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Abstract

The concept of the random d has been used fully in the damp-

ing identification of linear systems. The formulation of the random decrement
existing in the literature is based on the assumptions that the dynamic system is
linear, time invariant and subjected to Gaussian, white noise excitation. Thus, the
principle of superposition can be used in formulating the equation for the random
decrement.

In this study, the concept of the random decrement is extended to nonlinear
systems. Using the Fokker-Plank Equation approach, it can be shown that the
random decrement formed by calculating the expected value of a stationary random
rolling process satisfies the differential equation governing the free roll motion. It
is also shown that, the autocorrelation function for the stationary nonlinear roll
motion excited by a zero mean, Gaussian, white noise random process, satisfies a
linearized free roll equation. Thus the random decrement and the autocorrelation
function curves can be used for identifying the parameters in the nonlinear equation
of free roll motion.

The validity, accuracy and reliability of the Random Decrement Technique in
determining the parameters of the nonlinear equation for roll motion are inves-
tigated in this study. The technique is applied to roll motion obtained from: 1)
computer simulation by using a fourth order Runge Kutta routine; 2) experiments
of three ship models rolling in a towing tank; 3) full scale tests on a real fishing
vessel. A method for evaluating the parameters in the nonlinear roll equation from

free roll decay, the random decrement and the autocorrelation function is devel-




oped and presented in this study. This method is based on the theory of equivalent

linearization. The application of the method provides accurate estimation for the

from both simulated and d data.

It is shown that the random decrement and the autocorrelation function curves
extracted from a history of nonlinear roll response to random excitation closely
resemble the measured free roll decay curve. The predicted natural frequency
obtained by either the random decrement or autocorrelation function method can
be used to determine the value of the metacentric height for a ship rolling under

the action of unknown random excitations. The damping cocffici imated

by either method are used to generate free roll decay curve which agrees well with
the measured free roll decay curve.

This method does not rely on a model experiment and does not require the
measurement of wave height. In addition, roll response of a ship can be casily
measured with the ship underway. It is expected that the method would be par-

ticularly useful for assessing roll stability of a ship sailing in a realistic sca.
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Chapter 1

Introduction and Literature
Survey

1.1 Introduction

The roll motion of a ship under the excitation of waves may reach dangerously
large amplitudes and may even result in ship capsizing. It is very important,
therefore, to be able to predict the probability of roll amplitude reaching critical
levels, for a ship sailing in a realistic sea. This is not a simple matter since the
nonlinearities are present in both the damping and restoring moment terms. In
addition, the stochastic nature of the wave excitation and the roll response make
the analysis of roll motion more difficult. As a general theory for nonlinear system
response to stochastic processes is not yet available, the progress in developing a
satisfactory stochastic theory for ship rolling has been slowed.

So far, stability criterion for a ship at sea is still based on quasi-static consider-
ations to ensure that the ship roll restoring characteristic satisfies specific criteria.
The criterion dictates certain conditions on the minimum value of GM and the
shape of the GZ curve. A sizeable number of small ships that satisfy this crite-

rion are still being lost each year. The problem may be caused by ever changing

1



loading conditions, some of which may produce adverse effects on stability as in
the case of fishing and warships [1]. Also, it may be caused by encountering severe
environmental conditions brought about by the desire to increase the operating
range of the ship. Dynamic instability is a third factor.

The initial value of GM and the shape of the GZ curve can be determined
fairly easily using standard computer programs. But because of uncertainties
regarding loading conditions, especially for a fishing vessel, the resulting errors
in the calculation may render the results unsuitable for assessing the stability
of the ship in certain sailing conditions. Also, these values are affected by the
environmental conditions. It is thus best if we can determine these quantities from
measurements obtained while the ship is at sea so that the safety criterion can be
based on quasi-static as well as dynamic considerations.

Dynamic stability can be investigated using a second order differential equation
in the rolling angle. The main parameters of this equation are: the moment
of inertia (including the added moment of inertia), the damping moment, the
restoring moment and the exciting moment. The equation can be normalized with
respect to the moment of inertia. In this case we are left with only three quantities
to determine. In principle, the restoring and the wave exciting moments can be

determined using analytical methods provided that loading and wave conditions

are well defined. As to the damping identification, a complete th ical analysis
of the problem is still beyond present capabilities.

As an alternative to theoretical prediction, based on fluid dynamic theory, one
can attempt to estimate the ship roll parameters using empirical methods and

identificati hni Kountzeris et al. [2] has shown that it is




possible to estimate all the parameters from experiments on a model rolling in
irregular seas, if simultaneous records of the roll response and wave height are
available. This approach is useful when studying the behaviour of scale models
in a wave tank. However, for full scale ships at sea it is generally not possible
to obtain time histories of the wave height in the vicinity of the ship. Thus, one
has to rely on roll motion measurements only to predict roll parameters of a ship
sailing in a random sea.

One of the main di ies in the estimation of roll from nonlinear

rolling motion is the prediction of damping cocfficients. The damping moment is
a very important term in the roll equation because the roll amplitude of a ship is
critically dependent on the magnitude of roll damping uncer resonant condition.
Since the time of Froude, many efforts have been devoted to both theoretical and
experimental studies concerning roll damping. Froude [3] demonstrated that both
the damping and restoring moments varied in a distinctly nonlinear manner. He
advanced the formulation nf the linear plus quadratic velocity dependent damping
moment. This formulation has been used almost exclusively for the last century.
To overcome analytical difficulties arising from the use of the quadratic form,
Haddara [4] introduced the linear plus cubic velocity dependent damping moment.
Further, study of the form of the roll damping moment [5], shows that different
models may be obtained using the same roll decay record.

An outline of the methods avaliable now in the literature for the prediction of

nonlinear roll damping is given below.



1.2 Identification of Nonlinear Roil Damping

Various methods of analysing free roll tests, forced roll tests and roll tests in
random waves have been developed for the prediction of the nonlinear roll damping

coefficients.
1.2.1 Free Roll Tests

The free roll test is performed, in the absence of waves, by giving the model an
initial roll amplitude and then releasingit. A free roll test is probably the simplest
way to measure roll damping of a ship or a model. There are several methods
for the analysis of free roll tests from which nonlinear damping coefficients can be
determined.

Froude Energy Method equates the energy loss due to damping in each
half-cycle to the work done by the restoring lever in reducing the roll amplitude.
The method, suitable for the use with linear restoring, was devised for linear +
quadratic damping by Froude [3] and extended to linear + cubic damping by
Dalzell [6]. Over one century since it was first proposed, the Froude Method has
been used as the standard for free roll decay analysis, apparently without any
criticism. However, the errors in calculating the slope of the roll decay curve make
this method the most sensitive to the distortion at the start of the decay curve.

Quasi-linear Method is simply a linear analysis technique used to determine

the nonlinear damping coefficients from the equival

linear damping
for ships with linear restoring. The method assumes that the energy loss due to
damping during a half cycle of roll is the same when linear and nonlinear damping

are used. The quasi-linear method is the least complex of all methods, but gives




the least confidence in the results (7).

Averaging Techni f Krylov and Bogoliubov [5, 6] assumes that the mo-

tion during the free-decay is idal with slowly-varying litude and phase,

and that for any cycle the rates of change of amplitudes and phase are constant
and equal to their average values during the cycle. Dalzell [6] investigated the
quadratic and cubic models using the averaging technique to find an equation for
the rate of decay of the peaks of the roll decay curve as a function of damping
parameters. Haddara [5) used a stochastic version of the same procedure to in-
vestigate different damping models including angle dependent components. This
method usually yields fairly accurate results for velocity dependent components of
the damping moment but it is only suitable for lincar restoring moment which is
unrealistic for large amplitude motion.

Perturbation Method makes the preliminary assumption that the nonlincar
terms in the equation of motion are small compared to the lincar terms. The non-
lincar equation is then replaced by a series of linear equations. Mathisen and Price
[8] used perturbation approach to analyse free roll response of a ship. The method
usually gives good fit to the measured decay but is valid only for small nonlin-
earity and capable of dealing with simple forms of damping and lincar restoring
moments,

Roberts Energy Method [9] formulates an energy loss function which is
related to the amplitude of roll motion, and the parameters of the roll damping
moment. It is therefore similar in principle to the Froude encrgy method although,
in producing an expression for the damping coefficients rather than the slope of

the decay curve. The method is able to include nonlinear restoring moment, but it



is critically dependent on high-quality experimental data and requires numerical
fairing of the decay curve.

All of the above mentioned methods are only suitable for linear restoring me-
ment except the Roberts Method which is capable of dealing with nonlinear restor-
ing moments. Besides, these methods are limited to either small nonlinearities or
simple forms of damping. To avoid the drawbacks of these methods, Bass and
Haddara [10] introduced the ‘DEFIT Method” and the ‘Energy Approach’.

DEFIT Method is a parameter identification technique based on fitting the
experimental data to the solution of an assumed differential equation. In this
method, the linear damping is estimated primarily and the remaining parameters
can be simply ‘guessed’. The sum of the squared errors between the observed value

and the predicted value is then minimized using an algorithm due to L berg and

Marquardt [11]. This method avoids the possible errors raised from the theoretical
assumptions used in the other methods.

Energy Approach uses the concept that the decremental rate of the total
energy in free roll motion is equivalent to the rate of energy dissipated by the
roll damping. The roll angle decay curve is used to calculate the roll velocity at
cqually spaced instants of time. The total energy is evaluated from the roll angle
and the rell velocity at the same time instants. A parametric form for the damping
moment is assumed and the damping coefficients are obtained by the least squares
method.

Since DEFIT Method and Energy Approach make use of the values of the whole
curve, not the peak values only, they are especially useful in situations whereonly a

couple of cyclesin a decay curve are available. Besides, the methods are suitable for



the the analysis of large rolling motion and large nonlinearities presented in both
damping and restoring moments. Third, they are capable of dealing with a rather
general form of the roll damping moment. Thus angle dependent components can
be included.

1.2.2 Forced Roll Tests

The forced roll test involves applying a pure sinusoidal wave and measuring the
roll response of the model to wave excitation. To obtain the values of nonlinear
damping coefficients directly through a steady-state forced roll experiment, we
would probably need numerical techniques to fit the data. Such an attempt does
not seem to have been done. Instead, it is usual to assume some additional relations
concerning energy consumption, linearity of damping and its independence of roll

angle. Since a single sine-wave roll test is not sufficient for nonlinear damping

fficients to be ds ined, 2 number of sinusoidal tests conducted with differing
input frequencies or amplitudes are needed. For determining nonlinear damping
in regular waves, three methods are commonly used.

Quasi-linear Methods [7] analyze each steady forced roll using a linear tech-
nique. The resulting damping is treated as an equivalent linear value and ex-
pressed as a function of linear restoring coefficient or measured phase angle. From
the variation of equivalent linear damping with roll amplitudes of a set of forced
roll tests, the nonlinear damping coefficients can be determined by using a linear
least-squares fit.

Energy Method (7] equates the encrgy dissipated by the damping in a cy-
cle to the work done by the wave exciting moment. This gives an expression for

the part of the forcing moment that is in phase with the roll velocity. The non-

i



linear damping coeffici are d ined from the equi linear damping.

This method produces the same expression as the quasi-linear method using phase
angles.

Perturbation Method usually makes use of higher harmonics in roll response,
and is therefore inappropriate where the response is nearly sinusoidal. Mathisen
and Price [8, 12] used this technique to investigate linear + cubic damping and also
used higher harmonics in the forcing moment to produce sinusoidal roll motion.
The method has been proved virtually useless in practice [7].

It is expected that forced roll tests give a more accurate estimate of roll damp-
ing, simply because forced roll can reach steady state, while free roll is transient.
However, since a sequence of tests at a range of excitation frequencies or ampli-
tudes are nceded in order to deduce values of the nonlinear damping parameters,

the forced roll test is less employed than free roll test.
1.2.3 Roll Tests in Random Waves

The random roll test is carried out with the model rolling under the excitation of
random waves. From both theoretical and practical point of view, the prediction of
roll parameters in random waves is extremely difficult, especially in the situation
where only roll measurements are available.

Roberts et al. [13] developed a method using roll measurements only to esti-
mate roll parameters of nonlinear roll motion in random waves. It is based on the
method of stochastic linearization and utilizes various theoretical results relating
to the energy envelope of the roll response, including its probability distribution
and its correlation function. The method seems to yield good results when tested

using digitally generated data. Results using real data were not presented.

8




In the attempt to use Roberts Method for the analysis of random roll response,
it is found that the method was not applicable to real data. It is also found

that the method is valid for simul data only in icular situations such as:

systems with nearly zero damping or linear restoring moment. When a nonlinear
restoring term was added to the parameters given in the paper as cases 2 and
case 3, incorrect and even unreasonable results were obtained by this method. For
the simulated data of a ship model with realistic damping and nonlinear restoring
moments, the method gave serious biased estimates. For an accurate prediction of
large amplitude roll, it is necessary to include nonlinear restoring moment terms
in the equation of motion, and also the damping moment of a realistic ship model
could not be that small. Thus this method can not be used as a practical tool

even for some digitally generated data.

1.3 Random Decrement Technique

The Random Decrement Technique was developed in the late 1960's by Cole [14].
It was originally developed as a technique for determining damping characteristics

of models being tested in wind tunnels. Subsequently, the method was used to

q 5

f soils, bridges, platforms, etc [15, 16]. The method has achieved

id

rather

d use, especially in the industry, for ing damping
of aircralt, models in a wind tunnel and aircrafts in flight [17]. It also made the

detecti

of flaws in possible by itoring their dynamic ch isti

[18]. In fact, the technique is a general method of analysis that is applicable to
a wide class of problems in which a system is subjected to an unknown random

input and the only measured quantity is the system response.



The concept of the Random Decrement is based on the assumption that the
random response of a linear time invariant damped system subjected to a zero-
mean, white noise, Gaussian process is composed of two parts: a deterministic
part and a random part. By averaging enough samples of the same random re-
sponse, the random part will average out, leaving only the deterministic part [19].
It can be shown that the deterministic part that remains is the free decay re-
sponse from which the natural frequency and dz mping can be predicted. Hence
the Random Decrement technique uses the free decay response of a system under

random excitation to identify its vibration namely natural fi

and damping.
1.4 The Scope of this Study

As stated above, there is a recognized need to develop a method for the identi-
fication of the paramcters in the equation describing the rolling motion of a ship
sailing in a realistic scaway using roll motion measurements only. An ongoing
rescarch in this work is to investigate the feasibility and accuracy of the Random
Decrement Method used for nonlinear ship roll motion.

The theoretical basis of extending the random decrement technique for use
with the nonlincar roll motion has been developed by Haddara [1]. Using the
Fokker-Planck Equation and a first-order approximation, it can be proved that
the expected value of the nonlinear roll response to stationary, time invariant,

Gaussian, white noise excitation satisfies the differential equation describing the

free roll motion. It has also been shown that the autocorrelation function of the

nonfinear roll response satisfies an equivalent linear equation of free roll motion.

10



Therefore, the random decrement or autocorrelation function curve can be used as
an approximate of free roll decay for identifying the parameters in nonlinear roll
equation.

Using the random d h to identify the in the non-

linear roll equation is particularly useful because the measurement of roll motion
can be taken when a ship is in a seaway. The following are some of the anticipated

advantages of this method:

L. In this method, roll measurements are taken with the ship in real loading

condition. Thus the dynamic stability of the ship can be more realistically

and ly i i d than quasi-stati id

=

Since the method uses roll measurements only, it could be applied for a ship

rolling under the action of unknown random excitations of a realistic sea.

w

‘The method does not rely on a model experiment which not only cos's money

but also causes scale errors.

~

. Ship's transverse stability at sea can be assessed during the actual motion
without interrupting the service of the ship or requiring a special measure-

ment for the input.

The main objective of this study is to present the application of the random

d hnique for identifi from the nonlinear roll motion of

a ship subject to random waves. In order to investigate the validity and the accu-
racy of the random decrement method used for nonlinear roll motion, a reliable and

accurate estimation method is d: ded for evaluating the roll from

free roll decay, random d and lation curves. A new

11



Jant Bheasisation ta devaloned

method using equi is and presented in this study.

The method is capable of including nonlinear damping and nonlinear restoring
moments and suitable for the analysis of both simulated data and measured data.
The method provides accurate estimation of roll parameters from free roll decay
as well as from the resulting curves, referred to as the random decrement and the
autocorrelation curves.

Chapter 2 presents the theoretical basis of the analytical methods used in
this study. The random decrement and the autocorrelation function methods are
introduced for estimating the free decaying nonlinear roll response of 5 ship from
its stationary response in random waves. The proposed method for evaluating the
parameters from free roll decay is also described.

In Chapter 3, the analytical methods introduced in Chapter 2 are tested by
applying them to simulated data generated using a fourth order Runge Kutta rou-
tine. The estimated parameters from the free roll decay and the random decrement
are compared with the known values used in the simulation.

In Chapter 4, the validity and accuracy of the same methods used for the

are ined using the

1 data of three fishing vessel models
rolling ir a towing tank. The effects of different nonlinear damping moments and
different wave excitations on the random decrement are investigated.

Chapter 5 displays the analysis and the results of the real ship tests conducted
for a ship sailing in a realistic sea. The same methods are verified by using real

roll data taken in a seaway.



Chapter 2
Analytical Methods

In this chapter, the analytical methods for ic identification of nonlinear

roll motion in random waves are described. Three methods - Random Decrement,
Autocorrelation Function and Spectral Density Function could be used in deter-
mining the natural frequency and roll damping of a ship subject to a randomly
varying excitation. These methods share one characteristic: no knowledge of the
excitati.n is required as long as it is a zero mean, Gaussian, white noise ran-
dom process. To determine all relevant, parameters from the random decrement,
autocorrelation function and free roll decay curves, a new estimation method is

developed and presented in this Chapter.

2.1 Random Decrement Method
2.1.1 Random Decrement for Linear Systems

The random decrement is an averaging technique which is usually used for the
damping identification of linear systems. In this technique one is able to obtain
the free decay curve of the system from its steady state random response. Thus,

the natural frequency and damping of the system are identified from the in-situ
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response without interrupting the service or requiring a special measurement for
the input.

Illustrated in Figure 2.1, the Random Decrement Technique consists of dividing
a record of random response into N segments of equal lengths 7ma; which can
possibly overlap. Each scgment begins at a selected amplitude, that is, ¢, =
constant. Also, the initial slopes of the segments alternate between positive and
negative values so that one half will have initial positive values and the other half
will have initial negative values. These segments are then ensemble averaged and

represented mathematically as
1 N
M) = gL blitn) 0SS e (21)
where

dilt) = ¢, i=1,2,3,
if i) 2 0 then i=1,3,5,N—1

if  Hlt) <0 then i

2,4,6,++, N

The function p(r) gives the conditional expected value of the random process
which is called the random decrement (signature).

Since for linear systems the superposition law applies, the response can be
decomposed into three parts: response due to initial displacement, response due
to initial velocity and response due to excitation. When enough segments are
averaged together, the part caused by the initial velocity cancels out because the
positive and negative initial slopes are taken alternately and their distribution
is random. The part caused by the excitation vanishes because, by definition,

the excitation is a zero-mean, Gaussian, white noise process. Thus, only the
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part caused by the initial displacement is left, which is the random decrement
representing the free decay curve for a linear system.

A more extensive mathematical derivation of the random decrement was de-
veloped by Reed [20] for linear systems.

2.1.2 Random Decrement for Nonlinear Systems

In general, for nonlinear systems the separation of responses can not be made
since the principle of superposition does not apply. However, we can use the
Fokker-Planck Equation to show that the random decrement is an approximation
to the frec decay curve. The procedure given by Haddara [1] is outlined below.

The nonlinear roll motion of a ship in random beam seas can be mathematically

modelled by a second-order ordinary, nonlinear differential equation.
é+N(9,9) + D(¢) = K(t) (22)

where ¢ is the roll angle. ¢ and & are the first and second derivatives with respect
to time, respectively. N(¢,8) and D(g) are the nonlinear damping and restoring
moments per unit virtual inertia, respectively. K(t) is the wave exciting moment
per unit virtual inertia.

It is assumed that the wave excitation K(t) is a stationary random Gaussian
process which satisfies the following equations.

<K(t)>=0
< K(t)K(t2) > = %o 6(t ~ 1)

where § is the Dirac delta function, ¥o is the variance of the excitation and the
symbol <> means the ensemble average of the process.
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Using the following change of variables

n=4¢ e
g o let Y(t)—[y’]

Then, Equation (2.2) can be expressed as

o=
¥2 = —N(yy) - D(w) + K(1)

The stochastic process Y(t) is assumed to be a Markov process. A Markov

process satisfies the following conditional probability equation:
Pa(@atn | 21t1,32t2,++, Tnrfnoy) = PoZatn | Tnoatnor)

Thus the process Y () may be descril:vd by the conditional probability density
function, Py(y1,¥2,1 | Y10, y20) where yi0 and yzo are the initial values of the angle
and velocity of roll motion. One can show that P; satisfies the following partial

differential equation [1]:

P _

8 [
=P g VPP R (23)

0P
2 Oy
where P represents Py(y1, ya, | 910,y20)- The solution of equation (2.2) subject to

the initial condition
P(y1,¥2:t | y10,320) = 81 = y10) (2 — y20)

as t — 0, yields the conditional probability density function which describes the
process Y(t) completely.
In order to obtain an equation describing the expected value propagation, we

rewrite Equation (2.3) as



d
3 Plunyat | y10,320)
_ Plynya,t +dt | y10,y20) = P(ya,y2,t | y101¥20)

-2 9, Lo'P
= 5P (V4 PP+ 2T (24)

Multiplying equation (2.4) by y; and integrating the equation with respect to
v and ¥, from —oo to oo gives
1 jo foo
= / L7 Pt +d | vi0,i0) ~ P(us,ysnt | o, vl dndys
dt JoooJ-oo

_mltdt) —m) _

3t (2.5)
%0 foo Uy 8°P
[ [on -+ o+ 2228 i
= /xz—/ (1:P 5= ) dya +
17
Lulv+re| = @)dy. @6)

where g1 and pz are the expected values of y; and y; respectively. Assuming the

following boundary conditions:

i =co

w 0P
WP 3% = (N + F)P[2% = 5o

and equating equation (2.5) and (2.6), we obtain
=p (27
We then repeat the same process using y; and get

#a == < N(y,32) + D(w) >
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This equation can be expanded in its Taylor series about p; and piz. Retaining

the first-order terms only gives
Hy = = < N(p1p2) +D(pm)
a a
il R Ol "’)Tm] [N (w1, p2) + D)) >
= =N(m,p2) - D(m) (28)
Substituting equation (2.7) into equation (2.8), we get
4 Ny i) + D) =0 ©9)
From this equation, we can see that the expected value of the random roll
motion satisfies a first order approximation to the differential equation of its free
roll motion.
Based on this principle, we apply the random decrement technique to the non-
linear roll motion of a ship in irregular seas. The random decrement curve is
extracted from a time history of roll angle measurements taken when a ship is in

a seaway.

2.2 Autocorrelation Function

The autocorrelation function Ry(r) for random data ¢(t) describes the general
dependence of the values of the data at one time, on the values at a later time.
An estimate for the autocorrelation between the values of ¢(t) at time t and time
(¢ + 7) may be obtained by taking the product of the two values and averaging
them over the observation time T. Mathematically, the autocorrelation function is

represented by

Ry(r) = E[$(0)4(t+ 7)) = Jlim % L T S8t + Yt (2.10)

T
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For discrete data, the autocorrelation function can be calculated using the
formula
nk

Rl = 5 H0e+ D) @
where k = 0,1,--,Kand 1< K <n.

It has been shown by Vandiver [21] that the autocorrelation function of the
response of a linear time invariant system excited by a zero mean, stationary,
Gaussian random process is linearly related to its random decrement.

For nonlinear systems, the autocorrelation function of the random roll response

satisfies an

quivalent lincar equation ing the free roll motion,
sce Haddara [22).

The elements of the autocorrelation matrix of the process Y(t) are defined by
Cu(r) = j/ vio P (Y,7 | Yo)P,(Yo)dYdYo
where P,(Y) is the steady state probability function and it is independent of t and
Yo.
1f we multiply both sides of equation (2.4) by yio y&Ps(Yo) and integrate the two
sides of the equation from —co to oo, we get the following differential equations
describing the elements of the correlation matrix:
Cu(r) = Culr)
Ca(r) = Culr)

Cia(r) = —<yo(N+D)>
Cn(r) = — <y (N+D)>
Using a Gaussian closure technique, the four ions can be combined in one

approximate differential equation for the autocorrelation function Cy; of the roll

20



angle
Cu+b:Ciy +wiCn =0 (2.12)

where b. and w, are the equivalent linear damping and equivalent natural frequency,
respectively.

If the damping and restoring moment take the form
N(y1,2) = 2ws(yz + ey3)
D(y1) = wlys + canf + )
then the equivalent linear damping and natural frequency are given by
be = 2(wy(1 + 3ew}o?)
w? = wi(1 +8ay0? + 15050%)
where o? is the variance of linear rolling motion.
Equation (2.12) shows that the autocorrelation function of a nonlinear, time
invariant, system excited by a zero mean, stationary, Gaussian, white noise random

process satisfies the differential equation describing the free motion of an cquivalent

linear system.

2.3 Power Spectral Density

The spectral analysis of time series data is very important since it provides im-

portant information such as resonant frequency and damping ratio. The resonant

also called predomis fi (PF) or modal frequency f, can be
found as the peak frequency of the spectral density. The damping ratio of a linear

system undergoing random excitation can be obtained from the spectral density
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using the half power bandwidth. This method introduced into ship motion studies
by St. Denis and Pierson [23] are used successfully for the study of other motions
such as pitch and heave. However, it is inappropriate for roll motion because of
the nonlinear nature of ship rolling.

A power spectral density (PSD) describes the distribution of energy as a func-
tion of frequency. The power in an infinitesimal frequency interval divided by the
width of that interval yields the density.

Spectral density functions can be computed in three ways: the Fast Fourier
Transform Method, the Correlation Function (Blackman-Tukey) Method and the
Bandpass Filter Method. Different methods are based on three different compu-
tational definitions of PSD and all of them are asymptotically equivalent. In this
study, we will use the Fast Fourier Transform Method for spectral analysis.

The spectral density function Sy(f) defined in the frequency domain can be
evaluated from a random process ¢(t) defined in the time domain by applying the

Fourier transform as follow:

N
SN=5LF

[) T 4&(:):""'/‘dt|1

The computer program for this method uses MATLAB subroutines to get the
spectral density of discrete roll data. A frequency vector is created with the
Nyquist frequency defined as

1

2At

where At is the time interval of two measurements being taken.

The area under the spectral density function is equal to the average energy of



a random process with respect to time. That is
-
Po= [ sung

In a situation when the power spectral density is uniform over infinite range of

frequency, the signal is called white noise.

2.4 The Proposed Method for Parameter Esti-
mation

As shown in the previous sections, the random decrement and autocorrelation
function can be used to describe approximately the equation of free roll motion
given by

3+ N($,9)+ D(¢) =0 (2.13)
The nonlinear roll damping moment N(4, ) is commonly expressed in one of
the following two forms:
1) Linear + quadratic form: N(¢,8) = b + bagld|
2) Linear + cubic form: N(g, ) = bid+ bag?
The restoring moment D(¢) in Equation (2.13), following Bass and Haddara

[10], can be expressed as
D(9) = wi(+ ud + aaé®) (2.14)

where wy is the natural frequency and a; and a; are the nonlinear restoring coef-
ficients.
The righting lever arm GZ describes the statical stability of a ship. It varies

with the heel angle of the ship and its center of gravity. For a specified center of
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Y=w(R) =ws+0
The linearized parameters b, and w, are defined by the following functions
o o
b= p /n F(Rcos , —Ruwg sin ) sin dyp (2.18)
2
W=l - é [ F(Reos 1, ~ Ry sin ) cos pdp (2.19)

For systems with linear plus quadratic form of damping, the term ¢f(g, ¢) in

equation (2.16) becomes
€f($:8) = ~(0id + bab13] + e} + ) (220)
Substituting this equation into equation (2.18) and (2.19) respectively and using
¢=Rcosy, ¢=—Ruwssing
we obtain
8Rwy
3r

3 5
W=} (1 + Zml-l’ + Eazﬂ‘)

be=b+ (221)

For systems with linear plus cubic form of damping, the expression for (¢, q‘))
becomes
f($,8) = ~(bid + bsd® + a3 + awid’)

Repeating the same process as above, we get
be=by+ %R’w}b_‘ (2.22)
W =ud (1 + %a,R’ + ga,n‘) (2.23)
It can be seen that systems with the same form of restoring moment but differ-
ent forms of damping moment have the same expression for the natural frequency.
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gravity, the GZ curve can be approximated by
GZ(9) = GM($ + ud® + ar¢°) (2.15)

where GM is the transverse metacentric height. It denotes the distance from
the center of gravity to the metacenter, positive upward. The value of GM is
determined from an inclining test.

To determine the values of a; and a2, Equation (2.15) is fitted by a least-
squares technique.

To evaluate the natural fiequency and the damping parameters, the method of
equivalent linearization given by Krylov and Bogoliubov [24] is applied here. This
Lcchni_que assumes that a given nonlinear differeatial equation can be replaced by
an equivalent linear differential equation with the property that the solution of the
two equations can be made to differ from each other by an error of the order €2,

The nonlinear differential equation (2.13) can be rewritten as the form
$+wip=cf(6,9) (2.16)
Its equivalent linear equation is given by
d+bd+wip=0 (217)

If one follows the theory of the first approximation, one starts with a solution
of the form
¢ = Rcosy = Rcos(wgt + 0)
where R and ¢ are given by the differential equation of the first approximation:

€
2wy

/n" (R cos 1, R sin ) sin pdp
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Still, equation (2.23) cannot be used directly to predict the natural frequency
from the measured frequency which is available from a decay curve. We know
that the measured frequency is equal to the damped natural frequency w, while
the relationship between the damped natural frequency and the equivalent natural

frequency can be found from the equivalent linear equation (2.17). That is

wg = \Juw? - 82/4 (2.24)

By combining equation (2.23) and (2.24), a new formula for predicting the

natural frequency of a nonlinear system from its decay curve is developed. It is

- w}+b2/4
o= \I 1+ 3R + SR 228)

The equivalent damping coefficient b, can be calculated from a dzcay curve

A (g
=gl (¢k+n)

where T is the period of a cycle. ¢y and g4 are two sequent peak amplitudes.

expressed as

using the formula

b, and R vary from cycle to cycle in a decay curve. Using the mean values of

b and R in equation (2.25), we have

~
wi+b,/4

vy = | —itB/t 296

¢ T\ T+ IR + Sk 226)

This formula provides a practical tool for predicting the natural frequency of
a nonlinear system using the information available from a decay curve.
The nonlinear damping coefficients are determined using a least squares method

to fit Equation (2.21) or (2.22) in which roll angle amplitude R takes the average



of two sequent peak amplitudes. That is

_$tdn
R=Sa

The method described above is suitable for roll motion with nonlinear dasiping
and nonlinear restoring moments. The results show that this method provides
considerably accurate estimation for both the natural frequency and the damping
coefficients.



Chapter 3

Numerical Simulation

The use of ical simulation gives a test for the validity of the
Random Decrement Method used for nonlinear roll motion and the accuracy of the
proposed method for parameter estimation from free roll decay curve. It allows a

direct ison between the esti d and their true values which

were used in the simulation. Another advantage is that the sample length can be

increased progressively to test for optimum sample length.
3.1 Estimation from Free Roll Decay

For validation purposes, the proposed method for parameter estimation from
free roll decay is first applied to some simulated free roll decay data, where the
values of the parameters are known. The following nonlinear roll equation was

used to generate the free roll decay data
G+ big+ byd® +wd($+ aud® + arg®) = 0 (3.1)

To obtain the numerical solution of the nonlinear differential Equation (3.1),
we express the equation as a set of first order differential equations. A numerical

solution of these equations is then obtained using a fourth order Runge Kutta
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Table 3.1: True and Estimated Parameters in Free Decay Equation

Case Comparison [ by a;
Known Values
1 | Estimated [ dt=0.05 sec
Values [ dt. 1 sec | 0.0801

Known Values 0.0750 K
2 [ Esti d [ dt=0.05 sec | 0.0748 | 0.3209 | 3.3672
Values | dt=0.01 sec | 0.0749 | 0.3193 | 3.3672
Known Values 0.0797 | 0.3443 | 3.1762
3 | Esti d [ dt=0.05 sec | 0.0793 [ 0.3474 | 3.1760
Values | dt=0.01 sec | 0.0796 | 0.3445 | 3.1760
Known Values 0.0826 | 0.3540

4 [Estimated | dt=0.05 sec | 0.0825 | 0.3564 |
Values [ dt=0.01 sec | 0.0825 | 0.3544
Known Values 0.0767 | 0.4062 | 2.7679 | 0.3258 | -2.4581
5 [Estimated | dt=0.05 sec | 0.0766 | 0.4087 | 2.7697 | 0.3258 | -2.4581
Values [ dt=0.01 sec | 0.0767 | 0.4061 | 2.7670 | 0.3258 | -2.4581
samp' duration 20 seconds

routine. Its algorithm uses a fixed step size for convenience in processing the
discrete data. The generated free roll decay records were then used to evaluate the
rolling parameters. To predict the natural frequency and the damping coefficients,
a computer program was written based on equations (2.26) and (2.22).

Five cases were considered and different time intervals were used for the in-
tegration of the free roll equation. The true values and the predicted values of
the parameters are given in Table 3.1 It is seen that very accurate parameter
estimates are obtained for all of the cases. It ir; also noted that the time interval
of 0.01 second gives more accurate results than that of 0.05 sccond. However, re-
sults obtained using an interval of 0.05 seconds are still very good. We can expect.

that an even more accurate estimation could be obtained if one uses a shorter
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time interval. Thus, it may be concluded that the proposed method achieves high
accuracy in estimating the parameters when applied to simulated free roll decay

data.
3.2 Simulation of Roll in Random Waves

To generate random roll data, we used the following differential equation de-

scribing the nonlinear roll motion in random waves.
5 B n
¢+ 20wy(® + e6°) + wi(é + g’ + e2d’) = 3 Asin(wit +0x) (3:2)
=1

¢ and € are the nondimensional linear and nonlinear damping coefficients, re-
spectively. The random wave excitation is simulated by superposing a large num-
ber of sinusoidal functions with the same amplitude A, varying frequencies w; and

random phase angles 0. The expressions for wy and 6 are

k
we = M+;(U/—Wb) k=0,1,---,n

0 = 2rr 0<r<1

wy varies between frequency limits w, and wy which define a band-limited white
noise. r is an uniform random number chosen such that the phase angle varies
between 0 and 27. The wave exciting moment used in Equation (3.2) is composed
based on the method given by Borogman [25] to ensure that the excitation is a
broad band random process.

The rolling motion of a 1.5 meter model was simulated using the parameters
shown in Table 3.2 for the five cases considered. The excitation moment used in

the simulation was d of 70 sinusoidal with the same amplitud

of 0.07 per sec’ and varied frequencies. The limits of the frequency band, w; and
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Table 3.2: Parameters Used in the Simulation

Case | GM (cm) | ws 4 € ay az

1 529 3.4468 | 0.0116 | 3.204 | 0.1480 | -1.5676
2 491 3.3684 | 0.0111 | 4.249 | 0.1723 | -1.6896
3 4.51 3.1762 | 0.0126 | 4.320 | 0.2024 |-1.8402
4 3.92 3.0068 | 0.0137 | 4.286 | 0.2580 |-2.1184

5 3.38 2.7679 | 0.0139 | 5.296 | 0.3258 | -2.4581

wy took the values of 2.0 and 5.0 rad/sec, respectively. The time interval for the
integration was chosen to be 005 second and the sample length was 1200 seconds
for each record.

Five random roll records were generated using a fourth order Runge-Kutta

routine to get the numerical solution of equation (3.2).
3.3 Estimation from Random Roll Response

3.3.1 Random Decrement and Autocorrelation Curves

To extract the random decrement from random roll data, a computer program is
written based on the method described in chapter 2. This program involves three
steps: 1) using interpolation tofind thestart timet; of each segment corresponding
to a selected angle ¢,; 2) picking up the segments from cach start timeto a time

length Ting and using cubic spline interpolation to get uniform time interval; 3)
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Figure 3.1: Comparison of Random Decrement and Free Decay

taking the ensemble average of these segments.
The initial roll angle of the random decrement has been chosen to be equal to
the significant amplitude of roll response so that a reasonable number of segments
is taken. For the five random decrement curves, the initial angles ranged from 0.32
to 0.35 radian and the numbers of segments ranged from 80 to 192.
The autocorrelation function was calculated from the whole record of roll angle
using a program based on equation (2.11). For comparison, the free decay curves

were d by the ical i jon of equation (3.2) with the excitation

term set to zero.
The three decay curves: random decrement, autocorrelation and free roll decay
are compared in Figure 3.1 and Figure 3.2. It is seen that the random decrement

and the autocorrelation function resemble to a large extent the free roll decay
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Figure 3.2: Comparison of Autocorrelation and Free Decay

curve, The results have been shown for one case only because the results for the
other cases are very much similar.
3.3.2 Prediction of Natural Frequency

S

As was ly, the natural fi can be d by one of

three methods: the random decrement, the autocorrelation function and the power
spectral density. All of them were calculated from the stationary random response
of the roll equation. The values for the natural frequency predicted by each of the
above mentioned methods are given in Table 3.3, together with the exact value
used for the generation of the random roll response. The results were obtained
from the random decrement and the autocorrelation function curves of 20 seconds
long.

It is clear that the values of the natural frequency obtained using the autocor-
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Table 3.3: Natural Frequencies Predicted by Three Methods

Given | Random Auto- Spectral
Case | GM (cm) | Values | Decrement. | Correlation | Density
wy (r/s)| we (tfs) | we(x/s) |ws(t/s)
1 5.29 3.4468 3.4252 3.4639 3.4975
2 491 3.3684 3.3816 3.3231 3.3748
3 4.51 3.1762 3.1785 3.1500 3.1907
4 3.92 3.0068 2.9692 3.0125 3.0680
5 3.38 2.7679 2.7335 2.7726 2.8225
14 T T T T
o~
fg 1} E
& 10 1
§ ok x Free Roll Decay ]
g‘ * Random Decrement
= 4 + Autocorrelation 4
B 0 Spectral Density
2 2F 4
z
0 . L L L
35 4 4.5 5 55
GM (cm)

Figure 3.3: Predicted Values for the Natural frequency
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Table 3.4: Goodness Fit of w} Versus GM

Free | Random Auto- Spectral
Parameter | Decay | Decrement | Correlation | Density

m 22334 | 2.3264 2.1867 2.1707

R 0.9919 [  0.9855 0.9899 0.9871

relation function or the random decrement are both very good estimates for the
actual natural frequency used in simulation. The square of the natural frequency
versus the metacentric height is shown in figure 3.3.

It can be seen from the plot that their relationship is best represented by a
linear equation in the form

Wi =mGH

where m is a constant. To compare the goodness of the fit of the least squares line
to the fitted data, we use the square of correlation coefficicnt R? as a measure, R?

is defined as

_[Co (GM.W’!) |
I Var(GM) Var(w}) 63)

where Var and Cov represent variance and covariance, respectively. The nearer
the value of R? to one the better the fit. The values of m and R? obtained using
the four methods are given in table 3.4.

The results of linear regression show that the square of the natural frequency

obtained using the random decrement, autocorrelation function or spectral density
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Tahle3.5: Known and Estimated Parameters Using Random Decrement

Case Comparison wy ¢ € ay az

Known Values | 3.4468 | 0.0116 | 3.2040 | 0.1480 | -1.5676

Estimated Values | 3.4252 | 0.0148 | 3.3295 | 0.1480 | -1.5676

Known Values | 3.3684 | 0.0111 | 4.2490 | 0.1723 | -1.6896

Estimated Values | 3.3816 | 0.0125 | 5.7447 | 0.1723 | -1.6896

function is linearly related to the metacentric height of the model. Thus, the

d natural frequency by one of these techniques can be used to predict the

inst value of the ic height of a ship at sea where a free roll test

cannot be obtained.
3.3.3 Damping Identification

Since the random decrement or the autocorrelation function is a first order ap-
proximation of free roll decay for nonlinear systems, we use the same estimation
method as previously used for free roll decay to identify dampins parameters from
the resulting curves. The damping coefficients estimated from the randomn decre-
ment curves are shown in table 3.5 for the first two cases given in Table 3.3.

It has been difficult to determine unique values for the damping parameters in
the other three cases. The reason being that there is usually a trade off between

the two unknown damping parameters. This is a problem that has been observed
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in all methods which uses the least squares technique for estimating the linear and
nonlinear damping coefficients, see Haddara and Wu [26].
Figures 3.4 and 3.5 show the comparison between the true free decay curves and

the estimated decay curves which were d using the dicted

P

by the random d and the lation function techni The first

four cases in Table 3.2 are shown here.

It is seen that the damping i d from the random dy

and the autocorrelation function produce free decay curves which compare well

with the actual free decay curve.
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Chapter 4

Experimental Study

Although in the last chapter, we already verified the validity and accuracy of
the random decrement method and the proposed estimation method for simulated
data, the use of real roll data is of ultimate importance in demonstrating the
value of the methods because real data reflect the physical response of a system
to true environment. Unlike simulated data which are obtained from an assumed
equation, real data are always corrupted to some extent by random "noise” which
arises from methods of measurement. Model experiments in a wave tank can
simulate to a certain extent real ships at sea, and also allow the methods to be

tested in a realistic but controlled envi Furth model

enable us to assess the reliability of the method for different models under various

loading conditions and various wave excitations.

4.1 Experiments

The rolling experiments were performed on three fishing vessel models in the

towing tank of Memorial University of Newfoundland. The inside dimensions of the

tank are 58.27 m in length, 4.57 m in width, and 3.04 m in depth, as shown in figure
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Figure 4.1: Towing Tank Layout

4.1. The hydraulically operated, piston-type wave generator is installed behind the
waveboard at one end of the tank and a wave absorbing beach is located at the
other end of the tank to reduce the reflected and standing waves. Both regular and
irregular waves, in a frequency range between 0.3 and 1.3 Hz, can be generated
through the translatory motion of the waveboard driven by a hydraulic actuator.
The actuator is controlled by 2 MTS closed-loop, servo-controlled system.

Since no forward speed is involved in th i the model was positioned

across the tank at the test area shown in Figure 4.1. The waves gencrated by the
wavemaker at one end of the tank approached the model from its side with an

encounter angle of 90 degree, namely a beam sea.
4.1.1 The Models

‘Three fishing vessel models: M363, M365, M366 were used in the model exper-
iment. They belong to the ‘less-than 25 metre’ class and have similar dimensions

but varying hull forms. M363 has long hard chine, deep skeg, significant vertical
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Figure 4.2: Body Plan of M363

prismatic coefficient and low rise of floor. M365 has a much higher center of grav-
ity, also a higher transverse metacenter. M366 has a rounded hull form and the
smallest Midship Section Coefficient Cn . The body plans of the three models are
shown in Figures 4.2 - 4.4 and their particulars are given in table 4.1

Before the experiments, the models were prepared to meet the requirements
specified in the hydrostatic particulars list provided by the model builder, Institute
for Marine Dynamics, National Research Council of Canada. This work involves
balasting the model until the required waterline is reached and then arranging the
weights in the model to adjust the center of gravity and the radius of gyration.
After being ballasted and trimmed in the above way, each model has the proper
draft, center of gravity and roll natural frequency.

In the procedure of adjusting the mass distribution in the model, the center
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Table 4.1: Particulars of Three Models

Model M363 M365 M366
Scale 1:12 1:9.1 168
LWL (m) 1.551 1.33 1.568
Beam (m) 0.507 0.542 0.506
Draft (m) 0.221 0215 0.205
LCB (m) -0.109 -0.052 -0.1375
Mass (kg) 80 55 69.5
GM (m) at 0G=0 0.031 0.0326 0.0451
w (r/s) at 0G=0 27362 3.2693 3.1762
« at 0G=0 1.2832 -0.3851 0.2024
a at 0G=0 -1.3203 -2.5141 -1.8402




of gravity and the roll natural frequency need to be checked repeatedly. The roll
natural frequency of the model can be roughly estimated by conducting a free roll
test and recording the time required by the model to perform a specific number of
roll cycles. The vertical position of the center of gravity is usually estimated from

an inclining test.
4.1.2 Test Setup

Two different techniques are usually used for measuring roll motion. The first
uses a dynamometer and the second uses a gyroscope. Both of them were used
in the experiments. The experiment on Model M363 was conducted a couple of
months earlier than the experiments on the other two models.

For model M363, a dynamometer was attached to the model to measure the
roll angle. The dynamometer is composed of a linear bearing, a pivot and an
angular induction transducer. As shown in figure 4.5, the model was attached to
the pivot through a platform with adjustable height. The pivot was connected to
arod which goes through the linear bearing. This set up prevents the model from
motions other than rolling and heaving. By adjusting the height of the platform,
the rolling centre and the gravity centre of the model were both changed to achieve
the variation of transverse metacentric height GM.

A wave probe was set up at a location 2.25 meters away from the model in the
direction towards the wavemaker to monitor the time history of the wave height.
The signals from the dynamometer and the wave probe were sent through a filter

and stored on a mi The mi was d to a data

acquisition unit: a two channel digital signal analyzer. The roll response and the

wave height could be observed during a test.
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dynamometer

Figure 4.5: Test Setup for M363

For models M365 and M366, a gyroscope was installed on the model to measure

the roll angle. Figures 4.6 and 4.7 are the ph hs of the test

A portable computer was used to download data acquisition programs to the data
logger. The signal of roll motion from the gyroscope was input to the data logger
through a cable. The signal from the wave probe was also sent to the data logger.
The sample rate was set by a frequency counter. All instruments used here are
portable so that they can be used later in the real ship tests.

The model was tethered from its bow and stern by two strings running through
a pair of pulleys. The line joining the two tethering points in the bow and stern
passes through the center of gravity of the model. The pulleys were fixed at the
end of two angle steel bars attached firmly to the opposite sides of the carriage.
Two small weights were fastened at the end of the two strings, which provided

the model with small adjustments for flexibility. The sway and roll modes are
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Figure 4.6: Instruments for M365 and M366

Figure 4.7: Test Setup for M365 and M366
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normally coupled but this coupling was found to be weak and negligible. The
center of gravity of the model was changed by moving a set of weights vertically
in the model. Thus the different GM values were obtained.

Random wave generation consists of five steps: 1) definition of the target wave
spectrum. 2) synthesis of a random target wave train with an energy distribution
defined by the target spectrum 3) calculation of the control signal for the wave
machine. 4) generation and measurement of the waves in the towing tank. 5)
spectral analysis of the measured wave train and comparison with the desired

target spectrum.

The unidirectional JONSWAP sea-spectrum was used for random rolling ex-

asitisa bl of a North Atlantic wave energy

distribution. This spectrum, expressed as a function of frequency, is given by
A 4y
(/) = fzexo(=B/IY)7

where

i

S H
16 4%
The JONSWAP spectrum depends on four parameters. They are significant

; my  G=exp [_.(iz%:)"]

wave height H,, wave modal frequency fm, peak enhancement factor 4 and shape

parameter o. The following values proposed by Ewing [27] were used in the ex-

periments:
7=33
o =0.07 for f<fm
=009 for f>fm
Wave modal frequency f,, or wave predomi f (PF) is the peak
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frequency of a wave spectrum. The significant wave height is the average of the
one-third highest waves, which is defined as H, = 4,/m, where m, is the area

under the wave spectrum.
4.1.3 Roll Tests in Random Beam Waves

The rolling tests were performed for each model at a series of GM values. During
the experiment, the mass of each model remained constant but the centre of gravity
changed vertically to give a series of different GM values. For each model at each
GM value, the experiment included three parts: inclining test, free roll tests and
roll tests in random beam waves.

The purpose of the inclining test is to check the value of the transverse meta-
centric height GM for each loading condition, To avoid error from measurements,
the small weight was moved transversely through five positions on the model and
9 measurements were taken for each case. Tables A.1 to A.3 in Appendix A give
the inclining test data for the three models in each case. The ratio of the highest
GM value to the lowest GM value for M363, M365 and M366 was 1.52, 1.8 and
1.57, respectively.

In order to compare the results from the random decrement and the autocor-
relation function curves with those from the free roll decay curve, a set of free roll
tests were carried out at each GM value for each model. In each set of free roll
tests, the model was heeled respectively to port and starboard at 5 different initial
angles ranging from 5 to 15 degrees. For M363, the measurements were taken at
a rate of 20 points per second and the test duration was 25 scconds. For M365
and M366, the sampling rate was 21.3 points per second and the duration of the

sample was also 25 scconds.



Following the inclining tests and the free roll tests, the roll tests in random
beam waves were performed with the model at the same loading condition. The
wave modal frequency was chosen to be close to the roll natural frequency of the
model. To see the effect of different wave height on the random decrement, the
model in each loading condition was subjected to two wave spectra with the same
modal frequency but different significant wave heights. The effect of varying the
wave modal frequency on the random decrement was also studied. In one loading
condition, Model M365 and M366 each was subjected to the wave excitations
generated respectively from three wave spectra which had the same significant wave
height but different wave modal frequencies. The three wave modal frequencies
were so chosen such that one of them is near the model natural frequency, the other
is higher and the third is lower than the model natural frequency. Every random
roll test was recorded twice in the same loading condition and the same wave

for i igating the reliability of the results provided by the random
decrement method.

The sample rate of the random roll tests was kept the same as free roll tests,
while the sample duration of each record lasts for 400 seconds in order to meet

stationarity requirements and provide enough data.
4.2 Results and Discussion

This section will focus on: 1) the validation of the proposed estimation method
using experimental roll data; 2) the feasibility of the random decrement method
for different nonlinear systems; 3) the reliability of the results obtained from the

roll response to different wave excitations.
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Figure 4.8: GZ Curves of M363

4.2.1 Analysis of Free Roll Data

To dete:raine the roll parameters from free roll response, the estimation method
used in the previous chapter is applied here. As explained in chapter 2, the non-
linear restoring coefficients for a specified center of gravity can be obtained from
GZ curve fit by a least-squares technique. Figures 4.8 to 4.10 show the GZ curves
of each model for different GM values.

It is seen that equation 2.14 provides very good estimate for the restoring
moment for the three models. From the regressions of GZ curves, the nonlincar
restoring coefficients a; and a; were evaluated as shown in Table 4.2.

The values of the natural frequency and damping parameters given in Table 4.2
were estimated using the same computer program used previously in the analysis

of simulated data. It is seen in Table 4.2 that M363 has the highest linear and
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Table 4.2: Parameters Estimated from Free Roll Decay

Model | GM(cm) | & b wy a az
3.81 0.0648 | 0.4433 | 2.8051 | 1.0130 | -1.0800
M363 310 [0.1572 | 2.0321 | 2.7362 | 1.2832 | -1.3293
2.51 0.2239 | 7.2033 | 2.2068 | 1.6240 | -1.6437
4.31 0.1113 | 0.7052 | 3.6126 | -0.3319 | -1.8996
3.61 0.0941 | 0.8368 | 3.4100 | -0.3640 | -2.2695
M365 3.26 [0.0951 | 0.8352 | 3.2693 | -0.3851 | -2.5141
2.75 | 0.1070 | 0.8357 | 3.0178 | -0.4257 | -2.9818
239 0.1067 | 0.9946 | 2.7675 | -0.4647 | -3.4322
529 | 0.0819 [ 0.2957 | 3.4466 | 0.1480 | -1.5676
491 0.0780 | 0.3048 | 3.3595 | 0.1723 | -1.6896
M366 4.51 0.0797 | 0.3443 | 3.1762 | 0.2024 | -1.8402
3.92 0.0826 | 0.3540 | 3.0068 | 0.2580 | -2.1184
3.38 | 0.0811 | 0.3988 | 2.7673 | 0.3258 |-2.4581
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nonlinear damping among the three models because of the effects of its long hard
chine, deep skeg and low rise of floor. M366 has luwer linear and nonlinear damping
than M365 because M366 has higher rise of floor.

To test the accuracy of the estimation by the proposed method, the predicted
parameters were used to regenerate free roll decay curves which were then com-
pared with the originally measured free roll decay curves. Fig. B.1 through Fig.
B.13 in the Appendices show this comparison for all GM values of the three models.

1t is seen that the predicted free decay curves are almost identical to the mea-
sured free decay curves in all cases. The excellent agreement indicates that Equa-
tion (3.1) is a very good mathematical model for free roll motion. And also the
method used here is very accurate and reliable for parametric identification from

measured free roll data.
4.2.2 Analysis of Random Roll Data

By using the same programs outlined in the last chapter, the random decrement
and autocorrelation function have been calculated from the stationary random
roll records. Each record contains 8001 sample points for M363 and 8518 points
for M365 and M366. Although the sample size used in the experiments is much
smaller than that used in the simulation, it still reaches ionarity and provides

good results for most tests.

As stated in Chapter 2, the random decrement and the autocorrelation function
of a nonlincar system satisfy approximately the differential equation describing
frec roll motion. Thus we can in principle estimate the parameters in the free
roll equation from the random decrement and the autocorrelation function both of

which can be calculated from random roll records. The estimated free decay curves
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were generated using the free roll equation and the parameters predicted from the
random decrement and the autocorrelation function. Fig. C.1 through Fig. C.13
in Appendix C display the comparison of the random decrement curve with its
estimated free decay curve for all cases of the three models. The comparison of
the autocorrelation function curve with its estimated free decay curve is illustrated
in Fig. D.1 through Fig. D.13 for all cases.

We can see from the plots that the estimated curves generated using free roll
equation agree well with the random decrement and the autocorrelation function
curves. That means the random decrement and the autocorrelation function satisfy
the same equation describing free roll motion. Therefore, the estimation method
presented in this work can be used to obtain quite accurate estimations for the
parameters in the roll equation using the random decrement or the autocorrelation
function.

For comparison purposes, the random decrement and the autocorrelation func-
tion curves are plotted with the corresponding frec decay curve with the same
initial angle and the same GM value. Figures 4.11 to 4.13 show the comparison
of the random decrement and the free roll decay for the different models. Figures
4.14 through 4.16 compare the shapes of the autocorrelation function curve and
the free roll decay curve for the same cases.

It is seen that both the random decrement and the autocorrelation function
curves closely resemble the actual free roll decay curves for M365 and M366. Such
resemblance for M363 is reasonable but not as good as in the cases of M365 and
M366 due to the large nonlinear damping cf M363. These results are expected

because of the first-order approximation used in the derivation of the random
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decrement. In the autocorrelation function, the nonlinearities in the damping

and restoration are replaced with equivalent linear ities. As a

the system with larger nonlinearity would produce larger errors in calculation of
the random decrement and the autocorrelation function. Also, M363 experiments
were conducted with the model constrained against sways while models M365 and
M366 were allowed to sway. Restraining sway scems to influence the accuracy of
the parameter identification.

The natural frequencies predicted using thrce methods: the random decre-
ment, the autocorrelation function and the power spectral density are compared
with those estimated from the free roll decay curves. The plots of the square of
the natural frequency versus GM value are shown in figures 4.17 to 4.19 for the
three models. It seems that M366 gives the best results and M363 gives larger

errors. It is seen that both the random d method and the |
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function method provide very good estimates for the natural frequency obtained
from free roll decay. The method of power spectral density seems to give more
biased estimates for all of the models and it tends to over estimate the values of
the natural frequency. The results obtained form the random decrement and the

autocorrelation inethods are very close to each other. From a linear regression, one

can find that the natural freq predicted using the lation function
curve is slightly more accurate than those obtained from the random decrement.

The relationship between the square of natural frequency and the GM value is
demonstrated by the straight lines obtained using a least-squares fit. To predict
instantaneous value of the GM for varied loading conditions, one can use this
relationship and the natural frequency predicted from either the random decrement
or the autocorrelation function curve.

Table 4.3 compares the damping values predicied from the random decrement
curves with those from the free roll decay curves. It is seen that the random decre-
ment can be used to approximately estimate the nonlinear damping cocflicicnts.
The results from the three models show that the system with smaller nonlinear
damping would allow more accurate estimation for damping. Damping estimates
obtained from the random decrement and autocorrelation function were used to
generate free roll decay curves which agreed well with the original free roll decay
curve. However, it must be mentioned that not all of the random roll tests have
been successfully used as a substitute for actual free roll decay in the prediction
of nonlinear damping coefficients. This problem is partially caused by the transfer
of energy between the different components of damping. It is also caused by the

first-order imation used in the derivation of the random decrement and the




Table4.3: Parameters from Random Dec. and Free Decay

Model | Comparison | b b | we a oy

Free Decay | 0.1509 | 2.0270 | 2.7453 | 1.2832 -1.3293

M363
Random Dec. | 0.2041 | 1.7636 | 2.6737 | 1.2832 (-1.3293
Free Decay | 0.0894 | 0.7987 | 3.4052 | -0.3640 | -2.2695

M365
Random Dec. | 0.1079 | 0.5702 | 3.4053 | -0.3640 | -2.2695
Free Decay | 0.0933 | 0.2412 | 3.4643 | 0.1480 | -1.5676

M366

Random Dec. | 0.0971 | 0.2897 | 3.3942 | 0.1480 | -1.5676

autocorrelation function. Other reasons have been pointed out in Chapter 3. The
effect of wave excitation on the random decrement may be another reason.

This discrepancy may be improved by using the middle parts of the random
decrement and free decay curves since we find that the middle part of the two
decay curves are more similar. This is because the start of free decay is often
distorted and the tails of the random decrement and free decay curves are even
worse.

Overall, the accuracy of nonlinear damping estimation by random decrement
method scems to critically depend on the nonlinear damping value, the accuracy

of roll measurements and some other factors to be determined.
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4.2.3 Reliability of the Random Decrement Method

If the wave excitation is a stationary, zero mean, Gaussian, white noise random

process, the random decrement curve should be dependent only on the system

" ind 4

and

of the wave excitation. Neither the type nor the
intensity of the input should affect the scale and the form of the random decrement
curve. This point is investigated here in three ways: 1) to test whether the random
decrement curve is repeatable under the random excitation defined by the same
wave spectrum. 2) to see if the change of significant wave height affects the random
decrement curve. 3) to see the effect of different wave modal frequencies on the
randomn decrement curve,

Figures 4.20 through 4.22 each shows two random decrement curves extracted

from the repeated tests conducted in random waves with the same wave spectrum.
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Figure 4.23: Effect of Wave Height on Random Decrement (M363)

Although the time histories of wave excitation in the two tests are different and
the time series of roll response are also different, the random decrement curves
from two records of random roll response are almost identical. The marvelous
resemblance obtained for three models show that the random decrement method
can produce repeatable decrement curves from the nonlinear roll response subject
to the wave excitations with the same spectrum. This is important for ensuring a
reliable and unique solution of the roll parameters to be obtained.

In figures 4.23 through 4.25, the two random decrement curves are obtained
from the two roll tests which were conducted in random waves generated from two
wave spectra. The two wave spectra have different significant wave heights and the
same modal frequency. Aithough the significant amplitude of the two random roll
records are much different, their random decrement curves closely resemble cach

other. The good results for three models leads to the conclusion that the effect
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of varying significant wave height on the random decrement is weak and can be
neglected.

Figures 4.26 through 4.28 show the spectra of both wave excitation and roll
response for Model M365. Three wave spectra with different modal frequencies and
the same significant wave height were used in the experiments on Model M365 and
M366 to investigate the effect of wave modal frequency on the random decrement
curve. The results for M365 are shown here and the results for M366 are very much
similar. In Figure 4.2, the wave modal frequency is close to the natural frequency
of the model. While in Figure 4.27 and Figure 4.28, the modal frequencies of the
wave spectra are different from the natural frequency of the model: one of them
is higher and the another is lower than the natural frequency of the model.

It can been seen that in the resonant condition, the model reached largest

amplitude of roll motion while in the other two situations, the average energy of
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the rol! response were much smaller. The three spectra of roll response are plotted
together in Figure 4.29. Although the modal frequencics of the input are different
in the three tests, the modal frequencies of roll response are almost the same.
Figure 4.30 compares two random decrement curves obtained from the roll
response shown in Figures 4.27 and 4.28. It is observed that there exists large
difference between the two random decrement curves. One explanation to this
problem is that JONSWAP spectrum which was used for generating random waves
is different from the white noise spectrum that was assumed in the derivation of
the random decrement. When the modal frequency of excitation is away from the
natural frequency of the system, the wave spectrum is not sufficiently broader than
the response band-width. The problem may also be caused in the calculation of
the expected values. The numbers of segments for forming the random decrement

curver are largely different when the same initial angle is used for both large
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Figure 4.30: Effect of Wave Modal Frequency on Random Decrement

and small amplitude roll records. When the number of segments is limited by the
length of a record, the ensemble average of the segments may not represent the ture
random decrement. The nonlinear damping is probably another reason to cause
the random decrement curve to change with the random excitation. For linear
systems, the scale and form of the random decrement curve remain unchanged
even when the ambient random excitation changes. For nonlinear systems, the
independence of the random decrement on the modal frequency of input needs to

be further studied.



Chapter 5
Full Scale Ship Tests

In this chapter, the random decrement method will be used in the analysis of
the real ship response in an irregular sea. The wave pattern of an actual sca
is rather complex and the wave surface varies from tiriie to time and place to
place, depending on wind speed and direction. Since the free roll test and the
measurement of wave excitation are not avaliable for a ship at sea, one has to rely
on roll measurements only to predict roll parameters for assessing the stability of

the ship against capsizing.
5.1 Ship Roll Tests at Sea

The real ship tests were carried out on the fishing vessel "Newfoundland Alert”
during its fishing trip at sea in September 1992. The particulars of the ship are
given in Table 5.1 and the ship layout is shown in Figure 5.1. The instruments used
for measuring roll motion of the ship are the same as those used in the experiments
for M365 and M366. Since the period of roll motion for the ship is much longer
than that of the models, the measurements of roll angle were taken every 0.25

second for 20 to 40 minutes for each record.
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Table 5.1: General Particulars of the Ship

Vessel's Name

Type of Vessel

Length Between Perpendicular
Breadth Moulded

Depth Moulded

Summer Load Draft
Displacement at S.L.W.L.
Lightship Weight

Date Keel Laid

Builder

Newfoundland Alert
Fishing Vessel

32.80 meters

10.00 meters

6.80 meters

4.011 meters

673 tons

406 tons

February 25, 1988

Marystown Shipyard Limited
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5.2 Calculations of Loading Conditions

The loading condition of the ship changed from time to time during the trip be-
cause of the change in weight of the catch, the consumption of fuel and fresh water
and some other changes in either weight or location. To find the instantaneous
GZ curve and GM value of the vessel, we need to calculate the weight and the
center of gravity of each item causing the changes of mass and mass distribution
of the vessel. In addition, there are several tanks located in the ship (see Figure
5.1). When the tanks are partially filled with liquid, the stability of the ship is
adversely affected by what is known as "Free Surface Effect”, which causes a loss
in GM. The Free Surface Correction can be calculated using the formula

Total Free Surface Moment (t.m)

FJS Correction = Displacement of Vessel t 1)

The center of gravity of the vessel KG can be corrected by
KGuia = KGuolia + F[S Correction (5.2)
and the metacentric height GM is obtained from
GMjia = KMr — KGpiuia (5.3)

where K Mr is the height of transverse metacenter above keel.

Three loading conditions are reported in Table E.1 through E.3 in the Appen-
dices. The consumed fuel, fresh water and provisions were calculated on the basis
of assumed consumption rate during the trip. The weight of ice and boxes used
for the catch were considered to be proportional to the weight of fish. To calculate

the center of gravity of each item changing in weight and the free surface moment

K



Table 5.2: Hydrostatic Data of Three Conditions

Item Condition 1 | Condition 2 | Condition 3
Displacement (t) 605.07 607.69 614.33
Draft (m) 3.7433 3.7539 3.7806
K Mrg(m) 4.8554 4.8573 4.8623
KG,otia (m) 3.9475 3.9464 3.9397
F/S Correction (m) |  0.2090 0.2018 0.1939
KGtuig (m) 4.1565 4.1483 4.1336
GMpiia (m) 0.6989 0.7091 0.7287

of each tank, a computer program was written to interpolate some relevant data
given in the Stability Booklet of the ship for a series of loading conditions. The
hydrostatic data were calculated using equation (5.1) through (5.3) and the results
are shown in Table 5.2 for the three loading conditions.

The statical stability (GZ) curve for a certain loading condition is obtained

using the following equation
GZ = KN - KGiasin8
The KN values can be derived from the Stability Booklet of the ship by interpo-

lating the given KN values for a series of displacement values. Figure 5.2 shows

the GZ curve for one loading condition.

5



08 T T T
0.6 “ s " 4

0.4 L ; . . 4

GZ (m)

02 - . 4

=)

Heel Angle (deg)
Figure 5.2: GZ Curve of the Ship

5.3 Results and Discussion

Figures 5.3 and 5.4 show the random decrement curves extracted from the roll
response of the ship in an irregular sea. For a real ship sailing in a sea, six degrees
of freedom of motion and forward speed are involved. In addition, the ship is
subject to varied sea states. Therefore, the situation of a ship at sea is more

d than in rical si ion or in

However, good results were obtained from the ship roll records with a shorter
sample length and a larger sample interval than those used in the simulation and

the i One explanation is that the band of the sea waves

may be broader than the assumed mathematical model for the simulation and also
than the wave spectra used in the experiments. Another reason is that the wave

excitation of the actual sea is a true random process. Thus, the real ship tests can

%
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Figure 5.4: Random Decrement (Ship: GM=0.7287m)

7



Table 5.3: P Esti d from Random De

Case | GM (m) | b by w o o

1 0.6989 | 0.0733 | 3.2782 | 0.7350 | 0.4025 | -0.4818
2 0.7091 | 0.0775 | 4.5473 | 0.7401 | 0.3910 | -8.4747

3 0.7287 | 0.0868 | 3.5923 | 0.7653 | 0.3671 | -0.4611

use less segments to form an equally accurate random decrement curve.

Table 5.3 shows the parameters predicted from the random decrement curves
for the three loading conditions. Good estimate of damping parameters have been
obtained from the nonlinear roll motion of a ship in a realistic sea.

Figure 5.5 displays the comparison of the random decrement and the autocor-
relation function curves. It is seen that the two curves agree reasonably well with
each other. Thus we may use random decrement for parametric identification and
use the autocorrelation function method to check the estimation.

Figure 5.6 shows the plot of the square of natural frequency against GM value
obtained from the three methods. Duc to the small variation in the value of GM
for three loading conditions, the spectral density method fails to tell the change
of natural frequency with the GM value. However, both the random decrement
method and autocorrelation method not only succeeded to distinguish the small
changes in the natural frequency with different loading conditions but also gave

the results satisfying the linear relationship between the square of the natural
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frequency and the GM value. The results from the random decrement and the
autocorrelation function methods are very close to each other. As in numerical
simulation and model experiments, the power spectral density method produced
the highest values for the natural frequency.

As the wave excitation was beyond control in the real ship tests, some mea-
surements were taken when the roll motion was small. Consequently small initial
angles were used in forming the random decrement curves. It is found that using
an initial angle smaller than 5 degree tends to produce bad random decrement
curves. This is because the data become quite noisy for small roll motion. It is
also found that if the random decrement method fails to provide good estimation
from noisy data in the case of small roll motion, the autocorrelation method or

spectral density method correspondingly provide bad results too.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

In this study, the di ies with the p identification from nonlincar
roll motion of a ship in random waves were overcome by the use of the Random
Decrement Method. The applicability of this technique as applied to nonlinear sys-
tems was i igated using d data, inodel i 1 data

and real ship test data. The validation of the method covered various loading
conditions, different hull shapes, different nonlinear damping moments and differ-
ent wave spectra. It has been shown that the free roll response for the nonlinear
rolling motion can be either obtained from a calculation of the propagation of the

expected value of the roll motion in a random sea, usually referred to as the ran-

d teulated

dom or from the

function of the stationary
random colling response. In both cases the measurement of the random excitation
is not required.

The values of the natural frequency predicted from the random ecrement or

the autocorrelation function showed good agreement with those obtained from
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the actual free roll decay. The power spectral estimation provided more biased
results than either the random decrement or the autocorrelation function method,
especially in the situation when GM value varied slightly. It has also been shown
that the square of the natural frequency is lincarly related to the magnitude of
GM. Thus the natural frequency obtained by the random decrement method or
the autocorrelation method can be used to find an estimate for the instantancous
metacentric height for a ship at sea.

It is very interesting that for some noisy data obtained in case of small roll mo-
tion, the three methods: random decrement, autocorrelation function and spectral
density produced equally bad results.

The comparison between the estimated decay curve obtained from the random
decrement with the actual frce decay curve showed reasonably close agreement,
which indicate that it is possible to use the random decrement as a substitute of
the free roll decay for nonlinear damping identification. However, the variance of
the damping coefficients oblained from the random decrement scems still consid-
erably large for some cases. Several factors may cause this problem. First, the
nonlinearity of the damping would affect the accuracy of the damping estimation
from the random decrement. Second, a first order approximation was used to
derive the expected value propagation. Third, the cxciting moment used in the
simulation and the experiments departed from the Gaussian white noise which was
assumed in the theoretical formulation.

The results of the three models have proved that the system with smaller damp-
ing nonlinearity gives more accurate estimation for both the natural frequency and

the damping parameters. This point was verified by comparing the accuracy of the
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and the bl between the free roll decay, the random

decrement and the autocorrelation function curves for three models.

Comparing the results from the numerical simulation, the model experiments
and the real ship tests, one sees that the real ship tests used smaller sample size or
less segments to form an equally accurate random decrement curve. The numerical
simulation nceds the longest record to get a random decrement curve with the same

accuracy. The damping coefficients obtained from the real ship tests show smaller

variance than either the or the model i 1t seems

more errors occur in the damping identification from the experimental tests. The

h tra used in the i for ing random waves

reasons might be:

were narrower than the wave spectra affected by realistic sea. The simulation used
a limited-band excitation composed of a number of sinusoidal components which
may not be truly random as a realistic sea.

The technique described here opens up the possibility to assess the roll stability

e

of a ship in real loading using its roll taken in a seaway.

The whole procedure developed in this work will serve as an useful tool for the
prediction of roll parameters in the nonlinear equation of roll motion. This will
provide a means for immediate estimation of the margin against capsizing for a

ship sailing in a realistic sea.
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6.2 Recommendations

Based on the results of this study, the following major reccommendations have

been drawn and should be pursued in further research.

. In the theoretical approach, a more rigorous method for obtaining the ex-
pected value propagation may improve the accuracy of damping estimation

from the random decrement.

»

A method which can deal with a non-white excitation should be developed.

e

The effect of wave modal frequency on the random decrement from nonlinear

roll motion needs to be further investigated.

s

. For real ship tests, large change in loading condition is recommended in order

to cover large range of GM values in the study.
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Appendix A
Model Inclining Test Data



Table A.1: _Inclining Test Data of M363

Case 1 Case 2 Case 3
d (cm) | ¢ (deg) | 0 (deg) | ¢ (deg) | 0 (deg) | ¢ (deg) |0 (deg)
0 -0.03 0.02 0.04
1055 | 037 | 0.40 0.51 0.49 | 064 0.60
2108 | 0.75 0.38 1.00 0.49 124 0.60
1055 [ 0.36 0.39 0.52 0.48 0.65 0.59
0 -0.04 0.40 0.03 0.49 0.04 0.61
105P | -045 0.41 -0.44 0.47 -0.57 0.61
210P | -0.84 0.39 -0.94 0.50 -1.16 0.59
105P | -0.44 0.40 -0.46 0.48 -0.54 0.62
0 -0.05 0.39 0.02 0.48 0.04 0.58
GM 3.81 cm 3.10 cm 2.51 cm
KG 25.92 cm 26.63 cm 27.22 cm
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Table A.2: Inclining Test Data of M365

Case 1 Case 2 Case 3 Case 4 Case 5

d | o | oo |06 ]| 6|06 |6 |06 |s]e
(cm) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg)
0 0.01 0.02 0.04 0 0

855 | 042 | 041 | 051 | 049 | 058 | 0.54 | 0.62 | 0.62 | 073 | 073
175 | 0.85 | 043 | 1.02 | 051 | 112 | 054 | 1.27 | 0.65 | 149 | 0.76
855 | 042 | 043 | 0.51 | 0.51 | 0.57 | 0.55 | 0.62 | 0.65 | 0.73 | 0.76
0 0.02 | 0.40 | 0.03 | 0.48 | 0.04 | 0.53 0 0.62 0 0.73
85P [ -039 | 041 |.045 | 0.48 | -0.48 | 0.52 | -0.65 | 0.65 | -0.72 | 0.72
17P | -0.79 | 0.40 | -0.94 | 0.49 | -1.05 | 0.57 | -1.32 | 0.67 | -1.48 | 0.76
85P | -039 | 040 [ -0.46 | 0.48 | -0.48 | 0.57 | -0.65 | 0.67 | -0.73 | 0.7
0 0.02 | 0.41 | 0.02 | 0.48 | 0.04 [ 0.52 | -0.02 [ 0.63 0 0.73
GM | 431cm 361 em 3.26 cm 275 cm 2.39 cm

KG 28.75 cm 29.45 cm 29.80 cm 30.31 cm 30.67 cm
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Table A.3: Inclining Test Data of M366

Case 1 Case 2 Case 3 Case 4 Case 5
d ¢ 8 [ ] ¢ [ ¢ [ [ [
(cm) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg) | (deg)
0 0.10 -0.01 0.05 0.03 0.03
105S | 0.44 | 034 | 034 | 035 | 043 | 0.38 | 0.48 | 0.45 | 0.54 | 0.51
21.0S | 0.76 | 032 | 069 | 0.35 | 1.81 | 0.38 | 0.91 | 0.43 | 1.05 | 0.51
1055 | 0.44 | 032 | 0.34 | 0.35 | 0.43 | 0.38 | 0.46 | 0.45 | 0.53 | 0.52
0 0.10 | 0.34 | -0.01 [ 0.35 | 0.05 | 0.38 | 0.01 | 0.45 | 0.03 | 0.50
105P | -0.23 | 033 | -0.37 | 0.36 |-0.34 | 0.39 | -0.45 | 0.46 | -0.49 | 0.52
210P | -0.55 | 0.32 | -0.72 | 0.35 |-0.73 | 0.39 | -0.86 | 0.41 | -1.00 | 0.51
105P | -0.23 | 0.32 | -0.37 | 0.35 | -0.35 | 0.38 |-0.43 | 0.43 | -0.50 | 0.50
0 0.10 | 033 | -0.01 | 0.36 | 0.04 | 0.39 | 0.02 | 0.45 | 0.03 | 0.53
GM 5.29 cm 4.91 cm 4.51 cm 3.92 cm 3.38 cm
KG 24.70 cm 25.08 cm 25.48 cm 26.07 cm 26.61 cm
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Appendix B

Free Roll Decay and its
Estimated Curve
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Fig. B.1: Free Decay and its Estimated Curve (M363: GM=3.81cm)
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Fig. B.2: Free Decay and its Estimated Curve (M363: GM=3.10cm)

95



T T T

** Free Roll Decay
— Estimated Curve -

Roll Angle (rad)

4 6 8 10
Time (sec)

Fig. B.3: Free Decay and its Estimated Curve (M363: GM=2.51cm)
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Fig. B.4: Free Decay and its Estimated Curve (M365: GM=4.31cm)
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Fig. B.5: Free Decay and its Estimated Curve (M365: GM=3.61cm)
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Fig. B.6: Free Decay and its Estimated Curve (M365: GM=3.26cm)
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Fig. B.7: Free Decay and its Estimated Curve (M365: GM=2.75cm)
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Fig. B.8: Free Decay and its Estimated Curve (M365: GM=2.39cm)
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Fig. B.9: Free Decay and its Estimated Curve (M366: GM=5.29cm)
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Fig. B.10: Free Decay and its Estimated Curve (M36b: GM=4.91cm)
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Fig. B.11: Free Decay and its Estimated Curve (M366: GM=4.51cm)
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Fig. B.12: Free Decay and its Estimated Curve (M366: GM=3.92cm)
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Fig. B.13: Free Decay and its Estimated Curve (M366: GM=3.38cm)
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Appendix C

Random Decrement and its
Estimated Curve



Fig, C.
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Fig. C.2: Random Decrement and its Estimated Curve (M363: GM=3.10cm)
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Fig. C.3: Random Decrement and its Estimated Curve (M363: GM=2.5lcm)
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Fig. C.4: Random Decrement and its Estimated Curve (M365: GM=4.31cm)
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Fig. C.5: Random Decrement and its Estimated Curve (M365: GM=3.61cm)
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Fig. C.6: Rardom Decrement and its Estimated Curve (M365: GM=3.26cm)
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Fig. C.9: Random Decrement and its Estimated Curve (M366: GM=5.29cm)
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Fig. C.10: Random Decrement and its Estimated Curve (M366: GM=4.91cm)
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Fig. C.11: Random Decrement and its Estimated Curve (M366: GM=4.51cm)
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Fig. C.12: Random Decrement and its Estimated Curve (M366: GM=3.92cm)
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Fig. C.13: Random Decrement and its Estimated Curve (M366: GM=3.38cm)

109



Appendix D

Autocorrelation and its
Estimated Curve
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Fig. D.1: Autocorrelation and its Estimated Curve (M363: GM=3.81cm)
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Fig. D.2: Autocorrelation and its Estimated Curve (M363: GM=3.10cm)
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Fig. D.3: Autocorrelation and its Estimated Curve (M363: GM=2.51cm)
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Fig. D.4: Autocorrelation and its Estimated Curve (M365: GM=4.31cm)
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Fig. D.5: Autocorrelation and its Estimated Curve (M365: GM=3.61cm)
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Fig. D.6: Autocorrelation and its Estimated Curve (M365: GM=3.26cm)
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Fig. D.7: Autocorrelation and its Estimated Curve (M365: GM=2.75cm)
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Fig. D.8: Autocorrelation and its Estimated Curve (M365: GM=2.39cm)
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Fig. D.9: Autocorrelation and its Estimated Curve (M366: GM=5.29cm)
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Fig. D.10: Autocorrelation and its Estimated Curve (M366: GM=4.91cm)
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Fig. D.11: Autocorrelation and its Estimated Curve (M366: GM=4.51cm)
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Fig. D.12: Autocorrelation and its Estimated Curve (M366: GM=3.92cm)
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Appendix E

Loading Conditions of the Real
Ship

118



Table E.2: Ship Loading Condition: No.2

Item Weight | V.C.G. | F.S. MMT.
® | (m (t.m.)
#1 Aft Peak Fuel Oil 12.97 | 4.42 24.53
| #2 Fuel Oil Day Tank 11.74 | 3.64 16.30
#3 Fuel Oil Wing Tank 8.39 1.63 4.39
#4 (P) D.B. Fuel Oil 20.95 0.77 38.69
#4 (S) D.B. Fuel Oil 11.89 | 0.57 22.68
#5 (P) D.B. Water Ball 12.16 0.72 8.55
[#5 (S) D.B. Water Ball 0 - -
#6 Fresh Water 14.03 2.78 6.23
#7 Fore Peak Fresh Water | 6.27 3.61 1.28
Miscell: Tanks 10.45 2.31 -
Provisions 1.59 5.20 -
Crew & Effects 1.5 6.5 -
PFishing Gear 1.5 6.00 -
Empty Fish Boxes 398 | 305 =
Ice in Boxes 43.23 2.21 -
Fish&IceinBozes 40.53 | 2.63 -
Ice Accretion
Deadweigt 201.69 122.65
Tightship 406 | 47 :
Displacement 607.69 | 3.95 122,65
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Table E.1: Ship Loading Condition: No.1

Item Weight | V.C.G. | F.S. MMT.
© | m | @m)
#1 Aft Peak Fuel Oil 1297 | 442 24.53
#2 Fuel Oil Day Tank 11.74 | 3.64 16.30
#3 Fuel Oil Wing Tank 8.39 1.63 4.39
#4 (P) D.B. Fuel Oil 2095 | 0.77 38.69
#4 (S) D.B. Fuel Oil 13.51 0.62 25.66
[#5 (P) D.B. Water Ball_ | 12.16 | 0.72 8.55
#5 (S) D.B. Water Ball 0 - -
#6 Fresh Water 14.86 2.85 7.07
#17 Fore Peak Fresh Water | 6.27 3.61 1.28
fiscell Tanks 1045 | 231 -
Provisions 1.69 5.20 -
Crew & Effects 15 6.5 -
Fishing Gear 1.5 6.00 -
Empty Fish Boxes 4.34 3.02 -
Ice in Boxes 4713 [ 219 -
Fish & Ice in Boxes 3111 [ 2.65 -
Ice Accretion
dweigh 199.07 12647
Lightship 106 | 40 -
Displacement 605.07 [ 3.95 126.47
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Table E.3: Ship Loading Condition: No.3

Item Weight | V.C.G. | F.S. MMT.
t) (m) (t.m.)
#1 Aft Peak Fuel Oil 12.97 | 4.42 24.53
#2 Fuel Oil Day Tank 11.74 | 3.64 16.30
3 Fuel Oil Wing Tank 8.39 1.63 4.39
4 (P) D.B. Fuel Oil 2095 | 0.77 38.69
[ #4 (S) D.B. Fuel Oil 1044 | 0.53 19.88
#5 (P) D.B. Water Ball 12.16 | 0.72 8.55
#5 (S) D.B. Water Ball 0 - -
#6 Fresh Water 13.30 | 2.67 5.50
#7 Fore Peak Fresh Water | 6.27 3.61 1.28
Miscell. Tanks 1045 | 231 -
Provisions 1.51 5.20 -
Crew & Effects 15 6.5 -
Fishing Gear 15 6.00 -
Empty Fish Boxes 3.36 3.71 -
Ice in Boxes 36.50 2.23 %
Fish&IceinBozes 56.79 2.60 -
Ice Accretion
Deadweight 208.33 119.13
Lightship 406 4.74 -
Displacement 614.33 | 3.94 119.13
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