ e}\}$ Due to the Heat Flux

The vector, $\{F_q^{e}\}$ is dependent on the side of the element experiencing the heat flux. Using area coordinates to integrate over the surface, the Eqn. (2.17d), for the side i-j of the element can be written as

$$\mathbf{F}_{q}^{e}|_{ij} = \frac{2\pi \bar{r} q^{e} \mathbf{L}_{ij}}{6} \begin{cases} 2\mathbf{r}_{i} + \mathbf{r}_{j} \\ \mathbf{r}_{i} + 2\mathbf{r}_{j} \\ 0 \end{cases}$$
(2.28)

Similarly, for the side j-k of the element one obtains

$$\{P_{q}^{e}\}_{jk} = \frac{2\pi \ \bar{r}, q^{e} \ L_{jk}}{6} \left\{ \begin{array}{c} 0\\ 2r_{j} + r_{k}\\ r_{j} + 2r_{k} \end{array} \right\}, \qquad (2.29)$$

and for the side k-i, it will be

$$\{F_{q}^{e}\}_{ki} = \frac{2\pi\bar{r} q^{e} L_{ki}}{6} \begin{cases} 2r_{i} + r_{k} \\ 0 \\ r_{i} + 2r_{k} \end{cases}$$
(2.30)

2.4.3 The Force Vector $[F_c^e]$ Due to the Convection

This vector is also dependent on the side exchanging heat by convection. Using area coordinates the surface integral, Eqn. (2.17e) for the side i-j of the element can be written as

$$\{F_{c}^{e}\}_{ij} = \frac{2\pi \bar{r} \cdot h^{e} T_{p} L_{ij}}{6} \begin{cases} 2r_{i} + \bar{r}_{j} \\ r_{i} + 2r_{j} \\ 0 \end{cases}$$
 (2.31)

Similarly, for the side j-k, it will be

$$\{F_{c}^{e}\}_{jk} = \frac{2\pi \bar{r} h^{e} T_{p} L_{jk}}{6} \begin{cases} 0 \\ 2r_{j} + r_{k} \\ \frac{1}{r_{j} + 2r_{k}} \end{cases}$$
 (2.32)

and for the side k-i, it can be written as

$$\{ \mathbf{F}_{\mathbf{c}}^{\mathbf{e}} \}_{\mathbf{k},\mathbf{i}} = \frac{2\pi \cdot \mathbf{\bar{r}}}{6} \frac{\hbar^{\mathbf{e}} \cdot \mathbf{\bar{r}}_{\mathbf{k}}^{\mathbf{k}} \mathbf{\bar{L}}_{\mathbf{k},\mathbf{i}}}{6} \begin{cases} 2\pi \cdot \mathbf{\bar{r}}_{\mathbf{k}}^{\mathbf{k}} \mathbf{r}_{\mathbf{k}} \\ \mathbf{0} \\ \mathbf{r}_{\mathbf{i}}^{\mathbf{k}} + 2\mathbf{r}_{\mathbf{k}} \end{cases} \end{cases}$$
 (2.33)

2.4.4 The Force Vector, {Fr e} Due to the Radiation

The expression for the vector $\{F_r^{e}\}$ can be written

 $\{F_r^e\} = \{F_1^e\} - \{F_2^e\}$

(2.34)

where

$$\{F_1^e\} = \int \mathbf{r} \ \boldsymbol{\sigma} \ \boldsymbol{\varepsilon} \ \mathbf{T}_F^4 \left[N_1^e \right]^T \, \mathrm{ds.}$$
(2.35)
$$S_2^e$$

$$\{\mathbb{F}_{2}^{\mathbf{e}}\} = \int_{S_{2}^{\mathbf{e}}} \mathbf{r} \, \sigma \, \left\{ \varepsilon \, [\mathbb{N}_{1}^{\mathbf{e}}]^{\mathrm{T}} ([\mathbb{N}_{1}^{\mathbf{e}}] \{\mathbb{T}^{\mathbf{e}}\})^{4} \mathrm{ds} \right\}$$
(2.36)

Both the vectors, $\{F_1^e\}$ and $\{F_2^e\}$, are dependent on the side of the element experiencing radiation heat transfer. The surface integrals in Eqn. (2.34) are evaluated using the area coordinates. The vector $\{F_1^e\}$, Eqn. (2.35), for the side i-j of the element will be

$$\{F_{1}^{e}\}_{ij} = \frac{2\pi \bar{r} \sigma \epsilon T_{F}^{4} L_{ij}}{6} \left\{ \begin{array}{c} 2r_{i} + r_{j} \\ r_{i} + 2r_{j} \\ 0 \end{array} \right\}, \quad (2.37).$$

Similarly, for the side j-k, it can be written as

$$\left\{F_{1}^{e}\right\}_{jk} = \frac{2\pi \,\overline{r} \,\sigma \,\varepsilon \, \tau_{P}^{4} \,L_{jk}}{6} \left\{ \begin{array}{c} 0 \\ 2r_{j} + r_{k} \\ r_{j} + 2r_{k} \end{array} \right\}, \qquad (2.38)$$

and for the side k-i, it will be

$$\{F_1^{e}\}_{ki} = \frac{2\pi \bar{r} \sigma \varepsilon T_P^{4} L_{ki}}{6} \begin{cases} 2r_i + r_k \\ 0 \\ r_i + 2r_k \end{cases}$$
(2.39)

Similarly, the vector $[F_2^{e}]$, Eqn. (2.36) for the side i-j of

the element is

$$\left\{\mathbf{F}_{2}^{\mathbf{e}}\right\}_{ij} = \frac{2\pi \, \bar{r} \, \sigma \, \epsilon \, \mathbf{L}_{ij}}{420} \left\{ \begin{array}{c} \mathbf{c}_{1} \\ \mathbf{c}_{2} \\ \mathbf{c} \\ \mathbf{0} \end{array} \right\}$$
(2.40)

where

$$c_{1} = (60T_{1}^{4} + 40T_{1}^{3}T_{j} + 24T_{1}^{2}T_{j}^{2} + 12T_{1}^{3}T_{j}^{3} + 4T_{j}^{4})r_{1}$$

+ $(10T_{1}^{4} + 16T_{1}^{3}T_{j} + 18T_{1}^{2}T_{j}^{2} + 16T_{1}^{3}T_{j}^{3} + 10T_{j}^{4})r_{j}$

$$+ (60T_{j}^{4} + 40T_{j}^{3}T_{i} + 24T_{j}^{2}T_{i}^{2} + 12T_{j}T_{i}^{3} + 4T_{i}^{4})r_{j},$$

and for the side jk it will be

$$\Lambda \qquad [F_2^{e}]_{jk} = \frac{2\pi \,\overline{r} \,\sigma \,\varepsilon \,\mathbf{L}_{jk}}{420} \left\{ \begin{array}{c} 0\\ \mathbf{C}_2\\ \mathbf{C}_3 \end{array} \right\} \tag{2.41}$$

where .

 $\begin{aligned} \mathbf{c}_{2} &= (60T_{j}^{4}+40T_{j}^{3}T_{k}+24T_{j}^{2}T_{k}^{2}+12T_{j}T_{k}^{3}+4T_{k}^{4})\mathbf{r}_{j} \\ &+ (10T_{j}^{4}+16T_{j}^{3}T_{k}+18T_{j}^{2}T_{k}^{2}+16T_{j}T_{k}^{3}+10T_{k}^{4})\mathbf{r}_{k} \\ \mathbf{c}_{3} &= (10T_{k}^{4}+16T_{k}^{3}T_{j}+18T_{k}^{2}T_{j}^{2}+16T_{k}T_{j}^{3}+10T_{j}^{4})\mathbf{r}_{j} \\ &+ (60T_{k}^{4}+40T_{k}^{3}T_{j}+24T_{k}^{2}T_{j}^{2}+12T_{k}T_{j}^{3}+4T_{j}^{4})\mathbf{r}_{k} \end{aligned}$

Similarly, for the side k-i, it can be written as

$$\{F_{2}^{e}\}_{ki} = \frac{2\pi \bar{r} \sigma \varepsilon L_{ki}}{420} \begin{cases} C_{1} \\ 0 \\ C_{3} \end{cases}$$
(2.42)

where

$$\begin{split} \mathbf{C}_{1} &= (60\mathbf{T}_{1}^{4} + 40\mathbf{T}_{1}^{3}\mathbf{T}_{k} + 24\mathbf{T}_{1}^{2}\mathbf{T}_{k}^{2} + 12\mathbf{T}_{1}\mathbf{T}_{k}^{3} + 4\mathbf{T}_{k}^{4})\mathbf{r}_{1} \\ &+ \mathbf{V}(10\mathbf{T}_{1}^{4} + 16\mathbf{T}_{1}^{3}\mathbf{T}_{k} + 18\mathbf{T}_{1}^{2}\mathbf{T}_{k}^{2} + 16\mathbf{T}_{1}\mathbf{T}_{k}^{3} + 10\mathbf{T}_{k}^{4})\mathbf{r}_{k} \\ \mathbf{C}_{3} \cdot &= (10\mathbf{T}_{k}^{4} + 16\mathbf{T}_{k}^{3}\mathbf{T}_{1} + 18\mathbf{T}_{k}^{2}\mathbf{T}_{1}^{2} + 16\mathbf{T}_{k}\mathbf{T}_{1}^{3} + 10\mathbf{T}_{1}^{4})\mathbf{r}_{k} \\ &+ (60\mathbf{T}_{k}^{4} + 40\mathbf{T}_{k}^{3}\mathbf{T}_{1} + 24\mathbf{T}_{k}^{2}\mathbf{T}_{1}^{2} + 12\mathbf{T}_{k}\mathbf{T}_{1}^{3} + 10\mathbf{T}_{1}^{4})\mathbf{r}_{k} \end{split}$$

2.5 The Solution of the Nonlinear Transient Heat Transfer Problems

2.5.1 The Transformation of the Simultaneous Differential Equations

There are two commonly known methods for solving the nonlinear set of transient temperature equations 'Eqn. (2.16). It is a system of first order nonlinear differential equation. The first method of solving these equations is by using the finite element method defined in the time domain [Z1]. The second method [23] for solving these equations is by approximating the time derivative using a finite difference scheme. However, the number of computations involved in the first method are very large. On the other hand, the Crank-Nicholson contral finite difference method [22,23] is unconditionally stable and can be easily used in the present investigation for obtaining the temperature distribution. Using this method, the first derivative of the nodal temperatures between two points in \circ the time domain can be approximated as

$$\frac{\mathrm{d}\left\{\mathbf{T}^{G}\right\}_{t}}{\mathrm{d}t} = \frac{\left\{\mathbf{T}^{G}\right\}_{t+\frac{\Delta t}{2}} - \left\{\mathbf{T}^{G}\right\}_{t-\frac{\Delta t}{2}}}{\Delta t}$$

whère At is the time step.

Similarly, we can also express $[T^G]_t$ and $\{F^G\}_t^f$ as

$$\{\mathbf{T}^{G}\}_{t} = \frac{\{\mathbf{T}^{G}\}_{t+\frac{\Delta t}{2}} + \{\mathbf{T}^{G}\}_{t-\frac{\Delta t}{2}}}{2}$$

and /

$$\left\{\mathbf{F}^{\mathbf{G}}\right\}_{\mathbf{t}} = \frac{\left\{\mathbf{F}^{\mathbf{G}}\right\}_{\mathbf{t}} + \frac{\Delta \mathbf{t}}{2} + \left\{\mathbf{F}^{\mathbf{G}}\right\}_{\mathbf{t}} - \frac{\Delta \mathbf{t}}{2}}{2}$$
(2.45)

Substitution of Eqns. (2.43), (2.44), (2.45) into Eqn. (2.16) gives

$$\frac{1}{4t} \left[\mathbf{C}_{1}^{\mathbf{O}} \right] \left[\mathbf{T}^{\mathbf{O}} \right]_{\mathbf{t}^{+}} \frac{\Delta \mathbf{t}}{2} - \frac{1}{\Delta t} \left[\mathbf{C}_{1}^{\mathbf{O}} \right] \left[\mathbf{T}^{\mathbf{O}} \right]_{\mathbf{t}^{-}} \frac{\Delta \mathbf{t}}{2} + \frac{1}{2} \left[\mathbf{K}_{1}^{\mathbf{O}} \right] \left[\mathbf{T}^{\mathbf{O}} \right]_{\mathbf{t}^{+}} \frac{\Delta \mathbf{t}}{2} \right]$$

$$+ \frac{1}{2} \left[\mathbf{K}_{1}^{\mathbf{O}} \right] \left[\mathbf{T}^{\mathbf{O}} \right]_{\mathbf{t}^{-}} \frac{\Delta \mathbf{t}}{2} = \frac{1}{2} \left[\mathbf{F}_{\mathbf{O}}^{\mathbf{O}} \right]_{\mathbf{t}^{+}} \frac{\Delta \mathbf{t}}{2} + \frac{1}{2} \left[\mathbf{F}_{\mathbf{O}}^{\mathbf{O}} \right]_{\mathbf{t}^{-}} \frac{\Delta \mathbf{t}}{2}$$

33

(2.43)

(2.44)

 $-\frac{1}{2} \{ \mathbf{F}_{\mathbf{q}}^{\mathbf{G}} \} - \frac{1}{2} \{ \mathbf{F}_{\mathbf{q}}^{\mathbf{G}} \} + \frac{1}{2} \{ \mathbf{F}_{\mathbf{q}}^{\mathbf{G}} \} + \frac{1}{2} \{ \mathbf{F}_{\mathbf{G}}^{\mathbf{G}} \} + \frac{\Delta t}{2}$ $\frac{1}{2} \left\{ \mathbf{F}_{\mathbf{G}}^{\mathbf{G}} \right\}_{t-\frac{\Delta t}{2}} + \frac{1}{2} \left\{ \mathbf{F}_{\mathbf{r}}^{\mathbf{G}} \right\}_{t+\frac{\Delta t}{2}} + \frac{1}{2} \left\{ \mathbf{F}_{\mathbf{r}}^{\mathbf{G}} \right\}_{t-\frac{\Delta t}{2}}$ The above equation can be rearranged as $([\kappa_1^{G}] + \frac{2}{\Delta T} [c_1^{G}]) \{T^G\}_{t+\frac{\Delta t}{\Delta T}} = (\frac{2}{\Delta t} [c_1^{G}] - [\kappa_1^{G}]) \{T^G\}_{t-\frac{\Delta t}{\Delta T}}$ + $[F_Q^G]$ + $[F_Q^G]$ - $[F_q^G]$ - $[F_q^G]$ + Δt + $\{\mathbf{F}_{\mathbf{C}}^{\mathbf{G}}\}$ + $\{\mathbf{F}_{\mathbf{C}}^{\mathbf{G}}\}$ + $\{\mathbf{F}_{\mathbf{C}}^{\mathbf{G}}\}$ + $\{\mathbf{F}_{\mathbf{r}}^{\mathbf{G}}\}$ + $\{\mathbf{F}_{\mathbf{r}}^{\mathbf{G$ (2.47) In the above equation, the force vectors due to radiative heat transfer, [F_G] and {F_G} honlinear. They contain the high owers of some of the nodal temperatures of the elements and the surface of the ingot. Here nodal temperature vector $\{T^G\}$ at time t+ Δt is unknown whereas the other quantities (vectors and matrices) are known. The substitut of $\{T^G\}_{t-\frac{\Delta t}{L}}$ on the right side

of Eqn. (2.47) reduces to

(2.48)

where {A1} is known.

The Eqn. (2.48) had vectors $\{F_r^G\}_{t+\frac{\Delta t}{2}}$ and $\{F_c^G\}_{t+\frac{\Delta t}{2}}$ on the.

right hand side and these vectors contain the unknown nodal temperatures at the time $t+\frac{\Delta t}{2}$. Therefore, this equation can only be solved by iteration techniques. Some of these techniques are

1) The Iteration Method

+ $\{\mathbf{F}_{\mathbf{C}}^{\mathbf{G}}\}$ + $\{\mathbf{F}_{\mathbf{r}}^{\mathbf{G}}\}$ t+ $\frac{\Delta t}{2}$ t+ $\frac{\Delta t}{2}$

2) The Newton-Raphson Method

3) The Nonlinear Optimization Method

 Some discussion on these methods are mentioned in the following sections.

2.5.2 The Iteration Method

In this method, [24] the nodal temperatures at time $t + \frac{\delta t}{2}$ are initially assumed to be the same as the temperatures at time $t - \frac{\delta t}{2}$, and used on the right hand side

of Eqn. (2.48). Then the force vectors, $\{F_Q^G\}$, $\{F_q^G\}$, $\{F_q^G\}$ and $\{F_r^G\}$ in Eqn. (2.48) are evaluated with the assumed nodal ' temperatures. At this stage Eqn. (2.48) reduces to

$$[[\kappa_1^G] + \frac{2}{\Delta t} [c_1^G]] \{\mathbf{T}^G\}_{t+\frac{\Delta t}{2}} = \{\lambda_2\}$$
(2.49)

where $\{A_2\}$ is known.

The linear equation, Eqn. (2.49) can be easily solved for $\{T^6\}_{t+\frac{\Delta t}{2}}$. The calculated nodal temperatures are then compared with those assumed ones. If they do not meet the convergence criteria then, the average of the assumed and calculated temperatures are used in the next iteration.

2.5.3 The Newton-Raphson Method

It is a commonly known method for solving the nonlinear equations [23,25]. In this method the unknown temperature vector $\{T^G\}$ at the th stage of iteration is substituted in Eqn. (2.48) and rearranging this equation one can write

 $\{\mathbf{f}\}^{\mathbf{i}} = ([\kappa_1^{\mathbf{G}}] + \frac{2}{\Delta t} [c_1^{\mathbf{G}}]) \{\mathbf{T}^{\mathbf{G}}\}^{\mathbf{i}}_{t+\Delta t} - \{\kappa_1\} - \{\mathbf{F}_{\mathbf{Q}}^{\mathbf{G}}\}^{\mathbf{i}}_{t+\Delta t}$

+ $[F_q^G]_{t+\frac{\Delta t}{2}}^i - [F_c^G]_{t+\frac{\Delta t}{2}}^i - [F_r^G]_{t+\frac{\Delta t}{2}}^i$ (2.50b)

In this equation $\{f\}^{i}$ is the residual vector whose all the elements are zero only when the assumed vector $\{T^{G}\}^{i}$ converges. Clearly, $\{f\}^{i}$ is a function of all the nodal temperatures, therefore, one can evaluate the matrix $[\Lambda]^{i}$, the Jacobian matrix whose general term Λ_{ik}^{i} can be defined

 $A_{jk}^{i} = \frac{\delta f_{j}}{\delta T_{k}} \bigg|_{j}^{i}$

The correction vector $\{\Delta T^G\}^i$ can be obtained using

$$[A]^{i} \{\Delta T^{G}\}^{i} = -\{f\}^{i}$$
 (2.50c)

Then, the improved temperature vector can be known using the relation

 $\{\mathbf{T}^{\mathbf{G}}\}_{\mathbf{t}+\frac{\Delta \mathbf{t}}{2}}^{\mathbf{i}+1} = \{\mathbf{T}^{\mathbf{G}}\}_{\mathbf{t}+\frac{\Delta \mathbf{t}}{2}}^{\mathbf{i}} + \{\Delta \mathbf{T}^{\mathbf{G}}\}_{\mathbf{t}+\frac{\Delta \mathbf{t}}{2}}^{\mathbf{i}}$

The iteration can be terminated if

 $f_{j} < f_{tol} (j = 1, 2, ..., n)$

Alternately, the iteration can also be terminated if

 $|\Delta T_{j}^{G}| < \Delta T_{tol}^{G}$ (j=1,2, ..., n)

37

(2.50b)

(2.50d)

2.5.4 The Nonlinear Optimization Method

The nonlinear optimization methods can also be used. [26] for solving Eqn. (2.48) for the unknown nodal temperature vector $\{T^G\}_{t+\frac{\lambda t}{2}}$. As an example, the solution of Eqn. (2.48) can be obtained by the Davidon-Fletcher-Powell method [27,28] which is a very stable method and converges guadratically.

If we denote the global temperature vector at the ith iteration stage of the optimization as $|T_0^{-1}|_{t+\frac{\Delta t}{2}}$ and substitute on the right hand side of Eqn. (2.48) then we can compute the force vectors $\{F_0^{-G}\}_{t+\frac{\Delta t}{2}} = d[F_n^{-G}]_{t+\frac{\Delta t}{2}}$. Then, this equation reduces to system of linear equations which can be solved for the unknown temperature vector at time $t+\frac{\Delta t}{2}$. This calculated vector can be denoted as $|T_0^{-1}|_{t+\frac{\Delta t}{2}} = S$ owe can define the objective function, θ for the minimization as

where n, denotes the total number of nodes.

 $\theta = \sum_{i=1}^{n_2} (T_c^i - T_o^i)^2 + \frac{\Delta t}{2}$

Therefore, the global temperature vector $[T^G]$

38

(2.51)

is obtained by minimizing the objective function 8. The iterative procedure of this method can be stated as follows [27]:

- Start with an initial assumed vector {T₀ⁱ} and a positive definite symmetric matrix [H¹]. Usually we consider [H¹] as the identity matrix. Set iteration. number⁽¹) to 1.
- [2] Compute the gradient of the objective function $V \delta^{1}$, at $\{T \sigma^{1}\}$, and evaluate $\{G^{1}\}$ such that

(gi) = - [Hi] (Vei) :(2.52.1)

(3) Obtain the optimal step length λ_i^* in the direction $\{G^i\}$

and set

 $[T_{o}^{i+1}]_{t+\frac{\Delta t}{2}} = [T_{o}^{i}]_{t+\frac{\Delta t}{2}} + \lambda_{i}^{*} [G^{i}] \qquad (2.52.2)$

Substitute $\{T_0^{i+1}\}_{t+\frac{\Delta t}{2}}$ in $\{F_c^{0}\}_{t+\frac{\Delta t}{2}}$ and $\{F_c^{0}\}_{t+\frac{\Delta t}{2}}$. Solve for $\{T_c^{i+1}\}_{t+\frac{\Delta t}{2}}$. Compute the value of objective function $\hat{s}_{t+\frac{\Delta t}{2}}$ and test for optimality. If the objective function $t+\frac{\Delta t}{2}$ attains an optimum value, then terminate the iterative procedure. The temperature vector corresponding to optimum objective function represents the global temperature vector at time t $\frac{\Delta t}{2}$. Otherwise go to the next step. (5) Update the matrix [H] using the relation

$$[H^{i+1}] = [H^{i}] + [M^{i}] + [N^{i}]$$
 (2.52.3)

where

$$[M^{i}] = \frac{\lambda_{i}^{*} [G^{i}]^{T}}{[G^{i}]^{T} [p^{i}]}$$
(2.52.)

$$[N^{1}] = \frac{-[[H^{1}][p^{1}]][[H^{1}][p^{1}]]^{T}}{\{p^{1}\}^{T}[H^{1}]\{p^{1}\}}$$
(2.52.5)

and .

 $\{p^{i}\} = \forall \theta (\{T_{O}^{i+1}\}) - \forall \theta (\{T_{O}^{i}\}) = \forall \theta^{i+1} - \forall \theta^{i}$ (2.52.6) 6) Set the new iteration number i=i+1 and go to Step 2.

2.6 Numerical Example

The transient heat transfer process of the body shown in Fig. 2.2 was studied using the finite element method, [24]. It is a ceramic body whose sides were maintained at 300°C, the bottom surface was insulated. The top surface exchanged heat with the surrounding fluid which was at 50°C. This heat transfer process was by convection and radiation mechanisms. Initially the whole body was at 300°C. This problem was analyzed as a two-dimensional problem. Because of the symmetry about the vertical axis, the heat transfer analysis was carried out for the tight half

of the body only. The linear finite triangular elements were used in this study. The finite element discretization of the system is shown in Fig. 2.3. The unsteady heat transfer process of this body was represented by Eqn. (2.48). The expressions for the elemental matrices $[K_1^{\circ}]$, $[C_1^{\circ}]$ and elemental force vectors $[F_0^{\circ}]$, $[F_1^{\circ}]$, $[F_1^{\circ}]$ are given in the Appendix B. The Eqn. (2.48) was solved for $[T_{t+\frac{At}{2}}^{\circ}]$ by the three methods mentioned earlier i.e: the iteration method, the Newton-Raphson method and the optimization method.

Fig. 2.4 shows the temperature distribution of the solid using the iteration technique. This figure shows the continuous decline of temperature for all the salient nodes with time. The temperatures of various nodes osciliate in the beginning, and then die out after some time. At a given time, the oscillation amplitudes are higher at the top surface nodes compared to the nodes at the insulated boundary. The rate of decrease of the temperatures at the nodes which are on insulated boundary decrease very slowly. At any given time, node 21 is at the lowest temperature. This is because it lies on the symmetrical axis looging heat to the surrounding fluid by convection as well as radiation.

V

44

, -

Moreover, it is the farthest point from insulated and isothermal surfaces. Figs. 2.5 - 2.7 show the time-temperature plot of the nodes 1, 13, 23 respectively. It is clear from these figures that the temperature distributions obtained by different numerical methods are quite close. As expected, the finite element repults show oscillations in the initial time period, whereas finite difference results do not exhibit such a behaviour. However, one has to take care of the stability criteria in the finite difference method. The finite element equation Eqn. (2.48) is unconditionally stable.

In order to solve the heat transfer equation Eqn. (2.48) by Newton-Raphson method, one has to compute the Jacobian matrix; $[A]^{i}$. The computation of Jacobiar matrix requires more computer memory storage and involves more number of computations as compared to the iteration method. Similarly, the solution of Eqn. (2.48) by the nonlinear optimization method required more computation time [26]. The iteration method was found to be the most efficient among the three methods for solving nonlinear heat transfer equations, Using this method the solution was obtained using the least amount of CPU time compared to the Newton-Raphson method or the nonlinear optimization method.

Fig. 2.5: The Time-Temperature Plot at the Node 1.

· _ .

Therefore, this iterative method was used for solving heat transfer equation of the ingot which is carried out in the next section.

2.7 Computer Simulation of the Heat Transfer Process Within the Ingot

2.7:1 The System of Equations for the Reat Transfer Within the Ingot

There are a lot of industrial processes which can be modelled on a digital computer. These simulated models can be used very economically to study the effects of the variation of some of the control variables on the state variables and thus the feasibility of any modification of the process can be easily implemented. As an example, in a heat treatment process, the furnace temperature can be considered as a control variable and the resulting temperatures at various points of the solid as the state variables. sy varying the furnace temperature one can obtain the desirable distribution of the temperature within the solid. A computer model of such a process can be very easily established.

There are several types of metallurgical processes where a material is required to be heated to a very high temperature before processing. Some of these processes are annealing, forging; rolling, etc. During the heating process, the surface gets heated fairly rapidly whereas the core remains at a comparitive lower temperature. The thermal
stresses are developed due to this temperature difference. If this temperature difference is large then it can lead to the thermal cracking of the material. Therefore, the material should be heated in such a way that this maximum difference in the temperature at any instant should be less than certain amount so that the cracking does not take place. This necessitates a thorough analysis of the heat transfer process within such materials (291.

In the forge-shop, steel ingots are heated to the higher austenitic temperature ange which is close to 1225°C. In practice, these ingots are charged into a furnace maintained at a lower temperature in the first stage, and then the furnace temperature is raised in the successive stages [1].

The heat transfer analysis was studied using finite element method. The boundary elements of ingot exchanged heat with the surrounding furnace by means of convection and radiation mechanisms while being heated. The ingot gains heat, from the furnace through the top and bottom flat surfaces as well as the cylindrical surface. In this heat transfer process both the heat flux, q, and heat generation: term within the ingot, Q, are gero. Therefore, the Eqn. (2.47) for this problem reduces to

 $\left(\left[\kappa_1^{~G}\right] + \frac{2}{\delta t} \left[c_1^{~G}\right]\right) \left\{\mathbf{T}^{G}\right\}_{t+\frac{\Delta t}{2}} = \left(\frac{2}{\delta t} \left[c_1^{~G}\right] - \left[\kappa_1^{~G}\right]\right) \left\{\mathbf{T}^{G}\right\}_{t-\frac{\Delta t}{2}}$ + { \mathbf{F}_{c}^{G} } + $\frac{\Delta t}{t}$ + $\frac{\Delta t}{t}$ + { \mathbf{F}_{c}^{G} } + $\frac{\Delta t}{t}$ + { \mathbf{F}_{r}^{G} } + $\frac{\Delta t}{t}$ + { \mathbf{F}_{r}^{G} } + $\frac{\Delta t}{t}$ (2.53)

51

The iteration method was used for solving $\{T^G\}_{t+\frac{\Delta t}{2}}$ in the above equation. The results of the solution are discussed in the next subsection.

2.7.2 The Temperature Distribution Within the Ingot

The temperature distribution within the ingot was obtained [29] using Eqn. (2.53). Fig. 1.2 shows the diametral cross-section of the ingot where AB represents the -radius and AE mif the height of the ingot. Due to the symmetry about the horizontal and vertical axis, the finite element analysis was carried out for the shaded region only. In this figure, T_p represents the furnace temperature. The zone of interest was divided into several linear axisymmetric triangular elements (the details are given in the Appendix C). The finite element discretization of the system is shown in Fig. 2.8. In the heating process, the temperature of the element near the surface were smaller. It was assumed that the ingot was made-of 18 Cr steel, and the

ME

material properties were obtained from [30]. The thermal conductivity, (k_x, k_y) specific heat, (c) and convection heat transfer coefficient, (h) had nonlinear variations with the temperature of the ingot.

The assumed variation of heat transfer coefficient, h, with ingot temperature can be written as [31]

(2.54)

		0, 5412/ - 10,25			
	_	0.5413.(TF - TS)	w/m		
ņ	-	d	w/m	ν.	Ξ.
8		- A	Ň	e 14.	

where

T, is the furnace temperature

T, is the surface nodal temperature

d is the diameter of the ingot

In order to study the heat transfer process within the ingot the furnace temperature was raised from the room temperature, 295°K, to final temperature, 810°K, along a linear path but with various heating rates, which are shown in Figs. 2.9-2.13. Fig. 2.9 shows the temperature variation of some of the typically selected points such as A, B, C and F. In these figures the fastest temperature rise takes place at the corner point F. The point A shows the slowest response. This is because at the point F, the heat from both the top as well as the cylindrical surfaces is being received. The point A is slowest to respond because it is the interior-most point. The rate of increase of the

1.1.1

. . .

.

temperature at the point B is greater than C because it happens to be at the cylindrical surface. In these figures, there is also a plot of AT versus time. AT represents the temperature difference between the nodes B and A. These two points were selected because the temperature difference per unit length was greater than between points A and E or A and F. In other words, the average gradient along AB was greater than AE or AF. The parameter AT is the maximum / temperature difference between these points and it causes maximum thermal stresses. While heating the ingot_care is taken so that this quantity does not exceed a certain value which would cause thermal cracking. An interesting fact to be observed is that AT______ takes place 36000 seconds (10 hours) after the furnace temperature starts rising (refer to Fig. 2.9). At this instant, the point B is already close to the final temperature.

The effects of the variation of the furnace heating rate on ΔT_{max} is shown in Figs. 2.9 to 2.13. In Fig. 2.14, the furnace is already at the finishing temperature i.e. the ingot is charged into the hot furnace maintained by the finishing temperature. In these figures the heating characteristics of the various points shown in Fig. 2.9, do not change but the occurrance of ΔT_{max} shifts to the left i.e., the maximum temperature difference between the points B and A takes place sooner as the heating rate of the furnace

is increased. This fact is shown in the Table 2.1. As can be seen in this table the time t^* , the time at which Δr_{max} takes place, decreases as the heating rate increases, but the magnitude of Δr_{max} increases with the increase in the heating

. In this table it is quite clear that as the heating rate increases then $t_{\rm s}$, the time required for the ingot to reach the steady state temperature, decreases. One is always interested in minimizing $t_{\rm s}$, which would amount to decreasing the production time of heating the ingots but one has to keep in mind the quantity $\Delta m_{\rm max}$ a very high value of which can lead to thermal cracking.

2.7.3 The Temperature Gradient Distribution

Within The Ingot

rate.

The temperature gradients were calculated using Eqn. (2.12d) for a constant furnace temperature of 810°K. In Figs. 2.15 - 2.17, the radial temperature gradients along the sections AS, CD and EF respectively are shown! In all of these figures the gradient characteristics are similar. After 120 seconds (2 minutes) of heating, the gradients are very high near the cylind for surface; The core is unaffected by the heating process. As the heating time increases these gradients increase; and then as the surface and the core temperatures come close to each other, these

Table 2.1 The Variations of ΔT_{max} , t* and t_s for Different Rates of Furnace Heating

Furnace Heating Rate x 10 ² (°K/sec)	(² T _{max} (°K)	t* x 10-3 (seconds)	t _s x 10-3 (seconds)
1.43	36.26	36.0	66.0
1.78	41.50	28.8	61.2 55.2
3.57	50:14	15.6	50.4
715	53.08	8.4 3.0	45.6

. 9

gradients decrease. These curves go through a maxima and a minima near the cylindrical surface due to the bi-directional heat-flux. These figures clearly show that one-dimensional heat flow study in ingots would not lead to reliable values of the temperature gradients

The gradients in the vertical or z direction, along the same sections i.e. AB, CD, EF as discussed earlier, are shown in Figs. 2.18 - 2.20. These gradients have positive values due to the heat flux entering from the top surface. Referring to these figures the temperature gradients are . maximum at the time equal to 120 seconds (2 minutes) at the top surface- (refer to Fig. 2.20) whereas, at this instant, . the points along the line AB are too far away for the heat flux from the top to diffuse through the body. In other word the fastest response due to the heat flux from the z direction is felt by the top surface. The maximum value of this gradient along the line CD is felt after 4800 seconds (80 minutes); the same effect is experienced along the line AB after 12,600 seconds (210 minutes). These gradient curves show very important aspects of the dynamics of the heat transfer process. In addition, the variations of the gradients along the radial as well as the vertical directions Sclearly show that one has to use polynomials of higher powers of T to indicate the distribution of the temperature field in the ingot.

As a point of clarification it should be mentioned here that the temperatures reported were obtained by varying the mesh size until there was no significant change in their values.

2.8 CONCLUSIONS

In this chapter, the equations' for the transient nonlinear temperature distribution within the ingot due to convective and radiative heat flux from the furnace was obtained using a combination of finite element and finite difference methods. The nonlinearities of this analysis were due to two reasons: the first reason was due to the variation of material properties of the ingot with its temperature and the second reason was the nonlinear boundary conditions due to radiative heat transfer at the surface of the ingot. The resulting nonlinear heat transfer equations of the solid were solved by the iteration, the Newton-Raphson and the nonlinear optimization methods. Based on these studies the following conclusions can be drawn:

 The optimization methods can be used for solving nonlinear heat transfer problems.

 The iteration method is very efficient and requires less CPU time for solving nonlinear heat transfer equations compared to the other methods.

The axisymmetric analysis of the heat transfer process yields better insight into the temperature distribution within the ingot as compared to the analysis where the heat flux from the axial direction is not considered.
 The temperature distribution of the ingot along either the radial or the vertical direction is (nonlinear.
 The time t* decreases as the heating rate increases.

- The quantity AT_{max} increases as the heating rate increases.
 - . The temperature gradients provide very useful information regarding the heat flux from the radial and vertical directions:

CHAPTER :

THE THERMOELASTIC STRESS ANALYSIS OF THE INGOT

3.1 Introduction

In the previous chapter, the transient temperature distribution within the ingot during heating in a furnace was formulated -using the finite element method. The nonlinear transient temperatures at various nodes of the ingot were calculated for different furnace heating rates using the linear finite triangular elements. In this chapter, the axisymmetric thermal stress analysis equations have been obtained using the finite element method. These thermal stresses are due to the nonuniform temperature distribution within the ingot and are dependent upon nodal temperatures. The same axisymmetric triangular finite elements are used in both the thermal and stress analysis since the latter analysis is based on the former one. The mechanical' as well as thermal properties have been assumed to vary nonlinearly with the temperature. The thermal and stress distributions of the nodes along the horizontal section AB (refer to Pig. 1.2) are 'also compled using the two-dimensional finite difference method and the results are then compared. The influence of the linearization and slenderness ratio on the maximum normalized thermal stess energies are also analyzed.

The axisymmetric finite element formulation of the thermal stress analysis is presented in the next section.

3.2 The Mathematical Formulation

 $\pi_1 = \sum_{n=1}^{\infty} \pi_1^n$

where

Principle of virtual displacement can be used in the finite element formulation of the axisymmetric thermal stress analysis [21]. According to this principle, the thermal stress equations of the mgot are obtained by minimization of the potential energy. The potential energy, π_1 of the ingot can be expressed as,

 π_1 = strain energy (A) - work done (W) (3.1) Since, the region of interest is subdivided into a number of linear triangular elements, the above equation can be written

 n_1 denotes the total number of elements , π^{-9} denotes the potential energy contribution 1 of the element e

(3.2)

(3.3)

The strain energy, Λ^{e} , of the element can be written as

 $\int \frac{1}{2} \left(\left\{ \varepsilon^{\Theta} \right\}^{T} \left\{ \sigma^{\Theta} \right\}^{2} - \left\{ \varepsilon_{0}^{\Theta} \right\}^{T} \left\{ \sigma^{\Theta} \right\} \right) dv$

where

08

 $\{\epsilon^{\Theta}\}$ is the elemental strain vector $\{\epsilon_0^{\Theta}\}$ is the elemental initial strain vector $\{\sigma^{\Theta}\}$ is the elemental stress vector

Using Hooke's law, the elemental stress and strain vectors are related as

 $\{\sigma^{e}\} = [D_2^{e}]\{\varepsilon^{e}\} - [D_2^{e}]\{\varepsilon_0^{e}\}.$

where $\left[D_2^{e}\right]$ is the material property matrix. It can be expressed as

 $\begin{bmatrix} D_2^{\bullet \bullet} \end{bmatrix} = \frac{B}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0\\ \nu & 1-\nu & \nu & 0\\ \nu & \nu & 1-\nu & 0\\ 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$

The stress components for the thormal stress analysis are shown in Fig. 3.1. The stress vector for the ingot can be represented as

 $[\sigma_{\mathbf{r}}^{\mathbf{e}}]^{\mathrm{T}} = [\sigma_{\mathbf{r}}^{\mathbf{e}}, \sigma_{\theta}^{\mathbf{e}}, \sigma_{z}^{\mathbf{e}}, \tau_{\mathbf{r}\underline{z}}^{\mathbf{e}}]$ (3.6)

(3.5)

Similarly the strain vector, for this case, oan be written

The expressions of various terms such as b_i , c_i ; etc., are given in the Appendix C, and

v, e

{u^e} = u^uj^e

where

Similarly, the initial strain vector $\{\epsilon_0^{e}\}$ for the element can be written as

 $\{c_0^{e}\}_{h} = \begin{cases} \alpha & \Delta T_1^{e} \\ \alpha^{e} \Delta T_1^{e} \\ \alpha^{e} \Delta T_1^{e} \\ \alpha & \Delta T_1^{e} \\ 0 \end{cases}$

denotes the coefficient of thermal expansion

 ΔT_1^{e} denotes the difference between the initial and the temperature at time t

77

(3.11)

(3.12)

The work done (W) in this problem is zero. By substituting Eqns. (3.3), (3.4) and (3.9) in Eqn. (3.2), it, can be rewritten as

$$\pi = \underbrace{\sum_{e=1}^{n} \left[\int_{e} \left(\frac{1}{2} \left[u^e \right]^T \left[B_2^e \right]^T \left[D_2^e \right] \left[B_2^e \right] \left[u^e \right] dv}_{v^e} \right]}_{v^e}$$

 $- \{ \mathbb{U}^{e} \}^{T} [\mathbb{B}_{2}^{e}]^{T} [\mathbb{D}_{2}^{e}] \{ \varepsilon_{0}^{e} \}^{d} \mathbb{V} + \frac{1}{2} \{ \varepsilon_{0}^{e} \}^{T} [\mathbb{D}_{2}^{e}] \{ \varepsilon_{0}^{e} \}^{d} \mathbb{V}]$

(3.13)

where n denotes the total number of elements.

To minimize potential energy, π , we differentiate Eqn. (3.13) with respect to the elemental displacement vector $\{U^{\Phi}\}$ and set it equal to zero. This can be written as

 $\frac{\partial \pi}{\partial \{\boldsymbol{U}^{\boldsymbol{e}}\}} = \sum_{\boldsymbol{e}=1}^{n_1} \left[\int_{\boldsymbol{V}^{\boldsymbol{e}}} \left[\boldsymbol{B}_2^{\boldsymbol{e}} \right]^T \left[\boldsymbol{D}_2^{\boldsymbol{e}} \right] \left[\boldsymbol{B}_2^{\boldsymbol{e}} \right] d\boldsymbol{V} \left\{ \boldsymbol{U}^{\boldsymbol{e}} \right\} \right],$

 $-\int_{\mathbf{v}^{\mathbf{e}}} [\mathbf{B}_{2}^{\mathbf{e}}]^{\mathbf{T}} [\mathbf{D}_{2}^{\mathbf{e}}] \{\varepsilon_{0}^{\mathbf{e}}\} d\mathbf{v}] = 0 \qquad (3.14)$

The above equation can be expressed as

$$[R^G] \{ U^G \} = \{ F^G \}$$
 (3.15)

where

[K^G]⁹ refers to the global stiffness matrix ⁴

 $\{F^G\}$ refers to the global force vector due to thermal loading

The expressions for the elemental stiffness matrix, $[K^{e}]$ and the corresponding force vector, $[F^{e}]$ are written as [21]

$$[K^{e}] = [B_{2}^{e}]^{T} [D_{2}^{e}] [B_{2}^{e}]^{\frac{1}{2}\pi} \bar{r} A^{e}$$
(3.16)

$$\left[\mathbf{F}^{\mathbf{e}} \right] = \frac{\mathbf{a} \cdot \mathbf{E} \cdot \mathbf{a} \mathbf{T}_{1}^{\mathbf{e}}}{\left(\mathbf{1} - 2 \mathbf{v} \right)^{\mathbf{e}}} \left[\mathbf{B}_{2}^{\mathbf{e}} \right]^{\mathbf{T}} \left\{ \begin{array}{c} 1\\1\\1\\-\mathbf{0}_{e} \end{array} \right\} 2 \mathbf{v} \cdot \mathbf{F} \cdot \mathbf{A}^{\mathbf{e}}$$

$$\left(3.17 \right)$$

where \bar{r} denotes the coordinate in the r direction of the centroid of the triangular element under consideration. These elemental matrices and vectors, $[K^{\circ}]$ and $[F^{\circ}]$, are assembled to obtain the corresponding global $[K^{\circ}]$ and $[F^{\circ}]$ as shown in Eqn.](3.15). Once the global displacement vector is obtained using Eqn. (3.15) then the elemental stress vectors are calculated using the relation [21]

$$\{\sigma^{\mathbf{e}}\} = [D_2^{\mathbf{e}}][B_2^{\mathbf{e}}]\{v^{\mathbf{e}}\} - [D_2^{\mathbf{e}}]\{\varepsilon_0^{\mathbf{e}}\}$$
(3.18)

3.3 The Failure Theories

The properties of the alloys which can be forged vary very widely. Therefore, an engineer who is planning the heating schedule must consider all the failure theories and then choose the one which applies very closely to the alloy being forged. In [8] it was assumed that failure occured when the stress exceeded 90 percent of the 0.2 percent yield

stress. As far as the failure analysis is concerned one can use some of the important theories which are [32]: (a) the distortion-energy theory, (b) the maximum normal-stress theory, and (c) the maximum shear-stress theory.

According to the distortion energy theory [33], the failure occurs if

$$\begin{split} \sigma_{\mathbf{a}}^{=} & \left[\frac{1}{2} \right] \left(\sigma_{\mathbf{z}} - \sigma_{\mathbf{r}} \right)^{2} + \frac{1}{2} \left(\sigma_{\mathbf{r}} - \sigma_{\mathbf{\theta}} \right)^{2} + \frac{1}{2} \left(\sigma_{\mathbf{\theta}} - \sigma_{\mathbf{z}} \right)^{2} \right) \\ & + 3 \tau_{\mathbf{rz}}^{2} 2^{1/2} \right) \sigma_{\mathbf{y}} \end{split}$$
(3.19)

In terms of the principal stresses, Eqn. (3.19) can be rewritten as

$$\sigma_{d} = \frac{1}{\sqrt{2}} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]^{1/2} > \sigma_{y}$$

(3.20)

where the principal stresses σ_1 , σ_2 , σ_3 are obtained as the roots of the cubic equation [11] ,

$$\sigma^{3} - (\sigma_{\mathbf{r}} + \sigma_{\mathbf{z}} + \sigma_{\mathbf{\theta}}) \sigma^{2} + (\sigma_{\mathbf{r}} \sigma_{\mathbf{z}} + \sigma_{\mathbf{z}} \sigma_{\mathbf{\theta}} + \sigma_{\mathbf{r}} \sigma_{\mathbf{\theta}} - \tau_{\mathbf{rz}}^{2}) \sigma$$
$$- (\sigma_{\mathbf{r}} \sigma_{\mathbf{r}} \sigma_{\mathbf{\theta}} - \sigma_{\mathbf{r}} - \sigma_{\mathbf{r}}^{2}) = 0 \qquad (3.2.1)$$

where $|\sigma_1| > |\sigma_2| > |\sigma_3|$.

If one uses the normal-stress theory then a material fails when

$$\sigma_n = |\sigma_1| > \sigma_y$$

(3.2.2)

Similarly, for the material to fail in accordence with the maximum shear-stress theory, the condition

must be satisfied.

3.4 The Three-Dimensional Finite Element Analysis

 $\sigma_{s} = |\sigma_{1} - \sigma_{3}| > \sigma_{v}$

The diameteral cross section of a cylindrical steel ingot, used in this analysis, is shown in Fig. 1.2. This ingot was made of AISI 4140 steel whose thermal and mechanical properties were obtained from [34]. All the properties varied nonlinearly with change in the ingot temperature. The assumed variation of 0.28 yield strates (σ_y) and Young's modulus (E) of this material are

 $\sigma_{y}(T) = 4.484144 \times 10^{8} (1 - 4.1667 \times 10^{-4}(T-298)) \qquad (3.24)$

 $E(T) = 206482 \times 10^6 (1 - 4.1667 \times 10^{-4} (T-298))$ (3.25)

where T denotes the average temperature of the element under consideration.

The procedure for calculation of the thermal streames in the ingot can be outlined as follows: (a) First, compute the global temperature vector $\left[T^{G}\right]_{L} + \frac{\Delta t}{2}$, at time t + $\frac{\Delta t}{2}$ by solving the nonlinear transient heat transfer equation, Eqn. (2.53).

81

(3.2.3)

- (b) Calculate the global force vector $\{F^G\}$ in Eqn. (3.15) using the temperature vector $\{T^G\}_{1, AL}$.
- (c) Solve Eqn. (3.15) for the unknown displacement vector $\{ U^G \}$.
- (d) Calculate the elemental stress vector, $\{\sigma^{e}\}$ by using the elemental displacement vector $\{U^{e}\}$ given in the Eqn. (3.18).

3.5 The Verification of the Axisymmetric Finite Element Model

This verification was carried out by assuming a linear temperature profile between the centre and the surface along the section AB. Then, the thermal stresses corresponding to this profile were calculated using the following relations [11]:

$$= \frac{\alpha}{1+\gamma} \left(\frac{4}{d^2} \int_{0}^{Z} E T r d r - \frac{1}{r^2} \int_{0}^{r} E T r d r \right)$$
(3.26)

- $\sigma_{\theta} = \frac{\alpha}{1-\gamma} \begin{pmatrix} \frac{4}{2} & \frac{d}{2} \\ \frac{d}{2} & 0 \end{pmatrix} = \frac{r}{r \cdot d \cdot r} + \frac{1}{r^2} \int_{0}^{r} E \cdot T \cdot r \cdot dr ET \qquad (3.27)$
- $\sigma_{\tau}^{\prime} = \frac{\alpha}{1-\gamma} \left(\frac{B}{d^2} \int_{0}^{d/2} \mathbf{E} \mathbf{T} \mathbf{r} \, d\mathbf{r} \mathbf{E} \mathbf{T}\right)$ (3.28)

where d denotes the diameter of the ingot.

Here, the stresses σ_r , σ_θ and σ_z calculated using the above relations were the principal stresses in the r, θ and z/ directions respectively. The stresses, σ_a , σ_s and σ_n were then obtained using the Eqns. 3.19 to 3.23.

The thermal stresses using the finite element model developed in this work, were also calculated corresponding to the same temperature profile. These stress values were found to be the same. In this way, the model developes in this work was verified.

3.6 The Comparison of the Axisymmetric

Finite Element Analysis With the Finite Difference Analysis

In the studies carried out in [8], the heat flux from the axial direction was neglected. The temperatores and stresses at various nodes along the section AB of the ingot were obtained by using the finite-difference method. In the real practice, when the ingot is heated in the furnace, the heat enters into the ingot from the radial and axial directions. If the heat flux in the axial direction is neglected then all the horizontal sections of the ingot will have essentially the same temperature profile. Therefore, the temperature distribution along the horizontal section AB was calculated using the finite difference equations [6]. For the intermediate nodes (refer to Fig. 3.2) it is

i.

$$T_{n,t+\frac{\Delta t}{2}} = T_{n,t-\frac{\Delta t}{2}, +\frac{1}{M}, \frac{2+\frac{\Delta r}{r}}{2}} (r_{n+1,t-\frac{\Delta t}{2}})^{-T} n, t-\frac{\Delta t}{2}$$

$$+\frac{2-\frac{\Delta T}{r}}{2} \left[T \\ n-1, t-\frac{\Delta t}{2} \right] - T \\ n,t-\frac{\Delta t}{2} \left[1 \right]$$
(3.29)

'For the center node it can be written as

 $\Gamma_{0,t} + \frac{\Delta t}{2} = \frac{4}{M} T_{1,t} - \frac{\Delta t}{2} + (1 - \frac{4}{M}) T_{0,t} - \frac{\Delta t}{2}$

For the surface node it'is

$$h_{t} + \frac{\Delta t}{\Delta t} = \frac{8r - 4\Delta r}{M(4r - \Delta r)} T$$

$$h_{t} + \frac{\Delta t}{\Delta t} + \frac{8rN}{M(4r - \Delta r)} T$$

+
$$(1 - \frac{8rN + 8r-4}{M(4r-\Delta r)})T$$

n,t - $\frac{\Delta t}{2}$

(3.31)

(3.30

n denotes the node number

Ar denotes the distance between two nodes r denotes the distance of the node from centre

M denotes the Fourier Modulus $(\frac{\Delta t^2 pc}{K \Delta t})$

N denotes the Biot Modulus $(\frac{hAr}{K})$

The heat transfer coefficient, h was calculated using the relation [13]
$h = \sigma \epsilon A_1 \left(\frac{T_F^4 - T_S^4}{T_n - T_c} \right) + 0.5413 \left(\frac{T_F - T_S}{d} \right)^{0.25}$ (3.32)

86

where

 ${\tt T}_{{\tt S}}$ denotes the surface nodal temperature d is the diameter of the ingot

A, is the area of the flame surface

After obtaining the temperatures at various nodes the stress values at each of these nodes were calculated using Eqns. 3.26 to 3.28. Here $\sigma_{\rm r}$, $\sigma_{\rm g}$, and $\sigma_{\rm g}$ were the three principal stresses because the temperature variations along the vertical axis of the cylinder was neglected.

Ig the finite element model developed in this work, the temperatures were obtained using Eqn. (2.53), and the stresses were obtained using Eqns. (2.53), and the stresses were obtained using Eqns. (3.15) and (3.18). Pigs. 3.3 - 3.5 show the temperature as well as the normalized stress (σ_d , σ_g , σ_n normalized with respect to σ_g , the yield stress and was denoted as σ_d , σ_g , σ_n respectively) variations of the three dimensional finite element and two dimensional finite difference analyses results with time corresponding to the constant furnace temperature at 1000°K. Here, the ingot which was initially at room temperature was charged into the hot furnace. These figures are divided into two sections, the top section shows the normalized stresses whereas the bottom one shows the temperature variations at

various points in the ingot. The corner point F (refer to-Fig. 1.2) has the highest temperature within the ingot due to the heat flux both from the axial as well as the radial directions. The temperatures of the nodes A, B and F rise quite rapidly in the beginning but as these temperatures apploach the furnace temperature, the slope of Bach of these curves diminishes. The difference of temperatures between nodes A and B is shown in the lower half of the plots. In offense plots ΔT , which represents the average temperature gradient along AB, is also shown (the average gradient = $2\Delta T/d$).

. fi

It can be clearly seen in these three figures that the normalized stresses based on the two-dimensional finite difference ahalysis are less than those obtained by the three-dimensional finite element analysis. Thus, the furnace scheduling based on the two-dimensional finite difference analysis would not be safe. In other words, these results show that one has to consider the heat flow from the axial direction also. Another fact which can be observed in these figures is that the peak values of AT and the normalized stresses occur almost at the same instant of time.

To analyze further the importance of the axial heat flow, the top and bottom flat surfaces were insulated and the temperatures and stresses corresponding to the furnace temperature, T_m equal to 1000°K were calculated using the

finite element analysis. The results obtained are shown in Figs. 3.6 - 3.8. It was found that all the horizontal sections such as AB, CB, EF, etc. (refer to Fig. 1.2) had identical temperature profiles. The temperatures and stresses obtained by the three-dimensional finite element analysis are also shown in these figures for the comparison purpose. The three-dimensional stresses are again higher than the two-dimensional stresses are again higher than the two-dimensional stresses in all these figures. However, temperatures of the nodes A and B in both the analyses are the same. This is due to the fact that the points along the section AB are too far away for the heat flux from the top to diffuse through the body.

It is worth mentioning here that the maximum value of the normalized stresses σ_d ', σ_a^* and σ_n^* occured at different nodes during the course of the heating. This is shown in the Table 3.1. It can be seen in this table that in the beginning the maximum stresses σ_d^* , σ_a^* and σ_n^* occur at the mode F which is the right top corner point in the Fig. 1.2. This fact can be observed only in the three-dimensional model because the two-dimensional results are based on zero axial heat flux conditions which 'correspond to the temperature and stress variations along the section AB which is too far away from the top and bottom faces of the ingot. This section AB is a symmetrical section and there is no axial heat flow on this section.

Fig. 3.6: The Comparison of the Two and Three Dimensional Finite Element σ_d ' Results at T_F =1000°K.

Fig. 3.8: The Comparison of the Two and Three Dimensional Finite Element σ_n^* Results at T_p =1000*K.

(Node	(on')max	Node	(σ _s ') _{max}	Node
0.555	F	0.636	F	0.637	F
0.769	F	0.811	F	0.816	P
0.889 /	· F	0.933	F	0.939	F
j 0.698	, В	0.858	. A.	. 0.702	.B
0.374	В.	0.506	, A	0.382	В
0.104	в.	0.142	A	/0.107	в
0.0313	.E	0.0373	Near E	0.0313	E
	(oq')max 0.555 0.769 0.889 (, 0.698 0.374 0.104 0.0313	(dg) max Node 0.555 F 0.769 F 0.889 / F 0.698 B 0.374 B 0.104 B 0.0313 E	(σ _q ⁻¹) _{max} Node (σ _n ⁻¹) _{max} 0.555 F 0.636 0.769 F 0.811 0.889 F 0.933 j 0.698 B 0.856 0.374 B 0.506 0.104 B 0.142 0.0313 E 0.0373	(σ _a) _{max} Node (σ _a) _{max} Node 0.555 F 0.636 F 0.769 F 0.811 F 0.889 F 0.933 F 0.574 B 0.506 A 0.104 B 0.142 A 0.0313 E 0.0373 Near E	(σ _d) _{max} Node (σ _d) _{max} Node (σ _g) _{max} 0.555 F 0.636 F 0.637 0.769 F 0.611 F 0.816 0.889 /. F 0.638 A 0.702 0.374 B 0.506 A 0.382 0.104 B 0.142 A /0.107 0.0313 E 0.0373 Near E 0.0313

Table 3.1 The Absolute Normalized Stresses and Their Locations at Different Instants of the Heating Time $(T_F = 1000 \, {}^{\circ}K)$

In Fig. 3.9, the finite element results of σ_{a} , σ_{a} , along the section AB, at the heating time equal to 7,200 seconds (2 hours) corresponding to the constant furnace temperature at 1000°K, are shown. The radial stress is maximum at the core and very close to zero at the centroid of the surface element. This is because the surface element is free to expand thus no radial stresses are developed at the free surface. On the other hand, the displacement of the points along the axis is zero therefore the stresses are maximum at the axis. The stress components σ_{a} and σ_{a} are tensile at the core but compressive near the surface. During the heating, the surface region tends to expand in the θ and z directions also. However, the ingot cannot expand freely along these directions, thus the compressive stresses are developed in this region and the corresponding tensile stresses are developed towards the core region. Similar nature of the curves were reported in [8] where the calculations were done using the finite-difference method.

3.7. The Linearization of Heat Transfer Equations

In the present investigation, the nonlinearity due to the radiative boundary condition requires an iterative solution of the heat transfer equation, Eqn. (2.53). However, the computations can be significantly reduced if one can use a linearization scheme. One of such schemes [35] can

be used in Eqn. (2.2) where one can expand the term, $\sigma(\tau^4 - \tau_p^{-4})$ as $\sigma\epsilon(\tau^2 + \tau_p^{-2})(\tau - \tau_p)(\tau + \tau_p)$. Then approximating $\tau - \tau_p$, this term can be written as $4\sigma\epsilon \tau_p^{-3}(\tau - \tau_p)$. This is the linearized form because one can replace $4\sigma\epsilon \tau_p^{-3}$ by h_r here h_r is the equivalent radiative heat transfer coefficient. If such a scheme is used then Eqn. (2.53) can be expressed as a system of linear equations with $[r_r^{-6}] = 0$.

The stresses and temperatures corresponding to the constant furnace temperature T_p at 1000 K using this linearization scheme are shown in Pigs. 3.10-3.12. In all these figures the linearized temperatures are much higher than the corresponding nonlinearized ones. This is because in the linearization process, the surface temperatures have been replaced by the furnace temperature which is initially much higher, therefore, the corresponding peak normalized stress values are also much higher. Thus, one can see that the linearized model results deviate quite significantly from the actual nonlinearized three-dimensional model results.

3.8 The Effect of the Slenderness Ratio

The effect of the slenderness of the ingot on the normalized σ_d ' corresponding to the constant furnace temperature at 1000°K is shown in Fig. 3.13. Here, the diameter was kept constant (same value as before) but the height of the ingot was varied. This figure shows that the

. 00

Fig. 3.12: The Comparison of the Linearized and Nonlinearized σ_n' Results at T_p=1000°K.

peak normalized stress increases as the height of the ingot is increased. Thus, a very slender ingot would not be very desirable because this would lead to higher value of the peak normalized stress for given furnace conditions. Similar results were observed when on' or on' were used in place of

3.9 Conclusions

on' .

In this chapter, a mathematical model using the finite element analysis for the axisymmetric stress distribution within the ingot has been established. The variable material properties and the radiative boundary conditions required a nonlinear thermal analysis of this problem. After obtaining the temperature distribution of the ingot, the corresponding thermally induced stresses were calculated using the linear-elasticity theory. The stress and temperature distributions for the comparison purpose were also obtained using the two-dimensional finite difference as well as finite element models. The effect of linearization of the nonlinear heat transfer equation and slenderness ratio of the ingot on the normalized thermal stresses σ_d ', σ_s ', σ_s ', were also studied. Based on this investigation the following conclusions can be drawn;

· 102 ·

. The three-dimensional finite element analysis yields higher values of the normalized screeses as compared to the two-dimensional finite difference and finite element analyses. The three-dimensional analysis results are eafer to use.

r.

The two-dimensional model cannot always predict the exact location of the maximum stresses in the ingot.

The maximum normalized thermal stresses, $\sigma_{\rm d}$, $\sigma_{\rm g}$, $\sigma_{\rm r}$, occur at the top corner node F in the beginning.

The linearization of the radiative boundary conditions yield unreliable results because the peak normalized stresses are much higher than the nonlinearized results.¹ The peak normalized stresses increase as the slenderness ratio of the ingot is increased.

CHAPTER 4

4.1 Introduction

The 'thermal stress distribution of' the ingot using axisymmetric finite element analysis was presented in the previous chapter. There are many industrial processes in which a close control on the temperature of the material during the heating is required. Such a situation arises in the glass industry, for example, where in the final processing stage the entire solid body must be brought to an uniform temperature to prevent 'unwanted inhomogenities in the final product [14]. In iron and steel industry also, during heating of ingots before rolling, it is important to heat the metal rapidly with sufficient uniformity. The productive capacity of the furnace is increased by the rapid heating of the metal, at the same time uniformly heated ingots ensure less residual stresses. While heating the ingots, care should be taken so that the maximum solid temperature does not exceed the finishing temperature and the thermal stresses developed in the ingot should not cause failure of the material. If the temperature at any point in the ingot exceeds the maximum value, the problem of burning or oxidation can occur. Thus, this operation requires a very

close control on the solid temperatures. In this chapter, the thermal and stress distributions are calculated for various feasible furnace temperature paths. The objective of the problem is to obtain the furnace heating path so that one can heat the ingot to the finishing temperature in the minimum time considering thermal failure of the material. The optimization methods such as dynamic programming, multi-variable optimization, etc. are discussed. After considering various alternatives the single parameter nonlinear optimization method is chosen as the optimization method and the optimum furnace paths are obtained for different stress energy criteria. All the material properties, both mechanical and thermal are varied with the ingot temperature. Two types of constraints are used in this analysis: the first one is that the maximum allowed stresses should not exceed 90% of the yield stress (a safety factor of 10%) and the second one is that the temperatures of any of the points within the ingot should not exceed the finishing temperature (1225°C). The first constraint is due to the failure theory of the material and the second one is to avoid oxidation or burning of the alloy.

The temperature and thermal stress calculations for various feasible constant and linear slope furnace paths are presented in the next section.

4.2 The Furnace Temperature Paths and the Thermal Stresses

4.2.1 Discussion on the Various Furnace Temperature Paths

Before attempting to obtain the optimal furnace path one has to have a very clear idea of the influence of the heating cycle on the the maximum thermal stresses developed within ingot. With this in mind, several constant furnace temperature paths and constant slope paths should be chosen and the corresponding thermal stresses calculated. . For obtaining the optimal furnace path, the furnace temperature at the time, t=0, should be as high as possible, at the same time the maximum thermal stresses developed in the ingot corresponding to the high initial furnace temperature should be less than yield stress. of the material., The different furnace paths should give fairly good idea about the optimum furnace path. In order to apply the various failure theories, the absolute maximum values of the stresses, σ_{d} , σ_{a} and σ_{n} , can be normalized with respect to the yield stress, σ_{v} and denoted as σ_{d} ', σ_{s} ' and σ_{n} respectively. The stress calculations involve obtaining the vectors $\{U^G\}$ and $\{\sigma^e\}$ using Eqns. (3.15) and (3.18) respectively and then σ'_d , σ'_n , σ'_s are calculated from $\{\sigma^e\}$.

4.2.2 The Constant Furnace Temperature Heating

Fig. 4.1 shows the variation of the normalized stresses and nodal temperatures as a function of the heating

time corresponding to the constant furnace temperature T_p at 500 K. These figures are divided into two parts. In the lower half of this figure, the variation of the furnace temperature, the difference of the surface (node A) and core temperatures (node B), AT, and the temperature of some of the nodes A, B and P (refer to Fig. 1.2) are shown. The upper half of this figure shows the variation of the normalized stresses, σ_d' , σ_g' and σ_b' with time. The magnitude of these normalized stresses are very small. It is evident from this figure the maximum of the temperature difference AT. This figure also shows that the maximum of σ_d is always less than maximum of σ_g and σ_h .

The variations of the normalized stresses, σ_d ', σ_s ' and σ_h ' and the nodal temperatures corresponding to the constant furnace temperatures of 800°K and 1100°K are shown in Figs. 4.2 and 4.3 respectively. The nature of these curves resembles the previous figure, i.e., Fig. 4.1. The magnitude of all the normalized stresses in Fig. 4.2 are higher as compared to the stresses in Fig. 4.1. In Fig. 4.3 all the peak normalized stresses exceeded one. From this, one can infer that the ingot cannot be heated at a constant furnace temperature, 1100°K without causing thermal cracking of the material.

Fig. 4.1: The Variation of the Normalized Stresses and Temp. as a Function of Time Corresponding to $T_{\rm F}$ = 500 K.

In Pigs. 4.1 - 4.3, the temperature difference ΔT , is zero when the ingot is at room temperature and it approaches zero when the ingot reaches steady state temperature. The peak normalized stresses occur when ΔT ds close to the maximum, which indicates that the maximum stresses are directly related to the average gradient along the line AB (refer to Fig. 1.4), and not to the local values of the gradients along r or z directions. For example, when the ingot is charged into the furnace the local values of the gradients near the point B are guite high but the stresses do not reach the peak value at that instant of time.

4.2.3 The Variable Furnace Temperature Heating

To control the peak normalized stresses, σ_d' , σ_s' and σ_n' the furnace temperature paths were varied with different slopes. Figs. 4.4 to 4.6 show the final furnace temperature equal to 800°K, whereas in the Figs. 4.7 to 4.9 the final furnace temperature is 1100°K. The time required to reach the final constant temperature in Figs. 4.4 and 4.7 is 21,600 seconds (6 hours); it is 14,400 seconds (4 hours) in Figs. 4.5 and 4.8, and 7,200 seconds (2 hours) in Figs. 4.6 and 4.9. In all these figures, the peak values of the normalized stresses as well as the temperature difference 4T, occur at the same instant of time. In Figs. 4.4 to 4.9, the higher is

Fig. 4.4: The Variation of the Normalized Stresses and 4T as a Function of Time Corresponding to the Furnace Heating Rate of 0.023*K/sec, and Final T_P=800°K.

Fig. 4.7: The/Variation of the Normalized Stresses and AT as a Function of Time Corresponding to the Furnace Heating Rate of 0.037*K/sec and Final Tp=1100*K.

Fig. 4.9: The variation of the Normalized Stresses and &T as a Function of Time Corresponding to the Furnace Heating Rate of 0:112*K/sec and Final T_p=1100*K. the slope of the furnace temperature path, the higher are the peak normalized stresses. However, these stresses do not exceed one in Figs. 4.4 to 4.6 where the final temperature is 800°K; they exceed one in the Figs. 4.7 to 4.9 where the final furnace temperature is 1100°K. The maximum of σ_n is always greater than the maximum of σ_n and σ_n respectively.

Thus, it is clear that to heat the ingot to 1498 K one. can start at the furnace temperature above 800 K but below .1100 K so that normalized stresses, $\sigma_{\rm d}$ ', $\sigma_{\rm s}$ ' fand $\sigma_{\rm n}$ ' do not exceed one. Secondly, as the slope of the straight line, furnace paths is increased the occurrence of the peak stress is shifted towards the left i.e. it occurs sconer. For example, for the final furnace temperature of 800 K, there are four plots which are Figs. 4.2, 4.4, 4.5 and 4.6. Fig. 4.2 can be considered as having slope equal to infinity (the furnace temperature T_p jumps from the room temperature to 800 K instantly). The shift of the maxima to the left can be seen by comparing the slopes of these figures. The starting temperature of the optimal furnace path was guessed with these facts in mind.

4.3 The Optimal Heating Schedule

4.3.1 The Description of the Heating Cycle of the Ingot

In the previous section, the stress as well as the temperature distributions within the ingot were obtained for

constant and linear slope furnace temperature paths. essential features of all these studies is shown in Fig. 4.10. In this figure, the stresses build up to a peak value in the beginning and then decrease. The furnace temperature T' is always higher than the maximum ingot temperature, T, until T, reaches-the finishing temperature. After that the T_p is maintained at the finishing temperature so that the core temperature also reaches finishing temperature later on. Here, the total processing time has been divided into two periods. The first period'is called the heating period [1] and the second one is called the soaking period. Fig. 4.11 shows the variation of the ingot temperature where T_ is equal to infinity between t = 0, and $t = t^+$, and at the time t^+ , T reaches the finishing temperature. At this instant, Tp is lowered down from infinity to the finishing temperature, and then the soaking period starts. According to the bang-bang control theory [36], t⁺ would be the minimum processing time because the control variable T, has been raised to infinity at t = 0 and maintained at infinity until the state variable, the maximum solid temperature T, reaches the finisking temperature; and at this instant of time Tp is brought down to the finishing temperature. But, we cannot process the material in this time t because of two reasons: the first reason is that the

T

5)

.

Fig. 4.11: The Minimum Heating Time of the Ingot.

furnace cannot be maintained at infinity and secondly, the thermal stresses would exceed the allowable limit. Therefore, the minimum processing time would be obtained if we follow a path for T_p such that the normalized stress is equal to one throughout the heating period. The soaking period depends upon the material properties. The variation of the normalized stress, the ingot temperatures, and the optimal T_p path are shown in Fig. 4.12. In this figure, the normalized stress is equal to one although the heating period and then it decreases in the soaking period when the maximum difference in the temperature within the solid decreases. However, one should glways use a safety factor, say 10% of σ_y , while computing the normalized stresses exceed 0.9 σ_y at any time during the heating cycle.

This factor can vary depending upon the control of the furnace temperature. If the furnace temperature cannot be very closely controlled then higher safety factors should be used. It should be borne in mind that the lower the safety factor, the higher is the utilization of the elastic range of the material and therefore shorter will be the optimal heating time.

4.3.2 The Analysis of the Various Methods of Obtaining the Optimal Furnace Temperature Path

The optimum furnace temperature path of the ingot can be obtained in different ways. One of the methods of solving this problem is by using the dynamic programming [27]. This method can be used for obtaining the optimum furnace path by defining the entire path as an initial value multistage problem which is shown in Fig. 4.13. Here, $\{X_n\}$, $\{x_{n-1}\}$..., $\{x_i\}$..., $\{x_i\}$ denote the control variables at stages n, n-1, ..., i, ... 1 respectively; [S] denotes the state variables (global nodal temperature vector of the ingot). Here the furnace temperature T_p is the single design or control variable and is denoted as X. The vector $\{S_{n+1}\}$ denotes the global nodal temperatures. at t=0, which are known. R, R, R, ..., R, ... R, denote the return functions at stages n, n-1, ..., i, ..., 1 respectively. They represent the objective function to be minimized in each stage and can be denoted for the stage i for the present problem as

$$R_i(X_i, \{s_{i+1}\}) = 0.9 - (\sigma_d')_{max}$$
 (4.1)

Therefore, our objective is to minimize the objective function f, which is the sum of all individual stage returns. Thus one can write

 $\begin{array}{l} \text{minimize } f = R_n(X_n, \{S_{n+1}\}) + R_{n-1}(X_{n-1}, \{S_n\}) \\ & + \ldots + R_1(X_1, \{S_2\}) \end{array}$ (4.2)

127

This multistage optimization can be used for finding the optimum furface path during the heating period only (there is no minimization in the sosking period). The number of stages, n , in this problem is also variable. The final stage of this problem is the one in which at least one of the obtput state variables reaches the finishing temperature of the ingot.

The minimization of the objective function, f, can be done as follows:

First, consider the first subproblem by starting at the final stage, i=1. The design variable X_1 must be selected such that $R_1(X_1, \{S_2\})$ is an optimum for the input vector $\{S_2\}$. The optimum of the objective function at the stage i=1 can be denoted as

 $f_1^*(\{s_2\}) = opt[R_1(x_1, \{s_2\})]$ (4.3)

Once the input state vector $\{S_2\}$ is known, the optimal values of R_1 , X_1 , and $\{S_1\}$ can be calculated by performing single parameter optimization at that stage. But, the vector $\{S_2\}$ is not known at this time. In general, optimization can be carried out for possible values of $\{S_3\}$

and the corresponding optimal $\{{\bf S}_1\},\ {\bf X}_1$ and ${\bf R}_1$ values are stored.

Next, consider the second subproblem by grouping the last two stages. Then the objective function to be minimized in this case can be written as

$$E_2(\{s_3\}) \overset{\bullet}{=} R_2(x_2, \{s_3\}) + R_1(x_1, \{s_2\})$$

The objective function is dependent upon the design variables X_2 as well as X_1 . Again, the input state vector $\{S_3\}$ is not known. For various possible values of $\{S_3\}$, the above function can be minimized. In this minimization procedure, if any of the calculated $\{S_2\}$ vectors matches with the previous assumed $\{S_2\}$ vector, then the optimal values of X_1 , R_1 and $\{S_1\}$ corresponding to that vector are used in these calculations thereby avoiding repetitive computations. If f_2^* denotes the optimum objective value then it can be written as

$$f_{2}^{*} \{s_{3}\} = opt [R_{2}(X_{2}, \{s_{3}\}) + R_{1}(X_{1}, \{s_{2}\})]$$
(4.5)

Extending the same logic, the optimum objective function at the stage n can be written as

$$f_n^{*}(\{s_{n+1}\}) = \operatorname{opt}_{x_1, x_2, \dots, x_n} [R_n(x_n, \{s_{n+1}\}) + \dots + R_n(x_n, \{s_n\})]$$

128

(4.4)

(4.6)

The number of computations involved for minimizing the above objective function are quite large. These computations increase drastically with the increase in the number of stages and the number of elements in the state vector. In the present problem, the vector [S] contains 150 elements. Therefore, using the dynamic programming would be quite impractical in the present investigation.

The second method can be understood from Fig. 4.14. In this figure, along path 1, the Tp(t) is represented by selecting five temperatures which are represented by (Tp), $(T_F)_2$, etc. By selecting a path, the state variables (the nodal temperatures) and σ_d are calculated. In these computations, one would need to know the furnace temperature value between say $(T_p)_1$ and $(T_p)_2$. These values can be obtained using any interpolation method such as the cubic spline interpolation. If none of the constraints is 'violated then the time required for the surface temperature to reach the final specified temperature is recorded and the correspondig path is considered as a feasible path. In this way, several feasible paths can be tried out and the feasible path which requires the minimum time is selected as the optimal path. As a point of clarification it should be mentioned here that the process of selection of the values of $(T_p)_i$, i =1, ... 6, is done by the multivariable optimization method where these are considered as design

Fig. 4.14 One of the Feasible Paths in the Multivariable Optimizatiop.

variables. These variables are allowed to vary within certain limits. Greater accuracy in the optimal pathselection can be achieved if i is allowed to take a large value i.e. the design variables are selected at finer intervals of time. Even in this method, large CPU times are required due to the multivariable optimization.

The third method, which is a single variable optimization method and which requires significantly less CPU time, was briefly explained in Section 4.3.1. In this method, the furnace temperature T_p at a given time increment is allowed to vary using single variable optimization method so that the function U in Eqn. (4.1) is minimum. If one progresses this way until the final specified temperature is reached then the time taken to reach the final temperature would be the minipum time.

4.3.3 The Single Variable Optimization Method

Thus, the minimization, as stated earlier, can be written as

Minimize U = 0.9 - $(\sigma'_d)_{max}$ subject to the maximum temperature

T_ < 1498°K

In Eqn. (4.17, U is a function of T_p because $(\sigma_d')_{max}$ is a function of T_p . The optimization for each time step was

131

(4.1)

(4.2)

Carried out using the Davidon-Fletcher-Powell method [27] where T_p was the single variable. The details about this optimization technique have already been discussed in Chapter 2. The optimization was carried out until T_g attained the final hot working temperature which was 1498°K. After this, the T_g and T_p were maintained equal to 1498°K until core temperature became equal to T_p or T_g .

The results obtained for the AISI 4140 ingot are shown in Figs. 4.15²4.17 where σ_d , σ_s and σ_n are the failure criteria reasonably high value, decreases for sometime, and then increases. When the T_o reaches the finishing temperature then T_o is maintained equil to T_o because the second type of constraint becomes active i.e. the temperature. Along this optimal furnace temperature path both types of constraints (maximum thermal stresses and maximum 7.) have been satisfied.

If one encounters a situation where the decrease (it happens in the early part of the heating period) in the furnace temperature cannot be controlled very easily then the optimal heating schedule can be slightly modified and the results, due to the modification, are shown in Figs. 4.18 - ϕ 4.20. In this modification scheme, σ_d etc. are not equal to 0.90 in the beginning; it takes a very small time for the

Fig. 4.15 The Optimal Furnace Heating Path Considering σ_d as the Failure Criteria.

stresses to build up to 0.9 σ_y , but, the furnace temperature T_p has positive slope all along. The optimal heating time in the second scheme is slightly higher than the first one in s the three cases.

13

4.4 Conclusions

In this chapter, the solid temperature distributions as a function of furnace temperature variations were obtained and the corresponding thermal stresses were calculated. Various feasible furnace temperature paths were analyzed considering the elastic range for the thermal stresses and maximum specified temperature in the solid, as the constraints. The method for obtaining the optimal path was chosen from the three possible methods based on minimum CPU time, as the criteria. The optimal heating schedule was obtained by maximizing the utilization of the elastic range of the material. Based on-this study the following conclusions can be drawn:

- The peak normalized stresses occur close to the #ak value of the temperature AT when the furnace temperature is held constant.
- The maximum stresses occur when the maximum average temperature gradients occur.

Criteria.

- The higher is the constant furnace temperature the higher are the thermally induced maximum failure theory stresses (o_A, o_a and o_n).
- 4. The occurrence of the peak stresses $(\sigma_d, \sigma_g \text{ and } \sigma_n)$ can be delayed by decreasing the slope of the furnace heating, paths.
- 5. The distortion energy stress σ_d is less than σ_n at any instant of time.
- 6. The optimal furnace heating path (minimum time path) can be obtained by maintaining the maximum normalized stresses equal to one throughout the heating period.
- The single variable optimization method, which maximizes utilization of the elastic range of the material during heating is the best method for obtaining the optimal heating schedule of the ingot.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 A Brief Discussion

The work presented in this thesis consisted of the mathematical formulation of the equations which describe the heat transfer process within the ingot and the corresponding if thermal stresses. These temperature distributions and stresses were then used to obtain the optimal furnace temperature path. The constraints used in obtaining the optimal path were: (a) the various failure theories of the material, and (b) the maximum temperature at any point in the ; ingot.

The finite element technique was used to formulate the mathematical model of the unsteady nonlinear heat trasfor analysis of the ingot. The thermal stresses of the ingot were calculated using the axisymmetric finite element model. Since the thermal stresses are based on the heat transfor analysis, both the analyses were carried out using the same linear finite triangular elements.

<u>The temperature distributions of the injet were</u> studied by varying various furnace heating rates. The temperatures and the stresses using the two-dimensional and three-dimensional models were obtained and it was found that

the three dimensional formulation yielded safer results. Then, the heat transfer equations were linearized and its influence on the thermal stresses were studied. The effect of height of the ingot on these distributions were also studied. Finally, the optimal, furnace temperature path for heating the ingot to the finishing temperature in the minimum time without causing thermal failure was obtained by the single variable nonlinear programming technique. This method was based on the maximum utilization of the elastic range of the material during the heating period of the ingot:

5.2 Conclusions

Based on the present investigation the following conclusions can be drawn: λ

- The heat transfer process within the ingot can be studied by deriving the equations using the nonlinear finite element analysis.
- The optimization methods can be used for solving the nonlinear heat transfer problems.
- The iterative method is very efficient and requires less CPU time for solving the nonlinear heat transfer equations compared to the other methods.
- The axisymmetric analysis of the heat transfer process yields better insight into the temperature distribution

within the ingot as compared to the analysis where the heat flux from the axial direction is not considered.

- The temperature distribution along^eeither the radial or the vertical direction is nonlinear.
- The time t* decreases as the heating rate increases.
- 7. The quantity ΔT_{max} increases as the heating rate increases.
- The temperature gradients provide very useful information regarding the heat flux from the radial and vertical directions.
- 9. The three-dimensional finite-element analysis yields higher values of the normalized stresses as compared to the two-dimensional finite-difference and finite-element analyses. The three-dimensional analysis results are safer to use.
- 10. The two-dimensional model cannot always_predict the exact location of the maximum stresses in the ingot.
- 11. The maximum normalized thermal stresses σ_d ', σ_s ', σ_n ',
- 12. The linearization of the radiative boundary conditions yields upreliable results because the peak stresses are much higher than the nonlinearized results.
- The peak normalized stresses increase as the slenderness ratio of the ingot is increased.

- 14. The peak normalized stresses occur close to the peak value of the temperature difference AT when the furnace temperature is held constant.
- 15. The maximum stresses.occur when the maximum average temperature gradients occur.
- 16. The higher is the constant furnace temperature the higher are the thermally induced maximum failure theory stresses ($\sigma_{\rm d}$, $\sigma_{\rm m}$ and $\sigma_{\rm m}$).
- 17. The occurrence of the peak stresses (σ_d , σ_s and σ_n) can be delayed by decreasing the slope of the furnace heating paths.
- 18. The distortion energy stress σ_d is less than σ_d at any instant of time.
- 19. The optimal furnace heating path (the minimum time path) can be obtained by metaining the maximum normalized atresses equal to one (maximization of the elastic range of the material) throughout the heating period.
- 20. The single variable nonlinear optimization method, which maximizes utilization of the elastic range of the material during heating is the best method for obtaining the optimal heating schedule of the ingot.

5.3 Limitations of the Present Investigation and Recommendations for Future Work

- In the nonlinear heat transfer analysis the surrounding furnace temperature was assumed to be uniform. But in the real practice this temperature is not uniform. The present finite element heat transfer model can be modified for nonuniform surrounding temperature.
- In the finite element heat transfer model, the radiation from the furnace bricks was neglected. This can also be included in the heat transfer analysis.
- The spectral radiation from the hot gases (participating media) was also not considered in the heat transfer ,model. This factor can also be accommodated in this model.
- 4. In the thermal stress calculations the creep phenomenon was not included. The present model can be modified to include the creep behaviour also.
- 5. The thermal stresses were computed only in the elastic range of the material. The elasto-plasticity of the material can also be considered and elasto-plastic analysis can be carried out.

REFERENCES

 McGannon, H. E., "The Making, Shaping and Treating of Steel", United States Steel" Corporation, Pittsburg, 1964, pp. 546-556; 616-630.

- Mantell, C. L., "Engineering Materials Handbook", McGraw-Hill Bbok Company, New York, 1958, pp. 2.21-2.39.
- Jaluria, Y., "Numerical Study of the Thermal ProCesses in a Furnace", Numerical Heat Transfer, Vol. 7, 1984, pp. 211-244
- 4. Beer, G. and Meek, J. L., "Tensient Heat Plow in Solids", Proceedings of the Interhational Conference on Pinite Element Methods in Engineering, The University of South Wales, Australia, 1974.
- Carslaw, H. S., and Jaeger, J. C., "Conduction of Heat in Solids", Oxford University Press, 1947.
- Dusinberre, G. M., "Heat Transfer Calculations by Finite Differences", International Textbook Co., Scranton, 1960, pp. 8-18, 64-68.
- Hunt, N. V., "Numerical Evaluation of Temperature Distribution in Forging Ingots", Broken Hill Proprietary Co., Australia, 1958.
- Sun, R. Ci, "Determination of the Forging-Heating Schedule for a Large "Hastealler Alloy X Ingot", Metallurgical Transaction, Vol. 1, 1970, pp. 1881-1887.
 - Pinlayson, P. C., and Schofield, J. S., "Heating for Porging in a Batch-type Furnace", J. Iron and Steel Institute, Vol. 193, 1959, pp. 238-252.
- Kassir, M. K. and Sih, G. C., "Three Dimensional Crack Problems", Noordhoff International Publishing, Lyden, 1975.
- Timoshenko, S. P., and Goodier, J. N., "Theory of Elasticity", McGraw-Hill Book Co., New York, 1970, pp. 223-226, 445.

- 12. Stanley, P., and Chau, F. S., "The Effects of the Temperature-Dependence of Properties on the 'Internal Stresses in Cylinders', Proceedings of the International Conference on Thermal Environments, Plenum Press, New York, 1980, pp. 61-80.
- Emery, A. F., "Thermal stress and Fracture in Elastic-Brittle Materials", Proceedings of the International Conference on Thermal Stresses in
 Materials and Structures in Severe Thermal Environments, Plenum Press, New York, 1980, pp. 95-122.
- Meric, R. A., "Finite Element Analysis of Optimal Heating of a Slab with Temperature Dependent Thermal Conductivity", International Journal of Heat and Mass Transfer, Vol. 25, 4593, pp. 1347-1353.
- Meric, R. A., "Finite Element and Conjugate Gradient Methods for a Nonlinedr Optimal Heat Transfer Control . Problem", Int. J. Humer. Meth. Engn., Vol. 14, 1979, pp. 1851-1863.
- Meric, R. A., "Finite Element for an Optimal Control Governed by a Parabolic Equation", Int. J. Numer. Meth. Engn., Vol. 14, 1979, pp. 624-628.
- Meric, R. A., "Boundary Integral Equations and Conjugate Gradient Methods for Optimal Boundary Heating of Solids", International Journal of Heat and Mass Transfer, Vol. 26, 1983, pp. 261-267.
- Meric, R. A., "Boundary Elements for Optimal Heating of Solids", Journal of Heat Transfer, Vol. 106, 1984, pp. 876-880.
- Meric, R. A., "Finite Element Methods for an Optimal Steady-State Control Problem", Int. J. Numer. Meth. Engn., Vol. 12, 1978, pp. 1375-1382.
- Bulteau, J. P. and Dupont, M., "Optimization of an Industrial Continuous Furnace", Engineering Optimization, Vol. 7, 1964, pp. 303-318.
- Segerlind, L. J., "Applied Finite Element. Analysis", John Wiley and Sons, Inc., New York, 1976, pp. 28-307 42-46; 63-86; 199-209; 212-222; 243-249; 402-408;

22. Rao, S. S., "The Finite Element. Method in Engineering", Pregamon Press, & Kford, 1982, pp. 468-474; 493,494.

- Huebner, K., and Thronton, E. A., "The Finite Element Method for Engineers", John Wiley and Sons, Inc., New York, 1982, pp. 427-428, 431-435.
- 24. Reddy, B. S., and Sharan, A. M., "The Transient Heat Transfer Analysis of Solids with Radiative Boundary Condition Using Finite Element Analysis", Int. Comm. Heat Mass Transfer, Vol. 12, 1985, pp. 169-178.
- Gerald, C. F., "Applied Numerical Analysis", Addison-Wesley Publishing Company, Inc., 'Reading, 1978, pp. 15-26.
- 26, Sharan, A. M., and Reddy, B. S., "Nonsteady Temperature Distribution in Solids Using the Optimizion Principles", AIAA-55-1015, Williamsburg, Virginia.
- Rao, S. S., "Optimization theory and applications", Wiley Eastern Limited, New Delhi, 1978, pp. 315-327; 474-501.
- Siddall, J. N., "Optimal Engineering Design", Marcel Dekker, Inc., New York, 1982, pp. 161-167.
- Reddy, B. S., and Sharan, A. M., "The Computer Simulation of a Heat Transfer Procees within a Forging Ingot using the Finite Element Method", Proceedings of the 4th Canadian CAD/CAM and Robotics Conference, Rexdale, 1985.
- Holman, J. P., "Heat Transfer", McGraw-Hill Book , Company, New York, 1981, pp. 536-537.
- Schuchmann, Jr., R., "Metallurgical Engineering", Addison-Wesley Publishing Co., Reading, 1952, pp. 207-234.
- Shigley, J. E., and Mitchell, L. D., "Mechanical Engineering Design", McGraw-Hill Book Company, New York, 1983, pp. 217-237.
- Desai, C. S. and Abel, J. F., "Introduction to the Numerical Method", Van Nostrand Reinhold Co., New York, 1972, p. 45.
- Cubberly, W. H., "ASM Metals Reference Book, American Society for Metals", Metals Park, Ohio, 1981, pp. 164-167.

- Myers, G. E., "Analytical Methods in Conduction Heat Transfer", McGraw-Hill Book Company, New York, 1971, p. 303.
- 36. Shiners, S. M., "Modern Control, System Theory and Application", Addison-Wesley Publishing Company, Inc., Reading, 1978, pp. 496-502.

PPENDIX A Using the matrix differentiation, it can be shown that [21] $\frac{\partial}{\partial \{\mathbf{T}^{\mathbf{e}}\}} \int \frac{1}{\mathbf{e}^{\mathbf{e}}} \{\mathbf{T}^{\mathbf{e}}\}^{\mathrm{T}} [\mathbf{B}_{1}^{\mathbf{e}}]^{\mathrm{T}} [\mathbf{D}_{1}^{\mathbf{e}}] [\mathbf{B}_{1}^{\mathbf{e}}] \{\mathbf{T}^{\mathbf{e}}\} d\mathbf{V}$ $= \int [B_1^{e} \mathbf{j}_{[D_1^{e}]}^{T} [D_1^{e}] [B_1^{e}] [\mathbf{T}^{e}] dv$ (A.1) $\frac{\delta}{\delta[\pi^{e}]} \int_{e} r Q^{e} [\aleph_{1}^{e}] \{T^{e}_{\cdot}\} dv = \int_{e} r Q^{e} [\aleph_{1}^{e}]^{T} dv$ (A.2) $\frac{\delta}{\delta[T^e]} \int_{V^e} r^e \rho c^e [N_1^e] \frac{\delta[T^e]}{\delta t} [N_1^e] [T^e] dv$ = $\int_{e} r\rho c^{e} [N_{1}^{e}]^{T} [N_{1}^{e}] \frac{\delta [T^{e}]}{\delta t} dv$ (x.3) $\frac{\delta}{\delta \{r^e\}} \int_{s,e}^{s} r q^e [N_1^e] \{r^e\} ds = -\int_{s,e}^{s} r q^e [N_1^e]^T ds$ (A.4)

APPENDIX B

The elemental capacitance matrix can be expressed as

$$\begin{bmatrix} c^{e} \end{bmatrix} = \int_{v^{e}} \rho c^{e} \left[N_{1}^{e} \right]^{T} \left[N_{1}^{e} \right]^{dv}$$
(B.1)

Using the volume coordinates, it can be written in the matrix form as

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
(B.2)

The expression for the conduction matrix [K1e] is

The $[K_h^e]$ matrix is due to the convective heat transfer. This matrix is zero, if none of the triangular element sides exchanges heat by convection. Evaluating the integrals in the above equation using the volume and area coordinates, the matrix [K, e] can be written in the matrix form as

The matrix $[K_h^{e}]$ is evaluated for the side i-j of the element, which is exchanging heat by convection.

0

1 0

^bi^bk ^bj^bk ^bk^bk

^ci^ck ^cj^ck c_kc_k

The force vector, $\{F_Q^e\}$ due to the heat generation ' can be written as

$$\{\mathbf{F}_{\mathbf{Q}}^{\mathbf{e}}\} = \int_{\mathbf{V}_{\mathbf{q}}} \mathbf{Q} \cdot \left[\mathbf{N}_{\mathbf{1}}^{\mathbf{e}}\right]^{\mathsf{T}} \mathrm{d}\mathbf{V} \qquad (B.5)$$

In the vector form, it is

 $[\kappa_1^{e}] = \frac{\kappa_x^{e}}{4A^{e}} \begin{bmatrix} b_i b_i & b_i b_j \\ b_j b_i & b_j b_j \\ b_k b_i & b_k b_j \end{bmatrix}$

h^e L_{ij} 1

 $+ \frac{K_{\mathbf{y}}}{4\mathbf{A}^{\mathbf{e}}} \begin{bmatrix} c_{\mathbf{i}} c_{\mathbf{i}} & c_{\mathbf{i}} c_{\mathbf{j}} \\ c_{\mathbf{j}} c_{\mathbf{i}} & c_{\mathbf{j}} c_{\mathbf{j}} \\ c_{\mathbf{k}} c_{\mathbf{i}} & c_{\mathbf{k}} c_{\mathbf{j}} \\ c_{\mathbf{k}} c_{\mathbf{i}} & c_{\mathbf{k}} c_{\mathbf{j}} \end{bmatrix}$

$$\{F_{Q}^{e}\} = \frac{Q^{e}v^{e}}{3} \quad \left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array} \right\}$$
(B.6)

The force vector, $\{F_q^e\}$ due to the heat flux can be expressed

$$\{ \mathbf{F}_{\mathbf{q}}^{\mathbf{e}} \} = \int_{\mathbf{s}_{1}} \mathbf{q}^{\mathbf{e}} \left[\mathbf{N}_{1}^{\mathbf{e}} \right]^{\mathrm{T}} \mathrm{d}\mathbf{S}$$
 (B.7)

This vector is dependent on the side of the element experiencing heat flux. For the side i-j, it can be written

$$\left\{ \mathbf{F}_{\mathbf{q}}^{\mathbf{e}} \right\} = \frac{\mathbf{q}^{\mathbf{e}} \mathbf{L}_{\mathbf{j}}}{2} \left\{ \begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{array} \right\}$$
(B.8)

The force vector, $\{F_{\alpha}^{\ e}\}$ due to the convective heat transfer can be written as

$$\{\mathbf{F}_{\mathbf{C}}^{\mathbf{e}}\} = \int \mathbf{h}^{\mathbf{e}} \mathbf{T}_{\mathbf{F}} [\mathbf{N}_{\mathbf{1}}^{\mathbf{e}}]^{\mathbf{T}} ds$$
 (B.9)

This vector is also dependent on the side exchanging heat by convection. For the side i-j of the element, it is

$$\int_{\{\mathbf{F}_{c}^{e}\}} = \frac{h^{e} T_{p} L_{ij}}{2} \begin{cases} 1 \\ 1 \\ 0 \end{cases}$$
(B.10)

The force vector, $\{F_{\mathbf{r}}^{e}\}$ due to the radiative heat transfer can be expressed as

$$\{F_{\mathbf{r}}^{\mathbf{o}}\} = \int \sigma \varepsilon \mathbf{r}_{\mathbf{r}}^{\mathbf{f}} [\mathbf{N}_{\mathbf{1}}^{\mathbf{o}}]^{\mathsf{T}} d\mathbf{s}$$

$$-S_{2}^{\mathbf{e}}$$

$$- \int -\int \sigma \varepsilon [\mathbf{N}_{\mathbf{1}}^{\mathbf{o}}]^{\mathsf{T}} ([\mathbf{N}_{\mathbf{1}}^{\mathbf{o}}] \{\mathbf{r}^{\mathbf{o}}])^{\mathsf{4}} d\mathbf{s}$$

(B;11)

154

This vector is also dependent on the element side exchanging heat by radiation. For the side i-j of the element the above integral can be written as

 $\frac{\sigma \epsilon L_{ij}}{30} \begin{cases} 5 \tau_{i}^{4} + 4 \tau_{i}^{3} \tau_{j} + 3 \tau_{i}^{2} \tau_{j}^{2} + 2 \tau_{i} \tau_{j}^{3} + \tau_{i}^{4} \\ 5 \tau_{j}^{4} + 4 \tau_{j}^{3} \tau_{i} + 3 \tau_{j}^{2} \tau_{i}^{2} + 2 \tau_{j} \tau_{i}^{3} + \tau_{i}^{4} \end{cases} \end{cases}$

$$\{\mathbf{F}_{\mathbf{r}}^{\mathbf{e}}\} = \frac{\sigma \ \epsilon \ \mathbf{L}_{\mathbf{ij}}}{2} \begin{cases} \mathbf{1} \\ 1 \\ 0 \end{cases}$$

155

(B.12)

APPENDIX C

THE REPRESENTATION OF T IN THE MATRIX FORM

Consider a linear axisymmetric triangular element whose details are shown in Fig. 2.1. The nodes of this element are denoted by i, j, k in the counter-clockwise direction. The shape functions for this linear triangular element are

 $N_{\beta}^{e} = \frac{1}{2A^{e}} (a_{\beta} + b_{\beta}r + c_{\beta}z), \ \beta = i - j, \ k \bullet$

where

 $a_{i} = r_{j} z_{k} - r_{k} z_{j}$ $a_{j} = r_{k} z_{i} - r_{i} z_{k}$ $a_{k} = r_{i} z_{j} - r_{j} z_{i}$ $b_{i} = s_{j} - z_{k}$ $b_{j} = z_{k} - z_{i}$ $b_{k} = z_{i} - z_{j}$ $c_{i} = r_{k} - r_{j}$ $c_{j} = r_{i} - r_{k}$ $c_{k} = r_{i} - r_{i}$

The temperature of the element is given by T,e $\mathbf{T}^{e} = [\mathbf{N}^{e}]\{\mathbf{T}^{e}\} = [\mathbf{N}_{i}^{e} \mathbf{N}_{j}^{e} \mathbf{N}_{k}^{e}]$ тје. т_ке
APPENDIX D

The required computations were done on the VAX 11/780 digital computer, using a package of programs developed in FORTRAN language. Some of the programs make use of subroatines which are: BOUND, DECOM and SOLVE. These are provided at the end of the appendix. All these programs are self-sufficient and can be run with the corresponding input data files.

The program MSN generates the input data required for computing unsteady nonlinear temperature as well as thermal stress distribution. This program can discretize the domain into several linear right angle traingular elements of different sizes. The input data created by this program consists of the element number, fode numbers of alements, coordinates of nodes of elements and boundary conditions of differents.

The program TMPSOL computes the unsteady temperature distribution of the two-dimensional body a subjected to convection and radiation boundary conditions. The nodal temperatures at various time instants are solved using the iteration method. The data generated by program MESH are used as an input into TMPSOL.

The program TMPING calculates the unsteady temperatures at various nodes of the axisymmetric cylindrical ingot when it is heated in the uniform hot fluid medium. The heat flux in both radial and axial directions are considered. The axisymmetric triangular-fing elements are used. The input data for this program can also be generated using MESH.

The program TMPINGI computes the temperatures and stress distributions of the cylindrical ingot using the finite difference method. The heat flux in the axialdirection is neglected. Therefore this program computes the temperatures and stress distributions at various heating time instants along a horizontal section.

The program BCOND generates the input data for the subroutine BOUND. This data corresponds to the boundary conditions in the thermal stress analysis of the ingut.

The program OPTI calculates the optimum furnace temperature at each time step. This optimization is carried out using single variable Davidon-Fletcher-Powell method: The meeting variable is the furnace temperature. OPTIVAR package is used in this analysis. The subroutine UREAL calculates the ingot temperatures corresponding to the optimum furnace temperature. The Subroutine STRESS computes the thermal stresses within the ingot with the variations of the thermal stresses the ingot.

The subroutine BQUND imposes the boundary gonditions in the thermal stress calculations. The subrountine DECOMP decomposes the matrix into upper and lower triangular matrices. The subroutine SOLVE is used for solving the unknown vector using the method of backward substitution.

1.175

********* -C C. PROGRAM LISTING +++ MESH .+++ THIS PROGRAM GENERATES THE TRIANGULAR ELEMENTS AND STORES THE ELE.NO., NODE. NO., COORDINATES OF NODES., AND BOUNDARY C CONDITIONS . DIMENSION X(100), Y(200), Z'(200) OPEN(UNIT-3, FILE='INPUT1.DAT', TYPE='OLD') READ(3,*) XMAX READ(3,*) YMAX READ(3,*) XINIT READ(3,*) VINIT READ(3.*) XRED READ(3,*) YRED INCR1=2 X(1)=0.0 X(2) = X(1) + XINITINCR1=INCR1+1 X(INCR1)=X(INCR1-1)+(1-XRED)*(X(INCR1-1)-X(INCR1-2)) IF(X(INCRL).LT.XMAX)GO TO 10 X(INCR1)=XMAX Y(1)=0.0 YX2)=YX1)+YINIT INCR2=2 20 INCR2-INCR2+1 Y(INCR2)-Y(INCR2++)+(1-YRED)*(Y(INCR2-1)-Y(INCR2-2)) IF(Y(INCR2).LT.YHAX)GO TO 20 Y(INCR2)=YMAX NELM=2*(INCR1-1)*(INCR2-1) NODES-INCR1*INCR2 NBAND-INCR1+2 OPEN(UNIT=2.FILE='OUTPUT1.DAT'.TYPE='NEW') WRITE(2,103)NODES, NELM, NBAND FORMAT(' '.316) 103 KOUNT-1 NSTRT=1 NCOUT =-1 50 K1-0 K3=0 H1-NSTRT M2=NSTRT+INCR1+1 M3=M2-1 NI-NSTRT N2=NSTRT+1 N3=M2 X1=X(M1-(KOUNT-1)*INCR1) T1-Y(KOUNT) X2=X(M2-KOUNT*INCR1) Y2=Y(KOUNT+1)

X3=X(M3-KOUNT*INCR1) Y3=Y(KOUNT+1) XX1=X1 111-11 XX2=X(N2-(KOUNT-1)*INCR1) YY2-Y (KOUNT)). XX3=X2 YY3-Y2 NCOUT=NCOUT+2 NNCOUT = NCOUT+1 IF(M1.GT.(INCR1*(INCR2-2)))GO TO 40 IF(N2.EQ.(KOUNT*INCR1))GO, TO 90 WRITE(2,101)NCOUT,M1,M2,M3,X1,Y1,X2,Y2,X3,Y3,K1 50 WRITE(2,101)NNCOUT, N1,N2,N3,XX1,YY1,XX2,YY2,XX3,YY3,K3 FORMAT(' ',4(15),6F8.5,212) 101 NSTRT=NSTRT+1 IF((XX3.E0.X(INCR1)).AND.(YY3.E0.Y(INCR2)))GO TO 80 GO TO 50 KOUNT=KOUNT+1 K3=2 NSTRT=NSTRT+1 GO TO 60 K1 =2 1F((XX3.EQ.X(INCR1)).AND.(YY3.EQ.Y(INCR2)))K3=2 GO TO 60 CONTINUE STOP END

	and the second s					
	C*****	***********	*******	**		·
12	C					
-	-c	LISTING OF THE	PROGRAM ++	+ TMPS	01 +++	
	С	PROGRAM FOR CAL	CULATING THE	UNSTEAD	Y NONLINEAR	TEMPERATURE
14	C .	. DISTRIBUTION	OF THE SOLI	D	1	
	C		1			×
	C	SUBROUTINES USE	D IN THIS PR	OGRAM AR	E BOUND, DECO	MP,SOLVE
	C .	9.2.7	· • ····		1 10	
	C*****	************	*******	***	9 A	10 .
- 1	10 a 2	· · · · · · · · · · · · · · · · · · ·	100 201		1	
- 1			\sim			
		• 2				
		REAL KT, LENG, L	AMBDA			
		DIMENSION NS(3),ESM1(3,3),	EF(3),X(3),Y(3),B(3)	,C(3)
		DIMENSION A(20	000),D(2000))))	
		DIMENSION CAP(3,3),ESM2(3,	3), PM(3)	,AA(3),ESM(3	,3)
		DATA NCL/1/		3		
		<i>i</i> .				
6			· ·	Sec. 14. 14		
		1			2 1	
	C	KT	THERMAL CON	NDUCTIVIT	Y OF THE MAT	ERIAL -
	С	н	CONVENCTION	HEAT TR	ANSFER COEFF	ICIENT .
	С	DELTA	TIME STEP 1	IN SECOND	S	
	C	TO	FLUID TEMP.	AT PREV	IOUS TIME IN	STANCE
	С	TN	FLUID TEMP.	. AT CURR	ENT TIME INS	TANCE
	C	SIGM	STEPEN - BO	DLTZMANN .	CONSTANT	
	С	NCL	NO. OF LOAD	DING CASE	S	an in the second
	C	ISIDE	SIDE WITH (CONVECTIO	N AND RADIAT	ION BOUNDARY
	C	LENG	LENGTH OF :	THE SIDE		
		(*12)				1
			8			
		TN-323.0				
	1	TO=323.0	1		A	
		KF =3.0				
		H=200.0	1 N.			
		RH0=1600.0		2		·
		SPHEAT=800.0				•
		LAMBDA=RHO*SPH	EAT	2		N 151
		DP-LAMBDA*AR4	48.0			1
		TOTAL=0.0		2	*	£
		DELTA=60.0				
		EPSI=0.7	s			· · · · ·
		SIGH-5.669E-8			· ·	
		PRO=EPSI*SIGM			**	i
	1					()
	÷ .	OPEN (UNIT=2,F)	LE OUTPUT.	DAT', TYPE	-'OLD')	N
	~	OPEN (UNIT=3, F)	LE TEMP .DA	T', TYPE-	NEW')	
۹.		•	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· ·
	1.51	READ(2,*)NP,NE	NBW I			
		JGF=NP	And the second	1		-
		JGSM=JGF*2	1.1.1	· •	A 1 100 10	SC 1 1
	. " * s	JEND=JGSM+NP*	IBW I	And I		A
		Condense of the last	- 14 A	17 a.		·
1	x	DO 100 I=1, JEN	ID	6 v.		
	100	A(1)=0.0			• • • • •	
× 5	2					

في ا

DO 110 I=1, JGF A(I)=573.0 110 CONTINUE 10 CONTINUE DO 120 I=JGE+1, JEND A(I)-010 CONTL DO. 130 -KK-1, NE READ(2.*) NEL.NS.X(1).Y(1).X(2).Y(2) DO 140 I=1,3 AA(I)=A(NS(I)) CONTINUE . B(1)=Y(2)-Y(3)B(2)=Y(3)-Y(1) B(3)=Y(1)-Y(2) C(1)=X(2)-X(2) C(2)=X(1)-X(3) C(3)=X(2)-X(1) AR4 = (X(2) * Y(3) + X(3) * Y(1) + X(1) * Y(2) - X(2) * Y(1) - X(3) * Y(2)-X(1)*Y(3)) *2.0 DO 150 I-1.3 EF(I)=0.0 PM(I)=0.0 DO 150 J=1,3 ESM(I,J)=(KT*B(I)*B(J)+KT*C(I)*C(J)) 150 CONTINUE IF(ISIDE .LE. 0) GO TO 160 J-ISIDE K=J+1 LENG=SORT((X(K)-X(J))**2.+(Y(K)-Y(J HL=H*LENG EF(J)=HL*T0/2.0 EF(K)=HL*T0/2.0 M=NS(J) N=NS(K), EF1 = PRO*LENG*(T0**4)/2.0 EF2=PRO*LENG*(T0**4)/2.0 EF31=((5*A(H)**4)+(4*A(H)*A(H)**3)+(3*A(H)*A(H) A(N)*A(N))+(2*A(H)*A(N)**3)+(A(N)**4)) EF3=(PRO*LENG/30.0)*EF31) EF41=((5*A(N)***)+(4*A(H)*A(N)**3)+(3*A(H)*A(H)* A(N)*A(N))+(2*A(N)*A(M)**3)+(A(M)**4)) EF4=(PRO*LENG/30.0)*(EF41) EF(J)=EF(J)-EF3+EFL BF(K)=BF(K)-EF4+EF2 ESM(J,J)=ESM(J,J)+(HL*2)/6.0 ESM(J,K)=ESH(J,K)+HL/6.0 ESM(K, J)=ESM(J,K)

ESM(K,K) =ESM(K,K)+(HL*2)/6.0 CONTINUE CAP(1,1)=DP*2 CAP(1,2)=DP*1 CAP(1,3)=DP*1 CAP(2,1)=DP*1 CAP(2,2)=DP*2 CAP(2,3)=DP*1 CAP(3,1)=DP*1 CAP(3,2)=DP*1 CAP(3,3)=DP*2 DO 170 I=1.3 DO 170 J=1,3 ESM1(I, J)=(2.*CAP(I, J)/DELTA)-ESM(I, J) CONTINUE DO 180 I=1.3 DO 180 J=1,3. PM(I)=PM(I)+(ESM1(I,J)*AA(J)) CONTINUE DO 210 I-1.3 EF(I)=PM(I)+EF(I) CONTINUE DO 130 1-1.3 II=NS(I) J5-NP+II A(J5)=A(J5)+EF(I) CONTINUE REWIND 2 DO 300 I-1.JGSM D(I)=A(I) . DO 301 1-1, JGF A(I)=0.5*(A(I)+D(I)) D(I)=A(I)

READ(2,*)KD,KD,KD

160

180

210

130

300

270

301

DO 430 KK-1, NE READ(2, *) NEL, NS, X(1), Y(1), X(2), Y(2), X(3), Y(3), ISIDE B(1)-Y(2)-Y(3)

\$2(2)+V(3)+V(1) B(3)+V(1)+V(2) C(1)+X(3)-X(2) C(2)+X(1)-X(3) C(3)-X(2)-X(1) AR4-(X(2)+V(3)+2) -X(1)+V(3)+2) -X(1)+V(3)+

n an tha tha sa tha Na tha sa tha	•	1		e Maria	- 6	166	÷
					-		
. '			- •			1 .	. 7
						1	· · · ·
	DO 450 I-1	.3				â	
	EF(I)=0:0	~ *					
1. N. N.	DO 450 J=1	,3	,				•
1 A .	ESH(I, J)=(KT*B(I)*B	(J)+KT*C(I)*C(J))7	AR4		
450	CONTINUE		1.		· 6 6		1.00
1	·		· ite ·				
	IF(ISIDE .	LE. 0) GO	TO 460		2.1	:- ·	
14 . J	J=ISLDE				· * * •		
	TRUCKSOPT	(X(X)-X()	11**2 + (1	(K)-V(I)	**2.)	· · · · ·	(
*	DE QU-SQAL	(A(A) A(0		(11) 1(0)		•	
	HL.=H*LENG	1. St. 1.				1 1	
	EP(J)=HL*T	N/2.0 '		-		•	
	EF(K)=HL*T	N/2.0-				11 A.	
	M=NS(J)			•			
	N=NS(K)						
* .	EF1=PRO*LE	NG*(TN**4)/2.0				
2.4.4	EF2=PRO*LE	NG*(TN**4)/2.0				
	EF31=((5*A	(H)**4)+(4*A(N)*A(H)**3)+(3	*A(H)*A	(M)*	
+	A(N)*A(N))	+(2*A(H)*	A(N)**3)+	(A(N)**4)) .		
	EE3=(PRO*L	ENG/30.0)	*(EF31)		** / ****		
	EF41=((5*A	(N)**4)+(4 * A(H) * A(NJ##3)+(3	~A(M)*A	(n)-	
+	A(N)*A(N))	+(2*A(N)*	A(M)**3)+	(A(M)**4)	· .		2
•	EF4=(PRO*L	ENG/30.0)	~(BF41).				
	EP(K)=EP(V)-RF4+FF2					
		.,					•
1 N	ESH(J.J)=E	SM(J.J)+(HL*2.)/6.	0		1	2
1	ESM(J.K)=E	SM(J.K)+H	L/6.0			1	
· · · ·	ESM(K, J)=E	SH(J,K)				·	1-
	ESM(K,K)=E	SM(K,K)+(HL*2.)/6.	0			
. 460	CONTINUE			- '			
				- 1. 4			
: .	CAP(1,1)=D	P*2					
	CAP(1,2)=D	P=1					
	CAP(1,3)=1	P=1				1	
	CAP(2,1)=0	P-1				(
/ 4	CAP(2,2)=1	P#1	f .				
	CAP(3-1)-	P#1				· 7	·
	CAP(3, 2)=0	P#1					
	CAP(3.3)=	P*2				· .	
				• •			
	DO 470 I-1	.3			P		
	DO 470 J=1	,3				1	
•	ESM2(I,J).	(2.*CAP(I	,J)/DELTA)+ESM(I,.	1)		
470	CONTINUE .						
	DO 430 I=1	,3	·				· · ·
	II=NS(I)	· · · · ·				2	· · · ·
	J5=NP+II			· ·	1.2.12		
	A(15)=A(15	1+RR(1)					
·, *	A(00)-A(0.		1.		1.0		

•

「「読んの」

A State of the second second

JJ=NS(J) JJ=JJ-II+1 IF(JJ)190,190,200 200 J5=JGSH JJ-1)*NP+II A(J5)=A(J5)+ESM2(I,J) 190 CONTINUE 430 CONTINUE REWIND 2 CALL BOUND (A(JGSH+1), A(JGF+1), NP, NBW, NCL) CALL DECOMP(A(JGSH+1), NP, NBW) CALL SOLVE(A(JGSM+1), A(JGF+1), A(1), NP, NBW, NCL) 00-240 I=1, JGF IF(ABS(D(I)-A(I)). e.0.01)GO TO 250 240 CONTINUE GO TO 290 250 CONTINUE DO 260 1-JGF+1, JEND 260 A(I)=0.0. DO 280 I=JGF+1, JGSM A(I)=D(I) 280 CONTINUE GO TO. 270 -290 CONTINUE TIME = TIME + DELTA/60.0 PRITE(3, *)A(1), A(3), A(11), A(13), A(21), A(23), TIME READ(2,*)KD,KD,KD IF(A(1).GT.323.0)GO TO 10 STOP END

+++ TMPING +++ LISTING OF THE PROGRAM THIS PROGRAM COMPUTES THE UNSTEADY NONLINEAR TEMPERATURE-DISTRIBUTION IN THE INGOT. SUBROUTINES USED IN THIS PROGRAM ARE DECOMP. SOLVE *********** REAL KT, LENG, MNSE, MSSE, KTH (2000), SPHT (2000) DIMENSION NS(3), ESM1(3,3), EF(3), R(3), Z(3), B(3), C(3) DIMENSION A(20000), D(2000) DIMENSION CAP(3,3), ESH2(3,3), PH(3), AA(3), ESH(3,3) DATA NCL/1/ TOTAL-0.0 PHI=3.142857 DELTA=60.0*5 dell=delta/60.0 EPSI=0.7 SIGM-5.669E-8 PRO=PHI*EPSI*SIGH RH0=7840.0 T0-1000 TN=1000 OPEN (UNIT=2, FILE='OUTPUT1.DAT', TYPE='OLD' OPEN(UNIT=3,FILE='CONDUC.DAT',TYPE='OLD') OPEN(UNIT=6,FILE='SPHEAT.DAT',TYPE='OLD') OPEN (UNIT=7, FILE='TEMP1.DAT', TYPE='NEW') READ (2, *)NP, NE, NBW JGF-NP JGSM=JGF*2 JEND=JGSM+NP*NBW READ(3,*)(KTH(1),1=1.2000) READ(6,*)(SPHT(1), I=1,2000) DO 100 I-1. JEND A(I)=0.0 DO 110 I=1,JGH A(I)=298.0 CONTINUE 10 continue DO 120 1=JGF+1 A(I)=0.0 CONTINUE

DO 130 KK=1,NE READ(2,*) NEL,NS,R(1),Z(1),R(2),Z(2),R(3),Z(3),ISIDE RAVER=(R(1)+R(2)+R(3))/3.0 DO 140 I=1.3 AA(I)=A(NS(I)) 140 CONTINUE B(1)=Z(2)-Z(3) B(2)=Z(3)-Z(1) B(3)=Z(1)-Z(2) C(1)=R(3)-R(2) C(2)=R(1)-R(3) C(3)=R(2)-R(1) AR4=(R(2)*Z(3)+R(3)*Z(1)+R(1)*Z(2)-R(2)*Z(1)-R(3)*Z(2) -R(1)*Z(3)) *2.0 ITEMP-IFIX(((A(NS(1))+A(NS(2))+A(NS(3)))/3.0)-273.0) KT=KTH(ITEMP) SPEHT-SPHT(ITEMP) RLAMDA = RHO*SPEHT DP-PHI*RLAMDA*AR4/360.0 DO 150 I=1.3 EF(I)=0.0 PM(I)=0.0 DO 150 J=1,3 ESH(I, J)=((KT*B(I)*B(J)+KT*C(I)*C(J))*RAVER*RAVER*2 150 CONTINUE IF(ISIDE .LE. 0) GO TO 160 J-ISIDE K=J+1 LENG=SQRT((R(K)-R(J))**2.+(Z(K)-Z(J))**2.) TEMP1-ITEMP+273 TEMP2=1.8*(TO-TEMP1) H=ABS(TEMP2)/2.25 H=H**(1./4.) H=0.27*H H=5.6782*H HL-H*LENG EF(J)=EF(J)+(RAVER*HL*PHI*TO*(2.*R(J)+R(K)))/3.0 EF(K)=EF(K)+(RAVER*HL*PHI*TO*(R(J)+2.*R(K)).)/3.0 M=NS(J) N=NS(K) EF1=(PRO*LENG*BAVER*(2*R(J)+R(K))/3.0)*(TO**4) #P2=(PRO*LENG*PVER*(R(J)+2*R(K))/3.0)*(TO**4) EF31#((60*A(H)**4)+(40*A(N)*A(H)**3)+(24*A(H)*A(H)* A(N)*A(N))+(12*A(H)*A(N)**3)+(4*A(N)**4))*R(J) EF32=((10*A(H)**4)+(16*A(N)*A(H)**3)+(18*A(H)*A(H) (16*A(H)*A(N)**3)+(10*A(N)**4))*R(K) EF3+(RAVER*PRO*LENG/210.0)*(EF31+EF32). 1=((60*A(N)**4)+(40*A(H)*A(N)**3)+(24*A(H)*A(

		•							
			14 C						
					1000			· ·	2.2
					1.00				
	122	A (N) #/	(N))+(12*		W**3 \+	(A*A(N)**	411#P/V		
		RR47-1	(10++(1)+	+61+116	** / 4 > **	(1) ++3)+/	THACHI	A (W) * A (N)	**21+ **
		(16+1)	(1) + A (H) + +	2)+(104	A (H) +A	N PTT	To.w(ii).	A(a) A(a)	
	· •	(10-A)	A J A (A) A	5)+(10-	A (1)+(1)	11.1.1.1.2.	10 I I I I I I I I I I I I I I I I I I I	,	
		BF4-()	AVER "PRO"	LENG/21	0.0)-(6	4175742,	,		
· · · · ·							2 N N	·	
	٠.	EF(J)	EF(J)-EF3-	+EFI					
4		EF(K).	EF(K)-EF4-	+EFZ					8
								NIC A	·).
	10	ESM(J,	J)=ESM(J,	J)+(RAV	EK*HL*PI	11*(3.*K	(J)+R(K)	11/0.0	6
		ESM(J,	(K) = ESM(J, H)	(RAV	EBOOL *PI	11*(R(J)-	R(K)))/6	.0	
	÷ .	ESM(K,	J) = ESM(J, I)	K) .			a interes		
1.12		ESM(K,	(K) = ESM(K, K)	K)+(RAV	ERAHLADI	11*(R(J)-	-3.*R(K)))/6.0	
a and			10000 N		a 8				
, 160		CONTIN	IUE			•			
		CAP(1,	1)=DP*(12.	.*R(1)*	*2.+2.*1	R(2)**2.4	+2.*R(3)*	**2.+6.*R(1)*R(2)
	+	+6	5.*R(1)*R(3	3)+2.*R	(2)*R(3)))			14 A
· · ·		CAP(1,	2)=DP*(3.	*R(1)**	2.+3.*R	(2)**2.+	2(3)**2.4	-4.*R(1)*B	(2)+2.*
	+.	R ((1)*R(3)+2.	*R(2)*	R(3))				.
		CAP(2,	1)=CAP(1,2	2)			1		4-
		CAP(1,	3)=DP*(3.*	*R(1)**	2.+R(2)	**2 3.*F	2(3)**2.4	+2.*R(1)*B	(2)+4.*
· • . · ·	+.	R (1)*R(3)+2.*	*R(2)*R	(3)).				
		CAP(3,	1)=CAP(1,3	3)		505 B			· · · · · · · · · · · · · · ·
	12	CAP(2,	2)=DP*(2.*	*R(1)**	2.+12.*	2(2)**2.4	+2.*R(3)*	**2.+6.*R(1)*R(2)
	+	+2	2.*R(1)*R(3	3)+6.*R	(2)*R(3)))			
8		CAP(2,	3)=DP*(R()	L)**2.+	3.*R(2)	**2.+3.*F	2(3)**2.4	+2.*R(1)*B	(2)+2.*
	+	- F	R(1)*R(3)+4	4.*R(2)	*R(3))				· · ·
		CAP(3,	2)=CAP(2,3	3) *	•			· *	
		CAP(3,	3)=DP*(2.*	*R(1)**	2.+2.*R	(2)**2.+1	2.*R()*	**2.+2.*R(1)*R(2)
	+	+6	.*R(1)*R(3	3)+6.*R	(2)*R(3))) ·			10 C 10 C 10 C
									· · · · · · · · · · · · · · · · · · ·
			3					٠.	10 and 10
2		DO 170	1=1,3			5 014 I			
		DO 170	J=1,3						
		ESM1(I	(J)=(2.*C/	P(I,J)	/DELTA).	-ESM(I,J))		
170		CONTIN	IUE					1	N
		DO 180	I=1.3	• •	· .	· · ·	19		
		DO 180	J=1.3		×		(8)		
		PH(I).	PM(I)+(ESN	(1(I,J)	*AA(J))				·
180		CONTIN	IUE	1			*		
					~	1 A A A A A A A A A A A A A A A A A A A		. <u>1</u>	- e - a - 2,
		DO 210	T=1.3	B					
	- 25	EF(I).	PM(I)+EF()	ť) 🦾					· · · · · · · · · · · · · · · · · · ·
210		CONTIN	UE.					197	
· · · · · · · ·							•		
, t., 1	•	DO 130	T=1.3	2			25.1		8 °
· · · · ·		TI-NS(T	100 A.S.					
1997 - 1997 -		J5=NP4	11	2 K.		20			····
		A(J5).	A(J5)+EP()	i) ·	NO 2 1				· ·
130	5	CONTIN	UR		a			1	
		in the second	The second	2. 17		~			
		REWINT	2 .		2	•			100
			1 1 1	· ×			2	11 T. K.	
		10 300	T=1 109M	1.00	1 ×	. 13	1.1		· · · · ·
300		D(T)-4	(T)	1.	- /	· · ·)		From all the "
				7 A T 2	1	2 A		1 .	•

「ない」の

A. S. A. Sand

170

۲.,

5.

			* - mm. ·	14
			171	
				12. 15
				٠.
			•	11
270	D0 301 I=1,JGF .			1.
	A(I)=0.5*(A(I)+D(I))			
301	D(I)=A(I)			
•				
18 A.				
	KERD(2, ")KD, KD, KD	and they is		
		~/		12.3
	DO 430 KK=1.NE	/		
	READ(2.*) NEL.NS.R(1).2(1).	R(2) . 2(2) . R(3) .	(3) TSTDE	
	PAUER=(P(1)+P(2)+P(2))/2 0			
				13
			· .	1.1.1
	B(1)=Z(2)-Z(3)			
	B(2)=Z(3)-Z(1)			
	B(3)=Z(1)-Z(2)			· · · ·
	C(1) = R(3) - R(2)			
-	C(2)=P(1)=P(2)			
	G(2)-R(1)-R(3)		/	
	G(3)=R(2)-R(1)		× 1	
	AR4=(R(2)*Z(3)+R(3)*Z(1)+R	(1)*Z(2)-R(2)*Z(1)-R(3)*Z(2)	1.0
-	-R(1)*Z(3)) *2.0			
		•		
	TTEND TETY///A/NC/INAANC	222241/100/2222/2	03 072 03	. 1
5	, 116HF-1FIX(((A(NS(1))+A(NS)	(2))+A(NS(3)))/3	.0)-2/3.0)	
× .	KT=KTH(ITEMP) «			
	SPEHT=SPHT(ITEMP)		· · · · · · · · · · · · · · · · · · ·	
	RLAMDA=RHO*SPEHT			
	DP=PHT *PLANDA *AP4/360 0			
	DO 450 T-1 7		· · · · · ·	
	00 450 1-1,5	•. •		1.27
	EF(I)=0.0			
10	DO 450 J=1,3	har		
	ESM(I.J)=((KT*B(I)*B(J)+KT	*C(T)*C(.I))*RAVE	R*RAVER*2. *PHT)/AR4	
450	CONTINUE			
-	oonrinou .			
	and the second s			
	IF(ISIDE .LE.) GO TO 460			
	J-ISIDE		· · · ·	
	K=J+1		1 A A A A A A A A A A A A A A A A A A A	
	LENG=SORT((R(K)-R(I))**2.+	(7(8)-7(1))**2.)	×	
•	TENDI -TTEND+273	(2(1) 2(0)) 21)		
	TENT 1-LIENT TETS			
×.	TEMP2=1.8*(TN-TEMP1)		•	
	H=ABS(TEMP2)/2.25			
	H=H**(1./4.)			**
	H=0.27*H		• • •	
1 .	H=5.6782#H			
· .				
•	HL-H-LENG			• 1
	· · · · ·			
	EF(J)=BF(J)+(RAVER*HL*PHI*'	EN*(2.*R(J)+R(K)))/3.0 -	
	EF(K)=EF(K)+(RAVER*HL*PHI*	EN*(R(J)+2.*R(K)))/3.0	
	M=NS(J)			,
	N-NC (V)			
				- "
		-		- -
5	EF1=(PRO*LENG*RAVER*(2*R(J)) +R(K))/3.0)*(TN	**4)	+
-	EF2=(PRO*LENG*RAVER*(R(J)+	AR(K))/3.0)*4TN	**4)	
			· · · · ·	10
	* ##31 =((60*6(M)****)+(40**(N)	** (**************		1.
1 4				
\ ·	F(#) -A(N))+(12 -A(H) +A(N) +*.)T(4"A()")""4))"	AL	
~ 1.	BE32=((10*A(H)**4)+(16*A(N))*A(H)**3)+(18*A	(H) ** (H) ** (N) ** 2)+	
· · ·	(16*A(M)*A(N)**3)+(10*A(N)*	**40)*R(K)		1.10
			 2.1 2.1 2.1 3.1 4.1 4.1	
1.1				

			1991 - Y		
•		and the first			
	##2-/n ATER +DE	0 #1 PNC/210 0	*/ 8821+8822)		
	BES- (RAVER-FI	U-LENG/210.0	(BEJITEFJE)	1 ²	1.5
					· · ·
1 *	EF41-((60*A())**4)+(40*A(P	1)*A(N)**3)+(24	*A(M)*A(M)*	
1. +	A(N)*A(N))+()	2*A(N)*A(M)**	3)+(4*A(M)**4))*R(K)	
e	EF42=((10*A()	I)**4)+(16*A()	1)*A(N)**3)+(18	*A(M)*A(M)*A(N)**2)+
+	(16*A(N)*A(H)	**3)+(10*A(M)	**4))*R(J)		
a	EF4=(RAVER*PE	0*LENG/210.0	*(EF41+EF42)	h.) .	
1.		1.			· · ·
· · ·	PR(1)=PP(I)-F	P3+RP1	at that in the	· ·	
· · ·	PP(V)-PP(V)-	PALPP2 '		1.1	
2	Br(K)-Br(K)-I	arathra,			5 M 10
1	neur's in neur	**************************************	* + n	TR (
1 .	ESM(J,J)=ESM	J, J)+(RAVER"	L-PHI-(3K(J)	+K(K)))/0.0	100
	ESM(J,K)=ESM	J,K)+(RAVER*F	L*PHI*(R(J)+R()	K)))/6.0	19 G. 19
	ESM(K, J)=ESM	J,K)	· · · ·	10	
•	ESM(K,K)=ESM(K,K)+(BAVER*H	L*PHI*(R(J)+3	*R(K)))/6.0	
· · ·		S 12 A 120A	0.	N 5207	
460	CONTINUE	1	- /	1	
· · · ·	CAP(1.1)=DP*(12.*R(1)**2.4	2.*R(2)**2.+2.	*R(3)**2.#6.*	R(1)*R(2)
÷ +	+6.*R(1)*	R(3)+2.*R(2)*	R(3)7		
-	CAP(1-2)+DP*(3.*R(1)**2.+3	. *R(2)**2.+R(3)**2.+4.*R(1)	*R(2)+2.* ·
- +	P(1)#P(3)	+2. *R(2)*R(3)		,	
	CARCA INCAR	1 2)			
•	CAP(1, 1)-CAP(2 +0/11++2 +0	121++2 +2 +0/2	++2 .12 +n/1 1	in/21+4. 3
	CAP(1,3)-DP-(3. AR(1) 2. +P	(2))***2. T2. *K(1)	-R(2)+4
+	R(1)*R(3)+	2.*R(2)*R(3))			
	CAP(3,1)=CAP(1,3)			S
· · · · .	CAP(2,2)=DP*(2.*R(1)**2.+1	2.*R(2)**2.+2.	*R(3)**2.+6.*	R(1)*R(2)
· +	+2 *R(1)*	R(3)+6.*R(2)*	R(3))	A .	
~	CAP(2,3)=DP*(R(1)**2.+3.*F	(2)**2.+3.*R(3)**2.+2.*R(1)	*R(2)+2.*
· · +	'R(1)*R(3)+4.*R(2)*R(3))		
	CAP(3,2)=CAP(2.3)			
	CAP(3.3)=DP*(2.*R(1)**2.#2	.*R(2)**2.+12.	*R(3)**2.+2.*	R(1)*R(2)
· +	+6.***(1)#	R(3)+6. *R(2)*	R(3))		
	,			A 6	
	DO 470 T=1 3				*
~	DO 470 1-1 3				
	DO 4/0 3-1,5	+010/7 11/001	maxinter an		•
470	ESM2(1,3)=(2.	-CAP(1, J)/DEL	TA)+ESM(1,J)		
4/0	CONTINUE	· · · · ·			
			/ *	5 m	
	DO 430 I=1,3	×			
	II=NS(I)				
•	J5=NP+II			¥	1
	A(J5)=A(J5)+E	F(I)	2		
	DO 190 J=1.3				
	LI-NS(I)	× .		x	
	II-II-II-II				
	100-00-1111	200	-		1
200	15-10041/.190	200		· · · ·	
200	JJ=JUSH+(JJ-1)"NP+II			8.7
	A(J5)=A(J5)+E	SM2(1,J)			
190	CONTINUE				
430	CONTINUE	11	×	• T 1	
	. —	2 2 2 2	1 A		1. N. M.
	REWIND 2			(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	1
	A REAL PROPERTY AND A REAL				

CALL DECOMP(A(JGSH+1), NF, NBW) CALL SOLVE(A(JGSH+1), A(JGF+1), A(1), NF, NBW, NCL) 172.

11

:,

DO 240 1-1, JOF IF(ABS(D(1)-A(1)).ge.1.0)GO TO 250 CONTINUE 240 GO TO 290 250 CONTINUE DO 260 I=JGF+1, JEND A(I)=0.0 260 DO 280 1=1,JGF A(JGF+I)=D(JGF+I) 280 CONTINUE GO TO 270 290 CONTINUE. TOTAL=TOTAL+DEL1 IF (TOTAL.GE.60)DELTA=20*60 WRITE(7,32)A(1),A(6),A(37),A(42),A(145),A(150), A(6)-A(1),TOTAL FORMAT(* ',8F9.2) '32 READ(2,*)KD,KD,KD IF(A(1).LT. (1000-1))GO TO 10 . STOP . END

C PROGRAM, LISTING +++ TMPING1 . +++ c THIS PROGRAM CALCULATES THE UNSTEADY TEMP. & STRESS C DIST: ALONG THE SECTION AB IN THE INGOT USING C FINITE DIFFERENCE METHOD ********************** DIMENSION TO(14).TN(14) REAL K(2000), M. N. CP(2000), ALPHA(2000) YST(T)=69000*6498.76-((34500*6498.76)*(T-298)/1200.0) YMOD(T)=206482.8E6-((103421.4E6)*(T-298)/1200.0) 22 OPEN(UNIT=1,FILE='CONDUC.DAT',TYPE='OLD') OPEN(UNIT=2, FILE='SPHEAT.DAT', TYPE='OLD') OPEN(UNIT-3, FILE-'COEFF.DAT', TYPE-'OLD') OPEN(UNIT-9, FILE-'PDIFF2.DAT', TYPE-'NEW') OPEN(UNIT=10,FILE='FDIFF1.DAT',TYPE='NEW') READ(1,*)(K(I),I+1,2000) READ(2,*)(CP(1),1-1,2000) READ(3,*)(ALPHA(1),1=1,2000) DELT-10 RH0=7840.0 TIME=0.0 TF=1000.0 DR=0.086667*2.54*12/100.0 DO 10 I=1,14 10 TO(1)=298.0 CONTINUE ITEMP=IFIX(TO(1)-273) ALP=K(ITEMP)/(RHO*CP(ITEMP)) M=DR*DR/(ALP*DELT) ~ TN(1)=4*TO(2)/H+(1-4/H)*TO(1) RTOT-0.0 DO 20 I=2,13 RTOT=RTOT+DR ITEMP IFIX(TO(I)-273) ALP=K(ITEMP)/(BHO*CP(ITEMP)) H=DR*DR/(ALP*DELT) SUH1=(2+DR/RTOT)*0.5*(TO(I+1)-TO(I)) SUH2=(2-DR/RTOT)*0.5*(TO(I-1)-TO(I)) SUM=(SUM1+SUM2)/M TN(1)=TO(1)+SUM CONTINUE

```
RTOT-RTOT+DE
        TF1-TF
        T01=T0(14)
        ITEMP=IFIX(TO(14)-273)
        R1=0.7*(TF1**4-T01**4)/(TF1-T01)
        H1-H1*5.669E-8
        H2=5.6782*0.27*(1.8*(TF1-T01)/2.25)**0.25
        H=H1+H2
        N=H*DR/K(ITEMP)
        ALP=K(ITEMP)/(RHO*CP(ITEMP))
        M=DR*DR/(ALP*DELT)
        SUM1=(8*RTOT/DR-4)*TO(13)/(H*(4*RTOT/DR-1))
        SUM2=8*RTOT*N*TF/(DR*M*(4*RTOT/DR-1))
        SUM3=(8*RTOT*N/DR+8*RTOT/DR-4)/(H*(4*RTOT/DR-1))
        SUM3=(1-SUM3)*TO(14)
        TN(14)=SUH1+SUH2+SUH3
        DO. 30 .1-1,14
        TO(1)-TN(1)
30
        KCRIT-0.0
       TIME-TIME+DELT
        DO 50 I=300,3600,300
        IF(TIME.EQ.I)GO TO 51
        GO TO -50
51
        KCRIT-1-
        WRITE(9,*)TN(1), TN(14), TIME
50
        CONTINUE
        DO 70 1-3600,54000,1800
        IF(TIME.EO.I)GO TO 71
        GO TO 70
        KCRIT=1
        WRITE(9,*)TN(1), TN(14), ITMIN
        CONTINUE
        IF(KCRIT.NE.1)GO TO 60
        TOTAL1=0.0
        RT-0.0
        DO 100 I=1,13
        RT=RT+DR
        RT1-RT-DR
        TAV=0.5*(TN(I)+TN(I+1)).
        ITAV=0.5*(TN(I)+TN(I+1))-273
        FAC1=ALPHA(ITAV)*YHOD(TAV)*TAV/(0.7*2)
        TOTAL1=TOTAL1+FAC1*(RT*RT-RT1*RT1)
100
        CONTINUE
        TOTAL1=TOTAL1/(0.3429*0.3429)
        DHAX=0.0
        SHAX=0.0
```

		-									/	
			· .						•			
•										_ /		
										~		
											-	
-			SMIN=0.0	- /					2			
			RT=0.0									
			TOTAL 2=0.0	n					÷	۰.		×
			TOTALL-OIL									
			TOTALS=0.0					-				1 22 2
			DO 101 I=	1,13 .								
			RT=RT+DR				10.00			/	-	
			RT1=RT-DR				. • •	1 a 1		1		
			G1=0 0						•			
			62-10820						· .			
11			52-10E30									*
			TAV=0.5*(TN(I)+1	N(I+1))							· · · ·
			ITAV=0.5*	(TN(I)+	TN(I+1))-273						100
	÷		FAC1=ALPH	A (TAV)	*YMOD(T	AV)*TA	V/(0.7	*2)				
		•	TOTAT 2-TO	TAT 24PA	C1 #/ PT#	DT-DT1	***1)				•	
			TOTALL-TO.	CALL TEA	or -(kr-	RI-RII	"AIL)		2.		16 2 1	•
			IUIALS-FA	61-2								2.24
		1 10	TOTAL4=TO	TAL2/(B	T*RT)							*
1	- 14		RS=TOTAL1	-TOTAL4						•		
2			CS=TOTAL1-	+TOTAL4	-TOTAL3						1.1	1
			AC-TOTALL	\$2 -TOTA	13 .			1.4				
			DE-COD#//	1010	*******			110 0			-	
			DE-SURICC	(RS-US)	2)+((CS-AS)	2)+((AS-R	5)	- Anil 120		10 A A
		-	DE=DE/SQR	T(2.0)							1.00	1.125
			DE=DE/YST	(TAV)						× .		
8			IF(ABS(RS).GT.AB	s(s1))s	L'=RS		1		· .		
a 8			TP(ARC/PC	TT AR	C/C211C	2-20					1	100
	1		TRADOCKO	CT IN	5(52))5	1-00						·
			IF (ADS(CS).01.A	5(51))5	I-US					-	
			IF(ABS(CS).LT.AB	5(52))5	2=CS						
			IF(ABS(AS).GT.AB	S(S1))S	1 = AS					80 S	
			IF(ABS(AS).LT.AB	S(S2))S	2=AS		· .				× .
			. w	• .								
			\$3=\$1-\$2.									
			03-03 Lucm			-		-				
			53-53/151	(TAV)								
			S1=S1/YST	(TAV)						-		
			IF(ABS(S1).LT.AB	S(SMAX))GO TO	110	2		.~~		
			SMAX=S1					-			-	
× .			KN1=T						•.			-
	110		THIARCICS		C / CHTWN	100 00						1 m m
	1 10	·	TECADOCOJ	J	a(anin)	100 10						
			SMIN=53	۰.			· · ·	-				
	÷		- KN2=1									
	111		IF(ABS(DE).LT.AB	S(DMAX))GO TO	101					
			DMAX=DE								*	
	· ·		WN2-T							-		
	101		CONSTRUCT									10 M
	101		CONTINUE	`								
		•	1 · · · · · · · · · · · · · · · · · · ·		1.00							
			WRITE(10,	99)DHAX	KN3 SM	AX,KN1	, SMIN,	KN2,I'	TMIN			
	99		FORMAT('	1.3(F10	.5.14).	1 57)			à			-
			TP(TN(1).	CF. (TF.	11100 7	0 40		1	£4.			4
£.,				an.(11-	1//30 1	0 40						
			GO TO 60	5					-		1	~
100	40.		CONTINUE	•.					10			
			END								1 a. *	· · ·
3.						· · · ·						1 1 6
e .					12							1.1
											51 - X	

A. 174 2 19 17 18 1	enderstation (1993),在一些1993年前,1995年至1995年,1997年至1996年,1996年至1998年,1997年至1998年,1997年至1998年,1997年至1997年,1997年至199
	177
.)-	
//	
1	
C******	*****
· · C*	
. C.	PROGRAM LISTING THE BOOND THE
C*-	THIS PROCEAM GENERATES THE DATA FOR SUBROUTINE BOUNDARTS
C .	IN THE PROGRAM STRESS.

Canada	
	DIMENSION NS(3), D(6)
1	OPEN(UNIT=2, FILE='OUTPUT1.DAT', TYPE='OLD')
	OPEN (UNIT-3, FILE='OUTPUT3, DAT', TYPE='NEW')
	WRITE(3,*)' -1',' -1'
	K1=6
,	K2=25
1 C	K1 NO. OF NODES IN THE R-DIRECTION
C	K2 NO. OF NODES IN THE 2-DIRECTION
· · · · · · · · · · · · · · · · · · ·	
	READ(2,*)NO,NEL,KD
· · ·	DO 10 IK-1,NEL
	READ(2, *)KD,NS,D,KB
	IF(.NOT.(NS(1).EQ.1 .AND. NS(2).EQ.2))GO TO 20
	wwwwo/1.140_1
	KVP=NS(1)+2-1
	KV2-R0(1)-2
• • •	VV=0.0
	WRITE(3.*)KV1.VV
	WRITE(3.*)KV2.VV
	WRITE(3.*)KV3.VV
20	DO 30 1-3,K1
	IF(NS(2).NE.I)GO TO 30
•	KV=NS(2)*2
	VV-0.0
	WRITE(3,*)KV,VV
.30	CONTINUE
	DO 40 I=K1+1,NO,K1 .
	IF(.NOT.(NS(1).EQ.I.AND.NS(2).EQ.(1+1)))G0 TO 40
50	KV=NS(1)*2-1
	10-0.0
. 40	CONTINUE
10	CONTINUE
	WRITE(3,*)(K1*K2-K1+1)*2-1.VV
	WRITE(3,*)' -1'.' -1'
1	END
÷	le la

~

```
CI
c
                         +++ . OPTI +++
       PROGRAM LISTING
       THIS PROGRAM CALCULATES THE OPTIMUM FURNACE TEMPERATURE
C
       PATH FOR INGOT HEATING.
C
c
c
       THIS PROGRAM USES THE SUBROUTINES BOUND, DECOMP, SOLVE, STRESS,
C
          ZPOLAR & OPTIVAR PACKAGE
          ......
       DIMENSION X(1), XSTRT(1), RMAX(1), RMIN(1), PHI(2), PSI(1), W(30)
       COMMON/DAVID/IDATA, IPRINT, F, G, MAXM, TOL, ZERO, R, REDUCE
       COMMON/SUBS/RMIN. RWAX
       COMMON/SUBSI/ROLD
       OPEN (UNIT=1. FILE='STRESS5.DAT', TYPE='OLD
       N=1
        NCONS=2
        NEOUS=0 .
        NPENAL=2
        RMAX(1)=ROLD+300
        RMIN(1)=ROLD-200
       XSTRT(1)=ROLD-40
        IPRINT=-1
        IDATA=0
        MAXM=200
        F=0.05
        G=0.05
        ZERO=0.1
        TOL-0-1
        CALL DAVID (N, NCONS, NEQUS, NPENAL, RMAX, RMINEXSTRT, X, U, PHI, PSI
        NVIOL,W) .
100
        CONTINUE
        STOP
        END
      **********************
C
    SUBTOUTINE EQUAL
      *************
                      .....
C *
        SUBROUTINE EQUAL(X.PS1.NEQUS)
      - DIMENSION X(1).PSI(1)
       RETURN
```

SUBROUTINE CONST

. 12.0 >

SUBROUTINE CONST(X, NCONS, PHI) DIMENSION X(1), PHI(1) COMMON/SUBS/RHI, RMA PHI(1)=RMA-X(1) PHI(2)-RMI RETURN RETURN END 170

END-

C***

C

CI

		- 20		1			r	×		1 a - a	1.1
~				********		1	,				e . 1
2								10			1
	C			and servers and		1	A		14 St. 198	24.5	
	С		LISTING	OF. THE SU	BROUTINE	+++	UREAL	+++			
100	C	. 8	THIS P.RO	GRAM COMP	UTES . THE	UNSTEA	DY NONL	INEAR TE	MPERATUR	E &	4
	C '	· \	STRESS D	ISTRIBUTI	ON IN TH	E INGOT	AND FT	NDS THE	VALUE OF	THE	12
	C	a 1.	OR IFCTTV	P PUNCTIO	N TO PP	MINTHE	PD.				
~. j			oponorry	a ronotio	N 10 BE	ALA LALL	PD.				
	C**!	****	*******	****	*******	******	*******	*******	*******	******	S. S
£1		201				5. C	5 - 16 -	2 C	2		×.,
÷.		- S.	SUBROUTI	NE UREAL (TN,U)				- 1 - <u>1</u>		
		1.	REAL KT.	LENG.MNSE	MSSE.KT	H(2000)	.SPHT(2	000).MNS	E.MSSE		
10.0	- B		DIMENSIO	N'NS(3) E	SM1(3 3)	FF(3)	P(3) 71	3) 8(3)	C(3) .	15.1	
		60 - 64	DIMENCIO	N .'A (20000	1 1/2000			57,50(57,	0(3)	1 I I I I I I I I I I I I I I I I I I I	
			DINENSIO	A A(20000), D(200p	23					ar - 1
		ý	DIMENSIO	N CAP(J,J),ESM2(3	, 3), PM(3), AA(3	p,ESM(J,	2).7		
- C.			DATA NCL	114 .			39	1 2 2		2 2 3	A
			COMMON/S	UBS1/TO	1 a 1 a 1 a			1	С. <u>к</u> . с. –		
. ¹⁰						1. N. S.		2 e - 1		1 51	
	•		TOTAL =0 .	0							•
	е.		PHT=3.14	2857			-	•			
	×		DELTA-60	0*5	x					÷	191
1 -			Jalladal	- 160 0	· .	ŝ.o	100				
1	- E		dell-del	ca/00.0	- H	1.1		· · · ·			- B
			EPSI=0./								1.0
			SIGM=5.6	69E-8 .		e					
5	5		PRO=PHI*	EPSI*SIGM	2240		1.		· · · · ·		
•	5		RH0=7840	.'0				S	3. 3	·	S. S.
200	1 .	1.		· · ·							
	1.		OPENCIUNT	T-2 RTLR-	LOUTPUT 1	DAT' 1	VPF - 'OI	n')			
	1		OPEN (IINT	TH3 PILE	CONDUC .	DAT! TY	PFRIOID	11			
	,		ODENCUNT	m-6 PTIP-	ICDURAS.	Diml my	nn-lorn		A 12.4		1
	1.00	2	OPENCONI	1-0,F166-	Impuot D'	DAL , LI	PB- IOLD	1.			
	18 B		OPENCONT	T-O,FILE-	TEMOLD.	DAT', TI	PE-OFD	.,			3 L T
100.5	8 m		OPENCONT	T=/,FILE=	TEMP4.D	AT', TYP	E. NEM.)			- °
		2.4	OPEN (UNI	T=9, FILE=	'TEMP5.D	AT', TYP	EF NEW)	• • •	• • • •	
		•	OPEN (UNI	T-10, FILE	-'STRESS	4.DAT',	TYPE='N	EW')			6 S.
						1.1			1 L L L		
	· · ·	b	3;		14.00 BACK		540	- x - x*		a	·
							100 C	100 C			
			BRAD/2 +	WD NP NP		11 N	.3				12.1
		÷	ICR-ND	/11,115,115	2 3 1 4 1 4	· ·			3		
× 11			JGF-NP		a *	1 T	2	d 100 - 1		1. C.	
			JGSM=JGF	*2							
18							(C)				
			JEND=JGS	M+NP*NBW		See. 1		1.1			
		e.	JEND=JĠS	M+NP*NBW	2				e *	ź	
. 7		н. 1	JEND=JGS READ(3,*	M+NP*NBW	i-1,2000	,				, č	
÷.,	8 20	т. 192 ₁	JEND=JGS READ(3,* READ(6,*	M+NP*NBW)(KTH(I),)(SPHT(L)	i=1,2000) 0)•			-	, is	11
•			JEND=JGS READ(3,* READ(6,* READ(8.*	M+NP*NBW)(KTH(1),)(SPHT(1))(A(1).1=	i=1,2000 ,I=1,200	}. }.			- -	i. Aris	U.
•			JEND=JGS READ(3,* READ(6,* READ(8,*	M+NP*NBW)(KTH(I),)(SPHT(L))(A(I),I=	i=1,2000 ,1=1,200 1,JGF)) 0)-				1	U.
	. 1		JEND-JGS READ(3,* READ(6,* READ(8,*	M+NP*NBW)(KTH(I),)(SPHT(L))(A(I),I=	i=1,2000 ,I=1,200 1,JGF)) 0)- •		<u> </u>		1	U.
•••	100		JEND=JGS READ(3,* READ(6,* READ(8,* DO 100 I	M+NP*NBW)(KTH(I),)(SPHT(L))(A(I),I= =T,JEND	i=1,2000 ,I=1,200 1,JGF)) 0)- •	 1.	~		. (
	100		JEND-JGS READ(3,* READ(6,* READ(8,* DO 100 I A(I)-0.0	M+NP*NBW)(KTH(1),)(SPHT(1))(A(1),1= -1,JEND	i=1,2000 ,I=1,200 1,JGF)) 0)-				Ċ	
	100		JEND-JGS READ(3,* READ(6,* READ(8,* DO 100 I A(I)=0.0	<pre>M+NP*NBW)(KTH(I),)(SPHT(L))(A(I),I= -I,JEND</pre>	i=1,2000 ,I=1,200 1,JGF)) 0)•	- 1.	•	-	Ċ	
	100		JEND-JGS READ(3,* READ(6,* READ(8,* DO 100 I A(I)-0.0 DO 120 I	<pre>M+NP*NBW)(KTH(1),)(SPHT(1))(A(1),I= -T,JEND -JGF+1,JE</pre>	i=1,2000 ,I=1,200 1,JGF) ND	}. •)	Ċ	
	100		JEND-JGS READ(3,* READ(6,* READ(8,* DO 100 I A(I)=0.0 DO 120 I A(I)=0.0	M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= =I,JEND =JGF+1,JE	i=1,2000 ,I=1,200 1,JGF) ND	}. •		· ·		Ċ	
	100		JEND-JGS READ(3,* READ(6,* READ(8,* DO 100 I A(1)=0.0 CONTINUE	M+NP*NBW)(KTH(1),)(SPHT(1))(A(1),I= =I,JEND =JGF+1,JE	i=1,2000 ,I=1,200 1,JGF) ND	}. •	1	•		0	
	100		JEND-JGS READ(3,* READ(6,* READ(6,* DO 100 I A(1)=0.0 DO 120 I A(1)=0.0 CONTINUE	M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= =T,JEND =JGF+1,JE	i=1,2000 ,I=1,200 1,JGF) ND	ò,- •	1	•		1	
	100		JEND-JGS READ(3,* READ(6,* READ(6,* READ(8,* DO 100 I A(I)=0.0 DO 120 I A(I)=0.0 CONTINUE DO 130 K	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= -I,JEND -JGF+1,JE K-1,NE</pre>	i=1,2000 ,I=1,200 1,JGF) ND	ò	 •	•		(
-	100 120		JEND-JGS READ(3,* READ(6,* READ(6,* READ(8,* DO 100 I A(I)-0.0 CONTINUE CONTINUE DO 130 K READ(2 *	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= - Γ,JEND - JGF+1,JE K-1,NE) NEL NS</pre>	i=1,2000 ,I=1,200 1,JGF) ND R(1),Z(1))-)-	7(2).P(•	ISIDE	0	
-	100 120		JEND-JGS READ(3,* READ(6,* READ(6,* READ(8,* DO 100 I A(I)=0.0 DO 120 I A(I)=0.0 CONTINUE DO 130 K READ(2,*	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= = T,JEND = JGF+1,JE K=1,NE) NEL,NS, (1)+F(2)</pre>	i=1,2000 ,I=1,200 1,JGF) ND R(1),Z(1)),R(2),	Z(2),R(3),z(3),	ISIDE	0	
	100 120		JEND-JGS READ(3,* READ(6,* READ(8,* Do 100 I A(I)=0.0 Do 120 I A(I)=0.0 Continue Do 130 k READ(2,* RAVER=(R	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= -T,JEND -JGF+1,JE K=1,NE) NEL,NS, (1)+R(2)+</pre>	i=1,2000 ,I=1,200 1,JGF) ND R(1),Z(1 R(3))/3.),R(2),] . 2(2),R(• 3),z(3),	ISIDE	•	
	100 120		JEND-JGS READ(3,* READ(6,* READ(6,* DO 100 I A(I)-0.0 DO 120 I A(I)-0.0 CONTINUE DO 130 K READ(2,* RAVER=(R	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= -T,JEND -JGF+1,JE K-1,NE) NEL,NS, (1)+R(2)+</pre>	i=1,2000 ,I=1,200 1,JGF) ND R(1),Z(1 R(3))/3.) 0)- ,,R(2),	Z(2),R(3),z(3),	ISIDE	•	
	100 120		JEND-JGS READ(3,* READ(6,* READ(6,* READ(8,* DO 100 I A(I)-0.0 CONTINUE DO 120 I A(I)-0.0 CONTINUE DO 130 K READ(2,* RAVER=(R	<pre>M+NP*NBW)(KTH(I),)(SPHT(I))(A(I),I= - Γ,JEND - JGF+1,JE K-1,NE) NEL,NS, (1)+R(2)+</pre>	i=1,2000 ,I=1,200 1,JGF) ND R(1),Z(1 R(3))/3.))- ,R(2), 0] z(2),R(• 3),z(3),	ISIDE		/ / /

國際教育社 网络拉克	化化合物化合物合理化合物 经公司财产 医阿尔德氏试验检尿道 化热力	113
11	181	
÷		°а те
1		
Sec. 1.		
	EF4=(RAVER*PRO*LENG/210.0)*(EF41+EF42)	~
· · ·	FF(1)=FF(1)-FF3+FF1	2
	EF(K) = EF(K) - EF4 + EF2	
§ 1. A R. M. A.	ESH(J,J) = ESH(J,J) + (RAVER * HL*PHI*(3.*R(J)+R(K)))/6.0	
	ESM(J,K)=ESM(J,K)+(KAVEK-nL-Fn1-(K(J)+K(K)))/0.0	1.00
	ESM(K,K)=ESM(K,K)+(RAVER*HL*PHI*(R(J)+3.*R(K)))/6.0	
		5
160	CAP(1 1)=DP*(12,***(1)**2,+2,***(2)**2,+2,***(3)**2,+6,***(1)**(2)	er.
· · · · · · · · · · · · ·	+6.*R(1)*R(3)+2.*R(2)*R(3))	•
	CAP(1,2)=DP*(3.*R(1)**2.+3.*R(2)**2.+R(3)**2.+4.*R(1)*R(2)+2.*	
えいてき オキ・	R(1)*R(3)+2.*R(2)*R(3))	
the strange	CAP(1.3)=DP*(3.*R(1)**2.+R(2)**2.+3.*R(3)**2.+2.*R(1)*R(2)+4.*	
6 · · · · · · · · · · · · · · · · · · ·	R(1)*R(3)+2.*R(2)*R(3))	
	-CAP(3,1)=CAP(1,3)	
1 1 1 1 1 + ·	$(2,2)=DP^{(2,-R(1)+(2,-R(2)+(2,-R(2)+(2,-R(3)+(2,-R(3)+(2,-R(2))$	
	CAP(2,3)=DP*(R(1)**2.+3.*R(2)**2.+3.*R(3)**2.+2.*R(1)*R(2)+2.*	a
+	R(1)*R(3)+4.*R(2)*R(3))	
A Contract of	CAP(3, 2) = CAP(2, 3) CAP(3, 3) = DP*(2, *R(1)**2, +2, *R(2)**2, +12, *R(3)**2, +2, *R(1)*R(2)	
· · · · +	+6.*R(1)*R(3)+6.*R(2)*R(3))	
2.4.4 6		
L .	DO 170 T-1 3	÷.
	D0 170 J=1.3	5
	ESH1(I,J)=(2.*CAP(L,J)/DELTA)-ESM(I,J)	
170	CONTINUE	. ¹ .
N	DO 180 I=1.3	
2 . · · ·	DO 180 J=1,3	
	PM(I)=PH(I)+(ESM1(I,J)*AA(J))	
100	CONTINUE	
the set of the	DO 210 I-1,3	10
	EF(1)=PH(1)+EF(1)	
210	CONTINUE	· . · .
	'DO 130 I=1,3	
1 a 3 8	II=NS(I)	1.34
~		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J5-NP+TI A(15)+A(15)+PP(T)	•
i30	J5=NP+ÎI A(J5)=A(J5)+EF(I) Continue	• •
i30	J5-NP+ĨI A(J5)-A(J5)+ÈP(I) CONTINUE	
130	J3-mP+11 A(J3)-A(J5)+#F(I) CONTINUE REWIND 2	
i30	J3-mp+f1 A(J5)=A(J5)+EF(I) CONTINUE REWIND 2 DO 300 1-1,JGSN	
i30 300	JJ-mP+11 A(J5)-A(J5)+#F(I) CONTINUE REWIND 2 DO 300 1-1,JGSH D(1)-A(I)	
i30 300 270	J3-mP+11 A(J3)-A(J5)+EF(I) CONTINUE REWIND 2 DO 300 1-1.JGSH D(I)-A(I) DO 301 1-1.JGF	
i30 300 270	J3-mP+f1 A(J3)-A(J3)+EF(I) CONTINUE REWIND 2 DO 300 1-1,JGSH D(1)-A(I) DO 301 1-1,JGF A(1)-0.34(A(1)+D(I))	
130 300 270	J3-mP+II A(J3)-A(J3)+&F(I) CONTINUE REWIND Z D0 300 1-1,JGSN D(I)-A(I) D0 301 1-1,JGF A(I)-0.3*(A(I)+D(I))	
i30 300 270	J3-mP+f1 A(J3)-A(J3)+#F(I) CONTINUE REWIND 2 D0 300 1=1,JGSH D(I)-A(I) D0 301 1=1,JGF A(I)=0.5*(A(I)+D(I))	
130 300 270	JJ=mP+II A(J5)=A(J5)+&P(I) CONTINUE REWIND Z DO 300 I-1,JGSH D(I)=A(I) D0 301 I-1,JGF A(I)=0.3*(A(I)+D(I))	

D(I)=A(I) READ (2,*)KD, KD, KD DO 430 KK-1, NE, READ(2 *) NEL, NS, R(1), Z(1), R(2), Z(2), R(3), Z(3), ISIDE RAVER=(R(1)+R(2)+R(3))/3.0 B(1)=Z(2)-Z(3) B(2)=Z(3)-Z(1) B(3)=Z(1)-Z(2) C(1)=R(3)-R(2) C(2)=R(1)-R(3) C(3)=R(2)-R(1) AR4=(R(2)*Z(3)+R(3)*Z(1)+R(1)*Z(2)-R(2)*Z(1)-R(3)*Z(2 -R(1)*Z(3)) *2.0 ITEMP=IFIX(((A(NS(1))+A(NS(2))+A(NS(3)))/3.0)-273.0) KT=KTH(ITEMP) SPEHT=SPHT(ITEMP) RLAMDA =RHO*SPEHT DP=PHI*RLAMDA*AR4/360.0 DO 450 I-1.3 EF(I)=0.0 DO 450 J=1.3 ESM(I, J)=((KT*B(I)*B(J)+KT*C(I)*C(J))*RAVER*RA CONTINUE IF(ISIDE .LE. 0) GO TO 460 J-ISIDE K=J+1 LENG=SORT((R(K)-R(J))**2.+(Z(K)-Z(J))**2.) TEMP1=ITEMP+223 TEMP2=1.8*(TN-TEMP1) -H=ABS(TEMP2)/2.25 H=H**(1./4.) H=0.27*H H=5.6782*H HL-H*LENG EF(J)=EF(J)+(RAVER*HL*PHI*TN*(2.*R(J)+R(K)))/3.0 EF(K)=EF(K)+(RAVER*HL*PHI*TN*(R(J)+2.*R(K)))/3.0 M=NS(J) N=NS(K) EF1=(PRO*LENG*RAVER*(2*R(J)+R(K))/3.0)*(TN**4) EF2=(PRO*LENG*RAVER*(R(J)+2*R(K))/3.0)*(TN**4) EF31=((60*A(H)**4)+(40*A(N)*A(H)**3)+(24*A(H)*A(H) A(N)*A(N))+(12*A(H)*A(N)**3)+(4*A(N)**4))*R(J) EF32=((10*A(H)**4)+(16*A(N)*A(H)**3)+(18*A(H)*A(H)*A(N)**2)+ (16*A(H)*A(N)**39+(10*A(N)**4))*R(K) EF3=(RAVER*PRO*LENG/210.0)*(EF31+EF32)

301

DO 140 1=1,3 AA(I)=A(NS(I)) CONTINUE B(1)=Z(2)-Z(3) B(2)=Z(3)-Z(1) B(3)=Z(1)-Z(2)C(1)=R(3)-R(2) C(2)=R(1)-R(3) C(3)=R(2)-R(1) AR4=(R(2)*Z(3)+R(3)*Z(1)+R(1)*Z(2)-R(2)*Z(1)-R(3)*Z(2) -R(1)*Z(3)) *2.0 ITEMP=IFIX(((A(NS(1))+A(NS(2))+A(NS(3)))/3.0)-273.0) KT-KTH(ITEMP) SPEHT=SPHT(ITEMP) RLAMDA =RHO*SPEHT DP-PHI*RLAMDA*AR4/360.0 DO 150 I=1.3 EF(I)=0.0 PM(1)=0.0 DO 150 J=1.3 ESM(I, J)=((KT*B(I)*B(J)+KT*C(I)*C(J))*RAVER*RAVER*2.*PHI)/A CONTINUE IF(ISIDE .LE. D) GO TO 160-J-ISIDE K=J+1 LENG=SORT((R(K)-R(J))**2.+(Z(K)-Z(J))**2.) TEMP1=ITEMP+273 TEMP2=1.8*(TO-TEMP1) H=ABS(TEMP2)/2.25 H=H**(1./4.) H=0.27*H H=5.6782*H HL=H*LENG EF(J)=EF(J)+(RAVER*HL*PHI*TO*(2.*R(J)+R(K)))/3.0 EF(K)=EF(K)+(RAVER*HL*PHI*TO*(R(J)+2.*R(K)))/3.0 M=NS(J) N=NS(K) EF1=(PRO*LENG*RAVER*(2*R(J)+R(K))/3.0)*(T0**4) EF2=(PRO*LENG*RAVER*(R(J)+2*R(K))/3.0)*(TO**4) EF31=((60*A(M)**4)+(40*A(N)*A(H)**3)+(24*A(M)*A(M)* A(N)*A(N))+(12*A(M)*A(N)**3)+(4*A(N)**4))*R(J) EF32=((10*A(H)**4)+(16*A(N)*A(M)**3)+(18*A(H)*A(M)*A(N)**2)+ (16*A(H)*A(N)**3)+(10*A(N)**4))*#(K) EF3=(RAVER*PRO*LENG/210.0)*(EF31+EF32) EF41=((60*A(N)**4)+(40*A(H)*A(N)**3)+(24*A(M)*A(M)* A(N)*A(N))+(12*A(N)*A(H)**3)+(4*A(H)**4))*R(K) EF42=((10*A(N)**4)+(16*A(H)*A(N)**3)+(18*A(H)*A(M)*A(N)** (16*A(N)**(M)**3)+(10*A(M)**4))*R(J)

0

1 1 May 1 1 1 1	وحديد الرويد والول مامنده	5 . 3 · 13 . 18"	1.1	1.1.1.1.1	8 222	······································
Sec. 2		A * **		1 1	184	
. /		14 A.				1.14
. /						.2
,						
•						
	EF41=((60*A(N)**4)+(4	0*A(M)*A(N)	**3)+(24*	*A(H)*A(H)*	
3 +	A(N)*A(N))+(12*A(N)*A	(H)**3)+(4*	*A(H)**4))*R(K)		1 · · · ·
	EF42=((10*A(N)**4)+(1	6*A(H)*A(N)	**3)+(18	*A(H)*A(H)*A(N)*	*2)+
	(10 A(N) A(M) 3)+(10	A(M) + 4))	R(J)			
	EF4=(KAVER*PRO*LENG/2	10.0)*(EF4)	L+BF42)			
2 ×	PP(I)=PP(1)-PP3+PP1				2	
	PL(2)-PL(2)-PL2+PL1					1.1.2
	BF(K)-BF(K)-BF4TEF2				1 . 4	8
	ESM(A.I)=ESM(I.I)+(RA	VER*HI.*PHT	*/3. *P(1)-	+=	6.0	
	ESM(J,K)=ESM(J,K)+(RA	VER*HL *PHT	(R(I)+R()	(1))/6.0		
	ESM(K,J)=ESM(J,K)		(ato).ati	.,,,,,		
	ESM(K.K)=ESH(K.K)+(RA	VER*HL*PHI*	*(R(J)+3.	*R(K)))/	6.0	6 - C C C C C C C C
· · · ·	-					
. 460	CONTINUE	1 . I	. 4		· · · ·	
5 C	CAP(1,1)=DP*(12.*R(1)	**2.+2.*R(2	2)**2.+2.	*R(3)**2	.+6.*R(1)*R(2)
+	+6.*R(1)*R(3)+2.*	R(2)*R(3))	A. 14			
	CAP(1,2)=DP*(3.*R(1)*	*2.+3.*R(2))**2.+R(3)**2.+4.	*R(1)*R(2).+2.*
. +	R(1)*R(3)+2.*R(2)	*R(3)) .		· · ·	10	
a 200 a 1	CAP(2,1)=CAP(1,2)	in a straight				
	CAP(1,3)=DP*(3.*R(1)*	*2.+R(2)**	2.+3.*R(3)**2.+2.	*R(1)*R(2 5+4.*
	R(1)*R(3)+2.*R(2)*	(X(3))				3.4 9.4
, et	CAP(3,1)=CAP(1,3)	+2 +12 +2/				140/01
	+2 *P(1)*P(3)+6 *	P(2)*P(3))	2)**2.72.	~K(3)~~/	.+0.*K(1)*R(2)
	CAP(2 3)=DP*(P(1)**2	+3. ** (2)***	+3. +P/3	1##2: +2	***/1 ***/	21+2 *
** .+	R(1)*R(3)+4.*R(2)*R(3))				
	CAP(3.2)=CAP(2.3)				10.00	
	CAP(3,3)=DP*(2.*R(1)*	*2.+2.*R(2)	**2.+12.	*R(3)**:	.+2.*R(1)*R(2)
	+6.*R(1)*R(3)+6.*	R(2)*R(3))	<i>p</i> .			
	· · · · · · · · · · · · · · · · · · ·					1
	DO 470 I=1,3					18 - X
	DO 470 J=1,3		:			
· · · · · · · · · · · · · · · · · · ·	ESM2(I, J)=(2.*CAP(I, J)/DELTA)+ES	SM(I,J)			
470	CONTINUE		,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		· . · · ·				
· · ·	DO 430 1=1,3					
	II-NS(I)					
C	A(15)=A(15)+FE(1)			~	-	
	DO 190 J=1.3					
	JJ-NS(J)	-				
	JJ=JJ-II+1					
1	IF(JJ)190,190,200					
· 200	J5=JGSM+(JJ-1)*NP+II					
	A(J5)=A(J5)+ESM2(I,J)					1
190	CONTINUE				1 .	1. 1. 1. 1
430	CONTINUE.				- 1	· · · · ·
				· .		
· . ·	KEWIND 2				1	
	Citt DECOUDELL'ICCULL		· · ·			
	CALL SOLVE (A(JGSH+1)	A(ICE+1)				
	CALL SULVE(A(JUSH+1),	A(JUFTI),A	(1), ar, ab	w, NCL)	2.4	1 1 1 1
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	< a					1.0
	DO 240 T=1 TCF					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	DO 240 I=1,JGF	1	4.4	÷		
	DO 240 I-1,JGF	in the second		÷		1.1.1.1
	DO 240 I=1,JGF	14-11-11-1 14-14-14 14-14-14-14-14-14-14-14-14-14-14-14-14-1				
t Listere	DO 240 I-1,JGF	ntan ing sing Santan Na Santan Santan			n en Kalente	

<u>--</u>-

.

IF(ABS(D(I)-A(I)).ge.1.0)GO TO 250 240 CONTINUE GO TO 290 CONTINUE 250 DO 260 I-JGF+1, JEND A(I)=0.0 260 DO 280 1=1, JGF_ A(JGF+I)=D(JGF+I) 280 CONTINUE . GO TO 270 290 CONTINUE . CALL STRESS(A(1), DEN, NO1, MNSE, NO2, MSSE) U=(ABS(DEN)-0.9) IF(ABS(DEN)-0.9).GT.0.05)GO TO 490 WRITE(7,32)A(1),A(6),A(37),A(42),A(145),A(150), A(6)-A(1) FORMAT(' ',7F9.2) WRITE(9,*)(A(1),I=1,JGF) WRITE(10,*)TN, DEN, NO1, MNSE, NO2, MSSE, NO3 CONTINUE 490 RETURN END

```
LISTING OF THE SUBROUTINE
                                    ***;
                                             STRESS
       THIS SUBROUTINE COMPUTES THE THERMO - ELASTIC STRESSES OF THE
C
       CYLINDRICAL INGOT
C
       . THIS SUBROUTINE USES THE IMSL ZPOLAR.
        SUBROUTINE STRESS.(A, DEN, KE1, MNSE; KE2; MSSE; KE3)
        COMPLEX ROOT(3)
        DIMENSION, NS(3), R(3), Z(3), B(3), C(3), AA(3), A(1000)
        DIMENSION ROOT1(4), DENER(1000), ALPHA(2000)
        DIMENSION NSS(6), ESNS(6,6), EFS(6), BS(4,6), CS(6,4), DS(4,4)
        DIMENSION STRA(4), STRE(4), ETS(4), US(6), AS(18000), SSTRE(1000)
        DIMENSION RSTRE(1000), ASTRE(1000), CSTRE(1000), ETS1(4,1000)
        DIMENSION $1(1000).$2(1000)
        REAL MNSE .MSSE"
        YST(T)=69000*6498.76-((34500*6498.76)*(T-298)/1200.0
        YMOD(T)=206842.8E6-((103421.4E6)*(T-298)/1200.0)
        DATA NCL/1/
        PHI=3.142857
        nr=0.3
        TINIT-298.0
        ICRIT=0
       OPEN (UNIT=8, FILE='OUTPUT2.DAT', TYPE='OLD'
        OPEN(UNIT-9, FILE-'OUTPUT3.DAT', TYPE-'OLD')
        OPEN (UNIT=10, FILE='COEFF.DAT' TYPE='OLD')
        READ(10,*)(ALPHA(I),I=1.2000)
        READ(8,*)NP, NE, NBW
        REWIND 10
        NPS=NP*2:0
        NBWS-NBW*2-
        JGFS=NPS
        IGSMS=IGFS+NPS
        JENDS=JGSMS+NPS*NBW
        DO 503 I-1. JENDS
        AS(I)=0.0
        DO 130 KK-1,NE
        READ(3,*) NEL, NS, R(1), Z(1), R(2), Z(2), R(3), Z(3), ISIDE
537
        RAVER=(R(1)+R(2)+R(3))/3.0
        ZAVER=(Z(1)+Z(2)+Z(3))/3.0
        DO 140 I=1.3
        AA(I)=A(NS(I))
140
        CONTINUE
```

and strength	A	1.00	10 100	· · · · ·	(きゃく) ざん	19 C - 2 C
		- ·			107	
		~			107	
	1.				-	
	1. 1. 1.					
1. 1. 1.	6				. '	
	TAUPP-(AA(1)+AA(2 1+44(3)	13.0			
Sec	VM-VMOD(TAUPP)	2) MA(3))				
1. 1	VCTRE-VCT/TAURE)					
1. 1. A. W	ISING-ISI(IAVER)	-2723				
	TIERF-IFIA(TAVER	-2/3)				
1. 1. 1. 1.	ALP=ALPHA(ITEMP)					
	DTEMP=TAVER-TINI	T			r *	
1 5 F						
	RAT . YH/((1.0+PH	(1-2*PB))			
	DS(1,1)=RAT*(1-P	R) ·	1.1			Sec. 1.
a par a r	DS(1,2)=RAT*PR	< · ·	· · · ·	.4		•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DS'(1,3)=RAT*PR				'	1 .
1. 1. 1. 1.	DS(1,4)=0.0					1
Section of the sectio	DS(2,1)=DS(1,2)	1 .	1	100		
·	\$\$(2,2)=RAT*(1-F	RJ .				
	DS(2,3)=RAT*PR	1				
See	DS(2,4)=0.0#					
	DS(3,1)=DS(1,3)					
1. 1. 7	DS(-3-2)=DS(2-3)	5			· .	1
	DS(3.3)-BAT*(1-F	R)			· ·	1. 1
	DS(3.4)=0.0		· · · ·		· · ·	
	DS(4:1)=DS(1.4)	· ·			20 1 1	
	DS(4,2)=DS(2,4)		· · · ·			
	DS(4 3)=DS(3 4)			· · · · ·		8 x x
	DS (4 41=PAT*(1-2	*PR1/2.0				
	botter any tra					
	R(1)-7(2)-7(3)	·				
1. 1. 1.2	B(2)=2(2)-2(3)					2.1
	B(3)=7(1)=7(3)	· ·				
	B(J)=B(2)=B(2)			1		
	C(1)-R(3)-R(2)	-				
	C(2) = R(1) = R(3)					•
	G(3) = R(2) = R(1)	/21+2/11	n/11+=/2	1-062149/1	1-0(2)+7(2)	
	AK2=(K(2)-2(3)+K	(3)-2(1)-	R(1)-2(2)-R(2)-2(1	L)-K(3)-2(2)	
	-R(1)-2(3))					
· · · · · · ·		.0				
	DO 501 1=1,3	6.			· · ·	
	NSS(2*1-1/)=NS(1)	(2-1) V		•		
501	NSS(2*1)=NS(1)*2	× X	· . ·			
	and a set of the					
	DO 502 1=1,4.	- (
· · · · · · · · ·	DO 502, J=1,6	- 5				
50%	BS(1,J)=0.0					1
	BS(1,1)=B(1)			e		
	BS(1,3)=B(2)					
V1	BS(1,5)=B(3).	·			,	
	BS(2,2)=C(1)			· .*		
	BS(2,4)=C(2) -	· ·				
1. · · · ·	BS(2,6)=C(3)					
1 1 1 1	BS(3;1)=(R(2)*2(3)-R(3)*2	(2)+B(1)	*RAVER#C())*ZAVER)/RA	VER
	BS(3,3)=(R(3)*Z(1)-R(1)*2	(3)+B(2)	*RAVER+C(2)*ZAVER)/RA	VER . "
	BS(3,5)=(R(1)*Z(2') +R(2) *2	(1)+B(3)	*RAVER+C(3)*ZAVER)/RA	VER
· · · · ·	BS(4,1)=C(1)					. 7
1. 1. 1. 1. 1.	.BS(4,2)=B(1) .		• .	×		S
1. The second	BS(4,3)=C(2)					
A 14 1 1		1				
		-	-			

BS(4,4)=B(2) BS(4,5)=C(3) BS(4,6)=B(3) ETS(1)=ALP*DTEMP ETS(2)=ETS(1) ETS(3)=ETS(1) ETS(4)=0.0 IF(ICRIT.EQ.1)GO TO 531 DO 507 I=1,6 DO 507 J=1;4 CS(I_J)=0.0 DO 507 K=1.4. CS(I,J)=CS(I,J)+BS(K,I)*DS(K,J) DO 508 I=1:6 SUM1'-0.0. DO 509.K=1.4 SUM1=SUM1+CS(I,K)*ETS(K) DO 508 J=1,6 SUM=0.0 DO 510 K-1.4 SUM=SUM+CS(I,K)*BS(K,J) ESMS(I, J)=SUM*PHI*RAVER/AR2 EFS(I)=SUM1*PHI*RAVER. DO 511 I=1,6 IIS=NSS(I-) J5S=JGFS+IIS AS(J55)=AS(J55)+EFS(1) DO 512 J=1,6 JJS=NSS(J) JJS=JJS+1-IIS IF(JJS)512,512,513 J5S=JGSMS+(JJS-1)*NPS+IIS AS(J5S)=AS(J5S)+ESMS(I,J). CONTINUE CONTINUE CONTINUE CALL BOUND(AS(JGSMS+1),AS(JGFS+1),NPS,NBWS,NCL) CALL DECOMP(AS(JGSMS+1),NPS,NBWS) CALL SOLVE(AS(JGSMS+1),AS(JGFS+1),AS(1),NPS REWIND'3 **REWIND 11**

507

509

510

508

513

512

511

130

ICRIT-1 NUM-1

READ(3,*) KD,KD READ(3,*)KD,KD 188

.NBWS.NCL)

GO TO 537 531 KK-NIM DO 504 1-1.6.2 NO1=NSS(I) NO2=NSS(I+1) US(I)=AS(NO1) US(1+1)=AS(NO2) DO 505 I-1.4 STRA(I)=0.0 DO 505 K=1.6 STRA(I)=STRA(I)+BS(I,K)*US(K)/AR2 DO 506 I=1.4 STRE(I)=0.0 DO 506 K=1.4 STRE(I)=STRE(I)+DS(I,K)*(STRA(K)-ETS(K)) 506 CONTINUE RSTRE(KK)=STRE(1) . ASTRE(KK)=STRE(2) CSTRE(KK)=STRE(3) SSTRE(KK)=STRE(4) DENER(KK)=((0.5*((ASTRE(KK)-RSTRE(KK))**2))+(0.5*((RSTRE(KK) -CSTRE(KK))**2))+(0.5*((CSTRE(KK)-ASTRE(KK))**2))+ 3*(SSTRE(KK)**2))**0.5 ROOT1(1)=1.0 ROOT1(2) =- (RSTRE(KK)+ASTRE(KK)+CSTRE(KK)) ROOT1(3)=RSTRE(KK)*ASTRE(KK)+ASTRE(KK)*CSTRE(KK)+RSTRE(KK) *CSTRE(KK) -SSTRE(KK)*SSTRE(KK) ROOT1(4) -- (RSTRE(KK)*ASTRE(KK)*CSTRE(KK)-CSTRE(KK) *(SSTRE(KK)**2)) CALL ZPOLR(ROOT1, 3, ROOT, IER) DENER(KK)=DENER(KK)/YSTRE S1(KK)=ROOT(1)/YSTRE S2(KK)=(ROOT(1)-ROOT(3))/YSTRE NUM-NUM+1 IF(NUM.LE.NE)GO TO 537 .t REWIND : DEN-0.0 MNSE=0.0 MSSE=0.0 DO 605 I=1.NE IF(ABS(DENER(I)).LE.ABS(DEN))GO TO 605 DEN-DENER(I) KE1-I T CONTINUE

DO 607 I=1.NE IF(ABS(\$2(1)).LE.ABS(MSSE))GO TO 607 MSSE=S2(I) KE3=I CONTINUE

RETURN END 190

606

SUBROUTINE *** BOUND SUBROUTINE BOUND(GSM, GF, NP, NBW, NCL) DIMENSION GSM(NP, NBW), GF(NP, NCL), IB(1), BV(1) DO 216 JM=1.1 ID1=0 INK-0 202 READ(11,*)IB, BV 203 FORMAT(613,2X,6F10.5) ID=0 DO 204 L=1.1 IF(IB(L).LE.0) GO TO 205 ID-ID+1 I=IB(L) GF(1,JM)=BV(L)+GF(1,JM) 204 GO TO 206 205 TNK=1 IF(ID.E0.0) GO TO 216 206 IF(ID1.EQ.1) GO TO 222 222 IF(INK.EQ.1)GO TO 216 ID1=1 GO TO 202 216 CONTINUE INK-0 209 READ(11,*)IB, BV . TD=0 DO 221 L-1,1 IF(IB(L).LE.0)GO TO 215 ID=ID+1 I-IB(L)-BC=BV(L) K=1-1 DO 211 J=2.NBW M=1+J-1 IF(H.GT.NP)GO TO 210 DO 218 JM-1.NCL 218 GF(M, JM)=GF(M, JM)=GSM(I, J)*BC GSH(I, J)=0.0 IF(K.LE.0)GO TO 211 210 DO 219 JM=1,NCL 219 GF(K, JM)=GF(K, JM)-GSM(K, J)*BC GSH(K.J)=0.0 K=K-1 211 CONTINUE DO 220 JM-1, NCL 220 - GF.(I.JM)-GSM(I.1)*BC 221 CONTINUE GO TO 214 215 INK=1 IF(ID.EO.0)RETURN

214 IF(INK.EO.1)RETURN GO TO -209 END **************** *** DECOMP SUBROUTINE **************************** SUBROUTINE DECOMP(GSM,NP,NBW) DIMENSION GSM(NP, NBW) . 10=61 NP1=NP-1 DO 226 I-1,NP1 MJ=I+NBW-1 IF(MJ.GT.NP) MJ=NP NJ=I+1 MK=NBW IF((NP-I+1).LT.NBW) MK=NP-I+1 ND=0. DO 225 J=NJ,HJ / MK=MK-1 ND=ND+1 NL=ND+1. DO 225 K-1.MK NK=ND+K 225 GSM(J,K)=GSM(J,K)-GSM(I,NL)*GSM(I,NK)/GSM(I,1) 226 CONTINUE RETURN END SOLVE SUBROUTINE. SUBROUTINE SOLVE(GSM.GF.X.NP.NBW.NCL) DIMENSION GSM(NP, NBW), GF(NP, NCL), X(NP, NCL) 10=61 NP1=NP-1 DO 265 KK=1.NCL JM-KK DO 250 I=1,NP1 MJ=I+NBW-1 IF(MJ.GT.NP) MJ=NP N.I=I+1

)

.5	L-1
1	DO 250 J-NJ,MJ
	L=L+1
250	GF(J,KK)=GF(J,KK)-GSM(I,L)*GF(I,KK)/GSM(I,
	X(NP,KK)=GF(NP,KK)/GSM(NP,1)
	DO 252 K=1,NP1
	I-NP-K
	MJ=NBW
	IF((I+NBW-1).GT.NP) MJ=NP-I+1
2 J	SUM=0.0
	DO 251 J=2,MJ
	N=I+J-1
251	SUM=SUM+GSH(I,J)*X(N,KK)
252	X(I,KK)=(GF(I,KK)-SUM)/GSM(I,1)
265	CONTINUE
	RETURN

ND

