








INFORMATION TO USERS

This manusaipt bas been reproduc;ed from the microfilm.master. UMI

films the ted directly from the original or copy submitted. Tbus., some

thesis and dissertation copies are in typewriter &cc. while o~ may be

from any type ofcomputer printer.

The quality .(this reprodactioD is dependent IlpoD the quality of th e

t:opy submitt ed. Broken or indistinct print, colored or poo r quality

illustrations and phot ograp hs. print bleedthrough. substandard margins,

and impro per alignment can adversely affect reprod uction..

In the unlikely event that the author did not send UMI a complete

manuscript and there are missin g pages., these will be noted. Also, if

unauthorized copyright material had to be removed, a DOte will indicate

the deletion..

Ovenize materiab (e.g., maps, drawmg" cJwu) are reproduced by

sectioning the original. beginning at the upper left-hand comer and

cominuing from left to right in equal sections with smaIloverlaps. Each

original is also pbctcgrapbed in one exposure .and is included in reduced

form at the backof the book,

P hotograp hs included in the original manusaipt have been reprod uced

xerographicaDy in thi s copy. Hi gher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order .

UMI
A Bell a.&wdl 1DfDrmatiou CouIpaPy

3OONortb Z«bRo.i,. AmaAtbJr" MI "l~l146USA

3l3n61.....700 8OOIS21~



NUMERICAL SIMULATION OF

VORTEX SHEDDING

IN OSCILLATORY FLOWS

BY

© VIK AS KRISHNA, B .TECH.

A thesis submitted. to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Engineering

Faculty of Engineering &; Applied Science

Memorial University of Newfoundland

June , 1995

St. Jobn's Newfoundland Canada



1+1 NalionaJ""""af Canada
Bibliothiquenationale
du Canada

Acquisitionsand Acquisitions et
Bibliographicservices services btbliographiques

395~Str.. 385 . ..... W~
OUawaON 1C1A 0N4 oa-ON ICt AlI'M.,..... .,.....

The author bas granted a non
exclusivelicence allowing the
Natiooal Library of Canada to
reproduce. loan,distributeor sell
copies of thisthesis in microform,
paperorelectronic formats.

The author retains ownership of the
copyright in this thesis . Nei ther the
thesis norsubstantial extracts fromit
may beprinted or otherwise
reproduced withoutthe author's
permission.

L' auteura ecccrde une licencenon
exclusive permcttant afa
Bibliotheque oatiooale du Canada de
reprod uire, pret er, distnbuer au
vendredes copies de cette these SOllS

la forme de microfiche/film. de
reproduction surpapier au surformat
electrnnique.

L'a uteur conserve La propriete du
droit d' auteur qui protege cette these .
Ni la these ni des extraits substanti els
de celle-ci ne doiventetreimprimes
au autrement reproduitssans son
autorisation.

0-612-25859-9

Canada



Abstract

\ "iscous forces tha t act on a body moving in a fluid may form. a significant part

of the total force acting on the bod y. Th e use of the linear potential-ftow theory

doe; not take into conside ra tion the viscous effec ts that cause flow separation .

skin-friction drag , an d lift . Vario us methods have bee n de veloped and used to

calculate the viscous forces numerically since Rosenhead's initial calculations . A

review of the earlier work done in the area of vortex shedding and calculation of

viscous Bows is pre sented in cha pter 1. Som e vortex methods . that are commonly

used, are described. One of these, the Discrete Vort ex Met hod, is described in

det ail in chapter 2. This is demonstrated for a bluff body with sharp corners using

the features of the Clement's model . However . this method does not simulate the

effects of vo rti city d iffusion in the flow. Moreover, the body mus t also have sharp

edges. which are taken to be the separation points .

Another method. that does net impose such limitations. is the Vertex -In

Cell('\lC) '-(ethod . This is dev'eloped and lirst applied to st udy flows past a circular

cylinder in order to validate the method with existi ng results in chapter 3. Confor

mal transformations coup led with this method ena ble us to st udy flows past bodies

of other cross-sect ional shapes, Various mappings are derived. and developed to

simulate flows past a variety of shapes. A fin was added on to th e body contour

to simulate the effect of a skeg in the case of boat -eect ious, The force coefficients,

CD and CM • were cal culated at different Keulegan-Carpenter numbe rs and verified

for sections like a circle. a flat pla te. and a square , in an oscillatory flow, with the



results obtai ned by other workers . They were also calcula ted for a finned-circle. a

sectio n of a boa t th at is rounded and one that has haed chines. The theory and

the method . the necessary modifications to the \ lC method . and tbe simulat ion

results are presented in chapter -t• .-\ conclus ion of the work done in the differ ent

cha pters along with som e comments are given in chap ter 5.
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Chapter 1

Introduction

For the smooth and sound operation of marine v-essels. such as shi ps and barges . the

wave-induced roll mo tions must be accur ately predicted. Cal culations of the wave

exciting forces and the motions of vessels in waves can be made using the linear

potential-flow theory . This, however, neglects viscous effec ts which cause flow

separation and skin-friction drag. Also . for the linear theory to app ly. the motions

of the vessel and the wave amp litu des are assumed to be sm all in magnitude.

Furthermore. the mo tions calculated using the linear theory are qui te accurate for

the degrees of freedom that are heavily damped but not for t hose that are lightly

damped or for those where the damping is dominated by ";SCOU5 effects and in

particular for those with lar ge amplitudes.

The main reason for this inaccuracy was the unavailability of good methods for

determining the damping forces due to the viscous effects on the submerged body .

The relative motion between me focal fluid and the submerged vessel boundary

causes flows which occur due to the unsteady boundary laye r. its localized sepa

rations, and the associated vortex shedding especially near large changes in the

curvature of the hull. Brown et al. [1] presented experimental evidence to show



that a maj or part of the viscous force acting on a barge with bluff right angle keel

edges was due to vort ex shedding. Work on this phenomenon has been carried out

by many resear chers using discrete-vortex-methods.

Vort ex methods have been very widely used for simulating flows past bodies in

order to de termine the forces acting on them. Incompressible flows at bigh t> 500)

Reynolds number are characterized by regions of concentrated vortici ty. This vor

ticity in the flow is transported through the How using the local velocity which

in tuen is calculated from the vort icity field. Poisson 's equa tion for the str eam

funct ion is solved to compute the local velocities to move the vort icity in the fluid.

It becomes quite convenient to represent the flow in terms of regions of vorti c

ity. Vort ex methods are . the refore . emp loyed to simulate dews by discretising the

flow into regions of vorti city and then tracking this disc retisation in a Lagran gian

reference frame .

1. 1 A R eview

Rosenhead [2J was the first one to use a dis tribution of discre te vort ices to represent

a v'ortex sheet. His results were welcomed by other researchers and the method

has been used since then till today. The most importan t part of Rosenhead's work

was tbe numerical treatment of tbe Helmho lt z instability phenomenon for longer

durations. Helmholtz instability is the motion of adjacent po rt ions of fluid of the

same density with different speeds. The vortex sheet was replaced by a dis tribut ion

of point vortices along its trace whose paths were determined by a numerical step

by-step method. At any instant of time . the line joining the positions of these

vortices was assumed to be the approximate shape of the sheet at that t ime.



Rosenhead showed that th e effect of the instability upo n a surface of some form

was to produce concent rati ons of vo rt ici ty at equal intervals along the surface

and also that the surface of discontinuity tends to roll up around these points

of concentration together with an accompan ying increase in the amp litude of the

displacement. He also attributed. the approximate error. that crep t in at each time

step . to the truncation of the Taylo r series for the displacement of th e elemental

vortices during each step . The method was not applica ble to simulations involving

longer durations as the errors int roduced at each time step could get large enough

to cause numerical difficulties.

The dow patterns tha t Rcsenbe ad presented for Helm hol tz instability were

very realist ic. As a result of this . his meth od of calc ulation was never really

doubted. After 1959. cri ticism of his work was made by Birkhoff and Fisher [31,

Hama and Burke [4]. and others . It was pointed out that discrete vortices moving

under th eir own influence in a two dimensional Bow will always tend to a random

distri buti on. Birkhoff and Fisher asserted tha t any decreases in distances between

pairs of vortices would result in an increase for other pairs. They based this

assertion on the theor em th a t the energy of a system of vortex filaments in a two

dimensional Bow is constan t. Since. for a syst em of vortices of equal strength.

th e energy is given by the produ ct of all the initial dist ances . no two vortex lines

can coalesce with out an infini te increase in the separ ation of some other pair .

Thus, according to them , th e vorti city in a uniform arr ay of poin t vort ices can not

become concentrated . Th ey recalcula ted. Rosenhead '5 resul ts and found that the

motion of the elemental vort ices became very complica ted. in regions where some

concentra t ion took place, makin g it impossib le to produce smoo th vortex sheets .

Abernathy and Kro nauer [.;J exp lained the mai n feat ures of the vortex street



formation mechanism from two init ially parallel unifo rm vortex sheets of opposi te

sign. They found tha t no argume nt based solely on a linearized theory of dis tur-

baaces can generate the asymmetry commonly associated with the interac tion of

the two sheets . They also used a numerical discretisation of the ve rtex sheets as

Rosenhead did . Their non-linear method. worked very well for a short time afte r the

start of the flow but randomness appeared to creep into the calculations of the co-

ordina tes of the point vortices which eventuall y became 50 pronounced that it was

said th at . "there was no longer sufficient evidence to suggest the existenc e of ve rt ex

sheets " . T hey conclu ded that clouds of vort icity have -e net strength diminished

by the vort icity swept into the cloud by the opp osi te vortex row" . Michalke [6J

generalized the work of Rosenbead and of Abern athy and Kronauer by including

tbe effect of the thickn ess of a shear layer. He represen ted the constant surface

distribut ion of vorticity representing the init ial ly linear velocity profile of the shear

layer by a discrete numb er of surfaces of disco ntinu ity . simulat ing each by a finite

number of elemental vorti ces.

Further work was done to study vort ex shed ding from two-dimens ional bodies .

).(odeling a How around a sharp edge requires tha t the vorticity is shed from it

in order to prevent infini te veloci ty at the edge. The shed vorti ces form a spiral

which covers more and more area as vorticity is shed.. Accordi ng to tbe law of

conserva tion of energy. this vort icity can not remain concentrat ed into a point and

a core structure is form ed . Ant on [7] was the first one to model vortex shedding

from a sharp edge usin g a semi-infini te pla te in 1939. He found tha t the tot al

vort icity shed is prop ortional to a one third power of time and tbat the distance

from the edge to a po int on the vortex shee t is proportional to the two tbirds

power of time . To de termine the shape and the vort icity distribution of the sheet .



he divided the vortex sheet into an inner core and an outer loop linking it to the

outer edge . Th e inner core was approximated by a spiral of the Kaden [81 type.

Wedemeyer [9] recalcul ated Anton 's results using a different method . Howev er.

neith er Anton 's nor wedemeyer 's soluti on is exact beca use of the over-simp lified

representation of the core region. But Wedemeyer's result.s are more complete.

They provide useful information on the growth and dis t ribution of vortici ty and

its total circulation. Anto n's so lution for the starting flow near a semi-infinite plate

was then generalized by Blendermaan [10). He incorpora ted.convex comers of any

ang le moving with velocity equal to the time raised to any power in a fluid at

rest . T hese results were thought of as useful starting solutions in s tudying vortex

shedding from more complicated boundaries in more general mot ions.

Othe r works in this area includ e those of Giesing (11), Clements [12J, and

Gerrard [131.Giesing used non-linear representations for s tudying two-dimensional

aerofoils in unsteady motion . Of importance is his discussion on the kinem atics

of vert ex shedding. He claimed that the Kut ta condi t ion could be approximated

by having a zero veloci ty difference at the trailing edges that are non-cusped . He

showed that the erro r in the surfac e velocity distribution occurr ed only in rhe

immediate neighbour hood of the edge .

Clem ents modeled the starting flow in the near wake of a bluff-based. body. He

brought forward some new fea tures in the treatment of shedding condi t ions when

only discrete elemental vortices are used . As the velocity at th e shedd ing point

could oth erwise be infinite, Clements let the shed vort ices start t raveling with

a velocity that is calculated a sm all distance away from the point of shedding.

Thi s avoided the need of a Kutta conditio n while mai ntaining a good amount of

accuracy. He obtained some inte restin g results for the rate of shedding of ..-ort icity



into the shear layer from two separation points. but these also are sub ject to the

kind of criticism made of the Rosenhead model.

In 1967. Gerra rd numerically calculated the magnitude and frequency of the

lift force on a circular cylinder. He introd uced a pair of elemental vortices into the

flow some distance downstream at each time step to avoid the difficult problem

of the determ ina tion of the separation points of the flow around a body without

sharp edges . He used the shedding ra te ob tained expe rimentally to determine the

stre ngth of the vortices that are introduced at every time step . Even thougb the

vortex positions looked qui te irregu lar. the values of the lift force and the scale

of formation regions were quite close to the experimental values for a range of

Reynolds numbers.

Of interest to us is als o th e vortex separation that occurs from slender wings

and bodies . Boundary layer separation takes place at the sides of aircraft wings

and other slender bodies even at small angles of incide nce. Coherent vortex sheets

are formed and the st udy of these is of importance with resp ect to the non-linear

lift, the roll-up of shed. vorticity, etc., in the field of aero na utics; with respect to

th e non- linear force and moment in ship manoeuvrability, roll damping on bilge

keels and fins, erc.. in th e area of ship hydrodynamics; and ot her areas in offshore

engineering.

Roy and Legendr e were the ones to make th e maj or contri butions in under-

standing the phenomeno n of leadin g edge separation from slender wings in the early

1950's. However, the most ~u'.. ce9Sful and purely analytical mod el was developed

by Brown and Michae l [14J in 1954. Their results for the vortex positio ns, pressure

dist rib utio n, etc. agreed only quali tat ively with those obtained from experiments.

However, their method has been used in many at temp ts to incorpora te the effects



of non-conical planfonns . thickness . and the unsteady motion for the calculation

of stability deri-..arives. Other ma jor num erical methods incl ude Smith 's itera t ion

techn ique [151and the multi-vortex model of Sack. Lundberg and Hanso n [161. Any

models developed afte r these involved comparison with these two techniques. both

of which were in moderate to good agree ment with expe riments. These techniques

were also used by researchers to s tu dy vortex shedding from slender bodies alone

and from a combina tion of a wing and a body. Smith 's me thod is not easy to gen

eral ize for uou-conical geometries . whereas Sack 's method is. Sacks . lundberg and

Hanson used a Roeeuhead discretisation in their mode l and obtained the kind of

irregu larity of the vortex sheets that is expected in applicat ions of the Rcsenh ead

method.

Ships can be considered as slender bod ies . In a norm al st raight ahead course ,

boundary layer separation . which leads to th e format ion of coherent shear layers .

occurs for most null shapes . The ve rtex shedding tha t occurs is respo nsible for

the non-linear force and mome nt met in ship manoeu nability. Stu dying vort ex

shedding. using sect ions of shi ps. helps in invest iga ting these effects and impmving

th e geometr y of the null to minimize the adverse and unwan ted forces . Hennig [1; 1

used a single pair of disc rete vort ices to represent the non-linear side forces on

slender ships with Lewis form cross-sections. Fuwa [18J refined Hennig's work

by using a mult i-vortex model for the bilge vort ex separ at ion on a ship which is

being obliquely towed . Many writers have described the vortices produced at the

bilges near the bowsof ships , Ta tinclaux [19] gave an ap proxima te semi-emp irical

treatm ent of the corresponding inc rement in ship resis tance or vortex drag . In

1971, Soh and Fink (20J modeled and studied vertex separ ation at the bilge keels

of shi ps using potential flow. They presented. a discrete vort ex approximation for



the sheets using the Rosenhead method. The}' found that the use of constant

t ime st eps caused an earl y onset of breakdown of the calculations with crossing

ver tex sheets . Improvements were mad e by using varying time steps to ensure

that the shed ding point and the las t two elemental vort ices to be shed. form ed. an

equi -spaced set of points , A more thorough analysis led to the conclus ion tbat the

error is leas t when the elemental vertices are equi-spaced. for the ent ire sheet at

every instant for which the motion is calculated.

1.2 Common Vortex M ethods

1.2.1 The Point Vort ex Method

Hosenhead was the first one to at tem pt flow simulati ons using a vortex method in

1931. He approximated the motion of a two-dimensional vort ex shee t by follow-

iog the moveme nt of a set of poin t vortices in time. The vortici ty field. ;J. was

represented by

v
~(f, <) ~ ~ r ,J (i' - ~ ( !)) n.n

where a is t he Dirac delta functio n in two dim ensions . r i (t ) is the location of the ,704

vortex at an ins tant of time t. N is the total number of point vortices in the dow.

and r i , is the circul ation of the i tA vortex. For a region R. the total circula tion is

given by

(1.2)

Here n is the normal to an elemental ar ea. ds, of regicn R. and wis wk. To satisfy

the inviscid vorti city transport equation.



8wat + (a.V )w =o.

or, in terms of the ma terial derivative.

Vw
Vt =0.

(1.3)

11.-1)

the velocity of a vort ex mus t be given by the v'alue of tbe veloci ty field at the

position of a vortex. Therefore.

~(t) =it(ri .t) (1.5)

The velocity field. iI(i'. t ) is in turn determined from the solut ion of th e Poisson

equa tion

(1.6)

The velocity field mus t satisfy the boundary condition of zero flow across the

surface of the body . Therefore.

(1., )

IT the two-dimensional flow field has no int erior boundaries and the fluid is a t

res t at infinity, the solution to equation 1.6 can be obtained from the Biot-Savart

integral

T ) - _1.. { (i-~) x L(~.t)d" (1.8 )
UT,t - 2trlc. If - ,:f r

where L is the lengt h of the two dimensional vor tex sheet . By substituting equa

tion 1.1 in this formula , we can obtain ri as the solution of the following system of

non -linear ordinary differential equ ations:

5 = _..!.. t (( ri - rj ) x kr j

dt 211" , =-1# . Iri Ti l:.!
(1.9)



Rosenhead did all the calculations by hand. \Vith the advent of computers,

more accurate resul ts were at tempted as more point vertices could be used . How

ever, using a larger numbe r of point vortices of lower strengths did not yield a

convergent solution . In many sim ulations. the motions of the vortices became

quite chaotic. Therefore. although the point vortex method solves the Euler equa

tions , a system of point vortices does not represent a vorticity field very well.

Bet ter results with this method were obtained using fewer vortices together wrich

a diffusiv e time integrat ion scheme.

1.2.2 The Vortex Blob Method

One of th e other methods for simulating two-dimensional flows is the vortex blob

method. In this method. vortices with finite cores , or vortex blobs, are used as the

computational elements. The equation for the representat ion of the vorticity field

now becomes

(1.10)

where ",!; is t he vort icity distribution with in the vortex located at rj with the

normalization

Ie r,(i)di' = 1

where C is the core boundary. We assume that

(1.11)

(1.12)

where f is a distri but ion function whose shape is commo n to all vortex eleme nts

and at is referred to as the core of the vortex element i. For example, if the vort icity
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dis tribution is given by the Gaussian distribution such that

11.13)

then the distribution function f (fJ is giv'en by

This function sat isfies the viscous part of the vortici ty transport equa tion

~~ = lIV 2....

The velocity induced by the vorticity field . equa tion 1.10. is given by

11.14)

(1.15)

where 9 is given by

g(y ) = 2, j,'j(z )zdz 11.1, )

The use of distributed vortex cores or vortex blobs yields more realis tic vort icity

distributions and bounded ind uced velocities for all the vor tex elements. As per

equation 1.16. the veloci ty of th e vort ex blobs is given by

~ = iI(ri , t ) = _...!- i: (ri - rj ) x :rjg~r; -rj t / qj ) (1.18)
dt 271' j = l, ;#i Ir ; - r il

which is actually the velocity field at the center of the blob .

In contrast to the point vortex method. an error in the spa tial accuracy arises

in the vort ex blob method because the computational elements are assumed to

retain thei r shapes thro ughout the simu lation, whereas a real fluid with vortic ity

may suffer a considerable amount of strain. Hald and Del Prete (211studied the
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convergence of this method to the solut ion of the Eule r equation and showed tha t

convergence occ urred only for a limited time interval with an error that grew

exponential ly in t ime.

The use of the vort icity diffusion term . 1/'\12:..,•• in the vorticity trans port equa

t ion has two im port an t consequences. They ace. first ly the vorticity creat ion at the

bou ndary and secon dly the diffusion of the vort icity in the flow field. The diffusion

of vorticity can be simulated either by allowing the vortex cores to increase in size

or. as proposed by Chorin [22]. addi ng a random walk to the position of the vortic es

at each time step. However . Greengra d {24]pointed out that in the core spreading

techni que. th e vort ici ty is correctly diffused but incorrectly convected . Therefore .

this technique is inac cur ate and com-erges to a system of equations different from

the Navier -Stckes equations. Chorin's random vortex method . on the other hand .

is a correct approximation . The random walk step length used here is propor tional

to (v~t) 1/2. the idea being that the effects of viscos ity be reproduced correctly in

a sta tis t ical sense. It was pointed out that in the case of flows pas t bluff bodies.

where the boundary-layer separation is an im portan t phys ical phenomenon. th e

crea tion of vortici ty a t the body cont our and its t rans port a t ion along the body

surface must be modeled correctly. Many workers introduce d circulation at the

separation points that were det ermined using boundary-layer calculations. exper

imen tal information. etc . Th ey det ermined the rat e of cr eation of vort icity from

the kinematic condition

(1.19)

where U:t: are the upper and lower speeds on the sides of the separating shear layer

and (IiI' /dt ) is the rate of change of circulation in the shear layer .
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Another approach to the creation of vorticity is to int rod uce vort ices at the

bound ary to sat isfy the no-slip condit ion at the surface. Chorin employed this

approach and presented a schem e that converged to the solu tion of the Navier

Stokes equat ions . The three steps in his scheme were the creation of vert ices at

the boundary to maintain the no-slip condit ion a t the surface. move all the vort ices

with local veloci ties to take-car e of the inviscid part of the equations of motion.

and finally the diffus ion of the vort icity simu late d by a chan ge in the core size. a ,

or adding a ran dom walk to the position of the vort ices .

In both the point vorte x and the vortex blob method. the computational el

ements are moved with velocities that are calculated using a Green 's funct ion

solut ion to the Poisson equation . If :.Vsuch elements are used to simulate the flow,

then the number of operat ions required. to compute all th e velocit ies is of the order

of "v"'l. This is quite costly in terms of the compu ta tional time that a computer

spends simulat ing a flow. However. there are ways round this problem and the

computational time can be brought down by combining a number of elements ill

a given region into a representative computational element. This gives rise to a

different class of methods for simulating flows. called the Vert ex-In-Cell methods.

Another way, in which the number of computational operations can be reduced. is

tha t emp loyed by Yeung et al. [25]. They used. the fast adaptive mult ipole algo

rithm for part icle simulations of Carrier et al . [26) which redu ces the computa tional

effort to the order of N .

1.2 .3 The Vortex-In-Cell Method

In this method, a mixed Eulerian-Lagrangian approach is used. The Lagrangian

tre atment of the vorticity is retained. and the Poisson equ at ion for the velocity
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field is solved in a fixed Eulerian mesh. .Ascompared to the previous rwo methods

where the opera tio n coun t was of the order of .\ "2. where X was the number of

comoura tional elements used . the opera tion count here is of the order of .\ Il ogJ!

~..here ),1 is the to tal number of grid points in the mesh . An addit ional number of

ste ps of the oeder of N tha t are required are for the genera tion of the mesh ..-alues

for the vorticity from t he Lagrangian representa tion and the interpola tion of the

v·elocit ies from the mesh back into the Lagran gian points . The number of mesh

points . .\J , depends on the prob lem to be solved.

Every element. i.e. every vortex. lies in a particular cell of the mesh. Its

circulat ion is dist rib uted onto each of the four corners( nodes) of that cell according

to the area weigh ting scheme

Figur e 1.1: Area Weighting Scheme.
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(1.20)

where r ~<>rt~Z' is the circulation of the vortex and .-iT = Et=1.-LA:. .-1" being the area

of a region as shown in figure 1.1. The Poisson equation for the stream funct ion .

(1.21)

is then solved. Once the stream function is known at all of the mesh points , then

the v-elocit ies at th e mesh points can be computed using the central differenc e

method for example.

Wi.j+ l - Wij _ t
Ui .j = --2-h--

I.I;J = _ li"+ ( j ~ W;_ I,;

(1.22)

11.23 )

where h is the mesh spacing. Once again, the area weight ing scheme is employed

to determine the veloci ty of a vortex that is contained in a cell of the mesh as

given by

(1.24)

As can be seen from these formulae , the vorticity distribution onto the mesh and

the interpolation of the nodal velocities requires a fixed num ber of operations per

vortex giving an operation count of the order of N per time step. Christiansen {27}

and Baker [28J used the \fIC method and reported some interesting results . Chris

tiansen, for examp le, showed. that the vortices that have the same circulation pre-
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cess about each other. With ti me . they eithe r coalesce or th ey do not depend ing

on their initial separation.

The VIC method also suffers from numerical errors as do ot her methods. In

addi tion to the errors that com e up in the ..rortex blo b me thod. the dist ribu tio n

of the vort icity onto the mes h nod es and th e interpo lat ion of th e nodal velocities

to obtain vortex ..-elocities have erro rs associated. with them. Erro rs also creep in

due to the differencin g procedures used to solve the Poisson equat ion to dete rmine

the mesh veloci ties. However . resul ts of num erical expe riments in two dim ensions

have indica ted that th ese err ors do not seriousl y affect; the lar ge-scale feat ures.

Hackney et aI. [29] proposed an improvement to the \lC method . They suggested

using nine surrounding nodes to dis trib ute the vort icity onto and using th eir nine

nodal val ues of th e veloc ity to interpo late for the calculation of the velocity of a

vortex. instead of usin g the nearest surro unding four nodes only . They st a te that

the mesh erro rs are reduced by two orders of magnitude by this technique.

This method is further exp lain ed in full detail in cha pter 3. It is validated using

existing results for t he flow pas t a circular cylinder. Numerical experiments for

bodi es o ther th an a circular cylinde r were carri ed out using this method coupled

with conform al transformations. T he results are presented in chapt er 4.

1. 3 Summary

For incompress ible Bows , know ledg e of the vorticity dis tribution allows us to de

termine the veloci ty field . Vort icity moves with t he local velocity in the inviscid

motio n of a fiuid . Vort ex methods present a numerical algo rithm for flow simu

la tion based. on these facts. They offer a numb er of advantages over the Eule rian
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schemes . But every advantage has a draw back associ ated with it . The user of

a particular meth od has to make a. judi cious choice of a method explo iting the

ad vantages and employing means to circumve nt the disadvantages of a particular

method. Some of these ar e worth mentioning once again .

Vortex met hods require only a sm all numbe r of sto rage locations because ro m-

putational elemen ts are required only in the rotational parts of th e Bow. Th e

asso cia ted disadvantage is that the number of opera tions per time step is pro

po rt ional to the square of the number of vorte x elements or coordinates in th e

discretisation. This leads to a rapid increase in the computation time as the num 

ber of computational elements is incre ased. Th e boundary condi tion at infini ty

can be satisfied very accurately, whereas the no-slip condi tion at the body su r-

face requires some care . In the case of tur bulent flows and laminar flows at high

Reynolds numbers. fine-scal e structures may develop in an intermittent man ner

throughout the flow field . Vortex methods allow such regions to develop by a local

concent ra tion of computa tional elements. This however leads to the requirement

of remeshing which. in turn. gives rise to ot her nume rical difficul ties and a pproxi

mations. However, the ad van tages of the vortex m-~thods have made them po pular

for simula ting flews. :\Iany workers have proposed improvements to minimize th eir

disadvantages and they ar e still being used and worked 0 '0.
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Chapter 2

Point Vortex Method(Clements)

In this study, a model for the two dimens ional inviscid Bow near the wake of a

bluff body is const ructed. Thi s model is used in stud ies of vortex shedding from

bodies with well defined separation points (sbarp edges) , such as keels. wings. and

fins. The appl ica ti ons of the method include maacevring of crafts . roU-d.amping of

ships . etc. Discr ete point vortic es are used for the representation of the conti nuo us

vortex shee ts . .-\S the mode l is based on inviscid Bow. it does not take care of th e

possible diffusion of vorticity in the flow. Th erefore . it can not be used to study

flows th at are signific an tly affected by viscous di ffusion mech anisms(for exam ple

flows at low Reyn olds numbers ). The bluff body used here has sharp corners. and

thus . fixed separat ion points. Such a shape is chosen to obvia te the need (or any

assumptions of the position of the separation poin ts .

2.1 The Model

The bluff body is a plane-based two dimens ional bod y with right angles between

the sides and the rear face. The flow is assumed to separate at the comers of
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the body an d remain attached. on the side faces. The shear layers shed. from th e

come rs. i.e.. th e separat ion points. are approxi ma ted. by arrays of line vortices.

Th e velocity of a par ticu lar vortex in the fiow is calc ulated. by addi ng the two

dimensional irrotational potential flow arou nd the body and th e velocity ind uced.

at the position of tha t vo rt ex by all th e other vortices presen t in th e flow. To

obtai n t hese velocities. a Schwartz -Christoffel t ransform a tion is used to proj ec t

the exte rior region of t he body. which is ass umed. to extend to infinity ups tream.

into an upper half plane wi th the bound ary of the body mapped along the real

axis. This transformation . given by.

: = - (2',/ <I[" n- ' (.I) + .1(1 - ,1')"'1 (2.1)

: = (2',/<)( iln[i.l + (l - ,1' )'''1- ,1(1 - ,1')"'1 (2.2)

transforms the rear corners of the body : = ±is into the points .A=1=1 as shown

in figures 2.1 and 2.2. The irro tational flow used has two components . Th ey

are shown in figure 2.3. The first compo nen t is a flow ~;th velocity (lto.O) far

upstream and downstream and th e second has a velocity (0. - pUo) at : = 0 an d

1r1J -+ 0 as Iii -+ 00 . This is a circu latory flow in the region of the base and is used

to create th e init ial asymmetric dis turbance when ebe flow is started from res t .

Hence p was taken to be O.lsin(¥) for t < 3 and zero for t ~ 3. Th e flow starts

impulsively from rest and init ially develops symmetrically. The introduc tio n of

a small asymme tric disturbance results in an asymmetric interac tion of the shear

layers which amplifies into steady vortex -shedding mot ion .
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2.2 D erivations

2.2.1 Complex Pot ential

Let the comp lex potential d ue to the first flow in the transformed plane be of the

fermi-

12.3)

From the relationship

(2.4)

and differentia ting equation 2.3 with respect to A. we get

(2.5)

and equation 2.1 gives

(2.6)

Th erefore.

(2.7)

To find the cons tant A ll we make use of the fact th at at z = 00 the velocity is CIa

and parallel to the x-axis . Now, as >. -+ 00, UI -+ [la. and VI -+ O. The above

equation, thus. gives

(2.8)
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and finally substituting t he value of Al obt ained back int o equation 2.3 gives

12.9)

Now. fee the complex potential due to the second flow in the t ran sformed plane

be of the form e-

(2.10)

So the conjugate of the veloci ty due to ;"'2 can be wri tten as

At the origin. U2 = 0 and va = -Uop. Th erefore, by substituting this condit ion in

equation 2,11. we get A 2 as

12.12)

and so

(2.13)

The pot ential due to a point vortex of strength kj at position Aj is given by

(2.14)

To satisfy the condition of zero flow across the body, we introduce image point

vortices relative to the q-a.xis . These image vort ices in { < 0 have st rengths equal

in magnitude but opposite in sign. to those in { > O. Th e potential due to these is

given by
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;..Ij('\) = it; log('\ - Xj) (2.15)

where Xj is the conj ugate of '\i ' Summing up th e potentials du e to the two flows

and that due to point vortices. the total complex po tential at a position ,\ in the

transformed plane is given by

~(.\) = ~, ( .\ ) +~,(.\) + I> ,(A)+ L: ~; ( .\ ) (2.16), ,
i.e.,

2.2.2 Vortex Velocities

Since the comp lex potential . w = (j) + iw. where ¢ is the veloci ty poten t ial and ""

is the stream funct ion. is a conform al invarian t and th e flow field due to a vortex

trans forms into that due to a vortex of equal st rength at th e transform of the

vortex position, the velocity at any point in the physical plane can be obt ained

by transforming the positions of all the vortices into the ,\ -plan e. de termining the

velocity at th e transform of the req uir ed point and then returning this velocity to

the physical plane using the rela t ionship

viz) - ivlz) =Tz = ~~.\ ) £ (2.18)

Differenti ating equation 2.17 with respect to ,\ and subst ituting in equation 2.18.

we get the conjugate of the velocity at a location Z; as
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12.19)

where>'; is the transformed pos it ion of the loca tion =,.

Routh's law is then applied in the case of a po int that is also a vortex pos it ion .

Since the complex potent ial is transformel invariant. we have

ik ik
..;~J: ) - 2;/og(: -:tl =;.;.\,(..\) - ~log(>. - Ad (2.20)

where;.;"J. and ....,\, are the pot ent ials a t =1 and .\ 1 d ue to al l ca uses excep t the

vo rtex of str ength k at = 1' Therefore we can write

:..1%1(: ) = ......\I( ).) - ~l09(~ =~11 1

Expandi ng). == I e: ) in a Taylor series about ':1 .

12.21}

A- A, = (, - =,)1'( , ) + ~ ( , - =,)'!" (=,)+0(, - ' ,J' (2.23)

Subst itut ing thi s in to equafi ou 2.21. we get
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and

~.. = dw."~ _ ~ [\1 0

( ' " + 0( , - 'oJ] (2.25)
dz dJ.. dz 2:r f'{:d +0(= - =d

Then as ;;...... =1 and .A -+ .x"

12.26)

This gives the expression for the conjugate velocity at a vort ex position =1 in

the physical plane with a modi fication due to Routh's correction. Csing (dlL' l d>")

obt ained from equation 2.1i. this can be written for a vertex posi tion:, in general

~I ..

From equation 2.1. we have

Therefore.

and so

r (z ) izA
2/,(z ) = 8, (1 _ A' )3/2
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Ncn-dimensionalising with respect to s and era such that

kj = [.~~s: :;' = ;: u' =~:I:' =t;:;.!= s~o

we get

~Idz' ". =u~-it..·:
1 [ ., . f<', ,, ~ 1

- (l->'~)l r:! I • -Ip - 16(1- An + T 8 Ai -Xi

- L ~-.-1-1 (2.32)
i"Ft 8 >..; - A)

2. 2 .3 Vortex St ren gths

As can be seen from equation 2.32, z = ±is . i.e. A = =fl , ar e singulari ties of the

t rans form ation which cause infinite velocity a t these points. Therefore . in-order

to calc ula te the velocity of a new ly crea ted. vortex . the velocity is calcul ated. at

th e point :;' = ± (l + eli and has a strength Ii:' equal to E lU~ 26t, where l/; is the

velocity at the point c' = ±(1+e )i ,6t is th e time step and the sum m atio n is carried.

over all the time steps since the last vort ex was introd uced . The parameter, e. is

a very small number used to app roximate the boundary layer thickness. However

the vortices are still int rod uced at ::! = ±i. the actual sep aration points. This is

because if the fiow were a real viscous one. the velocity at the separ a tion points

would be zero to satisfy the no-slip condition and the veloci ty with which the new ly

crea ted vortex leaves the separation point would be the velocity U; a t the outer

edge of the boundary laye r. The vorte x st rengths can be easily deri ved. with the

help of figur e 2.4 .

T he rate of change of circ ulation at point B is given by
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F' - - - - - E(O.1 + ' )

dy

G ~x

- -""':;'- --1 qO.-I)

r - - - - - H(O.-I-')

Figure 2.4: Derivation or vortex strength

(2.33)

where C is the contour BE FG . Applying Green's theorem and taking lJt:/8r to

be very small in the boundary layer. we get

(2.34)

(2.35)

(2.36)

(2.37)

If the vortices are shed at intervals or ot. then the:strength of a nascent vortex

that comes off point 8 is
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(2.38)

Similarly. th e s t rengt h of a vert ex comin g off' po in t C is given by

C2.39)

2.2 .4 Vort ex Positions

The entire simulation is carried out in the transformed plane. The non-dimensional

..-elocit ies in this plane are found using the following chain-rule

C2.<0)

Once the veloci t ies are found a t all the vortex pos it ions . the vortices are mov-ed

according to the relationships

(d~' ),'Ct + 6' ) ="(')+ R. df (' )6t

(d~' )« (' + 6t ) = ( Ct) +lm df (t )6.

(2.<1)

(2.42)

During the time developmen t of the system, some vortices were found to ap

proach too close to tbe rear face of the body and this caused them to have very high

velocities along the body as a result of the closeness to the single image vortices in

the lower half A-plac e. To avoid this. abs orptio n of tbe vortices that ap proached

closer tban 0.058 to t he rear face was carried out by removing those vortices from

the calculations. Ot her features of the model that wrere usedby Clements [?] were

not found to be necessary to be incorporated d ue to the much faster computers
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available today . These feat ures include clustering of the vortices into an equivalent

single vortex of strength equal to th e sum of the individual vortex st rengths and

positron as the posi tion of th e center of vort icity of the clus ter and also the shed-

ding of the vort ices at integral multiples of time steps ins tead of shedding vort ices

at every time step . A time ste p of 6t =0.2 was used for al l calcul atio ns.

2.3 Sample Calculations

A computer programua the C programming langu age) was wri t ten to simulate

ve rtex shedding from the bluff bod y described ear lier. Shown in figures 2.5 and 2.6

are the positions of the vortic es at times t = 5 and t = 10. .Alsoshown is the plot of

the rate of chan ge of circulat ion at the corners of the base of th e body in figure 2.7.

r.s

l~ :"",,,, : : ...
0..3 * ...

st» 0 ... : ,. ..

~:: e-CJ) -
-1.5 I

from upp~ corn l!t' ,.
ttomloWl!t' comer G

-2L_---L__'--_--'-_------'__---'-_----l
-r

Figure 2.5: Posit ion of the vortices at t =5.
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Figu re 2.6: Position of the vortices at t = 10.
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Figur e 2.7: Ra te of change of circula tion at the corners.
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Chapter 3

The Vortex-In-Cell Method

3.1 Introduction

The met hod described in this cha pte r is the Vortex- In-Ce lltvlC) method de veloped

by Christi~sen [27]. This method has. since its int roduction by Christiansen. been

continuously imp roved. to make it more accurate and eco nom ical with respect to

computer t ime. In fac t , this method itself is an im proved version of the Random

Vortex 11ethod( RV)"I) of Charin [221. One of the ad vantages that the \rl C method

has over the Rv:'l met hod is tha t the velocity field close to the body is be t ter

represented . This is because a mesh , that is coincide n t wi th t he surface of the body.

is used which enab les the surface boundary condi t ions to be satisfied more precisely.

The other advan t age is that the comput ation time is reduced to O{Jllo gM + .:V)

from ;.y'l per time ste p, where l it! is the number of grid points and N is the number of

compu tatio nal elements. Also, to simula te the ll.ow more accurately, a large numb er

of point vorti ces is requir ed. Thi s can be efficiently handled by the vortex-in-ce ll

method . To furthe r redu ce th e computational time, an absorp tion procedure is

used. In this procedure, the vortices that cross the body contour due to the random
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walk are removed from the cal culations. New particles . fewer in number than those

entering th e body. are in troduced into the flow. T hey have the circulation requi red

to compensate for that lost due to the removal of the vortices that enter the surface.

Th is vortex: method is stable. easy to set up. and accurate in predicting the detailed

and highly transient f1.ow st ru ctures which occur in the flow around a bluff body.

3 .2 T heory

In this chapter , the theory for simu lating f1.ows around the section of a circ ular

cylinder is exp lained. It can be furt her applied to other cross -section shapes, like

tha t of a flat plat e. a cylinder with a fin. and a boat-section with a skeg using

conformal t rans form a t ions. T his is exp lained in the nex t chapter .

The Navier-Stokes equations and the continuity equation govern th e flow of

a viscous . incomp ressible and Newtonian fluid past a circular cylinder. These

equations in non-dimension al form. are. -

and

V .iI = O

(3.1)

(3.2)

where iI is the flow velocity, P is the pressure, Re is the Reyno lds number, and t

is time. These quan ti ties ar e obtained by non-dimensio nalis ing with respec t to the

cyli nde r rad ius (a), the unifo rta flow speed (U ), and the density of the fluid (pl.
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where u", P ". and t· ar e the dim ensional velocity. press ure. and time res pectively.

However. to num ericall y sim ulate the flow. the Nav-ier-Stokes equations can be

written in the form of the Poisson equation for the stream functio n. e.

/3.3)

and the transport equ ation for the compone nt of vorticity norm al to the two

dime nsional plan e of flow. ;.,.; .

The vorti city is given by

oJ=1'7 x UJ k

(3.4)

(3.5)

The f1.ow is simulated in a polar coordinate sys tem (r. O) in which the cylinde r

surface is defined by r = 1. The boundary conditio ns for equation 3.3. imm ediately

afte r the start of the f1.ow (t > 0), are

'"and 8tPa;: - sinO

forr $ l (3.6)

(3.7)

The bound ary condi tions for equa tion 3.4 are

and

ii.iJ = 0

w -+ 0
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The boundary conditions given by equations 3.6 and 3.8 ensu re the velocity within

the cylinder surface is zero and the cond it ions given by equa tions 3.7 and 3.9 imply

th at the vort icity and the perturbation tha t it causes in the flow. a t large distances

from the cylinder surface. are small . The veloci ty i1 can be comput ed from the

finite difference form of the equation

u= ~?:!!._{}?:!!.
r 80 ar (3.10)

wher e r and {} are the unit vectors in the radi al and the azimuthal directions.

respecti ....ely.

3 .3 The M ethod

The vorticity distribution in the flow. given by.

,, (x ,y ) =to r ,e(x - xde (y - yd (3.11)

is represen ted by N point vortices. Here r i is the circulat ion of the i ll> vortex. (Xi, Yi )

its position. and 6 is the Dirac delta function. The computational domain is define d

by a m x n(m is typ ically 100 or 200 and n is 129) exponential mesh defined over

an annular region , 1 < r < ro, together with a modified polar coordin a te syst em

(r', 9)(see below) in which the mesh size is uniform. In this system. the Poisson

equation for the stream function . equation 3.3. can be written as

a'~ ( ,)a'", b( ,) a~ ,
802+ar iJr''/.+ r a;:;=-wr
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a(o-' ) (rTr)'
b(r' ) (dr') , ,pr'

r J; +r dr2

an d B (e" ... - 1)+ 1 (3. 13)

This equat ion is solved using the finite d ifference method and a. f ast Fourie r

trans form for the azimuthal 9-directio n. A FORTRA:'J 77 package called FISH

PACK (Version 3.1, Oc tobe r 1980) , de veloped by John Adams. Paul Swarz t ra u ber

and Roland Sweet . Th e :'-lat ional Center for At mosphe ric Research. Boulde r Col 

orado. US.A . was used. Both -...-r2 and Til are expand ed as Fourier series in 8

an d substi tuted in to the finit e difference analogu e of equat ion 3.12. Th is gives a

set of tridiagonal simultaneous equa tions for each harmo nic amp litude of 1P which

are solved by th e Gauss elimination met hod . T he coo rdi nate sys tem (r, 8) is such

that

r' = j

8 = i!i.8

O$j -cm

0 ::;; i < n

2rr/ (n - 1)

Th e coefficients .-l and B in equatio n 3.13 are found by solving the simultaneous

equa tions obtained by taki ng th e value of the ou te r radi us TO to be T for r = m - 1

in equatio n 3.13 and the radi al mesh spaci ng a t the cylinder surfac e. (r r'=1 - 1).

to be equal to~. Here. II is the kinematic viscos ity of th e ll.uid and ~t is the

ti me step. It is important tha t ro is chosen such that the bou ndary cond it ions.

given by equations 3.7 and 3.9 . hold. A valu e of ro = 100 was used for all t he



simula tions.

•-\.n area-wei ght ing sche me . illustrated in section 1.3.3. is used to distri bu te

the. circulation carri ed. by each vortex onto the four comer nodes of the cell in

which that part icular vortex is contai ned. Having done th at . if rei,i ) is the total

circul ation associated with th e nod e (i . j ). the val ue of :.: at that node is given by

.,(i .j ) = r {i . j )~I (3.1')
r~8 dr """"1

To model the act ion of viscos ity at a solid boundary, new vort ices are created

along r = 1 at each ti me step wit h circulation such that the boundary condi tion

on the tange ntial component of velocity. equa tion 3.8. is sa t isfied. The additional

circulat ion. r (i ,0), tha t mus t be int roduced a t every node on the surface. is given

by

[(i . O) = ~8"' ( i. 0)5;; 1 - r (i . O)-.. (3.15)

~ow. since: fiJ = 0 along r = I . th e finite difference form of equatio n 3.12 red uces

to

",(i.O) = -.(Oll,, (i. l ) - 2" (i.0 ) + "r;.- 111- ~b(OIl"( i . l l - "(i. - I )) (3.16)

Sett ing the st ream func t ion to be zero inside and on th e surface of the cylinde r.

we get

w(i. O) = -[. (0) + ~b(O)I "' (i . l ) (3.17)

and [' (i. O) is the circul a tion dist ri buted onto the mesh . along the bod y conto ur.

from the old vorti ces. Since the vort ices are generated all ever the bod y contour .
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we do not need to determine the posit ion of the separation po ints. The additional

circulation is shared equally among the newly created vort ices. nu in numbe r. at

each node. An impulsive start causes a large amount of circu lation to be created at

each of th e surface nodes at the first time-step. Therefore . to reduce the circulation

carried by the initial vortices. a total of twen ty new vorti ces were created at the

first time step and three at every subsequent time step.

All the vortices . those that are already presen t in the flow togethe r with those

that have just been introduced on the body surface. are t hen moved using the

Operator Split ting Tecluli.q ue(OST ) of Chorin [23]. Equation 3.4 is spli t into a

non-linear Euler convection equation

[%710 =-(uS' ).-

and a linear diffusion equation

(3.18)

(3.19)

Equation 3.18 is solved by convecti ng the vort ices. The y are moved. with velocities

given by the finit e differenc e form of equation 3.10 using the nodal values of the

stream function of the cell containing the vortex . A second order Runge-Kutta

met hod is applied . The position of a vortex after displa cem ent due to convection

from posit ion rj is given by

(3.20)

where

d~ u(rj . t )At

d-; u(rj +d~ , t+~t)At
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.-\ second solution of the Poisson equation is required for the calculati on of d~ .

For the solution of equat ion 3.19. the vorti ces are diffused by addin g a random

walk to the positio n of the vortices . If ~X,Ji/ / and ~Ytii/I ar e two random numb ers

selected from a normal distribution with a zero mean and a varian ce of 2v6t. then

the position of a vort ex after diffusion from th e pos ition (Z I.YI) is gi'ven by

(3.21)

Since the effect of diffus ion is simulat ed by adding a random walk to the posit ion

of the vort ices using random numbe rs, variables such as pressure forces, vorticity,

st ream function , and velocity etc. all have a sm all random component associa ted

with them . This rand om com ponent grows with .jf)"t / Re. In oth er words, it de

creases as the Reynolds number increases since the random walk becomes sm aller.

During the process of convection. some of the vortices may ente r the cylind er

surface. These vort ices are reflected back into the flow about the cylinder surface.

Furthermore , as we deal with oscilla tory flows, many vorti ces tend to remain close

to th e bod y con tou r due to th e reversal of the flow. Th erefore. there may be some

vort ices that ent er the bod y du e to the diffusion process , i.e., the rando m walk.

These vortices , which enter the body, are coalesced at the nearest nodes of the

contour mesh . New vortices ar e th en re-injected int o the fluid at a radial dis tance,

chosen from the same distribution of random numbers as for the diffusion process ,

from the cylinder surface. This leads to a considerable redu ction in the numb er of

vort ices present in the flow, enabling longer flow simulations in tim e.
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3.4 Pressures , Force Coefficient s and Vorticity

3 .4 .1 P r essur es

It is known tha t t he velocity and accelera tion are equal to zero a t r = 1. Th erefore .

equation 3.1 can be simpli fied and writ ten as

- ~VP+2Re-h~'2 jj = 0 (3.22)

~Vp =2R,-IV' U =2R,-IIV(V .Uj - t' x V x UJ (3.23)

From the cont inuity equation, we have V.ii. = O. We also have ;,j = IV x iiik.

Subs titutin g these in equation 3.23, we get

(3.24)

Taki ng a scalae product of each side of the above equation with 8 gives

(3.25)

The right hand side of equati on 3.25 represents the flux of circul ati on per unit

length across the cylinder surface . modelled over one time increment by the crea tion

of circulation r (i ,O) at the surface nodes . This is given by equation 3.15. Hence,

at any instant of t ime, the pressure dis tribu tion around the surface of the cylinder

can be obtained by integratin g the pressure increme nts alon g the minor arcs , (i 

1{2)6.8 < 0 < (i + 1{2 )t:.O, wh.ich'", given by

t:.P, = 2f (i ,O){ t:.t
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3.4 .2 Force Coefficients

Th e drag and lift forces are represen ted by their respective force coefficients. CD

and CL . These are calculated by integrating the pressure distribution obtai ned

from equat ion 3.26. Th ey are given by

(3.27)

(3.28)

and

<l0 '28 [ i ]C, = - - E si nUM ) E r(i. O)
a t J=O •• 1

Alternat ively, the force coefficients can be found from the general form ula for

the force act ing on rigid bodies in incompressible flow given by Quartepe lle &c

Napolit ano [30J. This requires the knowledge of the entire vort icity field. For our

case of a cy linder in flow at a Reynolds number above 1000. the formula simplifies

to the following integral expression for the drag force FD.

where A is the area and

FD =LdA{ii x .:i).V '1:

'1r =rfr 2

(3.29)

(3.30)

Using equation 3.11 to discret ize the vort icity field. equation 3.29 gives th e follow

ing expressions for the drag and the lift coefficients

and

CD =i:r, [u;sin (20;)~ .,OOS(20,) ]
;- 1 •

40

(3.31)



c, = _ i: r. [t/.Sin(29i ) ~ IL;COS(28.)]
.=1 •

(3.32)

where r ; is tbe position of the ith vertex and U; and t:; are its '..elocities parallel

to tbe flow and at right angles to it . respectively. .-\ comparison between the time

histories of the drag coefficient calculated. from the integration of pressures. equa 

tion 3.27 and that ob tained from the formula given by Quanepell e &:: :iapolitano.

equatio n 3.31 . is shewn in figure 3.1.

3.4.3 Vorticity

Since th e area-weigh ting scheme smoothes the vort ici ty dis tri bution alon g the cylin-

dec surface. the surface vort icity :';0(8) cannot be taken to be the nodal values of:J

along r = 1. T hus . the surface vorticity is found by making use of th e nod al values

...(i , 1), by using a Taylor series expansion of ....(r ). The formula for the surface

vo rt iciry distribut ion is

. . ReL(i, O) iT I
t..'o(, .<l9) ~;';(I,l) +~~, ...~

3.5 Some Numerical R esults

(3.33)

.-\computer program (in the C programming language with calls to stand ard FOR

TR.A..~ n sub routines) was developed incorp orating the above method . Some flow

simulations were carri ed ou t . Shown below ace th e plot s of the time history of the

dra g coefficient for a submerged circular cylinder in a s teady flow(figure 3.1), sur 

face vort icity dis tributions at Re =l OOO{6gur es 3.2, 3.3, and 3.4 ), surface pr essure

dist ribut ions a t Re = 1000 (figures 3.5, 3.6. an d 3.7), and the radial velocity on
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the symm etry axis behin d the cylinder(figu.res 3.8 and 3.9).

iJlt~ol~_

~kN&pOlie- .

Smith" Stauby

,JHI1.c

.,

. , '--_---'__---'-__--'-__--L.__..J

o

Figure 3.1: T ime history of the drag coefficient at Re =1000.

As can be seen from figure 3.1 . there exis ts a good agreement between the

time histories of the drag coefficient calculated from equa tions 3.27(integra tion of

pressures ) and 3.31(Qua.rtepelle &: Nepclitanc). However , a random compone nt is

associated with the CD calculated from equat ion 3.27. Shown here are also the re

sults of Smi th k Stansby (311for comparison . )'Iore num erical experiments showed

that the agreement did Dot significantly depend on the Reynolds aumberfgrea ter

than 10(0) . It improved by decreasing the time-s tep , .It.

In figures 3.2 - 3.4 over leaf, the random compo nent in the vort icity distri bution

is quite large . This can be reduced by averaging over a numbe r of simulations or

increasing n". Th e ran dom component that is associated with th e surface pres~

sure dis tributio ns in..figures 3.5 - 3.7 decreased wit h an increase in the Reynolds

numbe r since the random walk became smalle r. [ t was also found that changing

TO caused insignificant differences. So a value of TO = 100 was chosen and used for
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all subsequent simulations. The curves in figures 3.8 and 3.9 were found to be

Figure 3.2: Surface vorticity distribution. t = 0.3.

Figure 3.3: Surface vorticity distribution . t =0.6.

Figure 3.4: Surface vorticity dist ribution. t =0.9.
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Figure 3.5: Surface pressure d istribut ion. t = 0.3 .
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Figure 3.6: Surface pressure dis tribution. t = 0.6.
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Figure 3.7: Surface pressure dis tribution , t = 0.9.



Figure 3.8: Radial velocity on the x-axis behind the cylinde r, Re = 3000.
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Figure 3.9: Radial velocity on the s-axis behind the cylinder, R e = 9500.
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sensitive to the val ue of n... They improved with an increase in n... For the curves

shown in figures 3.8 and 3.9. n; = 5 was used .

The results presented in figures 3.1 - 3.9 are in very good agreement with those

presented in th e paper by Smi th and Stansby (311, some of which are shown in

figures 3.1. 3.3 and 3.6 for compari son. Thi s provided us wi th a goo d valida tion

of our simulation program. On the basis of this . simula tions for Sows past other

bodies. of cross-sec t ion shap es other than tha t of a cylinder. were carried out with

the use of conformal transformat ions. This is presented in the next chap ter.
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Chapter 4

Results using Conformal

Mapping

4 .1 Int r o duction

Th e method for the numerical simulat ion of flows past a circular cylinder was

expl ained in the previous chapter. To st udy flows past bodies that have other cross-

secti onal shapes, the ph ysical plane containing the body section is mapped into

a plane containing a unit circle, which corresponds to the conto ur of the physical

bod y. This is done by the use of conformal transformations. Generally, for the

geomet ry of some sect ions that we are interested in, the t ransform at ion of th e body

contour onto the unit circle is a two-step procedure. First. any sharp comers , that

the body may have , are removed by successive applications of the Karman-Trefftz

transformation. This is referred. to as the Corner Removing Procedure. The second

part is to map the body, with the sharp corners removed. onto a unit circle via

t he Theodorsen-Garrick transformation. All the calcul ations are performed in the

t ransformed plane containing the unit circle. This renders the proble m as being
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one of a two dimensional flow past 3. circular cylinder. Then. the method described

in the previous chapter can be used to simulate the flow in this new plane. Any

quantities calculated using the circular cylinder are then used to compute those in

the physical plane using the conformal transformation and its derivative.

4 .2 Modification to the VIC m ethod

The plane containing the unit circle is referred to as the computational domain.

The use of conformal t ransformations provides us with a concentrati on of mesh

nodes in the neighborhood of the sharp corners in the physical p lan e as a result

of the uniform distribution in the azimuthal. IJ, direction. that is used in the com-

putational, (, plane. All the formulae for the convection and diffusion of vortices ,

calculation of force coefficients. etc ., get modified as a result of the coupling of

the vortex- in-ce ll method with the conformal trans forma tion . Following Scolan

and Faltinsen [32], the Jacobian of the transformation is defined as the mapping

derivative of the conformal transformation. It is given by

J =~de (4.l)

The usual definition of the Jacobian of a trans format ion. however. is the rat io of

an elemental area of the physical plane to tha t of the transformed plane. Idz{d( 12
•

The convective step becomes:

(4.2)

whe re We, )is the complex velocity calculated. in the comp utational dom ain. The

modified diffusion step is given by:
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(4.3)

where ~:rdill and j.Ydifl are, as explained in the previous chapter. a pai r of random

numbers belonging to a normal distribution of random numbers with zero mean

and a variance of 2v~t_

The non-dimensional press ure force. according to [321. is given by

F. i::J.(J 128 . "

!P(;~L = ~~[J(9)el'18=k~8 ~ r, (4.4)

where p is the densi ty of the fluid . U is th e magnitude of the flow veloci ty at

infinity, L is the characteristic body lengt h. and f . is the newly created circulation

at the i th nod e on the bod y contour. Similarly, the non-dimensional skin friction

force. acco rding to [321.is given by

(4.5)

where ""0 denotes the vort icity calculated. at the kth node on the body surface and

r (9) is the complex conjugate of J(9) .

It can be seen that the convection and the diffusion displacements are signif

ican tly affected. by the singular behavior of J , i.e., as IJ1-+ O. Also affected is

the normal pressure force which tends to zero as J vanishes . Since the Jacobian

of the transformation vanishes at sharp corners of the body, a modifica tion of the

Jacobian is found to be necessary, th ere. This is basically a trun cation of the real

part of the J acobian in the vicini ty of a sharp edge or corne r to a small fini te

value. Shown in figure 4.1 is the effect of this value of truncation(minimum J ) on

the dra g and mass coefficient calculations for a finned-circle at a Re = 426 and
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KC = 1.33. As can be seen. the force coefficients did not vary much as a result of

a variation in the truncation value. On the ether band. Scolan and Fal t insen (321

have observed large variat ions with the value of truncation used for a Bat plate.

00 0.005 0.01 0.015 0.02 0 .02S 0.03 0.035 0.04 0.045 0.05
Mlnimum J

Figure 4.1 : Effect of the truncation value of! on CD and eM

This value is de termined by studying the J acobian of the trans formation for

similar shapes that have rounded corners instead of sharp edges. For example, for

the case of a Bat plate, the similar sha pe used is an ellipse (32]. The shape with the

sharp edges is th e limiting case of the shape wit h the rounded corners. The value is

taken to be the value of the J acobian of the transfonoation, for the similar shape,

at the locat ion of the sharp corner in the actual body. Thus, to avoid the Jacobian

of th e actual transformat ion from vanishing at a sharp corne r, it is ass igned this

finite value in a sm all area in the neighbo rhood of the corner. This treatment of the
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J acobian does not affect the direc tion of mot ion of the vorti ces due to convectio n

since only its magni tude is used. in the cce vecr icn step as see n in equa tion 4.2. It

can also be seen tha t the mot ion d ue to diffusion is not as serio usly affected as

the one due to ccnvectlc n, since only 11/ appears in equa tio n 4.3. whereas Ill/I '

appears in equation 4.2. Care is also take n to mak e the velocity at infinity the

sam e in bo th the comp utational and the physical dom ains . This is ensured by

forcing the value of 1/ 1at infini ty(lJ :o:U to be unity. Thi s, in tum, is achie ved by

norm alizing the conformal map by the value of 1/ :0:1. Even th ough the t runc ation

keeps J from vanishi ng at the sharp comers, it is s t ill a very small value. Vort ices

present near the sharp edges could st ill have displace ments that are large enough to

ca use nume rical difficul t ies. owing to the presence of /-1 in th e equ ations 4.2 and

4.3. In order to avoid this. a maximum moti on d ue to convect ion was im posed . It

was fixed as IA(c l~ I L =3 for all the flow sim ulations. This t rea tment does not

have a noti ceable effect on th e resul ts .

Having obtain ed the non-dimensional forces . we can now compute the force

coefficients. CD and C.w. According to Morison's equation [32J,we have

F (t ) = ~pCDLu( t) lu(t ll + i PL' C" d~~t) 14.6)

where F{t ) is the instantan eous force calcula ted in the direction of th e flow and

u{t) is the flow velocity, given by

u(t ) =Usin{wt ) (4.7)

where U is the flow velocity at infini ty and wits frequency. The force coefficients

are determined by Fourier-avera ging over one cycle.
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1 3<.:' T
Co = 1,o(7'2L ala F (t)sin('::t)dt

and

1 KC:;; IT .
eM =IPU2L~ 10 F (t )cos(wt )dt

where T is the time period of the oscillatory How. given by

and KC is the Keulegan-Carpenter number, defined as

KC=U:

(-1.8)

(-1.9)

(-1.101

(4.11)

The force, F (t), is taken to be the sum of the pressure and the skin friction forces

in the direction of the How.

Various cross-sections were st udied by combining the VIC method with the ir

respective conformal transformations. These are described below along with the

results of some numerical examples .

4.3 C ircular cy li n d e r in oscillatory flow

This is the simplest case poss ible as the transformat ion transforms the circ ular

cross-section onto itself. Hence ( = z and J = 1 and the formulae prese nt in

the last chapter are applicable, as they are , without any modificat ions . Shown in

figure 4.2 is the mesh generated in the plane containing the circular cylinder.

Simula t ions were carried out at various KG numbers at a constant value of

;3(the Stokes parameter, defined as fJ= Re jKC). Curves or CD and eMvs. the
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Figure 4.2 : Mesh in the physical plane(circular cylinder).

KC numbe r were plotted using the values obtained from the method together with

available experiment al resul ts [34]. These are shown in figure 4.3. Also sho ....-n is the

time history of the force, F (t)(non-dimensional ) , in comparison with the force as

obtained from the fit ting to Morison'e equaticnffigure 4.4) for CD =0.9, e M =2.0.

a t KC =2, {3 = 439. and w= 1.571. As can be seen , the fitting was found to be

very good.

4.4 Flat plate in cross oscillatory flow

As described in the introduction, all the calculations are performed in the comp u

tational dcmain that contains a unit circle which correspo nds to the actual physical

body. The transformation that maps the unit circle to the flat plate is given by

(4.12)
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Figure 4.4: Fit ting of F{t) to Morison's equation(circu1ar cylin der).
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Figure 4.5: Transformation scheme for a circle to a fiat plate .

(4.13)

Now as ( -+ 00,

(4.l 4)

Here, the Jacobian vanishes at ( = ±i. Thus . a truncation of the J acobian . as

described. earlier. is necessary in the neighbor hood of <= ±i to avoid an infi

nite value of J- I which is used.in the convection and diffusio n dis placement step

calcula tions. Figure 4.5 shows the transformation scheme of the bod y in the com

putational plane to th e one in the physical plane. Figure 4.6 shows the mesh

genera ted. in the physical plane containin g the Hat plate.

The curves of CD and eM versus the K C number for the Hat plate in cross

Boware presented in figure 4.7 and the comparison of F( t) as ob tained from the

method with that obt ain ed. from Morison 's equation in figure 4.8 for CD =15.29,

eM =1.84. at KC =2 • 11 = 439. and w= 0.785.
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Figure 4.6: Mes h in the physical plane(flat plate) .
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Figure 4.7: Co.CM K C(fiat platel , li = 439
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Figure 4.8: Fitting of F (t) to Morison 's equatio n( ll.at plate).

4.5 Cylinder with a fin

I; - plan~ Z l - plane
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Figure 4.9: Transformation scheme for a circle to a finned-circle.

To obtain a cylinder with a lin attached to it . we first transfo rm th e circle onto

a fiat plate and then elonga te the flat plate. Th is is done using the following

transform ations

" = ~«( - I/()
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(4.16)

where J[ is an elongation fact or . If greater than unity. the plate in the zl-plane is

elongated. below the real axis in th e z2-plane. The elongated pla te is then mapped

onto a finned-circle with the transformation

(4.17)

•.0\5 the object ive of this stu dy is to analyze viscous flows past ftoating or surface

piercing bodies. we assume tha t the wave-making effects can be determined sepa

rately and superimposed on the viscous pan solution. Since only the flow in the

lower half plane is required . the free-surface is t rea ted as a solid boundary by us

ing symmetry about the free-surfac e line. This results in a Bow in the upper half

plane that is the im age of the How in the lower half plane past a body th at is also

symmetric as shown in figure 4.10.

Figure 4.10: Mesh in the physical plane{finned-circle).



\Vith these transformations at hand . we can D.OW derive the J aco bian for the

overall transformation usin g the chain rule

Therefore.

and as I; --+00,

J

(4.181

(4.L9)

(4.20)

(4.2LI

The curves OC CD and CM versus KC. obtained from the vlC method coup led

wit h conformal transformations . are shown in figure 4.11. Figure 4.12 shows th e

co mpariso n of the force F (t ) obtained from th e method with that obtai ned from

Morison's equa tion for CD = 6.54 . eM = 1.16, at KC = 1.33 . :J = 3:?O, and

W = 1.571. Figure 4.13 shows the streak plot in an oscillatory dow . Re = 426

and K C = 1.33. past a finned-eylinder at a non-dimeasicnal time of 8.0(twice the

pe riod of oscilla tion of the flow).

4 .6 Boat Sections .

By using the t ransformation of the circle on to a circle with a lin, it is possi b le to

map th e result ing finned -cir cle onto a section of a boat with a skeg . Boat sections

could be rounded or have hard chines. Different trans formations are used to obtain
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Figure 4.11: CD,eM vs . KC(finned-circle) , t3 = 320. lin-lengeh=O.5
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Figure 4.12: Fitting of F(t) to Morison's equation(finned-cirde).
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Figure 4.13: Streak plot for a finned-cylinder at Rt!. = -126. KC = 1.33, at = 0.04

these two kinds of shapes. First. any sharp edges. that may be present in sections

with hard chines, have to be removed. This is not required for sect ions that are

already rounded .

4.6.1 Rounded se c t io ns

One of the st andard ways of transforming a unit circle onto a boa t sect ion is

thro ugh the transformation given by

z =(+~+~

in which 4 t and 43 are real and related by

H

(4.22)

(4.23)

(4 .24)

where b is the half beam of the section at the required waterline and H is the draft

at that waterline. Ship-sections derived using the above trans formation are called

Lewis forms . They have the drawback: that they cannot represent ship sections
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with area coefficients close to uni ty. Also , the Lewi s transformation cannot produce

the actual section shape but simply generates a sect ion that has the same beam.

draught . and sectional area . For bet ter results. an extension of the Lewis form can

be used [351. Here the transforma tion has an extra parameter as- It is of the form

(4.25)

where a t, aJ , and as are real and related by the equat ions

Further, defining the parameters a, A, 17, and 11 as

(4.26)

(4.27)

S
17 = 2bH :

[.= bH'
(4.28)

where S is the sectional area of the form and I is the second moment of area of

the waterplene, given by

(4.29)

The expression that relates a , A. 17, and as is

o = is. [_ a 2(1 +3a1) +a[3(1 + ,1) +a, (I- ,1l1 -2(1 +,1 + ,12)] (4.30)

These two transformations are based. on the assumption that a ship-section that

has the same princip al geometrical characteristics as a member of the particular

family (the Lewis forms or the more general three-parameter forms) will have the
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same added mass coefficients as that member. As this assumption is quite crude . a

third an d more accurate method of transforming a unit circle onto a ship-section is

a numerically determined conform al mapping. The offsets of the section an spline

fitted so as to be able to interpolate and obtain intermediate offsets . A total of

one hundred and twenty-eight offset points were generated from th e given offsets .

With th e availability of high speedcomputers. it is possible to have a large num-

ber of coefficients in the trans form ation function. A transformation function of the

form of equation 4.33 was used with a total of sixty- four. 110. at • .... ...., a63. complex

coefficients . Th ese coefficients were determined using the method of minimizing

the sum of the squares of m nonlinear functions in n variables by a modificat ion of

the Levenberg-Marqu ard t algorithm.. A FORTRAN 77 package called ~n)lPACK,

developed by Burt on S. Garbow, Kenneth E. Hills t rom and Jorge J. More of the

Argonne National La bora tory was run on a DEC 3000(Alpha microprocessor) com-

pueer . The non-linear functions are given by

I j- R e(zj )

!lj - Im(zj )

i =l .....l28 (4.311

(4.32)

where (Ij.Yj) are the coordinates of the l" offset. and Re(zj ) and lm(zj ) are the

real and imaginary com po nents of the point generated by the transform ation for

a given set of values for the com plex cce fficieuta , (1,;. If the section to be analyzed

has a skeg, then the finned-circle . instead of the unit circle. is used to generate the

boat-section. The transformation function is

(4.33)
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where Z3 is the plane containing the finned-circle . The mesh in the physical plane

resulting from this transformation is shown in figure 4.14, for a section with no

skeg.

Figure 4.14: Mesh in the physical plenetrounded section. no skeg).

The Jacobian of this transformation can be written as

J =~ = 00 (l -:f: (2' -:1)0,) (4.34)
dZ 3 .=1 z3'

Since the calculations are performed in the ( -plane , the plane containing a unit

circ le, the overall t rans formation to the physical plane consists of all the interm edi-

ate transfo rma tions of the circie((-plane) on to a flat plateter-plane ], elongation of

the fiat plate(z2 -plane) , mapping of the elonga ted plate onto a circle with a fi.n(Z3

plane ), and finally the mappi ng of the finned-ci rcle onto the boat-section with a

skeg(z-p lane) . Th e overall J acobian is the product of the Jaco bian ob tai ned in

the previous section(for a circle to a finned-circle) and th at derived in this section.

Hence the overall Jacobian can be written as
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J - (J1 + 1) ((' + 1) ( '3 ) (1 f (2i - lla,) (4.35)",,,,,,"11 - ao -4- (1 I4+i. - ;=1---;r

To ensure a uniform velocity of unity at infinity in the physical plane . the Jacobian

at infini ty is calcul ated . .-\S( ~ oo, we have IJ....er ..ul -+ fl{j(p, + 1}j2. Therefore.

(4.36)

The conformal map used in the calculation procedure is normalized with respe ct

to IJ~:,j. This obviates the need to modify U in the Reynolds number used in the

computational domain. This would otherwise be necessary because of the change

in the span of the body from the physical plane to the computational domain due

to the transformation.

Flow simulations were carried out at different KC numbers, first for a boat

section without a skeg by taking 11, = 1. Figure 4.15 shows the curves of CD and

eMversus KC that were obtained using the above transformat ions. Figure 4.16

shows a comparison of the forces ob tained from the simulation wit h that obtained

from Morison 's equation for a Co value of 1.66 and C.\{ = 1.76, at KC = 1.6,

fJ=400, and w= 1.571.

A fin was added to the body, to simula te the effect of a skeg, by taking the

value 131 to be 1.0833. T he mesh in the physical plan e is shown in figure 4.17. Th e

section gets disto rted from being a flat bottom one to the one as shown due to

the fairing required by the addition of the skeg. Figures 4.18 and 4.19 show the

curves of CD and CM agains t KC and the comparison of forces comp uted from the

meth od with that comp uted from Morison 's equation at Co = 9.42, CM = l.09 ,

KC = 1, 13 = 878, and w= 2.094, respectively.
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Figure 4.15: CD,eM

30

KC(rounded section, no skeg) , J =400

V1C ~[ethod 
}.lotUoo '! Equat ion -

F

Figure 4.16: Fit ting of F (t ) to ~Iorison's equa tion{rounded section. no skeg).
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Figure 4.17: Mesh in tbe physical plane(rounded secti on, with skeg).

5
KC

°01,----..,- ---:-- ---;---- 7----..,,-----:-----;---- 7----..,,----!

Figure 4.18: CD,CM us, KC (roun ded. secti on . with skeg), [J = 878, fin

lengt h=O.5
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Figure 4.19: Fit tin g of F (t ) to ).Ionson's equ a tio n(rounded section. with skeg).

4 .6 .2 Sections w ith sharp edges (hard chines)

As these sec tio ns have sharp edges , we follow the t9.'O step procedure mentioned.

in the in trod uct ory sect ion of this chapter . This is based on th e meth od t ha t was

introduced by Ives [33]. Th e method is illustrat ed. below in figure 4.20 for the

case of a squ are section. The corners of the sec tion are labeled from 1 to n (in

this case n =4). Each one of them is removed step by st ep . The Karman -Tretftz

transformation

1 + [(z, - 0;)/ ':1'"
z,+1 = 1 - [(z, - o,)/z,]" (4.37)

is ap plied successively to th e square sect ion with i corners removed. Here. ZiH is

the plane containing the section with i corners removed, /3. is given by

(4.38)
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Figure4.20: Karman-Tretrtz, Theodorsen-Garrick: transformationsCor a square[34).
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and q. is a point ins ide the sect ion in the complex :; plane . Here. q. is the a p

proxima te cent roid . Th e point q...l also forms the origin of the ;"+ 1 plane . The

origin of the complex plane %.i is taken to be the ith sharp corner at which the

included angle is given by 0; _ Once the sharp corners are removed. we are left

wi th a rounded square or a near circle . This is mapped onto a uni t circle via the

Thecdorsen -Garrick transfonnat ion . This is given by

;"+1 =(e xp [~(Aj + i B1K- j
] (4.39)

where the 2(;1y[ +1 ) coefficients in the above equation are found from the meth od of

Ives using a fast fo urie r tr ansform technique which performs the required f ourier

anal ysis and synthesis.

The first case of a bod y wit h sharp edges that was st udied was the square

cylinder. Shown in figure 4.21 is the mesh that was obtained in the physical plan e.

f igur e 4.21: Mesh in the physical plane(square ).
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From the flow simula t ions carri ed out . plo ts of the: drag coefficient and the

mass coefficient were:ob tained. Th ese are given in figure .t.22. Figure 4.23 sbows

the comparison of th e: force obtained using the above transformations and that

ob tained from :\lorison ',s equation at CD = 3.32 an d C.v = 3.06 , at KC = 2.~2,

J = 200. and w= 1.571.

00
KC

Figur e 4.22: CD,C M vs . KC(square), ;1= 200

A fin was added to the squ are: to simulate the effect of a skeg . The mesh in

the physi cal plane is shown in figure 4.24. The respective resul ts are shown in

figures 4.25 and 4.26(CD = 8.29 and CM = 2.48, at K C = 1.65, {3 = 258 , and

w= 1.571).

Also shown below are the results of sim ulations carried out using a sec tion of a

boa t with hard chin es and a skeg. Th e comparison curves of F against t(figure 4.29
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Figure 4.23: Fitting of F(t) to Moriso n's equation(square}.

·3 ., - l

Figure 4 .24: Mesh in the physical plane(square with a fin) .
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\o1CMethod 
:Morison '. Equuion -

Figure 4.25: CD,C M ti l . KC(square with a fin), :J= 258.lin-tength=O .78
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Figure 4.26: Fitting of F(t) to Morison 's equat ion(square with a fin).
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were plotted. for Co = 4.54 and eM= 2.70. at KC = 2. 439. and 0 = 1.11.

Figur e 4.27: Mesh in the physical plane (boat sectio n with a lin ).

4.7 D isc ussion

Th e facto rs tha t affect the drag force are the size and strength of the shed. vor

t ices. These vortex propert ies are rela ted to th e size of the body, th e velocity and

freq uency of the oscillato ry dow and hen ce th e Keulegan-Carpenter num ber , KC .

The results for various dow simulat io ns were obtained in the form of CD and CM

agains t K C num ber curves and th e fitting of F (t ) to Morison 's equa tion . Shown

also are the meshes in the physical planes that resulted from the transformation of

the uni t circle in the computat ional domai n. Results for the circ le in an oscillatory

dow showed a very good agreement with the existing experimental values . A close

agreement was also found between the results for a fiat plate in cross oscillatory

flow and a square with those obtained by Scolan and Faltinsen [32]. This provided
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Figure 4.28 : CD,C .W es. A"C (boat sec tion with a lin), J = 439 , fin-le ngth=O .82
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Figure 4.29: Fitting or F(t ) to Mcdso u'e equation(boat section with a fin).
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us with a valida tion of the vortex-in-cell met hod when coupled. with conformal

mappings to study Sows past bodies with other cross-sections.

Transformations. for a finned.-cylinde r. a rounded. boat section. and sect ions

with har d chines . were develo ped and ap plied. to si mulate Sows past them. Similar

valu es of CD and e",. at different KC numbers. were obtained for a finned-circle

and the rounded boa t sect ion with a skeg . This was expec ted since the rounded

boat section was nearl y circular in sh ap e. However. as would be expec ted. the

values of CD for the finned-circle were found to be highe r than those for a circle.

bu t the values of C.w were found to be lower than those for the circle. Th e curves

of the non-dimensional drag force. F (t ). against time . t. also fit ted. well to the force

curve generated by using the pacti cul arvalues of CD and CM in Morison' s equano n.

The ran dom component prese nt was due to the random component prese nt in the

calculation procedure. In the case of sect ions with hard chin es (sharp corn ers ). the

value of the truncat ion used was of the order of 0.1 and it is to be noted. that

the force coe fficients varied considera bly wit h the value of th e tru ncation used.

Determining th e best way to establish the value of th e truncat ion is a pro blem

that needs further study.
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Chapter 5

Conclusion

Some common vortex methods and the work done in the area of vorte x- sheddin g

du e to flows past bluff bodies were reviewed. As a special case , a model based on

the Point Vortex Method. following Clements (12J, was constructed to simulate a

two dimens ional inviscid flow near the wake of a bluff body. Sample results were

obtained in the form of the positions of the vort ices at different ins tances of t ime

and the rate of change of circul ation with time. These were foun d to be in good

comparison with those obtained by Clements himself However. th e model is based

on inviscid Row and so it does not allow us to simulate the diffus ion of vortici ty in

the flow nor does it accurately obtain th e points of separation.

For viscous flows, another method, called the Vortex-In-Cell Method together

with the Opera tor Splitting Technique of Chcrin [231 was developed and used to

carry out the flow simulations on a DEC 3000(.-\lpha micropr ocessor) computer.

First . a steady flow past a circular cylinder was simulated and the results in the

form of the time history of the drag force, the pressure and vorticity distri but ion on

the cylinder surface , and the radial velocity on the a-axis behind the cylinder were

obtained. These were found to be in a very good agreement with those of Stansby

77



and Smith [31J. Osci llatory flows pas t a circular-cylinder and bodies with ocher

cross-sectional shapes were also simulat ed. To be able to calculate the viscous

effects alone, assuming that the wave-making effects due to the free-surface can

be determined separately, symmetry about the axis parallel to the direction of tbe

f1.ow was used . This converts the free-surface into a st reamline and the f1.ow to a

symmetric f1.ow about the s -axis pas t a body that is also symmetric about this

axis. Resul ts of each simulation were presen ted in the form of plots of the force

coefficients , CD and CM, against the Keulegan -Carpenter number. K G, and the

fit ting of tbe time history of the drag force to Morison's equa tion. The calcula ted

values of CD and CM for th e cylinder, at different KC numbers showed excellent

agreement with the existing experimental and numerical values .

Conformal mappings were used to stud y some non-circul ar secti ons numerically.

As a result of the transformation, the appropriate modifications to the VIC method

were made using the J acobian of the transformation. Since this quan ti ty vanishes

at the sharp corners of the body, a treatment of the Jacobian was found to be

necessary in the vicinity of the sharp edges to avoid numerical difficult ies. This

involved the truncation of the Jacobian to a finite value in the neighbor hood of the

corner. It was shown that the force coefficients calculated did not change much

with the value of the truncation used in the case of the finned-circle . The values

of CDand CM for the flat plate were also calculated and found to be in agreement

with those determined by Scolan and Faltinsen [32J. Flows were also simulated

past boat-sect ions of two types . For rounded sections , a conformal map ping that

was numerically determined. was used to transform a unit circle to the boat -sectio n.

To generate a section with askeg, the unit circle was first mapped onto a unit circle

with a fin via an elongated. f1.atplate. The other type of boat-section studied was
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one with bard chines . For such sections. the Karman-Trefftz transformation was

first applied to remove the sharp comers and the resul t ing near-circle was then

transformed to a unit circle using the Tbecdorsen -Garrick transformation. The

results for the square were found to be v'ery close to those of Scolan and Falt inse u.

Force coefficients were also predicted for the sect ion of a boat with hard chines

and a skeg. Due to the lack of any experimental resul ts for such a section. they

were no t verifiable.

All such numerical simulations involve a great deal of computations and hence

CPU time. Owing to the numerous variab les that affec t the flow simulation. it

becomes increasingly time consuming to try and study the effect of each in order to

ob tain as accurate resul ts as possible. Due to such limitations. only the horizontal

oscillatory flow past some relevant body sections was s tudied . This helped in

predicting the swayi ng forces only. However, it is possible to sim ulate other motions

such as the roll motion of a ship by changing some of the boundary conditions.

Care must be taken to take into consideration the fact that the shape of the body

changes with respect to the rigid free-surface . Also , in order to be able to try the

\-ar10US combinat ions of in put varia bles , we should look for better(faster } solvers

for equa tions , such as the Poisson's equation for the stream function, to cut down

the computational time. Better simulation algorithms could also be developed to

lower the computational effort by coming up with other techni ques to reduce the

number of computational elements to be tracked.

The Vortex-In-Cell Me th od .when coupled with the conformal mapping tech

nique enab les us to simulate flows and predict the forces on a bod y with a cross

sectional shape that can be gene rated from a unit circ le. Some commo n body 

sections and some that are important to us in the area of Naval Archi tecture were

79



stu died. It is possible to simulate flows past ot her cross-sections. like tbat of a

cylinder wi th a mul t iple numbe r of fins. etc.• and predict tbe forces and moments.

This could belp in the design process and improvi ng on th e sbape of tbe sectio ns

of a movi ng craft . for ins tan ce. and cutt ing down on unwanted. motions.
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