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Abstract

A reviewofvariolls roll stahilizin~systcllls-1Jj]~C keels, active !ins, IHlS,'iiw l)il~I'

fins, rudder stabilization systems, passive anti-roll tanks, active anti-roll lank:;, ali<I

paravancs-is Jtivcn, along with a more detnill!(1 discussion 011 their suitahilit,v fllr

small fishing vessels. Particular attention was paid to the pn.'iSiw thUllt' tanks

and paravanes, and an experimental study was carried out all th('l;(' t.wo kinds of

stabilizers.

A fl.ume tank model and a pair of paravanes, as well lU'i all osr.ilJatiul-( ll1'lII:l.

simulating sinusoidal rolling, were designed and thell cO/lslrlldt~1. The lank WIlS

tested on the hench for configuring the internal dimensions which I-(ivl' th,' ,II"

sired natural frequencies, tuning, and damping. The analysis was l:arri,~lllut. hy

inspecting the phase lags Cl of the motion of tank water to tilt, rolllllotinll.

Free roll decay tests for a fishing vessel model with the tunk amI pnravmll~S

were carried out for identification of the damping generated hy llw tank alill pllr

avanes. Non-dimensional equivaJent linear damping ratios (E were CllII~lllatl'd allli

discussed.

The stabilizers were tested in the wave tank at MUN, hoth ill regular HIlII ir

regular beam waves, to determine their effectivellCS3. The study of roll n.....]I0USI~,

roll energy spectra, response amplitude operators (RAG), nncl n:sonunt lUlll si~llif

icant roll amplitude reductions at various wave and stability conditions sllows ll111t

the tank can provide 50% to 70% roll reductions, whiclJ are approximatdy 3/)%

more than the paravanes roan do in lilt: same circumstances. The effeelJl of tUIl-



ilLJ;, liquill level, and internal damping on the efficiency of the tank are ciiso:ussed.

Comparisons in tile hehaviors of tlie stahilizers for different W4\OC conditions arc

a1S1llllndc.

Some desi;!11 considerations are presented, and further work is rKommended to

devdol> a systematic method to design passive stabiliting tnuks for small fishing

vcs.';CIs.
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Chapter 1

Introduction

Shill roll can cause various ill elfcds, such as cargo damage, reduction in crew

efficiency, increasing resis~ance, or even a capsiu. The prohlem of reduction of

llhil) roll has been studied intensively for almost 100 years. A wide variety of

stahilizalKlIl systems have been tried for different typt!S of ships. However, the

invcsti~ationof stabilizers for small fishing vessels is relatively inadequate. The

purpose of tltis study is to find an appropriate stabilization system for small fishing

VC5St!1s hy experimental methods.

1.1 The Stabilizer Requirements and Selection

Criteria for Small Fishing Vessels

Due til their size and potentially rigorous operating environment, small fishing

vessels are apt to roll severely. However, there was virtually no significant work on

fishiug vessel roll reductioll ll11tiI1965, when Mr. J. J. Van Den Dosch presented a

"mper entitled "A Free-Surface Tank as an Anti-Rolling Device for Fishing Vessels"

111. In this paper, he summarized four requirements for a fishing vessel's stabilizer:



• Effective even at low or zero speeds.

• Efficient for man.\' different stability conditions.

• Inexpensive to install and maintain.

• No attention needed in normal use.

For a small fishing vessel, costs should be the first factor to be considered. From

the economical point of view, costs of a stabilizer may inclmle [2J:

• total initial costs.

• reduction of cargo carrying capability.

• influence on speed, power and reEistance.

• regular maintenance and operation costs.

while benefits may include:

• increase<! operating efficiency.

• increased crew's comfort.

• savings in fuel costs due to the stabilizer [il.

The benefits should be more than tlte costs for a stabilizer to he used, altlJOugh

some of the benefits might be difficult to he estimated numerically, alltl dC]llmd ()IJ

the standpoint of the ship owner.

The selection of the best type{s) of roll stabilization system{s) involvl:li 1Il1llly

factors which are unique to the given ship(s), and there is no simplistic mctbod for

all questions. Because most small fishing vessels are designed and built will,out



stahilizers, onl! should sclect those which arc adaptable to the space and equipment

tb~ vl:;<;sds already have.

1.2 Survey and Evaluation of Available Roll Sta

bilization Systems

GCllemlly, stahilization systems can he classified as three types: fixed, passive and

ndive. Fixl'l1 stahilizers are those appurtenances such as bilge keels, hilge fins,

pamvanes, and gyroscopic systems. The first three simply generate a damping

moment due to the roll motion of the ship, while a gyroscopic system counteracts

tlie roll motion hy the gyroscopic inertia. Passive stabilizers are those dynamic

s,\"stems that have their own frequencies nearly equal to that of the ship, and

dissipate rolling energy by dynamic coupling. Passive tanks (free surface and U

1uhe) and moving solid weight systems fall into this type. Active stabilizers include

active fins, rudder stahilization, and active anti-roll tanks. Tlley are equipped

witll feed-hack control devices and usually work better than the passive ones but

cost more. A brief discussion will be given for each of them except moving solid

weight systems and gyroscopic systems, which have been proven unsuccessful due

to excessive weight, poor controls, and IIigh costs 13, 4).

1.2.1 Bilge Keels

Dilge keels are probably the earliest form of roll stabilizers. They are flat plates

nLtnched almost perpendicularly to the hull along the streamline at the turn of the

hilge. They increase tlle dnmping moment by increasing eddy making when the

ship is rolling. Dilge keels typically influence hull damping at zero speed by factors



of 1.5 to 2.0, clepending on the area of thc bilv;e keelaud distanct~ froUl tilt' t:Clller

of roll [2]. They arc also found to be effectivc ill hel\\'~' se.'\ conditions [3). TIll' (luly

drawback of bilge keels is that they also increase hull resistallce tit forward Spl'l,d.

Experiments have shown that durinv; resonant rollinv;,the increased rcsisltll1l'1' rail

be up to 40 percent of that of the hull without bilge kl.'e1S 121.
Bilge keels are low in cost alld weight, effective in all sea stnlrs and lilly Spt~ll

range, and generally as maintenance-free <IS the Jmll. They arc prohahly the lllmll

widely used stnbilizcl"fi. However, tlLere are some sllOrtcomings for bilge keels ill

stalled on small fishing vessels. First, fishing involves many over-side 0llcratiolls

which may be interfered with by the bilge keels. Second, in cold sen rev;iolls filll:h

as Newfoundland, protrusive bilge keels arc easily damaged hy floating ict~. Third,

many small fishing vessels arc built of wood, therefore, reliable instnllntion of hilW'

keels is relatively difficult and some reinforcement is required, thus resuitililt ill

higher costs and larger resistanl:e. For these reasons, mallY sm'IJl fishiul!; vu;.<;t~ls

arc built without bilge keels, instead, with sharp chines, hossings and larl!:e ske~<;

to increase their Jmll damping.

Bilge keels give relatively small damping moments, especially for sllIall roll

angles. This is because the damping moment generated hy hilge keels ill approx

imately dependent on tlte square of the velocity, and when roll amplitude alltl

frequency decrease, the moment decreases sharply 15]. In many enses, hilge keels

do not satisfy requirements, and some other kind of stahilizers have to he lidded.

1.2.2 Active Fins

The idea of using active fins for roll stabilization appeared long before World War

II. But only after World War II, were they fully investigated and adopted for many



JliL'iSCllj.\er liners and warships.

Tile active fin stahilization system consists of at least one pair of airfoil-shaped,

wiuj.\-like flus-one on the port and the other on the starboard side. By adjusting

the aUack aJlj.\les while the fins are moving at a speed, a stabilizing moment can

he created by tile lift forces produced hy the fins. The lift force is proportional to

the Slluure of tbe speed of the sbip, to the angle of attack of the fin relative to the

!low, and to tile lift coefficient of tbe foil section. A feed-back control system is

llscd to obtain the maximunl stabilizing moment. To rotate the fins, a complicated

lm:chanical system is also required.

Active fins arc by far the most effective roll stabilizers, as well as the most

expensive ones. Even though tbe effectiveness of sctive fins can be up to 90 percent

reduction of significant roll angles [2J, they are obviously far too expensive for small

fishing vessels. Other impacts of active fins are: considerable space and weight are

required, they are 1I0t effective at low or zero speeds, and they arc vulnerable. All

of these reasons exclude active fins from consideration for small fishing vessels.

1.2.3 Bilge Fins

DUge fillS work 011 the 8Rme principle as active fins. The only thing different from

the nctive ones is that they are fixed instead of moving. This certainly saves money

hut loses much efficiency. Usually, active fins are much more preferable, and bilge

fillS are applied only when costs are very critical. Decause this is hue for small

fishing vessels, several pairs of bilge fins have been tested on fishing vessels (61.

Some of them provided useful increases in model roll clamping with only minor

resistance penalties, some didn't. The tests indicated that passive bilge fins are

sOllll'what attractive for fishing vessels at steaming speeds.



On tllP: other hand, as with bilge keels, bilge fins an' lIot suitablt' for fishing

vessels, Furthermore, bilge fins mainly work by lift force, v,'hicll mcans thaI tllcir

efficiency will decrease considerably at low or zero SIlt.>e<ls whieh lin' tilt' o\l<'Talillg

speeds of fishing vessels.

In summary, in my view, the usc of bilge filiI' on a. slllall fishin~ vcs.<;{'l is a

structural prohlem. Uthe bilge fills can be made in a retractablc form and iustl,llcd

reliably with minor cost and resistance penalties, they can be IIsed as part of a

combined stabilization system,

1.2.4 Rudder Stabilization

As the position of a ship's rudder is usually below the roll center of the Sllip,

the lift force generated by the rudder causes both roll and yaw moments. If roll

moments affect the ship much sooner than yaw moments, rudder-induced roll 1110

ments can be used as stabilizing moments without affecting course-kecping. III

order to properly phase the rudder-induced roll moment to the wave-excited roll

moment, specially designed control systems and steering gear may he required.

As active fins, rudder stahilization systems work hctter at higher speeds dllt: to

higher lift forces. Additionally, they require that the ship responds morc quickly

to roll moments than to yaw moments, which is not valid for some kind or small

hoats designed to be easily-turned. At present, only a few naval vessels alltilligli

speed boats have installed rudder roll stabilization systems. This is hecause tIle

development of this system is immature and its application is rather limitel!' No

small fishing vessel has been found in the literature with a rudder lltahilil\er.



1.2.5 Passive Anti-roll Tanks

III 1874, W. Froude first considered using a tank partially filled with fluid to reduce

ship roll motion. Out only after 1910, when Frahm developed his famo.,.... V-tube

tank, tank stabilizers were installed for actual service. Since World War II, passive

auti-roll tanks have become commonplace on all types of vessels.

Common configurations of passive tanks include (Figure 1.1):

• U.shaped tanks with an air connection between the tops of the vertical

legs(Frahm taJlk).

• Side tanks open to the sea at their bottoms,and each vent end at Ute top to

the atmosphere or joined by an air connection.

• Free·surface side tanks connected by a flume with damping introduced by

nozzles, plates, or similar-type obstructions (Free-flooding tank).

• Free-surface rectangular tanks with damping introduced by nozzles, platE'S,

or similar-type obstructions.

The hasic theory behind passive tank stabilizers is that if the natural period of

fluid flow ill the tank equals the natural roll period of the ship, then the ship-tank

system will be a double resollant system. Tllis means that the moment due to

fluid motion in the tank will be 90 degrees out of phase with tlte roll of the ship at

resonance, while the roll of the ship lags wave exciting moment 90 degrees. Thus,

the tank moment will lag by 180 degrees the wave exciting moment and counteract

roll excitatiOIl.

The major advantage of passive tanks is that their operation is independen~ of

ship speed, providing efficient roll reduction for a given range of encounter frequen-



Figure 1.1: Common configurations of pnssivc tanks

cies throughout the entire speed range. Generally, if the tank is designcd properly,

reduction of significant roll angle near the resonant period r:an he approximatdy

50 percent [21. Since the structure of passive tanks are simple nllli tlley don't. lle..~ ..1

any control system, the cost of design and installation are relatively low. They an!

also maintenance-free when operating although they are required to he properly

tUlled for different operating conditions.

Although passive tanks require some space and weight(usually around 2 percent

of the ship displacement), their locations are versatile, and suitahle locations that

do not occupy usable cargo volume can generally be found.

The major problem of all anti-roll tanks is saturation, which means the fluid

slams against the tank top when very large roll motions arc achieved. TIlL' tank

stabilizing effectiveness will decrease in this case, thercfor<l, a reasonable tank

height should be designed according to the design sea states. Other disadvantages

of passive tanks are that they decreasc initial stahility, and they may he !Loisy ill



some cases 141.

For the same location, weight, and tank volume, aU types of passive tanks

will provide approximately the same stabilization moment. The major difference

hctwcen a V-tube tank and a frce-surrncc tank is that the natural frequency of a

V-tuhe tank is mainly determined by the cross-sectional areas of the wing tanks

and water flow crossover duct, while, for the free surface tank, the liquid height in

the tllnk has a large influence Qn it.. natural frequency. Changing natural frequency

is relatively difficult for a U-tul>e tank once its configurations are determined, hut

it can he easily done for a flume tank by adjusting the liquid level in it. This

makes it preferable for small fishing vessels whose GM and operating sea state

often vary considerably. Furtllf,:rmore, for small fishing vessels, V-tube passive

tunks arc complicated, subject to fatigue and would probably be too costly. The

first installalioll of a flume stabilization system on a fishing vessel took place in

l!lG3 [11. Since then, more and more such systems can be found on fishing vessels

due to successful experiences with them.

1.2.6 Active Anti-roll Tanks

To overcome the dependence of the V-tube tank on resonance, a natural improve-

menl is to install a pump{usually a variable-pitch pump) in the crossover duel,

thus making it all active system. It is self evident that active tanks can have

faster responses than passive tanks to waves in an irregular seaway, as well as a

greater damping effect. The greatest advantage of an active tank compared to a

JlllSSive aile is that it takes into account every single wave, not just a train of waves.

This makes it much more effective in an irregular seaway. However, the feed-back

control system and the motor make it costly, and operating power, especially in-



stantaneous power inputs, mllst be provided. In ~ellcral. from the cosl-ctlil'il'lll',1'

sense, active anti-roll tanks do not ap\lear aUractive compan.'11 with ;u·tiw till~,

Like active fins, active tanks are too expensive nnd cOlllplicalNl for Slllllillishil~f;

vessels.

1.2,7 Paravanes

Paravane stahilizers, p<>pularly known as "flapper stoppers", were inventt!!! h.y 11l1'

U.S. west coast salmon fishermen probably more than 25 yenrs ago [71. DUI'lu

their relatively small size and fairly good roll rctluctioll, they an' 1I0W ver,Y pOllulnr

on small fishing vessels from coast to coast in North America, cven tholl~h litllc

serious study has been found on their design.

Paravanel:l are small delta winge with added tail fins 8uspenllt!d by IOIl~ dHliuN

and towed from the ends of booms on each side of the vessel. A typical pllrnV1l.llt!

and towing arrangement is shown in Figure 1.2 and 1.3. The dcploye!] depth of

the paravanes needs to bf: ~rcater than the effective depth of the wavl,.'S ill lilt'

resonant range to avoid any loss of the damping forces. When its hoom IliOVCIl

downward, the paravane dives sharply keepin~ tension Oil the tow wire, aut! when

its boom rolls upward pulling it toward the water surface, it MSHmcs all all~le of

attack, thereby applying a downward force on the tow wire, In this way tllc towed

paravanes alternately apply moments which resist the rolling of tile vessel.

The effectiveness of a paravane is proportional to the wing awa of the jJaravllnc,

the length of the boom, and the towin~ speed, Koelhel, Fuller, and Hankley [7\

developed a design methodology to determine the requirl!t[ wing area ha.'ll!tl all tll1'

amount of damping required to achieve a specified perccntage of roll recluctioll,

However, the paravane effectiveness coefficient must he determined from the full

10
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scale tests, Goudeyand Vcnugopal [61 found, from model l('!tls, lhal 11,1t8\';UIt':" ar,'

effedive at roll damping, but their rcsistnnre penalty at slel\mill~ SIl('('(l i~ 1:lq.:I·

when compared with bilge fins. Because the anglc of attack of a Imrnvnlll' ill~n'n.<;t~

as the towing speed increases, it ma)' be lk5irablc to l1\0\'e lht' I{l\\in~ !>llinl .m

the paravane forward at high speeds 10 avoid too larg(' drag force8, T!5ts caml'tl

out by Bass and Weng [8] indicate that paravanes contribute quite signilic;l1ltly 10

the roll damping even at low and zero speeds, which is wllnt a small fishillJ!; \'I'S.<;t,1

needs,

Besides incr~asing resistance, another shortcoming of n pnrnvnnc slahililwr il<

that if no paravane on one side is lost, the hias cllused by the relllltinilll( l'arnvall"

could lead to a dangerous condition and even a capsize ill n heavy scnwa.\' [0). 11

is believed that a quick hreak-away mechanism is necessary for hoth Imra\,;\IW:-l

to cope with this situation, Alternatively, it is suggested ill refcrente 171 Ihat

additional safet)· wires connected to tILe noses of the pnraYancs call 1)(' USl.-'t1 (Filtllrt,

1.2). \Vhen one towing chain breaks, the operator can pull "I) the other !)anw:l1lc's

nose thus dumping the load, then both paravanes can he 5llveo:l. When the hflollls

are used to tow nets, paravanes have to be taken back, Out in thi... ClL,>(~. IlI~L'l

contribute some damping moments,

A paravane is a special type ofrolJ stabilizer developed for fislling VffiSCls whkh

have large outrigger booms used to tow nels from hoth sides. lUI wi/Ill nccllfltl!llr.,~ ill

the fishery demonstrates that it is an economical ami clrl.'clive menlls of conlrollill~

roll.

12



1.3 The Scope of This Study

Prom the previous discussion, it is concluded that passive flume tanks ami para·

vanes arc tIle most applicahle stabilizers for small fishing ves.~~ls. Between them.

Ims,<;ivc lanks are considered superior. Compared to passive tanks, paravanes may

ilLtl~rferc with hauling, increase hull resistance, arc not very effective at low and

i\cru speeds, and nt:ed more maintenance. Particularly in the cold sen regions such

as NcwfoudJand, floating ice may interfere with deploying paravancs and damage

thelll. At present, passive tanks are not very commonly used on small fishing

vessels wiJilc paravnncs are already commonly used on small fishing vessels, there

fore, the main impetlls for this study is to find a more efficient but still affordable

IlIcthol! to l>tllhilizc small fishing vessels. Investigations of effectiveness of a passive

tm,k lUll! a pair of paravanes on a fislling boat in various conditions will be carried

out ill model scale, and comparisons will be made between them.

The major problem in evaluating tank performance is that tank behavior and

cffcr.tiveness are nonlinear with respect to wave slope heL.,use of nonlinear tank

moments lIud saturation effects. Theoretical prediction procedures are considered

very inadequate to recognize the nonlinear behavior of a tank, particularly when

saturation cffects occur. The study will he carried out mostly experimentally.

For paravalles, although they arc already proven effettive on small fishing ves

sels, existil\l~ studies arc lIot considered exhaustive. There are a number of ques

tions that remain to he answered. For example, are they equally effective'at all

tllllplitudes ofrol!? Are they equally effective in irregular waves as well as in regular

waves? These questions should he answered.

13



Chapter 2

Design and Testing of Tank

Model

2.1 Design of Tank Model

For the initial design of a tank motlel it is necessary to choose the approximate

configurations of a tank whose natural frequency is close to the natural frclllWllCY

of the ship model on whicll it will be tested. It has heen fonnd that for hl'sl

performance, the natural frequency of a passive tank should he 6 to 10 Iwrccnl

higher than tlle ship natural frequency {12]. The model tests siJould he carried

out under Froudian similarity law, which means tILe viscous forces arc considered

negligible. To avoid scale errors the model should not he too small, lIs11nll,y, III

least 2 feet width is desirable (12). However, the widths of many l:ihip models arc

relatively small, and there is a elanger of scale effects for a tank model inslalled ill

a model ship. In this case, it is common to use two tank models, II lar~er ml(! for

roll table tests, and the smaller one for ship model tests. It lIIay he lleecssllry to

modify some structural details on the small tank based 011 the comparison hctwecn

14



th~ lCSL'i of the large ami small models, so that the same clamping clJaracteristics

all~ ohtain(!(1. Since the main purpose of tltis stucly is to provide some useful

information on passive tank performance for fishing vessels, and not to design a

prototype lank, scale effects were not considered. so, only one model was made.

The numc tank model was constructed in the shape shown in Figure2.1, where

B

~'''''''bl~d.rnl'i''.PI~

Figure 2.1: Tank Model

I, is thc wielth of the wing tanks and can be changed by moving the plates in them.

b. and I.. are the length and width of the flume respectively, anet B is the overall

width of the tank. The damping plates are removeable.

E"dl of these dimensions, as weJlI\S damping, affects in some degree Ihe natural

frequency of the tank. However, two factors can be determined at the beginning.

First, it is obvious that the moment generatc<.l by the tank is proportional to its

width. In practice, B is always chosen as large as possible, that is, equal to or

close to the beam at midship. Second, the moment is also proportional to the

nlllollllt of water in tile tank Qt. How much water is suitable depends on the

15



desired roll reduction, the permissihle eM losses (if h is fixed to ~et thl" riAllt

natural frequenq.. more water implies a greater rree surrncel. nnd thl' 1l\"l\i\ahlt'

loading and space OD the ship. Typicall}'. aoout 2 ]1CfCC'lIt of the llhip weight ill

.><d.

Because the tank may be tested on several fishing ve6SC1 modelo; ilt i\IUN, till'

design of the tank is based on an assumed fishing model which ha.'l n 1\ weight (If

at most 80 kg, a [)earn at midship of approximate 500 mill, alltl i\ typical tc:'lh'd

natural roll rrequency 3.75 rad/s. So, tile tank model will he 500 mill willt~ 011 tht,

outside, and have 1-2 kg of water in it.

Three equations have been round to estimate a passive tank's natural fTL'(lllt~IIQ"

For a simple rectangular tank without restriction, the naturlll frcqucncy may hi'

taken as [16J:

WI = ilih
where B and h are the width and the water level in the tank rcspedivcly.

Barr and Ankudinov [12) give another equation ror flume tanks:

WI = [1Ftanlt(~)lt

(2.1)

(2.2)

where: B' = B + b.(I, - 0.91.. )/0.91., and B, b.. , ill I.. nre defined ill Fi...·lIfc 2.1.

Chadwick and Klatter (17) gave an equation for passive V-tuhe lallks:

(2.3)

16



A

where: S effective length of the U-tube

l' ~:)ds
area (constant) 0.- the free surface in each wing tank of the

U-tuhe or largest cross section of the U-tube

local cross-sediollall'!rea of the V-tube normal to the V-tube

centerline (variable cross section)

girth-like coordillate along the centerline of the tank water

1 = total "girth length" of the tank water

This equation is also valid for a flume tank if the wave-making effects are consillered

relatively small. In this case:

s= fl ~ds=h+ (B_b,,)2 + (B -b")ltb,,
Jo A{s) 4h 2M"

For a given tank, equation 2.1 gives the largest value wllile equation 2.2 gives

tile smallest. The medium one, equation 2.3, hus been used during the design

procedure.

Fixing B, there are still four factors f
"

1", b", and fl that need to be determined.

Figures 2.2 to 2.5 show the various effects of changing dimensions on the natural

frequency when B = 500 mm. For a given tank, WI increases as 11 increases (Figure

2.5). When 11 nnd the other three dimensions are fixed, Figures 2.2 to 2.4 give

the trend of WI llS only one dimension changes. Figures 2.2 and 2.3 show that

the closer II and I" are, that is, the more similar it is to a rectangular tank, the

larger W, is. This is hecause, for the natural motion of water in the tank, the

rnte of transfer of water is larger. As for the effects of b" on w, (shown in Figure

2.4), when bn/B < 0.5, the effects arc small, however, when b,,/B > 0.7, w, goes

up sharply lIS b" increases. This is because the percentage of water in the flume

17
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relative to the total amount of water is hiv;her, therdorc, the relative tnlnsfcr of

water is greater.

To determine III I", b", and h for certain B, WI, lind Q" two other basic- sha]Jl'

factors 'b,,/B and 1,,/111 which define the size of the flume relativl' to ovenlll siZto

of the tank, need to be chosen, There arc no definite rules to do this. However,

it is clear that one should avoid some extremes. If the flume is too Iarv;e, It will

he too small because Q, is fixed. On the other hand, too slllall flume rcsllltJ-: ill II

large restriction of water motion, and in order to get the wanted natural frcllllCIIC_)',

too high a water level is needed. After several trials and cntlcavonring to klocp },

moderate, b,,/B is set to OA and I,,/lt to 0.5 in tllis design. Theil, after solving the

set of equations below, all dimensions can he obtained.

w, = If¥= 3,75

S = h +~ + (B-2~1~,b, II' = 0.089 III.

Q, =hIBI, - h,,(lj -I,,)] =2% x 0.08 => I" =0.045 m.

B = 0.45 b" = 0.18 m.

~ = 0.5 11 = 0.050 m.

i=OA
Due to the enormous number of possible configurations and many other factors

involved, this estimation is fairly rough and may IIOt he optimal. Durin/-( the

following experiments, several modifications were tried hy changing I, and jlutting

some solid materials in the tank to increase bn. Figure 2.6 shows the dimcnsions

of the final tank model made.

The inside dimensions are a little smaller than designed due to tlJc thickness

of material. The model is made of plastic glass so that the movement of the insi,lc

water can be observed. Two pairs of damping plates had been prepared for tcsts.

One has one 9.5 mm wide slot in each plate, and the other has two 8.8 mm wide

20
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Figure 2.6: Configurations of the tank model

slots, which cause less damping, in each plate. The damping plates for the modified

tank with increased b. have one 15 mm wide slot in each.

2.2 Oscillating Bench Tests of Tank Model

Defore testing D. tank model on the ship model, it is common to test it on a rolling

hench first, he<:ause bench tests can be carried out much cheaper and f(lStet. The

bench test results. including the moment generated by the tank ventus roll fre

qucncy and the phase lag versus roll frequency, are obtained to determine tank

configuration, tuning and dampinb. The amount of damping considered to be sat

isfactory is not fixed. The determining factors include response of the unstabilized

vessel. size of tlie tank. and the frequency range of operation. Bosch and Vu~:tsI181

developed n design procedure for free-surface tanks using the derived data from a

series of hench tests. The state-of-the-nrt for bench lest technulogy is the roll/sway

table of the Anti-roll Tank Facility in David Taylor Naval Ship Research and De-
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velopment Center [111. which is a simulation facility consisting of a rnll/sway lahl~'

capable of accommotlatillgmodels up to 4 ft.(I.3m) in width. All almlog computcr

is used to simulate the dynamic characteristics of the ship ill laternlmotioll and

to provide roll and sway signals to the table. Thc tank-gellcratcd rollmolllclll and

the sway force and yaw moment arc fed back to the analog computer. providing

a closed-loop simulation of the ship/tank system. Unfortullfltely. few lahof1ltori~'~

can afford to duplicate such a facility.

Due to financial anti time limits, a fairly simply rolling tahle was conslrllt~t.ed,

together with a pair of small wave probes used to measure the waler elevation ill

HIe tank. A dynamometer to measure the moment generated by the t<lnk was 1101

available. It has to be noted here that wave prohes only measure tile waler If'vcl

at one point in the wing tank, and it might not renect the instant of maximum

water transfer due to the oscillation of the water in the willg tank. This ddl'<".t is

apparent in the later experiments. Therefore, if finances permit, a dynamometer

is recommended. In this study, it was assumed that the out-of-phase angll! or the

tank moment Ct has approximately the same value as the out-of-phase angle or

the water level in the tank. Figure 2.7 shows the principle experimentnl setup.

The motion of the bencll driven by the method shown is not exactly sinusoidal,

however if the lever is made much longer than tile rolling radius, it is very c1o:~~ to 11

sinusoidal motion. The amy;itude of rolling motion was set to he about lfl dc~rt~es.

For each i, and h, tests llave been done on a range of rolling frequencies, whicll are

obtained by adjusting the supplied voltage to the motor, with different damping

conditions (see Table 2.1 and Figure 2.7 for details). The natural freqllenciC!:I of

the tank were obtained from tILe free decay tests hy giving it an impulsive starl.

Figure 2.8 shows the tank water elevations in a de<:ay test. The curve is analyzed
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Figure 2.7: Oscillating bench test setup
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by a FORTRAN routine giving Fourier fit and frequency.

42
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t{!Il:!C.)

Figure 2.8: A tank decay test for obtaining natural frequency

Table 2.1 shows that the natural frequencies of the tank are ahout tell percenl.

lower than expected. Tllis is due to several factors, including the iWlccllracy of the

equation because the formula is based on the assumptions of 'no daml>illg' lind 'no

free surface' in the tank. Scaling effect can also be considered a factor. PhysiclIlly,

the phenomenon in the tank is dominated by gravity forces and viscous forcl."i lmv!..!

to be neglected when Froudian scaling has to be followed. For large tlluks, tld~

could cause little problem due to the very large grnvity forces compared tu the

viscous forces. But in a fairly small tank, viscous forces could he relatively large

and cannot be neglected. In this case, viscous forces will cause a longer transFer

period than estimated. This is also confirmed by the fact that tlw lligher damping

in tile flume, which causes larger viscous forces, gives lower frequencies (Tahle 2.1).
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Tahle 2.1: Tank model natural freouencies

Tank Q,f80kg. WI (rad/s) WI (rad/s) WI (rad/s}

Model (%) with low with high from

II (mm.) h(mm.) damping damping eqn. 2.3

36 1.53 2.735 2.385 3.044

105 47 2.0 3.027 2.65 3.458

58 2.47 3.408 2.925 3.813

43 1.55 3.187 2.75 3.583

85 55 1.99 3.643 3.125 4.017

67 2.42 4.012 3.595 4.385

49 1.5 3.756 3.23 4.112

68 66 2.02 4.277 3,825 4.692

83 2.54 4.9 4.375 5.152

45 1.2 3.881 3.63 4.249

55 57 1.5 4.398 4.009 4,704

76 2.0 5.179 4.655 5.301
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Three channels of data from the tests (Figure 2,9) were first anal,vzl'{l h:--" n

program providc<i by D.W. Bass wllich givcs the !Jcst Fourier fit of l~ach I'ur\"l' as

well as the frequencies and amplitudes. Then, tllOse fits were calculatl'd h,\' lllluthcr

program giving the phase lag tt of the tank-water 1Il0liOll to Ihl~ rollmolioll. ir

was taken from the average value of phase lags obtninCtI from each waw prolll'

relative to the roll motion. Figure 2.10 and t!ql1atioll 2.4 illl1strntl! thl' stralcf:,l'.

From Figure 2.10 one can easily see that equation 2.4 gives the phasl~ lag illlli'!.(f('{"~

of two sinusoidal motions with the same frequency.

Figure 2.9: Showing tank-water elevations and roll motiollS

-180 x (.atl + .at2)W
Er 2'1l' 12.<)

Tests were first carried out orr four wing-tank widths (Ie) and lhn:c wntl~rlt:vds

(h) with tlie wave probe position at the edge of each wing Lanl; (Figure 2.7, pQl;ition
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Figure 2.10: Fits of tank-water elevations and roll motions

I). The resul\..<; of fl are plotted in Figures 2.11 to 2.14, versus r':lll frequency w.

III the plots, hi~h damping means that there is one slot in the damping plates,

and low damping means two slots. High, mid, and 101\' water refer to tank water

alllount arc 1.5%, 2.0%, and 2.5% of 80 kg respectively (Table 2.1).

Oy rigbts, fl should increase as WI increases, and be close to _900 as W ap-

preaches WI' However, the results shown in Figures 2.11 to 2.14 are 20 to 30

dl~grces lower than expected. This is because, as mentioned previously, the instant

of watcr level at the prohe position reaching II. peak is a little bit ahead of tile

instant that the water stops transfering and hegins to flow to the other side. For

this reasoll. another set of prohe positions located at the middle of the wing tanks

(Figures 2.7, position 2) was tested for the medium water levels. Compared results

an' plOltcd against llo11dimensionalize<1 frequency wlwl in Figures 2.15 and 2.16.
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Figure 2.11: Cj, bench tests for 11 = 105 mm.
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Figure 2.12: C/. hench tests for I, = 85 mm.
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Figure 2.14: Ell b.mch tests for 11 = 55 mm.
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It i~ shown that, with tile prohes at the middle of tlle wing tanks, CIS ar(> close

to _900 whell w/w, equals 1. This probe position appears to give more reasonable

measurement and is applied in the later tests. It is also noticeable in Figure

2.15 aud 2.16 that the change rates of £, are "roadly the same for two positions.

Therefore, the results in Figure 2.11 to 2.14 are still valid providing that only the

change rates of €, versus WI are considered.

As shown in Figures 2.11 to 2.14, for high damping conditions, el hardly changes

in tlJe range of w, while for low damping conditions, EI is a little more sensitive to

w. It can be said that the slope of £, - W curve is an indicator of damping level.

High damping makes e, vary little with w. III other words, the tank does 1I0t lleed

to he re-tulled ill a large range of roll frequencies. However, high damping restricts

the amount of transfered water, tlLUS reducing the stabilizing moment generated

hy the tank. Choosing proper clamping is critical for optimizing tank perfonnance

and is one of the main purposes of a hench test. It is believed that the tank is over

damped ill the previolls tests. Scale effects coulcl be aile factor causing this.

Tests were then carried out for the modified tank witll increased bn (Figure 2.6

and Table 2.2). The purpose of trying this is to concentrate more water in the

Table 2.2: Natural freouencies of the modified tank

Tank Q,j80kg. W, (rad/s) Wj (rad/s) WI (rad/s)

water level (%) with without from

h{mm.) damping plates damping: plates eqn.2.3

49 1.78 3.166 3.32 3.757

60 2.19 3.40 3.70 4.121

10 2.55 3.698 3.97 4.41

wing tanks and thereby get larger stabilizing moment. The first set of tests are for
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the tank with damping plates that have 011(' 15 mm wid(' sIal ill ('neIL. In Fi~url'

2.17, when "I = -90", from 10...• water le\-el to hi~h IC!\-el. t... L<; ('(l\'Crl'll fwm 3.1

rad/s to 3.9 rad/s, which means the expeded roll frequenc~.. rall/;c is indlllll'li in

the frequency realm of the tank. In the tested frequene)' range. ", L'l npproxillllltt'l.\·

linearly dependC!nt on w.

-120

-60

-40

higbw:wr
mid WAtP.r +
InwWll.tP.r-B-

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
w(radN

Figure 2.17: Et of the modified tank witli dampillJl

It should be noticed that when !t is plotted versus the Ilondilllcllsional frl'lucliCY

(Figure 2.18), the effect of watemepth in tlie tank hecomes insiJloificant fur t111~

relative frequencies. Ideally, if we assume hoth WI and EI arc linearly depcJI(lclll Uti

hand w respectively, thC! Et "" ~ line should he unique for OIlC tauk witJl t:crtaill
w,

internal damping level which is reflected hy the slope uf the Iinc.

Since the internal damping of this tank seems still a littie large cornp:m:t1 tu

the tests in references 115) and 119J, according to the slope of the Et - W curvCl', it
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Fi,rure 2.18: Er vs. nondimensional frequency, modified tank with damping

was decided to test this modified tank without any clamping plates. Much sloshing

\VIIS experienced and it was necessary to seal the tops of the wing tanks to avoid

wllter splashing out.

As expected, the Er - W curves without damping (Figure 2.19) arc steep com

part.·d to tlJOse with damping (Figure 2.17). By observing the water motion in

the Innk, it is concluded that near the resonant frequency, tlte moments generated

hy the tank (hoth static moment and dynamic moment) increase as the internal

(laillping decrease, because more water moves back and forth with a faster speed.

However, hecause tlte phase lag changes fast versus roll frequencies when the in

lernnl damping is small, the tank could soon be wrongly tuned at non-resonant

frequencies snd could possihly iucrea.'lf! roll angles instead of decrensing them.

Without tank moment data. it is hard to say what damping level is the best until
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Figure 2.19: !j of the modified lank wilhout damping

on-ship tests are carried out.

The modified tank gives better phase angle responses and is choscu 10 he ll'lilc,j

on a ship model.
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Chapter 3

Experiments in Calm Water

It was decided to use one of the available fishing hoat. models which has the least

hull damping so that the expeded damping from tank or paravanes is more obvious.

Model 366 ifl the one chosen and its body plan and particulars are given in Figure

3.1.

As concluded ill the previous chapter, tILe modified tank model with increased

flume length (Figure 2.6) was used in the test.

A pair of smull paravanes was also made for the tests. The shape and scaled

dimensions of the pamvnnes are similar to those commonly used in Newfoundland

fishing vessels. Figure 3.2 SllOWS the detailed dimensions of the model.

3.1 Experimental Setup

Three tank water levels and two internal damping levels were chosen to be tested

ill the [ollowing tests. According to the results of the rolling bench tests, the tank

will he tested with the damping plates, wllich hnve one 15 mm wide slot in each or

them, and without any damping plates. Taking into consideration that the liquid
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level sliould not he too hiA"h to avoid spillillA" over the sides, three water levels ill

the tank model arc testcd throughout the experiments. They are 30 rom, 47 mm,

and GO mm, whicll match 1.3,2.0, and 2.55 percent of the displacement of ~Iodel

361' rL'Spectively. The natural frequencies of these three levels with two levels of

iuleruill dampinp; arc given ill Table 3.1. As the tank natural frequencit'.s were

Table 3.1: Natural freauencies of the tank model tested on M366

" Qd70kg. WI (rad/s) WI (rad/s) WI (rad/s)

(mm.) (%) with damping without damping fromeql1. '.3

30 1.3 2.30 2.55 2.98

47 2.0 2.77 3.19 3.69

60 2.55 3.40 3.70 4.12

lower than expected, M366 is tested at its natural frequency ballasted to about 3.0

md/s, as well as at 3.75 rad/s. Each natural roll frequency was kept unchanged

throughout each set of tests which includes various tank water levels and damping

conditions. Due to free surface effects, GAl will decrease when the tank is filled

witli some water. The GM loss due to a flume tank CRn be calculated as 13}:

(3.1)

where i is tile moment of inertia of the free surface area and V' is the volume of

displaccmenlllf the ship. Equation 3.1 gives the result 6GM =8,9 mm for the

tesled model. However, the natural roll frequency of the boat may not consequently

dccrense because of the dynamic effects of the tank. In fact, it was found that w.
hasasmall illcreascwhen the tank is filled with some water. Table 3.2 lists out the

Glv! obtained from inclining tests for different tank levels. Note that the center

of grnvity of the model has been modified for each tank water icvcl 50 that w~ is
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Table 3 cr Icvelt>

h GJlt[ (nUll.) GM (mill.)

(mm.) w. =3.00 rad/s w. =3.i5 nulls

0 37 52

30 27 41

47 29 41

60 29 43

kept constant. In this case, the true GM's obtained from the inclining h~tt> clln

he expressed as:

GM} =GM. - 6GM±6G

where GM. and Glvh are the GM's hefore will after the tank is filled with water,

and 6G is the distance between the modified center of gravity and til!' uriginal

one. Here 60 can be regarded as the compensation of the cOlllhined illnllCIU:l' ur

dynamic effects of the tank and fJG1'v/ on natural toll frequency. It call 111~ Sl~I'1i tlm!

at the same lJ., GM of the model with water in the tnnk is ahonL 20-3(~X, lowl~r

than that of the model without water in the tank. Decnusc GM is the hKll<lIe hy

whicb the waves rock the vessel, the stahilizing function of a tank also partially

comes from decreasing GM.

Experiments were carried ont in the wave tank at Memorial University, which is

57 m, long,4 m. wide, and 2 m. deep. The tank model was fixed at midshillS wllcrc

two light metal boorr.s suspending paravanes were also mounted nthwartfihips. Tlll~

parsvanes are at a distance of 80 cm from the center line of the model. Fjg(JT(~ 3.3

shows the experimental setup. The vertically moveable weight was to he uJj(~fl for

the adjustment of w•.
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Figure 3.3: Experimental setup

3.2 Free Roll Decay Tests

To identify the damping moments generated hy tank and paravanes, free roll decay

tests were first performed on M366 with and without tank and paravanes. Experi-

ments were carried out for Jl series of initial angles rcreach tank water level and roll

frt't1uency. The roll decay curves were analyzed in terms of the non-dimensional

l'quivalent lillear damping coefficient (E. The t£'.sts with both tank and paravanes

were not performed because the roll decays too fast. The values of (E are plotted

lll{ninst mean amplitude of roll angles 1>... in Figures 3.4 to 3.8, where the points

nre experimental data and the lines are linear regressions.

Tests of Tank with Da:mping Plates

For the values or (s in Figures 3.4 and 3.5, wllen h = 0, the variation or (E

with ¢'" is clearly linear and can be expressed in tlle form:

(e=m¢m+ C (3.2)

Dut after the tank is filled with some water, the data points become more scattered,
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Figure 3.4; <s of M36G, tank with damping, w" =3.75

conclude any general relationship hetween <E 'I.nd tP",. This is hecause of till'

different mechanism between the free roll decay of a ship without t.ank aud that

of a ship-tank system. In the case of a ship-only de<:ay, the motion cqunliolJ of 11

vessel rolling in calm water, in the case of a linearized analysis of rollllulllpiul-:, is

given by;

(3.3)

where BE is the amplitude dependent equivalent linear damping cocfIidlmt, II) is

the virtual moment of inertia in roll, nnd D(¢) is tiLe non-linear restoring moment.

WILen a tank is installed, the equation becomes:

Unlike bilge keels or paravanes, whose stabilizing moment can he simplified as Bs~

where Bs is regarded as an increment of BE, the moment generated by a .~tahili7,illg
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Figure 3.5: (e of M36G, tank with damping, w~ = 3.00

tank is dependent on ¢, and the result of equation 3.4 also depends on the phase

lag,:"

Nevertheless, assuming the tank moment can be treated as an increment ofhulJ

damping moment, the regression lines in Figures 3.4 and 3.5 manifest the average

'damping' increase duc to thc tank. At both rot! natural frequencies, the higher

tllnk water level gives higher 'damping'.

In equation 3.2, the magnitude of the constant C is indicative of the wave

damping componcnt of the roll and the magnitude of m indicates the significance

of thc viscous component of tile <Inmping /21). The wave damping is considered

Iincarly dependent on roll velocity while the viscous damping is usually nonlinearly

dependent [22}. From F'igures 3.4 and 3.5, one can see that the tank basically

introduces 'linearity' into the roll damping, in the sense that the damping moment

appears to he independent of amplitude. This is reasonable because the action

of a passive tauk is actually a kind of energy disfipation by wave-making. Unlike
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bilge keels, a stabilizing tank provides fairly lnrgl' damping at small roll nl\glt·~.

For this vessel, when II = 47 mm aud!l'm = 7", the damping i~ mOrt' thall Iriplt"{l

al w~ = 3.75 rad/s and increases by over 400% at ....<> = 3,00 rad/s. Howt'\'cr. lilt'

increment of the damping due to the tank dccreas('s as "no increases.

Overall, the damping provided hy tlte tank at w~ = 3.00 rad/s is ahollt ::!ll%

to 30% higher than at w~ = 3.75 rad/s. This can hI.' c;o;plaincd h.\" thl' fad tiwi

compared to the tank moment, the restoring momeut(D(¢) ill cqll. 3.4) is fl'lati\'l'ly

small due to the G.M reduction at lower frequency. this causes thc ship roll to d(ocay

faster. Another reason for tlLis could be tuning, that is, the tank natural frt't)IWIJ(:.V

is better tuned for tlie roll frequency 3.00 rad/s, which is prov{.'(1 ill Illter Il'sls ill

beam waves.

Tests of Tank without Damping Plates

The most noticeable phenomena in Figures 3.6 and 3.7 are that tllI,tlalllpillg

that comes from the tank at low roll amplitudes (rPm) is higher thall tlw dalllJlin~

at high roll amplitudes. The main reason for this may br the dccrc;l.~illg of rn'('

surface effects with roll amplitude. Saturation could be the otlier rea..';{)ll. Without

damping the amount of transfer water is largely increased, and causes saturation

at large roll amplitude.

Compared to the tank witll damping, (6 is about doubled at w" = 3.75 rad/s

a -t increased by 40% at w" = 3.00 rad/s for low roll umplitudL-s. Howt:wr (/-;

keeps about the same for both damping conditions at high roll umplitUlk'S. This

could be the result of the different tuning (different tank frequencies (w:) in Talllt'

3.1), the higher stabilizing moments, and some dynamic effects. The rC;l(iollilJg of

these combined effects is complicated and is beyond tilC scope of tllis study.

At the high natural roll frequellcy(Figure 3.6), thc iJigh water level(h = Gil

mm) no longer works hetter than the medium level{h =47 1II1ll), ami at the Inw

frequency(Figure 3.7), the medium level even does better than tile Iligh levI:!. This

indicates that when the tank is less damped, in other words, the ship-tank system
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is 'softer', the tuning and dynamic effects become morc importnnt tholl thl' 1I11101l1l1

of water in it.

W", = 3.D

9 11 13 15 17 ill 21 ~ 2~

q,,,, (deg)

Tests of Paravanes

0.2 '--'--'---'--'---'--'---'--'--'w-'-.-='3".,::l.
0.18

0.16

0.14

(E 0.1

Figure 3.8: (s of M366 witll paravanes

Surprisingly, the paravanes contribute quite significantly to tile roll llalllping

at zero speed. As shown ill Figure 3.8, at ¢m = 8", the damping is more lIJau

doubled. The comparatively small forces generated hy parnVllUCl; nrc ofrscl by

the long booms. At w. = 3.75 radls, a small increase of the nOll·linear damping

component is introduced. Dut at w. = 3.00 rad/s, the slope of the damping curve

using paravanes is quite similar to that not using paravanes. This indicates that

the damping comes from 'lift' forces rather than 'drag'. The lifl fareCH un the

paravane are generated as it moves in a circular path induced by the upward pull

of the line at the point of attachment [8].

Compared to the tank, the damping of the paravanes is small at small roll

angles but increases faster as roll amplitude increases. In tile region of ¢'" < tOO,
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for the medium waterlevel, the damped tank provides 30% to 70% more damping

. ami the kss clamped tank provides 100% to 200% more damping than the para

Wilier> (comparinl; Figures 3.4 • 3.7 to Figure 3.8). Tile paravanes contrihute mort'

dampill~ than tbe tank with medium llnd high water levels only after the mean

roll amplitude exceeds fairly high values which are usually not often attained wilen

a st:t.lJilizcr is installed. The high damping from a tank at small roll angles could

Ilrcvent UIC initial small roll motion of a ship in waves from developing to a large
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Chapter 4

Experiments in Regular Beam

Waves

Model 366 installL·d with the tank and paravanes was tested ill regular 1ll'1l111 waws

of two wave heights: 5 em and 10 em. The intention of the experiments WiL'l til

investigate the effectiveness of the tank and paravancs when the hoal is fret' to

roll at zero speed in !igM and moderate waves. As mentioned in chapter oue. tILl'

efficiency of a tank is independent of the speed of the ship. Out fOf the pamvmu~ it

is a different situation. The efficiency arllte paravane dccr<~a~cs as the towilll-(Il]ll't.·d

decreases due to the decrease of lifting forces. The tests for the salllc paraVlIllCS 011

another ship model [81 show that the non-dimensional equivalent linear dalJlJljll~

ratio (E at Froude number 0.2 is about twice as large as (I> at zero SIH.!l,(1. OCClLllSl~

it is not feasible to carry out tests in waves at forward speed ill a smalllowitll-( tank,

the tests were only done for zero speed. However aile should rcmcmber here llilll

the effectiveness of the paravanes is leasl when it is compun.'(! to the cff(.'Clivml(''}i.'i

of the tank. To restrict excessive yaw and drift, tile morlel was lightly telilerecl al

the bow and stern. The tests were carried out for a range of wave ffl'<lUCllcit~ ncar

the two natural roll frequcncies, that is, 3.00 rad/s and 3.7.::i rail/ii. Wilen hotll
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(auk :uLlI paravancs arc applied, the nlediutn tank water level (47 mm) is used.

4.1 Measures of Effectiveness of a Stabilizer

The ohvious measure of the efficiency of a stabilizer is the roll reduction that can

lie ohllliucd. The roll reduclion factor r/ is defined as:

(4.1)

where (] is the value of roll angle amplitude and subscripts 5 and 1/ indicate,

respectively, stabilized and unstabilized values. In regular heam seas, (] usually

refers to the resonant roll angle at wave heights that are within the capacity of

the stabilizer {21. In a seaway, r/ is commonly used as a statistical measure of

effectiveness, and u is the root-mean-square (rms) value of roll angle amplitude

aud can he replaced by otJler statistical measures of roll angle amplitude such as

mean or significant value:'! [111.

Tile ohjection to the utie of thl~ roll reduction factor r/ is that it does not

discriminate between small ali''!. large roll angle amplitudes. A much more pertinent

roll reduction factor Td/ can be defined wllich focuses 011 the reduction in the

occurrence of roll angle amplitudes greater than a specified limiting value 4l:. 4l:
is selected Oil the basis of ship mission and, when the stabilizer system is dcsignl.>tl

Dccording to a criterion, is the limiting roll angle amplitude value used in the

criterion. The discriminating roll reduction factor is defined as [ll}:

(4.2)

Decause this is a general study and there is no certain design criterion for the

slahilizers, the simple roll reduction factor T/ is used for the evaluation. However,

since the roll reduction varies with the ship's stability and speed as well as waY('

regularity, direction, height and period, one should he careful when using TJ to

compare stabilizers {2J.

47



4.2 Tests of Tank with Damping Plates

Figures 4.1 to 4.4 show that the tank and pamvanes pro\,idl' 11% 10 ;1% roll allAh,

reductions at or close to resollant frequencies (also ~t~ Tahle .t.I). wliih' th,',\" h,\\'\'

little effect on roll at non-resonant frequencies. The fact that tht· slahilbwtl roll

responses have apparently high pe:.l.ks at reSOnant frequencies indieatt's that Ill\'

tank has too much internal damping. It is also showu in Table 4.1 that, for hol]1

natural roll frequencies, the stahilizers work hettcr in light waves. TIll' n'asolJ for

this could he that the components in the tank moment cause(l hy dYllalllil~ elll'!"ls

is not linearly dependent on roll amplitudes. TILe 'free surfac<" efred is rdllti\'l~I.\'

large at small angles of roll. The total tank moment therefore illcrcase~; at 11 SI(lWl~r

rate as the roll amplitude increases. This is also true for the parawulL'S IlI'CallSl~. us

found in the previous decay tests, tlte forces generated by paravancs arc mainly lift

forces that arc approximately independent of roll amplitudes. For lurAe umpHl.lldl's

'stall' type effects may occur and that result in reduced lift forces hut illcrell1"'d

drag forces. and the total damping forces could he relatively smnller.

For the lliglL natural roll frequency w, = 3.75 rad/s. the effeclivelJl'tj.'i of llll'

tank cannot be said to he satisfactory. The best reduction achieved hy hiAh tank

water level is 25% in moderate waves and 46% in light waves. The peaks of the

roll responses do not shift for different tank water levels. Tuning factorli /If'<:m

to lLave little effect on the roll motion. In Figures 4.5 ami 4.G. tlte phase lag €,

of tank water motion to roll motion drops (lawn at the resonant rrt'<!llClicy for

low and medium water levels in moderate waves and for low level ill light IV/lVi'S.

This could be an explanation for the ahove phenomenon 11l.'Callsc plullic 11lgli E, arc

closer for different tank levels. Tlle reasons for phase Ings El dropping down musl

he excessive rolI angles and heave and sway motions because tbis llid not Imppell

in the bench tests (Figures 2.17). It can he concluded thal, when the frequency of

the tank is low compared to the natural roll frequency, the motioll of tank wliter is
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JiHlt\: susceptible to other motions (sway is considered more important than Ileave).

For tlil~ low natural roll frequcne,y, the tank works a little hetter. Overall,

tlle peak roll angle reductions are ahout 20% lJigher than at the high natural roll

frequency (Table 4.1). The first reason for this is the smaller wave excitinp; moment

due to the lower GM value, therefore the tank moment is relatively larger. Tin"

sccolld rcason could he tuning. Figurl! 3.1 shows thnt the natural frequencies of

the tank arc lower than 3.0 mdfs for the low and medium water levels and a little

higher tlHln 3.0 radfs for the high level. As mentioned, the best tuning is achieved

w!ll!n the natural frequency of lIle tank is a little higher than that of the ship.

Tllis is proved in Fi~ures 4.7 and 4.8 showing that phase lags Et ror tlte high level

is close to -90 degrees when the roll frequency is 3.0 radfs.

20

15

uDstll.bili;mi~

h =30mm. +
h=47mm.a-
h = 60 mm. *""

panwanes8
t"nk&para._

5.53.5 4 4.5
w(rad/5)

o'----'---'---'---'--'---'---'---'
2 2.5

FiguTC 4.1: Roll response of M366 with damped tank, W6 = 3.75, h", = 10

The experiments also show tbat the pllrll.vanes provide 17% to 37% roll reduc

tions. The effectiveness of the paravanes is not significantly different for different

natuml roll frequencies, however they are more effective in light waves.
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Figure 4.3: Roll response of M366 with damped tank, w. = ~.OO, It", = 10
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Figure 4.4: Roll response of M366 with damped tank, wq, =3.00, h", = 5

Table 4.1: Peak roll reductions for dam ed tank and aravanes

Stabilizer WII =3.75 w. =3.75 W4J =3.00 Wq, = 3.00

conditions 1&", = 10 h..,= 5 h", = 10 h", = 5

h=30mm. 11% 22% 26% 53%

h=47mm. 19% 38% 39% 62%

h=60mm. 25% 46% 49% 71%

Paravanes 17% 34% 22% 37%

Tank & Para 36% 56%
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When both tank and paravanes arc used, the total roll TClluctioll al hip:h nlltllral

roll frequency isjust the SUIlI ofr(.·duclions of each stahilizer, whilt! at loll' fn'tlllt·Ill'.\'

it is a little smaller than the sum. Tlle latLer could ht' tile r('Snlt \,f Ihl' ~allall

decrease of tank moments due to smaller roll angle,

4.3 Tests of Tank without Damping Plates

The previous bench tests and wave tests imply that the tank llIay JillV(' loo lllllt'h

internal damping. The natural frequencies of the tank in Thble 3.1 abo indil'ak

that the tank without damping may have better tuning at the tested frcqucnl'il·s.

Therefore, the wave tests were then carried out for the lank with 110 dlllllpillp:

plates,

TJ·, following Figures show that the hoat gets much better roll reductions nfler

the tank damping is reduced. The peak roll angle reductions for the llwdilllll HIlII

high tank water levels range from 45% to 70% (Table 4.2), whic11 call he saill

to be satisfactory according to previous experience [13, 11, 4, 141, For tlw higb

natural roll frequency, the stabilized peak roll angles shift to iligher fr(.'{IUt'llcit~,

peaks (Figures 4.9 and 4,10), which means that the natural frlXluclicy of tll(! tauk is

lower than the resonant frequency, therefore the tank provides marc roll rcdudioll

at low frequencies. For the low natural roll frequency, which is closer to tlw tank

natural frequency, the fact that the roll respollses SllOW two peaks (Figures '1.1 1

and 4.12) indicates that tlle tank moments arc large enough to counteract the wave

exciting moments,

Giving another view of tank's action all the roll motion, Figures 4.13 and 4.1'1

show the amplification factors ¢A!ao for the rolls at tile low Imlurul (n:fluellCY. flU

is the wave slope, and for a sinusoidal wave is given by:

14.3)
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where (" is the wave amplitude ancl w is tile wav!' frequellc~', It can he conjectured

from Imtll fi);ures that the tank eventually moves the maximum values of amplifica

tion factor to lower frequcncies, although the tested frequencies are not low enough

tn show them. The benefits of a passive tank can ue regarded as compensation

of reducing safety in long waves. The amplification factors are small compared

to lho.~c of ullstahilizcd vessel at the resonant frequency. and wavesiopes are also

smull cxr.cpt ill exccptionallarge waves. Figures 4.13 and 4.14 also show dearl.\'

that the tank is more effective in light waVes. Using roll responSe operators ob

tained from model experiments ill regular waves and tILe results of full-scale trials,

Morcnshildt [111 indicated that the regular waves used in the model experiments

had wavc slopes ill tllC range of 4 to 5 degrees, due to nonlinear behavior with wave

slope, tauk effectiveness will be ovcrestimated for small wave slopcs ( a common

pTadicc) anti underestimated for too large a wave slope value. The wave siopes

in most of these experiments are fairly small, hence the results probably belongs

to the case she rderred to. Therefore the effectiveness ohtained here may 110t he

directly extrapolated to full scale.

Tahle 4.2: Peak roll reductions for undamned tank

Stahilizer W,; = 3.75 w~ = 3.75 W,; = 3.00 w",=3.00

conclitiolls 11..,= 10 h", = 5 h", = 10 h", = 5

h=30mm. 27% 43% 42% 68%

h=4imll1. 45% 64% 58% 69%

h=60mm. 44% 65% 59% 70%

Tank & Para 51% 62%

COlllpared to the prcvious tests for the damped tank, the roll responses are more

!;('IJsitive to water levels. TIming becomes more important when the tank moment is

large. 11 is noticeahle that the medium tank level has the same effectiveness as the

high tank level does {Table 4.2). Although tile tank moment may be larger because
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"fthc larJ;cr;lllloullt of water, it could heoff...et hy the wronJ; tuning. As observed in

the (l!;Cillatingll(!ndl te'>ts, the phase Ia,;ofthe tank water motion to tILe roll motion

chllng~ more quickly with the roll frequency afier the intemal damping decreased

(comp"ring Figures 4.15 to 4.18 and Figures 4.5 to 4.7). Tile fast changing of

i l 1:.,11Se1i the tank to increase rather than reduce roll at nonresonant frequencies.

Howe"er for tile tested tank. tlte increases orroll angles at nonresonant frequencies

lire sllI,,]1 (lhe maximum is ahout 2.5 degrees in Fi"rure 4.11). therefore theintemal

damping of tlie tank should be close to correct. It may be improved by adding n

slllllll amount of damping to the tank to make the roll responses flatter.

Tlu~ lests also show that the additional roll rt!dllctions from the paravanes

hl'COlilC muclL smaller after the lank operates properly. There are only 6% increase

of roll redution at w. =3.75 radls and 3% at w. = 3.00 cadis. If this is true

for real IIshinf!: vessels, it could be a good reason to eliminate paravanes after a

slflhilizing tank is installed, or not use tllern unless at steamillgspeed.

61



Chapter 5

Experiments in Irregular Beam

Waves

The experiments in regular waves are considered inadequate for cvalllatiJl~ a stn

hilizer because in practical cases ships encounter irrcguillf waves. Since 11 traill nf

irregular waves contains many waves whose natural frequency may dilfcr hOlllllll'

tank frequency, one may suspect the efficiency of a passive lank, whml!' workill~

principle is hased on harmonic oscillations, in all actuall;C(l state.

5.1 The Method of Analysis

Two methods can be used to investigate irregular waves. In lhe timl' dmllaill,

an actual sea state can he classified as a stationary stoclllli.tic pron.'K'i and all its

statistical characteristics can be obtained from a time series. From ohservation or
many wave records, the histograms for wave height (douhle amplitude) takes L1H~

shape of a Rayleigh distribution, which is expressed hy the followilll-\ 1XlllltlicJII [:II:

([i.I)
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where p( H;J is the probability density tllRt an.v particular wave height Hi willilf

ul»;crvcd, and 1P is the average of all the wave heights squared defined hy:

Ii' = EI(H;)' x /(H;)I
EI/(H;)J

whr.re f(H;) is the number of occurrences of H,·. The significant wave height

(average height of the onc-tllird highest waves (h wh/3 is given by:

(5.2)

It should be noted that equation 5.2 is valid only if the wave height probability

distrihution function is described by a Rayleigh distribution. Otherwise (h w )1/3

hm, to he directly calculated from raw data.

Tile other methorl, which is more commonly used due to the application of com

pnters, is to analyze the stochastic process in the frequency domain. An irregular

l'J1IVC pattern can he regarded as the combination of a large number of harmonics

that !Lave different frequencies and amplitudes with random phases. The total

energy per square unit of sea surface is given by:

(5.3)

where (,,1> ("2, • " ("n are the amplitudes of the n dominant wave components.

TIlt! spectral density of wave energy is given as:

(5.4)

where 6w is the handwidth. To find out (" 's from a digital signal sequence, a dis

crete Fourier analysis needs to be performed. There are many available computer

pncknges to perform the task. The function spectrum in MATLAO@ first divides a

seqllence or length 11 into sections of m points each (possibly overlapping), where

III Illust he n power of two, then multiplies the successive sections by n Hanning

window. transforms them with an m·point FIT, and finally takes the average or

tllcm to get thespcctrum.
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From a known wave spectrum one can obtain the menu I'nluc of the Wil\'l'

elevations squared mo, which is the area under the Sdw) - r...' curve:

(u,a)

From the statistical view, rno is tlie variance of the distrihution. Hthl:' wnws foll(111'

the Rayleigh distribution, then the significant hcight can he ohtnillcd hy

(h"')1/3 = 4,0 x cms = 4.0JmO (a.G)

For the roll response of a ship in all irreb'lliar seaway the same teclll1iqtw ~nll

be applietL. However, to predict the roll spectrum fcom n wave spl'.<".trlllll, it !anI' to

be based on two fUllllamcntal assumptions [31:

1. The response of a vessel to any individual regular wave componellt is It liuenr

function of the amplitude of this component.

2. The respollse of a vessel to any individual wave component is ilHll~pelidelit

of its response to any other wave component.

With the ahove assumptions, the spectral density function of ship rl'SpOllse for

rolling in heam waves and the density function Ilfwavc spectrum have tILe foilowiull

relationship:

S.(w) = Sdw) 'IH(w)l' (5.7)

where S</l(w) is the roll spectrum and IH{wW is the respollse amplitude apomtot

(RAO). Knowing wave and roll spectra from experiments, the RAO for roll cnll

be ohtaine<! by simply taking the quotient of them. Also hased on tile nhovc l~~

sumptions, if the wave heights follow the Rayleigh distribution, the roll nrnplillld~

will also follow the Rayleigh distribution. Therefore the signilimut roll amplitude

is twice the rms value of amplitudes of the roll motion.
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ULOCllUSe in ~clleral ship rC5ponses in waves are nonlinear, the previous assump

tioll is not valid when large waves are encountered, This may cause some inflccu

raciC5 in tlill C5timntion of significant roll amplitudes. To cleek the results from

spL'Clra, a FORTRAN program is written to calcuJah: significant roll amplitudes

dirt'Ctly from raw data, t11at is, to pick out the one-third higbest roll amplitudes

allli tllke the nverngc value of them.

5.2 The Waves

Four spectra of irregular waves comparable to the four tested regular waves were

chosen. They ha,ve characteristic frequencies at 3.75 and 3.00 rad/s and significant

!Ieights of 10 and 5 cm. The wave generator is controlled hy a computer program

that HCllcraLC5 random signals according to a theoretical wave spectrum pattern.

.Jom,wap spectrum, which is IL reasonahle representation of a North Atlantic wave

energy distribution [201, was chosen to he the spectral pattern. The .Jonswap

spectrum hns the following form [20]:

where;

5J{;w~

A = 161'I /J

B= 5w4/4

u =0.09 forw > Wo

for 1 < l' < 4

(5.8)

a.nd wo is the peak frequency and H, is the significant wave height. T1le param

eter r determines the breadth of the spectrum. The larger it is, the more wave

cnerKY conccntrates on the characteristic frequency, It was chQl;en to be 3,3 in the

expcriments. Considering the wave periods, the total sampling ti~e is c1lOsen to

be 400 seconds so that enouHh wave cycles can bc acquired. The sampling rate is
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20 Hz, therefore the Nyquist frequency is to Hz which is hi~h cllon~h to cO\'('r ,,11

significant wa'ooe frequencies. The obtained wave slJI..'Ctrn IIlI ",('II/ll1 tlIt· tlll·un·ticnl

Jonswap spectra are plotted in Figures 5.1 to 5A.

exPMim('ntaJ qM't'ltlllll 
tbeo~ticalJon~"''l\P''{l'l'('ltlllll

6ptrimf'l\lal (h ..)lp =D.5 ('Ill.

Sdw)

('ffii'i
3

°O!-----:..L!.---'-4---=::::;6:::..::~==-JlO
"'(tAdM

Figure 5.1: Wave spectra for Wo = 3.75 ami (h.)./:1 = 10

The controlling proyam needs a dri~r that is gellcratl1! from lJrcviolL'I It,,tN.

The more tests done, the hetter the driver, and the closer the actual SI)ectnllll to

the theoretical one. Due to time limits, only 5-9 tesl! were run for enr.h SIX,'dnJlll

to prepare the driver. This is wily the experimental spcttrn do 1I0l lit very wdJ

to the theoretical spectra. The peak frequencies occur at the right places hilt t111~

significant heights arc about 3% to 7% lower than Lhosc intended (FiJ.\urflli &.1 to

5.4). These inaccuracies were tolerated hecause the spcctrnl pattcru was lIot tIle

main concern in this stutly.
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Figure 5.3: Wave spectra for Wo =3.00 aud (hwl l/ 3 = 10
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Figure 5.4: Wave spectra for Wo = 3.00 and (hwlt/~ =.')

5.3 Roll Responses for Damped Tank

For each test, the boat was ballasted with thc natural roll frequcncy at t1w 1'1~lltl'r

frequency of the waves. The tank conditions are the samc as ;n fe~ular waVl' t,~sts.

A pair of roll samples for the unstabilized and stahilized hoat lIrc showlI in PiJ.;"llfl'

5.5. Obtained roll spectra :md RAOs are showll in Figures 5.G to 5.13.

The energy distributions of the roll motions arc rathcr narrow, mostly I:OlJc,m·

trated in a range of 1 raAJjs around natural frequeJlcies. Generally spcakiJl~1 lL'l ill

rCbl'lJlnr wave tests, the higher tank watcr level dissipates marl: cner~y of tllt~ roll

motion. The paravanes are about as effective as the low tank lcvel at l/tl~ hi~1t

frequency, but inferior to any tank level at the low frequcncy. Tile effcclivCllCS.<; of

a tank is more frequency dependent tl13n that of paravuncs.

The RAOs for large roll amplitudes ohtained from spectrum analysis lITC mudl

larger than those derived from regular wave tests, hut they do ltQt differ Nil mudt
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Figure 5.5; Roll samples for irregular wave tests

Tahle 5.1- {,pAl, :I (<leg, from spectra) and reductions for damped tank

Stabilizer w. = 3.75 w. = 3.75 w. = 3.00 w. = 3.00

comlitions (h.),/:l = 9.5 (h.)1/3 =4.4 (h.)'/3 = 9.8 {h.)./3 =4.7

Ullst1l.hiljte<l 18.8 11.5 14.9 10.0

fI=30mm. 14.6 22% 7.5 35% 9.8 34% 4.0 60%

" =47mm. 13.1 30% 4.8 58% 8.3 44% 3.8 62%

" =60mm. ILl 41% 5.5 52% 7.9 47% 3.1 69%

Par,walles 13.9 20% 7.4 36% 12.0 19% 7.' 25%

Tallk & Para 9.2 51% 6.0 60%
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Figure 5.6: Roll spectra for damped tank, Wd> =3.75, (hu,)1/:1 =!I.oS

un~.~§:~
palavanes--'

lank&paral/llnEl$'

Figure 5.7: RAGs for damped tank, Wd> =3,75, (/lw)I/J =n,5
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Figure 5.8: Roll spectra for damped tank, w, = 3.75, (h ... )1/3 = 4.4
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Figure 5.9: RAOs for damped tank, w, = 3.75, (11 .. )1/3 = 4.4
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Figure 5.10: Roll spectra for damped tank, w~ = 3.00, (hwh':l =D.S
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Figure 5.11: RAOs for damped tank, w. = 3.00, (11 .. )1/:1 = 0.8
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Fi/-:urc 5.1::!: Roll spectra for clamped tank, W6 =3.00. (h .. )1/3 =4.7

unslabVlz&l!
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Fi/-:ure 5.13: RAOs for clamped tank, wt> = 3.00, (h .. )1/3 = 4,7
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at small roll amplitudes. For example, in rep;ular waves of 10 CIll hdp;!lt whl'n

w~ = 3.75 rad/s (Figure .J.I). the peak RAO for the llllslabiliwd rnlllllotinll is

approximate 18.5 deg'2/cm'l and for the most slahi!izell rollmotiOIL. G.S 1!l'1-(~ /\'lll~.

while in the corresponding irregulnr wnve tests (Fignr(' 5.;) till' \'Hhll'S nre' ·13

deg'l/cm2 and 8 deg':! fern':! respectively. The reason for this might he ! 1m! til('

roll motions do lIot satisfy the linear assumptions in JlllgC' G.J aJlll therefor(' R .·\Os

derived from equation 5.7 arc inaccurate.

Table 5.1 showr; the reductions ill significant roll H1nplitudcs. COlllpaTl'(1 !o till'

tests in regular waves (Figure 4.1), the tank seems to work a little Iwtter lit Ihl'

higll natural frequency, wllile at the low natural frequency the reductions haV\' II\!

significant difference. As indicated in the previous chapter, the tauk is wrollp;l.\'

tuned at the high frequency. This defect might he less important ill im'Aular

waves than in regular waves because irregular waves contain numerous WllVt'.~ with

different frequencies.

Some results given by spectral analysis arc douhtful, sudl as that n1 w~ = 3.7ii

rad/s and (h w )1/3 = 4.4 em, the reduction (Tahle 5.1) given hy tile mediulli Lallk

level is higher than that :~iven hy the high tank level (Note that this d(ll~s Hut

happen in Table 5.2 where (h",)1/3'sare derived from raw data), aud tile RAOs an'

unreasonably high. As mentioned ahove, the spectral unalysis is hlL')l'([ Oil liJll~ar

assumptions and tile roll responses must follow a Rayleigh clistrihulion. Jr lhl'.~!'

conditions are not satisfied, equations 5.6 and 5.7 are not valid for the caleulatifJII

of (h ... )1/3 and of RAO. Significant roll amplitude, as it is Ilefilled, call 11l~ oblain

directly from the original samples by taking the average of ollc-thirll highC1it roll

anv;les (Table 5.2). This givtJS less information hut prohahly is more relhthlr·.

Generally speaking, there is no significant difference hetween the values ill 'nlhlc~

5.2 and in Table 5.1, except for the value for me<1ium tank level at hi)..\h fTl~qlll~lU;y

and in light waves. Comparing the significant roll amplitudt'H ohtaillcil rmlli raw

data, spectral estimates seem to be a little high at large umplitudes (or in /lIoderate
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Table 5 2' (¢l/dl/:! (deg, from raw data) and rrdu('tiolls for damp....d tank

Stabilizer We. =3.75 Wo = 3.75 w'" =3.00 ....... =3.00

conditions (h",h/3 =9.5 (11 ... )1/3 =4.4 (11"')1/3 =9.8 ("".h/] =·1.7

Unstabilized 17.1 11.8 15.0 9.9

h = 30 mm. 13.7 20% 7.8 34% 9.6 36% 4.8 52')(.

h=47mm. 12.4 27% 6.4 46% 8.1 46% 3.7 63%

h=60mm. 11.7 32% 5.9 50% 7.7 40% 3.5 65')(,

Paravanes 12.7 26% 8.2 31% 11.-1 24% 7.1 28%

Tank & Para 9.5 44% 6.5 57%

waves) and low values at small amplitudes (or in light waves).
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Chapter 6

Conclusions and

Recommendations

So fur ill Newfoundland, paravanes are tile most commonly used roll motion sta

hilil':crs for small fishing vessels. TIle experiments carried out in this study have

showl! that a passive tank system could be a more efficient alternative. Without

the shortcomings of paravanes and within the financial limitations for small fishing

VCS8C]S, they can proville approximately 30% more roll reduction than parnvaucs

It is concluded from the tank decay tests that the natural frequency of the tank

increases with the rise of tank liquid level. For a flume tank, the internal damping

also has a significant effect on the frequency, that means, the damping not only

restrains the amount of but also slows down the flow.

Tile oscillating bench tests wefe proven to be a useful method to configure

the tank conditions so that the expected ship roll frequencies is included in the

frequency realm of the tank. The tests are also useful to check the tank damping

levels. The effect of tank damping is to change tile sensitivity of the phase lag E.

to the rolling frequency. Because the bench used here cannot provide data of tank
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moments, the tests may not he a good indicator of tlte performauct' of till' lauk 011

a vessel. A more sopllisticated rolling table built with d~'ln1ll0111ctcr (tilt' lot'st can

also simulate sway and heave motions) is 1Iet:<led for this pllqXIt'C.

For the unrestrained decay tests of 1\1366 with 1IIl' Inllk, tht, variatiou or t'qui\'

alent linear damping ratio {E with respect to mean roll amplitude ¢ .. canllot ht,

well represented by a linear regression. However the featnres oftltc rC'j..'ll.'SSioll HUl'S

indicate tllat the dampillJ; provided hy the tank is mninly lillenr. T1lt~ tlt,·:1.\' ll'!'llll

for the paravanes show that the damping forces comc from lifl fon'I'S mtlwr thall

drag forces at zero speed. The decay tests can providc SOIlH.' colllparatiw infor·

mation indicating the stll.bilizer8' performance Oil thc vessel. The equiYlIlelll liuenr

damping ratio may be applied in a simple malliematicnllllotlel to pre(lict roll n"

sponses in waves, hut the accuracy could be fairly limited ht.'ClIlIst.' the Lank·shi]l

system is not a single but a coupled resonant system.

The results of the tests in beam regular waves show lilat hy t..'l.kinJ; tlu~ tallL:

size as 2% of the displacement, tile roll reduction can be expected to ht~ as hiJ;h

as 60% to 70%, when the t"\Ilk is properly tuned anti damped. lksitl~ amdin~

phase lags, tank damping also has significant influence 011 tILe tauk lIlollleuL.. IIml

natural frequencies for a flume tank, and therefore is iml>oriant for hUlk efficicncy.

For hoth tank and paraYanes, the ro!ductions are approximately 10% to 20% lIiRher

in light waves than in motleratt! yrclves.

In irregular waves, the efficiency "of the tank remains l\pproximntely tlw smile

as in regular waves, and even a little better if the tank is wrollRly luut.'l. The

effectiveness of the paravanes has no significant differcnce frolll lIJal ill rcJ;ulllr

III ge~eral, the results of this study may not he directly Il!;Ct] 10 develop II full

scale tank. For the many possible configurations of 11 tank, those lested IlCre arc

rather limited. The degree of internal dampin~ may he extrapulaled to full scale if

yjscouseJfe<:ts are ignored. To desi&!> a tank for a ready-made v('!s''iCI, the prt'lCl'(lurc
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prnhahly sllOuld he/.:in with the investigation of tIle ship. The main concerns are

1>udJ lL'i bow J1Jucb GM loss is permitted. and wlJere and in what shape the lank

coulll possihly he installed and constructed.

TIll: effects of vertical positions on tank efficiency was not investigated ill this

study. It can he said however, in general the higber the tank is located within

the vessel, thc more efficient the operation of the stabilizer. This is because the

dynamic moment, if located above the center ofrotaHon, can be useU to supplement

the static couple III. On the other hand, too high a location causes too much loss

of transverse stahility. In practice the tank should be located as high as structural

strcll/.:th and stability permit.

The 10llgitudinll.llocation of the tank could be yersatile, provided that the heam

in the intended area of installation is nearly equal to the full beam of the vessel.

Trim must also he taken into account when determining the location.

After determinatioll of the tank size (usually 1%-2% of displacement), the other

two main considerations are tuning and damping. Usually either rolling bench tests

or wave-tank tests or hoth are required to ensure that the ship rolling frequencies

lire within tlte stabilizing frequencies (tuning) and the stabilized roll response of

tin: vessel is relatively flat over the entire frequency range (damping). Various

internal tank configurations may be tried during the tests.
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