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ABSTRACT

As ocean industries have grown to demand larger
offshore vessels achieving ever increasing levels of
performance, the need for a better understanding of the
phenomena which govern motions and loading of these
structures has been recognized. These motions and forces
are a result of complex environmental conditions including
ice, wind, current and waves. A significant part of the
environmental loading is due to waves.

In general wave loading on a structure is a
complex non-linear process of which the first- and
second-order (in wave amplitude) components are of main
interest. The steady second-order component of drift
force may cause large excursions of the structure and
therefore must be seriously considered in the design
considerations of mooring and dynamic positioning
systems.

In this thesis second-order mean drift forces
on a triangular floating structure in regular waves are
calculated utilizing far field potential theory. These
computed forces are compared to those measured during
testing of a 1:200 scale model of a moored triangular
body . This is done in an attempt to decide whether
mooring forces can be reasonably estimated for such a

structure.
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It was concluded that the mean drift forces can
be reasonably well predicted using the method presented.
Therefore this method can be used as an aid in the design

process.
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NOMENCLATURE

N nondimensional table of offsets describing
the geometry of the structure nondimensionalized
with characteristic length

Ap = ¥%pD
A _ pnb2.
4
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pressure
source density function
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reflection coefficient (ratio of reflected
wave height to incident wave height
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Sy mean wetted body surface area

8y, (t) instantaneous wetted body surface area
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T wave period
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t time
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v]— velocity components in x,y,z directions
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Yo amplitude of horizontal water particle velocity
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wave elevation
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propagation.
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CHAPTER I

INTRODUCTION

A floating vessel with zero forward speed acted
upon by ocean waves will experience forces which produce
vessel motions in six degrees of freedom. These forces are
generally the result of a complex, non-linear process of
which the first- and second-order components are of main
interest. The first-order forces are proportional to wave
amplitude and oscillate at a frequency equal to the wave
frequency. The mean and low frequency components of the
second-order forces are commonly referred to as "wave drift
forces". These second-order forces are proportional to the
square of the wave amplitude, and are generally small
compared to first-order forces. The mean, or "steady",
component is recognized (Standing et al 1981) as a
second-order consequence of the first-order waves
interacting with the structure. This force results in a
mean horizontal excursion of the moored vessel. The
slow-oscillating second-order component is due to
non-linear interactions with the wave field. As the name
indicates, these forces cause the vessel to oscillate
slowly about the mean position. These second-order forces

are often the cause of low frequency, large amplitude



motions of moored vessels, and are, therefore, of great
importance in the design considerations of mooring and
dynamic positioning systems.

It is the purpose of this work to compare
computational and experimental estimations of mean drift
forces on a large floating triangular structure in regular
waves. Experiments were conducted at the National Research
Council's Institute for Marine Dynamics in St.John's.
Mooring force data collected by IMD were used to evaluate
the wvalidity of the computational estimations, and
therefore of their influences in the design process. Such
a structure is being considered for operation as a support
base in the Hibernia region. It is known as the Deltaport.
Experiments were carried out on the 1:200 scale nmodel at
IMD. However, they were not designed for the research
purposes of interest here. Although it is felt that
sufficient data was obtained for the purpose of the present
study, more test information would have been an asset.

Chapter II of this report reviews the historical
progress of work in the field of wave force prediction.
Theory governing wave-structure interaction is presented in
Chapter III. Experimental results and numerical
evaluations of steady drift forces are discussed in Chapter
v. Chapter V compares computations with experiments.

conclusivns from this comparison are drawn in Chapter VI.



CHAPTER II

LITERATURE REVIEW

One of the earliest studies of drift forces on
floating bodies in waves was the experimental study by
Suyehiro (1924). He measured the steady drift force
experienced by a ship model in beam seas. He believed the
drift force was a result of the model rolling motion
causing the waves to be reflected. In 1938 Watanabe
derived an expression for lateral drift force acting on a
ship subject to beam waves based on the product of the
first-order roll motion and the Froude-Krylov component of
the roll moment. This expression indicated that the force
was a second-order phenomenon. Havelock (1940,1942) later
made use of Watanabe's theory to develop formulae to
predict the mean drift force acting on a ship heaving and
pitching in regular head waves.

Dean (1948) concluded that if there is no
reflection from a restrained submerged circular cylinder
the incident wave only changes by a shift in phase. Ursell

(1950) developed a procedure to resolve forces on a



submerged cylinder based on Dean's findings. Ogilvie
(1963) developed expressions for and calculated the first-
and second-order forces on a submerged cylinder based on
Ursell's procedure. A body subject to forced oscillations
in an otherwise calm fluid was analysed by Kotchin
(1937, translation 1951) while considering the problem of
wave radiation. He developed expressions for the steady
forces through the use of body surface integrals which are
now known as Kotchin functions.

After examining Watanabe's and Havelock's
progress the "far field" approach was taken by Maruo (1960)
to develop expressions for steady second-order forces on a
fixed body in regular waves. In this approach the wave
field far from the structure is used to evaluate the loads
on the structure. He included both radiation and
diffraction effects. Newman (1967) extended this theory
and used it with slender body and strip theory to calculate
mean forces on ships. Mei and Black (1969) calculated the
mean drift force on a moored barge of infinite breadth
utilizing the waves travelling outward from the body. Kim
and Chou (1970) developed an expression for the two
dimensional case of a ship in oblique waves by ¢xtending
Maruo's expression. They applied their theory using the

strip method.



Hsu and Blenkarn (1970) and Remery and Hermans
(1971) showed that the low frequency components of drift
force in irregular waves could excite large amplitude, low
frequency horizontal motions. Remery and Hermans
established that these low fregquency components are
associated with group effects. Faltinsen and Michelsen
(1974) worked with the theory presented by Maruo and
Newman and utilized three-dimensional source singularities
on body surface panels to obtain their results.
Experimental and theoretical results for the mean
horizontal force showed good agreement for the case of a
rectangular barge in regular waves. Faltinsen and
Loken (1978) developed a procedure to calculate slow drift
oscillations of a ship in isregular beam seas using a
boundary integral technique combined with Newman's method.
Molin (1979) also modified Maruo's expression for the
horizontal drift force by changing the surface of
integration. His theoretical results compared well with
experiments.

An added resistance formula was developed by
Gerrit_na and Beukelman (1972) by assuming that the energy
in waves progressing outward from the vessel is equal to
the work done by incoming waves. Results for a ship
travelling in head waves showed good agreement between

theory and experiment. A significant conclusion from their



work was the dependency of drift force on the square of the
wave amplitude. The energy-work theor’ was also employed
by Salvesen (1974,1978) and Lin and Reed (1976). Kaplan
and Sargent (1976) used it to research the drift forces on
a semi-submersed barge in regular oblique seas.

Pinkster et al (1976,1977,1979) initiated the
near field approach to study first- and second-order wave
forces on bodies floating in waves. Their work included
methods based on direct integration of pressure and
included the force components presented by Boese (1970).
Pinkster and Hooft (1978) and Pinkster (1979) exteuded the
method of direct pressure integration to include the low
frequency components of the second—order wave forces set up
by regular wave groups. Karppinen (1979) developed a
method to estimate mean second—order wave forces and
moments based on an assumption that the structure can be
subdivided into noninteractive slender elements. The mean
forces on the elements were summed to get total mean forces
on the structure.

Pinkster (1981) and Standing et al (1981)
presented insight into theory and experiment for predicting
mean and sl~wly-varying second order forces. Kaplan (1983)
utilized an approximate 3-D method to predict the steady
drift force on a floating ship model. He applied Maruo's

far field theory for drift forces but used a modified



Kotchin function. He professed that the forces could be
resolved numerically in relatively short CPU time.
Marthinsen (1983) studied the effect of short crested seas
on second-order slowly varying drift forces and motions.
He developed a method to predict these forces, which is
shown to agree very well with Newman's method. Isaacson
(1984) presented a useful review of nonlinear wave effects
on offshore structures. Murray (1984) discussed the
effects of wave grouping on slow drift oscillations of
floating moored structures. Rahman (1987) presented a
method to predict second-order wave diffraction caused by
large offshore structures. He has extended Lighthill's
(12/9) deep water theory to shallow water waves.
Chakrabarti (1987) has also reviewed this subject.

In summary, there are two basic approaches that
can be used to analyse drift forces on a floating
structure: the "near field" method and the "far field"
method. The near field approach involves direct
integration of pressure over the wetted surface of the body
and can be used to predict mean and low-frequency
second-order forces. The far field method can be used to
predict mean second-order forces on the basis of
conservation of momentum and energy. The potential far
from the structure is used to describe fluid motions. In

general the near field method is more cumbersome to



utilize. Therefore many researchers have attempted to
develop simple methods for prediction of the
low-frequency second-order forces to use in conjunction
with the far field approach of predicting the mean
second-order forces.

The present work is a study of the mean
second-order forces on a floating triangular platform
utilizing the far field method.

The following section outlines the theory which

governs wave-structure interactions.



CHAPTER III

THEORY

3.1 Governing Equations

The equations describing the flow of £luid
around a marine structure are the Navier-Stokes equations
and the conservation of mass (continuity) uation,
supplemented with appropriate boundary conditions. For a
constant density Newtonian fluid they are, in primitive

variable form:

du u 8u 8u _ _ 12
Tt UamtVay tYas 5 ax * Wi (3.1a)
K'4 v v v __18p 2
U tVay t Ve 5ay t Y (3.1b)
v aw 8w Bw _ _ 18P 1
at+uax+vay+waz = Dz+u\71w+pl-‘g (3.1c)
u, by, (3.1d)

ER3 3y 3z
where u,v, and w are velocity components in the x, y, and z

directions respectively, t is time, p is density of fluid,
v is kinematic viscosity of fluid, Fg is force due to

gravity, P is pressure and V indicates the gradient such
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that:
W I vz k (3.2)

A right hand cartesian coordinate system (x,y,z)
is fixed with respect to the mean position of the body with
z positive upwards through the center of gravity and the
origin in the plane of the undisturbed free surface. (see
Figure 1)

The governing equations are comprised of these
four partial differential equations along with pertinent
boundary conditions. 1In practice it has not been possible
to obtain exact solutions for flows about complex geometric
bodies.

Many theories have been developed to predict the
motion of and hydrodynamic loading on floating bodies. It
has been determined that the theory “o be utilized in any
particular case depends on the ratio of body characteristic
length to wavelength, D/A. It is generally accepted that
two flow regimes can be distinguished as presented by
Standing (1981) and shown in Figure 2:

(i) wave diffraction around large structures:
for D/A > 0.2 the influence of viscosity is

negligible and potential flow theory applies:
T =ve (3.3)

* For convenience all figures are contained in Appendix A
and reproduced when directly referred to in the main text.
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where U is the velocity vector and @ is the velocity
potential.
(1i) flow separation around slender structures:

for D/A ¢ 0.2 viscous stresses are important and

vorticity is not neglected.
These two regimes are also acceptable for floating
structures.

The following section develops the scaling

equations corresponding to each of these flow regimes.
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3.2 Modelling Theory
Dimensionless functional equations can provide
the laws whereby phenomena such as those presently being

di d may be successfully modelled. These equations

are important in the design of model tests and in the
interpretation of the results.

One approach of analysing the basic functional
equations of a system was developed by Rayleigh (Sharp
1981) and is known as the indicial approach. In this
method the basic functional equations are rewritten in
terms of the dimensions involved. The exponents of the
dimensions are equated to ensure that the equation is
dimensionally homogeneous. Buckingham utilized this method
and developed the 7 theorem which relates the number of
parameters in a correct functional equation to the number
of variables necessary to specify the phenomenon and the
number of dimensions involved. He concluded that, in
general, if m variables describe the system with n

dimensions, there will be (m-1) ts to be determined

from n simultaneous equations and (m-n) dimensionless
parameters will correctly describe the system. He refers
to the dimensionless parameters as m-terms.

The functional relationship is written:

#(b,,b;,...b) =0 (3.4)



14

where ¢ represents a functional relationship, bl"bn are
the variables describing the system in which
b1'b2' sia .bk(ksn) are dimensionally independent physical
quantities. In the present case these quantities are
length, 1, mass, m, and time, t. (ie. k=3)

Now the functional relationship may be written

for the general case:

a, a, a,
by by by B Byyq By By) = 0 (3.5)
where 3 is nondimensional and:
ot af b
Bsi = b‘. b2 ....bk . i=1,2,...n%k (3.6)

where Bk+i are nondimensional.
For the case oi a body floating in waves with no
forward speed the variables which correctly describe the

system can be written in functional form as:

6(X,P. g, dH T, M, X X DA, Kp) = 0 (3.7)
where:
b represents a response of the wave-structure
system in terms of force [N}, motion [m], or
velocity [m/s]
P U are physical properties of water; density

[kg/m?*] and dynamic viscosity [kg/ms],

respectively
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g.,d are environmental propertles affecting wave
propagation; acceleration due to gravity
[m/s?] and water depth [m] respectively
H,T are wave parameters; wave height [m] and
period [s] respectively (wavelength, A [m] or
frequency, w [rads/s}, or £ [Hz] could replace
T)
M,icg, parameters of the structure; mass [kgl, center
r,D,A, of gravity [m}], radii of gyration ([m],
characteristic length [m], nondimensional
table of offsets, and relative roughness,
respectively.
Taking p, g, and D as dimensionally independent parameters
and resolving the functional equation for X, equation 3.7
can be rewritten:
wx(D:N:g,d,H,T,M.iCq,rID,A,kR) =X (3.8)
Now m-terms are formed by combining all other terms,
separately, with these three relevant variables which
cannot form a m-term on their own, but contain all three

dimensions involved in the problem. Now one can write:

b3

a, a,,a v dH u_ g x -

p71g72D%3 (X-9y ( 55 TV/D g5 g Akp)) = 0
Xygp p'P'D PR R (3.9)

or,
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s E
Y= %(vfn%% Do E Ak (3.10)
gl

where aSX is nondimensional and ¥ represents X normalized

with respect to p, g, and D, depending on the definition of
X as a force, velocity or motion. If X is taken” as a

force F, then X can be written:
- (3.11)
X ogD’
The first term on the right hand side, —— ,represents
Vgb D
Reynolds number u—\[j, where u is a characteristic wave speed.

Let X=u in equations 3.9 and 3.10 such that nondimensional

X is the Froude number:

-cgx
DD" D A kg) (3.12)

==, 48 wgrm,

i g o PP
Compounding dimensionless terms one can write the Reynolds
number :

e I (3.13)
Ygh D gD D VgD
Substituting this into equation 3.12:

Zeg x
S M e Ay (3.14)

uD _ 4D Dy  _v_
v v b
Therefore the Reynolds number, Rn=“Ag, can be substituted
v
¥gb D
Froude number, J“—__D-', cannot in general be modelled between
g

for in equation 3.10. This also shows that the

* Personal notes of Dr.J.S.Pawlowski, NRC/IMD
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the scale model and prototype unless viscous scale effects

can be neglected.

In a similar way the parameter TVg/D represents
uT

the Keulegan-Carpenter number,K-C= =5, since:
—= .U uT
TVg/D = (3.15)
o
Now equation 3.10 can be written in terms of well known
parameters:
=g (W GHUT M Tcqgr
X = 8 (05 B apT g Arkg) (3.16)
3 4
Rn K-C

This is the most convenient representation when both wave
and viscous effects, such as flow separation, are of
primary importance.

Now if viscous scale effects are negligible and,
therefore the dependence on Rn can be neglected, it is
common to replace TYg/D in equation 3.16 by nondimensional
Erequency, &

2n TG/D (Mg7P) = wib/g = U (3.17)
If A had been used in the basic functional equation 3.7 in
place of T, the resulting n-term would be A/D. Equation

3.10 can be written for Froudian similarity:



18

X
M Zcg r
X =3 ( /D79, 555,55 5 A k) (3.18)

Now considering first- and second-order
quantities X with respect to the wave height, H:
= ¥, ¥(2) _ (Hy »(1), H,2%(2)

¥= 3, 32 oy Gi ()t (3.19)

Therefore it follows that:

X
3L - Qs“’mn,s,s,x(c,p’l;’,,—’:—‘l,%,A.k) (3.20)

32 3% 382 (rn, S8 ko, M CI LAk (3.21)

for Reynolds modelling, or;

9{(1)D 35(1) d %:‘%g.-g.l\.kk) (3.22)
@@ @ @y w Fegx
@ = 82 GO e kg (3.23)

for Froudian scaling.

Therefore one can write nondimensional force

as:
B=X= p"ﬁ, (3.24)
consisting of first- and second-order components:
B= D, 3@ (3.25)
The first-order component is written:
pil. 31D pg;f:{ (3.26)

indicating that the first-order force is proportional to
the waveheight. The second-order component is written:

2(2)
R e (3.21)
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indicating that the second-order forces are proportional to
the square of the waveheight.

Miller and MCGregor (1978) recommended that,
despite which modelling technique is employed, model tests
should not be carried out in a flow regime that is
different than that of the prototype, as indicated in
Figure 3 (Miller and MCGregor 1978). This is often
impossible to achieve. It is useful to look at the
Reynolds number and Keulegan-Carpenter number in more
detail.

The usual form of the Reynoid's number is:
Rn = U0 (3.28)

v
where v, is the amplitude of v, the horizontal water
particle velocity
The Keulegan-Carpenter number is generally of the form:

k-c = 2T (3.29)
D
The horizontal water particle velocity, at an elevation s
above the seabed, is given by:

- TH cosh ks
U = T Sinhkq oS © (3.30)

where s=a+d, o is wave amplitude, k is the wave number, T
is the wave period and 6=(kx-wt).

Now the amplitude of this velocity, at a=0,
is:

cosh kd (3.31)

Yo = TH gih kd
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Substituting equation (3.31) into equations (3.28) and
(3.29), the Reynold's number and the Keulegan-Carpenter
number can be rewritten as:

nH cosh kd D
T sinh kd v (3-32)

D cosh kd
 sinh ka {3:33)

Rn =
er, Rn = nfd
TH cosh kd T (3.34)
T sinh kd D
TH cosh kd
D

or, K-C = sinh kd (3.35)

%
104 . .K\"b 0@ G

‘fY' J =
. ;/E

2 :
/ o N.Sea waves
E significant  maximom
A W |
v T -y

Wave height (metres)

Figure 3
Wave Force Regimes (Miller and MCGregor 1978)
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Assuming deep water, the wave number is:

2n _ w? _ w2
R (3.36)
and the wavelength is:
==L
r= 32 (3.37)

Rn and K-C can be more accurately evaluated for
the dynamic response of offshore platforms by utilizing

relative velocity terms:

v T
k-c = 5L (3.38)
v D
Rn = TS (3.39)
v
where v, is amplitude of relative velocity,u =(u-x), and

T, is relative period of encounter.

It is necessary to choose which scaling laws
should be used for any particular case. In general when
viscous forces are dominant due to structural detail
Reynolds scaling is wutilized, which is represented by
equation 3.16. In this case the second flow regime
described in section 3.1 exists. When gravity forces are
dominant, as in the present case where the body appears to
act as a fully solid structure, Froudian scaling best
describes the system. This is represented by equation 3.18
and the first flow regime of section 3.1 is presumed to

exist.
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These scaling equations are important in the
design of model tests and in the interpretation of tne
results of the tests. They are utilized in section 4.1.6
for analyzing the data generated in present work.

The following section presents theory used for

predicting forces on slender bodies in waves.

3.3 Slender Structures

The oscillatory flow about a slender structure
is depicted by the second regime of section 3.1 in which
drag is significant. In this case there is 1little
disturbance to the incident wave, but a vortex wake forms
behind the body as the flow separates from its surface.
Figure 4 (Chakrabarti 1987) illustrates the shedding of
vortices around a vertical circular cylinder in waves for
various K-C values. In practice this type of wave-
structure interaction is dealt with by neglecting free
surface effects, accounting for viscous effects
semi-emperically and adopting Morison's equation.
This equation has been developed to estimate hydrodynamic
loads and motions in this case and is reported in many
sources (Morison et al 1950, Sarpkaya and Isaacson 1981,
and Lovaas 1983).

The Morison Equation is a formula which was
developed by Morison, Johnson, O'Brien and Schaaf (1950) to

predict the hydrodynamic force acting on a section of pile
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and is comprised of two components: an inertial force and a
drag force. It is assumed that the body is small relative
to the wave length so that the incident flow is uniform
near the body and diffraction effects are negligible. For
the common case of a vertical circular section of diameter
D and sufficiently small length dL:

ar @
aL 0.5 pDCdU\UI + 0.25 ;)nD’Cm at (3.40)

where F is hydrodynamic force and v is velocity of fluid.

(n (m)
surface KC <3 surface KC 318
(x) 3 S ()
surfice K 8~13 | surface ke 13820
W o)

@ 2]
surface K¢ “ 20426 | surticere >z

Figure 4
Vortex Shedding Patterns Around a Vertical Cylinder
in Waves as Functions of K-C (Chakrabarti 1987)



The first term on the right hand side represents
the force required to overcome the drag due to vortex
separation and skin friction effects. Cd is the drag
coefficient.

The second or potential flow term involves
momentum (scattering) effects. C is the inertia
coefficient. Data for C and Cy have been determined
experimentally for a variety of bodies (Sarpkaya and
Isaacson 1981). These show that Cp and Cq are functions
of the Keulegan-Carpenter number, the Reynold's number and
the body surface roughness.

Note that the drag force is a nonlinear function
of the flow velocity while the inertia term is linear. For
the latter, the total horizontal acceleration is:

| au, Bu, Bu, 3u
at = st * VYax T Vay * Vaz (3:41)

Equation (3.40) has been modified to describe a
floating rigid structure in waves. Two independent flow
fields are superimposed: the field due to wave motion

alone:

F = CAu + Cyhgluly (3.42)
and the field due to structure motion alone:

F = —CAAIX . CdAd|X|x (3.43)
where x and x are velocity and acceleration of the

structure, C, is the added mass coefficient and Cy is the



25

drag coefficient. The resulting form is known as the
independent flow fields model (Chakrabarti 1987):
F o= CAL — CuAX + CAglulu - Coagixix  (3.44)

With the following relations:

Cp=1+¢Cy (3.45)
_ pnb? (3.46)

Ay =g
Ag = %pD (3.47)
Cq = cé (3.48)

When forces are written in terms of relative motion, single
coefficients are assumed to apply and the force can be
written:
F = Cpag (0mX) + Ak + CaAslu-xI (u-x) (3.49)
F = HmpDIC, (9-X) + HpnDix + HoDCylu-x| (u=x) (5.50)
The final section of this chapter describes the
potential flow theory for predicting wave forces on large

bodies.

3.4 Large Structures

When a structure is large compared to the
wavelength the first flow regime is assumed in which the
incident wave undergoes significant scattering in the
region of the body and free surface effects cannot be
nrglected. The motions and forces on the structure are

affected by this phenomenon and must be calculated
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accordingly. Linear diffraction theory is well developed
(Faltinsen and Michelsen 1974, Morison et al 1950, Garrison
1975) and widely used to predict motions and hydrodynamic
loading on offshore structures.

This theory assumes ideal or potential fluid
flow (i.e. acyclic, irrotational flow ). See Milne-Thomson
1968. It describes the scattering of small-amplitude waves
by large objects in the ocean and predicts the wave loads
associated with both the local accelerating flow field and
the wave scattering process.

The governing equations are:

(1) continuity ( in fluid domain ):
3¢ 32% 3%

VRl =il gt 5w = 00 (3.51)
(ii) impermeability:
a8 o
an = n on solid submerged boundaries (°-32)
3@ _
3z =0 on bottom surface (3:83)

(1ii) freer surface conditions (z=0):

8 _ gn
3z ° Bt kinematic condition {3.54)
2o _
ag tign=o dynamic condition (3.55)

which together give:

320 . 8® _
St aiT =0 (3.56)



(iv) radiation condition

Together with the appropriate initial conditions
for the time domain problem are the radiation conditions
for the steady frequency domain problem. In this latter
case the radiation condition demands that the waves
scattered by the structure represent a wave field
preopagating away from the structure. In the panel method
utilized in this study the radiation condition is
implicitly satisfied by the use of an appropriate Green's
function.

In the fluid domain, pressure, P, is defined by
the linearized Bernoulli equation:

P = -pgz - p %% (3.57)
Now the force on the body may be expressed in terms of the
pressure on the body surface:
Py=JPas=fipoz+ oﬁ)njds (3.58)
b b
3=1,...6

where nj is the generalized normal, positive into the
fluid, Sy is the mean wetted body surface area and Fj is
the generalized force:

(n):.| . 3=1,2,3

=L, i (3.59)
Gx gy 3=4,5.6
F, = J pgzn,ds + [ 02%n.ds (3.60)
J ps S| at ]
b b
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The problem at hand is to solve for the velocity
potential, &, which, because the problem is linear, can be
represented by the superposition of the "incident" and

"scattered" wave potentials:

¢ = ¢I+ oy (3.61)
Equation (3.50) becomes:
3 3
L= + - - + g 4 .
Fy (psfgznjds psf acd’IanS) psf attbsnjds (3.62)
b b b j=1...6
= Froude-Krylov + scattering

The scattering force consists of radiation and diffraction
components .

The potential may be represented by a continuous
distribution of complex sources on the surface of the body.
This method is discussed in more depth in section 4.2.

The next chapter presents a study of drift
forces on a triangular shaped floating structure in regular
waves. An experimental study is first given, and this is

followed by a numerical simulation.
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CHAPTER IV

THZ STUDY OF DRIFT FORCES

4.1 Experimental Study

4.1.1 Purpose of Model Tests

In general wave loading on a structure is a
complex non-linear process of which the first- and
second-order components are of primary interest. The
first-order wave force oscillates at the wave frequency
and nhas zero mean. This is responsible for the vessel
motions with wave frequencies. The mean and low-frequency
components of the second-order force are known
collectively as "wave drift forces". The mean
second-order force, or “steady drift" component, is
recognized as a second-order consequence of first-order
waves interacting with the structure. The slowly
oscillating second-order force component is due to wave
group effects which are non-linear interactions in the
wave field. Although the second-order forces are usually
substantially smaller than first-order forces, they may
excite large resonant response motions if damping is low.

This response can cause severe loads in mooring systems
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and, therefore, must be seriously considered in the design
of mooring and dynamic positioning systems.

A structure floating in regular waves will be
subject to first-order forces and second-order steady
drift as shown in Figure 5. A structure floating in
irregular or beating waves will be additionally acted upon
by second-order slow drift oscillatory forces as shown in
Figure 6.

The model tests described herein were initially
intended to estimate mooring forces only, in a series of
regular waves, to assist in the design analysis of the
offshore structure. Models of at least 1:25 scale are
recommended for accurate predictions of prototype motions
and forces. The results of the 1:200 scale model tests
conducted here were expected to be useful in the design of
the 1:25 scale model. The tests were exploratory in
nature and motions were not measured. Only tension in the
mooring line was measured, and the incident wave was

recorded .

4.1.2 The Model

A 1:200 scale model of a proposed delta-shaped
offshore service and supply base was constructed of
tetrahedron space-frames and buoyancy tubes, as shown in

Figures 7a and 7b. Model dimensions are shown in Figure
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Figure 7a: Model Space Frame and Buoyancy Tubes

Figure 7b: 1:200 Scale Model Used in Testing
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8. The main particulars of the model are calculated in

Appendix B and are summarized below:

Mass 150 kg
Volume 0.30 m?
Mooring stiffness #2 4.6 kG/m = 45.1 N/m

#3 9.2 kG/m = 90.3 N/m

Natural surge Ww,, = 0.4477 rps  f,, = 0.0713 Hz
frequency Woy = 0.6335 rps  £,, = 0.1008 Hz
Center of gravity 10,0,0.0381m)

Center of buoyancy (0,0,-0.0235m)
Radii of gyration rxx = 0.91m
ryy = 0.88m
rzz = 1.26m
Virtual Mass 225 kg
Note that the virtual mass, M =(1+C,)M=C/M, is
frequency dependent since the added mass coefficient is
frequency dependent. C,=0.5 is used for the calculations

in Appendix A.

4.1.3 Test Facility

Tests were carried out at the National Research
Council's Institute for Marine Dynamics in St. John's.
The towing tank is 200m long and 12m wide with a water
depth of 7m. The towing carriage spans the full width of

the tank and has a maximum speed of 10.0 m/s, with
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possible acceleration ranging from 0.2 to 1.2 m/s?. The
wavemaker is a hydraulically driven dual flap type which
provides for the modelling of regular and irregular seas.
A conventional parabolic beach is located at the opposite
end of the tank to prevent waves from reflecting back down

the tank (see Figure 9).

4.1.4 Test Set-Up

The model was held in place at the carriage by
a model mooring system consisting of linear springs, nylon
line, and a counter weight, as shown in Figure 10.
Mooring line tension was read with a hoop strain gauge.
Tests were carried out in regular waves ranging in
frequency from 0.4 to 1.4 Hertz. Two different mooring
line stiffnesses were used, K,=4.60 kG/m and K,=9.20
kG/m. (Mooring system #1 was not used in these tests).
Since the model was constructed of densely distributed
elements the permeability of the structure to waves was of
interest. In order to determine the extent of this the
model's outer surface was covered by a plastic sheet for a
test sequence in order to make the model appear solid to
the wave field. The two model configurations are referred
to as the covered and uncovercl models throughout this

text.
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4.1.5 Data Acquisition

Wave data were measured by a wave probe on the
carriage. Mooring line tension data were measured by the
strain gauge. The data acquisition system at IMD uses a
DEC microVAX II computer running on the VAX/VMS operating
system. Analog data was digitized using a NEFF 620 A/D
converter-multiplexer interfaced to the microVAX Q-bus.
Fortran-77 acquisition software controlled the sampling of

data, which was then stored on a hard disk.

4.1.6 Data Analysis

Model tests were carried out in regular head
waves ranging in frequency from 0.4 to 1.4 Hz,
corresponding to A/D equal to 3.02 and 0.25 respectively
for D=3.23 m. The analysis was carried out for the
covered and uncovered models. In some test cases the
incident wave lacked consistency, so the time series were
truncated to include only a uniform portion for analysis.
The mean mooring line tension for each test was determined
using NRC's time series analysis (TSA) software. Power
spectral density plots for both wave amplitude and mooring
force were generated for all tests and are given in
Appendix C. As can be seen, not all of the waves were of
a pure sinusoidal nature. In fact, most of them showed

group effects to some degree., Wave amplitudes, n, were
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determined by a statistical analysis of the peaks and
troughs of each time series. The wave amplitude power
spectrum can be represented by (Abkowitz et al 196%):

Ny = (sppou® 4.1
where Se is the wave elevation spectral density, n the
number of representative frequencies in the power spectra
and 6w is the frequency bandwidth.

For the case of regular waves, the mooring line
tension time series indicates two components of force; a
high frequency first-order component which oscillates at
the wave frequency and a second-order steady drift
component.

When wave group effects are apparent, the
mooring line tension time series shows three force
components; the two mentioned above along with a
second-order slowly oscillating force. The frequency of
this force is equivalent to the frequency difference of
the wave components contributing to the group effects.

The steady horizontal drift force in the
x-direction, Fd,x' is being analysed herein. It may be
written for regular waves:

Fg, = %Pgn?DR? (4.2)
where R is the reflection coefficient, the ratio of the
reflected wave height to the incident wave height, in two
dimensional flow. R? becomes a nondimensional drift force

in three (or two) dimensional flow.



41

When two wave frequencies are present,
according to Remery and Hermans (1971), this equation for
steady drift force becomes:

Py, x= ¥0a(n; + ni)oR: (1.3)
where n, and n, are the amplitudes of the waves
corresponding to frequencies : and 2.

Now we can rewrite equation 4.2:

. Fax (a.4)
%pgn*D
A similar form of this equation was previously derived in

R?

section 3.2 on modelling laws (see equation 3.27). With
proper modelling this term, which is the nondimensional
drift force, should be equal for model and prototype
structures if previously discussed modelling laws are
obeyed.

In order to keep consistent with literature on
this subject, we substitute the following relation into
equation 4.4:

p=r”s (4.5)
where A is the displaced volume of fluid. Thus, equation

4.4 becomes:

R = _Fd.x , (4:8)
Fognh
Similarly, equation 4.3 can be rewritten:
R? = Fa,x (4.7

ENE IR,
¥og(n,+n,)A 7
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In either case this term is known as the nondimensional

steady drift force, and is plotted against nondimensional
frequency:

¥ = wirg* (4.8)

Table 1 shows test frequencies for model and

prototype, with corresponding nondimensional frequency and

wave lengths. The wave lengths at lower frequencies are

not common in real sea states and are considerably longer

than the body.

TABLE 1
Test Wave Frequencies and Wave Lengths

£, £ £ron=di A A
(Hz)' (2} non-dim. (] (m}
0.4 0.028 0.578 9.76 1952
0.5 0.035 0.731 6.25 1248
0.6 0.042 0.878 4.34 868
0.7 0.049 1.02 3.19 638
0.8 0.057 1.17 2.44 488
0.9 0.064 1.32 1.26 252
1.0 0.071 1.46 1.56 312
1.1 0.078 1.61 1.29 258
1.2 0.085 1.75 1.08 260
1.3 0.092 1.90 0.92 184
1.4 0.099 2.05 0.80 160

Results of the model tests are recorded in
Tables 2 and 3 for the uncovered and covered model,
respectively. The drift forces are noted negative due to
the direction of the incoming wave with respect to the
x-axis. Plots of the measured steady drift force against

frequency are given in Figures 11 and 12. An interactive



43

graphics program was used to fit elastic splines through
the data points.

In Tables 2 and 3 the wave number and
wavelength estimates are based on deep water theory. The
mean drift force recorded in the time series is reduced by
the 10N counterweight used in experiments. This is based
on an assumption that the spring elongation is due to
surge motion only. Reynolds number and Keulegan-Carpenter
nunber are calculated according to equations 3.33 and
3.35, respectively. Since the model is fabricated of
small tubular members of two different sizes in a
near-solid matrix, Reynolds numbers and Keulegan-Carpenter
numbers are calculated for cases of three characteristic
dimensions of the body (see figures 7 and 8):

(i) the linear space frame component diameter, 0.007m

(ii) the buoyancy tube diameter, 0.04m

(iii) the width of one side leg of the triangular
structure, based on a near-solid hull assumption,
0.625m

Test results, judged from power spectra, were
grouped in four categories;(i) regular waves,(ii) waves
with some group characteristics (vague groups) (iii) fully
developed (distinct) groups and (iv) discarded results due

to many wave frequencies. In general, the
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Input Data and Test Results:

Table 3

Covered Model

DELTAPORT TEST RESULTS
REGULAR WAVES
COVERED MODEL

d=Tm
v=1.56x10"¢ m*/s

8 Kk A Fy n Rn K-C
TEST [MOORING| FREQ. | WAVE HWAVE MEAN WAVE REYNOLDS KEULEGAN-
NUMBER |SPRING NUMBER |LENGTH | DRIFT | AMPL. NUMBER CARPENTER NO.
NUMBER . FORCE
(Hz) (rad/m) (m) (N) (m) |D=0.007|D=0.04 |D=0.625 D-O.CD‘VID-0.0H D=0.625
input | input |ke=2w/A (A= 8 meas'd- Rn=2nfnDcosh kd K-C=2nmeosh kd
26f? 110N wt. v sinh kd D sinh kd
60 2 0.4 0.644 | 9.76 -0.59 | 0.0374| 421.9 | 2410.8| 37658.8| 33.6 5.88 | 0.376
61 3 0.4 0.644 | 9.76 -0.69 | 0.0356( 401.9 | 2296.7| 35846.4| 32.0 5.60 | 0.358
62 3 0.6 1.450 | 4.34 -5.72 | 0.0601(1015.8 | 5804.7| 90773.9| 53.9 9.43 | 0.604
63 2 0.6 1.450 | 4.34 | -5.53 | 0.0591{1000.1 | 5714.8| 89263.5| 53.1 9.29 | 0.594
64 2 0.8 2.580 | 2.44 -7.75 | 0.0372| 837.9 | 4788.1| 74914.9| 33.3 5.84 | 0.374
65 3 0.8 2.580 | 2.44 -8.97 | 0.0443]| 999.6 | 5712.2| 89213.2| 39.8 6.96 | 0.445
66 3 1.0 4.020 | 1.56 [-12.15 | 0.0338( 951.5 | 5437.4| 85084.8| 30.3 5.30 | 0.340
67 2 1.0 4.020 | 1.56 |[-14.52 | 0.0500|1409.1 | 8052.1[125865.2| 44.9 7.85 | 0.503
68 2 1.2 5.800 | 1.08 -6.83_] 0.0285| 964.2 | 5509.9| 86091.8| 25.6 4.48 | 0.287
69 3 1.2 5.800 | 1.08 =7.70 | 0.0302]1020.4 | 5830.8| 91227.1| 27.1 L.74 | 0.304
70 3 1.4 7.890 | 0.80
n 2 1.4 7.890 | 0.80
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lower frequency waves were most regular, while the group
phenomena increased with increasing frequency. Table 4
indicates the status of each test and the significant
frequencies and frequency differences. In the case of
beating waves (ie. two or more waves of small frequency
differences contributing to the incident wave) the
frequency difference can be of great importance. If this
frequency of the slow drift oscillations coincides with
the natural frequency of the mooring system, resonance may
occur. In model tests this can be controlled by varying
the stiffness of the mooring. From observing Table 4 one
can see that many of the frequency differences are near
the calculated natural frequency of the moored structure.
Therefore these test results are questionable, and they
are indicated as such on the plots. At higher frequencies
some of the test results were discarded due to the number
of wave frequencies present in the test.

Drift force plots, Figures 11 and 12, indicate
that drift forces were near zero for low frequencies. For
the covered model the drift forces were considerably
higher than those of the uncovered model as frequency
increased. No significant difference due to mooring
systems is obvious.

The nondimensionalized plots of Figures 13 and
14, with higher frequency results discarded (see Table 4),

should be a better interpretation of test results.
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Model Test Incident Wave Frequencies

RUN MAIN OTHER DELTA STATUS
NUMBER |FREQ(Hz) FREQ (Hz) FREQ.
4 0.4 i) regular
5 0.4 i) regular
6 0.5 i) regular
7 0.5 i) regular
8 0.6 i) regular
9 0.6 i) regular
10 0.7 0.6 0.1 iii)distinct
il 0.7 i) regular
12 0.8 i) regular
13 0.8 i) regular
14 0,9 1.0 0.1 iii)distinct
15 0.9 i) regular
16 1.0 0911 0.1 iii)distinct
175 1.0 0.9,1.1 0.1 iii)distinct
18 1.1 0.9,1.0,1.2,1.3 [0.1,0.2 |iii)distinct
19 1.1 1.2 0.1 iii)distinct
20 1.2 1.1,1.3 0.1 iii)distinct
21 1.2 1.05,1.35 0.15 iii)distinct
22 1.3 many ? discarded
23 1.3 many ? discarded
24 1.4 many ? discarded
25 1.4 many 2 discarded
60 0.4 ii) vague
61 0.4 i) regular
62 0.6 ii) vague
63 0.6 ii) vague
64 0.8 0.6 0.2 ii) vague
65 0.8 ii) vague
66 1.0 0.8,1.2 0.2 iii)distinct
67 1.0 0.8,1.2 0.2 iii)distinct
68 1.2 many ? discarded
69 1.2 many ? discarded
70 1.4 many ? discarded
5 1.4 many ? discarded
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A= 0.15m* was used in the nondimensionalization. Firure
15 displays the nondimensional forces for both models for
comparison. The differences relative to the variations
displayed in forces observed for individual cases appear
to be not significant. More covered model data would be
necessary to pick up significant differences, if any. It
is apparent from the analysis that in the uncovered model
case the structural members blocked the flow paths such
that the model acted as a near solid structure in the wave
field. From the present work it is concluded that both
models react similarly in regular waves. Of course, the
higher frequency results are questionable due to group
effects.

Due to the geometry of the model, any wave
reflection via the sides of the model off the wave tank
walls would be directed behind the model. Therefore
contamination of results due to wave reflection is not
considered a problem.

In the following section a numerical scheme
corresponding to the tests previously described is

developed and implemented.
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4.2 Numerical Evaluation of Steady Drift Forces Using

Linear Diffraction Theory

4.2.1 A Model for Steady Drift Forces

The two main components of the model, linears
and buoyancy cells, are small compared to the wavelength
and fall into the slender structure category. Typically
Morison's equation would be used in such a case, but that
theory does not allow for the interactions due to the
proximity of the structural elements of the model. Thus,
the most obvious alternative was to use the well developed
linear diffraction theory, assuming a solid hull
construction for calculation purposes. It is also possible
to assume that due to the dense distribution of the
structural elements the blockage effects significantly the
permeability of the structure in waves, thus bringing it
close to the diffraction model. A numerical scheme
developed by Faltinsen and Michelsen (1974) and presented
by Tse (1984) is used.

The numerical model presented is based on linear
diffraction theory wusing the 3-D source distribution
method. The software Tse presents calculates the
first-order wave forces, response motions, second-order
steady horizontal drift forces and vertical drift moment

for a floating body in regular waves. The steady drift
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forces, which are of main interest here, are evaluated by
the far field (wave momentum) approach (Standing et al
1981, Murray 1984). This method utilizes potential flow
theory and conservation of momentum and energy. Changes in
momentum in the fluid surrounding the body are equated to
the steady force acting on the vessel in regular waves.
The equations of motion of the body may be
written in the following form:
Mjkfjk =SJ'( (o2 . 2020, pgzingds + (f,,)y  (4.9)
b t) 1%

Jk=1,...6
where U is the acceleration of the structure, sb(t) is the
instantaneous wetted surface of the body. The integral
term on the right hand side represents the forces due to
the integration of pressure distribution over the
instantaneous wetted surface. (fex)j are external forces
which are assumed to be known.

When one assumes that the external forces balance
the sum of all second or higher-order hydrodynamic forces,

equation 4.9 can be reduced to:

ae _ fy - g
é PaenydS = Gy () = My U (4.10)
b

Jj.k=1,...6
where,

G2
U = Ses o)) (4.11)
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np(t) are the time-dependent first-order linear (k=1,2,3)
and angular (k=4,5,6) rigid body motions. Cik are the
restoring coefficients. Since the body is symmetric with
respect to the x-z plane the restoring coefficients can be

written (Tse 1984, Faltinsen and Michelsen 1974):

Caa = POA, (4.12)
Cyy =Cyy =-pg [ x dS (4.13)
P
Cuy = PgAlz— z) + pg [ y? ds (4.14)
P
Cys = PA(zy— 2) + pg [ X7 dS (4.15)
Aup

where Awp is the water plane area, A is the displaced
volume of fluid, z, and z, are the z-coor iinates of the
center of buoyancy and center of gravity of the body.

For steady harmonic excitations and motions it is more
convenient to represent the potential, @, and motion, r|’,l by
the real part of the complex function such that:
—iwt]

nj(t) = Re[nj e (4.16)

o(Tt) = Relo(R)e ¥ (4.17a)
Now ®(X) can bc broken down into three parts for this
linear case:

© = 0.+ Dt (—mﬁjmj (4.17b)

j,k=1,...6

p + the incident wave potential, can be obtained

from small amplitude wave theory:



cosh k(z+h 1(kxcosB+ky51nB) (4.18)

cosh
where L, is the amplitude of the incident wave, B is the

E
% =9y

incident angle of the incident wave, and ¢, is known as the

solution of the wave diffraction problem. j=1...6 are

4
the solutions to the radiation problem.

Using the following definitions (Faltinsen and
Michelsen 1974):

added mass coefficients:

Ajyc= -PRe [ g ®4ny dS] (4.19)
b
damping coefficients;
Ejk = -pu Im[js‘ @40y asi (4.20)
generalized exciting force;
Fy = (-iulp f (0, +,); as (4.21)
Sp
the equation of motion can be written:
(—m’(Ajk+ Mjk) - 1mBjk+ cjk) N = r-‘j (4.22)
jok=l,...6

The velocity potential associated with the flow
about a body, ¢j .3=1,...7, for the infinite fluid case, can
be described by either a complex source or doublet
distribution over the body surface through the application
of Green's Theoren. For the region bounded by the body
surface, the free surface and the sea bed, the velocity
potential, based on a distribution of complex sources,

can be written:
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@) = gQi (€) 6(X,E) as () (4.23)

b i=1,...7
where Qj (E) is the source density function and G(X,E) is
the Green's function which satisfies the free surface and
radiation conditions. The Green's function and its
derivative are evaluated by either the series form or the
integral form (see Tse 1984), depending on Bessel function
criteria. The integral form is used when the maximum value
of the Bessel function of the first kind is greater than
1000, otherwise the series form is used. Tse states some
cases where these criteria do not work well in the
evaluation of the Green's function.

Qj' j=1...7 is solved by a sur face
discretization panel method (Tse 1984, Faltinsen and

Michelsen 1974) . and Ajk‘ Bik’ F, are computed from

bl
equations 4.19, 4.20, and 4.21. °j is obtained from
equation 4.23. The complex amplitudes of body motions, ﬁk'
are then calculated from equation 4.22.
The steady horizontal drift forces can be

expressed as:

(F.).= < [Pn.ds> (4.24)
spit)3 j=1,2

where ¢ > denotes the time average over one period. (Pd)j
is the drift force in the x and y directions. P is the
hydrodynamic pressure. nj denotes the unit normal positive
into the £luid.

The direct evaluation of expression 4,24
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involves the second-order effect due to the instantaneous
wetted surface S (t) and is known as the near field
approach. It can be used to predict mean forces as well as
low frequency components, but is cumbersome and extensive
in terms of CPU time. The second-order mean forces can
also be calculated by implementing conservation of momentum
over some cylindrical control surface requiring 1little
computational effort beyond that required for the
first-order solution.

Conservation of momentum over a control volume
of the fluid domain which is bounded by the body surface
S,(t). the free surface S;, the sea bed §;, and a chosen

fixed control surface at infinity S_, can be written:

aL, _ P (4.25)
i = —p[((5 +gx;)n, + v, (v ~U_))dS
a s P T T ken2,3
where ; =5, (£)+S 48, +s, (4.26)

and Lj (3=1,2,3) is the linear momentum in x,y,z directions,
uj is the fluid velocity vector, v, is the normal velocity
component of fluid particles on s, U, is the normal
velocity component of the surface S.

If contributions in the horizontal plane only
are considered this equation reduces to:

ar,; . =g+ pu (v -0)) ds (4.2m)
ac 5 Ionon

j=1,2
Applying the corresponding boundary conditions on S:

onSg: P=0, v =U,
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on Sp: n=(0,0,n,) ., un=Un=0
on Sy (t): U= Uy
on S _: Un=0
the equation becomes:
[ Pnjas = - [ (en;+ puju)ds - daty (4.28)
s,(t) S, at
j=1,2

Taking the time average over one period and choosing the
control volume to have a vertical cylindrical surface of
large radius, r, extending from the free surface down to
the sea bed, the horizontal mean drift forces can be
written using polar coordinates:

(Fd)x = =< gtPcosG + pur(urcose - ussine))rdedz > (4.29)

(Fg)y = =< é(?sine + PU_(u.5in0 + vgcuse))rdedz > (4.30)

where vy and ug are the radial and tangential velocity
components and x=rcos®, and y=rsin@.

Using expanded versions of equations 4.17 and
4.23 as given in Tse (1984) (see also Faltinsen and
Michelsen 1974) the far field expression for the first-
order potential is:

4 ;
~a cosh k(z+h i(kxcosp + kysinp-wt)
@ % cosh kh e

Qit(e) 3 (kr-wt) (4.31)

+ T(8) cosh(k (z+h) IVI/T e

where T(6) and T(8) are real functions of @ and T(0)el®(®)

is in the form of a Kotchin function:



1(0) 'T(®) - ZLOEKA) g omiHT
J (Q(E)coshk (¢ +h) ] ¢~ (KECOSOHNSinG) ) 4o

Sp(t) (4.32)

where Q(E) is the total source density.

Q(E) = 0, + (-iufi; ) (4-33)
3=1,...6
Substituting relations:
= 39 -iwt
ur—Re[are 1 (4.34)
= 1 3% -iuwt
Vg = Re:lr 30 © ] (4.35)

and retaining terms up to second-order in @, the mean
horizontal forces can be written:
(Fg)y =

P uty /ij (4 sinh(2kn) + K .27(p) -cos(t(B)+ 1) - cos
2 sinh{kh)

2n
- Pk (% sinn(zkn)+ K. (o) -cos 0 ae
2 o
(4.36)
(Fgly =
S0 W [y ssnngam + B 210 -cos(x(py+ ) -sin B
2 sinh(kh)
2
- Pk (% sinn(zkn)+ EBy.[ 2 (o) -sin 6 ae
7 °
(4.37)
It is documented (John 1949, 1950) that there
are particular 'irregular' wave frequencies at which the
numerical scheme presented breaks down. These frequencies

are dependent on body shape, and in the present case are
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not easy to predict. They are generally associated with
wave lengths in the order of, or less than, the
characteristic dimension of the body, but not always.
Murphy (1978) found that for a circular cylinder irregular
frequencies existed at wavelengths considerably longer than

the characteristic dimension of the body.

4.2.2 Numerical Application
Tse's programs were designed for a body
symmetrical about both the x and y axes. His programs were

modified to handle a body symmetrical about the x axis

only. Before ing it was y to confirm that
the program, with modification, was executing properly.
The new version was tested thoroughly by executing it for
Tse's rectangular box in 500m of water and wave heading
zero degrees, with consistent results. The program was
also successfully executed for Pinkster's (1981) barge
model in head waves. Thus, it was concluded that the newly
modified program is working correctly in comparison with
other available results. The new versions of the programs
are called DPORT2.FOR and OUTPORT2.FOR and are listed in
Appendix D. A list of main subroutines in DPORT2.FOR with
their functions and pertinent equations is found in in
Appendix H. Program DPORT2 computes first— order wave
forces, response motions, steady horizontal drift forces

and vertical drift moment. Program OUTPORT2
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is a simple program which formats this information and
creates output files. Programs DPORT2 and OUTPORT2 were
executed with the triangular shaped platform input as a
full scale solid hull structure. The body wetted surface
was partitioned into 230 panels, as shown in Figure 16,
utilizing program SHAPE.FOR in Appendix E. The panels are
small relative to the wavelength. The inputs to the
program, as determined by the geometry of the model, are:
panel centroids, areas, and unit normal vectors (as given
in Appendix F); center of gravity:; water depth; a
characteristic dimension of the structure; and radii of
gyration (as estimated in Appendix B). In addition to the
geometric inputs, various water depths and wave headings
can be input. The program was run with 500m water depth,
and wave periods ranging from 10.5 to 34.4 (A/D equal to
0.266 to 2.86 for D = 646m) seconds, which correspond to
the wave frequencies used in model tests. Inputs specific
to this model are listed in Table 5.

Four computational schemes were investigated to
determine which is best suited to the model tests
previously described. The basic differences in the schemes
was in the representation of the space in between the
structural elements of the model.

CASE 1: Center of gravity, radii of gyration and

displaced volume were estimated for the model
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TABLE 5 "
Particulars of the Model

65

mass (kg)
volume (m?)
submerged
volume (m?*)
draft (m)
c of g (m)
c of b (m)
nat.freq. wo:
(rads/s) wos
radii of ry,
gyration r,
(i) r)z”z,

MODEL PROTOTYPE
150 1.2 x 10°
0.30 2.4 x 10¢
0.150 1.2 x 10¢

0.0595 11.9

(0,0,0.0381) (0,0,7.62)
(0,0,~0.0235) (0,0 -4.7)

0.44717 2.0317

0.6335 0.0448

0.91 182

0.88 176

1.26 252

CONSIDERING ENTRAPPED WATER PART OF MODEL

mass (kg)
submerged
volume (m?)
draft (m)
c of g (m)
c of b (m)
nat. freq. wg;:
Wos
radii of ry,
gyration Tyy

Y2z

MODEL PROTOTYPE
350 2.8 x 10°
0.350 2.8 x 10°¢
0.0595 .
(0,0,0.0063) (0,0,-1.26)
(0,0,-0.0358) (0,0,-7.16)
0.293 0.0207
0.415 0.0293
0.85 170
0.83 166
1.18 236
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in air. Other particulars of the model,
center of buoyancy and water plane area, were
calculated by the program which assumes a
solid hull structure.

CASE 2: The center of gravity, radii of gyration and
submerged volume were estimated for the model
including entrapped water in the space
between the structural components. Water
plane arca and center of buoyancy were
calculated in the programs.

CASE 3: Water plane area, radii of gyration and
center of buoyancy were estimated for the
model in air. The submerged volume and
center of gravity were calculatd with
entrapped water.

CASE 4: The radii of gyration, submerged volume,
center of gravity, center of buoyancy, and
water plane area were all estimated for air
entrapped.

The program thus took on four versions DPORT1
through DPORT4. The results of each version were analysed
for the full range of frequencies and version 2, DPORT2,
was best suited to the experimental results. This version
represents the structure and entrapped water acting

together as a dynamic body. As is mentioned in section
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4.1.6 the covered model tests did in fact have water
entrapped in the structure and showed little difference in
uncovered model tests. This also suggests that case 2
is the most suitable version of the program.

Initially the program was executed for the model
free floating with six degrees of freedom in head seas.
Results of this run are listed in Appendix G. Errors in
Green's function calculations due to Bessel function
restricticns were noted at several wave periods: 10.8,
11.7, 11.9, 12.7, 13.5, 16.0, 23.4. The program failed to
execute at periods in the neighbourhood of 11, 12, 13, 18,
and 20 secs, so no results are available in these areas.
Note that drift forces are generally negative due to the
orientation of the body in the waves.

The program was then exesuted for head seas
with motions of the body restricted in seven combinations
in an attempt to determine the influence of first-order
motions on the body:

(i) Surge motion only;
(ii) Heave only;
(iii) Pitch only;
(iv) Surge and heave only;
(v) Surge and pitch only;

(vi) Heave and pitch only;



(vii) Zero motions (fixed structure).

The numerical scheme for surge only was extended
to include the two mooring systems. These stiffnesses were
impressed upon the numerical model by equating the
stiffness in surge, C(1,1), to each mooring spring
stiffness separately.

The program was finally run for the free
floating model in quartering seas of 240°. In this case

the waves are head long into the side of the model.

4.2.3 Computational Results

Results of the numerical evaluation of drift
force in the x-direction have been nondimensionalized as
previously discussed in section 4.1.6 and plotted against
nondimensional frequency for comparison to experimental
results. Ap = 1.2 x 10° m?® was used for
nondimensionalization. A discussion of these numerical
results follows.

Figure 17 shows the nondimensional results of
the free floating model in head seas. Figures 18a to 18f,
shown in Appendix A, are plots of the calculated
first-order surge, heave and pitch RAO's and phases. Added
mass and damping coefficients are given in Figures 19a to
19h for surge, heave, pitch and yaw and are also shown in

Appendix A.
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From Figure 17 it is seen that at low
frequencies, m<0.7‘ the nondimensional mean drift force is
near zero. As frequency increases, drift force increases
in the direction opposite to wave propagation. In this
frequency range, the first-order heave motion transfer
function is not quite equal to 1 while phase is near zero.
Therefore the body is not exactly following the wave motion
completely. As frequency increases heave motion decreases,
and surge motion increases.

In the nondimensional frequency range of 0.7 to
1.0, the drift force varies considerably. The order of
magnitude of these variations is close to 50% of the
maximum mean second-order force calculated. Similar trends
in drift force can be seen in Pinkster's (1981) results for
a semisubmersible in head waves, and for a barge in bow
quartering seas, as shown in Figure 20. Similarities are
also shown in Hearn and Tong (1987) in the plot of mean
drift forces computed by the near field method for a
semisubmersible displayed in Figure 21. In the lower
frequency range both semisubmersibles show oscillations of
a much smaller order of magnitude when compared to the
maximum force . The barge in quartering seas shows results
at lower frequencies in the order of magnitude of 50% of

the maximum, as in the present case. Head waves on the
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triangular model are comparable to ‘uartering seas on a
barge.

The plot of first-order surge force (Figure 22)
displays a maximum force in the nondimensional frequency
range 0.7-0.8. Inspection of corresponding Froude-Krylov
(Figure 23) and scattering (Figure 24) forces indicate that
the scattering force is the main contributor to this
maximum surge force.

First-order motions, particularly surge, show
considerable variations in this frequency range.
Superimposing Figures 17 and 18a it is seen that an
increase in surge motion corresponds to an increase in mean
horizontal drift force. Alternately, a decrease in suryge
motion matches a decrease in drift force. (Note that a
higher negative number indicates an increase in drift force
in the direction of wave propagation). Pitch angle follows
the same trend.

Also in this frequency range, surge added mass
"

(Figure 19a) peaks at =0.7 and goes negative at .8
while surge damping (Figure 19b) peaks at 0.8. Added mass
and damping in heave (Figures 19c and 19d) dip negative at
$20.77 while added mass peaks at ®=0.8. Pitch damping
(Figure 19f) also shows a distinct negative dip at 0.77.
Negative added mass is expected, on the basis of

two dimensional calculations, .n such a structure with

outwardly sloping sides, but negative damping is not
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physically Jjustified when considering pure (uncoupled)
motions. In order to investigate this, NRC's program for
the solution of generalized two dimensional scattering
problems was implemented to compute added mass and damping
in heave for a solid cross-sectional area of one leg of the
model. The model scale was used in the program and results
are plotted in Figures 25a and 25b. Added mass shows a
pronounced trough at 20.7 where damping shows a distinct
peak. It is noted that in general for two dimensional
problems a zero crossing in added mass corresponds to a
peak in damping. If this is extended to the three
dimensional problem of Figures 19 it is seen by
superimposing Figures 19c and 194 that the actual damping
peak in heave is at u‘izo.'l as expected. It is then
suspected that the negative damping in heave and pitch is
due to accumulative errors causing an overshoot in
calculations. After this frequency range, the added mass
and damping tend to quickly level off again.

It is noted that at low frequencies the
corresponding wavelengths based on deep water theory (ie.
(A/d)22 ) exceed the limits based on 500 m water depth used
in computations. Therefore the program was executed for
1000 m water depth to represent deep water for all ranges
of frequency. The results were not significantly different

from those for 500 m.
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In the nondimensional frequency range 0.8 to 1.1
the drift forces increase to a small peak close to 0.9 and
level off for a narrow band of frequencies. Surge
amplitude shows a minimum at 0.9, peaks sharply at 1.0, and
decreases again. Heave amplitude exhibits a small dip
between 0.8 and 1.0. The pitch angle increases sharply in
this range. Damping increases in heave and pitch and
decreases slightly in surge.

It is interesting to note that at G<0.9 the
corresponding wavelengths are longer than the structure,
which in prototype is 646 m along the x-axis and
approximately 745 m along each leg. The inside dimensions
of the prototype are approximately 225 m along the x-axis
and 260 m along the leg.

The maximum mean drift force occurs in the
nondimensional frequency range 1.1-1.5, peaking at 1.3.
This area looks conspicuous with few datapoints due to the
unexplained failure of the numerical scheme. This failure
might be due to irregular frequencies causing the numerical
method to breakdown as discussed in section 4.2.1. The
magnitude of this maximum is large compared to other
computed forces. This "surge" in force corresponds closely
to a distinct low point in first-order surge force and
subsequent peak in heave and surge amplitudes as well as

pitch angle at U =1.5. Added mass and damping coefficients
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have levelled off in this range.

At nondimensional frequency 1.4 the drift force
decreases to a steady level for the higher frequencies.
The heave and surge amplitudes and pitch angle tend to zero
after nondimensional frequency of 1.6.

Inspection of drift force plots with model
motions restricted, Figures 26a-26f (in Appendix A) shows
the significance of the effect of surge motion on the mean
horizontal force in the lower half of the frequency range.
Heave and pitch motions appear to play a stronger role in
the mid-frequency range where the force increases greatly
and decreases again.

The computed drift force on the fixed body is
depicted in Figure 27. As expected the forc s are not as
erratic, since the body is not dynamically interacting with
the wave field. At the lowest frequencies the forces are
somewhat higher than when the body was free to move. Near
U=0.8 the force peaks and then drops off again. At the
higher frequencies the plot is virtually the same as the
others in this group.

When the stiffness of the mooring systems was
introduced in the program for the body free to move in
surge only, the results were uneffected (see Figures 28a
and 28b in Appendix A). This indicates that the moorings

were too soft to restrict to body's motions in surge.
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Finally the numerical procedure was repeated for
a free floating and fixed structure in quartering seas.
Figures 29a and 29b (in Appendix A) show that the results
do not vary alot from those of head seas. For the floating
structure the forces are generally somewhat lower in the
first half of the frequency range, but the same tendencies
are obvious. Similarly, for the fixed structure, the
results are not significantly different. In the lower
frequency range the forces are lower, tending to zero at
the lowest frequencies.

It is known that the Green's function fails for
bodies with voids, such as a donut shaped structure. It
was thought that the inner configuration of the structure
may have caused problems in this computation. Therefore
the program was executed for a similar shape with two legs
but no semi-enclosed back. The results were not
significantly different.

In Chapter V the theoretical results are

compared to the experimental results.
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CHAPTER V

COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS

In orc>r to determine the validity of the
numerical scheme presented it is necessary to compare the
theoretical results with physical reality. First,
model test results are compared to the theoretical results
(numerical model version 2 as described in section 4.2.2 )
of the free floating structure in head waves, Figures 30
and 31. In these figures it can be seen that the
theoretical results closely match the model test results.
Not enough experimental data were obtained to show any
fluctuations in mean drift force with respect to
nondimensional frequency in the lower frequency ranges as
was displayed in the computed results. The experimental
datapoints do correspond closely to the computed results
and there is no evidence to conclude that these
fluctuations do not occur. Judging from other documented
cases mentioned previously and the speculated error in the
damping coefficients, it is questionable if these
fluctuations would be as large in reality.

Since computational and experimental results

both show a pronounced maximum mean drift force of the same

order of magnitude in the range of w=1.3, it is deduced
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that this frequency range is of major concern in the design
process. The maximum mooring force is expected to occur in
this range. It is noted earlier that the experimental
results at high frequencies were doubtful due to group
effects and the risk of resonance. This does not seem to
have caused any great error in the vessels mean drift
force, even though the vessel may have oscillated about
this mean.

The theoretical results for a fixed structure
are compared to model test results in Figures 32 and 33.
The comparison of uncovered model experiments to the linear
diffraction theory fnr the fixed model (Figure 32)
indicates that model motions were, in fact, playing a role
in the intermediate frequency range where this theory
flattens out. At the higher and lower frequencies the
theory 1is similar in both cases, and the experimental
results compare well.

Although motions of the experimentally tested
model were not measured, spring forces do indicate surge

motion of the structure.
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CHAPTER VI

CONCLUSIONS

This thesis considerecd, both experimentally and

theoretically the mean wave-induced drift forces acting on

a large moored porous-like floating structure. The

following conclusions were drawn:

I

No significant difference was noted in the results for
the two modelled mooring systems (which can be
considered a means to me2asure drift forces on the
otherwise tree-floating structure), A softer mooring
would have reduced the natural frequency of the system
to better ensure that the effect of the mooring system
on the first-order motions was negligible. This is
necessary to avoid adverse effects due to distorted
first-order motions. The fact that no significant
difference is apparent indicates that no more-adverse
effects were present using the stiffer mooring.

Covered model tests were conducted in which a plastic
sheet was used to eliminate any porosity of the
structure. It was found that the drift force on the
covered model was basically the same as that of the
uncovered model. Both were represented closely by the

far field theory for a solid structure. Apparently in
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model tests the structural members blocked the flow
paths in the uncovered case such that the model acted
2s a n. -solid structure in the wave field. Therefore
it may be concluded that viscous effects dGid not play a
major role in the wave forces on the model. Froudian
scaling, in which viscous effects are ignored, proved
to be accurate verifying that diffraction eifects were
dominant. An investigation of first-order forces also
verified this.

For a prototype the deta suggests that the peak force
due to regular Sm waves would be in the order of 10® N.
For a 1m/s current without waves the drift force would
be approximately 0.05 x 10® N. Therefore, according to
this study the drift forces due to waves ippear to be
dominant for the structure. This is an indication of
the practical significance of the present study.
Calculated added mass and damping coefficients are
questionable, particularly in the nordimensional
frequency range 0.7-0.9, probably due to accuracy of
Bessel function calculations. This accuracy can be
adjusted. The Green's function algorithm should be
investigated for this case.

The far field theory using a panel method showed
considerable variatious in the mean Jdrift force at low

frequencies. A review of literature showed that this
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had been seen earlier in data and theoretical
formulations. Investigation of forces and calculated
pure uncoupled motions indicated that these variations
are due mainly to surge motions. The maximum drift
force, which occurred at a higher frequency, was
determined to be mainly a result of heave and pitch
motions.

The mean horizontal drift forces on this particular
model can be computed with reasonable accuracy using
the numerical model for a free floating structure
presented in which the structure includes entrapped
water, The frequency range in which the maximum
mooring force occurs was :dentified. Therefore the
results presented can be utilized with confidence in
the design process

Model motions were not measured during testing since
the tests were not designed for research purposes.
Observations indicated that some wave attenuation was
occurring, particularly at high frequencies. It would
be useful, in future work, to determine experimentally
and theoretically the extent to which waves are
absorbed and reflected, etc. Also the possibility of
standing waves occurring in the inner triangular area

of water should be investigated.



Although’ wave group effects were present in
second-order slow drift oscillations of the vessel
forces, they did not appear to significantly affect the
steady drift offset of the model. These group effects
may have caused the vessel to oscillate about the mean
position which results in an additional second-order
low frequency drift force. When the group frequency is
near the natural frequency of the system resonance may
occur. The complexity of this, both experimentally and
theoretically, is well beyond the scope of the present
work. In future work an attempt should be made to

study this in relation to mooring design.
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Model Space Frame and Buoyancy Tubes
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Figure 11
Plot of Experimental Results: Uncovered Model;
Drift Force .vs. Frequency

60T



STEADY DRIFT FORCE/COVERED MODEL

a

DRIFT FORCE-MOORING 2 [NJ
& DRIFT FORCE-MOORING 3 N1

6.0 |
DRIFT FORCE
e
-1e.0 |

-1z.e |

-4 b

-18.0
0.4 0.5 0.6 .7 0.6 0.0 1.2 1 12 1.8 1.4 1.8

FREQUENCY Cre)

011

Figure 12
Plot of Experimental Results: Covered Model;
Drift Force .vs. Frequency
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Figure 13
Plot of Experimental Results: Uncovered Model;
Nondimensional Drift Force .vs. Nondimensional Frequency
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Figure 14
Plot of Experimental Results: Covered Model;
Nondimensional Drift Force .vs. Nondimensional Frequency
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FIRST-ORDER MOTIONS/WATER ENTRAPPED/HEAD SEAS
T T T T

4.0 T T T T T

T

NONDIMENSTONAL

SURGE AMPL.

2.4 2.8 2.8

NONDIMENSIONAL FREQUENCY

911

Figure 18a
Plot of Computed Results:
First-Order Motion-RAO's; Surge Amplitude Operator
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Figure 18b

Plot of Computed Results:
First-Order Motions; Surge Phase
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HEAVE AMPL.
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NONDIMENSIONAL FREQUENCY

Figure 18c
Plot of Computed Results:
First-Order Motions; Heave Amplitude Operator
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FIRST-ORDER MOTIONS/WATER ENTRAPPED/HEAD SEAS
T T T T T T T T T

48
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e.s [

NONDIMENSIONAL FREQUENCY

Figure 18e
Plot of Computed Results:
First—-Order Motions; Pitch Angle Parameter
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Figure 18f

Plot of Computed Results:
First-Order Motions; Pitch Phase
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Figure 19a
Plot of Computed Surge Added Mass Coefficient
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THEORY/WATER ENTRAPPED/FREE FLOATING
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NONDIMENSIONAL FREQUENCY

Figure 19b
Plot of Computed Surge Damping Coefficient
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Figure 19c
Plot of Computed Heave Added Mass Coefficient
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THEORY/WATER ENTRAPPED/FREE FLOATING

s.e T

= |
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Figure 19f
Plot of Computed Pitch Damping Coefficient
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ueuTED
©a ¢ MEASURED (ASCENDING WAVE AMBLITUOL ¢4 )
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Mean longitudinal drift forces in head waves.

—— compuren
© v MEASURED [ASCENOING WAVE AMPLITUDE o4 = )

Taacs S8 SUBMERSIBLE BascE l
\

? |

T T

Mn [ (B

Mean longitudinal and transverse drift forces and
yawing moment in bow quartering waves.

Figure 20
Pinkster's Results for Head Seas and Quartering Seas
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Figure 21
Hearn's Results For a Semisubmersible
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Figure 23
Calculated Froude-Krylov Force

2.8

€ET



SURGE  SCATTERING FORCE/MODEL IN HEAD SEAS
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Figure 24
Calculated Scattering Force
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Figure 26a

Plot of Computed Steady Drift Forces for Restricted
Motions: Surge Motion Only
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Plot of Computed Stead Drift Forces for Restricted
Motions: sdeave Motion Only
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Figure 26c
Plot of Computed Steady Drift Forces for Restricted
Motions: Pitch Motion Only
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Figure 26e
computed Steady Drift Forces for Restricted
Motions: Surge and Pitch Motion Only
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Figure 26f
Plot of Computed Steady Drift Forces for Restricted
Motions: Heave and Pitch Motion Only
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Figure 28a
Plot of Computed Steady Drift Forces: Surge
Mooring #2 sStiffness Input to Program
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THEORY/WATER ENTRAPPED/CC1, §1>=3610000/SURGE ONLY
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NONDIMENSIONAL FREQUENCY

Figure 28b
Plot of Computed Steady Drift Forces: Surge Only;
Mooring #3 Stiffness Input to Program
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Figure 29a
Plot of Computed Steady Drift Forces:
Quartering Seas; Free Floating Body
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Figure 29b
Plot of Computed Steady Drift Forces:
Quartering Seas; Fixed Body
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Figure 30
Plot of Comparison of Steady Drift Forces:
Computed Free Floating Structure .vs. Experimental
Uncovered Model
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Figure 31
Plot of Comparison of Steady Drift Forces:
Computed Free Floating Structure .vs. Experimental
Covered Model
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Figure 32
Plot of Comparison of Steady Drift Forces:
Computed Fixed Structure .vs. Experimental Uncovered
Model
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Figure 33
Plot of Comparison of Steady Drift Forces:
Computed Fixed Structure .vs. Experimental Covered
Model
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DETERMINATION OF RADII OF GYRATION

1:200 SCALE MODEL

TABLE Al
LEVEL
DIM. A B c
(cm)
a 93 116 142
b 55 70 83
c 132 122 12
d 80 72 66
e 20 20 20
£ 108 116 126
g 28 34 40
h 45 57.5 70
q 90 82 15
r 52 47 43
s 44 41 43
% 26 24 22
u 57 50 44
v 27 29 31
bz 14 14 14




Calculation of Area for 1:200 scale model:

About x-x

About y-y

TABLE A2
AREA (cm?) A B c
R,= Yiab 2557.5 4060 5893
R, = b 7260 8540 9296
Ry, = %gh 630 9717.5 1400
Ry = £:h 4860 6670 8820
AT=§ Ry | 15307.5 | 20247.5 | 25409
i=1
TABLE A3
AREA (cm?) A B c
R, = Y%ab 2557.5 4060 5893
R, = b'q 4950 5740 6225
R,= b (s+h) 4895 6895 8964
R, = %hv 607.5 833.75 1085
" = hu 2565 2875 3080
Ap= g Ry 15575 20403.75 25247
i=1

155
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‘TOTAL VOLUME AND MASS OF THE MODEL (without weights)

() (xg)
15T deck (bottom) 7. 1064 7.20
219 geck 5.4304 5.56
379 geck 4.6104 4.6
4%h deck (top) 3.8016 3.66
15% web (bottom) 4.9320 5.01
214 b 4212 4.28
379 web (top) 3.528 3.59
bottom buoyancy layer 89.0728 18.86
middle buoyancy layer 76.3481 16.17
top buoyancy layer 1 16.17
subtotals 275.44 1 85.37 kg

0.275 m3

Adding on for additional materials (ie. plexiglass, plastic
reinforcing, wood)

caps 4.11
harbour 10.0
other 16.5

Total Volume = 0.30 m3
Total mass = 116.0 kg

The model was weighed down such that the waterline was
halfway up the second bhuoyancy layer. Steel bars were
used for weights; total = 34 kgs (75 lbs)

VOLUME OF SUBMERGED PORTION ;

bottom layer of buoyancy cells 89.0728 1
50% of middle layer of buoyancy cells 38.175 1
72.9% of bottom deck 3.595 1
bottenm deck 7.1064 1
subtotal 137.951
plastic reinforcing 25001
harbour entrance reinforcing 10.01

Total submerged volume & 150 1
TOTAL MASS OF THE MODEL WITH WEIGHTS

Mass of the structure with weights = 150 kg
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CENTER OF GRAVITY OF THE MODEL WITH w.lIGHTS

Grouping weights =2s shown;

RO 3

~ QW2

TABLE A4

wt. dist.|moment | dist.
DESCRIPTION from from

(kg) |bottom| £ x 4| c.g.

(cm) (Nm) (cm)
GROUP 1
2 decks 7.2 +5.56 70.8 4 27.8 [-5.76
1 web 5.01
2 layers of tubes 18.86
+16.17
harbour etc. 15
caps 3
GROUP 2
1 layer tubes 16.17 17.4 10.4 | 17.75 0.64
caps 1.2
GROUP 3
1 web 4.28 12 5.04 2.24
GROUP 4
2 decks 4.67 + 3.86 T2.1 20 23.80 |10.24
lweb 3.6
GROUP 5
plexiglass 10.5 27 27.8 |[17.24
GROUP 6
steel bars 34.0 12 40.5 2.39
TOTALS 149.1 142.7
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CENTER OF GRAVITY OF THE MODEL

’ L7 N =
c.g. =Moment . 142.7 MM . g j6cm from the bottom

force 149.1kg x 9.81m/s?

Using the waterline as the reference line...

9.76 - 5.95 = 3.8l cm = 0.0381 m

the coordinates of the center of gravity for the model are;

(0,0,+0.0381)

For the prototype they are;

(0,0,+7.62)

RADII OF GYRATION

M=m, +m +tm + r=l§
Ty mlxx% + mZxxg + "'3xx§ o

Ty = mlyyi * mzyyg * m3yy§ *

Ty = mlzzf * mzzzg * m3zZ§ *
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About Xx-X;
TABLE AS
GROUP R, R, R, R,
Mix | Y1 [Mox | Y2|M3x | Y3[Max | Ya| z | Ixx

1 6.12]|.473|9.66|.735(/1.45(1.62(9.16(.83 |.0145|16.72
2 1.75(.387(3.67(.702{0.42{1.53(2.86(.78 [.0705| 4.84
3 0.36/.387/0.76|.702/0.09|1.53/0.59|.78 [.0755| 1.01
4 1.07(.473(3.03|.735(0.26(1.62|2.03|.83 |.1655| 3.24
8 0.88{.31 (2.49/.656|0.22{1.44|1.66|.74 [.2105| 2.75
6 5.68.1 11.4|1.70 .0755132.99
7 15 .33 .1045

water|46.4 73.2 11.0 69.4

About y-y;

TABLE A6
GROUP R, R, R, R, R,
My | X1 [myy X3|m3y X3|mgy | X4|msy Xg

1 6.15|1.22(6.52|.375(9.37|.565(1.14|.897{3.22|0.78
2 1.73(1.21(2.44].410(2.94|.493(0.36(.793]1.23.698
3 0.36/1.2110.51|.41010.61|.493/0.07/.793|.250.698
4 1.05(1.21)2.04.450|2.01{.445|0.25(.74 [1.06|.665
5 |0.86{1.21]|1.67(.450|1.65].445|0.20(.74 |.870].665
6 5.68(1.8 11.4)0.90
b} 15 .70




TABLE A7
GROUP z Iyy
1 .0145 15.99
2 .0705 4.51
3 .0755 0.93
4 .1655 3.13
S .2105 2.65
6 .0755 27.71
7 .1045 3.76
EXS
About z-z;
using TABLE A5 and;
TABLE A8
GROUP Xy X, X, Xy I
zz
1 1.223 0.19 0.8967 0.78 32.96
2 1.207 0.21 0.7933 0.6975 9.16
3 1.207 0.21 0.7933 0.6975 2.16
4 1.21 0.24 0.74 0.665 5.84
5 1.21 0.24 0.74 0.665 4.8
1.80 0.an 60.49
1 0.70 4.49
Tl
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RADII OF GYRATION OF MODEL WITHOUT WATER ENTRAPPED

I, = 2(62.45) = 124.9 I,, = 2(58.68) = 117.36

M = 150 kg

v =fxx = 124.9 ra= Ly = 117.36
M 150 WM T1s0

Ty= 0-91m Tyy™ 0.88 m

I, = 2(119.9) = 239.8

zz
I
r: = _"zz = 239.8
B 150
T, 1.26
model prototype
Tix 0.91 182
. 7
ryy 0.88 176
1.26 252
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CENTER OF BUOYANCY

Taking mcments about the bottcm of the submerged portion;

wt.of group 1 = 70.8 kg moment= 27.78 Nm

subtracting half a layer of tubes above the waterline;

-5.12 Nm

and subtracting 27.1% of the web above the waterline;

-1.15 Nm

moment = 27.78 -5.12 -1.15 = 21.5 Nm

Total mass of submerged part is (70.8 - 8.7 - 0.976)kg
= 61.1 kg

= 0.036 m = 3.6 cm from bottom

21.5 Nm
61.1kg * 9.81m/s?

z-coordinate is;

-5.95 + 3.6 = -2.35 cm  (model)

2,35 oBl (200) = -4.7 m (prototype)
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NATURAL FREQUENCY

spring stiffness' # 4.6 kg/m = 45.1 N/m

#3 9.2 kg/m = 90.3 N/m

Upe= VB (1+0.5)150 kg
= 225 kg
45.1
wya= ¥ 3355 = 0.448 rads/sec  (model)

= 0.0317 rads/sec (prototype)
f,,= 0.0713 Hz (model)

= 0.005 Hz (prototype)

Wy ,= = 0.633 rads/sec (model

= 0.0448 rads/sec (prototype)

£,,= 0.101 Hz (model)

0.007 Hz (prototype)

WATER PLANE AREA

The waterline is halfway up the second layer of buoyancy
tubes. So the ratio of cross sectional area to total area
is; 4.5

85 = 0.529
Thus, the buoyancy tubes take up approximately 52.9% of
the water plane area. The linears also break the surface,
so say approximately 55% of the total area is actually

water plane area.
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CALCULATIONS WITH WATER ENTRAPPED IN THE MODEL

The volume estimated for the prototype of the submerged

portion with water entrapped is 2,800,000 m3.

In mcdel

scale this is 0.35 m?® which corresponds to 350 kg. The

model weighs 150 kg so the entrapped water weighs 200 kg.

The volume of the submerged portion of the body is 150 1

and the volume of entrapBed water is 200 1.

ratio of body to water volume is:

Volume of body
Volume of water

volume of body
Volume of water

150

200

-
1
o

w|
o
o

.75

.43

Therefore the



CENTER OF GRAVITY WITH WATER ENTRAPPED

Taking the centroid of mass of water at -4.0 cm on the

z-axis, the moment about the bottom is;

Moment = £ x d = (200kg) (9.81m/s?) (0.02m) = 39.24 Nm
The total moment is;

143.3 + 39.24 = 182.5 Nm

The z centroid is located at 5.95 from the bottom so;

5.32 - 5.35 = -0.68 cm (model)

-0.0063m x (200) = -1.26 m (prototype)
CENTER OF BUOYANCY WITH WATER ENTRAPPED

Moment = 21.5 + 39.24 = 60.74 Nm

M 60.74 Nm
£ ” T200kg + 61.1kg) (9.81m/s7)

= 0.0237 m from bottom

z-coordinate is;
2.37 cm - 5.95 cm = -3.58 cm = -0.0358 m (model)

-0.0358m(200) = -7.16 m (prototype)
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NATURAL FREQUENCY WITH WATER ENTRAPPED

#2 = 4.8 kg/m = 45.1 N/m
#3 = 9.2 kg/m = 90.3 N/m

K
w, =1 3 M, = (1+0.5) (150kg + 200kg)
5 M, b Xg
oy = ¥ 321 = 0.293 rads/sec (mogel)
= 0.0207 rads/sec (prototype)
f,, = 0.047 Hz (model)
= 0.003 Hz (prototype)
oy = 4 23:2 = 0.414 rads/sec (model)
= 0.0.0293 rads/sec (prototype)
f,, = 0.066 Hz (model)
= 0.005 Hz (prototype)
RADII OF GYRATION WITH WATER ENTRAPPED
TABLE A9
M x Y z Ixx Iyy Izz
from A5
46.4 1.223 0.473 0.03 10.42 69.44 79.78
73.2 0.19 0.735 0.03 39.61 2.71 42.19
11.0 06.8967| 1.623 0.03 28.99 8.85 37.82
69.4 0.78 0.83 0.03 47.87 42.29 90.03
124.9 117.36 (233.62
TOTALS [251.79 |240.65 |483.62




251.79 = 0.72 m? r,

350 Lee
240.65 = 0.69 m? oS
350 vy
489.62 = 1.40 m? : S
350 4%

model prototype
K% 0.85m 170 m
K 0.83 m 166 m
£ 1.18 m 236 m

2z



APPENDIX C

POWER SPECTRA OF WAVE AMPLITUDE AND MOORING FORCE
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APPENDIX D

PROGRAM LISTINGS: DPORT2.FOR AND OUTPORT2.FOR
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DATA NSP/115/

DIMENSION PAN(115, 3) UN(115,3),UNN(115,3),SUR(115),
DG11R(115, 115) 05111(115 115) DGI12R(115, )15),DGlZl(llS,115),
6115(115,115),6111(115.115),GlZR(llS,llS),GlZ!(115,115),

3 PHITR(115), ru:vx('lS) PHIBR(115),PH181(115),QDF1(230),

3 QDF2(230),PT(100),

4 POHBSIIJI) 4), P01246(230 4),0135(230,4),0246(230,4),

5 AM(6,6), DEHP[G 6),RM(6,6 ),C(6 6), FOR(!Z),AHP (12)

DIMENSION DA(230.230),DN(230,4),TTUNHIS,G).PO]R(HSI,PBlX(llS),

1 PO2R(115),P021(115),TPR(115,6),TPI(115,6),
VA(3),vB(3),vC(3),VD(3),VE(3),VF(3)

COMMON /C2/ GRAV,DEN,FREQ,DEPTH,WNUM,ANU, HEAD
COMMON /C3/ VOL,XB,YB,2B,AREA,AREAWP,XG, YG,2G
COMMON /CC/ RXU RISS 6

COMMON /SER/ UK(NON GAHHA(HWU) ALPHA

DATA GRAV,DEN/9. 5.1000 0/

DATA XG.YG.ZG/O-0,0.0y-l.Zs/

DATA RI44,RI55,R166/170.0,166.0,236.0/

DATA DEPTH,HEAD/500.0,240.0/

CALL ASSIGN(1,'PRNT1_2.DAT’)

CALL ASSIGN(2,’COM_27DAT')

OPEN(UNIT=4, FILE='DEBUGL.OUT' ,STATUS='NEW')
HEAD=HEAD/180.0+3.14159

CALL CHART(NSP,PAN,UN,UNN, SUR,C,RM)
PT(1)=10.5

PT(9)=14.1
PT(10
PT(11
PT(12
PT(13
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PT(34)=29.0

PT(35)=30.0

PT(36)=30.5

PT(37)=31.5

PT(38)=32.0

PT(39)=32.5

PT(40)=33.5

CALL_PRNT1(NSP,PAN,UN,UNN, SUR,C,RN)

DO 17 KI=1,40

TT=PT(KI)

WRITE(4,*)’PERIOD=',TT

WNUM=4.043,14159+3.14159/( GRAVTT*TT)

CALL LINK1(NSP,PAN,UN,SUR,DG11R,DG111,DG12R,DG121,G11R,G111,

1 G12R,Gl121)

CALL PHITB(NSP,PAN,UN,PHITR,PHI7I,PHIBR,PHIBI)

CALL GINVER(NSP,2%NSP,UN,UNN,PHITR,PHI7I,PHIBR,PHIBI DA, DN,

1 DG1 1R.DGlll DGIZR DG)2I 0135,0245

CALL POTEN(NSP,2*NSP, GllR Glll G12R,G12I,0135,Q246,DA,
POT135, POT246)

CALL AHASS(NSP,Z‘NSP,UN,UNN,SUR,POTIBS,POTNG,TPR.TPX +TTUN,

)

1 AM, DE
CALL EXFOR(NGP,2*NSP,PAN,UN,UNN,SUR,POT135,POT246,TTUN, POIR,
b PO11,PO2R,P021,FOR)
CALL AMPL(AM,DEMP,RM,C,FOR,ANP)
CALL QTOTAL(NSP,2+NSP,Q135,Q246,AMP,QDF1,QDF2)
CALL DRIFT(NSP,2*NSP,PAN,SUR,QDF1, QDPZ DRIFX,DRIFY,DRMZ)
HI’(!TE {2)PAN, SUR, FOR,AMP, AM, DEMP, C,RM,

GRAV, DEN, FREQ, DEPTH, WNUM, ANU, HEAD, DRIFX, DRIFY, DRHZ
CONTINUE
CLOSE(UNIT=4)
STOP
END

SUBROUTINE CHART(NSP,PAN,UN,UNN, SUR,C,RM)

C...COMPUTE THE CHARACTERISTICS OF THE FLOATING BODY
C...OUTPUT:PAN,UN,UNN,SUR,C; ALSO VOL,XB,AREA,AREAWP IN /C3/

DlHENSION PAN(NSP,3),UN(NSP,3), UN’N(NSP 3) SUR(NSP),
C(6,6),RH(6,6)

BXHENS!ON VA(3),vB(3),vC(3),VD(3),VE(3),VF(3)

COMMON /C2/ GRAV,DEN, FREQ,DEPTH, WNUM,ANU, HEAD

COMMON /C3/ VOL,XB,YB,2B,AREA, AREAWP,XG, YG, 2G

COMMON /CC/ RI144,RI55,RI66

CALL ASSIGN(5,'DELTAl_2.DAT')

N=NSP

DO 10 J=1,N

READ(S.')X ¥,2,UN1,UN2,UN3,S
TYPE*,X,Y,2,UN1,UN2,UN3,S,J

CONTINUE
XB=0.0
YB=0.0
ZB=0.0
AREA=0.0



AREAWP=0.0

VA(1)=PAN(I,1)
VA(2)=PAN(I,2)
VA(3)=PAN(I,3)
UNN(I,1)=VA(2)*UN(I,3)-VA(3)*UN(I,2)
UNN(I,2)=VA(3)*UN(I,1)-VA(1)*UN(I,3)
UNN(I,3)=VA(1)%UN(I,2)-VA(2)*UN(I,1)
VB(1)=UN(I,1)
VB(2)=UN(I,2)
VB(3)=UN(I,3)
CALL VDOT(VA,VB, TEMP1)
VOL=VOL+TEMPL*SUR(T)
XB=XB+VA(1)*VA(1)*VB(1)*SUR(I)
2B=2B+VA(3)*VA(3)*VB(3)+SUR(T)
AREA=AREA+SUR(1)
TEMP=VB(3)*SUR(I)
AREAWP=( AREAWP+TEMP )
TEMP2~TEMP2+VA(1)*TEMP
TEMP3=TEMP3+VA(1)*VA(1)*TEMP
TEMP4=TEMP4+VA(2)*VA(2)*TEMP
40  CONTINUE
DO 45 1x1,6
DO 45 J=1,6
C(1,J)=0.0
45  CONTINUE
VOL=2.0%(VOL/3.0)
(4 VOL=1200000.0
TYPE*, 'VOLUME' , VOL
XB=XB/VOL
2B=2B/VOL
XB=0. 0
2B=-4.
ARZA-Z mAREA
TYPE*, 'AREA’ ,AREA
€ AREAWP=-2. O'AREAWP‘O 55
AREAWP=-2. 0 *AREAWP
TYPE*, 'nnwp' AREAWP
TEMP=DEN*GRA
C(l 1)-1804000
=TEMP*AREAWP
=0.55*(TEMP*2.0%TEMP2)
C(S 3)=C(3,5)
EMP* (VOL*(2B-2G)~2,0*TEMP4*0.55)
EMP#* (VOL*(2B-2G)-2.0%TEMP3#0.55)
C(3, 3) =TEMP*AREAWP
C(3,5)=(TEMP*2.,0*TEMP2)
C{5,3)=C(3,5
C(4,4)=TEMP*(VOL*(2B-2G)-2.0*TEMP4)
C(5,5)=TEMP*(VOL*(2B~2G)-2. 04TEMP3)
RM(1,1)=DEN*VOL
RM(2,2)=DEN*VOL
RM(3,3)=DEN*VOL
RM(4,4)=DEN*VOL#RI44*RI144 .
RM(5,5)=DEN*VOL*RI55*RI55
RM(6,6)=DEN*VOL*RI6E*RI66

nn

nnnnan
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RM(1,5)=DEN*VOL*2G
RM(5,1)=RM(1,5)
RM(2,4)=-DEN*VOL*2G
RM(4,2)=RM(2,4)
RETURN

END

SUBROUTINE PRNT1(NSP,PAN,UN,UNN,SUR,C,RM)

DIMENSION PAN(NSP,3),UN(NSP,3),UNN(NSP,3),SUR(NSP),
1 C(6,6),RM(6,6)

COMMON /C2/ GRAV,DEN, FREQ,DEPTH, WNUM, ANU, HEAD
COMMON /C3/ VOL,XB,YB,ZB,AREA,AREAWP,XG,YG,2G

WRITE(1,¢)'DATA FOR TRIANGULAR MODEL'
WRITE(1,*)’
WRITE(1,*)’VOL= ‘,VOL
WRITE(1,*)'AREA= ', AREA
WRITE(1,*)’CENTROID XB,YB,2B : ', XB,YB,2
WRITE(1,*)'CENTER OF GRAVITY XG,YG,ZG ".xs ¥6,26
WRITE(1,*%)'AREAWP= ', AREAWP
WRITE(1,#)'C(3,3)=",C(3,3)
WRITE (1,%) 'PAN(I,K)’
DO 40 I=1,NSP

WRITE (1,100) I,(PAN(I,K),K=1,3)
CONTINUE
WRITE (1,%) 'UN(I,K)’
DO 50 I=1,NSP

WRITE (1,500) I,(UN(I,K),K=1,3)

CONTINUE
WRITE (1, -) TUNN(I,K)’
DO 51 I=1,
WRITE (1, 500) 1,(UNN(I,K), K=1,3)
CONTINUE

WRITE (1,*) 'SUR(I)’'
DO 60 I=1,NSP
WRITE (1,600) I,SUR(T)

CONTINUE
FORMAT(1X,'(’,I3,
FORMAT(1X,'(’,13,)
FORMAT(1X,’(’,13,7):",F13.6)
FORMAT(1X,6E14.5)

WRITE(1, ')'RESTORING COEFFICIENT®

DO 21 I=l,

HIITB(I 700) (€(1,3),9=1,6)

CONTINI

NR!TE(I,')'

WRITE(L,*)'REAL MASS MATRIX'

DO 22 I=1,6

WRITE(1, 700) (RM(1,0),J0=1,6)

CONTINUE

CALL CLOSE (1)

RETURN

END

SUBROUTINE LINKI(N,PAN,UN,SUR,DG11R,DG111,DG12R,DG12I,
G11R,G111,G12R,G121

)
C...THIS PROGRAM COMPUTES THE ELEMENTS OF GREEN’'S FUNCTION MATRIX
C...INPUT:N, PAN,UN, SUR



C...OUTPUT:DG11R,DG11I,DGI12R,DG121,G11R,G111,G12R,G121
DIMENSION PAN(N,3),UN(N,3),SUR(N)
DIMEN_.ON DG11R(N,N),DG11I(N,N),DGI2R(N,N), DGI2I(N,N),
GL1R(N,N),GI11I(N,N),G12R(N,N),G12I(N,N)

DIMENSION G(2),DGX(2),DGY(2),DGZ1(2),DG22(2), VA(S) VB(3),vC(3)
COMMON /C2/ GRAV,DEN,FREQ,DEPTH,WNUM,ANU, HEAI
COMMON /SER/ UI(IOOU) GAMMA(1000) ,ALPHA

ANU=WNUM ¢ TANH (WNUM*DEPTH)

FREQ=SQRT(GRAV*ANU)

CALL ROOTUK(1000)

ALPHA=6.283185/(4.04DEPTH*EXP(~2. 0*WNUM#DEPTH ) +ANU*
((1.04EXP(~-2.0*WNUM*DEPTH) ) /WNUM)*+2.0)

DO 10 I=1,N

VA(1)=PAN(I,1)

VA(2)=PAN(1,2)

VA(3)=PAN(I,3)

DO 20 J=I,N

VB(1)=PAN(J,1)

VB(2)=PAN(J,2)

VB(3)=PAN(J,3)

CALL VSUB(VA,VB, vc)

IF(1 .EQ. J)GO T

l-SORT(VC(l)'VC(I)OVCll)'VC(Z))

IF(R1 .EQ. 0.0)GO TO 11

TEMP=2.0+10. O'DEPTB/(J 1416'51)

IF(TEMP .GT. 1000.)GO 70 1

NTERM=TEMP

CALL GS2(VA,VB,G,DGX,DGY,DGZ1,DGZ2,NTERM)
GO TO
1 UMAX=-10.0/(VA(3)+VB(3))

CALL GI2(VA,VB,G,DGX,DGY,DGZ1,DGZ2, UMAX)
12 CONTINUE
GlIR(I,J)=G(1)
Gl1lI(I1,J)=G(2)
DGX!R(I J)=DGX(1)*UN(I,1)+DGY¥(1)*UN(I,2)+(DG21(1)+DG22(1))
*UI 3

DGUI(I J)-DGX(Z)'UN(I 1)4DGY(2) *UN(1,2)+(DG21(2)+DG22(2))

IF (1 .EQ. J)GO TO 20

GlIR(J,I)=G(1)

Glll(J,l)-G(Z)

DG11R(J,1)==DGX(1)*UN(J,1)-DGY(1)*UN(J,2)+(DGZ1(1)-DGz2(1))
*

UN(J,3)
DG111(J,I)=-DGX(2)*UN(J,1)-DGY(2)*UN(J,2)+(DG21(2)~-DG22(2))
1 *UN(J,3)

20 CONTINUE
DO 30 J=I,N
VB(1)=PAN(J,1)

CALL VSUB(VA,VB,VC

Rl= SQRT(VC(I)‘vc(l)WC(Z)'VC(Z))
TEMP=2.0+10.0*DEPTH/(3.1416*R1)
IF(TEMP .GT. 1000.) GO TO 31 .
NTERM=TEMP

NSER=NSER+1
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CALL GS2(VA,V8,G,DGX,DGY,DGZ1,DG22,NTERM)
GO TO 32

31 UMAX=-10.0/(VA(3)+VB(3))
NINTEG=NINTEG+1

CALL GI2(VA,VB,G,DGX,DGY,DGZ1,DG22, UMAX)
32 CONTINUE
GI12R(I,J)=G(1)
G121(1,J)=G(2)
DG)ZR“ J)-DGX(I)'UN(X 1)+DGY(1)*UN(T,2)+(DGZ1(1)+DGZ2(1))

,3)
DGIZI(! J)lDGX(Zl‘UN(X 1)+DGY(2)*UN(1,2)+(DG2Z1(2)+DGZ2(2))
1

IF(1 .EQ. J)GO TO 30

G12R(J,I)=G(1)

G121(J,1)=G(2)

DG12R(J, I)=-DGX(1)*UN(J,1)+DGY(1)*UN(J,2)+(DG21(1)-DG22(1))
»

UN(J,3)
DG12I(J,I)=-DGX(2)*UN(J,1)+DGY(2)*UN(J,2)+(DGZ1(2)-DGz2(2))
1 AUN(J,3)

30 CONTINUE

10 CONTINUE

C...COMBINE DG1l AND DG12 TO BE DG1l FOR DG135 MODE,

C...AND DG12 FOR DG246 MODE

I=1,N

DO 40 3=1,N
TEMP1=DG11R(I,J)+DG12R(1,J)
TEMP2=DG11I(I,J)+DG121(1,J)
TEMP3=DG11R(I,J)-DG12R(I,J)
TEMP4=DG111(1,J)-DG121(1,J)
DG11R(I,J)=TEMP1#SUR(J)
DG111(I,J)=TEMP2#SUR(J)

)=TEMP3*SUR(J)

=TEMP4*SUR(J)

40
C...ADDING THE DXAGONAL TERM OF DG MATRIX
DO 50 I=1
DG11R(I, I)-DG!!R(X 1)-6.28318
DG12R(I,I)=DG12R(I,I)-6.28318
50  CONTINUE
C...COHBINE Gl1 AND G12 TO BE G11 FOR G135 MODE,AND G12 FOR G246 MODE
=1,N

DO 60 J=1
T!HPl-GllRll J)+G12R(1,J)
TEMP2=G11I(1,J)+G121(I,J)
TEMP3=G11R(I,J)-G12R(1,J)
TEMP4=G111(1,J)-G121(1,J)
GLIR(I,J)=TEMP1*SUR(J)
G11I(I,J)=TEMP2*SUR(J)
GL2R(I,J)=TENP3*SUR(J)
G121(1,3)=TEMP4*SUR(J)

60  CONTINUE

C...ADDING THE DIAGDNAL TERM OF G MATRIX
DO 70 T
TEMP=2. D‘SORT(SUR(I)'B 14159)
GI1R(I,I)=G11R(I,I)+TENP
G12R(I,1)=G12R(I,I)+TENP

70 CONTINUE
RETURN



END

SUBROUTINE PHI78(N,PAN,UN,PHITR,PHI7I,PHIBR,PHIBI)
C...THIS PROGRAM CALCULATE THE PHI7:SYMMETRIC PART,PHI8:ANTI-SYM PART
DIMENSION PAN(N,3),UN(N,3)
DIMENSION PHI7R(N),PHITI(N),PHI8R(N),PHIBI(N)
COMMON /C2/ GRAV,DEN, FREQ, DEPTH,WNUM,ANU, HEAD

APHI=GRAV/(FREQ*(1.0+EXP(~2.0*WNUM*DEPTH) ) )
AK1=WNUM*COS (HEAD)

AK2=WNUM*STN(HEAD)

DO 10 I=1,N

V1=PAN(I,1)

V2=PAN(I,2)

V3=PAN(I,3)

XK1=V1*AK1

YK2=V2*AK2

ZH=V3+DEPTH

XN=UN(I,1)

YN=UN(I,2)

ZN=UN(T,3)

TEMPA=APHI*EXP (WNUM*V3)#* (1. 0+EXP(=2.0*WNUM*ZH) )
TEMPB=APHI*EXP(WNUM*V3)*(1.0-EXP(~2.0*WNUM*ZH) }
AKNX=TEMPA*AK1#*XN

ARNY=TEMPA*AK2*YN

ARNZ=TEMPB *WNUN*ZN

SX1=SIN(XK1)

PHITR(I)=-(~-AKNX#*CY2*SX1-AKNY*SY2*CX1+ARNZ*CY2+*CX1)

PHITI(I)=~( AKNX*CY2*CX1~AKNY*SY2*SX1+ARKNZ*CY2+*SX1)

PHIBR(I)=~{-AKNX*SY2#CX1-ARKNY*CY2*SX1-ARNZ*SY2+SX1)

PHIBI(I)=~(-AKNX*SY2*SX1+AKNY*CY2*CX1+AKNZ*SY2#CX1)
10 CONTINUE

RETURN

END

SUBROUTINE GINVER(N,NN,UN,UNN,PHITR,PHI7I, PHIBR,PHIBI,DA,DN,
1 DG135R,DG1351,DG246R,DG2461,0Q135,0246)
C...THIS PROGRAM COMPUTES THE INVERSE OF MATRIX DG AND SOURCE Q
C...INPUT:N,NN,UN,UNN, PHI,DG135,DG246

C...OUTPUT:Q135,Q246

C...DA AND DN IS FOR TEMPERARY USE,NN=2#N=2*NSP

an:NsroN UN(N 3) ,UNN(N,3),PHI7R(N) ,PHITI(N), PHIBR(N),PHIBI(N),
DG135R(N,N),DGL351(N,N),DG246R(N, N}, DG2461 (N, N),
DA(NN,NN) ,DN(NN, 4
D!HENS]DN Q135(NN,4),Q246(NN,4)

.FORKATION or THE REAL MATRIX DA*Q=UN FOR THE SYMMETRIC P/ T
DO 10 I=1,
DN(I, 1)-UN(X 1)
DN(I,2)=UN(I,3)
DN(1,3)=UNN(1,2)
DN(I,4)=PHI7R(I)
DN(I+N,1)=0.0
DN(I+N,2)=0.0
DN(I+N,3)=0.0
DN(I+N,4)=PHI7I(I)



DO 10 J=1,
DA(I,J)=DG135R(1,J)
DA(I+N,J)=+DG1351(1,J)
DA(I,J+N)=-DG1351(1,J)
DA(I+N,J+N)=DG135R(1,J)
CONTINUE

C...SOLVING Q BY INVERSION A*X=R, A:(M*M),R:(M*N) X(M*N) STORED IN R
CALL INV(DN,DA,NN,4)
DO 20 1I-1, NN
DO 20 J=1,
Q135(r1, J)-DN(I J)

20 CONTINUE

C...SOLVING Q246 (ANTISYMMETRIC PART)BY THE SIMILAR PROCESS AS ABOVE
DO 30 I=1,N
DN(I,1)=UN(I,2)
DN(I,2)=UNN(I,1)
DN(I,3)=UNN(I,3)
DN(1,4)=PHIBR(I)
DN(I+N,1)=0.0
DN(I+N,2)=0.0
DN(I+N,3)=0.0
DN(I+N,4)=PHEIBI(I)
DO 30 J=1,N
DA(1,J)=DG246R(1,J)
DA(T+N,J)=+DG2461(1,J;
DA(1,J4N)=-DG2461(1,3)
DA(I4N,J+N)=DG246R(I,J)

30 CONTINUE
CALL INV(DN,DA,NN,4)
DO 40 I=1,N!

DO 40 J=1,4

Q246(1,J)=DN(I,J)
40  CONTINUE

RETURN

END

SUBROUTINE POTEN(N,NN,G135R,G1351,G246R,G2461,Q135,0246,DA
1 POT135,20T246)

C...COMPUTE THE POTENTIAL

Cs

c

C...DA IS FOR TEMPERARY USE
DIMENSION G135R(N,N),G135I(N,N),G2d46R(N,N),G246I(N,N),Q135(NN,4),
1 Q246 (NN, 4), DA(NN,NN

DIMENSION POT135(NN,4),POT246(NN,4)

DO 10 I=1,N
DO 10 J=1,N
DA(I,J)=G135R(I,J)
DA(I+N,J)= G135I(I,J)
DA(I,J+N)=-G1351(1,J)
DA(I+N,J+N)=G135R(T,J)

10  CONTINUE
CALL npnn(nn 0135,POT135,NN, NN, 4)
DO 20 I=1
Do 20
nA(x,J)-desn(x,J)
DA(I+N,J)= G2461(1,J)
DA(I,J+N)=-G2461(1,3)
DA(I+N,J+N)=G246R(I,J)
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20 CONTINUE
CALL MPRD(DA,Q246,POT246 ,NN,NN,4)
RETURN
END

SUBROUTINE AMASS(N,NN,UN,UNN,SUR, POT135,POT246, TPR, TP, TTUN
AM,DEMP)

. .COMPUTE THE ADDED MASS AND DEMPING COEFFICIENT

. INPUT:N,NN, UN, UNN, SUR, POT135, POT246

.OUTPUT:AH, DEMP

.TPR,TPI,TTUN IS FOR TEMPERARY USE
DIMENSION UN(N,3),UNN(N,3),SUR(N),POT135(NN,4), POT246(NN,4),
1 TPR(N,6),TPI(N,6), TTUN(N,6) ,AM(6,6) ,DEMP(6,6)

COMMON /C2/ GRAV,DEN,FREQ,DEPTH,WNUM,ANU, HEAD

nnoa

DO 5 I=1,N
DO 5 K=1,3
TTUN(I,K)=UN(I,K)
TTUN(I,K+3)=UNN(T,K)
5 CONTINUE
DO 10 J=1,N
JI=J+N
DO 10 K=1,3
TPR(J,24K-1)=POT135(J,K)
TPR(J,2*K) =POT246(J,K)
TPI(J,24K-1)=POT135(J3J,K)
TPI(J,2*K) =POT246(JJ,K)
10 CONTINUE
DO 20 J=1,5,2

SlR'SlROTFR( 1,J)*TTUN(I,K)*SUR(I)
S1I=S1I+TPI(I,J)*TTUN(I,K)*SUR(I)
S2R=S2R+TPR(I :JJ ) ‘TTUN(X +RK)*SUR(I)
S2I=S2I+TPI(I,JJ)*TTUN(I,KK)*SUR(I)
25 CONTINUE
AM(J,K) =-2,0#DEN*S1R
AM(JJ,KR) =-2.0*DEN*S2R
DEMP(J,K) =-2.0*DEN*FREQ*S1I
DEMP(JJ,KR)=-2.0*DEN*FREQ*S521
20 CONTINUE
RETURN
END

SUBROUTINE EXFOR(N,NN,PAN,UN,UNN,SUR,POT135,POT246,TTUN,POLR,PO1I,
1 02R, POZI FOR)

C...COMPUTE THE EXCITING FORC

C...INPUT:N,UN,UNN, SUR, POT135, POT246

C...OUTPUT: FOR

C...TTUN,PO1R,P01I,PO2R,P021 1S FOR TEMPERARY USE
DIMENSION PAN(N,3),UN(N,3),UNN(N,3),5UR(N),POT135(NN,d),POT246(NN,4),
1 TTUN(N,6),PO1R(N),PO1I{N),PO2R(N),PO2I(N),FOR(12)

COMMON /C2/ GRAV,DEN,FREQ,DEPTH,WNUM, ANU, HEAD



DO 5 I=1,N

DO 5 Kel1,3

TTUN(I,K)=UN(I,K)
TTUN(I,K+3)=UNN(I,K)

CONTINUE

DO 10 I=1,5,2

I1-1+1

S7R=0.0

§71=0.0

SB8R=0.0

SB8I=0.0

DO 20 J=1,N

JI=J4N

STR=STR+POT135(J,4) *TTUN(J,I)*SUR(J)
§71=S71+POT135(JJ,4)*TTUN(J,I)*SUR(J)
SBR=SBR+POT246(J,4) *TTUN(J,II1)4SUR(J)
$B1=581+POT246(JJ,4)*TTUN(J, IT)*SUR(J)
CONTINUE

TEMP=2.0#FREQ*DEN

FOR(I) =TEMP*STR

FOR(II)=TEMP*S8R

FOR(I+6) =TEMP*S71

FOR(I1+6)=TEMP*S81

CONTINUE

APHI=GRAV/(FREQ# (1.0+EXP(-2.0#WNUM*DEPTH) ) )
AR1=HNUM*COS (HEAD)

AK2=WNUM*SIN(HEAD)

DO 30 J=1,N

X=PAN(J,1)

Y=PAN(J,2)

2=PAN(J,3)
TEMP1=APHI#EXP(WNUM*Z)* (1. 0+EXP(-2.0+WNUM* (Z+DEPTH)) ) *SUR(J)
TEMP2=AK1*X+AK2+Y

TEMP3=AK1*X-AK2+Y
POLR(J)=TEMP1*COS(TEMP2)
PO1I(J)=TEMPL*SIN(TEMP2)
PO2R(J)=TEMP1#+COS ( TEMP3)
PO2I(J)=TEMP1*SIN(TEMP3)

CONTINUE

DO 40 1=1,6

II=146

TB=1.0

IF( (1/2)*2 .EQ. I) TB=-1.0

DO 50 J=1,N
SR=SR+PO1R(J)*TTUN(J,I)+TB*PO2R(J)*TTUN(J, I)
SI=SI+PO1I(J)*TTUN(J,I)+TB*P02I(J)*TTUN(J,I)
CONTINUE

FOR(I)=FOR(I)+FREQ*DEN*SR
FOR(I1)=FOR(I1)+FREQ*DEN*SI

TEMP=FOR(1)

FOR(I)=+FOR(II)

FOR(II)=-TEMP

CONTINUE

RETURN

END

SUBROUTINE AMPL(AM,DEMP,RM,C,FOR AMP)

C...COMPUTE THE RESPONSE AMPLITUDE



C...INPUT:AM,DEMP,RN,C,FOR
C...OUTPUT:AMP
C...DC AND DF IS FOR TEMPERARY US
DIMENSION AM(6,6),DEMP(6,6), nn(s 6),C(6,6),FOR(12) ,AMP(12),
DC(12,12),DF(12)
COMMON /C2/ GRAV,DEN, FREQ,DEPTH,WNUM, ANU, HEAD

DO 10 I=1,6
II=146
DF(I)=FOR(I)
DF(II)=FOR(II)
DO 10 J=1,6
JJ=J+6
TEMPl=-FREQ*FREQ* (AM(I,J)+RM(I,J))+C(I,J)
TEMP2=-FREQ*DEMP(I,J)
DC(1,J)= TEMPL
DC(I1,J3)=TEMPL
DC(I1,J)=+TEMP2
DC(I,J))=-TEMP2
10 CONTINUE
CALL INV(DF,DC,12,1)
DO 20 I=1,12
IF ((I.Ef ).OR.(I.EQ.7)) GOTO 15

IF ((I1.Ef ).OR.(I.EQ.9)) GOTO 15
IF ((I.EQ. 5) OR.(I.EQ.11)) GOTO 15
AMP(1)=0.0

GOTO 2

15 AMP(I)=DF(I)
20 CONTINUE
RETURN
END

SUBROUTINE GI2(VX,VXX,G,DGX,DGY,DGZ1,DGZ2,UMAX)
EXTERNAL FGl1,FGE,FGX1,FGXE,FGZ11,FG21E,FG221,FGZ2E
DIMENSION VX(3),VXX(3),G(2),DGX(2),DGY(2),DGz1(2),DG22(2)
COMMON /C2/ GRAV,DEN, FREQ,DEPTH,WNUM, ANU, HEAD
COMMON /SER/ UK(1000),GAMMA(1000),ALPHA
COMMON /Gl/ ZH,ZZH,R1l
«.THIS PROGRAM CALCULATE THE GREEN'S FUNCTION BY INTEGAL FORM
+..F1 IS THE INTEGRAND; FE IS THE SYMMETRIC PART OF THE INTEGRAND
F21(X)=X#*(EXP(X*(2H+22H-2.0%DEPTH) ) -EXP(-X*(2H+22H+2.0*DEPTH) ))
FZ2(X)=X#*(EXP(-X*(22ZH-ZH+2.0*DEPTH) ) ~EXP(-X*(2ZH-2ZH+2.0#DEPTH)))
TEMP1=VX(1)=-VXX(1)
TEMP2=VX(2)-VXX(2)
TEMP3=VX(3)-VXX(3)
I\X-SQRT(TEHH'TEHPIOTEHPZ'TEHP2)
IF (Rl .LE. 1.0E-6) R
TEMP4=R1*WNUM
2ZH=VX(3)+DEPTH
ZZH=VXX(3)+DEPTH
R-SORT(RURl#TEMPS'TEHP.?l
IF (R .LE. 1.0E-6) R
R2H-SQNT(R1‘R1+(ZH+ZZH)'(ZH+ZZH))
BJO=BJ(TEMP4,0)
BJ1=BJ(TEMP4,1)
EZH=EXP(-2.04WNUM*ZH)
EZZH=EXP(- 2 0*WNUM*ZZH)

IF(R .NE. 0.0)G(1)=G(1)+1.0/R
G(2)=ALPHA*(1.04EZH)*(1.0+52ZH) *BJO*EXP(WNUM* (VX(3)+VXX(3)))
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DGX(1)=-1.0/R2H##3.0

IE(R .NE. 0. O)DGX(I)-DGX(l)—] 0/R*43.0

IF(Rl .EQ. 0.0) G

DGX(2)=-ALPHA* (1, OoEzH)‘(l 0+EZZH) *EXP{WNUM* (VX(3)+VXX(3)))
*BJ(TEMPA, 1) *WNUM/K1

GO TO 2

DGX(2)=-ALPHA*(1.0+E2H)*(1.0+E2Z2H) *EXP(WNUM* (VX(3)+VXX(3)))

1 *0. 5 *WNUMWNUM

DGZ1(1)=-(2ZH+2H)/R2H**3.0

DG21(2)=ALPHA#FZ1(WNUK)*BJO

DGZ2(1)=0.0

IF(R .NE. 0.0)DGZ2(1)=DGZ2(1)-(2H-22H)/R**3.0

DGZ2(2) =ALPHA*FZ2 (WNUM) *BJ0O

UINT=0.01*WNUH

CALL DG16(UINT,WNUM, FGE, SHG1)

CALL DG16(2.0*WNUM, UMAX, FG1,SNG2)

G(1)=G(1)+SMG1+SHG2+UINT*FGE(UINT)

CALL DG16(UINT,WNUM, FGXE, SMG1)

CALL DG16(2.0*WNUM, UMAX, FGX1,SHG2)

DGX(1)=DGX(1)+SMG1+SMG2+UINT*FGXE(UINT)

CALL DG16(UINT,WNUM,FG21E, SMG1)

CALL DG16(2.0#WNUK, UMAX,FGZ11,5MG2)

DGZ1(1)=DGZ1(1)+SMG1+SMG2+UINT#FGZ1E(UINT)

CALL DG16(UINT,WNUM,FGZ2E, SMG1)

CALL DG16(2.0*WNUM, UNAX, FGZ21,SHG2)

DGZ2(1)=DGZ2 (1) +SHG1+SMG2+UINT#FGZ 2E(UINT

DGY(1)=DGK(1)*TEMP2

DGY(2)=DGX(2)*TEMP2

DGX(1)=DGX(1)*TEMPL

DGX(2)=DGX(2)*TEMPL

RETURN

END

FUNCTION FG1(X)

COMMON /C2/ GRAV, DEN FREQ, DEPTH, WNUM, ANU, HEAD

COMMON /G1/ ZH,22H R1

B=1.0/( (X~ ANU)/(X+ANU) ~EXP(~2.0*X*DEPTH))
FGl~B*EXP(X*(2H+22H-2.0*DEPTH) }*(1.0+EXP(~2.0*X*2H) ) *
1 (1.04EXP(~2.0%X*2ZH) ) *BJ(X*R1,0)

RETURN

END

FUNCTION FGE(X)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH,WNUM, ANU, HEAD
COMMON /G1/ ZH,22H,R1

FGE=FGL{ X+HNUM) + FGL (~X+WNUM)

RETURN

END

FUNCTION FGX1(X)

COMMON /C2/ GRAV,DEN, FREQ,DEPTH, WNUM, ANU, HEAD
COMMON /Gl/ ZH,22H,R1

B=-1.0/( (X-ANU)/(X+ANU)~EXP(-2.0%X*DEPTH)

1 *EXP(X*(ZH422H-2.0#*DEPTH))*(1.0+4EXP(~2.0%X*ZH))*
2 (1.0+EXP(-2.0*X*22H))

IF (Rl .EQ. 0.0) GO TO 10
FGX1=B*BJ(X*R1,1)*X/R1l

RETURN 2
FGX1=B*0.5+X*X

RETURN
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END

FUNCTION FGXE(X)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH, WNUN, ANU, HEAD
COMMON /Gl/ ZH,2ZH, R.l
FGXE-FGX)(X*HNUH)OFGXH ~X+WNUM)

RETURN

END

FUNCTION FGZ11(X)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH, WNUN,ANU, HEAD

COMMON /Gl/ ZH,2ZH,R1l

B=1.0/((X-ANU)/(X+ANU)-EXP(-2.0*X*DEPTH) )
FGZ11=B*X#(EXP(X*(ZH+22H~2.0%DEPTH) )-EXP(~X*(ZH+2ZH+2.0+DEPTH)))
1 *BJ(X*R1,0)

RETURN

END

FUNCTION FGZLE(X)

COMMON /C2/ GRAV,DEN, FREQ; DEPTH, WNUM, ANU , HEAD
COMMON /Gl/ ZH,%ZH,R1
FGZ1E=FGZ11(X+WNUM)+FGZ11(~-X+WNUM)

RETURN

END

FUNCTION FG221(X)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH, WNUM, ANU, HEAD

COMMON /G1/ 2H,2ZH,RL

B=1.0/((X-ANU) /(X+ANU)~EXP(~2.0*X*DEPTH) )

FGZ21=B*X#*(EXP (-X*(ZZH-2H+2. 0*DEPTH) )-EXP (~X+*(2H-22H+2.0*DEPTH)))
1 *BJ(X*R1,0)

RETURN

END

FUNCTION FGZ2E(X)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH, WNUM, ANU, HEAD
COMMON /G1/ 2H,22H,RL
FGZ2E=FG221(X+WNUM) +FGZ21 (-X+WNUM)

RETURN

END

SUBROUTINE GS2(VX,VXX,G,DGX,DGY,DG21,DG2Z2,NTERM )
DIMENSION VX(3),vXX(3),G(2),DGX(2),DGY(2),0621(2),D622(2)
COMMON ,/C2/ GRAV,DEN, FREQ, DEPTH, WNUM, ANU,, HEAD
COMMON /SER/ UK(1000) ,GAMMA(1000), ALPHA
C....THIS PROGRAM CALCULATE THE GREEN'S FUNCTION BY SERIES FORN
TEMP1=VX(1)-VXX(1)
TEMP2=VX(2)-VXX(2)
TEMP3=VX(3)-VXX(3)
R1=SQRT(TEMP1*TEMP1+TEMP2* TEMP2)
ZH=VX(3)+DEPTH
22ZH=VXX(3)+DEPTH
TEMPd=-ALPHA*(1.04EXP (-2, 0*WNUM*ZH) ) *(1.0+EXP(~2.04WNUM*22H) )
1 *EXP(WNUM#* (2H+22H-2,0*DEPTH) )
TEMP5=WNUM#*RL
TEMPG=TEMP4*WNUM/R1
BYO=BY(TEMPS,0)
BJO=BJ(TEMPS,0)
G(1)= TEMP4#BYO
G(2)=-TEMP4*BJO
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DGX(1) =-TEMP6 *BY(TEMPS,1)

DGX(2)= TEMP6 *BJ(TEMPS,1)
T21=-ALPHA*WNUB*EXP ( WNUK* ( 2H+22H-2,04DEPTH) ) ¢
1 (1.0-EXP(-2.0%WNUN*(2ZH+21H)))
T22=-ALPHA*WNUN* (EXP (WNUM* ( 2H-22H-2.0*DEPTH) )
1 -EXP(WNUM*(22H-ZH-2.0*DEPTH) ) )
DGZ1(1)=T21+BY0

DG21(2)=-T21*BJ0

DG22(1)=T22¢BY0

DG22(2) =-T22%BJ0

SUNG=0.0

SUNGX=0.0

SUMGZ1=0.0

SUMGL2=0.0

IF (NTERM .EQ. 0) GO TO 11

DO 10 I=1,NTERM

J=NTERM-1+1

TENPT=UK(J)*R1

BKO0=BK ( TENP7, 0)

S1=GAMMA (J)*COS(UK(J) *2H) *COS(UK( J)*224 )

S2=GAMMA (J)*UK (J)*BKO

1*BKO

1#UK(J) *BK(TEMPT,1)
GZ1=-S2+0.5*SIN(UK(J)*(ZH+22H))

SG22=-52+0.5*SIN(UK(J ) *(2H-2ZH))

SUMG=SUMG+SG

SUMGK=SUMGK+SGX

SUMGZ1=SUNGZ1+SG21

SUMG22=SUNGZ2+ SGL2

CONTINUE

CONTINUE

G{1)sG(1)4+5UMG

DGX(1)=DGX(1)+SUNGX/R1

DGY(1)=DGX(1) * TENP2

DGY(2)=DGX(2) * TENP2

DGX(1)=DGX(1) * TEMPL

DGX(2)=DGX(2) * TEMP1
DGZ1(1)=DG21(1)+5UNGZ1

DG22(1)=DG22{1 ) +5UNGZ 2

RETURN

END

SUBROUTINE ROOTUK(N)

COMMON /C2/ GRAV,DEN, FREQ, DEPTH,WNUM,ANU , HEAD
COMMON /SER/ UK(1000) , GAMMA (1000) , ALPHA
F(X)=X*TAN(X*1.570796327)+BETA
ERR=1,0E-6

BETA=ANU *DEPTH/1.570796327

DO 20 J=1,N

DELTA=1.0E-2

A2=2.0*J

Al=24J-1+DELTA

¥1=F(Al)

¥2=F(A2)

IF (ABS(Y1).LE.ERR) GO TO 100
IF(ABS(Y2).LE.ERR) GO TO 200
IF(¥1)13,100,12

DELTA-DELTA/10.

A2=Al

GO TO 5



13 AB-(ADAZ)'O 5
Y3aF
IF(AIS(YJ) LE.ERR) GO TO 101
IF(Y3 .LT. 0.0) Al=A
IF(Y3 .GT. 0.0) Al-A}
RA=ABS((A2-Al) /A3)
IF(RA .LE. ERR) GO TO 101

100 UK(J)=Al

0
200 UK(J)=A2
GO T0 10
101 UK(J)=A3
10 UKR(J)=UK(J)*1.570796327/DEPTH
20 CONTINUE
TEMP1=ANU *ANU
TEMP2-TEMP14DEP TH-ANU
DO 50 J=1,N
TEMP3=UK ( J)*UX( 3)
GAMMA(J) =4.0¢( TEMP3+TEMP1)/( TEHP3*DEPTH+TENP2)
S0 CONTINUE
RETURN
END

FUNCTION BJ(X,N)
BJ=0.0

IF (N .EQ. 1 .AND. X .EQ. 0.0)G0TO 1
IF (N .EQ. 0 .AND. X .EQ. 0.0)G0 TO 2

D=1 .0E-4
IF(N)10,20,20
10 IER=l
TYPE *,'SOMETHING WRONG IN BESJ IER = ',IER
1 IETURN
2 !J-l 0
20 IF(X)JO 30,31
30 IER
TYPE *,"SOMETHING WRONG IN BESJ IER = ',1ER
RETU!

31 lF(XlS )32,32,34

32 NTEST-N 410 *X=X#t 2/3
GO TO 3

34 NTBST'W +X/2.

36 IF (N-NTEST)40,38,38

38 IER=4
rvp: *,'SOMETHING WRONG IN BESJ IER = ',IER
RETU

40 IER-O
Nl=N+l

BPREV=.0

C...COMPUTE STARTING VALUE OF H
IF(X-5.)50,60,60

50  MA=X+6.
GO TO 70

60  MA=1.44X+60./X

70 MB=N+IFIX(X)/4+2
HZERO=HAXO (HA,MB )

C...SET UPPER LIMIT OF K
MMAX=NTEST

100 DO 190 M=MZERO, MMAX,3




.SET F(M),F(M-1)
FMl=1.0E-28
Fi=0.0
ALPHA=0.0
IF(M—(H/2) %2)120,110,120
110 JTe-1
G0 TO 130
120 JT=1
130 M2=M-2
D0 160 K=1,M2
HE=M—
BHK=2 . *FLOAT(NK) * FH1/X-FM
rn-rnl
Fiil=
H‘(HK N 1)150,140,150
140 BJ=BMK
150  JT=-3T
S1+3T
160  ALPHA=ALPHA+BMK*S
BMK=2 . 4FM1 /X-FN
IF(N) 180,170,180

170 BJ=BMK
180  ALPHA=ALPHA+BNK
BJ=BJ /ALPHA

IF(ABS(BJ-BPREV)-ABS(D*BJ))200, 200,190
190  BPREV=BJ

1ER=3

WRITE (4,*) " ERROR=3 '

TYPE #,’SOMETHING WRONG IN BESJ I = ‘,IER
200 RETURN

END

FUNCTION BR (X,N)
DIMENSION T(12)

K=0 .
IF(N)10,11,11
10 Rel
T‘{PE *,'SOMETHING WRONG IN BESK IER = ‘,IER

11 XF[X)IZ 12,20
12 IER=2
TYPE *,'SOMETHING i :0NG IN BESK IER = ’,IER

20 xr(x 170.0)22,22,21

2 1ER=3

C.......TYPE *," SOMETHING WRONG IN BESK IER = ', IER
RETURN

22 1ER=0

IF(X-1.)36,36,25
25 A=EXP ( -X)

B=l./X

C=SQRT (B)

T(1)=B

DO 26 L=2,12
26 T(L)=T(L-1)*B

1F(N-1)27,29,27
C...COMPUTE KO USING POL‘{NOHIAL APPROXIMATION
27 GO=A*(1.25331

20.13445962'1‘(4)

66641 847(1)+0,088111278*T(2)-0.091390954+T( 3)
12299850 347(5) +. 37924097+7( 6)-.52472773*T(7)
3+.55753684*T(8)~. 4262632947(9)+.21845181+T( 10)



254

4-.0668097674T(11)40.0091893834T(12) )*C
IF(N)20,28,29

28 BK=GO
RETURN

C...COMPUTE K1 USING POLYNOMIAL APPROXIMATION

29 Gl=A*(1.2533141+.46999270#T(1)-.14685830*T(2)+.12804226+T(3)
2-.173643164T(4)+.28476181*T(5)-.45943421%T(6)+.62833807+T(7)
3-.66322954#T(8)+.50502386*T(9)~.25813038*T(10)+.078800012*T(11)
4-.010824177+T(12))*C
IF(N-1)20, 30,31

30 BK=G

RETURN
C...FROM KO,Kl COMPUTE KN USING RECURRENCE RELATION
31 D0 35 J=2,

GJ=2 . *{FLOAT(J)~1.)*Gl/X+G0
IF(GJ~-1.0E38)33,33,32

32 1ER=4
TYPE *,'SOMETHING WRONG IN BESK IER = ',IER
G0 TO 3¢

33 G0=Gl

35  Gl=GJ

3¢ BK=GJ
RETURN

36 /.

B=X/2.
A=.57721566+ALOG(B)
C=3+B
IF(N-1)37,43,37
C...COMPUTE K0 USING SERIES EXPANSION
37 GO=-A
X20=1.
FACT=1,
HJ=0.0
DO 40 J=1,6
RJ=1. /FLOAT(J)
X20=X2J+C
FACT=FACT*RJ*RJ
HI=HI +RJ
40 G0=GO+X2J*FACT*(HJ-A)
1F(N) 43,42,43
42 BK=GO
RETURN
C...COMPUTE Kl USING SERIES EXPANSION
43

RHI=1.
Gl=l. /X+X2J*(,5+A~HJ)
DO 50 J=2,8
X2J=X2J4C
RJ=l. /FLOAT(J)
FACT=FACT*RJ*RJ
HI=HJ +RJ
50  Gl=GL+X2J*FACT*(.5+(A-HJ)*FLOAT(J))
IF{N-1)31,52,31

FUNCTION BY (X,N)
C...CHECR FOR ERRORS IN N AND X
IF(N)180,10,10



10

R=0
IF(X)190,190,20

C...BRANCH IF X LESS THAN OR EQUAL 4

20

1F(X-4.)40,40,30

C...COHPUTE Y1 AND YO FOR X GREATER THAN 4.0

T1=4.0/X
T2=T1*T1
FO-((((—.00000]704S'TZo.0000173555)'T)-.OODNBNU)"TZ
1 +.00017343)#T2-.001753062)4T2+.398942
QO=((((.0000052312*T2-.0000142078) *T2+. 0000342‘66]'12
1 -.0000869791)#T2+.0004564324)+T2-.012 94
Pl=((((.0000042414*T2~.0000200920)*T2+. 00005!0759)‘1‘2
1 -.000223203) *T2+. 002921816]"1‘10 398942
Ql=((({~.0000036594+T2+.00001622) *T2-. 0000398709)‘1‘2
1 +.0001064741)*T2-.0006390400)*T2+.03740084
A=2.0/SQRT(X)

.

T.

.7853982
YD-A'PD'SXN(C)#B'Q‘)‘COS(C)
Yl--A'Pl'COS1 C)+B*QL*SIN(C)
GO T

0 90
C...COHPUTE YO AND Y1 FOi X LESS OR EQUAL TO 4.0

50
60

70

80

XX=X/2.

X2=XX*XX
T=ALOG(XX)+.5772157
SUM=0.0

DO 70 L=1,15
IF(L-1)50,60,50
SUM=SUM+1./FLOAT(L-1)
FL=L

TS=T-SUM
TERM=(TERM*(~X2)/FL*#*2)*(1.=1./(FL*TS))
Y0=Y0+TERM
TERM=XX*(T-.5)
SUM=0.0

Y1=TERM

DO 80 L=2,

SUM=SUM+1. /FLOAT(L—I)

TS=T-SUM

TEI\H-(TEI\H‘( X2)/(FL1*FL))*((TS-.5/FL)/(TS+.5/FL1))
Y1lmY14TE!

12=. 6366198

YO=PI24Y0

Y1=-PI2/X4PI2*Y1

C...CHECK IF ONLY YO OR Y1 IS DESIRED

90 1F(N-1)100,100,130
C...RETURN EITHER Y0 OR Y1 AS REQUIRED
100 1IF(N)110,120,110
110 BY=Yl
GO TO 170
120 IY-YO
GO T
C. ..P!HFDRH RECURIENCE OPERATIONS TO FIND YN(X)
130 YA=Y0
YB=Y1

Kel



140

141

150

160
170
180

190

C.

T=FLOAT(2*K)/X

YCmT*YB-YA

IF(ABS(YC)-~1.0E38)145,145,141

TER=3

TYPE *,’' SOMETHING WRONG IN BESY IER = ', IER
RETURN

K=K+1
IF(K-N)150,160,150
YA=YB
YB=YC

GO TO 140
BY=YC

TYPE *,’SOMETHING WRONG IN BESY IER = ‘,IER
RETURN

1ER=2

TYPE +,'SOMETHING WRONG IN BESY IER = ',IER
RETURN

END

SUBROUTINE DG16 (XL,XU, FCT, SUM)
-THIS PROGRAM COMPUTE INTEGRAL (FCT), SUMMED OVER X FROM

C....XL TO XU

{4

20

10
100

DOUBLE PRECISION XL,XU,Y,A,B,C,FCT

SUM0=0.0

DO 10 I=1,10

DELTA-(XU XL) /T

SUM=0.0

DO 20 J=1,1

Xl=XL+(J~ 1)‘DELT}\
X2=X1+4DELTA
A=.5E0*(X2+X1)

B=DELTA

C=.49470046749582497E0+8
¥=.13576229705877047E~1*(FCT(A+C)+FCT(A-C))
C=.47228751153661629E0+B
Y=¥+.31126761969323946E-1%( FCT(A+C ) +FCT(A~C))
C=.43281560119391587E0+B
Y=Y4.47579255841246392E-1* (FCT(A+C) +FCT(A-C))
C=.,37770220417750152E0*B
Y-Y+.623144956277669365-1‘(FCT(AQC)+FCT(A—C))
C=.30893812220132187E0*
Y=Y¥+.7479799440828837E~ 1'(FCT(A+C)+FCT(A c))
€=.22906838882861369E0

Y=Y+, 84578259697501175 1‘(FCT(A&C)+FCT(A—C)'
C=.14080177538962946E0*B
Y=Y+.9130170752246179E~1*(FCT(A+C} +FCT(A-C))
C=.47506254918818720E-1+%8
Y=B*(Y+,9472530522753425E-1%(FCT(A+C)+FCT(A-C)))
SUM=SUM+Y

CONTINUE

IF(ABS(SUM-SUMO) .LE. ABS(SUM*1.0E~2)) GO TO 100
SUMO0=SUM

CONTINUE

YPE *,’**#FAIL TO CONVERGE IN DGl6#*#* NO =« 10
CONTINUE

RETURN

END

256
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SUBROUTINE MPRD(A,B,R,N,M,L)
C....THIS PROGRAM COMPUTES R=A*B,WHERE A(N*M),B(M*L)

DIMENSION A(1),B(1),R(1)

1R=0

IK=-M

DO 10 Kel,L

IK=IK+M

DO 10 J=1,M

IR=IR4+1

J -N
1B=IK
R(IR)=0.0
D0 10 I=1,M
JI=JI+N

1B=1B+1

10 R(IR)=R(IR)+A(JI)*B(IB)
RETURN
END

SUBROUTINE INV(R,A,M,N)
DIMENSION A(1),R(1)
EPS=1,0E-4
IF(M)23,23,1
C...SEARCH FOR GREATEST ELEMENT IN MATRIX A
1 R=0
PIV=0.0E0
HH=NoM
NH=N*M
DO 3 L=1,MM
TB=ABS (A(L) )
IF(TB-PIV)3, 3,2
2 PIV=TB
1=L
3 CONTINUE
TOL=EPS*PIV
LST=1
DO 17 Kel,M
IF(PIV)23,23,4
1F(IER)7,5,7
1F(PIV-TOL)6,6,7
IER=K-1
PIVI=1.0E0/A(T)
J=(1-1)/K
I=I-J*M-K
J=J+1-K
DO 8 L=K,NM,M
LL=L+T
TB=PIVI*R(LL)
R(LL)=R(L)
8 R(L)=TB
IF(K-M)9,18,18
3 LEND=LST+4-K
1F(3)12,12,10
10 I1=J*M
DO 11 L=LST, LEND
TB=A(L)
LL=L+IT
A(L)=A(LL) .
11 A(LL)=TB
12 DO 13 L=LST,MM,X

NP



21
23

Ll=L+1
TB=PIVI*A(LL)
A(LL)=A(L)

LST=LST+1

3=

DO if II=LST,LEND
PIVI=-A(11)
IST=IT+M

J=d+1

DO 15 L=IST,MN,M
LL=L-J
A(L)=A(L)+PIVI*A(LL)
TB=ABS(A(L) )
IF(TB-PIV)15,15,14
PIV=TB

I=L

CONTINUE

DO 16 Le=K,NM,M
LL=L+J
R(LL)=R(LL)+PIVI*R(L
LST=LST+M
1F(M-1)23,22,19
IST=MM+H

LST=M+1

DO 21 I=2,M
11=LST-1

L=A(L)+0.5E0
DO 21 JeII,NM,H
TB=R(J)

LL=J

DO 20 K=IST, MMM
LL=LL+1
TB=TB-A(K)*R(LL)
K=J+

TYPE #,'22222SOMETHING WRONG IN INV.FTN4ts#w’
RETURN

SUBROUTINE VSUB(A,B,C)
DIMENSION A(3),8(3),C(3)
DO 10 I=1,3
C{I)=A(I)-B(I)

RETURN

END

SUBROUTINE VDOT(A,B,S)
DIMENSION A(3),B(3)
§«0.0

DO 10 I=1,3
S=S+A(I)*B(I)

RETURN

258



C...THIS PROGRAM CALCULATE THE TOTAL Q FOR DRIFTING FORCE

20

c
o
c
[

END

SUBROUTINE VCRO(A,B,
DIMENSION A(3),B(3),
CJ-A(Z)'B(J) A(3)*B(
(3)#*B(1)-A(1)*B(
C!-A(l)‘B(Z) A(2)*B(
S=SQRT(C1#C1+C2#C2+C
C(l)=Cl

Cc(2)=C2

C(3)=C3

RETURN

END

SUBROUTINE VCOM(A,N1,N2,N3,C,I,J)
DIMENSION A(N1,N2,N3),C(N3)

FUNCTION FTAN(AR,AI)

D=ABS(AI/AR)

D=ATAN(D)/3.14164180.0

IF(AI .GT. 0.0 .AND. AR .LT. 0.0) D=180.0-D
IF(AI .LT. 0.0 .AND. AR .GT. 0.0) D=-D
IF(AI .LT. 0.0 .AND. AR .LT. 0.0) D=-180.0+D
FTAN=D

RETURN

END

SUBROUTINE QTOTAL(NSP,NN,Q135,0246,AMP,QDF1,QDF2)
.INPUT: NSP,NN,Q135,0246,ANP

c
C...OUTPUT: QDFl(SIDE 1), QDTZ(SXD

DIMENSION Q135(NN, 4) Q246(NN,4), QDFI(NN) QDF2(NN),AMP(12)

COMMON /C2/ GRAV,DEN, FREQ,DEPTH,WNUM, ANU, HEAD

DO 10 I=1,NSP
I1=I+NSP
T1=0.0

T3=0.
T4=0.0

DO 20 9=1,3

J1=2%3-1

J2=3141
T1=T1+Q135(1,J)*AMP(J1+6)+Q135(11,J)*AMP(J1)
T2=T2+Q246(1,J) *AMP(J2+6)+Q246(11,J) *ANP(J2)
T3=T3+Q135(1,J)*AMP(J1)-Q135(II,J) *AHP(J1+6)
T4=T4+Q246(1,J)*AMP(J2)-Q246(11,J) *AMP(J2+6)
CONTINUE

QDFl(X)-QlJS(x 4)+Q246(1,4)+FREQ* (T1+T2)
QDF2 I 135(I,4)-Q246(1,4)+FREQ*(T1-T2)
QDF1( Q135(11,4)+Q246(11,4)-FREQ*(T3+T4)
onrzt11)-u135(x1.4)—ozn6(xx,d)»rn:o-(rs-rd)

..TOT? SOURCE STRENGTH WHICH MOTION IS NOT INCLUDED

QD.a(I)=Q135(1,4)+Q246(1,4)
QDF2(I)=Q135(1,4)-0246(1,4)
QDF1{(11)=Ql35(11,4)+Q246(11,4"



nan

. .OUTPU

QDF2(11)=Q135(11,4)-Q246(11,4)
CONTINUE

RETURN

END

SUBROUTINE SIR(N,NN,PAN,SUR,QDF1,QDF2,THETA,SR,SI,5C0OS,SSIN,DSR,DSI,
DMENT)

..THIS PROGRAM CALCULATE THE SR,SI...VALUES FOR DRIFTING FORCE

<INPUT: N,NN,PAN,SUR,QDF1,QDF2, THETA

: SR,SI,5C0S,SSIN

DIMENSION PAN(N,3),SUR(N),QDF1(NN),QDF2(NN)
COMMON /C2/ GRAV,DEN, FREQ, DEPTH,WNUM, ANU, HEAD
51=0.0

CX=COS(THETA) *PAN(1,1)

SY=SIN(THETA) *PAN(I,2)

UL=WNUN* (CX+SY¥)+2.35619

U2=WNUM* (CX-5Y)+2.35619

SX=SIN(THETA)*PAN(I,1)

CY=COS(THETA)*PAN(1,2)

DUL=WNUM* ( 5X-CY)

DU2=WNUM* ( SX+CY)

2=PAN(I,3)

TZ=EXP(WNUM*Z)*(1.04EXP(~2. D'NNUH‘(Z+DEPTH)))'SUR(I)
S1=51+(QDF1(1)*COS(U1)+QDFL(I1)*SIN(UL))*T

s2= 52+(QDF2(X)'COS(UZHQDE‘Z(H)'SXN(UZ))*‘H
$3=53+(QDF1(1I)*COS(UL)~-QDF1(I)*SIN(UL))*T2
S4=54+(QDF2(II)*COS(U2)~QDF2(I)4SIN(U2))*T2
DS1=DS1+(QDF1(I)*SIN(U1)-QDF1{I1)#COS(U1))*TZ+DUL
DS2=DS2+(QDF2(I}*SIN(U2)-QDF2(I1)#COS(U2))#T2*DU2
DS3=DS3+(QDF1(I)*COS(UL)+QDF1(I1)*SIN(U1))*T2*DUL
DS4=DS4+(QDF2(1)*COS(U2)+QDF2(IT)*SIN(U2))*T24DU2
CONTINUE

SR=51+52

SI=534+54

DSR=DS1+DS2

DSI=DS1+DS4

SM=SR*SR+SI+SI

SCOS=SM*COS ( THETA)

SSIN=SM*SIN(THETA)

DMENT=SR*DSI-SI*DSR

RETURN

END

SUBROUTINE DRIFT(NSP,NN,PAN,SUR,QDF1,QDF2,DRFX,DRFY,DRMZ)
.CALCULATE THE DRIFTING FORCE
INPUT: NSP,NN,PAN,SUR,QDF1,QDF2

.. lOUTPUT: DRFX,DRFY(DRIFTING FORCE IN X- AND Y-DIRECTION).
)

DIMENSION PAN(NSP,3),SUR(NSP),QDF1(NN),QDF2(NN
COMMON /C2/ GRAV,DEN,FREQ,DEPTH,WNUM, ANU, HEAD

HK=WNUM*DEPTH



E2=EXP(-2.0*HR)

E4=EXP(-d.0%HK)

T1m (WNUH*WNUH-. ANU'ANU)'DEPTH»ANU

T2=1.0+44.04HK*E2/(1.0-E4

TEMP1=4, uzss-u:n-wwun-FREQ-TZ/(H-U 0+E2)

TEMP2=-6,28318%(1.0-E2) *DEN* (WNUM**4 . 0)’1‘2/(1”1-’:1-(1 0+E2)**3.0)

.DRIFTING FORCE DUE TO THE INCOME WAVE EFFECT

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,HEAD,SR,S1,SCOS,SSIN,DSR,DSI,TH)
DRFX=TEMP1*(SR-SI)*COS(HEAD)

DRFY=TEMP1#(SR-SI)*SIN(HEAD)

DRMZ=TEHP1 * (DSR+DS1 ) /WNUM

C...USING GUASSIAN 16 POINTS FORMULAR TO INTEGRATE THE DRIFTING FORCE

.DUE THE MOTION EFFECT

DELTA=6.28318/4.0

SUMX=0.0

SUMY=0.0

SUMMEN=0.0

D0 20 J=1,4

Xl=(J-1)*DELTA

X2=X1+DELTA

A=.5E0*(X2+X1)

B=DELTA

C=.49470046749582497E04B

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR,SI,APCC,APCS, TEH1, TEM2,DM1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A~C,SR,ST,ANCC,AMCS, TEML, TEM2,DM2)
FX=.13576229705877047E-1% (APCC+AMCC)
FY=.13576229705877047E-1*(APCS+AMCS )
FMEN=,13576229705877047E~1*(DM1+DM2)

C=.47228751153661629E0+B

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,5R,SI,APCC,APCS, TEML, TEM2,DH1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A-C,SR,SI,ANCC,ANCS, TEML, TEM2,DH2)
FX=FX+.311267619693°3946E~1+4(APCC+AMCC)

FY=FY+.31126761969323946E~1% (APCS+AMCS)
FMEN=FMEN+.31126761969323946E~1+(DK1+DM2)

C=.43281560119391587E0%B

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR, ST,APCC,APCS, TEM1, TEM2,DN1)
CALL SIR(NSP,24NSP,PAN,SUR,QDF1,QDF2,A-C,SR, SI,ANCC,AMCS, TEM1, TEN2,DH2)
FX=FX+.47579255841246392E~1# (APCC+AMCC)
FY=FY+.47579255841246392E~1# (APCS+ANCS )
FMEN=FMEN+.47579255841246392E-1# (DM1+DM2)

C=.37770220417750152E04B

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR,SI,APCC,APCS, TEM1, TEM2,DH1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDFl,QDF2,A-C,SR,SI,AMCC,ANCS, TEM1, TEM2,DN2)
FX=FX+.62314485627766936E~1*(APCC+AMCC)
FY=FY+.62314485627766936E~1*(APCS+AMCS )
FMEN=FMEN+.62314485627766936E-1# (DN1+DM2)

C=.30893812220132187E0*B

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR, SI,APCC,ABCS, TEHL, TEM2 ,DH1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A-C,5R, ST,AMCC, ANCS, TEML, TEM2,DH2 )
FX=FX+,7479799440828B837E-1+(APCC+ANCC)
FY=FY+.7479799440828B837E~1+ (APCS+ANCS )
EMEN=FMEN+.7479799440828837E-1+ (DM1+DM2)

C=.22900838882861369E0%8

CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR,S1,APCC,APCS, TEM1, TEM2,DH1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A-C,SR,SI,AMCC,AMCS, TEM1, TEM2,DH2)
FX=FX+.8457825969750127E~1* (APCC+ANCC)
FY=FY+,8457825969750127E~1* (APCS+AHCS )
FMEN=FMEN+.8457825969750127E~1+(DM1+DM2)

C=.14080177538962946E0+8

CALL SIR(NSP,2#NSP,PAN,SUR,QDF1,QDF2,A+C,SR,ST,APCC,APCS, TEML, TEM2,DH1)
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CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A-C,SR,SI,ANCC,AMCS, TEM]1, TEA2,DN2)
FX=FX+.9130170752246179E-1*(APCC+AMCC)
FY=FY+,9130170752246179E-1* (APCS+AMCS)
FMEN=FMEN+.9130170752246179E-14(DM1+DM2)
C=.47506254916818720E-1*8
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A+C,SR,SI, APCC,APCS, TEM1, TEM2,DN1)
CALL SIR(NSP,2*NSP,PAN,SUR,QDF1,QDF2,A-C,SR,SI,AMCC,AMCS, TEM1, TEM2,DM2)
FX=B*(FX+.9472530522753425E-1* (APCC+AMCC) )
FY=B*(FY+.9472530522753425E-1* (APCS+AMCS) )
FMEN=B*(FMEN+.9472530522753425E~14(DM14DN2) )
SUMX=SUMX+FX
SUMY=SUMY+FY
SUMMEN=SUMMEN+FMEN

20 CONTINUE

C...TOTAL DRIFTING FORCE AND MOMENT
DRFX=DRFX+TEMP2*SUMX
DRFY=DRFY+TEMP2*SUMY
DRMZ=DRMZ+TEMP2* SUKMEN
RETURN
END
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PROGRAM OUT72
DIMENSION PAN(115,3),UN(115,3),UNN(115,3),SUR(2
DG11R(115,115),D6111{115,115), nclzx(us 115),06121(115,115),
G11R(115,115),G111(115,115),612R(115,115),6121(115,115),
PHI7R(115), PHI7I(115),PHIBR(115),PHIST(115),QDF1(230),
QDF2(230),
POT135(230,4),POT246(230,4),Q135(230,4),Q246(230,4),
AM(6,6) ,DEMP(6,6) ,RM(6,6),C(6,6),FOR(12),AMP(12)

wawwh e

COMMON /C2/ GRAV,DEN, FREQ, DEPTH, WNUMN, ANU, HEAD
COMMON /C3/ VOL,XB,YB,2B,AREA, AREAWP, XG, YG, 26
COMMON /SER/ UK(1000) ,GAKMA(1000) ,ALPHA

DATA DEN,GRAV,/1000.,9.8

DATA XG,Y¥G,26/0.0,0.0,-1.

DATA RI44,RI55,RI66/170. o 166 0,236.0/

DATA DEPTH, HE!\D/SOO 0,240.0/

DATA NSB/115/

CR RN R R RN AR AR AR KRR KRR RR R KRR AR RARRRARR AR AR

VOL=3054270.0

BB1=DEN*VOL*SQRT(GRAV/SLL)

AA5=AA1#SLL*SLL

BB5=BB1#SLL#SLL
CAMRARARRARAARRRARA AR R AR KRR AR KA KA KRR R AR R AR AR

CALL ASSIGN (2,'COM_2.DAT')

CALL ASSIGN (3,’PRNT2_ 2.DAT')

OPEN (UNIT=7,TYPE='NEW', NAME='POINT2', FORM='FORMATTED' )
c OPEN (UNIT=8,TYPE='NEW’ ,NAME='SURGE_MOTION2', FORM='FORMATTED")
c OPEN (UNIT=9,TYPE='NEW’ ,NAME=‘HEAVE MOTION2',FORM='FORMATTED' )
c OPEN (UNIT=10, TYPE='NEW’,NAME='PITCH_MOTION2',FORM='CORMATTED' )

OPEN (UNIT=11,TYPE='NEW', NAME=’ADDEDRASS', FORM=’FORMATTED' )

OPEN (UNIT=12, TYPE='NEW' NAME='DAMPING’, FORM='FORMATTED')

WRITE(3, %) ARk AR Ak kAR A AR AR RRRRIAR AR AR AR AR SRR RA RN RR R SR AR R AR AT
WRITE(3,*)’RESULT OF 115 PANELS FOR DELTA SHAPE'
WRITE(3,*)'WATER ENTRAPPED IN MODEL 1S CONSIDERED’
WRITE(3, %) A%ARARAKRARKARRKNRARAARKARRRRARRRRIRRNARKRRRAAARA T
DO 17 KI=1,4
READ (2) P)\N SUR, FOR,AMP,AM, DEMP,C, RN,

GRAV, DEN, FREQ, DEPTH , WNUM, ANU, HEAD,, DRIFX, DRIFY, DRMZ

CHRARAN KRR RRRRRRRNRRRRAR AR R AR R AR RA AR R AR AR AR AR AR AR KRR AR KRR R RN
WRITE (3,*) 'PERIOD = ’,2.0%3.14159/FREQ
WRITE (3,*) "HEADING = ’,HEAD*180./3.14159
WRITE (3,%) '

WRITE (3,%) 'A(11) =',AM(1,1)/AAL,’ A(33) =' AM(3,3)/AAl
WRITE (3,*%) 'A(55) =',AM(5,5)/AR5,’ A(66) =',AM(6,6)/AAS
WRITE (3,*) 'B(11) =',DEMP(1,1)/BB1,’ B(33) =',DEMP(3,3)/BBl
WRITE (3,*) 'B(S5) =', DEMP(5,5)/BBS,’ B(66) =', 6 DEMP(6,6)/BBS

FREQND=( FREQ) * (VOL#**0.. 333/9 al)no 5

PHASE=90. 0-FTAN (AMP(1) , AMP(

AMIG -SQ}\T(M‘IP(l)'AHP(l)+AMP(7)"AMP(7))

WRITE (3,*) 'SURGE MOTION =’,AMIG, PHASE =',PHASE
WRITE (8,4%) AMIG,PHASE,FREQND -

o0

PHASE=90.0-FTAN(AMP(3) ,AMP(9))
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AMIG ~SQRT{AMP(3)4AMP(3)+AMP(9)*ANP(9))
WRITE (3,%) 'HEAVE MOTION =',AMIG,'  PHASE =',PHASE
WRITE (9,*) AMIG,PHASE, FREQND

PHASE=90.0-FTAN(AN#(5),AMP(11))

AMi. =SQRT(AMP(5)*AMP(S)+AMP(11)*ANP(11))

WRITE (3,%) 'PITCH MOTION =',AMIG*SLL,’  PHASE =',PHASE
WRITE (10,%) AMIG*SLL,PHASE, FREQND

PHASE=90.0-FTAN(FOR(1),FOR(7))
AMIG =SQRT(FOR(1)*FOR(1)+FOR(7)*FOR(7))

WRITE (3,*) 'SURGE EX.FORCE =’ ,AMIG/(GRAV*AAl/SLL),' PHASE =',PHASE

PHASE=90.0-FTAN(FOR(3),FOR(9))
AMIG =SQRT(FOR(3)*FOR(3)+FOR(9)*FOR(9))

WRITE (3,%) 'HEAVE EX.FORCE =',6AMIG/(GRAV*AAl/SLL),’ PHASE =',PHASE

PHASE=90,0-FTAN(FOR(5),FOR(11))
AMIG =SQRT(FOR(5)*FOR(5)+FOR(11)*FOR(11))
WRITE (3,*) 'PITCH EX.FORCE =',6AMIG/(GRAV*AAL)," PHASE =',PHASE

WRITE (3,*)'DRIFT FORCE(X) =', DRIFX/(DEN*GRAV*SLL)

WRITE (3,%)’DRIFT FORCE(Y) =', DRIFY/(DEN*GRAV#SLL)

WRITE (3,*)'DRIFT MOMENT(Z) =', DRMZ/(DEN*GRAVASLL*SLL)

WRITE (3,+*)’

WRITE (3,*)'NONDIM.DRIFT FORCE(X) =, DRIFX/(0.S*DEN*GRAVAVOL##0,333)
WRITE (3,*)'NONDIM.DRIFT roncs(‘{) -'. DRIFY/(0.54DENAGRAV+VOL*#0.333)
WRITE (3,%)'DRIFT FORCE(X) =’,

WRITE (12,%) 2+3, 14159/FRBO,D:MP(1 1)/551 DEMP(3,3)/BB1

+ ,DEMP(5,5)/BBS,DEMP(6,6)/BB5

WRITE (11,*) 2%3.14159/FREQ,Ar(1,1)/AAl,AM(3,3)/AA1,

+ AMW(5,5)/AAS,AM(6,6)/AAS

WRITE (7,*%) 2+3.14159/FREQ,DRIFX

WRITE (3,%)'DRIFT FORCE(Y) =’, DRIFY

WRITE (3,%) /4% %8 k%A aRARKRARARKRRRARRRRAARRRRRRRRRA A RRRRRRRARR T
WRITE (3,%)" *

CONTINUE

CLOSE(UNIT=11)

CLOSE(UNIT=12)

CLOSE(UNIT=7)

STOP

END

FUNCTION FTAN(AR,AI)

.THIS FUNCTION COMPUTE THE ARGUMENT OF (AR,AI) IN THE RANGE
...FROM -90 DEG. TO +270 DEG.

D=ABS (AI/AR)

D=ATAN(D)/3.1416*180.0

IF(AI .GT. 0.0 .AND. AR .LT. 0.0) D=180.0-D
IF(AI ,LT. 0.0 .AND. AR .GT. 0.0) D=-D
IF(AI .LT. 0.0 .AND. AR .LT. 0.0) D=+180.0+D
FTAN=D

RETURN

END
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M aaeaeaseesasNliaseeaaetatetatadattattatitttattatanttiattinsantins

ROGRAM TO CALCULATE PANELS FOR DELTAPORT GEOMETRY
THE OUTPUT FILE IS DELTAL.DAT.

PR T R R R R L T R T LT LR TR RLRRR R T Iy

REAL I

DIMENSION X1(200),X2(200),Y1(200),Y2(200), XINTI(SQ),Z(ZOD)
DIMENSION X(200),XX(200), Y(ZOO),YY(ZOO) XXNTZ( 0)
OPEN({UNIT=6,FILE='DELTAL.DAT',STATUS="'NEW
OPEN(UNIT=7,FILE='DELTA2.DAT' ,STATUS='NEW' )

IRST CALCULATE BOT1OM PANEL GEOMETRY (triangular panels)

TYPE*, 'BOTTOM PANEL GEOMETRY
TYPEY, ' '

XL=430.0

¥L=370.0

NX=6

NY=9

DY=YL/NY

DX=XL/NX

(4
C ROUTINE TO CALCULATE Y COORDINATE OF THE CENTROID
4

20

DO 20 I=1,NY
Y1(1)=370-(2#DY/3.0)~ 1)+DY)
Y2(1)=370-(DY/3)=((1 ) D )
CONTINUE

e
C CALCULATE THE EQUATION OF EACH CENTROID LINE
[

an aan

a

30

SLOPE-‘I 726
Do 3
XINTl(l) (430 0-(DX/3.0))-((I-1)*DX)
XINT2(I)=430-(24DX/3)-(1-1)#DX
CONTINUE

CALCULATE EACH PANEL AREA

AREA=DX*DY/2

CALCULATE X COORDINATE USING STRAIGHT EQUATION

C X=mY +

C NOTE - Z=-11.9 m FOR ALL PANELS

C THE FOLLOWING LOOP ALSO WRITES TO FILE DELTAL.DAT

DO 40 I=1,NX
DO 40 J=1,NY
X1(J)=SLOPE*Y1(J)+XINTL(I)
IF (X1(J).LT.-216.) GOTO 35
IF ((X1(J).GT.-76).AND.(X1(J).LT.(SLOPE*Y1(J)+150))) GOTO 35
WRITE(6,*) X1(J),¥1(J),-11.9,0.0,0.0,-1.0,AREA
WRITE(7,*) X1(J),Y1(3J)
PB=PB+1
X2(J)=SLOPE*Y2(J)+XINT2(I)
IF (X2(J).LT.-216) GOTO 40
IF ((X2(3].GT.-76.) .AND. (X2(J) .LT. (SLOPE*¥2(3)+150))) GOTO 40
WRITE(6,*) X2(J),¥2(1),-11.9,0.0,0.0,-1.0,AREA
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HR‘ITS(7 *) X2(3),Y2()
PB=PB+
40 CONTINUE

c
C PB=TOTAL NUMBER OF PANELS ON THE BOTTOM SIDE
[
C o Adesnabanadsannaierasasiatantansinsitinnnsies
c
C GEOMETRY FOR OUTSIDE PANELS (RECTANGULAR + TWO TRIANGULAR END PANELS )
c
C e A e a AR A R AR R e RN AR AR AR AR
C TAKING A RECTANGLE DOWN FROM THE WATER LINE...

NH=25

NZ=1

XL=615

YL=350

2L=11.9

DZ=2L/N2

DX=XL/NH

DY=YL/NH
[+
C CALCULATION or x AND Y FOR VERTICAL SIDES

0 100 I=

X(I)= (395 0 (DX/Z 0))-((1-1)*DX)

XX(1)=X(1

Y(l) (DY/Z 0)+HI 1)+pY)
100 CONTINUE
C CALCULATION OF 2
c
DO 110 I=1,
Z(I)-—((DZ/Z 0)#((1 -1)*02))
0
c
c CHANGE VERTICAL SIDES TO SLOPED SIDES
DO 1«1,
IF (X(X) L'l' 395.) Y(I)=Y(I)-!
DU
c clu.cuLA'r: PANEL AREA
c

TAREA=705%25
AREA=TAREA/(NH*NZ)

4
C WRITE PANELS TO FILE
c
DO 130 I=1, NZ
DO 130 J=1
@ WRITE(6, ") X(J) Y(J) %(1),.5,.866,0.3,AREA

HRH‘E(G')123714-79305056603I54
WRITE(6,*) -215.3,365.9,-7.93,0.5,0.866,0.3,15.3

c
C PO=NUMBER OF OUTSIDE PANELS
c

Srsssesanaiane
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GEOMETRY FOR INSIDE PANELS (RECTANGULAR PANELS)
SIDE SECTION

(4
c
c
(4

aee
TYPE®,* *
Do ZUO I=1,NH

assssasatainsasanasans

IF ((XX(I).GT.-76).AND.(XX(I).LT.150)) Y¥(I)=YY(I)-140
IF ((XX(I).GT.-216).AND.(XX(I).LT.-76)) Y¥(I)=YY¥(I)-230

200 CONTINUE
C WRITE TO FILE
c

DO 210 1I=1,N2
DO 210 J=1,NH
1F (XX(J).LT.-216) GO TO 210
IF (XX(J).GT.150) GO TO 210
WRITE(6,*) XX(J),¥(J),2(1),-.5,-.866,0.0,AREA
PIS=PIS+1
210 CONTINUE

c-u-n.n.- . arasararanne

c INSIDE-BACK sECrloN
c

NY=2

¥(1)=130,-D¥/2.-(1-1)*DY

2(1)==-((D2/2.)+(1-1)*D2)

AREA=DY*DZ

WRITE(6, -)-16..Y(J) 2(1),1.0,0.0,0.0,AREA
250 CONT;

NO. OF INSIDE BACK PANELS«PIs

P L LR LRI e oey

GEOMETRY FOR THE BACK PANELS (RECTANC'LAR PANELS + ONE TRIANGULAR PANEL)

AEARAARRRARCRRRR AR AR RAR AR AR RN

annnuanann

NY=6

YL=225

DY=YL/NY

Nz=1

2L=11.9

DZ=ZL/NZ

DO 300 I=1,NY

¥(1)=(370.0-(DY/2.0))-((I- l)‘nv)
300 CONTINUE

C CALCULATE PANEL AREA
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TAREA=YL*ZL
AREA=DY*DZ

c
C WRITE TO FILE
c

DO 310 I=1,N2

DO 310 J=1,NY

WRITE(6,*) -216.0,¥(J),2(1),-1.0,0.0,0.0,AREA
310 CONTINUE
(4

WEITE(6,*)-216.0,366.8,-7.93,-1.0,0.0,0.0,28.9
C PS=NUMBER OF PANELS ON THE BACK SIDE

PS=NY*NZ+1
C PRINT OUT PANEL DATA
c

TYIPEs,* *

TYPE*, 'NUMBER OF BOTTOM PANELS’,PB
TYPE*, 'NUMBER OF OUTSIDE PANELS',PO
TYPE*, 'NUMBER OF INSIDE-BACK PANELS’,PIB
TYPE*, 'NUMBER OF INSIDE-SIDE PANELS’,PIS
TYPE*, 'NUMBER OF BACKSIDE PANELS',PS
TYBEK; ¢ ©

TP=PB+PO+PIS+PS+PIB

TYPE*, ‘TOTAL NUMBER OF PANELS',TP

END
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-185.2037
-1.000000
-114.2459
-1.000000
-161.7874
-1.000000
-43.28812
-1.000000
-90.82959

.000000
26.96075
-1.000000
~20.58072
-1.000000
97.91855
-1.000000
50.37708
-1.000000
168.8763
-1.000000

-1.000000
192.2926
-1.000000

342.5926
1473.148
301.4815
1473.148
315.1852
1473.148
260.3704
1473.148
274.0741
1473.148
219.2593
1473.148
232.9630
1473.148
178.1481
1473.148

1473.148

-11.90000
-11.90000
-11.90000
-11.90000
~11,90000
-11,90000
~11.90000
-11.90000
~11.90000
-11.90000
-11,90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11,90000
~11.90000
-11.90000
-11.90000
~11.90000
~11.90000
-11.90000
-11.90000
-11.90000
~11.90000
-11.90000

0.0000000E4+00
0.0000000E4+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

271

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000£+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00



310.7919

~1.000000
-115.6637
-1.000000
-163.2052
-1.000000
-44.70590
-1.000000
-92.24739
-1.000000

26.25189

-1.000000

191.5837
-1.000000
-187.3304
-1.000000
-116.3726
-1.000000
-163.9141
-1.000000
-45.41479
-1.000000
-92.95627

-1,000000
96.50074
-1.000000

-1.000000

119.9170
-1.000000
-188.0392
~1.000000
-117.0815
-1.000000
-164.6229
-1.000000
-93.66515
-1.000000

13.70370
1473.148

1473.148

-11.90000
-11.90000
~-11.90000
-11.90000
-11.90000
-11.90000
~-11.90000
~11.90000
-11.90000
~11.90000
-11.90000
-11.90000
-11.90000
~-11.90000
-11.90000
-11,90000
~-11.90000
-11.30000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11.90000
-11,90000
-11.90000

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0,0000000E+00
0.0000000E+00
0.0000G00E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
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0.0000000E+00
0.0000000E+00
0.0000000E+0)
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.00G0000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000£+00
0.0000000E+00
0.0000000E+00
0.0000000E+00



~188.7481
-1.000000
-117.7903
-1.000000
-165.3318
-1.000000
-94.37405
-1.000000
382.7000
0.3000000
358.1000
€.3000000
333.5000
0.3000000
308.9000
0.3000000
284.3000
€.3000000
25%.7000
0.3002200
235.1000
0.3000000
210.5000
0.3000000
185.9000
0.3006300
161.3000
0.3000000
136.7000
0.3000000
112.1000
0.3000000
87.50000

99
0.3000000
~-35.50000
0.3000000
-60.10001

0.3000000
-133.9000
0.3000000
-158.5000

0.3000000
423.7000
0.3000009

137.0370
1473.148
95.92592
1473.148
109.6296
1473.148
68.51852

74.90000
705.0000
88.90000
705.0060
102.9000
705.0000
116.9000
705.0000
130.9000
705.0000
144.9000
705.0000
158.9000
705.0000

340.9000
705.0000
2.400000
45.40000

-11.90000
-11.90000
-11.90000
-11.90000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.550000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-5.950000
-T.BJDhOO

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000C00
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

© 0.5000000
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0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000
0.8660000



-215.3000
0.3000000
136.7000
0.0020000E+00
112.1000
0.0000000E+00
87.50000
0.0000000E+00
62.89999
0.0000000E+00
38.
0.0000000E+00
3.70001
0.0000000E+00
-10.89999
0.0000000E+00
-35.50000
0.0000000E+00
-60.10001
0.0000000E+00
-84.69998
0.0000000E+00
-109.3000
0.0000000E+00
-133.9000
0.0000000E+00
-158.5000
0.0000000E+00
-183.1000
0.0000000E+00
07.7000

0 0000000E+00
-76.00000
0.0000000E+00
-76.00000

0. ﬂOOOOOOE‘GO
-216.00

0. 00000005000
-216.0000
0.0000000E+00
-216.0000
0.C000000E+00
-216.0000

0. 00000005400
0 DDOOODOE+00
-216.0000
0.0000000E+00
-216.0000
0.0000000E+00

365.9000
15.30000
7.000000
705.0000
21.00000
705 0000

5.00000

28.90000

-7.930000
~5.950000
-5.950000
-5.950000
-5.950000
-5.950000
~-5.950000
-5.950000
~5.950000
-5.950000
-5.950000
-5.950000
-5.950000
=5.950000
-5.950000
-5.950000
-5.950000
~5.950000
-5.950000
-5.950000
~-5.950000
-5.950000
-5.950000
~5.950000
-7.930000

0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
-0.5000000
~0.5000000
-0.5000000

1.000000
1.000000

-1.000000

-1.000000

-1.000000

~1.000000

-1.000000

=1.000000

-1.000000
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0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
~0.8660000
~-0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
-0.8660000
~0.8660000

0.0000000E+00

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0G00000E+00
0.0000000E+0N
0.0000000E+00
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A P S 4
RESULT OF 115 PANELS FOR DELTA SHAPE

WATER ENTRAPPED IN MODEL IS CONSIDERED

A R R e SR S i SO
PERIOD =  10.50000

HEADING =  180.0000

A(11) = 0.1051111 A(33) = 3.264185
A(55) = 1.322998 h(66) = 7.0522197E-02
B(11l) = 0.3095694 B(33) = 1.963395
B(55) = 0.9624655 B(66) = 0.6856030

SURGE MOTION = 3.0399682E-02 PHASE = 10.40342
HEAVE MOTION = 4.0052738E-02 PHASE = 109.7882
PITCH MOTION = 7.0765868E-02  PHASE = -127.6289

SURGE EX.FORCE = 0.1779432 PHASE = -161.1657
HEAVE EX.FORCE = 0.6456119 PHASE = -82.98737
PITCH EX.FORCE = 0.6801304 PHASE = 29.22635
DRIFT FORCE(X) -0.7990930

DRIFT FORCE(Y) = ©5.4137622E-06
DRIFT MOMENT(Z) = -3.8294975E-06

NONDIM.DRIFT FORCE(X) = -2.214028
NONDIM.DRIFT FORCE(Y) = 1.4999783E-05
DRIFT FORCE(X) = -1566222,

DRIFT FORCE(Y) = 10.61097

Kok kKR Rk ok ko Rk KRR K KRR kK k

PERIOD = 10.80000
HEADING = 180.0000

A(1ll) = 7.53900198-02 A(33) = 3.082586

A(55) = 1.280156 A(66) = 2.9582383E-02

B(1l) = 0.3214764 B(33) = 2.048813

B(55) = 1.021827 B(66) = 0.6598853

SURGE MOTION = 4.4834834E-02 PHASE = 4.990059
HEAVE MOTION = 2.7377877E-02 PHASE = 105.6903
PITCH MOTION = 0.1025326 PHASE = -142.5691
SURGE EX.FORCE = 0.2593369 PHASE = -163.6033
HEAVE EX.FORCE = 0.2441363 PHASE = -87.04454
PITCH EX.FORCE = 0.8155283 PHASE =  15.49182

DRIFT FORCE(X) = -0.7740943
DRIFT FORCE(Y) = 5.2098894E-U6
DRIFT MOMENT(Z) = ~-4.4709400E-06

NONDIM.DRIFT FORCE(X) = =-2,144765

NONDIM.DRIFT FORCE(Y) = 1.4434917E-05

DRIFT FORCE(X) = =-1517225.

DRIFT FORCE(Y) = 10.21138
e S L L L L L ]

PERIOD = 11.70000
HEADING = 180.0000

A(11) = 0.1275623 A(33) = 3.062597
A(55) = 1.149684 A(66) = -5.5931669E-02
B(11l) = 0.3798601 B(33) = 2.787801
B'S5) = 1.121208 B(66) = 0.9045595

<onGE MOTION = 7.2363958E-02  PHASE =  2.395897
HEAVE MOTION = 3.2951895E-02  PHASE -68.69910
PITCH MOTION = 0.1872946 PHASE = -157.9673




SURGE EX.FORCE = 0.2638972 PHASE = -140.4422
HEAVE EX.FORCE = 0.8396516 PHASE =  73.97691
PITCH EX.FORCE =~ 0.8002200 PHASE = -12.14268
DRIFT FORCE(X) -0.7553183

DRIFT FORCE(Y) 5.5422320E-06

DRIFT MOMENT(Z) = -4.4382136E-0%

NONDIM.DRIFT FORCE(X) = =2.092743

NONDIM.DRIFT FORCE(Y) = 1.5355732E-05

DRIFT FORCE(X) = -1480424.

DRIFT FORCE(Y) = 10.86277

KRR AR AR AR AR AR AR AR AR AR AR R R R R AR ARk ko Kk kK ok kK

PERIOD = 11.90000
HEADING = 180.0000

A(ll) = 0.1286606 A(33) = 3.113638
A(55) = 1,120250 A(66) = ~6.7451335E-02
B(11l) = 0.3043473 B(33) =  2.730379
B(55) = 1.194106 B(66) = 0.9537278

SURGE MOTION = 7.2394930E-02 PHASE = 12.62360
HEAVE MOTION = 4.6865162E-02 PHASE = -76.86198

PITCH MOTION = 0.1839830 PHASE = -158.6190

SURGE EX.FORCE = 0.2564688 PHASE = ~130.9018
HEAVE EX.FORCE = 1.029890 PHASE =  68.88496
PITCH EX.FORCE = 0.6901658 PHASE = -19.72369

DRIFT FORCE(X) = -0.7697544
DRIFT FORCE(Y) = +9187415E-06
DRIFT MOMENT(Z) = -4.5415172E-06

NONDIM.DRIFT FORCE(X) = =-2.132740
NONDIM.DRIFT FORCE(Y) = 1.3628242E-05
DRIFT FORCE(X) = -1508719.

DRIFT FORCE(Y) = 9.640734

et R R Ak kAR Rk kR R R R R AR kR kA Rk

PERIOD = 12.70000
HEADING = 180.0000

A(11) = 8.5477225E-02 A(33) = .087097

A(55) = 1.294403 A(66) = -7.8644283E-02

B(11) = 0,2824962 B(33) =  1.811906

B(55) = 1.553260 B(66) = 1.150317

SURGE MOTION = 4.9662489E-02 PHASE = 109.6301
HEAVE MOTION = 0.1341617 PHASE = -85.77682
PITCH MOTION = 9.8325081E-02 PHASE = 140.2582
SURGE EX.FORCE = 0.3125671 PHASE = -99.10809
HEAVE EX.FORCE = 1.528415 PHASE = 60.53459
PITCH EX.FORCE = 0.2145327 PHASE = -142.5464

DRIFT FORCE(X) = -0.7965198
DRIFT FORCE(Y) = 5.1752227E-06
DRIFT MOMENT(2Z) = -3.7233426E-06

NONDIM.DRIFT FORCE(X) = ~2.206899

NONDIM.DRIFT FORCE(Y) = 1.4338867E-05

DRIFT FORCE(X) = =-1561179.

DRIFT FORCE(Y) = 10.14344
RAKRKRAKRKAKKRARA KA KRR AR R KKRRARRRR R AR AR AN

PERIOD = 12.90000



HEADING = 180.0000

A(11) = 8.2183912E-02 A(33) = 3.000446

A(55) = .306777 A(66) = -7.5363462E-02

B(11) = 0.2680535 B(33) = 1.863812

B(55) = 1.440465 B(66) = 1.192955

SURGE MOTION = 5.6202713E-02 PHASE = 118.0304
HEAVE MOTION = 0.1516181 PHASE = -86.18277
PITCH MOTION = 8.8638440E-02 PHASE = 125.8443
SURGE EX.FORCE = 0.3202340 PHASE = -93.74649
HEAVE EX.FORCE =  1.502329 PHASE =  57.46931
PITCH EX.FORCE = 0.3629216 PHASE = -175.2769

DRIFT FORCE(X) = -0.8146660
DRIFT FORCE(Y) 5.6693329E-06
DRIFT MOMENT(Z) = -4.2205820E-06

NONDIM.DRIFT FORCE(X) = -2.257176

NONDIM.DRIFT FORCE(Y) = 1.5707887E-05

DRIFT FORCE(X) = -1596745.

DRIFT FORCE(Y) = 11.11189
KARKRARRRARKARRARAA AR AR R AR KRR R R AR AR AR KRR KRR KRR r

PERIOD = 13.50000
HEADING = 180.0000

A(ll) = 6.3735440E-02 A(33) = 2.910211

A(55) = 1.311278 A(66) = -7.5386621E-02

B(11) = 0.2730480 B(33) = 1.962360

B(55) = 1.325711 B(66) = 1.202362

SURGE MOTION = 0.1164308 PHASE =  137.1028
HEAVE MOTION = 0.2134472 PHASE = -86.82231
PITCH MOTION = 0.1288437 PHASE =  31.53979
SURGE EX.FORCE = 0.3174717 PHASE = -77.22083
HEAVE EX.FORCE = 1.274757 PHASE = 49.84913
PITCH EX.FORCE =  1.031610 PHASE =  151.3049

DRIFT FORCE(X) = -0.8979943
DRIFT FORCE(Y) = 4.9705914E-06
DRIFT MOMENT(Z) = -4.9093337E-06

NONDIM.DRIFT FORCE(X) = -2.488052
NONDIM.DRIFT FORCE(Y) = 1.3771900E-05
DRIFT FORCE(X) = -1760069.

DRIFT FORCE(Y) =  9.742359

KARKARRAAKRR AR AR KRRHR Kk

PERIOD = 13.60000
HEADING = 180.0000

A(11) = 6.1713424E-02 A(33) = 2.902458

A(55) = 1.312975 A(66) = -9.9771023E-02

B(11) = 0.2770682 B(33) = 1.969082

B(55) = 1.315140 B(66) = 1.161969

SURGE MOTION = 0.1306963 PHASE =  139.7508
HEAVE MOTION = 0.2253373 PHASE = -86.43748
PITCH MOTION = 0.1595439 PHASE =  23,13982
SURGE EX.FORCE = 0.3120337 PHASE = -73.67905
HEAVE EX.FORCE =  1.210189 PHASE =  48.91330
PITCH EX.FORCE =  1.146368 PHASE =  148.2650

DRIFT FORCE(X) = -0.9162641
DRIFT FORCE(Y) = 4.6864425E-06



DRIFT MOMENT(Z) = -3.9931879E-06

NONDIM.DRIFT FORCF(X) = =2.538671

NONDIM.DRIFT FORCE(Y) = 1.2984616E-05

DRIFT FORCE(X) = -1795878.

DRIFT FORCE(Y) = 9.185428

RRRRRR R ARk kR R kAR AR KRR AR AR KRR R KRR R Kk k kA

PERIOD = 14,10060

HEADING = 180.0000

A(11) = 5.5993572E-02 A(33) = 2.876217

A(55) = 1.32208 A(66) = -1.9312166E-03

B(11) = 0.2993926 B(33) = 1.977532

B(55) = 1.270134 B(66) = 1.951465

SURGE MOTION = 0.2188288 PHASE = 151.8098
HEAVE MOTION = 0.2953013 PHASE = -81.64592
PITCH MOTION = 0,3624818 PHASE =  3.766045
SURGE EX.FORCE = 0.2793047 PHASE = -50.07932
HEAVE EX.FORCE = 0.7984636 PHASE =  46.68737
PITCH EX.FORCE = 1.679868 PHASE =  137.2020
DRIFT FORCE(X) = -1.018692

DRIFT FORCE(Y) = 4.3319069E-06

DRIFT MOMENT(Z) = -2.7723227E-06

NONDIM.DRIFT FORCE(X) = -2.822466

NONDIM.DRIFT FORCE(Y) = 1.2002312E-05

DRIFT FORCE(X) = -1996636.

DRIFT FORCE(Y) =  8.490538

KRR RRKARKKARRRRARHRRRRRRRR AR KRR R AR AR RRR R AR R AR

PERIOD = 14.25000

HEADING = 180.0000

A(ll) = 5.5427682E-02 A(33) = .870785

A(55) =  1.324567 A(66) = 4.0451944E-02

B(1l) = 0.3062447 B(33) = 1.971868

B(55) =  1.258561 B(66) = 1.795429

SURGE MOTION = 0.2510734 PHASE = 155.1524
HEAVE MOTION = 0.3211171 PHASE = -79.23471
PITCH MOTION = 0.4339815 PHASE = 0.8754120
SURGE EX.FORCE = 0.2741729 PHASE = -40.95905
HEAVE EX.FORCE = 0.6529942 PHASE = 47.78205
PITCH EX.FORCE =  1.813980 PHASE =  134.7364
DRIFT FORCE(X) = -1.051563

DRIFT FORCE(Y) = 4.0517939E-06

DRIFT MOMENT(Z) = -2.4545088E-06

NONDIM.DRIFT FORCE(X) = -2.913539

NONDIM.DRIFT FORCE(Y) = 1.1226210E-05

DRIFT FORCE(X) = -2061063.

DRIFT FORCE(Y) =  7.941516

KR KRR KRR KRR KRR KRR AR KRR kAR AR ARk Rk kR

PERIOD
HEADING

A(11)
A(S55)
B(11)

16.00000

= 180.0000
8.5236453E-02 .A(33) =
1.342509 A(66) =
0.3743421 B(33) =

2.706505
0.2879294
1.640025



B(55) = 1.170005 B(66) = 2.038930

SURGE MOTION = 1.475824 PHASE = 173.7053
HEAVE MOTION =  2,023552 PHASE = -61.86287
PITCH MOTION = 2.557307 PHASE = -45,17549
SURGE EX.FORCE = 0.5328630 PHASE = 33.67559
HEAVE EX.FORCE = 1.657130 PHASE = -166.9177
PITCH EX,FORCE =  1.866152 PHASE =  113.5337
DRIFT FORCE(X) = -2.8753€6

DRIFT FORCE(Y) = 9.9298522E-06

DRIFT MOMENT(2Z) = 3.5075020E-05

NONDIM.DRIFT FORCE(X) = =7.966710

NONDIM.DRIFT FORCE(Y) = 2.7512408E-05

DRIFT FORCE(X) = -5635718.

DRIFT FORCE(Y) = 19.46251

KAKEKKKKRRRRARRIRRARHEREERA R RARARA KRR AR Rk bk

PERIOD = 16.50001

HEADING = 180.0000

A(ll) = 0.1081260 A(33) = 2.536057

A(S55) = 1.341339 A(66) = 0.4472590

B(1l) = 0.3714243 B(33) = 1.543343

B(55) = 1.176442 B(66) = 2.080369

SURGE MOTION = 1.298066 PHASE = 101.4107
HEAVE MOTION = 2.200881 PHASE = -149.9867
PITCH MOTION = 2.109569 PHASE = -140.9731
SURGE EX.FORCE = 0.5817218 PHASE = 43.32428
HEAVE EX.FORCE = 2.289949 PHASE = -161.9712
PITCH EX.FORCE = 1.337995 PHASE = 102.1139
DRIFT FORCE(X) = -2.063266

DRIFT FORCE(Y) = 9.0077401E-06

DRIFT MOMENT(Z) = 4.7552326E-06

NONDIM.DRIFT FORCE(X) = -5.716641

NONDIM.DRIFT FORCE(Y) = 2.4957531E-05
DRIFT FORCE(X) = -4044001.
DRIFT FORCE(Y) =  17.65517

Hhkh RS ARk kR kR AR

Rk kR Rk ko kR Rk

PERIOD = 17.25002

HEADING = 180.0000

A(ll) = 0.1367698 A(33) = 2.153826

A(55) = 1.364162 A(66) = 0.7261683

B(11) = 0.3309265 B(33) = 1.704884

B(55) = 1.209355 B(66) = 2.002148

SURGE MOTION = 0.3292714 PHASE =  123.7356
HEAVE MOTION = 0.5414751 PHASE = -174.1050
PITCH MOTION = 0.3810202 PHASE = -113.2448
SURGE EX.FORCE = 0.5178511 PHASE = 53.28951
HEAVE EX.FORCE = 2.741764 PHASE = =-152.8523
PITCH EX.FORCE = 0.8636039 PHASE = 39.21546
DRIFT FORCE(X) = -0.3292271

DRIFT FORCE(Y) = 1.1852021E-06

DRIFT MOMENT(Z) = 9.5720065E-07

NONDIM.DRIFT FORCE
NONDIM.DRIFT FORCE
DRIFT FORCE(X) =

(X) = -0.9121819
(Y) = 3.2838116E-06
-645285.2



DRIFT FORCE(Y) =  2.322996

B T T P e T T T T ]

PERIOD = 17.50003
HEADING = 180.0000

A(ll) = 0.1416370 A(33) = 2.028884

A(55) = 1.376932 1(66) = 0.8209674

B(11) = 0.3122578 B(33) = 1.874900

B(55) = 1.214462 B(66) = 1.930450

SURGE MOTION = 0.2744223 PHASE = 134.0133
HEAVE MOTION = 0.3797341 PHASE = -178.2793
PITCH MOTION = 0.4059136 PHASE = -86.58398
SURGE EX.FORCE = 0.4666619 PHASE =  54.49652
HEAVE EX.FORCE = 2.714680 PHASE = -149.9380
PITCH EX.FORCE = 1.052823 PHASE = 16.38687

DRIFT FORCE(X) = -0.2763058
DRIFT FORCE(Y) = 1.0781397E-06
DRIFT MOMENT(Z) = 2.8424613E-06

NONDIM.DRIFT FORCE(X) = -0.7655540

NONDIM.DRIFT FORCE(Y) = 2.9871760E-06

DRIFT FORCE(X) = =-541559.4

DRIFT FORCE(Y) =  2.113154

RKRH AR ARRRAARR KRR Rk ARk R AR AR R AR AR R bR A Aok ok kb

PERIOD = 19.00027
HEADING = 180.C000

A(ll) = 0.1234272 A(33) = 1.929877

A(55) = 1.448314 A(66) = 1.181565

B(11l) = 0.2266916 B(33) = 3.372746

B(55) = 1.248812 B(66) = 1.211903

SURGE MOTIOii = 0.2306647 PHASE = 100.8427
HEAVE MOTION = 0.1623340 PHASE = 89.10593
PITCH MOTION = 0.8923169 PHASE = -537.07552
SURGE EX.FORCE = 0.1920011 PHASE = 5.935051
HEAVE EX.FORCE =  1.238492 PHASE = -151.4523
PITCH EX.FORCE = 2.930676 PHASE = -17.20961

DRIFT FORCE(X) = -0.2641097
DRIFT FORCE(Y) = 1.7598387E-07
DRIFT MOMENT(Z) = 3.5563983E-06

NONDIM.DRIFT FORCE(X) = -0.7317626

NONDIM.DRIFT FORCE(Y) = 4.8759432E-07

DRIFT FORCE(X) = -517655.1

DRIFT FORCE(Y) = 0.3449284

HR AR RRRRR KRR AR AR AR AR R R AR R RN AR AR R AR ARk kR Ak A

PERIOD = 21.25284
HEADING = 180.0000

A(1l) = 5,7348430E-02 A(33) = 3.148585
A(55) = 1.704662 A(66) = 1.142604
B(1l) = 0.2016275 B(33) = 4.050815
B(55) = 1.290293 B(66) = 0.4669055
SURGE MOTION = 0.8787446 PHASE =  81.45818
HEAVE MOTION = 0.3370308 PHASE = €3.92249
PITCH MOTION = 1.133340 PHASE = -57.62869

SURGE EX.FORCE = 0.4218294 PHASE = -74.37808
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HEAVE EX.FORCE = 1.70:667 PHASE = 101.5117
PITCH EX.FORCE = 3.991448 PHASE = -26.86558
DRIFT FORCE(X) = -0.4685003

DRIFT FORCE(Y) = 4.4941976E-07

DRIFT MOMENT(Z) = -2.3120779E-07

NONDIM.DRIFT FORCE(X) = -1.298063

NONDIM.DRIFT FORCE(Y) = 1.2451967E-06

DRIFT FORCE(X) = -918260.5

DRIFT FORCE(Y) = 0.8808627

HAAA KA ARARH R KRR A AR RN AR R AR AR AR R R AR A AR

PERIOD = 22.00534

HEADING = 180.0000

A(ll) = 2. 16573245 02 A(33) = 3.575503

A(55) =  1.82038 A(66) = 1.094582

B(11) = 0. 2024144 B(33) = 3.837221

B(55) = 1.256968 B(65) = 0.3480621

SURGE MOTION = 1.226404 PHASE = 82.55656
HEAVE MOTION = 0.3781213 PHASE = 66.15347
PITCH MOTION = 1.167:58 PHASE = -59.84427
SURGE EX.FORCE = 0.5462714 PHASE = ~-83.33867
HEAVE EX.FORCE = 2.112711 PHASE = 96.65406
PITCH EX.FORCE = 4.053880 PHASE = =-31.01726
DRIFT FORCE(X) = -0.5858364

DRIFT FORCE(Y) = 7.8166238E-07

DRIFT MOMENT(Z) = -1.4671841E-06

NONDIM.DRIFT FORCE(X) = -1.623163

NONDIM.DRIFT FORCE(Y) = 2.1657333E-06

DRIFT FORCE(X) = -1148239.
DRIFT FORCE(Y) = 1.532058
Ty

PERIOD = 22.50788

HEADING = 180.0000

A(ll) = -1. 02208961-: 02 A(33) = 3.834136

A(55) = 1.903265 A(66) = 1.063304

B(11} = 0. 2093322 B(33) = 3.623490

B(55) = 1.223420 B(66) = 0.2894277

SURGE MOTION =  1.549247 PHASE =  85.13668
HEAVE MOTION = 0.4001127 PHASE =  70.91006
PITCH MOTION = 1.202109 PHASE = -61.32797
SURGE EX.FORCE = 0.6325737 PHASE = -87.03609
HEAVE EX.FORCE =  2.262950 PHASE = 93.94488
PITCH EX.FORCE = 4.074016 PHASE = -33,78485
DRIFT FORCE(X) = -0.6958893

DRIFT FORCE(Y) = 1.1538474E-06

DRIFT MOMENT(Z) = -1.9713486E-06

NONDIM.DRIFT FORCE(X) = -1.928084

NONDIM.DRIFT FORCE(Y) = 3.1969378E-06

DRIFT FORCE(X) = -1363943.

DRIFT FORCE(Y) =  2.261541

T

23.01134
180.0000

PERIOD =
HEADING =



A(1l) = -4.9484234E-02 A(33) = 4.074243

A(55) =  1.991956 A(66) = 1.033653

B(11) = 0.2244929 B(33) =  3.362293

B(55) = 1.181004 B(66) = 0.2429007

SURGE MOTION =  1.993473 PHASE =  90.78033
HEAVE MOTION = 0 4120668 PHASE = 80.2
PITCH MOTION = .260365 PHASE = -62.

SURGE EX.FORCE = 0 7183252 PHASE = -89.62651
HEAVE EX.FORCE =  2.359040 PHASE =  91.40507
PITCH EX.FORCE =  4.082949 PHASE = -36.37818
DRIFT FORCE(X) = -0.8484316

DRIFT FORCE(Y) 1.4485050E-06

DRIFT MOMENT(Z) = -2.4086157E-06

NONDIM.DRIFT FORCE(X) = =-2.350729

NONDIM.DRIFT FORCE(Y) = 4.0133386E-06

DRIFT FORCE(X) =
DRIFT FORCE(Y) =

-1662926.
2.839070

AR AR AR AR AR AR R AR R AR R AR RARA AR R AR AR AR AR AN AR

PERIOD = 23.41493

HEADING = 180.0000

A(1l) = -8.7135443E-02 A(33) =  4.255849

A(55) = .068672 A(66) = 1.011464

B(11) = 0.2445227 B(33) = 3.120078

B(55) = 1.140095 B(66) = 0.2125662

SURGE MOTION = 2.455363 PHASE =

HEAVE MOTION = 0.4044102 PHASE =

PITCH MOTION = 1.330886 PHASE = 9
SURGE EX.FORCE = 0.7860499 PHASE = -91.20207
HEAVE EX.FORCE =  2.402791 PHASE =  89.57306
PITCH EX.FORCE = 4.082338 PHASE = =-38.24988
DRIFT FORCE(X) = -0.9904994

DRIFT FORCE(Y) = 2.3797968E-06

DRIFT MOMENT(Z) = -3.1949023E-06

NONDIM.DRIFT FORCE(X) = -2.744353

NONDIM.DRIFT FORCE(Y) = 6.5936465E-06

DRIFT FORCE(X) = -1941379.

DRIFT FORCE(Y) =  4.664402

AAKARARRR KRR RRRRKARR KRR ARRR R KRR R R AR AR AR A

PERIOD = 23.61706

HEADING = 180.0000

A(l1l) = -0.1084876 A(33) = 4.344030

A(S5) =  2.109493 A(66) = 1.000826

B(11) = 0.2580944 B(33) =  2,984919

B(55) = 1,116828 B(66) = 0.1992414

SURGE MOTION =  2.710971 PHASE =  105.2011
HEAVE MOTION = U.3889936 PHASE 102.8247
PITCH MOTION = 1.372282 PHASE = =-60.14774
SURGE EX.FORCE = 0.8200877 PHASE = -91.87019
HEAVE EX.FORCE = 2.413011 PHASE = 88.78129
PITCH EX.FORCE = 4.078914 PHASE = -39.09654
DRIFT FORCE(X) = .046431

DRIFT FORCE(Y) = 2.6374098E-06

DRIFT MOMENT(Z) = -3.5638466E-06



NONDIM.DRIFT FORCE(X) = =-2.899321
NONDIM.DRIFT FORCE(Y) = 7.3074093E-06
DRIFT FORCE(X) = =-2051004.

5.169323

DRIFT FORCE(Y) =

AR AR A AR AR AR AR AR AR R IR AR R AR R AR RN A R R AR

PERIOD = 24.02203

HEADING = 180.0000

A(1l) = -0.1569304 A(33) =  4.515299

A(55) =  2.197542 A(66) = 0.9807277

B(11) = 0.2946613 B(33) = 2.679369

B(55) = 1.063038 B(66) = 0.1758455

SURGE MOTION = 3.144349 PHASE = 122.0770
HEAVE MOTION = 0.3206529 PHASE =  130.6197
PITCH MOTION =  1.436704 PHASE = -54.92307
SURGE EX.FORCE = 0.8896191 PHASE = -93.01843
HEAVE EX.FORCE = 2.405712 PHASE = 87.55592
PITCH EX.FORCE =  4.064487 PHASE = -40.57574
DRIFT FORCE(X) « -1.006484

DRIFT FORCE(Y) = 2.6873013E-06

DRIFT MOMENT(Z) = -3.7133782E-06

NONDIM.DRIFT FORCE(X) = -2.788640

NONDIM.DRIFT FORCE(Y) =
DRIFT FORCE(X) =
DRIFT FORCE(Y) =

7.4456420E-06

-1972708.
5.267110

AR AR AR KRR AR AR RRARR AR R ARSI AR AR AR AR AR AR AR R AR

PERIOD = 24.63164

HEADING = 180.0000

A(ll) = -0.2464055 A(33) = 4,751124

A(55) =  2.351381 A(66) = 0.9531407

B{11) = 0.3850290 B(33) =  2.092865

B(55) = 0.9550079 B(66) = 0.1472435

SURGE MOTION = 2.981128 PHASE = 153.9076
HEAVE MOTION = 0.1731873 PHASE = -152.1879
PITCH MOTION =  1.339232 PHASE = -43.54454
SURGE EX.FORCE =  1.003944 PHASE = -94.25017
HEAVE EX.FORCE =  2.296605 PHASE =  87.08833
PITCH EX.FORCE = 4.014759 PHASE = -42.10704
DRIFT FORCE(X) = -0.3716392

DRIFT FORCE(Y) = 1.0126490E-06

DRIFT MOMENT(Z) = -2.6656157E-06

NONDIM.DRIFT FORCE(X) = -1.029692

NONDIM.DRIFT FORCE(Y) = 2.8057225E-06

DRIFT FORCE(X) = -728412.8

DRIFT FORCE(Y) = 1.984792

AR R AR R KRR RARRRRR AR AR AR R AR R AR AR AR AR AR AR,

PERIOD = 25.03972

HEADING = 180.0000

A(11l) = -0.3176007 A(33) = 4.869928
A(55) = 2.473764 A(66) = 0.9362532
B(11) = 0.4853886 B(33) = 1.5651
B(55) = 0.8505877 B(66) = 0.1315560
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SURGE MOTION = 2.387126 PHASE = 171.7274
HEAVE MOTION = 0.1716435 PHASE = -90.12004
PITCH MOTION = 1.176655 PHASE = ~38.80847
SURGE EX.FORCE =  1.094362 PHASE = -94.56596
HEAVE EX.FORCE = 2.114875 PHASE = 88.23347
PITCH EX.TORCZ = 3.948908 PHASE = -42.50642
DRIFT FCRCE(X) = 1.2398577E-02

DRIFT FORCE(Y) = -1.2122415E-07

DRIFT “CMENT(Z) = -2.0393297E-06

NONDIM.DRIFT FORCE(X) = 3.4352444E-02
NONDIM.DRIFT FORCE(Y) = -3.3587287E-07

DRIFT FORCE(X) =
DRIFT FORCE(Y) = -

24301.21
0.2375993

RRARR AR AR AR LSRR R AR KRR RARRRR AR AR AR AR AR AR AR AR AR AR

PERIOD = 25.65485

HEADING =  180.0000

A(11) = -0.4231663 A(33) = 4.838224

A(55) =  2.687837 A(66) = 0.9134930

B(11) = 0.7524582 B(33} = 0.4305249

B{55) = 0.5892703 B(66; = 0.1121489

SURGE MOTION =  1.442527 PHASE = -167.8974
HEAVE MOTION = 0.2185615 PHASE = -51.36612
PITCH MOTION = 0.9490985 PHASE = -36.04193
SURGE EX.FORCE =  1.270255 PHASE = -93.34892
HEAVE EX.FORCE =  1.520293 PHASE =  93.84814
PITCH EX.FORCE =  3.744205 PHASE = -41.81175
DRIFT FORCE(X) = 8.3404429E-92

DRIFT FORCE(Y) = -6.5206387E-07

DRIFT MOMENT(Z) = -1.3196238E-06

NONDIM.DRIFT FORCE(X) = 0.2310367

NONDIM.DRIFT FORCE(Y) = —1 8066579E-06

DRIFT FORCE(X) = 163472

DRIFT FORCE(Y) = -1. 279045

PO PRTTe
PERIOD =  26.27417

HEADING =  180.0000

A(11) = -0.3827319 A(33) = 3.918275

A(55) =  2.844638 A(66) = 0.8929142

B(11) = 1.264261 B(33) = -1.165203

B(55) = 6.1639268E-02 B(66} = 9.6358091E-02
SURGE MOTION = 0.4844470 PHASE = -142.3473
HEAVE MOTION = 0.2461486 PHASE = -51,9919¢
PITCH MOTION = 0.7136692 PHASE = -35.89342
SURGE EX.FORCE =  1.507113 PHASE = -87.19568
HEAVE EX.FORCE = 0.1256306 PHASE =  119.9101
PITCH EX.FORCE = 231 7sz PHASE = =-39.98450
DRIFT FORCE(X) = —0 561017

DRIFT FORCE(Y) = 9. 1931874:-: 07

DRIFT MOMENT(Z) = -9.8334442E-07

NONDIM.DRIFT FORCE(X) = -1.554397

NONDIM.DRIFT FORCE(Y) = 2.5472177E-06

DRIFT FORCE(X) = -1099594.

DRIFT FORCE(Y) =  1.801924
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PERIOD = 26.48167
HEADING = 180.0000

A(1ll) = -9.2563965 A(33) = 3.173485

A(55) = 2.811890 A(66) = 0.8865432

B(1ll) = 1.480782 B(33) = -1.622577

B(55) = -0.1925129 B(66) = 9.1763414E-02
SURGE MOTION = 0.1334889 PHASE = -109.4232
HEAVE MOTION = 0.2757234 PHASE = -57.32018
PITCH MOTION = 0.6220089 PHASE = -38.10844
SURGE EX.FORCE =  1.583952 PHASE = -83.16145
HEAVE EX.FORCE = 0.6359894 PHASE = -69.05405
PITCH EX.FORCE =  2.942208 PHASE = -40.28313

DRIFT FORCE(X) = -0.9183218
DRIFT FORCE(Y) = 2.1762523E-06
DRIFT MOMENT(Z) = -3.5625231E-07

NONDIM.DRIFT FORCE(X) = -2.54

NONDIM.DRIFT FORCE(Y) = 6. 02969115 06

DRIFT FORCE(X) = -1799911.

DRIFT FORCE{Y) = 4.265455
oy

PERICD = 26.68975

HEADING = 180.0000

A(l1l) = -3 29910785-02 A(33) = 2.165104

A(55) = 208 A(66) = 0.8803591

B(1ll) = 1 670278 B(33) = -1.813437

B(55) = -0.4545512 B(66) = 8.7442666E-02
SURGE MOTION = 0.2893263 PHASE = 33.08762
HEAVE MOTION = 0.3296922 PHASE = -61.19234
PITCH MOTION = 0.5344391 PPLSE = -43.90807
SURGE EX.FORCE =  1.637496 PHASE = -77.94830
HEAVE EX.FORCE =  1.546403 PHASE = -58.41347
PITCH EX.FORCE =  2.605600 PHASE = -42.70970
DRIFT FORCE(X) = -1.187797

DRIFT FORCE(Y) 3.0306649E-06

DRIFT MOMENT(Z) = 6.0593794E-07

NONDIM.DRIFT FORCE(X) = -3.291001

NONDIM.DRIFT FORCE(Y) = 8.3969917E-06

DRIFT FORCE(X) = -2328082.

DRIFT FORCE(Y) = 5.940103
RRKHKKARKRARKHARE R KR KRE R KRR KRR KRR R H AR Ak

FERIOD = 27.10773
HEADING = 180.0000

5.1602822E-02

0.6201231 A(33) =
2.156558 A(66) = 0.8688176
) 1.722938 B(33) = -0.8090822

B(55) = -0.7562411 ,B(66) = 7.9631351E-02
SURGE MOTION = 1.0215 PHASE = 66.04991
HEAVE MOTION = 0. 49714,:14 PHASE = =-57.95239
PITCH MOTION = 0.4827384 PHASE = -67.56287
SURGE EX.FORCE = 1.599567 PHASE = -65.76749

HEAVE EX.FORCE = 3.497462 PHASE = -36.57304
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2.150258 -59.36693
=~ -0.8198050

2.3704747E-06

1.6914228E-06

PITCH EX.FORCE =
DRIFT FORCE(X)

DRIFT FORCE(Y) =
DRIFT MOMENT(Z) =

PHASE =

NONDIM.DRIFT FORCE(X) = -2.271415
NONDIM.DRIFT FORCE(Y) = 6.5678182E-06
DRIFT FORCE(X) = -1606818.

DRIFT FORCE(Y) = 4.646131

EEARRREARAAR R AR RN AR AR KRR A RN R AR R A AR AR RAR AR

PERIOD = 27.52836

HEADING = 180.0000

A(11) = 1.100476 A(33) = -0.6978253

A(S5) = 1.631363 A(66) = 0.8579154

B(11) = 1.297312 B(33) = 1.229930

B(55) = -0.5732459 B(66) = 7.2665028E-02

SURGE MOTION =  1.471505 PHASE = 87.89336
HEAVE MOTION = 0.6203058 PHASE = -46.53110
PITCH MOTION = 0.6079775 PHASE = -80.44890
SURGE EX.FORCE =  1.378362 PHASE = -56.52956
HEAVE EX.FORCE =  4.911064 PHASE = ~-16.61108
PITCH EX.FORCE = 2.445283 PHASE = =77.06796
DRIFT FORCE(X) = 5.2996572E-02

DRIFT FORCE(Y) = -1.3831197E-08

DRIFT MOMENT(Z) = 5.6305834E-07

NONDIM.DRIFT FORCE(X) = 0.1468364

NONDIM.DRIFT FORCE(Y) = -3.8321769E-08

DRIFT FORCE(X) = 103873.3

DRIFT FORCE(Y) = -2.7109146E-02
D

PERIOD = 27.73975

HEADING = 180.0000

A(ll) = 1.188425 A(33) = -0.5260917

A(55) = 1.489406 A(66) = 0.8527726

B(11) = 1.048208 B(33) = 2.223159

B(55) = -0.3988609 B(66) = 6.9484539E-02
SURGE MOTION = 1.574234 PHASE = 95.99165
HEAVE MOTION = 0.6613620 PHASE = -40.98555
PITCH MOTION = 0.6692080 PHASE = -81.25737
SURGE EX.FORCE = 1.254201 PHASE = -54.38551
HEAVE EX.FORCE = 5.319924 PHASE = -8.910408
PITCH EX.FORCE = 2.698105 PHASE = -80.54503
DRIFT FORCE(X) = 0.2309085

DRIFT FORCE(Y) = -8.7154172E-07

DRIFT MOMENT(Z) = ~1.9270342E-07

NONDIM.DRIFT FORCE(X) = 0.6397728

NONDIM.DRIFT FORCE(Y)
DRIFT FORCE(X) =

DRIFT FORCE(Y) = ~-1.

= -2.4147600E-06

452580.8

708222

RRAA AR AR AR R AR AR KRR AR AR AR RN R AR R AR KRR

PERIOD =
HEADING =

28.16478

180.0000
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A(11) = 1.182285 A(33) = 0.2085297

A(55) = 1.305164 A(66) = 0.8427998

B(11) = 0.6589920 B(33) = 3,336414

B(55) = -8.6192511E~02 B(€6) = 6.3585751E-02

SURGE MOTION = 1.638209 PHASE = 107.3401
HEAVE MOTION = 0.7083383 PHASE = -32.12775
PITCH MOTION = 0.7465847 PHASE = -79.81175
SURGE EX.FORCE = 1.052454 PHASE = =-54.26161
HEAVE EX.FORCE =  5.759504 PHASE =  2.111839
PITCH EX.FORCE = 3.104453 PHASE = =-82.36244
DRIFT FORCE(X) = 0.2300374

DRIFT FORCE(Y) = -8.3667646E-07

DRIFT MOMENT(Z) = -1.3243248E-06

NONDIM.DRIFT FORCE(X) = 0.6373592
NONDIM.DRIFT FORCE(Y) = -2.3181597E-06
DRIFT FORCE(X) = 450873.3

DRIFT FORCE(Y) = -1.639886

REARKRRRARA KRR R AR R R KRR KRR RA A AR AR AR A AR

PERIOD = 28.70066

HEADING = 180.0000

A(11l) = 1.063126 A(33) = 1.124389

A(S5) = 1.434289 A(66) = 0.8313558

B(1l) = 0.3809553 B(33) = 3.883319

B(55) = 0.1566763 B(66) = 5.7095718E-02

SURGE MOTION = 1.609999 PHASE = 115.2526
HEAVE MOTION = 0.7358965 PHASE = -24.77085
PITCH MOTION = 0.7832537 PHASE = -77.52126
SURG: EX.FORCE = 0.9015694 PHASE = -58.25960
HEAVE EX.FORCE = 5.985287 PHASE = 10.05864
PITCH EX.FORCE =  3.392599 PHASE = -82.16647
DRIFT FORCE(X) = 9.0601675E-02

DRIFT FORCE(Y) = -3.9383150E-07

DRIFT MOMENT(Z) = -1.3683347E-06

NONDIM.DRIFT FORCE(X) = 0.2510279

NONDIM.DRIFT FORCE(Y) = -1.0911796E-06
DRIFT FORCE(X) = 177579.3

DRIFT FORCE(Y) = -0. 7719097

*r *hx

KRR AR ARA

PERIOD = 29.24207

HEADING = 180.0000

A(11) = 0.9421501 A(33) = 1.817028

A(55) = 1.512595 A(66) = 0,8206640

B(1l) = 0.2359848 B(33) = .024405

B(55) = 0.2830066 B(66) = 5. 1369470E-02
SURGE MOTION = 1.555735 PHASE = 119.3112
HEAVE MOTION = 0.7522381 PHASE = =-19.97897
PITCH MOTION = 0.7888267 PHASE = -76.00623
SURGE EX.FORCE = 0.8230895 PHASE = -63.34042
HEAVE EX.FORCE = 6.103336 PHASE = 14.39177
PITCH EX.FORCE =  3.537306 PHASE = -81.92569
DRIFT FORCE(X) = -1.5565186E-03

DRIFT FORCE(Y) = -1.2938006E-07

DRIFT MOMENT(Z) = -1.5175974E-06




23
NONDIM.DRIFT FORCE(X) = -4.3126093E-03 .

NONDIM.DRIFT FORCE(Y) = -3.5847029E-07
DRIFT FORCE(X) = -3050.776
DRIFT FORCE(Y) = -0.2535849

RERARRRRRRRARRRRR AR AR RRRARARRRAR RN RR AR AR AR AR AA

PERIOD = 30.34333
HEADING = 180.0000

A(1l) = 0.7684965 A(33) = 2.703272

A(55) = 1.651726 A(66) = 0.8015384

3(11) = 0.1091132 B(33) = 3.,942914

B(55) = 0.3721719 B(66) = 4.1833557E-02

SURGE MOTION = 1.462135 PHASE = 122.1273
HEAVE MOTION = 0.7772608 PHASE = -14.31600
PITCH MOTION = 0.7676228 PHASE = -74.72955
SURGE EX,FORCE = 0.7588099 PHASE = -71.34511
HEAVE EX.FORCE =  6.292231 PHASE =  17.97323
PITCH EX.FORCE = 3.639745 PHASE = -82.37506

DRIFT FORCE(X) = -6.8652436E-02
DRIFT FORCE(Y) = 1.2460151E-07
DRIFT MOMENT(Z) = -9.7919803E-07

NONDIM.DRIFT FORCE(X) = -0.1902137

NONDIM,DRIFT FORCE(Y) = 3 4523049E-07

DRIPT FORCE(X) = -134558.

DRIFT FORCE(Y) = 0. 2442190
KAAKRRRKRARRR R RRAKR KK ARA KK RAAA KRR KRR RA AR AR KRR AR

PERIOD = 30.90411
HEADING = 180.0000

A(11) = 0.7086224 A(33) = 3.001352

A(55) = 1.704812 A(66) = 0.7928462

B(11) = 7.9429023E-02 B(33) = 3.852900

B(55) = 0.3802421 66) = 3.7824165E-02

SURGE MOTION = 1.427968 PHASE =  122.2878
HEAVE MOTION = 0.7886963 PHASE = -12.51565
PITCH MOTION = 0.7515257 PHASE = -74.57765
SURGE EX.FORCE = 0.7442636 PHASE = -75.03093
HEAVE EX.FORCE = 6.390761 PHASE = 18.53978
PITCH EX.FORCE =  3.648444 PHASE = -82.91093

LRIFT FORCE(X) = =7.7003114E-02
DRIFT FORCE(Y) = 1.5606898E-07
DRIFT MOMENT(Z) = -9.5850589E~07

NONDIM.DRIFT FORCE(X) = -0.2133507
NONDIM.DRIFT FORCE(Y) = 4.3241664E-07
DRIFT FORCE(X) = -150926.1

DRIFT FORCE(Y) = 0.3058952

e

PERIOD = 32.04819
HEADING = 180.0000

A(l1l) = 0. 6220578 A(33) = 3.444352
A(S5) = 1.784179 A(66) = 0.7769696
B(11) = 4. 61590852 02 B(33) = 3.660193
B(55) = 0.3673845 B(66) = 3.1016050E-02

SURGE MOTION = 1.379750 PHASE =  121.5456
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PHASE = -9.977066

HZAVE MOTION = 0.8103246

PITCH MOTION = 0.7167014 PHASE = -74.73541
SURGE EX.FORCE = 0.7253001 PHASE = -79.88075
HEAVE EX.FORCE = 6.601376 PHASE = 18.57285
PITCH EX.FORCE = 3.627239 PHASE = -84.27519
DRIFT FORCE(X) = -7.7546034E-02

DRIFT FORCE(Y) = 1.7816780E-07

DRIFT MOMENT(Z) = -8.1580168E-07

NONDIM.DRIFT FORCE(X) = -0.2148605

NONDIM.DRIFT FORCE(Y) = 4.9364530E-07

DRIFT FORCE(X) = -151994.1

DRIFT FORCE(Y) = 0.3492089

Ktk k ko R Rk R kA kR Rk ok k ok kAR Rk AR Rk Rk kKK ok h ok

PERIOD = 32.63234

HEADING = 180.0000

A(1l1l) = 0.5901325 A(33) = 3.616407

A(55) = 1.813407 A(66) = 0.7697201

B(1ll) = 3.6412328E-02 B(33) = 3.565932

B(55) = 0.3537261 B(66) = 2.8125452E-02
SURGE MOTION =  1.363367 PHASE =  120.8947
HEAVE MOTION = 0.8204814 PHASF = -9.050644
PITCH MOTION = 0.6990978 PHASE = -74.94415
SURGE EX.FORCE = 0.7175267 PHASE = -81.77094
HEAVE EX.FORCE = 6.711522 PHAGE = 18.27949
PITCH EX.FORCE =  3.604810 PHASE = -85.03099
DRIFT FORCE(X) = -7.4537806E-02

DRIFT FORCE(Y) 1.7258093E-07

DRIFT MOMENT(Z) = -7.5108477E-07

NONDIM.DRIFT FORCE(X) = -0.2065201
NONDIM.DRIFT FORCE(Y) = 4.7816593E-07
DRIFT FORCE(X) = -146094.1

DRIFT FORCE(Y) = 0.3382586

KRR AR R KRR R KRR AR KA KR AR AR A Ak Ak K Kk kA K

PERIOD = 33.22512

HEADING = 180.0000

A(l1l) = 0.5632117 A(33) = 3.767319

A(55) = 1,837530 A(66) = 0.7628774

B(11) = 2.9180052E-92 B(33) =  3.475045

B(55) = 0.3379664 3(66) = 2.5524773E-02
SURGE MOTION = 1.350372 PHASE = 120.1388
HEAVE MOTION = 0.8301599 PHASE = -8.270882
PITCH MOTION = 0.6817353 PHASE = -75.19827
SURGE EX.FORCE = 0.7099004 PHASE = -83.42531
HEAVE EX.FORCE = 6.823321 PHASE = 17.87849
PITCH EX.FORCE 3.577482 PHASE = -85.80290
DRIFT FORCE(X) -7.0767097E-02

DRIFT FORCE(Y) 1.6923470E-07

DRIFT MOMENT(Z) = -6.4887053E-07

NONDIM.DRIFT FORCE(X) = -0.1960727

NONDIM.DRIFT FORCE(Y) = 4.6889457E-07

DRIFT FORCE(X) = -138703.5

DRIFT FORCE(Y) = 0.3317000

B e L Ll



PERIOD = 34,438
HEADING = 180. 01

A(11)
A(55)
B(11)
B(55)
SURGE
HEAVE
PITCH
SURGE
HEAVE
PITCH
DRIFT
DRIFT
DRIFT

= 0.5207458
= 1.873198
= 1.9428670
= 0.3037479
MOTION = 1
MOTION = 0.
MOTION = 0
EX.FORCE =

EX.FORCE =

EX.FORCE =

FORCE(X) =
FORCE(Y) =
MOMENT(Z) =

06
000

E-02 B

R

.332985
8480464

.6480946

0.6942537
.049265
.512018
-6.2529884E-02
.5289093E-07
-5.2768371E-07

e

-

fu

4.021955
0.7503566
3.303639
2.1076541E-02
PHASE = 118.4607
PHASE = -7.038033
PHASE = -75,78218
PHASE = -86.20634
PHASE = 16.88271
PHASE = -87.35855

NONDIM.DRIFT FORCE(X) = -0.,17325
NONDIM.DRIFT FORCE(Y) = 4.23611

DRIFT
DRIFT

FORCE(X) =
FORCE(Y) =

-122558.6
0.2996662

01
28E-07

T
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MAIN SUBROUTINES IN PROGRAM DPORT2.FOR
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Brief Description of Main Subroutines
in
Program DPORT

(in order of occurrence and with pertinent equations
referenced from the text)

CHART

PRNT1

LINK1

PHI78

GINVER

POTEN

AMASS

EXFOR

computes the characteristics of the floating body

coordinates of the centroids of the panels
® normals

panel surface area
* restoring coefficient
e volume
e x-coordinate of center of buoyancy
* wetted surface area
e water plane area
(reads input file and calls subroutine VDOT)
prints to a file the data of the characteristics of
the floating body
computes elements of the Green's function matrix
(calls ROOTK, VSUB, GS2, GI2)
calculates the PHI7, symmetric part, and PHI8, the
anti-symmetric part
computes inverse of matrix DG and source Q
(calls INV)
computes the potential
(calls MPRD)
equation 4.23
computes added mass and damping coefficients
equations 4.19 and 4.20
computes the exciting force
equation 4.21
computes the response amplitude
(calls INV)
equation 4.22



QTOTAL

DRIFT

MPRD

calculates the total Q for drifting force
equation 4.33

calculates drifting force

(calls SIR)

equations 4.36 and 4.37

calculates Green's function by integral form
(calls DG16)

calculates Green's function by series form

computes R=AxB where A(NxM),B(MxL)
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