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ABSTRACT

‘The general purpose of forecasting is to provide the best estimates of what will
happen at specified points in time in the future. In hydie" gy, for cxample. forecasts of
riverflows are often used for operational planning of reservoir and flood control systems.

Since, even modest improvements in the operation of a large reservoir system can result

in multi-million dollar savings per year, choosing a mocel which produces reliable and
accurate forceasts is therefore essential to the elfficient operation of the svsiem. In this

study, monthly and quarterly discharge data of Newfoundland rivers were used Lo

foreeast future flows using four different statistical approaches: conventiorai Box and

Jenkins's autoregressive integrated moving average (ARIMA). exponential smoothing,

periodic autoregressive (PAR), and Harvey's new structural time series (NSM). Each
monthly riverflow data was divided into three short term series to study forecasting
aceuracy. Ten quarterly series were used to predict Mows for three forecasting scenarios
and thirty monthly scries were considered for 3 month, 6 month. 9 month and 12 month
ahead forecast horizons. Forecast performance was assessed using the mean absolute
percentage error (MAPE) criterion.

Based on the MAPE criterion, it is concluded that forecasts using the NSM

approach for short term monthly riverflow data in general are better than ARIMA,

ial ing and PAR For quarterly data, forecasts using the
exponential smoothing approach in general are better than NSM, ARIMA and PAR

approaches.
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GLOSSARY

ure that balunees: model

AIC (Akaike Information Criterion) The AIC is the m

complexity and goodness-of-fit to the historical data. The minimizaiion off AIC measure,

determines the order of the models.

Autocorrelation Coefficient The autocorrelation coefficient measures the extent to which
the current value of the series depends on past values.

Autoregressive (AR) Process A stochastic process in which current value depends on

lagged previous terms and a disturbance term is called an autoregressive process.

BIC (Bayes Information Criterion) The BIC, like AIC, is a figure of merit used in the

selection of model order. But compared to AIC, it penalizes model complexity more,

Deseasonalization The process of removing seasonal effeets from a s

s by applying

a ion is called

Deterministic A deterministic process is a process that can be predicted with certainty
from its past.

Differencing Differcncing is the transformation of a time series involving (he

replacement of every value of the se differen

s by i

from the previous value.
Forecast Horizon The nuniber of periods that are forecasted.
Heteroscedasticity The process in which the variance and covariance of the errors is

changing over time.



Homoscedasticity A homoscedastic process is onc in which the variances and

covariances are unchanging over time.

Hyper The T arc the variance parameters which determine

how rapidly the various unobserved components, such as the trend and seasonal, evolve

over time,

Integration A time series is integrated with degree  if d is the minimum degree of

differencing that renders the time series stationary.

IOR (InferQuartile Range) The IQR measures the range of the central 50% of the da
and s not influenced by the 25% at either end.

Eag The difference in time units of a series value and a previous series value.

Lead The difference in time units of a series value and a future scries value.
MAPE (Mean Absolute Percentage Error) MAPE is a measure of the accuracy of

forecasts of a time series

M ic that is used as an indication of model fit. It is

(Mean Square Error) A stati

caleulated by taking the square root of the average of squared residual erros

Model Complesity Model complexity is measured by the number of parameters, or
effective number of parameters that must be fitted to the data.
Moving Average (MA) Process The process in which future data points are expressed

as dincar combinations of past errors.

Ockham's razor Ockham's razor or the principle of parsimony. is defined as, “In a

choice among competing hypotheses, other things being equal, the simplest is preferred.”

Residual The difference between a predicted value and a true value is called residual.



Robust A robust statistical method is

a method which is insensitive 0 moderate

from ying statistical ass

Seasonality Periodic pattern of behaviour of the time series is called seasonality. For

example monthly data exhibits a seasonality of 12 months.

Stationarity A stationary time series exhibits similar statist

al behaviour in terms of,

say mean, standard deviation, etc.. at cach point in time.

Stochastic A process is said (o be stochastic when its future cannot be predicted e

from its past, i.e., a new uncertainty enters at cach point in time,

Univariate A univariate method is method involving only one va

le at a time
White Noise (WN) A time series that is identically, independently distributed normally

(iid), with zero mean. The autocorrelation function is

ero for all lags except at lag zero,



Chapter 1

INTRODUCTION

Wehster's dictionary defines forecasting as an activity "to calculate or predict
some future event or condition, usually as a result of rational study or analysis of
pertinent data.”

In the design, planning and operatior” of water resources systems, one often necds
good estimates of” the future behaviour of key hydrological variables. For example, when
operating a reservoir to serve multiple purposes such as hydroclectrical power generation,

ational uses, etc., one may require forecasts of projected flows for

water supply, red
upcoming time periods so that mitigation measures can be taken in case of shortfalls.
‘The objective of forecasting is thus to predict future conditions with minimal
forecast error. Forecast methods may be broadly classified into gualitative and quanti-
tative techniques. Qualitative forecasts are intuitive, largely educated guesses that may
or may not depend on past data, Forecasts that are based on mathematical or statistical
models are called guantitative. In general, a quantitative forecast system consists of two

major components, as illustrated in Fig. 1.1, At the first stage, the model-building phase,

ng model is constructed from pertinent data and available theory. At the second



stage, the forecasting phase. the final model is used to obtain the forec:

The stability

of the forecast model can be assessed by checking the for s against the new

observations. Among many other forecast criteria. the choice of the forecast model or
technique depends on (1) degree of accuracy required, (2) the forecast horizon, (3)
acceptable cost of producing the forecasts, (4) degree of complexity required, and (5)

data available (Abraham and Ledolter, 1983).

Mode! Buikding Phas

nd /o
Rudes

Forecasting Phase

; }

Disgnostic
Modsl checking Forecant
soecitication esmation (™| s the model | ves updating
sdocume?_| |
|
!
TP |
'
1
'
|
Figure 1.1 Conceptual Framework of a Forecasting System

(from Abraham and Ledolter, 1983)

1.1 Forecasting Approaches

Time series analysis belongs to a major quantitative statistical technique used in

the ion of i ation on gic and water resources random variables from

observed data to provide forecasts of future conditions, for example riverflows, rainfall,



etc. Empirical studies have shown that there is no single best forecasting method
applicable to all situations (Goodrich 1989).
To determine the best forecasting model. it is necessary to critically examine the

available data. For the riverflow data the three characteristics or

ol the series are tendency, seasonality and stochasticity ( shown in Fig. 1.2). Tendency

is the trend in a series, due to inconsistency or nonhomogeneity of available data:

ity is the deterministic cyclic of the time series caused by cycles of

nature and Stochasticity is the outcome or effect of many casual factors of natural random

processes. The physical causes and sources of these three basic components usually affect

the selection of best mathematical method to be used in time series analysis.
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() TREND = RANDOM (d) TREND = CYCLE = RANDOM
Figure 1.2 Components of Riverflow Time Series

(from Gilbert, 1987)



Quantitative forecasting methods are further classified into univariate methods and

amodel 1o the historical

multivariate methods. Univariate methods are based on fitting

data of a given time series and extrapolating to obtain forecasts. There are many
univariate methods available which include among others, exponential smoothing, the
Box and Jenkins method, and various structural approaches. The most commonly used

approach, for riverflow forec

is the Box and Jenkins (1976) multiplicative

autoregressive integrated moving average (ARIMA) ¢l of models. Another approach

is the periodic autoregressive (PAR) modelling approach which is an extension of the

nonseasonal autoregressive (AR) models of the Box and Jenkins approach (Hipel and

McLeod, 1994). The Box and Jenkins approach while it has impres

ive st al features
has no direct interpretation as it is not consistent with the physical properties of the
scries. The classical structural time series analysis of Yevjevich (1972) is consistent with

the physical characteristics such as trend, seasonality, cte., of the series but employs a

different statistical approach. In his approach the components of physical ch

acteristics
are seen as deterministic functions of time and not stochastic. The new structural time
series (NSM) method of Harvey (1989) differs from the classical approach in statistical
formulation. In this approach the components of physical characteristics such as trend,
seasonality, etc., are stochastic and they represent various unobserved variables of (he

state of the system. In the exponential smoothing (EXS) approach of Brown and Holt

(1950), the model components and parameters have an intuitive meaning as the

assumed to be modeled by one, two, or three that represent, respectively,

the level, trend and seasonality of the serics.



The multivariate methods become relevant when the design, planning and
operation of a water resource system involves several hydrologic variables. The methods
which describe the joint behaviour of several time series which may have mutually

i i ips are called ivariatc methods. The iples of time series that

can be analyzed and modelled by multivariate methods are the series of annual or
monthly precipitation at various gauging stations, the series of annual er monthly
streamflows at various points of a river. The multivariate methods arc also used to
analyze a riverflow time series by using, rainfall time series, temperature-time sequence
and or a riverflow time series in the vicinity, as explanatory variables. Various methods
have heen proposed to analyze multivariate series, for example, Fiering (1964), Matalas
(1967). Matalas and Wallis (1971), Mejia (1971), 0'Connell (1974) and others. In this
study only univariate methods are considered because there arc no explanatory variables
available and the streamflows are measured at a single hydrometric station over a long
period of time. Hence the only variable for monthly or quarterly riverflow series is time

and therefore multivariate models are not discussed herein.

1.2 Objective of Thesis

The primary objective of this thesis is to determine the best statistical forecasting
method. for Newfoundland rivers. Different forecast horizons and scenarios are used to
choose the best model. For the monthly riverflow data, the forecast horizons of 3 month,
6 month. 9 month and 12 month ahead periods will be used in the comparison of the

forecasting methods. In addition for the quarterly series, the accuracy of forecasts for



critical low flow and high flow periods by using different forecast scenarios which differ

ed.

in the period of record used will be ass

In this forecasting study, the above mentioned four approaches namely ARIMA,

PAR, NSM and EXS are used to amalyze. model and forecast monthly and quarterly

flows of Newfoundfand rive The models are fitted to the first portion of time series
and then used to forecast remaining observations. The forecasting accuracy is measured

using the mean absolute percentage error (MAPE) criterion.

1.3 Outline of Thesis

This thesis is divided into six chapters. Chapter I, explains the importance off

good forecasts in hydrology and the methods of forecasting to be used. Chapter 2,

examines the mathematical formulation of the methods of forecasting and compares them

the basic

in terms of their i imitations and s. Chapter 3, det;
characteristics of Newfoundland rivers used in the forccasting study. Chapter 4. provides
information about the application of various models to the riverflow time series. Chapter

5, compares the forecasts generated and Chapter 6, discusses the results obtained,

a ing method for f rivers and izes the study.



Chapter 2
FORMULATION AND COMPARISON
OF FORECASTING METHODS

The mathematical formulation and comparison of four forecasting methods

mentioned in the previous Chapter will be explained in detail in the following sections.

In (he first section, the mathematical representation of each method will be presented

along with the fores ng equations to be employed to predict future flows. The methods
of parameter estimation arc also discussed. The sccond section compares the four

in terms of their iges and

2.1 Mathematical Formulation

A time series is a set of observations that are arranged chronologically. In order

10 model a time series accurately, it is important to be aware of the assumptions under

which data is recorded, listed and finally modelled. The first and foremost assumption
in a riverflow series is that the data under study is evenly spaced at discrete time

intervals. The inherent advantage of this assumption is that data can be aggregated to



represent a separate time interval. For example, daily riverflows can be averaged to give

weekly, monthly, quarterly or yearly flows. Specific methods of forg ng have their

own basic assumptions and limitations which are to be kept in mind before choosing a

method of forccasting. For all the forecasting methods discussed below, as regard
notation; L will be used to denote the lag operator on time ¢ i.e. Ly, = y, 0y (=
1,2 T, is a sequence of a seasonal time series with period 8. For example, 5 is 12 for

a monthly time series and s is 4 for a quarterly series. A sequence of independent
normally distributed random variables, say, y,, with mean p and variance o will be

indicated by writing  y, ~ NID (g, o).

211 Box and Jenkins Method

The Box and Jenkins method (Box and Jenkins, 1976) models time series by

making strong and explicit distributional assumptions about the underlying data

generating process. The method uses a ination of ive (AR), i
(I) and moving average (MA) operations in the general Autoregressive Integrated Moving,

Average (ARIMA) model to represent the correlational structure of a univariate time

The autoregressive and moving average operations can only be applied 1o a
stationary time series. ‘That is, they can only be applied to data which has a constant
mean value with time. If a time series is non-stationary it has to be transformed to a
stationary series by differencing before the AR and MA operations can he performed.

Forecast values have to be transformed back to the original non-stationary state by the
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Figure 2.1 Stages in the Iterative Approach to Model Building
(from Box and Jenkins, 1976)



integration (I) operation.

A three step of identificai imation and diagnostic checking was

originally proposed by Box and Jenkins (Box and Jenkins. 1976) to s

a moded from

the general class of ARIMA muodels. This iterative process is depicted in Fig. 2.1, The
identification process is for deciding the best ARIMA (p.d.¢) model to fit the data. This
means identifying the degree of differencing d. the AR order pand the MA order ¢, The

process involves statistically estimating the model “Fhe ding

step involves examination of the residuals to ensure that the assumptions of
independence, homoscedasticity, and normality are not violued.

The multiplicative ARIMA class of models is the most commonly used approach
for the modelling of seasonal riverflow data (Salas et al, 1980). Boxand Jenkins (1970)
generalized the multiplicative ARIMA (p.d.q) x (P,D,Q), model which consists ol a
seasonal ARMA (P, Q) fitted to the D-th scasonal difference of the data coupled with an
ARMA (p,q) model fitted to the d-th difference of the residuals of” the former model. The

condensed mathematical representation of the ARIMA model is

G(L*) (L) (1-L*)P(1-L)y, = 6, +B(L*)0(L)E (2D
where:

£, is a white noise process with mean zero and variance o, The notations used are
Ly, = Y3 L is backshift / lag  operator 2.2)

The autoregressive, moving average, seasonal autoregressive and scasonal moving

average operators, respectively, are represented by



(L) = 1-@L-....-¢,L"

= Tu a
(L) = Tnd Lotie sy O B @9
D(L') = 1-& L'~ .., .- @L"
S(L) = 1+© L+ . ...+ 0, LY

where:

(1) and O(L) are parameters for nonscasonal AR and MA models respectively.

(1)) and O(L) denote scasonal polynomials in the lag operator of orders P and Q
respectively.,

For example, the (2,0,0) x (0,1,1),; multiplicative autorcgressive integrated
moving average process (1 - ¢, L- ¢, L) (1 - L%y, = (1-©, L%, in its expanded
form is written as

Vom0t O0¥ia *Y am0as < s *h - @b @4
where:

@9 = autoregressive parameters

0,

]

seasonal moving average parameter

g = while noise process

The parameters are estimated by using i likelihood estimation
First the sum of squares surface L£? (p, 0. @, 0) for a range of parameter values is
eviluated . then its minimum - and corresponding parameter values are located. Finally,
these maximum-likelihood parameter cslimates are used as initial values to obtain the

final estimates of the by a nonlinear csti it (Salas, 1980).

The principle hydrologic application of ARIMA models is in forecasting. For



example, the (2.,0,0) x (0.1.1);; model in Eqn. (2.4) is forecasted for a lead time of 7
months by taking the conditional expectation, indicated by a square bracket. The
forecasting equation will be
Y = Ded = 0100aa] * @lyral ¥ D 2l @5
21 ST Bl VAVEPA IR |99 Rl L |
To use the Box and Jenkins method, the data must have a strong correlational

behaviour, and there should be sufficient data to permit reasonabiy accurate estimates of’

the parameters. The selected Box and Jenkins model which satisfies the diagnostic cheeks
mentioned earlier, will generally fit the historical data well and the parameters estimated

describe the data on which they are estimated.

2.1.2 Periodic Autoregressive Models

Asemphasized by authors such as Moss and Bryson (1974),

sonal hydrolog

and other types of time serics exhibit an autocorrelation structure which depends on not
only the time lag between observations but also on the season of the year. For example,
in the northern hemisphere, snowmelt is an important factor in runoff which usually
occurs in March or April. Therefore the correlation between observed riverflows during

¢. To model

these months is negative whereas at other times of the year it is posil
appropriately the forcgoing and similar types of time series, periodic models can be
employed.

Two popular periodic models for riverflow time serics are the PAR (periodic

autoregressive) and PARMA (periodic ARMA) models. Because model building

12



procedures are highly developed for use with PAR models (Hipel and McLeod, 1994),
this class of periodic models is focussed upon in this study. When fitting a PAR model
to a single seasonal series, a separate autoregressive (AR) model is designed for each
season of the year. The results of a comprehensive forecasting study (Noakes, McLeod
and Hipel, 1985) have suggested that a periodic autoregressive model (PAR), identified
by using the partial autocorrelation function, provided the most accurate forccasts. In the

present forecasting study PAR/PACF model is therefore used for the scasonal

Newfoundland rivers.
The PAR (py,pas-.... -p,) model, defined by AR orders of p..py,....... p. for each
season of the series, is mathematically described by
Y= 9™(L)y,, + & TR P (2.6)
where:

£ ~ NID(O, o),

The seasons are represented as, m (m = 1.2,.....s), and

o) =1 - ®L - .. ... g, @L* 2.7

It should be noted that the model parameters for the mth season (i.e.. ™,
[or @) can be estimated entirely independent of the model of any other season.
Also, the estimates of the parameters in different seasons are considered to be statistically
independent (Pagano, 1978).

For example, if an AR(p) model is fitted to the first season of a time series then

it is represented as



Vo= Oy e Oy @8

where:

p = order of gressive model with Provee e

The i for estimating the ol a PAR model are Yule Walker

estimator and multiple linear regression (Hipel and Mcleod. 1994). The fored

s for
PAR models are obtained using the minimum mean square error (MMSE) approach. The

MMSE forecasts, for PAR models, caleulated after year rand season m are determined

using

et = 1™ Yometor + 0™ Yopua * oo b ‘Pr,.m) Yemip, ' b 2.9
where:
= +, is the lead time for the forecast.

2.1.3 Structural Approaches
2.1.3.1 Classical Structural Approach
In the classical structural approach (Yevjevich, 1972), components of the time

series are deterministic functions of time. The seasonality in the serie inferred

statistically and is described mathematically using Fouricr series analysis with a limited
number of low frequency harmonics and their estimated coefficients. After removing the
seasonality from the original series an autorcgressive model is fitted. The Minimum

Akaike Information Criterion Estimation (MAICE) can be used to select the Fourier

components required and to fit the best autoregressive model (Hipel and Mcleod, 1994).

14



‘The underlying assumption in this approach is that the series becomes stationary after the
removal of seasonality.

For a seasonal hydrologic time series x, .. where p is the year and 7 is the season
within the year (ie., 7 = 1.2,...... n). the normalization is carried out in terms of

standardized series

L 2.10)
where:
"= onal mean
o, = scasonal standard deviation

‘The parametric or Fourier series representation of y,, ., denoted by z, is given as

n
+ Y IA, sin(ykr) + B, cos(vkr)] + ¢, @.1n
kel

where:

1, is general mean of x,,. m is number of significant harmonics, y = 2a/n is the cyclic

[requency over a base period, A, and B, are harmonic coefficients and k = 1,2,..... Jm.
Assuming fundamental period to be equal to the sample length, the iundamental

freque acy is 1/n. Estimation of harmonic coefficients is achieved by conventional Fourier

analysis (Yevjevich, 1972). Since the importance of this approach in the present context

is only historical it is not explained in detail here.



2.1.3.2 New Structural Time Series Approach
In the new  structural time series (NSM) approach of Harvey (1989) the series is

modelled in state space form, with the state of the system representing various

unobserved components such as trends and seasonals. Prediction and smoothing can only

be carried out once the parameters governing the stochastic movements of the state

are known

mation of these parameters, which

variables have been estimated. The

s
hyperparameters, is itsclf based on the kalman filter. The kalman filter provides the

means of updating the state as new observations become available. Predictions are made

by extrapolating these components into the future, while the smoothing algorithms

the best estimate of the state at any point within the sample.

The structural model is based on the traditional decomposition into trend, s

and irregular These combine additively, i.c.,
y, = Trend + Scasonal + Irregular @.12)

The basic structural model (BSM), in the NSM approach {ifarvey, 1989). is formulated

as

.13

YT BtV re, t=l....

onal pattern, and ¢, a white noise irregular

with p, a local linear trend, v, a local s

companent. The statistical model of trend has the level () and slope () parameters

which change slowly over time according to the random walk process. Thus



B B By, @.14)
B, = Buoy #1081 =L o o T

where:
7, ~NID(0,0,%) and & ~NIDO,02).
The seasonal model in Eqn, (2.13) imposes the constraint that the seasonal effects

sum to zero. This suggests a stochastic seasonal model of the form

sl
Y., = o @.19)
=0

where:

s is the number of seasons and w,~ NID(0,0,%).

A model of this kind allows the seasonal pattern to change over time, while
imposing the condition that the expectation of the sum of seasonal effects over s
consecutive time periods should be zero. The model specification is completed by the
assumption that the four disturbance terms ¢,, »,, {; and w, are independent of each other.

The NSM approach has various models which can be used for modelling a time
series. The choice of a model depends on the characteristics of the series under

i ion. The inations of few or all i.e., trend, seasonal, cycle

and irregular term can be used. The seasonal component can further be defined as
trigonometric or dummy seasonal. The individual components have a choice of being
deterministic or stochastic depending on whether the variance term of cach component

has been constrained to zero or not, respectively. To date, the new structural time series

approach has only been used for economic time series and its application to riverflow



time series has never been reported. The BSM model has been discussed in detail above
and the use of the state space model in simplificd form appropriate for univariate time
series is illustrated below with a very simple trend plus error model.

State Space Models and The Kalman Filter

For the simple trend plus error model given by
Yoe Bt e 2.16)

the linear univariate structural model has a state ation which consists of

ace repres

a measurement equation and a transition equation of the following forms respectively:

o= zla g @17
a = Toa, +n,

in which e, is an (m x 1) state vector, 7z, is an (m x 1) fixed vector, T, is a fixed
matrix of order (m x m) and & and », are, respectively, a scalar disturbance (erm and an
(m x 1) vector of disturbances which are distributed independently of each other. 1t is
assumed that £~ NID(0,0%h,) and 5, ~ NID(0,0°Q,) where b, is a fixed scalar, Q, is a fixed
(m x m) matrix and ¢* is a scalar. Although T,. z. h, and Q, may ultimately depend on
a set of unknown parameters, they are, for the purpose of the kalman filter regarded as
teing fixed and known.

Let a,, be the migimum mean square estimator (MMSE), or *optimal estimator”,
of e, based on all the information upto and including time t-1, and let o*P, , be the MSE
matrix of a,y, i.e.. the covariance matrix of a,, - o, where Py denotes the (m x m)
covariance matrix of the estimation error. Given @, and P, at time t-1 the MMSE of «,

is given by



aya = Teag (2.18)

g Pyy = TP T+ Q

Once y, becomes available this estimator can be updated. The appropriate equations are
a, = 8y * Puoiz(y, - 2 8/,
T Bp-r w12y = 20 By I
Py = Py Pz Py, 2.19)
with f, = 2P, 2z, 1 b,
“The equations in (2.18) are known as the prediction equations whereas those in equations
(2.19) are the updating equations. Fogether they make up the kalman filter (Harvey,
1989)
‘The kalman filter yields the MMSE estimator of the state vector, o, given the
information available at time t. However, once all the observations are available, a better

estimator can normally be obtained by taking account of observations obtained after time

t. The i for ing such esti are known as ing. There are three

basic smoothing algorithms: fixed point, fixed lag and fixed interval. The fixed interval
smoother (Harvey, 1989) consists of a set of recursions which start with the final kalman
filter estimates, ay and Py, and works backwards. The details of the other two are given
by Anderson and Moore (1979).

Once the unknown parameters have been estimated, the forecasting of future
observations for several periods ahead can be made by employing the predictions
equations repeatedly without the updating equations. Thus the MMSE of a,,, made at

time T, is given by



Aryr = Tra 3rayr s 1=12. .. .20

with ap; = a5.Pr,,7 computed as above. The MMSE of y;.,, is

Yrar = 2 rdrar Qa2n
In the case of the level plus error model
Yrar = Yror = 87 =12, ... @.22)

Thus the forecast function is horizontal.

2.14 Exponential Smoothing Method

Another method of forecasting economic time series that has not bheen fully

explored for riverflow ing is i ing. The most used
exponential smoothing models are the Holts-Winters family of models (Goodrich, 1989).
These models includes three components representing level, trend and seasonal
influences. Recursive equations are used to obtain smoothed values for the model
components. Each smoothed value of any model component is a weighted average of

current and past data with the weights decreasing exponentially. Holts-Winters family of

exponential smoothing models can be classified into three classes, namely simple

Holt T ing and Winicrs th

hing (Goodrich and 1987).

Simple exponential smoothing uses an equation to model the level of the series

of the form

20



mo=hy + A=Ay, +AA-A y ... @.23)
where:
A = the level smoothing parameter
y, = observed value of time serics at time t
m, = smoothed level at time t

“This equation reduces to the recursive form
m = Ay + (1-3) m_, 2.249)
The forecasting equation is

S = @)

.

where:

Yy = forecast for lead time b from time T

Holt two-parameter smoothing uses two equations to model level and trend. These

are given in their recursive form by
m =iy +(-m, +T) 2.26
To=vm -m) + 1 - T,

where:

T, = the smoothed trend at time t

y = trend i and other are as defined previously.

The foreeasting equation is



Sy = m * BT, @m

moothing parameters for level,

Winters three-parameter smoothing involves thre

trend and seasonal effects. The smoothing equations are of the form

'

b7
r‘ = (1-M(m,, + T, )

t-p

T, = ym, - m, + (1) T,) (2.28)
Y,

S, = a;‘ + (1-8)S, ,

¢
where:
S, = smoothed seasonal index at time t

n = the number of periods in the scasonal cycle

& = seasonal index i and other s are previously defined
The forecasting equation is of the form

Sy = (m, + bT) 8, 2.29

Simple exponential smoothing is appropriate for data which Huctuates around a

onal nor has any trend. Use

constant or has a slowly changing level and is neither s
of the Holt two-parameter model is appropriate for data which fluctuates about a level
that changes with some nearly constant lincar trend. Winters three-parameter model is
used for data with trend and seasonal effects. The relevant exponential smoothing
equations can be adjusted to represent data that has a damped exponential rather than
linear trend (Goodrich, 1989). The forecasting equation for a Winters three parameter

damped trend model is



Jb) =@m +(n+n?+....+0)T)S®H (2.30)

It can be seen that for n = 1, the model is equivalent to the undamped case.
All exponential smoothing equations give more weight to more recent values of

data. The larger the values of the smoothing parameters the more emphasis on recent

observations and less on past. This is intuitively appealing for f
‘The smoothing parameters can be obtained by either using iterative least squarcs or a
grid search for the parameters that give the minimum squared error over the historical
data. This calculation process requires a great number of computations which are
normally incorporated into 4 computer program.

Exponential smoothing models are robust in that they are insensitive to changes

in the data statistical structure (Goodrich, 1989). No assumptions about the statistical

distribution of data are made in exponential smoothing and there is therefore no need to
analyze diagnostic statistic given with most computer programs.

One of the main advantages of using exponential smoothing is that once the
smoothing parameters have been estimated, only the previous forecast and the most
recent observation have to be stored or are necessary to make a new forecast. This makes

the

culation of a new forecast computationally very convenient.

2.2 Comparison of Methods

The basic ad hoc f i is

smoothing methods are widely used in industry for quality control, inventory forecasting,
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etc. Their popularity is due to several practical i ions in short-tert

Model formulations are relatively simple and model compouents

and parameters have

some intuitive meaning to the user. Only limited data storage and computational effort
are required. Perhaps the most important reason for the popularity of exponential

smoothing is the surprising accuracy that can be obtained with minimal effort in model

identification (Gardner, 1985). An obvious disadvantage, for s nal data, is that each

seasonal component is only updated every s periods and the descasonaization of the trend

part in Eqn. (2.28) is carried out using an estimate of the

seasonal component which is
s periods out of date. However, they are ad hoc in that they are implemented without
respect to a properly defined statistical model (ITarvey. 1989). Their importance in the
present context is that they provided the starting point for the development of structural
time series models.

Box and Jenkins method is based on the theory of stationary stochastic processes,

and this is the starting point for conventional statistical time series model building.

However, a much wider class of models, capable of exhibiting non-sti

tionary behaviour

can be obtained by assuming that a series can be represented by an ARMA process after

differencing. Few riverflow series are truly stationary and there is no overwhelming

reason to suppose that they can necessarily be made

\tionary by differencing, which,
infact is the main disadvantage of Box and Jenkins approach. The main advantage of Box
and Jenkins approach is that it is has a highly developed model selection strategy. Since,
the method of model order selection for periodic autoregressive (PAR) models has been

derived from Box and Jenkins zpproach, no separate comparison for PAR models is
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discussed herein. The actual estimation of a model in the ARIMA class of Box and
Jenkins approach is carried out without placing any restrictions on the parameter space,
apart from those implied by stationarity. Since ARIMA models contain only one
disturbance term these models are relatively simple to apply, which i‘s one of the reasons
for its appeal. The main attraction of the ARIMA class of models is that they provide a
general framework for forecasting time series in which the specification of a model
within the class is determined by the data. This may be quite advantageous in certain
situations, particularly when it is difficult to identify the main components in a series and
to construct suitable models for them. But the very flexibility of ARIMA modelling is
also its main disadvantage. The decision to view all the models within this class as
potential candidates for yielding good forecasts is an arbitrary one. The practical problem
is that unless one has some experience in time serics analysis, which effectivelv means
a priori knowledge of the models which tend to be most useful, it is quite easy to select
an inappropriate model. Such a model may pass the diagnostics, particularly if it is
overparameterised, but may not yield sensible forecasts (Harvey. 1989).

‘The principle structural time series models are nothing more than regression

models in which the explanatory variables arc functions of time and the parameters are
time varying. The starting point in new structural time series modelling (NSM) is the
identification of the salient features in a series. These features can then be modelled in

such a way that useful predictions of future observations can be made. This approach

is statistically well defined in the state space form. The state space formulation opens up

the pos ty of setting up models in terms of components which have a direct
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interpretation. In addition, the state space form provides a rela

vely st

ightforward

method of handling irregularities in the data. These irregularitics may include mis

sing

values, temporal aggregation and data revisions. The main disadvantage of thi

pproach,
say, for monthly data, is that the number of parameters increases considerably and
therefore principle of parsimony is not fully adhered to. In addition to that the number
of disturbance terms in this approach is considerably higher than Box and Jenkins

approach. The main advantage of the structural approach is that, differencing

aimed at achieving stationarity play a less prominent role than in ARIMA

modelling. Moreover, the fact that the simpler structural time series models can be made

stationary by differencing provides an important link with classical time series analysis.
The simplest structural time series models, namely those which are lincar and time

invariant, all have a corresponding reduced form ARIMA representation which is

equivalent in the sense that it will give identical forecasts to the structural form.

Moreover, the new structural time series models the

models and Box and Jenkins models, when certain model specifications are considered.
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Chapter 3
FLOW DATA PREPARATION AND

PRELIMINARY ANALYSIS

Anunderstanding of the physiography, land use, geology and climate is necessary
to predict riverflows in a region. The island of Newfoundland is a large, roughly
triangalar istand about 111,000 km? in area lying off the cast coast of North America,
between latitudes 46" 30° and 51° 30" North. Runoff is generally higher in the southwest
compared to northeast coast. Surface water is muck more important than groundwater
in Newfoundland. Most of the island consists of bedrock overlain by a thin veneer of
glacial till. so subsurface aquifer storage is negligible. The majority of the population
obtains its water from surface supplies. and about two-thirds of the island's energy comes
from hydroclectric generation from surface sources. Tite abundance of good quality water
in lakes, streams and ponds also sustains important recreational and fisheries uses
(Richter, 1994). The main contributors to surface water in Newfoundland are rainfall,
snowmelt and freezing rain, Large riverflows in Newfoundland occur in the spring (April

to June) due to snow melt. The monthly data for Newfoundland rivers used in this

ng study are obtained from the Water Resources Division of Department of
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Environment and Lands, St. John's, Newfoundland.

3.1 Data Arrangement

‘The map depicting the rivers used in the study is shown in Fig. 3.1, As it can be

seen from the map, the selected rivers are not concentrated in one particular area, as the
objective is o study rivers having variable physical characteristics too. The average
length of data used in this forecasting study is 40 years, The sclected rivers have no
missing values and no intervention analysis has been done to justity the eflect of an
event, say fire, on the riverflows obtained. The name, location, station number, drainage
area and period of record of all the rivers arc tzbulated in Table 3.1. The drainage arca
of the rivers selected varies from a minimum of 3.63 km* for Northeast Pond River to

a maximum of 4400 km® for Gander River at Big Chute. The minimum average fow is

0.135 mYs for Northeast Pond River and the maximum average flow is 118 mYs for

Gander River. Since the emphasis is on forecasting short term seri

aceurately, cach set
of monthly riverflow data has been subdivided into three series of average length of 13

years. The divided monthly riverflow data is named using the

st four characters of the
river under study and a number viz. 1, 2 or 3 is assigned to distinguish between three
different record lengths. The monthly data has been aggregated to give the average

quarterly data, which is the second set of seri

used in this forecasting study, The

quarterly data is designated by prefixing D with first four letters of the river under study.

The average length of data for the quarterly serics is 150. To guard against spurious

accuracy, three forecast scenarios are used for the guarterly data. These scenarios are
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Figure 3.1 Newfoundland Rivers Used in the Study
29



Table 3.1

HYDROMETRIC STATIONS USED IN STUDY

STATION NAME

LOCATION

LAT. “7 LONG.

STATION
NUMBER

DRAIN.

AREA
(KM%

PERIOD

RECORD

Bay Du Nord River at
Big Falls (BAYN)
Gander River at Big
Chute (GAND)
Garnish River near
Garnish (GARN)
Indian Brook at Indian
Falls (INDN)

Isle Aux Morts river
Highway Bridge (ISLE)
Middle Brook near
Gambo (MIDD)
Northeast Pond River at
NE pond (NORE)
Piper's Hole river at
Mother's Brook (PIPE)
Rocky River near
Colinet (ROCK)

Torrent River at
Bristol's Pool (TORR)

47:44:48N 55:26:30W

49:00:55N 54:51:13W

47:12:50N 55:19:45W

49:30:43N 56:06:45W

47:36:50N 59:00:33W

48:48:28N 54:13:28W

47:38:06N 52:50:14W

47:56:49N 54:17:08W

47:13:29N 53:34:06W

50:36:27N 57:09:04W

0271001

02YQO01

027G001

02YMO001

027B001

02YROO1

027M006

02711001

02ZK001

02YC001

1170

4400

205

275

3.63°

764

285

624

1952-1992
(41 years)
1950-1992
(43 years)
1959-1992
(34 years)
1955-1992
(38 years)
1963-1992
(30 years)
1960-1992
(33 years)
1954-1992
(39 years)
1953-1992
(40 years)
1950-1992
(43 years)
1960-1992
(33 years)

NOTE:

Differs significantly from drainage arca published in the

979 Surface Water Data
Reference Index published by the Inland Waters Directorate of Environment Cana

drainage areas presented in the Index were based on 1:50,000 le NTS mapping

whereas those listed here are based on more accurate mapping and air photos.
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obtained by fitting different models to the data and forecasting but using three different
last fitted values viz. till December, March and June. These three forecasting scenarios
are distinguished by using numbers 1, 2 or 3 for the three last fitted values. For example,
the quarterly data fer Garnish River using period of record till the fourth quarter which
is December is named DGARNI. The forecasted values for these three scenarios will

is ensures that the critical low flow and high flow periods

mention the starting month.

are predicted as accurately as possible by using data upto that point.

3.2 Preliminary Data Analysis

The first step in preliminary data analysis is the plotting of data. A visual

gives a lot of infi ion about the centre of data, variation or spread,

skewness and presence of outliers, The data for this study is plotted using Boxplot,
attached in Appendix A, which is a very useful and concise graphical too! for
summarizing the distribution of a data set. A time series monthly plot of the Rocky river
near Colinet is shown in Fig. 3.2, as an example. The monthly Boxplots of Rocky river,
depicting that the data is seasonal, are plotted in Figure 3.3.

‘The second step in data analysis is to determine the distribution of data. If the

data is normal then parametric test can be performed to determine other characteristics

If data are non normal then there are two options, cither to perform

of da
nonparametric tests or to first transform the data to normality and then perform
parametric tests. The seasonal riverflow data is generdtly non-normal, non stationary and

heteroscedastic. The seasonal riverflow data is non-normal because by definition, normal
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Figure 3.3 Boxplots for the Monthly Data of Rocky River
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distribution ranges from - to +oo and there are no negative fows in nawre. The

minimum flow, i

below observation limit, is generall, igned a zero value. The

seasonal riverflow data is non-stationary becavse the mean of low flow period will be

significantly different from the mean of high flow periods

hus § cal parameters

are

not time invariant for seasonal riverflow data. And finally, scasonal riverflow data are

heteroscedastic because the vai

ance and covariance may vary with time in a series

Although it is very rare to find negative correlation in hydrology, it can he negative

during certain periods of time and remain positive at other times. To take care of all the

above possibilities, in this study. the data is

irst transformed to normality, stationarity

and homosceda:

ic by using ihe Box-Cox power transformation (Box and Cox, 1904).

Box-Cox transformation is given as

Yu Ty for A »0 3.n
Yu = log( xy), for A -0

where:

time index

yx = transformed variable

= original variable

N\ = power transform
The recommended A value is the one that fits the normal probability assumption the
closest. For example, a N value of 0.5 is the square root transformation, A equal to 0.0

is natural logarithmic transformation and a A value of 1.0'is no transformation. ‘The
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Tuble 3.2 CHARACTERISTICS OF MONTHLY RIVERFLOW DATA

River Name Si Period | Meanflow A Forecasts
BAYN BAYNI 156 1952-1964 38.51 0.5 1965
BAYN2 156 1966-1978 41.50 0.5 1979

BAYN3 132 1981-1991 40.38 0.0 1992

GAND GANDI 168 1950-1963 112.21 0.5 1964
GAND2 168 1964-1977 123.66 0.0 1978

GAND3 168 1978-1991 116.35 0.0 1992

GARN GARNI1 144 1959-1970 8.26 0.5 1971
GARN2 120 1971-1980 8.98 0.5 1981

GARN3 132 1981-1991 9.34 0.5 1992

INDN INDNI 132 1955-1965 21.78 0.0 1966
INDN2 144 1967-1978 18.31 1.0 1979

INDN3 144 1980-1991 17.94 0.0 1992

ISLE ISLEI 120 1963-1972 14.06 0.0 1973
ISLE2 120 1973-1982 13.67 0.5 1983

ISLE3 108 1983-1991 12.77 0.0 1992

MIDD MIDD1 132 1960-1970 6.99 0.5 1971
MIDD2 132 1971-1981 6.88 0.5 1982

MIDD3 120 1982-1991 6.00 0.5 1992

NORE NORE1 156 1954-1966 0.1361 0.5 1967
NORE2 156 1967-1979 0.1304 0.5 1980

NORE3 144 1980-1991 0.1373 0.5 1992

PIPE PIPE] 156 1953-1965 24.25 0.5 1966
PIPE2 156 1966-1978 24.51 0.5 1979

PIPE3 156 1979-1991 25.72 0.5 1992

ROCK ROCK1 168 1950-1963 10.76 0.5 1964
ROCK2 168 1964-1977 11.48 0.5 1978

ROCK3 168 1978-1991 11.51 0.5 1992

TORR TORR1 132 1960-1970 24.78 0.0 1971
TORR2 132 1971-1981 27.66 0.0 1982

TORR3 120 1982-1991 23.48 0.0 1992
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Table 3.3 CHARACTERISTICS OF QUARTERLY RIVERFLOW DATA

River Name Size Period Meanflow A Fest
DBAYN f DBAYNI 160 1952Q1-1991Q4 39.79 1.0 1992
DBAYN2 161 1952Q1-1992Q1 39.76 Lo 1992

DBAYN3 162 1952Q1-1992Q2 39.91 1.0 1992

DGAND || DGAND1 168 1950Q1-1991Q4 | 117.14 0.5 1992
DGAND2 169 1950Q1-1992Q1 117.07 0.5 1992

DGAND3 170 1950Q1-1992Q2 117.82 0.5 1992

DGARN [ DGARN1 132 1959Q1-1991Q4 8.84 Lo 1992
DGARN2 133 1959Q1-1992Q1 8.84 1.0 1992

DGARN3 134 1959Q1-1992Q2 8.86 1.0 1992

DINDN DINDN1 148 1955Q1-1991Q4 19.25 0.0 1992
DINDN2 149 1955Q1-1992Q1 19.17 0.0 1992

DINDN3 150 1955Q1-19920Q2 19.27 0.0 1992

DISLE DISLEL 116 1963Q1-1991Q4 13.53 0.5 1992
DISLE2 17 1963Q1-1992Q1 13.43 0.5 1992

DISLE3 118 1963Q1-1992Q2 13.49 0.5 1992

DMIDD || DMIDD1 128 1960Q1-1991Q4 6.65 0.5 1992
DMIDD2 129 1960Q1-1992Q1 6.62 0.5 1992

DMIDD3 130 1960Q1-1992Q2 6.67 0.5 1992

DNORE || DNORE1 152 1954Q1-1991Q4 |  0.1346 1.0 1992
DNORE2 153 1954Q1-1992Q1 | 0.1248 1.0 1992

DNORE3 154 1954Q1-1992Q2 0.1352 1.0 1992

DPIPE DPIPEL 156 1953Q1-1991Q4 24.83 1.0 1992
DPIPE2 157 1953Q1-1992Q1 24.84 1.0 1992

DPIPE3 158 1953Q1-1992Q2 24.88 1.0 1992

DROCK [ DROCK1 168 1950Q1-1991Q4 11.25 1.0 1992
DROCK2 169 1950Q1-1992Q1 1129 1.0 1992

DROCK3 170 1950Q1-1992Q2 11.29 1.0 1992

DTORR | DTORRL 128 1960Q1-1991Q4 25.36 0.0 1992
DTORR2 129 1960Q1-1992Q1 25.19 0.0 1992

DTORR3 130 1960Q1-1992Q2 25.27 0.0 1992




variable is fc and then is ed to the original

distribution. The transformations used for the monthly riverflow time scries and the

quarterly time series are tabulated in Table 3.2 and Table 3.3 respectively. As can be
seen from Appendix A, the Torrent River at Bristol's Pool, i.c., TORR is transformed

using the logarithmic transformation. Table 3.2 and Table 3.3, also show the period of

record used, average flow for the series in mYs and the year for which forecasts are
obtained.

The third step in preliminary data analysis is to determine the autocorrelation

structure of the series. A time series in which the current value of the series depends on

the past values is called autocorrelated time series. The seasonal riverflow series are
autocorrelated because flows in April, for example, are related to flows in March. The
autocorrelation function (ACF) is a good measure of determining independence in a
series, The graph of the sample autocorrelations is generally called the correlogram. If
data is independent then autocorrelation at all lags should be equal to zero. Another way
of representing the time dependence structure of a series is the partial autocorrelation
function (PACF). The PACF is also uscful in identifying the type and order of a model

when investigating a given sample time series. To determine the significance of

autocorrelation at 5% level, Bartlett's band (Salas, 1980) is used.

The ACF is defined as
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where:

N = autocorrelation at different lags
X, = observed variable at time t
X,., = observed variable at lag k

X = mean value of the serics

n = number of observations

The ACF graph gives another important information about a series. If u series is
stationary the correlogram dies down gradually otherwise for a non-stationary series it
gives similar values throughout. Moreover, examining the autocorrelations is a reliable
way to determine a seasonal time series data. If the twelfth (for monthly dat) or fourth

(quarterly data) autocorrelation is abnormally high then the data is scasonal. The

information from ACF is used to determine the degree of differencing required o make
the serics stationary. In Fig. 3.4, the ACF for BAYNI series is plotted. The first
correlogram in the figure shows that data is non-stationary and seasonal as
autocorrelation are high at lags 1 and 12 respectively. The second and third correlograms
respectively, show the scries after first difference and seasonal difference transformations
have been done. Therefore, Fig. 3.4 shows that even after lirst and scasonal differencing

has been done, the series may not become fully stationary.

Once the series has been made stationary after repeated differencing, ACFE in
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Figure 3.4 Auto Correlation Function (ACF) for BAYN1

39



combination with the partial autocorrelation function (PACF) helps in determining the
orders for ARIMA models. The PACF is another important measure which determines
the order for the PAR series. The PACF is defined as the correlation between lags, say,
Kand K+2 after the removal of etfect of K+1 on hoth. Let K=1. then the PACE is

defined as

(3.3)

where:
Pu = autocorrelation between 1 and 3 respectively.
The Fig. 3.5 shows the PACF for monthly BAYNI series. Since first lag is highly

significant, the AR order of model is estimated to be .

0.6

0.3
ck

Figure 3.5 Partial Auto Correlation Function (PACF) for BAYNI
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The components of a seasonal time series such as trend, scasonality and irregular

are also computed by the expert system of the software Forecast Pro (Business Forecast

model (Makridakis and

System, 1988). A
Wheelwright, 1979) is applied to obtain trend cycle, seasonal index and irregular
components of the series. Then the percentage that each component explains of the
ies is computed. These percentages are used

variance of the natural logarithm of the

to supplement correlational data about the nature of the serics. In addition, by using

s, 1980) dominant frequencies in the riverflow data can be

speet

estimated. For example in Fig. 3.6, the spectral analysis of monthly time series of

Garnish river which is in the South, shows the presence of within a year seasonal cycles

in the data. The spectral density function is SDF in the Fig. 3.6 and F is the frequency.
It can be seen from the figure that the series has one dominant frequency in a year for

this river. For the Torrent river on the other hand which is in the North, there are more

than one dominant frequency as shown in Fig. 3.7.

The characteristics of the seasonal time series can also be detected by performing

certain statistical tests. As shown in Appendix A. all the seasonal time series considered
in the study are non-normal therefore non parametric tests at 5% significance level are
performed on the data base. The p-value for cach test is calculated and is tested against
significance level of 5%. i.c.. 0.05. If the p-value is less than 0.05, null hypothesis is

ed at 5% level.

The non parametric test for independence used in the analysis is the rank von

Newmann Ratio Test. Letr,.....r, denote the ranks associated with the The rank von
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Neumann ratio is given by

e s @8
n? - 2

Critical values of ¢ = [n(n® - 1)/12]v and approximate critical values of v are given by
Madansky (1988). For large n, v is approximately distributed as N(2.4/n). though Bartels

recommends 20/(5n+7) as a better approximation (o the variance of v.

The test for randomness is the Runs test. A run test is usually used 1o determine

if the order is random. A runs is one or more consecutive observations > K, or one or

more consecutive observations < k. For nonparametric case, k

specilied as the median
of the series.

The Spearman’s rho is a nonparametric coefficient of rank correlation, which is
based on the squared differences of ranks between two variables. By letting one of the
variables represent time, Spearman’s rho can be interpreted as a trend test (ipel and
McLeod, 1994).

The Kruskall Wallis test determines whether or not the distribution across k
samples arc the same. The Kruskall Wallis test can also be used to test for the presence
of seasonality and decide upon which seasons are similar (Ilipel and Mcleod, 1994).

In order to perform homogeneity tests for median and variance, sample data is
first split by time span. To test for homogeneity in median, Mann-Whitney test is

perforraed. The Mann-Whitney test does a two-sample rank test for the di

ence

between two ion medians, and the ponding point estimate and



95% confidence interval. The homogeneity test for variance is the U.S. Environmental
Protection Agency recommended the Boxplot test, which uses the interquartile range
(IQR). The IQR for both the populations is first estimated and then if IQR,,, >

3*IQR,.,.. then it implics that there is change in variance.

The tests for i trend, ity and ity were

performed on the monthly riverflow data of all Newfoundland rivers. The results for all
the series showed that data is not independent. The order of riverflow series is not
random at the median value. The trend test for all the series was for an overall global
trend and the results showed that the series do not have a significant trend. The data was

highly seasonal and homogeneous in the median and variance.
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Chapier 4
APPLICATION OF FORECASTING

METHODS

Each series, prepared and analyzed as explained in previous chapter. is modelled

using all the four approaches namely, ARIMA, PAR, I

d NSM. Within cach
approach, all the tentative models based on the characteristics of the series are first
considered. The next important step is. model selection by using the principle of
parsimony (Box and Jenkins, 1976), i.c., choosing a parsimonious model from an array
of models by using a goodness of fit criterion. The most commonly used goodness of fit
criterion for time series data is the Akaike Information criterion (AIC). The AIC
chooses a parsimonious model by making a balance between model error variance and
the number of parameters required to fit a model to the data. The model which gives the
minimum value for AIC (Goodrich and Stellwagen, 1987) is sclected for forecasting for

that particular approach. It is defined as

AIC = o® expl[2k / N) .1

where:
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k = number of parameters in the model, it is equal to (n+d) for NSM models.

d = number of non-stationary clements in the state vector

n = number of hyperparameters

o = estimated error variance

N = sample size

The on for including the number of non-stationary elements in the state vector in the

criterion function is to allow comparisons involving models with determini
components.
In the general framework of forecasting procedure, once a model is selected and

fitted to the data, the residuals are to be analyzed for randomness, normality, constant

Thi

variance and autocorrelations

nal check is called diagnostics and is done before

The residual analysis for randomness, normality and cons

forecasting riverflows.

variance is carricd out by using the residuals as input data. The autocorrelation of the

d at individual lags and as a group. The Durbin-Watson and Ljung-

residuals is che

Box stati:

s are most commonly used diagnostics based upon autocorrelations of the

fitting errors. The Durbin-Watson statistic s signifi when there is significa

autocorrelation in the first lag. A table of critical values is referred to determine whether

or not the statistic is significant. The Durbin-Watson statistic is defined by

=N
Y-yt
. @2)

where:
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[ = fitting error for time t

N = historical sample size

The Ljung-Box sta for the overall significance of the first

several lags of the error autocorrelation function. The sample is tested against

the Chi-square distribution with (N-n) degrees of freedom, n is the number of parameters.

fitted in the model. The Ljung-Box statistic

LB = NN+ z)gf “.3
i=1
where:
[ -th lag autocorrelation
L = number of autocorrelation used
N = sample size
After the process of identificati imation and di ies is complete, the

resulting model is used in forecasting. The model which satisfies all the criterion is
finally sclected to forecast the future values, The detailed application procedure for all

the four approaches is illustrated with examples in the following sections.

4.1 Box and Jenkins Modelling

The Box and Jenkins modelling approach is a component of the software Forecast

Pro (Business Forecast Systems, Inc., 1988), which is used as a tool 1o model and

forecast the riverflow time series. The data is first transformed and then to the

transformed series a model is fitted based on the minimum Akaike Information Criterion
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(AIC).

Use of this criterion as the user considerably in going through the tedious

process of identification, estimation and diagnostic in the Box and Jenkins approach. The

result of application of Box and Jenkins approach to INDNI riverflow time series
shown in Table 4.1. Because of the strict distributional assumptions in the Box and
Jenkins model, the examination of the diagnostic statistics is required.

The R-square statistic indicates the amount of variance explained by the model.
An R-square of 0.56 explains 56% of the series variance. The Durbin-Watson checks for
correlation in the first lag. the less correlation there is in the first lag the closer this value
is 10 2.0. In the Ljung-Box test the associated probability point is also output. In

ations of the residuals are examined using Forecast Pro and are

addition, the autocorrel
found to exhibit no systematic pattern. They are also small in magnitude being less than
2 times the standard crror.

‘The Box and Jenkins model parameters are the values that define the mathematical

model for a series. The t-stat in Table 4.1 shows the significance of a parameter. If the

absolute value of t-stat, of a model parameter, is greater than 2 then the parameter is

The ive (AR) i.e., ¢, of the model is

represented by the suffix A and the nonseasonal moving average (MA) component, i.e.,

0, is represented by the suffix B. The values in square brackets depict the nonseasonal

and

onal parts of the multiplicative ARIMA modelling. For the monthly data,

sonal components have multiples of 12 in square brackets. The seasonal AR

components, i.c., Py are depicted by A|12], A[24], etc., The seasonal MA component,
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Table 4.1 HISTORICAL FIT OF BOX AND JENKINS MODEL (ARIMA)
(MONTHLY INDNI RIVER)

Box Cox Transformation : Logarithmic
Period of Record : 1955-1965
Number of Observations : 132

Dependent variable: log(INDN)
R-square: 0.560

Adjusted R-square: 0.547
Standard forecast error: 0.546854
Durbin-Watson: 1.936
Ljung-Box: 15.515 (0.786)
Standardized AIC: 8.605835

Multiplicative ARIMA model : (1, 0, 0) x (2, 0, 1),

BJ Parameter  Coefficient ~ Standard crror  T-stat Prob
All] 0.283620 0.196418 1.444 0.851
Al12] 0.888336 0.318718 2.787 0.995
Al24] 0.039239 0.294759 0.133 0.106
B[12] 0.607684 0.164745 3.689 1.000
CONSTANT 0.142219

Forecast variable ZINDN1F

Period Forecast

1-1966 11.238813
2-1966 8.296609
3-1966 13.810618
4-1966 23.042774
5-1966 54.574333
6-1966 27.079355
7-1966 12.188464
8-1966 7.376487
9-1966 7.178437
10-1966 12.172106
11-1966 18.458605
12-1966 13.837437
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i.c., O, is shown by B[12], etc., The sclected model is used to generate 12 month ahead

fore

4.2 Periodic Autoregressive Modelling

In the periodic i ing process, model identification is carried
out using the sample PACF (Partial Autocorrelation Function). For each season of the

selected using the PACF. If there is more than one promising

model, the minimum AIC procedure can then be applied to select the best one for that
particular scason. For the PAR models, AIC, as defined in Chapter 3, for each season
of the year is caleulated first and then the AIC for overall PAR model is calculated as
s
AIC = Y AIC, +2 .9

mel
where:
AIC, = AIC for the mth season
‘The constant 2 allows for the Box-Cox parameter \.

Onee the order is finally selected, an AR model of the selected order is fitted to
the data. The ARIMA command in MINITAB (Minitab Inc., 1992) fits nonseasonal and
seasonal models o a time series. The constant subcommand fits the model with the
parameters and a constant term. The input to the command consists of a time series
stored in a column, and information about the model to be fitted. In addition to the

displayed output, residuals, fits and coefficients (estimated parameters) may be stored in

the worksheet for further analysis. The software uses the nonlinear least squares
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algorithm (Marquardt, 1963) to estimate the parameters of the selected model. The

adequacy of a fitted model is incd by examining the ics of the residuals for

each season. In particular, the residuals should be uncorrelated, normally distributed and

homoscedastic. The forecast subcommand allows to forecast observations starting at the

specified origin and going up to K leads ahead. If the origin is not specified, it is set to

the end of the series and forecasts are for the future. The selected model is used for

predicting onc-step-ahcad forecast for that particular month in the following year,

process is repeated for each and cvery season of the year for all the selected
Newfoundland rivers.

The Table 4.2 shows the output of application of PAR madel for the INDN1
monthly riverflow time series. The PACF of the series showed that order 1 is significant
therefore AR(1) model is fitted to the data. The parameters are estimated iteratively and
the final estimate of AR(1) parameter for the month of January (m = 1), i.c.. ¢'; is

0.4197. To compare the forecasting accuracy, the forecasted values shown in th

4.2 is first backtransformed into the original units.

4.3 Exponential Smoothing Modelling

Exponential smoothing is the simplest of the methods implemented in Foreeast

Pro. Since the data in the present study has a level, trend and is seasomal, therefore

Winters 3 ing and 3 (damped trends) are the viable options.
If the trends are cyclic in nature then method with damped trends fits the data better. 3

parameter (damped trends) is similar to Winters 3 parameter smoothing except that the
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Tablc 4.2 HISTORICAL FIT OF PERIODIC MODEL (PAR)
(MONTHLY INDNI RIVER)

Box Cox Transformation : Log: ‘ithmic
Period of Record @ 195! 65
Number of Observations : 132

RESULTS OF PARAMETER ESTIMATION

Final Estimates of Parameters

Month Type Estimate
Jan, AR(1) 0.4197
Fich, AR(1) -0.1910
Mar. AR(1) -0.5202
Apr. AR(1) -0.7782
May. AR(1) 0.0743
Jun, AR(1) -0.0641
Jul. AR(1) 0.1801
Aug. AR(1) 0.1300
Sep. AR(1) -0.0163
oct. AR(I) -0.4985
Nov. AR(1) -0.2068
Dee, AR(1) -0.3886
Period Forecast

66-M1 2.69240

66-M2 228130

66-M3 1.91347

66-M4 3.90721

66-M5 4.24578

66-M6 3.14748

66-M7 2.17721

66-M8 1.82790

66-M9 2.10117

66:M10 307629

66-M11 3.04996

66-M12 3.05690
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trend is not extended indefinitely ahead in the forccasts.

The program optimizes the parameters and fits them to the historical data

. The ing pa cter values are obtained by Forecast Pro using an
iterative search method to minimize the squared errors over the historical data. The

computerized iterative search, which employs the simplex method o nonfinear

optimization, begins at the values selected by the program or supplied by the user and

continues until a local minimum is found. The summary statistics with model parameters

is the program output and from this output the model with minimum AIC is

lected Tor
forccasting the series.

Winters 3 parameter exponential smoothing model is fitted to the INDNT time

series data using Forecast Pro. The results are shown in nce no statistical
distribution assumptions have been made about the data, it is not necessary to closely
scrutinize all the diagnostic statistics produced by the software.

Examining the i i reveals that the seasonal

parameter value is close to 0.148706 indicating that the hest forecast for the next seasons
effect is 14.9% of the last seasons cffects and a weighted average of preceding seasonal

effects. The small trend value of 0.003808 indicates that the smoothing model ha

memory of trend and distant trends have an effect on the forecasted trend component.

The small value of the level parameter indicates that the model is not sign

adaptive to the last observed level of the series. The selected model, from two pertinent

options, is used for forecasting 12 month ahead forecasts Jor the riverflow time series.




Table 4.3 HISTORICAL FIT OF EXPONENTIAL SMOOTHING (EXS)
(MONTHLY INDNI RIVER)

Box Cox Transformation : Logarithmic
Period of Record : 1955-1965
Number of Observations : 132

Historical fit of exponential smoothing model
Dependent variable: log(INDN)
: 0.543

1 jung-Box: 19.606 (0.925)
Standardized AIC: 8.713256

Winters 3 Parameter Smoothing Model

Exponential smoothing parameter values
4] 0.063828

0.003808

SEASONAL  0.148706

Forecast variable &EINDNIF

Peviod Forecast
1-1966 11.493494
2-1966 7.372066
3-1966 10.181950
4-1966 21.606651
5-1966 51.637814
0-1966 20.429228
7-1966 8.237924
8-1966 5.793111
9-1966 6.427616
10-1966 11.572261
11-1966 16.360777
12-1966 13.376265



4.4 New Structural Time Series Modelling

The STAMP (Structural Time Series Analyzer. Modeller and Predictor) program
has been developed to fit univariate structural time series models, and models with
interventions and explanatory variables (Harvey, 1989). The principal structural time
series components and models supported by the program are tabulated in Table 4.4
(Harvey, 1989). In addition, certain components such as trend, seasonal, ete.. can be

treated as deterministic, by selecting the fixed parameter (variance) option and setting the

value equal to zero. This means that these are treated as
variables. The only advantage in treating the component as exogenous is that the standard
errors of the estimated parameters are likely to be more reliable. Based on the

characteristics of the time serics, tentative models for a time serics are selected.

Estimation of unknown parameters of the selected models can be carried out cither

in time domain or in the frequency domain. Time domain is exact maximum likelihood

(ML) estimation with i imisation carried out by a quasi-Newton algorithm
(Harvey, 1989). In frequency domain, ML estimation is again carried out with numerical

optimisation using quasi-Newton algorithm. It is much

er than time  domain
estimation, but the results will be slightly different as it is based on an approximation to
the time domain likelihood function. The method of scoring is the third option in the
program which is the fastest and highly recommended if no cycles are present in the data
(Harvey, 1989). Since the riverflow time series have no prominent annual cycles
therefore the method of scoring is selected for this study. The method of scoring is hased

on the frequency domain likelihood function, but the maximum is found by the method
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Table 4.4  Principle Structural Time Series Components and Models in NSM
(from Harvey, 1989)

Model Component Specification
1a Random walk LRl
1b Random walk with W=ty +p4m,
dnfi
A Local level/ Ni=mte
random walk with g, as in (12)
plus noise
model
2 Stochastic trend B=p g By,
Bi=hi-y+h,
B Local linear V=g
trend with , 8 in (2)

C  Cycle plus noise
model
D Trend plus cycle

E Cyclical trend

F Basic structural

3 Stochastic cycle

4 Non-stationary cycle

Sa Dummy variable
seasonality

Sb Trigonometric
seasonality
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of scoring.
Once a tentative model has been estimated, it is subjected to dingnostic tests and

checks. If, in the face of these checks, the model appears to be inadequate, its

specification is changed and the process repeated. I the model survives the disgnost

it is accepted and used for forecasting. Table 4.5 shows the application of NSM approuch

the INDNT riverflow time ser

The hyperparameters are the first statistics in the Table 4

second statistics
of importance is the estimates of state vectors at the end of sample period ie. state at

66M12. Thus level estimate of 2.3013 indicates a 230. 13% growth ra

¢ per period. The
third and final statistics is Goodness of Fit. The Goodness of Fit yields the prediction
error variance (p.c.v.) together with coefficient of determination (R-squared). Since (he
primary objective of the study is to forecast lows, the results of forecasting aption is the
last output in Table 4.5. For forccasting, there are two possibilities in STAMP, the first
is to construct one-step-ahead predictions in the post sample period and the second s o
extrapolate from the last observation used to estimate the model, When the model has
been estimated using observations right up to the end of the sample, only extrapolations
can be made. The forceasted values for INDNT in Table 4.5 are obtained using one-step-

ahead predictions.
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Table 4.5 HISTORICAL FIT OF NEW STRUCTURAL MODEL (NSM)
(MONTHLY INDN1 RIVER)

Box Cox Transformation : Logarithmic
Period of Record @ 1955-1965
Number of Observations : 132

Iistimation by Scoring

Iistimate Parameter
0403 a¥(level)
000143 o¥(Trend)
0826 a¥(Seasonal)
0675 o’(Irregular)
Estimate State
23013 Level
-.0080805 Trend
-0254 onal

- 1174 Seasonal
1410

-7151

-.6605 Seasonal
-.6946 Seasonal
8299 onal
1.5861 nal
5896 onal

- 1877 onal
-.5009 sonal

pev. =.3940;  R2=.4616

Observation  Forecasts

6OM 1 8.248
66M2 4.9037
66M3 11.0232
66M4 24.0468
GOM S 72.2405
6M6 24,2884
66M7 9.2999
M8 4.1371
66M9 84994
66M 10 13.1971
66M 11 20.9052
66M 12 67531
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Chapter 5

COMPARISON OF FORECASTS

The previous chapter provides detailed descriptions of application of v

forecasting methods to Newfoundland riverflow time series data. The emphasis till now
was on selecting a model that fits the historical data well. However, when the forecasts

are compared with future data that are not used for estimation, the agreement need not

be as good. Hence, comparisons of forecasts with actual observations can be an

additional useful tool for model evaluation and sclection (Box and Tiao, 1970). In

practical situations it may be unreasonable (o expect many (uture observations. However,
one can use initial part for model construction and the remaining part as a holdout period

for forecast evaluation and comparison. Such an approach is pursued in this forecasting

study. This approach also fulfils the primary objective of this research, i.c., to forecast
and recommend appropriate method of forecasting for Newfoundland rivers hased on

forecast accuracy. The actual and forecasted values, using all the four different

forecasting approaches, for monthly and quarterly time series are plotted in Fig. S.1a &

5.1band in Fig. 5.2a & Fig. 5.2b, respectively. The visual inspection informally

gives an idea about the best approach to be used for forecasting. But using specific

measures of ¢ ing accuracy to distinguish between apy is a better method.
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Figure 5.1a Forecast comparison (beginning Jan. 1981) ‘
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Figure 5.1b Forecast comparison (beginning Jan. 1955)
Indian Brook River

Figure 5.1 Forecasts of Monthly Flows
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Figure 5.2a Forecast comparison (beginning Jan.1992)
Piper's Hole River
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Figure 5.2b Forecast comparison (beginning Jan. 1992)
Isle Aux Morts River

Figure 5.2 Forecasts of Quarterly Flows
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5.1 Measure of Forecasting Accuracy

Various methods of measuring forccast accuracy exist. A problem is that,
although accuracy represents an important factor in selecting a forecasting method, ‘one

of the difficultics in dealing with the criterion of accuracy in forecasting situations is the

sure of accuracy” (Makridakis et al.. 1983b).

absenze of a single universally accepted me:
A detailed survey (Mahmoud, 1984) of the relevant literawre reveals the description,
development and empirical testing of many accuracy measures, The measures of
forecasting accuracy surveyed are the following; the mean square error, the mean
pereentage error, the mean absolute percentage error, Theil's U-statistic, the root mean

square error, the mean error, the mean absolute deviation, turning points and hits and

mis:

In hydrologic forecasting, while comparing competing approaches, it is important
that due consideration be given to forecast bias. One of the most common measures of

forec

ting accuracy that takes care of forecast bias is the mean absolute percentage error
(MAPE) criterion. To obtain the MAPE. the difference between cach forecasted value
of a time series and the actual observed values is first calculated. The MAPE is then
computed as the average of the magnitudes of these differences when these differences
are expressed as a percentage of the actual observed values. It is defined mathematically

as
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MAPE - 190 tel2....m 1)
m
.
where:
¢ = forecast error
7 = observed value

The MAPE criterion is thus chosen to measure forecast accuracy in this study. The

method that yields minimum MAPE is the best method in terms of forecasting.

52 Performance of Models

The performance of models used for monthly Newfoundland riverflow time series
is assessed in terms of the MAPE criterion. Four different forecast horizons are
considered, i.e., 3 month ahcad. 6 month ahcad, 9 month ahead and 12 month ahead.
The forecasts beyond 12 month ahead period loose their significance and henee are not

considered in this study. The MAPE values for four different forecast horizons are

tabulated in Tables 5.1a, 5.1b, 5.1cand 5.1d. The four approaches are distinguished, as
shown in the note, by using different letters . The AIC values for the hest fitled model
in each approach are tabulated separately in Table 5.1¢.

The results of application of the four forecasting methods to quarterly riverflow
time series data are also tabulated. The tables show the MAPE values for forecasts along
with the AIC values. For the quarterly riverflow data three different forecast seenarios

were used. The results are tabulated in Tables 5.2a, 5.2b and 5.2¢ res)

cetively.
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Table 5.1a  COMPARISON OF MONTHLY FORECASTS

MAPE - (3 - MONTH AHEAD PERIOD)

Rivers Forecasting Approach Used
S A E P

BAYN1 31.7 26.66 36.1 38.10
BAYN2 42.33 31.46 21.4 70.80
BAYN3 36.0 34.0 43.4 47.70
GANDI 73.44 90.18 69.10 92.50
GAND2 45.62 34.92 45.1 48.10
GAND3 41.88 46.02 86.0 59.60
GARNI 56.20 40.87 46.79 50.90
GARN2 13.90 36.13 18.10 27.50
GARN3 45.30 59.90 58.70 55.60
INDN1 19.0 4.0 16.12 14.45
INDN2 76.0 47.0 59.3 80.20
INDN3 33.00 25.00 53.9 33.40

48.6 40.9 35.94 24.90

67.6 39.7 53.2 60.70

81.60 64.1 75.61 74.83
MIDD1 30.53 24.21 26.4 49.20
MIDD2 4.3 70.11 43.8 68.00
MIDD3 26.58 31.51 150.4 29.10
NORE1 28.87 36.81 31.7 21.20
NORE2 52.20 57.10 46.10 49.00
NORE3 48.30 75.90 62.60 51.90
PIPEL 3210 36.31 43.50 73.80
PIPE2 61.92 33.38 33.20 51.20
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PIPE3 67.80 72.90 §7.60 74.00
ROCKI 15.12 19.86 28.10 32.80
ROCK2 40.00 44.00 51.50 59.20
ROCK3 40.40 61.80 47.50 40.38
TORRI 14.97 88.20 21.57 17.42
TORR2 41.20 14.6 58.36 75.60
TORR3 8.61 135.7 91.20 74.30

NOTE:

S: New Structural Approach (NSM)

Box & Jenkins Approach (ARIMA)

Exponential Smoothing (EXS)

?oE 2

Periodic Model (PAR)
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Table S.1b  COMPARISON OF MONTHLY FORECASTS

MAPE - (6 - MONTH AHEAD PERIOD)

Rivers ¥ ing Approach Used
S A E P
BAYN1 2153 21.58 254 21.19
BAYN2 59.6 8.2 4.7 99.20
BAYN3 21.37 34.82 33.05 3180
GAND1 44.97 54.07 43.10 54.50
GAND2 29.49 28.40 3240 3420
GAND3 29.719 61.67 5230 44.00
GARN1 5411 39.86 45.11 41.70
GARN2 231 28.01 20.20 21.67
GARN3 46.20 58.70 50.80 55.20
INDN1T 14.00 19.00 19.82 8.720
INDN2 85.80 56.00 69.30 90.40
INDN3 26.64 27.69 375 26.98
ISLET 47.56 2783 2.1 127
ISLE2 70.40 62.60 81.80 82.60
ISLE3 74.40 59.80 68.40 71.90
MIDD1 67.98 49.05 61.70 61.710
MIDD2 30.28 41.73 36.48 4420
MIDD3 20.55 28.82 100.4 27
NOREL 71.20 87.60 84.10 73.40
NORE2 38.90 48.56 37.80 38.50
NOREE3 42.83 46.30 47.00 44.30
PIPEL 23.60 38.50 36.13 5030
PIPE2 50.10 118.40 108.7 124.7
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PIPE3 42.60 50.20 37.00 45.60
ROCK1 26.29 25.50 31.60 3420
ROCK2 46.85 42.69 48.55 48.40
ROCK3 52.70 73.70 58.60 5450
TORR1 41.60 74.10 52.40 48.50
TORR2 4043 100.50 52.20 59.30
TORR3 15.64 76.30 58.40 5280

NOTE:

S: New Structural Approach (NSM)

Box & Jenkins Approach (ARIMA)

A
E: Exponential Smoothing (EXS)
P

Periodic Model (PAR)
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Table 5.1c COMPARISON OF MONTHLY FORECASTS

MAPE - (9 - MONTH AHEAD PERIOD)

Rivers FForecasting Approach Used
S A E P

BAYNI 21.08 20.98 18.33 23.93
BAYN2 54.60 79.80 69.50 86.40
BAYN3 16.46 36.20 30.96 25.93
GANDI 42.49 41.17 42.20 50.30
GAND2 75.06 116.39 94.60 90.90
GAND3 26.59 70.19 48.30 44.89
GARNI 74.60 85.30 66.20 54.30
GARN2 26.03 35.28 24.95 30.58
GARN3 39.90 48.50 43.30 50.60
INDNI 24.00 27.00 22.54 14.82
INDN2 70.00 53.00 58.70 85.40
INDN3 25.00 35.00 31.01 2591
ISLEI 50.54 41.90 43.00 41.10
ISLE2 57.50 49.80 62.80 62.79
ISLI3 63.10 54.00 61.70 61.30
MIDDI 74.67 81.85 70.40 63.20
MIDD2 30.00 68.40 47.27 33.80
MIDD3 18.30 36.06 85.00 36.39
NOREL 133.00 20.94 159.30 118.6
NORI2 45.52 49.49 47.12 46.20
NORE3 49.90 64.30 59.90 53.20
PIPEL 31.06 48.90 36.49 44.20
PIPE2 54.92 145.90 107.50 119.5
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PIPE3 39.40 48.30 35.60 40.90
ROCK1 29.96 26.91 33.28 33.80
ROCK2 61.40 84.80 78.50 8/5.40
ROCK3 44.70 62.70 48.90 40.00
TORR1 43.90 63.60 47.40 +4.70
TORR2 37.67 82.20 46.40 50.30
TORR3 24.38 70.60 55.30 51.20

NOTE:

S: New Structural Approach (NSM)

A Box & Jenkins Approach (ARIMA)

E:  Exponential Smoothing (EXS)

P: Periodic Model (PAR)
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Table 5.1d  COMPARISON OF MONTHLY FORECASTS

MAPE - (12 - MONTH AHEAD PERIOD)

Rivers Fe ing Approach Used
s A E P

BAYNI 26.65 25.64 2311 24.62
BAYN2 4991 64.90 58.90 72.10
BAYN3 1521 29.56 24.96 239
GANDI 44.00 40.70 £3.20 49.80
GAND2 | 8150 124.30 106.70 100.9
GAND3 3124 67.12 44.60 39.37
GARNI 63.40 68.20 54.00 43.58
GARN2 25.52 34.04 24.75 29.08
GARN3 4020 51.60 46.20 51.50
INDNI 35.00 37.00 3157 31.90
INDN2 56.00 47.00 48.60 94.20
INDN3 31.00 31.00 28.80 2.67
a7 4320 44.20 42.60
49.60 44.20 54.50 54.60
ISLE 5420 50.00 55.78 54.21
MIDDI 95.10 109.00 91.20 78.50
MIDD2 3090 58.50 43.58 32.66
MIDD3 2699 33.99 80.90 36.48
NORI: 109.40 166.30 13110 97.60
NORI:2 4140 46.50 4355 4298
NORI:3 51.30 66.20 62.10 54.70
PIPEL 3158 43.50 34.29 4137
PIpE2 5443 116.70 86.90 94.70

n




PIPE3 ~ 35.70 43.70 340 36.69
ROCK!1 32.59 29.67 .59 35.50
ROCK2 47.00 66.10 61.50 7140
ROCK3 43.14 56.70 47.80 45.50
TORRI 39.80 56.70 43.06 40,40
TORR2 38.53 73.50 45.37 47.05
TORR3 36.70 68.90 56.40 54.00

NOTE:

14 New Structural Approach (NSM)

A: Box & Jenkins Approach (ARIMA)

E: Exponential Smoothing (EXS)

B Periodic Model (PAR)
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‘Table 5.2 Akaike Information Criterion (AIC) of Monthly Data
Rivers Forecasting Approach Used
S A E B
BAYNI 8.63 14.17 14.38 11.03
BAYN2 9.51 16.73 16.34 I1.19
BAYN3 14.73 16.70 18.08 15.49
GANDI 36.61 35.00 53.05 49.69
GAND2 33.96 52.14 511 57.38
GAND3 42.25 50.69 66.90 59.95
GARNI1 2.41 3.93 3.82 1.97
GARN2 231 3.87 3.92 2.16
GARN3 2.90 4.25 4.25 2.13
INDN1 7.5 8.61 8.71 9.17
INDN2 9.64 10.63 9.56 7.56
INDN3 5.36 6.81 5.72 7.70
ISLE1 2l 6.64 6.51 7.93
5.49 6.01 5.85 6.09
8.87 6.59 6.32 10.27
MIDDI 1.96 1.77 1.39 2.05
MIDD2 1.97 1.56 1.39 191
MIDD3 2.10 1.50 1.33 2.00
NOREI 0.06 0.06 0.24 0.12
NORE2 0.07 0.05 0.22 0.17
NORE3 0.050 0.04 0.20 0.15
PIPE] 9.55 8.05 2.7 5.06
PIPE2 10.12 7.26 2.62 5.00
PIPE3 11.28 9.46 3.08 5.38
ROCK1 2.70 2.74 1.68 3.98
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ROCK2 5.02 315 1.70 412
ROCK3 2.86 274 1.03 4.07
TORR1 0.33 0.26 0.48 0.59
TORR2 0.38 0.32 0.55 0.09
TORR3 0.45 0.35 0.54 0.66
NOTE:

5 New Structural Approach (NSM)
A: Box & Jenkins Approach (ARIMA)
E:  Exponential Smoothing (EXS)

B Periodic Model (PAR)




Table 5.3 COMPARISON OF QUARTERLY FORECASTS

MAPE - (Case I)

Rivers Forecasting Approach Used
S A E P

DBAYNI 23.96 20.04 17.17 25.55
DGANDI 30.80 25.16 27.20 33.12
DGARNI 39.70 32.36 31.80 59.80
DINDN1 25.49 29.42 22.42 23.70
DISLEI 39.10 36.00 42.80 21.16
DMIDD1 37.80 30.90 36.50 49.50
DNOREL 13.70 10.06 9.00 61.80
DPIPEI 13.76 11.16 21.14 25.05
DROCK] 17.47 17.62 16.47 29.33
DTORRT 32.90 41.60 35.70 41.20

NOTE:

S: New Structural Approach (NSM)
A:  Box & Jenkins Approach (ARIMA)
B Exponential Smoothing (EXS)

P Periodic Models (PAR)
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Table 5.3b COMPARISON OF QUARTERLY FORE!

MAPE - (Case 2)

ASTS

Rivers Forecasting Approach Used
S A B r

DBAYN2 20.60 19.16 12.53 19.11
DGAND2 2L5 21.73 19.80 20.80
DGARN2 46.00 3R89 36.90 4312
DINDN2 20.91 12.92 20.14 12.80
DISLE2 18.00 9.89 34.60 28.10
DMIDD2 33.20 28.1 33.00 28.70
DNORE2 11.81 10.16 10.86 78.00
DPIPE2 18.22 28.7 19.22 37.50
DROCK2 13.53 16.30 14.66 25.65
DTORR2 8.36 14.27 8.71 24.57

NOTE:

5 New Structural Approach (NSM)

A:  Box & Jenkins Approach (ARIMA)

E: Exponential Smoothing (EXS)

P: Periodic Model (PAR)
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Table 5.3¢ . COMPARISON OF QUARTERLY FORECASTS

MAPE - (Case 3)

Rivers Forecasting Approach Used
s A E P

DBAYN3 21.40 19.53 15.32 18.92
DGAND3 31.74 22.50 21.00 22.00
DGARN3 31.80 48.82 51.97 50.87
DINDN3 15.40 15.84 21.51 13.90
DISLE3 7.38 31.67 31.04 35.20
DMIDD3 36.60 37.10 38.40 38.80
DNORIE3 7.76 34.30 14.89 55.40
DPIPIER 17.20 42.20 3111 27.04
DROCK3 31.50 21.00 19.80 23.58
1YTORR3 19.17 8.99 2.46 17.18

NOTE:

S: New Structural Approach (NSM)
A: Box & Jenkins Approach (ARIMA)
B Exponential Smoothing (EXS)

P: Periodic Model (PAR)

b




Table 5.4a

Akaike Information Criterion (AIC) of Quarterly Data (Case 1)

Rivers Forccasting Approach Used
s A E P

DBAYNI 5.29 13.94 13.55 7.06
DGANDI 18.61 42.92 40.89 45.35
DGARNI 7.87 2.79 2.65 344
DINDNI 241 6.81 6.48 3.00
DISLE! 1.48 4.06 383 3
DMIDDI 115 241 231 3.05
DNOREI 0.03 0.05 0.05 0.03
DPIPE! 9.65 9.39 9.48 9.49
DROCKI 1.28 3.57 341 1.55
DTORR! 11.92 6.89 6.48 3.01

NOTE:

S: New Structural Approach (NSM)

Box & Jenkins Approach (ARIMA)

A
E: Exponential Smoothing (EXS)

o

Periodic Model (PAR)
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‘Table 5.4b Akaike Information Criterion (AIC) of Quarterly Data (Case 2)

Rivers Forecasting Approach Used
s A E P

DBAYN2 4.94 13.99 13.53 6.40
DGAND2 14.46 2.7 40.80 52.63
DGARN2 5.98 278 2.64 3.8
DINDN2 1.80 6.76 6.41 3.00
DISLE2 1.21 4.12 3.84 3.05
DMIDD2 1.24 2.41 2315 3.03
DNORIE2 0.02 0.05 0.05 0.03
DRI 9.87 10.12 9.41 10.21
DROCK2 1.40 3.57 3.42 127
DTORR2 1.6 6.88 6.49 3.00

NOTE:

S: New Structural Approach (NSM)
A: Box & Jenkins Approach (ARIMA)
B Exponential Smoothing (EXS)

P; Periodic Model (PAR)

9




Table 5.4c AKaike Information Criterion (AIC) of Quarterly Data (Case 3)

Rivers proach Used
S I P

DBAYN3 5.58 13.97 1346 5.84
DGAND3 24.66 42.85 40.84 3842
DGARN3 1125 2.7 2.63 33
DINDN3 2.70 6.77 6.49 3.00
DISLE3 1.96 4.10 3.85 303
DMIDD3 1.52 2.38
DNORE3 0.03 0.05 0.03
DPIPE3 13.15 10.09 9.39 10.05
DROCK3 1.59 3.56 3.40 114
DTORR3 14.50 6.86 6.51 3.00

NOTE:

S: New Structural Approach (NSM)
A: Box & Jenkins Approach (ARIMA)
E: Exponential Smoothing (EXS)

P: Periodic Model (PAR)
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53 Discussion of Results

The performance of forecasts is assessed using the MAPE criterion as the
tabulated values in the previous section show. Although the MAPE criterion gives an
indication of which models seem to perform better, no statement concerning statistically

in the four i can be made. To address this

question the rank-sum test was porformed. The forecasting approach which gave
minimum MAPE value was assigned rank 1 and so on. The table 5.5 shows the ranks
for different approaches for four forecasts horizons of the monthly data. The rank-sums
for the models are the sums of the product of the rank and the associated table entry,
‘Thus, models with lower rank-sums performed better than those with larger rank-sums.
“The rank-sums for the quarterly data are tabulated for the three forecast scenarios in table
5.6 respectively.

“The rank-sum test shows that for the monthly data. NSM approach gave lower
MAPE values for the 3-month, 6-month, 9-month and 12-month ahead periods. The

g accuracy of NSM model increased with the increasc in forecasting horizons

as shown by decreased rank-sum values.

The rank-sum test for quarterly data, for three forecasting scenarios shows that
the EXS approach performed better in general than other approaches. But as the forecast
seenario approached critical low flow and high flow periods almost all the approaches

performed equally well,
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Table 5.5 Rank-Sums for Monthly Data

Rank Sum For 3 - Month Ahead Forecasts

Rank NSM ARIMA EXS PAR

1 12 9 o +

2 T 6 1o 7

3 6 4 12 8

4 5 1 3 11
Rank-Sum 64 77 73 86

Rank Sum For 6 - Month Ahead Forccasts

Rank NSM ARIMA EXS PAR
1 14 9 4 3
2 9 12 10
3 2 9 9 9
4 5 12 5 8
Rank-Sum 58 84 75 82
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Table 5.3 continued

Rank Sum For 9 - Month Ahca Casts
Rank NSM ARIMA XS PAR
1 17 5 R} 5
2 4 4 10 12
3 6 3 14 i
4 3 18 3 0
Rank-Sum 55 94 77 LA
Rank Sum For 12 - Month Ahcad Forccasts
Rank NSM ARIMA EXS PAR
1 16 5 4 s
2 2 " 1"
3 3 13 8
4 2 20 2 0
Rank-Sum 54 98 73 75
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Tuble 5.6 Rank-Sums for Quarterly Data

Rimk Sum For First Scenario

Rank NSM ARIMA EXS PAR

1 I 3 5 1

2 2 4 ki 1

3 7 1 1 1

4 - 2 1 7
Rank-Sum 26 20 18 34

io

Rank NSM ARIMA EXS PAR
1 3 3 3 1
2 2 2 4 2
3 2 H 1 2
4 3 - 2 5
Rank-Sum 25 22 22 31

Rank Sum For Third Scenario

Rank NSM ARIMA EXS PAR

I 5 - 4 1

2 1 4 2 3

3 - 5 2 3

4 4 1 2 3
Rank-Sum 23 27 22 28
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Chapter 6
CONCLUSIONS AND

RECOMMENDATIONS

The results of the monthly and quarterly time serics of Newfoundland rivers were
tabulated in the previous Chapier. This Chapter presents the conclusions based on the
results obtained and recommends the best method of forecasting for Newfoundland

rivers.

6.1 Conclusions

The conclusions of this study are as follows:
il For the selected monthly time series of Newfoundland rivers the NSM approach
gave Jower MAPE values in general, thereby forecasting better than ARIMA, EXS and
PAR. Of the thirty monthly series considered, the MAPE values for NSM were Tower
for around 50% of the series. The most common NSM model for the monthly

Newfoundland rivers consisted of ic level, ic  slope,

trigonometric seasonality, i.¢., with zero variance, no cycle and an irregular component.
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2. For the quarterly riverflow series the simple exponential smoothing approach
performed better in general than the other approaches. The results obtained showed that
the MAPE values were lower for 10 out of the total of 30 quarterly series considered.
For the remainivg 20 series, NSM, ARIMA and PAR approaches performed equally

well. The most common exponential smoothing model was the Winters 3 parameter

s Jevel, trend. and

smoothing model which involve onal parameters.

3. For the monthly riverflow series four forecast horizons were considered. Among

the thirty series, the number of series for which NSM gave lower MAPE values

increased as the forecasting horizon increased from 3 month ahead to 12 month ahead

period. Thus, in comparison with other approaches. the forecasting accuracy of NSM

ing horizon. For the EXS approach, the

approach increased with increased forec;

forecasting accuracy for 3 month ahead period was close to that of the NSM approach.
It can be concluded that among NSM, ARIMA, EXS and PAR approaches, long term

of NSM. in terms of MAPE values, is better than short term

ting acceur:

curacy of foreeasts for critical periods for quarterly scries is assessed by

using three different forecast scenarios. The results for the first scenario, where the last

s far from the critical high and low periods, showed that

period used for forecasting

EXS outperformed NSM, ARIMA and PAR for 40% of the serics. For the second and

third scenarios, where the record used is nearer to the critical periods. the NSM, EXS
and PAR approaches performed equally well. The most common NSM model for

cd of deterministic level, deterministic slope, trigonometric

quarterly



seasonality with zero variance, no cycle and an irregular term.

5 For the monthly Newfoundland rivers it was observed that the stochasticity in
level and slope components of NSM approach plays an important role. But for the
quarterly series the level and slope companents of NSM models are deterministic in
nature.

6. The study also shows that the approaches which took physical characteristies off

the serics into ace unt performed slightly betier.

6.2 Recommendations

Although the results of thi:

study show that the MNSM approach has a potential

to be a viable alternative to the prevalent fore ch

sting methods, however furthes

needs to be done on the same. The significant areas of research in the use of the NSM
approach in hydrology are simulation studies, handling of missing values and intervention

analysis to study the cffect of, say. forest fires on riverflows.
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APPENDIX A

BOXPLOTS FOR THE RIVERS USED IN T1

TUDY

hoxplot BAYN

0 30 60 90 120 150

0 100 200 300 400 500

Ea—— Homena-GARN

0.0 6.0 12.0 18.0

()

25 50 75 100 125
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APPENDIX A continued

boxplot ISLE

0 10 20 30 40 50

MIDD
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hoxplot PIPE




APPENDIN A continued

boxplot ROCK

ROCK
0.0 7.0 14.0 21.0 28.0 35.0

R R0 O O O O

TORR

BOX-COX LOG TRANSFORMATION OF TORR
TIME SERIES TO NORMALITY

boxplot loge(TORR)

o
0.80 1.60 240 3 4.00  4.80
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