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Abstract

Viscous forces that act on a body moving in a fluid may form a significant part
of the total force acting on the body. The use of the linear potential-flow theory
does not take into consideration the viscous effects that cause flow separation.
skin-friction drag, and lift. Various methods have been developed and used to

calculate the viscous forces v since R head’s initial calculati A

review of the earlier work done in the area of vortex shedding and calculation of
viscous flows is presented in chapter 1. Some vortex methods. that are commonly
used, are described. One of these, the Discrete Vortex Method, is described in
detail in chapter 2. This is demonstrated for a bluff body with sharp corners using
the features of the Clement’s model. However, this method does not simulate the
effects of vorticity diffusion in the flow. Moreover, the body must also have sharp
edges, which are taken to be the separation points.

Another method, that does not impose such limitations. is the Vortex-In-
Cell(VIC) Method. This is developed and first applied to study flows past a circular
cylinder in order to validate the method with existing results in chapter 3. Confor-
mal transformations coupled with this method enable us to study flows past bodies
of other cross-sectional shapes. Various mappings are derived and developed to

simulate flows past a variety of shapes. A fin was added on to the body contour

to simulate the effect of a skeg in the case of boat-secti The force

Cp and Cyy, were calculated at different Keul Carpenter bers and verified

for sections like a circle, a flat plate, and a square, in an oscillatory flow, with the



results obtained by other workers. They were also calculated for a finned-circle. a
section of a boat that is rounded and one that has hard chines. The theory and
the method. the necessary modifications to the VIC method. and the simulation
results are presented in chapter 4. A conclusion of the work done in the different

chapters along with some comments are given in chapter 3.
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Chapter 1
Introduction

For the smooth and sound operation of marine vessels. such as ships and barges. the

wave-induced roll motions must be 1y i G lations of the wave-

exciting forces and the motions of vessels in waves can be made using the linear
potential-flow theory. This, however, neglects viscous effects which cause flow
separation and skin-friction drag. Also, for the linear theory to apply, the motions
of the vessel and the wave amplitudes are assumed to be small in magnitude.
Furthermore, the motions calculated using the linear theory are quite accurate for
the degrees of freedom that are heavily damped but not for those that are lightly
damped or for those where the damping is dominated by viscous effects and in

particular for those with large amplitudes.

The main reason for this i v was the ilability of good hods for
determining the damping forces due to the viscous effects on the submerged body.
The relative motion between tue local fluid and the submerged vessel boundary

causes flows which occur due to the unsteady boundary layer, its localized sepa-

vortex i pecially near large changes in the

rations, and the

curvature of the hull. Brown et al. [1] presented experimental evidence to show



that a major part of the viscous force acting on a barge with bluff right angle keel
edges was due to vortex shedding. Work on this phenomenon has been carried out
by many researchers using discrete-vortex-methods.

Vortex methods have been very widely used for simulating flows past bodies in
order to determine the forces acting on them. Incompressible flows at high(> 500)
Reynolds number are characterized by regions of concentrated vorticity. This vor-
ticity in the flow is transported through the flow using the local velocity which
in turn is calculated from the vorticity field. Poisson’s equation for the stream

function is solved to compute the local velocities to move the vorticity in the fluid.

It b quite i to the flow in terms of regions of vortic-

ity. Vortex hods are. therefc ployed to simul di the

y flows by

flow into regions of vorticity and then tracking this discretisation in a Lagrangian

reference frame.

1.1 A Review

Rosenhead [2] was the first one to use a distribution of discrete vortices to represent
a vortex sheet. His results were welcomed by other researchers and the method
has been used since then till today. The most important part of Rosenhead'’s work
was the numerical treatment of the Helmholtz instability phenomenon for longer
durations. Helmholtz instability is the motion of adjacent portions of fluid of the
same density with different speeds. The vortex sheet was replaced by a distribution
of point vortices along its trace whose paths were determined by a numerical step-
by-step method. At any instant of time, the line joining the positions of these

vortices was d to be the i shape of the sheet at that time.




Rosenhead showed that the effect of the instability upon a surface of some form
was to produce concentrations of vorticity at equal intervals along the surface
and also that the surface of discontinuity tends to roll up around these points
of concentration together with an accompanying increase in the amplitude of the

displ: He also ibuted the i error. that crept in at each time

step, to the truncation of the Taylor series for the displacement of the elemental

to si ions i ing

vortices during each step. The method was not
longer durations as the errors introduced at each time step could get large enough
to cause numerical difficulties.

holiz i bili

The flow patterns that R head i for Hel were

very realistic. As a result of this, his method of calculation was never really
doubted. After 1959, criticism of his work was made by Birkhoff and Fisher [3],
Hama and Burke [4], and others. [t was pointed out that discrete vortices moving
under their own influence in a two dimensional flow will always tend to a random
distribution. Birkhoff and Fisher asserted that any decreases in distances between
pairs of vortices would result in an increase for other pairs. They based this
assertion on the theorem that the energy of a system of vortex filaments in a two-
dimensional flow is constant. Since, for a system of vortices of equal strength,
the energy is given by the product of all the initial distances, no two vortex lines
can coalesce without an infinite increase in the separation of some other pair.

Thus, according to them, the vorticity in a uniform array of point vortices can not

become d. They d R head’s results and found that the
motion of the elemental vortices became very complicated in regions where some
concentration took place, making it impossible to produce smooth vortex sheets.

Abernathy and Kronauer (3] explained the main features of the vortex street



formation mechanism from two initially parallel uniform vortex sheets of opposite

sign. They found that no argument based solely on a linearized theory of distur-

bances can the asy v I iated with the i ion of
the two sheets. They also used a numerical discretisation of the vortex sheets as
Rosenhead did. Their non-linear method worked very well for a short time after the
start of the flow but randomness appeared to creep into the calculations of the co-
ordinates of the point vortices which eventually became so pronounced that it was
said that, “there was no longer sufficient evidence to suggest the existence of vortex

sheets™. They concluded that clouds of vorticity have “a net strength diminished

by the vorticity swept into the cloud by the opposite vortex row”. Michalke [6]

lized the work of R head and of Ab hy and Kronauer by including
the effect of the thickness of a shear layer. He represented the constant surface

of vorticity ing the initially linear velocity profile of the shear

layer by a discrete number of surfaces of discontinuity, simulating each by a finite
number of elemental vortices.

Further work was done to study vortex shedding from two-dimensional bodies.
Modeling a flow around a sharp edge requires that the vorticity is shed from it
in order to prevent infinite velocity at the edge. The shed vortices form a spiral
which covers more and more area as vorticity is shed. According to the law of
conservation of energy, this vorticity can not remain concentrated into a point and
a core structure is formed. Anton (7] was the first one to model vortex shedding
from a sharp edge using a semi-infinite plate in 1939. He found that the total
vorticity shed is proportional to a one third power of time and that the distance
from the edge to a point on the vortex sheet is proportional to the two thirds

power of time. To determine the shape and the vorticity distribution of the sheet,



he divided the vortex sheet into an inner core and an outer loop linking it to the
outer edge. The inner core was approximated by a spiral of the Kaden [8] type.
Wedemeyer [9] recalculated Anton’s results using a different method. However.
neither Anton’s nor Wedemeyer’s solution is exact because of the over-simplified
representation of the core region. But Wedemeyer's results are more complete.
They provide useful information on the growth and distribution of vorticity and
its total circulation. Anton’s solution for the starting flow near a semi-infinite plate
was then generalized by Blendermann [10]. He incorporated convex corners of any
angle moving with velocity equal to the time raised to any power in a fluid at

rest. These results were thought of as useful starting solutions in studying vortex

hedding from more i db in more general motions.

Other works in this area include those of Giesing [11], Clements [12], and

Gerrard [13]. Giesing used non-li ions for studying two-dimensional
foils in dy motion. Of i is his di: ion on the ki
of vortex shedding. He claimed that the Kutta condition could be i d

by having a zero velocity difference at the trailing edges that are non-cusped. He
showed that the error in the surface velocity distribution occurred only in the
immediate neighbourhood of the edge.

Clements modeled the starting flow in the near wake of a bluff-based body. He
brought forward some new features in the treatment of shedding conditions when
only discrete elemental vortices are used. As the velocity at the shedding point
could otherwise be infinite, Clements let the shed vortices start traveling with
a velocity that is calculated a small distance away from the point of shedding.
This avoided the need of a Kutta condition while maintaining a good amount of

accuracy. He obtained some interesting results for the rate of shedding of vorticity

o



into the shear layer from two separation points. but these also are subject to the
kind of criticism made of the Rosenhead model.

In 1967. Gerrard ically calculated the itude and fre y of the

Lift force on a circular cylinder. He introduced a pair of elemental vortices into the
flow some distance downstream at each time step to avoid the difficult problem
of the determination of the separation points of the flow around a body without

sharp edges. He used the shedding rate d experi Ily to d ine the

strength of the vortices that are introduced at every time step. Even though the
vortex positions looked quite irregular. the values of the lift force and the scale
of formation regions were quite close to the experimental values for a range of
Reynolds numbers.

Of interest to us is also the vortex separation that occurs from slender wings
and bodies. Boundary layer separation takes place at the sides of aircraft wings
and other slender bodies even at small angles of incidence. Coherent vortex sheets
are formed and the study of these is of importance with respect to the non-linear
lift, the roll-up of shed vorticity, etc., in the field of aeronautics; with respect to
the non-linear force and moment in ship manoeuvrability, roll damping on bilge
keels and fins, etc., in the area of ship hydrodynamics; and other areas in offshore
engineering.

Roy and Legendre were the ones to make the major contributions in under-
standing the phenomenon of leading edge separation from slender wings in the éa.r[y
1930’s. However, the most successful and purely analytical model was developed
by Brown and Michael [14] in 1954. Their results for the vortex positions, pressure

distribution, etc. agreed only itatively with those obtained from

However, their method has been used in many attempts to incorporate the effects



of ical planfc hick and the iy motion for the calculation
of stability derivatives. Other major numerical methods include Smith’s iteration
technique [13] and the multi-vortex model of Sack. Lundberg and Hanson [16]. Any
models developed after these involved ison with these two techniques. both

of which were in mod to good with i These techni
were also used by researchers to study vortex shedding from slender bodies alone

and from a combination of a wing and a body. Smith’s method is not easy to gen-
eralize for non-conical geometries, whereas Sack’s method is. Sacks, Lundberg and
Hanson used a Rosenhead discretisation in their model and obtained the kind of
irregularity of the vortex sheets that is expected in applications of the Rosenhead
method.

Ships can be considered as slender bodies. In a normal straight ahead course.
boundary layer separation, which leads to the formation of coherent shear layers.
occurs for most hull shapes. The vortex shedding that occurs is responsible for
the non-linear force and moment met in ship manoeuvrability. Studying vortex
shedding, using sections of ships, helps in investigating these effects and improving
the geometry of the hull to minimize the adverse and unwanted forces. Hennig [17]
used a single pair of discrete vortices to represent the non-linear side forces on
slender ships with Lewis form cross-sections. Fuwa [18] refined Hennig's work
by using a multi-vortex model for the bilge vortex separation on a ship which is
being obliquely towed. Many writers have described the vortices produced at the

bilges near the bows of ships. T: [19] gave an

of the ding i in ship resi or vortex drag. In

1971, Soh and Fink [20] modeled and studied vortex separation at the bilge keels
of ships using potential flow. They presented a discrete vortex approximation for



the sheets using the Rosenhead method. They found that the use of constant
time steps caused an early onset of breakdown of the calculations with crossing
vortex sheets. [mprovements were made by using varying time steps to ensure
that the shedding point and the last two elemental vortices to be shed formed an
equi-spaced set of points. A more thorough analysis led to the conclusion that the
error is least when the elemental vortices are equi-spaced for the entire sheet at

every instant for which the motion is calculated.

1.2 Common Vortex Methods

1.2.1 The Point Vortex Method

Rosenhead was the first one to attempt flow simulations using a vortex method in
1931. He approximated the motion of a two-dimensional vortex sheet by follow-
ing the movement of a set of point vortices in time. The vorticity field. w, was

represented by

“(F.0) =ixr.5("— 7{t) (L.L)
where § is the Dirac delta function in two dimensions, ;(t) is the location of the i**
vortex at an instant of time ¢, V is the total number of point vortices in the flow,
and [}, is the circulation of the i** vortex. For a region R. the total circulation is

given by

= | d.A 2

Tz ./n D.hds (1.2)
Here 7 is the normal to an elemental area, ds, of region R, and & is wk. To satisfy
the inviscid vorticity transport equation,

8



% +(@.V)w =0, (1.3)

or, in terms of the material derivative,

Dw
Dt

the velocity of a vortex must be given by the value of the velocity field at the

=0, (1.4)

position of a vortex. Therefore,

& =amn (ws)

The velocity field, #(7,¢) is in turn determined from the solution of the Poisson
equation

Vi = -V x (wk) (1.6)
The velocity field must satisfy the boundary condition of zero flow across the

surface of the body. Therefore,

LA gy foee =0 (1.7)
If the two-dimensional flow field has no interior boundaries and the fluid is at
rest at infinity, the solution to ion 1.6 can be obtained from the Biot-Savart

integral

kol P.8) -

(7, 1) = 21,/ (T_’J) X (1.8)

where L is the length of the two d.unensmna.l vortex sheet. By substituting equa-

tion 1.1 in this formula, we can obtain 7; as the solution of the following system of
non-linear ordinary differential equations:

#h__1 & E=f)x iy
)i Ky

@ " 3

(1.9)

dt - 2n

J=lg#i

9



Rosenhead did all the calculations by hand. With the advent of computers.
more accurate results were attempted as more point vortices could be used. How-
ever. using a larger number of point vortices of lower strengths did not yield a
convergent solution. In many simulations. the motions of the vortices became
quite chaotic. Therefore. although the point vortex method solves the Euler equa-
tions, a system of point vortices does not represent a vorticity field very well.
Better results with this method were obtained using fewer vortices together with

a diffusive time integration scheme.

1.2.2 The Vortex Blob Method

One of the other methods for simulating two-dimensional flows is the vortex blob
method. In this method, vortices with finite cores, or vortex blobs, are used as the

c ional el The ion for the r ion of the vorticity field

now becomes

v
w(ft) = Y TenlF — F(®)] (1.10)

&
where 7; is the vorticity distribution within the vortex located at r; with the

normalization

/c'y;(r’)df= 1 (111)

where C is the core boundary. We assume that

= (1/a})f(7 =7l [oi) {(112)

%(F—
where f is a distribution function whose shape is common to all vortex elements
and o; is referred to as the core of the vortex element i. For example, if the vorticity

10



distribution is given by the Gaussian distribution such that

1
7o,

() = —ezp(—|1* [o?) (1.13)

then the distribution function f() is given by

47 =7l o1) = ~ezpl= 17~ Fi* [o?) w1y

This function satisfies the viscous part of the vorticity transport equation

% =V (1.13)

The velocity induced by the vorticity field. equation 1.10. is given by

e L& (F=15) x k(17 = 55l o)
(7. t) __2—’;,§Tr3|__ r#r (1.16)
where g is given by
v
9(y) = 2?/0 f(z)zdz (1.17)

The use of distributed vortex cores or vortex blobs yields more realistic vorticity

and b ded induced velocities for all the vortex elements. As per

equation 1.16, the velocity of the vortex blobs is given by

J=Li#j
which is actually the velocity field at the center of the blob.

7

In contrast to the point vortex method, an error in the spatial accuracy arises

1 ol q

are to

in the vortex blob method because the
retain their shapes throughout the simulation, whereas a real fluid with vorticity

may suffer a considerable amount of strain. Hald and Del Prete [21] studied the

11



convergence of this method to the solution of the Euler equation and showed that
convergence occurred only for a limited time interval with an error that grew
exponentially in time.

The use of the vorticity diffusion term. »V%.. in the vorticity transport equa-
tion has two important consequences. They are. firstly the vorticity creation at the
boundary and secondly the diffusion of the vorticity in the flow field. The diffusion
of vorticity can be simulated either by allowing the vortex cores to increase in size
or. as proposed by Chorin [22], adding a random walk to the position of the vortices
at each time step. However, Greengrad [24] pointed out that in the core spreading
technique. the vorticity is correctly diffused but incorrectly convected. Therefore,
this technique is inaccurate and converges to a system of equations different from
the Navier-Stokes equations. Chorin’s random vortex method. on the other hand,
is a correct approximation. The random walk step lengt}: used here is proportioral
to (vAt)!/2, the idea being that the effects of viscosity be reproduced correctly in
a statistical sense. It was pointed out that in the case of flows past bluff bodies.
where the boundary-layer separation is an important physical phenomenon, the
creation of vorticity at the body contour and its transportation along the body
surface must be modeled correctly. Many workers introduced circulation at the
separation points that were determined using boundary-layer calculations, exper-
imental information. etc. They determined the rate of creation of vorticity from

the kinematic condition

dr
@

1
=—jtd—u2) (L19)
where u; are the upper and lower speeds on the sides of the separating shear layer

and (dT'/dt) is the rate of change of circulation in the shear layer.
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Another approach to the creation of vorticity is to introduce vortices at the
boundary to satisfy the no-slip condition at the surface. Chorin employed this
approach and presented a scheme that converged to the solution of the Navier-
Stokes equations. The three steps in his scheme were the creation of vortices at
the boundary to maintain the no-slip condition at the surface. move all the vortices
with local velocities to take-care of the inviscid part of the equations of motion.
and finally the diffusion of the vorticity simulated by a change in the core size. o,
or adding a random walk to the position of the vortices.

In both the point vortex and the vortex blob method, the computational el-
ements are moved with velocities that are calculated using a Green's function

solution to the Poisson ion. If V such el are used to si the flow,

then the number of operations required to compute all the velocities is of the order
of N2 This is quite costly in terms of the computational time that a computer
spends simulating a flow. However, there are ways round this problem and the
computational time can be brought down by combining a number of elements in
a given region into a representative computational element. This gives rise to a
different class of methods for simulating flows, called the Vortex-In-Cell methods.
Another way, in which the number of computational operations can be reduced, is
that employed by Yeung et al. [25]. They used the fast adaptive multipole algo-
rithm for particle simulations of Carrier et al. [26] which reduces the computational

effort to the order of V.

1.2.3 The Vortex-In-Cell Method

In this method, a mixed Eulerian-Lagrangian approach is used. The Lagrangian

treatment of the vorticity is retained and the Poisson equation for the velocity
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field is solved in a fixed Eulerian mesh. As compared to the previous two methods
where the operation count was of the order of V2, where ¥ was the number of

1 el used. the ion count here is of the order of Mlog M

where M is the total number of grid points in the mesh. An additional number of
steps of the order of V' that are required are for the generation of the mesh values
for the vorticity from the Lagrangian representation and the interpolation of the
velocities from the mesh back into the Lagrangian points. The number of mesh
points. M, depends on the problem to be solved.

Every element. i.e. every vortex. lies in a particular cell of the mesh. Its
circulation is distributed onto each of the four corners(nodes) of that cell according

to the area weighting scheme

(i+14+1)\3

Figure 1.1: Area Weighting Scheme.
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CooreezAk (1.20)

Crode, = gy
Ar

where [ .oz is the circulation of the vortex and Ar = Z‘,‘=, Ak, A being the area
of a region as shown in figure 1.1. The Poisson equation for the stream function.

.

Vi =—w (1.21)

is then solved. Once the stream function is known at all of the mesh points, then
the velocities at the mesh points can be computed using the central difference

method for example.

(1.22)

(1.23)

where h is the mesh spacing. Once again, the area weighting scheme is employved
to determine the velocity of a vortex that is contained in a cell of the mesh as
given by

Tyorter = Z:. "';—':" (1.24)
As can be seen from these formulae, the vorticity distribution onto the mesh and
the interpolation of the nodal velocities requires a fixed number of operations per
vortex giving an operation count of the order of N per time step. Christiansen [27]
and Baker [28] used the VIC method and reported some interesting results. Chris-

tiansen, for example, showed that the vortices that have the same circulation pre-
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cess about each other. With time. they either coalesce or they do not depending
on their initial separation.

The VIC method also suffers from numerical errors as do other methods. In
addition to the errors that come up in the vortex blob method. the distribution
of the vorticity onto the mesh nodes and the interpolation of the nodal velocities
to obtain vortex velocities have errors associated with them. Errors also creep in
due to the differencing procedures used to solve the Poisson equation to determine

the mesh velocities. However. results of 1 i in two di

have indicated that these errors do not seriously affect the large-scale features.
Hockney et al. [29] proposed an improvement to the VIC method. They suggested
using nine surrounding nodes to distribute the vorticity onto and using their nine
nodal values of the velocity to interpolate for the calculation of the velocity of a
vortex, instead of using the nearest surrounding four nodes only. They state that
the mesh errors are reduced by two orders of magnitude by this technique.

This method is further explained in full detail in chapter 3. [t is validated using
existing results for the flow past a circular cylinder. Numerical experiments for
bodies other than a circular cylinder were carried out using this method coupled
with conformal transformations. The results are presented in chapter 4.

1.3 Summary

For incompressible flows, knowledge of the vorticity distribution allows us to de-
termine the velocity field. Vorticity moves with the local velocity in the inviscid
motion of a fluid. Vortex methods present a numerical algorithm for flow simu-

lation based on these facts. They offer a number of advantages over the Eulerian



schemes. But every ad age has a drawback iated with it. The user of

a particular method has to make a judicious choice of a method exploiting the
advantages and employing means to circumvent the disadvantages of a particular
method. Some of these are worth mentioning once again.

Vortex methods require only a small number of storage locations because com-
putational elements are required only in the rotational parts of the flow. The
associated disadvantage is that the number of operations per time step is pro-
portional to the square of the number of vortex elements or coordinates in the
discretisation. This leads to a rapid increase in the computation time as the num-

ber of ional el is i d. The boundary condition at infinity

can be satisfied very accurately, whereas the no-slip condition at the body sur-

face requires some care. In the case of turbulent flows and laminar flows at high

Reynold: b fi I may develop in an intermittent manner

throughout the flow field. Vortex methods allow such regions to develop by a local
of ional el This however leads to the requirement

of remeshing which. in turn, gives rise to other numerical difficulties and approxi-

mations. However, the advantages of the vortex methods have made them popular

for simulating flows. Many workers have proposed imp to minimize their
disadvantages and they are still being used and worked on.



Chapter 2

Point Vortex Method(Clements)

In this study, a model for the two dimensional inviscid flow near the wake of a
bluff body is constructed. This model is used in studies of vortex shedding from
bodies with well defined separation points(sharp edges), such as keels. wings. and
fins. The applications of the method inciude mancevring of crafts, roll-damping of
ships, etc. Discrete point vortices are used for the representation of the continuous
vortex sheets. As the model is based on inviscid flow, it does not take care of the

possible diffusion of vorticity in the flow. Therefore, it can not be used to study

P h 1

flows that are significantly affected by viscous for pl
flows at low Reynolds numbers). The bluff body used here has sharp corners, and

thus, fixed separation points. Such a shape is chosen to obviate the need for any

assumptions of the position of the separation points.

2.1 The Model

The bluff body is a plane-based two dimensional body with right angles between

the sides and the rear face. The flow is assumed to separate at the corners of
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the body and remain attached on the side faces. The shear layers shed from the

corners. i.e.. the ion points. are i d by arrays of line vortices.

The velocity of a particular vortex in the flow is calculated by adding the two
di ional i ional ial flow around the body and the velocity induced

at the position of that vortex by all the other vortices present in the flow. To

obtain these velocities, a Sch -Christoffel transformation is used to project
the exterior region of the body. which is assumed to extend to infinity upstream.
into an upper half plane with the boundary of the body mapped along the real

axis. This transformation, given by,

== —(2is/m)[sin~' () + A(1 = A?)"? (2.1)

or

== (2is/m){ilnfix + (1 =A%) % — A(1 — A2)'/%} (2.2)
transforms the rear corners of the body = = +is into the points A = F1 as shown
in figures 2.1 and 2.2. The irrotational flow used has two components. They
are shown in figure 2.3. The first component is a flow with velocity (L%,0) far
upstream and downstream and the second has a velocity (0, —plg) at z = 0 and
|@] — 0 as |3] = co. This is a circulatory flow in the region of the base and is used
to create the initial asymmetric disturbance when the flow is started from rest.
Hence p was taken to be 0.1sin(5) for ¢ < 3 and zero for ¢ > 3. The flow starts

impulsively from rest and initially develops sy ically. The i ion of

a small asy ic disturt results in an ic i ion of the shear

layers which amplifies into steady vortex-shedding motion.
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T=yic

Figure 2.1: The physical z-plane.

ced 8 c Dz

A=p=1§

Figure 2.2: The transformed A-plane.

Figure 2.3: The two flows in the z and the A-planes(30].
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2.2 Derivations

2.2.1 Complex Potential

Let the complex potential due to the first flow in the transformed plane be of the

form:-

wi(A) = —AA? (2.3)
From the relationship
2) =iy (o) = 2t - ddd (
ul(~)—xh(.)—-¥— DL (2.4)

and differentiating equation 2.3 with respect to A. we get

dur(N)
puaand A ALY ) 2.5
Py 2414 (2.3)
and equation 2.1 gives
d\ _im 1
<A - I 2.6)
: S Lo (28}
Therefore,
i (2) = —24, )\i7r 1 0.7
u(z) — v (z) = =24, Em (2.7

To find the constant A;, we make use of the fact that at z = oo the velocity is Up
and parallel to the x-axis. Now, as A — oo, u; — U, and vy = 0. The above
equation, thus, gives

_23[/},
™

A= (28)
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and finally substituting the value of A, obtained back into equation 2.3 gives

<) = (=25To/m) A (2.9)
Now. let the complex potential due to the second flow in the transformed plane

be of the form:-
wa(A) = A24 (2.10)

So the conjugate of the velocity due to ws can be written as

) dun dX it 1
us(z) — ivg(z) = T;E = _42.l—sm (2.11)

At the origin. us = 0 and v, = —Upp. Therefore. by substituting this condition in

equation 2.11, we get Ay as

Ay = % (2.12)
T
and so
wn(A) = (dsplip/m)A 2.13)

The potential due to a point vortex of strength k; at position A; is given by

w;(A) = -i.;;’log()‘ =) (2.14)
To satisfy the condition of zero flow across the body, we introduce image point
vortices relative to the 7-axis. These image vortices in £ < 0 have strengths equal
in magnitude but opposite in sign to those in £ > 0. The potential due to these is

given by
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/ ik, B =
«4(A) =2—;log()\—)‘,) (2.15)

where }; is the conjugate of A;. Summing up the potentials due to the two flows
and that due to point vortices. the total complex potential at a position A in the

transformed plane is given by

w(A) = wi(A) +wa() + 3 wi(A) + 3o w5(A) (2.16)
3 ¥
ie.,
2 s ik, A=A =
w(A) = (=2sTo/m)A2 + (4spUo/m) A — ; ‘5;’ logﬁ;- A#NAET] (217)

2.2.2 Vortex Velocities

Since the complex potential. w = @ + iy, where o is the velocity potential and v
is the stream function, is a conformal invariant and the flow field due to a vortex
transforms into that due to a vortex of equal strength at the transform of the
vortex position, the velocity at any point in the physical plane can be obtained
by transforming the positions of all the vortices into the A -plane, determining the
velocity at the transform of the required point and then returning this velocity to

the physical plane using the relationship

dw _ du(d) dA

D (2.18)

u(z) —iv(z) =

Differentiating equation 2.17 with respect to A and substituting in equation 2.18,

we get the conjugate of the velocity at a location z; as
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el L dslok | 4splo
= B, ik, iy
iw

L- )7 (219)

where ); is the transformed position of the location z;.
Routh’s law is then applied in the case of a point that is also a vortex position.

Since the complex ial is i we have

ik ik
() = grlog(z = 20) =, (V) = 37log(A = Ao) (2.20)

where w., and w), are the potentials at z; and A; due to all causes except the

vortex of strength k at z;. Therefore we can write

(2.21)

ik
wn (2) =2, (V) - 5-log

Expanding A = f(=) in a Taylor series about z;,
A=f(2)=flz) + (= 2)f (=) + ('— 2P (2)+0(—=) (222)
or
A= =(z-=2)f(2) + %(z =2 f"(2) +O(z = 2)° (2.23)
Substituting this into equatiou 2.21, we get
n2) = n () = loglf (1) + 3z = ) f"() + O — 2] (229)

24



and

dz  dx d= 27[ (228)
Then as = — z; and A = A,
dus | _ dwy,| dA]
P73 M u N = (226)

This gives the expression for the conjugate velocity at a vortex position =; in
the physical plane with a modification due to Routh’s correction. Using (dw/d))
obtained from equation 2.17, this can be written for a vortex position z; in general

1 _ dslo)i | 4splip | dA
Z 2r A - T * T ] ‘
ik f"(z) o or
e g
From equation 2.1, we have
% = (4‘7’) (=232 (2.28)
or
;. 1
Z=f@)= 4, —————(l ESOE (2.29)
Therefore,
f"2) _ i
2f'(z) 8s(1 — A2)3/2 230)
and so
E _ _:‘k_,- 1 5 &L 1 _ 4sUp\; A 4spUy
dz" & 2r A ;G 2 A=A T T
i ik; irh; (2.31)

(1= X272~ 2 8s(1— NP2

25



Non-dimensionalising with respect to s and U such that

=30
we get
b el [ P K g 1
SHTES —aThene {‘*‘ i 15(1—A§)+>;8A,—A,
K1
-5 ] (2.32)
23NN,

2.2.3 Vortex Strengths

As can be seen from equation 2.32, z = #+is, i.e. A = Fl, are singularities of the
transformation which cause infinite velocity at these points. Therefore, in-order
to calculate the velocity of a newly created vortex, the velocity is calculated at
the point 2’ = £(1 + €)i and has a strength ¥’ equal to %Uf&t where U, is the
velocity at the point 2/ = +(1+¢€)i, 6t is the time step and the summation is carried
over all the time steps since the last vortex was introduced. The parameter, €. is
a very small number used to approximate the boundary layer thickness. However
the vortices are still introduced at =’ = =i, the actual separation points. This is
because if the flow were a real viscous one, the velocity at the separation points
would be zero to satisfy the no-slip condition and the velocity with which the newly
created vortex leaves the separation point would be the velocity U at the outer
edge of the boundary layer. The vortex strengths can be easily derived with the
help of figure 2.4.
The rate of change of circulation at point B is given by
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Frsesimns E(0.1+¢)
’ s dy
B(0.1)
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foee- H(0.~1—¢)

Figure 2.4: Derivation of vortex strength

&
dt
where C is the contour BEFG. Applying Green's theorem and taking 8v/dz to

dr
= fim 2 }‘g 7.d7) (2.33)

be very small in the boundary layer, we get

ar _dorrov ou
7 = dhm g [[ G- e (234)
1 9y Bu .
~ /. (a_z‘ﬁ""’” (2.35)
l+e

= [ udu (2.36)

1
~ —EU?H() (2.37)

If the vortices are shed at intervals of &¢, then the strength of a nascent vortex

that comes off point B is
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ar 1,
kg = Go6t = —5UR o6t (2.38)

Similarly. the strength of a vortex coming off point C is given by

dr 1
ke = Iﬁt = EL (2.39)
2.2.4 Vortex Positions
The entire simulation is carried out in the fc d plane. The non-di ional
velocities in this plane are found using the following chain-rule
(2.40)

Once the velocities are found at all the vortex positions, the vortices are moved

according to the relationships

7(t+6t) =7n'(f) + Re (%) (t)6t (241)

E(t+6t)=€(t) +Im ( ) (t)6t (2.42)

During the time development of the system, some vortices were found to ap-
proach too close to the rear face of the body and this caused them to have very high
velocities along the body as a result of the closeness to the single image vortices in
the lower half A-plane. To avoid this, absorption of the vortices that approached
closer than 0.03s to the rear face was carried out by removing those vortices from
the calculations. Other features of the model that were used by Clements [?] were
not found to be necessary to be incorporated due to the much faster computers
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available today. These features include clustering of the vortices into an equivalent
single vortex of strength equal to the sum of the individual vortex strengths and
position as the position of the center of vorticity of the cluster and also the shed-
ding of the vortices at integral multiples of time steps instead of shedding vortices
at every time step. A time step of §t = 0.2 was used for all calculations.

2.3 Sample Calculations

A in the C ing 1 ) was written to simulate

vortex shedding from the bluff body described earlier. Shown in figures 2.5 and 2.6
are the positions of the vortices at times ¢ = 5 and ¢ = 10. Also shown is the plot of

the rate of change of circulation at the corners of the base of the body in figure 2.7.
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Figure 2.5: Position of the vortices at t = 3.
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Figure 2.6: Position of the vortices at ¢ = 10.
14 T T T T T T T T T
at upper corner —
By at lower corner — -

0 L L L ' s ' L L L
0 5 10 15 2 25 30 35 40 45 30
t
Figure 2.7: Rate of change of circulation at the corners.
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Chapter 3

The Vortex-In-Cell Method

3.1 Introduction

The method described in this chapter is the Vortex-In-Cell(VIC) method developed
by Christiansen [27]. This method has. since its introduction by Christiansen. been
continuously improved to make it more accurate and economical with respect to
computer time. In fact, this method itself is an improved version of the Random
Vortex Method(RVM) of Chorin [22]. One of the advantages that the VIC method
has over the RVM method is that the velocity field close to the body is better
represented. This is because a mesh, that is coincident with the surface of the body.
is used which enables the surface boundary conditions to be satisfied more precisely.

The other ad is that the ion time is reduced to O(MlogM + N)

from N? per time step, where M is the number of grid points and ¥ is the number of

lel Also, to simulate the flow more accurately, a large number

of point vortices is required. This can be efficiently handled by the vortex-in-cell
method. To further reduce the computational time, an absorption procedure is

used. In this procedure, the vortices that cross the body contour due to the random
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walk are removed from the calculations. New particles, fewer in number than those
entering the body. are introduced into the flow. They have the circulation required
to compensate for that lost due to the removal of the vortices that enter the surface.
This vortex method is stable, easy to set up. and accurate in predicting the detailed

and highly transient flow structures which occur in the flow around a bluff body.

3.2 Theory

In this chapter, the theory for simulating flows around the section of a circular
cylinder is explained. It can be further applied to other cross-section shapes, like

that of a flat plate. a cylinder with a fin. and a boat-section with a skeg using

conformal fc i This is explained in the next chapter.
The Navier-Stokes equations and the continuity equation govern the flow of
a viscous. incompressible and Newtonian fluid past a circular cylinder. These
equations in non-dimensional form, are:-
I

z- ~Llvp - @v)a+ 2RV (1)

and
Vi=0 (3.2)
where i is the flow velocity, P is the pressure, Re is the Reynolds number, and ¢

is time. These ities are ined by non-di ionalising with respect to the

cylinder radius (), the uniforr.i flow speed (U/), and the density of the fluid (p).
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where u*, P*. and ¢* are the dimensional velocity, pressure. and time respectively.
However. to numerically simulate the flow. the Navier-Stokes equations can be

written in the form of the Poisson equation for the stream function. w.

Vi =—w (3.3)

and the transport equation for the component of vorticity normal to the two-

dimensional plane of flow. w,

% = —(@.V)w + 2Re”' V2 (3.4)

The vorticity is given by

S=|Vxilk (3.3)

The fiow is simulated in a polar coordinate system (r.6) in which the cylinder
surface is defined by r = 1. The boundary conditions for equation 3.3. immediately

after the start of the flow (¢t > 0), are

=0 forr<1 (36)

and — —sinf asr —+ (3.7)

¥
%
or

The boundary conditions for equation 3.4 are

&
@
[}
o

forr <1 (3.8)

and w —= 0 asr — o0 (3.9)
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The boundary conditions given by equations 3.6 and 3.8 ensure the velocity within
the cylinder surface is zero and the conditions given by equations 3.7 and 3.9 impiy
that the vorticity and the perturbation that it causes in the flow. at large distances
from the cylinder surface. are small. The velocity & can be computed from the

finite difference form of the equation

FOY 0w

o (3.10)

4

where 7 and § are the unit vectors in the radial and the azimuthal directions.

respectively.

3.3 The Method

The vorticity distribution in the flow, given by,

w(z,y) =§:‘F‘5(r~ri)5(y—yi) (3.11)
is represented by N point vortices. Here I; is the circulation of the i** vortex, (z:,y:)
its position, and § is the Dirac delta function. The computational domain is defined
by a m x n(m is typically 100 or 200 and 7 is 129) exponential mesh defined over
an annular region, 1 < r < ro, together with 2 modified polar coordinate system
(', 8)(see below) in which the mesh size is uniform. In this system, the Poisson
equation for the stream function, equation 3.3, can be written as

go’f +a(r) e +b(r) A _ (3.12)
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where

a(r) = (r%)z

b(r) = (r';—’:)a,r‘%
and r = Be* —-1)+1 (3.13)

This equation is solved using the finite difference method and a Fast Fourier

for the azimuthal §-directi A FORTRAN 77 package called FISH-

PACK(Version 3.1, October 1980), developed by John Adams, Paul Swarztrauber
and Roland Sweet, The National Center for Atmospheric Research, Boulder Col-
orado, US.A, was used. Both —wr? and v are expanded as Fourier series in 8
and substituted into the finite difference analogue of equation 3.12. This gives a
set of tridi 1 simul ions for each h i litude of ¥ which

are solved by the Gauss elimination method. The coordinate system (r’,8) is such
that

)

L}

J 0<j<m

]

iAG 0<i<n

where A8 = 2r/(n—1)

The coefficients A and B in equation 3.13 are found by solving the simultaneous
equations obtained by taking the value of the outer radius ro to be r for ¥/ = m—1
in equation 3.13 and the radial mesh spacing at the cylinder surface, (rp= — 1).
to be equal to V2vAt. Here, v is the kinematic viscosity of the fluid and At is the
time step. It is important that ro is chosen such that the boundary conditions.

given by equations 3.7 and 3.9, hold. A value of ry = 100 was used for all the
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simulations.

An area-weighting scheme, illustrated in section 1.3.3, is used to distribute
the circulation carried by each vortex onto the four corner nodes of the cell in
which that particular vortex is contained. Having done that. if ['(7, j) is the total
circulation associated with the node (i. j). the value of w at that node is given by

_Tij)dr
T rAg dr =i

To model the action of viscosity at a solid boundary, new vortices are created

w(i.j) (3.14)

along r = 1 at each time step with circulation such that the boundary condition
on the tangential component of velocity, equation 3.8, is satisfied. The additional
circulation, ['(i,0), that must be introduced at every node on the surface, is given

by

£6.0) = 20,0 o) (3.13)
'l
Now, since ¥ = 0 along r = 1, the finite difference form of equation 3.12 reduces

to

w(i.0) = —a(0)[w(i, 1) — 2¥(i,0) + v(i. —1)] — %b(O)[w(i, 1) —p(i,-1)] (3.16)

Setting the stream function to be zero inside and on the surface of the cylinder,

we get

w(6,0) = ~[a(0) + 25OV, 1) (@17)
and ["(i.0) is the circulation distributed onto the mesh, along the body contour,

from the old vortices. Since the vortices are generated all over the body contour,
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we do not need to determine the position of the separation points. The additional
circulation is shared equally among the newly created vortices, n, in number, at
each node. An impulsive start causes a large amount of circulation to be created at
each of the surface nodes at the first time-step. Therefore, to reduce the circulation
carried by the initial vortices. a total of twenty new vortices were created at the
first time step and three at every subsequent time step.

All the vortices, those that are already present in the flow together with those
that have just been introduced on the body surface. are then moved using the

Operator Splitting Technique(OST) of Chorin [23]. Equation 3.4 is split into a

i Euler

Ow =
[E]c =—(Z.V)w (3.18)
and a linear diffusion equation
Ow ~-1y2,
= A% -
[ £ ] R 2Re W (3.19)

Equation 3.18 is solved by convecting the vortices. They are moved with velocities
given by the finite difference form of equation 3.10 using the nodal values of the
stream function of the cell containing the vortex. A second order Runge-Kutta
method is applied. The position of a vortex after displacement due to convection

from position 7] is given by

=rit 5l + &) (3.20)
where
4 = (r.0at
& = @A +d,t+At)At
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A second solution of the Poisson equation is required for the calculation of d.
For the solution of equation 3.19. the vortices are diffused by adding a random

walk to the position of the vortices. If Azy;sy and Aygiys are two random numbers

selected from a normal distribution with a zero mean and a variance of 2vAt. then

the position of a vortex after diffusion from the position (zy,y:) is given by

(z2,92) = (z1,91) + (AZairs, Ayaiss) (3.21)

Since the effect of diffusion is simulated by adding a random walk to the position
of the vortices using random numbers, variables such as pressure forces, vorticity.
stream function, and velocity etc. all have a small random component associated
with them. This random component grows with \/m. In other words, it de-
creases as the Reynolds number increases since the random walk becomes smaller.
During the process of convection, some of the vortices may enter the cylinder
surface. These vortices are reflected back into the flow about the cylinder surface.
Furthermore, as we deal with oscillatory flows, many vortices tend to remain close
to the body contour due to the reversal of the flow. Therefore, there may be some
vortices that enter the body due to the diffusion process, i.e., the random walk.
These vortices, which enter the body, are coalesced at the nearest nodes of the
contour mesh. New vortices are then re-injected into the fluid at a radial distance,
chosen from the same distribution of random numbers as for the diffusion process,
from the cylinder surface. This leads to a considerable reduction in the number of

vortices present in the flow, enabling longer flow simulations in time.
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3.4 Pressures, Force Coefficients and Vorticity

3.4.1 Pressures

It is known that the velocity and acceleration are equal to zero at r = 1. Therefore.

equation 3.1 can be simplified and written as

= %VP +2Re"'V2i =0 (3:22)
or
%VP =2Re™'V2u =2Re”\[V(V.il) =V x V x ] (3.23)

From the continuity equation, we have V.& = 0. We also have & = |V x | .

Substituting these in equation 3.23, we get
1 =i o5
EVP =2Re”'[-V x dJ] (3.24)

Taking a scalar product of each side of the above equation with § gives

18P 10w &
356 = —2Re o (3.25)
The right hand side of ion 3.25 the flux of circulation per unit

length across the cylinder surface, modelled over one time increment by the creation
of circulation I'(7,0) at the surface nodes. This is given by equation 3.15. Hence,
at any instant of time, the pressure distribution around the surface of the cylinder
can be ined by i ing the pressure i along the minor arcs, (i —

1/2)A8 < 8 < (i + 1/2)A6, which are given by

AP, = 2T'(i,0)/At (3.26)
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3.4.2 Force Coefficients

The drag and lift forces are d by their

pective force fhici Cp
and C;. These are calculated by integrating the pressure distribution obtained
from equation 3.26. They are given by

Ae 128 J
Co=%; > [ws( jA8) > T, o)} (3.27)
t =0 =l
and
Af 128 J
Co=—73 [n’n(jAa) Y TG 0)] (328)
At =0 =1

Alternatively, the force coefficients can be found from the general formula for
the force acting on rigid bodies in incompressible flow given by Quartepelle &
Napolitano [30]. This requires the knowledge of the entire vorticity field. For our
case of a cylinder in flow at a Reynolds number above 1000, the formula simplifies

to the following integral expression for the drag force Fp,

Fo= j‘ dA(# x 3).Vn. (3.29)

where A is the area and

e =z/r" (3.30)
Using equation 3.11 to discretize the vorticity field, equation 3.29 gives the follow-

ing expressions for the drag and the lift coefficients

c,,=ir.—{

u;sin(26;) — vicos(26;)
et

(3.31)

and



L P A
C=-3%TL [c.sm(?ﬂ.) :;u.ms(za‘) (332)
i=l

g

where r; is the position of the ith vortex and u; and v; are its velocities parallel

to the flow and at right angles to it, respectively. A comparison between the time

histories of the drag coeffici Iculated from the i ion of equa-
tion 3.27 and that obtained from the formula given by Quartepelle & Napolitano,
equation 3.31, is shown in figure 3.1.

3.4.3 Vorticity

Since the ighti; h hes the vorticity di along the cylin-
der surface, the surface vorticity wo(f) cannot be taken to be the nodal values of w
along r = 1. Thus, the surface vorticity is found by making use of the nodal values
w(i, 1), by using a Taylor series expansion of w(r). The formula for the surface

vorticity distribution is

Rel(i,0) dr

wo(idg) = wli,1) + s =1 (3.33)
3.5 Some Numerical Results
A in the C ing with calls to FOR-
TRAN 77 subroutines) was developed i ing the above method. Some flow

simulations were carried out. Shown below are the plots of the time history of the
drag coefficient for a submerged circular cylinder in a steady flow(figure 3.1), sur-
face vorticity distributions at Re = 1000(figures 3.2, 3.3, and 3.4), surface pressure
distributions at Re = 1000 (figures 3.5, 3.6, and 3.7), and the radial velocity on
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the symmetry axis behind the cylinder(figures 3.8 and 3.9).

4 T T T T

Smith & Stansoy +

Cp

Figure 3.1: Time history of the drag coefficient at Re = 1000.

As can be seen from figure 3.1 . there exists a good agreement between the

time histories of the drag coeffici Iculated from ions 3.27(i ion of
) and 3.31(Q: lle & Napoli However, a random component is
d with the Cp calculated from ion 3.27. Shown here are also the re-

sults of Smith & Stansby [31] for comparison. More numerical experiments showed

that the agreement did not significantly depend on the Reynolds number(greater

than 1000). It improved by d ing the time-step, Aé.

In figures 3.2 - 3.4 over leaf, the random component in the vorticity distribution
is quite large. This can be reduced by averaging over a number of simulations or
increasing n,. The random component that is associated with the surface pres-
sure distributions in figures 3.5 - 3.7 decreased with an increase in the Reynolds
number since the random walk became smaller. [t was also found that changing
ro caused insignificant differences. So a value of rp = 100 was chosen and used for
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all subsequent simulations. The curves in figures 3.8 and 3.9 were found to be

L L 1 1 L 4

L L '
o 20 40 60 wawo 120 140 160 180

Figure 3.2: Surface vorticity distribution, ¢ = 0.3.

Figure 3.3: Surface vorticity distribution, ¢ = 0.6.

&
888288

Figure 3.4: Surface vorticity distribution, ¢ = 0.9.
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Figure 3.5: Surface pressure distribution, ¢ = 0.3.
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Figure 3.6: Surface pressure distribution, t = 0.6.
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Figure 3.7: Surface pressure distribution, ¢ = 0.9.




Figure 3.8: Radial velocity on the z-axis behind the cylinder, Re = 3000.

1IN

NI}

[SIESIRTCTS

ol oo

Figure 3.9: Radial velocity on the z-axis behind the cylinder, Re = 9500.



sensitive to the value of n,. They improved with an increase in n,. For the curves
shown in figures 3.8 and 3.9, n, = 5 was used.

The results presented in figures 3.1 - 3.9 are in very good agreement with those
presented in the paper by Smith and Stansby [31], some of which are shown in
figures 3.1, 3.3 and 3.6 for comparison. This provided us with a good validation
of our simulation program. On the basis of this, simulations for flows past other
bodies, of cross-section shapes other than that of a cylinder, were carried out with

the use of conformal i This is d in the next chapter.




Chapter 4

Results using Conformal

Mapping

4.1 Introduction

The method for the numerical simulation of flows past a circular cylinder was
explained in the previous chapter. To study flows past bodies that have other cross-
sectional shapes, the physical plane containing the body section is mapped into
a plane containing a unit circle, which conespon&s to the contour of the physical
body. This is done by the use of conformal transformations. Generally, for the
geometry of some sections that we are interested in, the transformation of the body
contour onto the unit circle is a two-step procedure. First, any sharp corners, that
the body may have, are removed by successive applications of the Karman-Trefftz
transformation. This is referred to as the Corner Removing Procedure. The second
part is to map the body, with the sharp corners removed, onto a unit circle via

the Theod: -Garrick fc ion. All the calculations are performed in the

transformed plane containing the unit circle. This renders the problem as being
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one of a two dimensional flow past a circular cylinder. Then, the method described
in the previous chapter can be used to simulate the flow in this new plane. Any
quantities calculated using the circular cylinder are then used to compute those in

the physical plane using the conformal transformation and its derivative.

4.2 Modification to the VIC method

The plane containing the unit circle is referred to as the computational domain.
The use of conformal transformations provides us with a concentration of mesh
nodes in the neighborhood of the sharp corners in the physical plane as a result
of the uniform distribution in the azimuthal, 4, direction, that is used in the com-
putational, ¢, plane. All the formulae for the convection and diffusion of vortices,
calculation of force coefficients, etc., get modified as a result of the coupling of
the vortex-in-cell method with the conformal transformation. Following Scolan
and Faltinsen [32], the Jacobian of the transformation is defined as the mapping

derivative of the conformal transformation. It is given by

dz
J= Fd (4.1)

The usual definition of the Jacobian of a transformation, however, is the ratio of
an elemental area of the physical plane to that of the transformed plane, |dz/d(|*.

The convective step becomes:

2

Ao = H W)t (4.2)

where W/(() is the lex velocity calculated in the ional domain. The
modified diffusion step is given by:
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1 5
Alp = F(Azuigs + idyaigs) (4.3)
where Mz rr and Ayg;y are, as explained in the previous chapter, a pair of random
numbers belonging to a normal distribution of random numbers with zero mean
and a variance of 2vAt.

The non-dimensional pressure force, according to [32], is given by

F, Al 128 3 k
%‘ﬁz—L =Af ;}[](G)e lo=ras Z:n T; (4.4)

where p is the density of the fluid, U is the magnitude of the flow velocity at
infinity, L is the characteristic body length, and [; is the newly created circulation
at the ith node on the body contour. Similarly, the non-dimensional skin friction

force, according to [32], is given by

(4.3)

Fy 28 f [ woe'®
3PU2L Re 55 [J°(0) ] gekan
where wo denotes the vorticity calculated at the kth node on the body surface and

J*(8) is the complex conjugate of J(4).

It can be seen that the ion and the diffusion displ are signif-
icantly affected by the singular behavior of J, i.e., as [J| = 0. Also affected is
the normal pressure force which tends to zero as J vanishes. Since the Jacobian
of the transformation vanishes at sharp corners of the body, a modification of the
Jacobian is found to be necessary, there. This is basically a truncation of the real
part of the Jacobian in the vicinity of a sharp edge or corner to a small finite
value. Shown in figure 4.1 is the effect of this value of truncation(minimum J) on

for a finned-circle at a Re = 426 and

the drag and mass
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KC = 1.33. As can be seen. the force coefficients did not vary much as a result of
2 variation in the truncation value. On the other hand. Scolan and Faltinsen [32]

have observed large variations with the value of truncation used for a flat plate.

2
2
s
s
3
2
3
z
1
2
g

0 0005 001 0015 002 0025 003 0035 004 0045 005
Minimum J

Figure 4.1: Effect of the truncation value of J on Cp and Cyr

This value is determined by studying the Jacobian of the transformation for
similar shapes that have rounded corners instead of sharp edges. For example, for
the case of a flat plate, the similar shape used is an ellipse [32]. The shape with the
sharp edges is the limiting case of the shape with the rounded corners. The value is
taken to be the value of the Jacobian of the transformation, for the similar shape,
at the location of the sharp corner in the actual body. Thus, to avoid the Jacobian
of the actual transformation from vanishing at a sharp corner, it is assigned this

finite value in a small area in the neighborhood of the corner. This treatment of the
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Jacobian does not affect the direction of motion of the vortices due to convection
since only its magnitude is used in the convection step as seen in equation 4.2. It
can also be seen that the motion due to diffusion is not as seriously affected as
the one due to convection, since only 1/J appears in equation 4.3, whereas |1/J]*
appears in equation 4.2. Care is also taken to make the velocity at infinity the
same in both the computational and the physical domains. This is ensured by
forcing the value of |J| at infinity(|J|) to be unity. This, in turn, is achieved by
normalizing the conformal map by the value of |J|. Even though the truncation
keeps J from vanishing at the sharp corners, it is still a very small value. Vortices
present near the sharp edges could still have displacements that are large enough to
cause numerical difficulties, owing to the presence of J~! in the equations 4.2 and
4.3. In order to avoid this, a maximum motion due to convection was imposed. It
was fixed as [A(c|p,. /L = 3 for all the flow simulations. This treatment does not
have a noticeable effect on the results.

Having obtained the non-dimensional forces, we can now compute the force

coefficients, Cp and Cy. According to Morison’s equation [32], we have

1 du(t
Ft) = 3oCoLu(t lu(t] + FoLCar i) “s)
where F(t) is the i force calculated in the direction of the flow and
u(t) is the flow velocity, given by
u(t) = Usin(at) @7

where U is the flow velocity at infinity and & its frequency. The force coefficients

are determined by Fourier-averaging over one cycle.



L3 T
C"‘gpL—'zL's_ A F(t)sin(@t)dt (4.8)
and
_ 1 KCa
R YA )

where T is the time period of the oscillatory flow, given by

Cum i F(t)cos(wt)dt (4.9)

y e (4.10)

and K C is the Keulegan-Carpenter number, defined as

A _UT
KC=—1 (4.11)

The force, F(t), is taken to be the sum of the pressure and the skin friction forces
in the direction of the flow.

Various cross-sections were studied by combining the VIC method with their

resp fc | transformations. These are described below along with the

results of some numerical examples.

4.3 Circular cylinder in oscillatory flow

This is the simplest case possible as the transformation transforms the circular
cross-section onto itself. Hence ( = z and J = 1 and the formulae present in

the last chapter are applicable, as they are, without any modifications. Shown in

figure 4.2 is the mesh d in the plane ining the circular cylinder.
Simulations were carried out at various KC numbers at a constant value of

B(the Stokes parameter, defined as § = Re/KC). Curves of Cp and Cp vs. the
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Figure 4.2: Mesh in the physical plane(circular cylinder).

KC number were plotted using the values obtained from the method together with
available experimental results [34]. These are shown in figure 4.3. Also shown is the
time history of the force, F(¢)(non-dimensional), in comparison with the force as
obtained from the fitting to Morison’s equation(figure 4.4) for Cp = 0.9, Cyr = 2.0,
at KC =2, 3 = 439, and & = 1.5371. As can be seen, the fitting was found to be

very good.

4.4 Flat plate in cross oscillatory flow

As described in the i duction, all the calculations are performed in the compu-

tational dcmain that contains a unit circle which corresponds to the actual physical

body. The transformation that maps the unit circle to the flat plate is given by
1 1
=36-7) (412)
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Figure 4.3: Cp,Cum vs. KC(circular cylinder), 3 = 439
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Figure 4.4: Fitting of F(t) to Morison's equation(circular cylinder).
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¢ — plane = —plane

Figure 4.5: Transformation scheme for a circle to a flat plate.

dz 1 1
J:i = E(H'c_?) (4.13)
Now as ( — oo,
171 = 1=/l (4.14)

Here, the Jacobian vanishes at { = +i. Thus, a truncation of the Jacobian, as
described earlier, is necessary in the neighborhood of { = +i to avoid an infi-
nite value of J~! which is used in the ion and diffusion displ: step

calculations. Figure 4.5 shows the transformation scheme of the body in the com-
putational plane to the one in the physical plane. Figure 4.6 shows the mesh
generated in the physical plane containing the flat plate.

The curves of Cp and Cp versus the KC number for the flat plate in cross
flow are presented in figure 4.7 and the comparison of F(t) as obtained from the
method with that obtained from Morison's equation in figure 4.8 for Cp = 15.29,
Cu=184,2t KC=2, =439, and & = 0.785.
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Figure 4.8: Fitting of F(£) to Morison’s equation(flat plate).

4.5 Cylinder with a fin

+i +i +i n
—1 +H— —_ — 1 +1
= =i ~t =]
—3Ji
¢ — plane z; —plane z — pane z —plane

Figure 4.9: Transformation scheme for a circle to a finned-circle.

To obtain a cylinder with a fin attached to it. we first transform the circle onto
a flat plate and then elongate the flat plate. This is done using the following

transformations

n o= 2C-1/0) (13)

57



B =0@+D _
2

where 3y is an elongation factor. If greater than unity, the plate in the z;-plane is

elongated below the real axis in the z-plane. The elongated plate is then mapped

onto a finned-circle with the transformation

z=zn+\/HF+1 (4.17)
As the objective of this study is to analyze viscous flows past floating or surface
piercing bodies, we assume that the wave-making effects can be determined sepa-
rately and superimposed on the viscous part solution. Since only the flow in the
lower half plane is required, the free-surface is treated as a solid boundary by us-
ing symmetry about the free-surface line. This results in a flow in the upper half
plane that is the image of the flow in the lower half plane past a body that is also

symmetric as shown in figure 4.10.

Figure 4.10: Mesh in the physical plane(finned-circle).
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With these transformations at hand, we can now derive the Jacobian for the
overall transformation using the chain rule

(4.18)
Therefore,
o lupLyfirl g, =
d = 2(1+<1)( > )(1+7.;-%=:=1) (4.19)
_ B+l 2+1 z
- )(-—(‘ ) () (4.20)
and as ( — oo,
(s 2L A (421)

The curves of Cp and Cy versus KC, obtained from the VIC method coupled
with conformal transformations, are shown in figure 4.11. Figure 4.12 shows the
comparison of the force F(t) obtained from the method with that obtained from
Morison’s equation for Cp = 6.34, Cy = 1.16, at KC = 1.33, 3 = 320, and
& = 1.371. Figure 4.13 shows the streak plot in an oscillatory flow, Re = 426
and KC = 1.33, past a finned-cylinder at a di ional time of 8.0(twice the

period of oscillation of the flow).

4.6 Boat Sections.

By using the transformation of the circle onto a circle with a fin, it is possible to
map the resulting finned-circle onto a section of a boat with a skeg. Boat sections
could be rounded or have hard chines. Different transformations are used to obtain
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Figure 4.12: Fitting of F(t) to Morison’s equation(finned-circle).
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Figure 4.13: Streak plot for a finned-cylinder at Re = 426, KC = 1.33, At = 0.04

these two kinds of shapes. First. any sharp edges, that may be present in sections
with hard chines, have to be removed. This is not required for sections that are

already rounded.

4.6.1 Rounded sections

One of the standard ways of transforming a unit circle onto a boat section is
through the transformation given by
ay

a3 (4.9
=C(+—+=3 4.22)
z2=¢ o §

in which e, and aj are real and related by

b l+a +a3 (4.23)

H = l-a +a3 (4.24)

where b is the half beam of the section at the required waterline and H is the draft
at that waterline. Ship-sections derived using the above transformation are called
Lewis forms. They have the drawback that they cannot represent ship sections
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with area coefficients close to unity. Also, the Lewis transformation cannot produce
the actual section shape but simply generates a section that has the same beam,
draught. and sectional area. For better results, an extension of the Lewis form can

be used [35]. Here the transformation has an extra parameter as. It is of the form

a , a5

a1

z=0+—+—+—= 4.25
¢ ot (4.25)

where ay, a3, and a; are real and related by the equations
b = l+a +az+as (4.26)
H = l-—o +as3+as (4.27)

Further, defining the parameters , A, o, and 7 as
¢ H S I

a=3 A= =g TR (4.28)

where S is the sectional area of the form and I is the second moment of area of

the waterplane, given by

25,
== 429
I 3/;yd: (4.29)

The expression that relates o, A, o, and as is

o= % [oP(1+36}) +af3(1+0) +as(L = N =201+ A+ 23] (430)

These two transformations are based on the assumption that a ship-section that
has the same principal geometrical characteristics as a member of the particular

family(the Lewis forms or the more general three-parameter forms) will have the
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same added mass coefficients as that member. As this assumption is quite crude, a

third and more method of ing a unit circle onto a ship-section is

a numerically determined conformal mapping. The offsets of the section are spline-
fitted so as to be able to interpolate and obtain intermediate offsets. A total of
one hundred and twenty-eight offset points were generated from the given offsets.
With the availability of high speed computers, it is possible to have a large num-

ber of coefficients in the ion function. A T ion function of the
form of equation 4.33 was used with a total of sixty-four, ag, @y, .cervn-. ag3, complex

These coeffici were ined using the method of minimizing
the sum of the squares of m li at in n variables by a di ion of
the L berg-M: dt algorithm. A FORTRAN 77 package called MINPACK,

developed by Burton S. Garbow, Kenneth E. Hillstrom and Jorge J. More of the
Argonne National Laboratory was run on a DEC 3000(Alpha microprocessor) com-

puter. The non-linear functions are given by

(4.31)

fi = z;— Re() i

fiss = y; —Im(z;) (4.32)

where (z;,y;) are the coordinates of the j* offset, and Re(z;) and Im(z;) are the

for

real and i inary p of the point d by the
a given set of values for the complex coefficients, a;. If the section to be analyzed
has a skeg, then the finned-circle, instead of the unit circle, is used to generate the

boat-section. The transformation function is

(4.33)




where 23 is the plane containing the finned-circle. The mesh in the physical plane
resulting from this transformation is shown in figure 4.14, for a section with no

skeg.

Figure 4.14: Mesh in the physical plane(rounded section, no skeg).

The Jacobian of this transformation can be written as

_dz _ & (2i-1a;
J—d—h-—an(l—gT) (4.34)

Since the calculations are performed in the (-plane, the plane containing a unit
circle, the overall transformation to the physical plane consists of all the intermedi-
ate transformations of the circle((-plane) onto a flat plate(z;-plane), elongation of

the flat plate(z;-plane) ing of the el d plate onto a circle with a fin(z;-

plane), and finally the mapping ‘cf the finned-circle onto the boat-section with a

skeg(z-plane). The overall Jacobian is the product of the Jacobian obtained in
the previous section(for a circle to a finned-circle) and that derived in this section.

Hence the overall Jacobian can be written as
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To ensure a uniform velocity of unity at infinity in the physical plane, the Jacobian
at infinity is calculated. As ( — oo, we have |Joyeraul — ao(By + 1)/2. Therefore.
aq +1

ool = u(ﬁ/2 ) (4.36)

| A s i

The conformal map used in the is d with respect

to |Jwo|- This obviates the need to modify U in the Reynolds number used in the
computational domain. This would otherwise be necessary because of the change
in the span of the body from the physical plane to the computational domain due
to the transformation.

Flow simulations were carried out at different KC numbers, first for a boat
section without a skeg by taking 3y = 1. Figure 4.15 shows the curves of Cp and
Cyr versus KC that were obtained using the above transformations. Figure 4.16

shows a ison of the forces obtained from the simulation with that obtained

from Morison’s equation for a Cp value of 1.66 and Cy = 1.76, at KC = 1.6,
B =400, and & = 1.571.

A fin was added to the body, to simulate the effect of a skeg, by taking the
value By to be 1.0833. The mesh in the physical plane is shown in figure 4.17. The
section gets distorted from being a flat bottom one to the one as shown due to
the fairing required by the addition of the skeg. Figures 4.18 and 4.19 show the
curves of Cp and Cys against KC and the comparison of forces computed from the
method with that computed from Morison’s equation at Cp = 9.42, Cpr = 1.09,
KC =1, B =878, and & = 2.094, respectively.
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Figure 4.16: Fitting of F(t) to Morison's equation(rounded section, no skeg).
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Figure 4.17: Mesh in the physical plane(rounded section, with skeg).
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Figure 4.18: Cp,Cy vs. KC (rounded section, with skeg), 3 = 878, fin-
length=0.5
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Figure 4.19: Fitting of F(t) to Morison’s equation(rounded section, with skeg).
4.6.2 Sections with sharp edges(hard chines)

As these sections have sharp edges, we follow the two step procedure mentioned
in the introductory section of this chapter. This is based on the method that was
introduced by Ives [33]. The method is illustrated below in figure 4.20 for the
case of a square section. The corners of the section are labeled from 1 to n(in
this case n = 4). Each one of them is removed step by step. The Karman-Trefftz

transformation

= L4l —a) /=
= T (= a) =P (4.37)

is applied successively to the square section with i corners removed. Here, 2z, is

the plane containing the section with i corners removed, f; is given by

(4.38)
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Figure 4.20: Karman-Trefftz, Theod Garrick ions for a square[34].




and ¢; is a point inside the section in the complex =; plane. Here, g; is the ap-
proximate centroid. The point g, also forms the origin of the z,.; plane. The
origin of the complex plane z; is taken to be the ith sharp corner at which the
included angle is given by a;. Once the sharp corners are removed, we are left

with a rounded square or a near circle. This is mapped onto 2 unit circle via the

Theod: Garrick ion. This is given by
M
Zap1 = Cezp |3 (A; +iB;)¢ (4.39)
=0
where the 2(M+1) coeffici in the above ion are found from the method of

Ives using a fast Fourier transform technique which performs the required Fourier
analysis and synthesis.

The first case of a body with sharp edges that was studied was the square
cylinder. Shown in figure 4.21 is the mesh that was obtained in the physical plane.

Figure 4.21: Mesh in the physical plane(square).
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From the flow simulations carried out. plots of the drag coefficient and the
mass coefficient were obtained. These are given in figure 4.22. Figure 4.23 shows
the comparison of the force obtained using the above transformations and that
obtained from Morison’s equation at Cp = 3.32 and Cy = 3.06, at KC = 2.42,
3 =200. and & = 1.571.
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Figure 4.22: Cp,Cy vs. KC(square), 3 =200

A fin was added to the square to simulate the effect of a skeg. The mesh in
the physical plane is shown in figure 4.24. The respective results are shown in
figures 4.25 and 4.26(Cp = 8.29 and Cp = 2.48, at KC = 1.65, § = 258, and
& =1571).

Also shown below are the results of simulations carried out using a section of a
boat with hard chines and a skeg. The comparison curves of F against t(figure 4.29
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Figure 4.26: Fitting of F(t) to Morison's equation(square with a fin).
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were plotted for Cp = 4.54 and Cyy = 2.70, at KC = 2, 439, and & = L.11.

Figure 4.27: Mesh in the physical plane(boat section with a fin).

4.7 Discussion

The factors that affect the drag force are the size and strength of the shed vor-
tices. These vortex properties are related to the size of the body. the velocity and
frequency of the oscillatory flow and hence the Keulegan-Carpenter number, KC.
The results for various flow simulations were obtained in the form of Cp and Cy
against KC number curves and the fitting of F(t) to Morison’s equation. Shown
also are the meshes in the physical planes that resulted from the transformation of
the unit circle in the computational domain. Results for the circle in an oscillatory
flow showed a very good agreement with the existing experimental values. A close
agreement was also found between the results for a flat plate in cross oscillatory
flow and a square with those obtained by Scolan and Faltinsen [32]. This provided
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Figure 4.29: Fitting of F(£) to Morison’s equation(boat section with a fin).
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us with a validation of the vortex-in-cell method when coupled with conformal
mappings to study flows past bodies with other cross-sections.

Transf i for a finned-cylinder. a rounded boat section. and sections

with hard chines, were developed and applied to simulate flows past them. Similar

values of Cp and Cy, at different KC b were ined for a finned-circl

and the rounded boat section with a skeg. This was expected since the rounded
boat section was nearly circular in shape. However, as would be expected. the
values of Cp for the finned-circle were found to be higher than those for a circle.
but the values of Cy were found to be lower than those for the circle. The curves
of the non-dimensional drag force, F(t), against time, ¢, also fitted well to the force
curve generated by using the particular values of Cp and Cys in Morison's equation.
The random component present was due to the random component present in the
calculation procedure. In the case of sections with hard chines(sharp corners), the
value of the truncation used was of the order of 0.1 and it is to be noted that
the force coefficients varied considerably with the value of the truncation used.
Determining the best way to establish the value of the truncation is a problem
that needs further study.
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Chapter 5
Conclusion

Some common vortex methods and the work done in the area of vortex- shedding
due to flows past bluff bodies were reviewed. As a special case, a model based on
the Point Vortex Method, following Clements [12], was constructed to simulate a
two dimensional inviscid flow near the wake of a bluff body. Sample results were
obtained in the form of the positions of the vortices at different instances of time
and the rate of change of circulation with time. These were found to be in good
comparison with those obtained by Clements himself. However, the model is based
on inviscid flow and so it does not allow us to simulate the diffusion of vorticity in
the flow nor does it accurately obtain the points of separation.

For viscous flows, another method, called the Vortex-In-Cell Method together
with the Operator Splitting Technique of Chorin [23] was developed and used to
carry out the flow simulations on a DEC 3000(Alpha microprocessor) computer.
First, a steady flow past a circular cylinder was simulated and the results in the
form of the time history of the drag force, the pressure and vorticity distribution on
the cylinder surface, and the radial velocity on the z-axis behind the cylinder were

obtained. These were found to be in a very good agreement with those of Stansby

7



and Smith [31]. Oscillatory flows past a circular-cylinder and bodies with other
cross-sectional shapes were also simulated. To be able to calculate the viscous

effects alone. assuming that the wave-making effects due to the free-surface can

be d ined ly, sy v about the axis parallel to the direction of the
flow was used. This converts the free-surface into a streamline and the flow to a
symmetric flow about the z-axis past a body that is also symmetric about this
axis. Results of each simulation were presented in the form of plots of the force
coefficients, Cp and Car, against the Keulegan-Carpenter number, KC. and the
fitting of the time history of the drag force to Morison's equation. The calculated

values of Cp and Cys for the cylinder, at different KC' bers showed 11

agreement with the existing experimental and numerical values.
Conformal mappings were used to study some non-circular sections numerically.

As a result of the transfc ion, the i difications to the VIC method

were made using the Jacobian of the transformation. Since this quantity vanishes
at the sharp corners of the body, a treatment of the Jacobian was found to be
necessary in the vicinity of the sharp edges to avoid numerical difficulties. This
involved the truncation of the Jacobian to a finite value in the neighborhood of the
corner. It was shown that the force coefficients calculated did not change much
with the value of the truncation used in the case of the finned-circle. The values
of Cp and Cy for the flat plate were also calculated and found to be in agreement
with those determined by Scolan and Faltinsen [32]. Flows were also simulated
past boat-sections of two types. For rounded sections, a conformal mapping that
was numerically determined was used to transform a unit circle to the boat-section.
To generate a section with a skeg, the unit circle was first mapped onto a unit circle

with a fin via an elongated flat plate. The other type of boat-section studied was

78



one with hard chines. For such sections. the Karman-Trefftz transformation was

first applied to remove the sharp corners and the resulting near-circle was then

transformed to a unit circle using the Th Garrick t ion. The
results for the square were found to be very close to those of Scolan and Faltinsen.
Force coefficients were also predicted for the section of a boat with hard chines
and a skeg. Due to the lack of any experimental results for such a section, they
were not verifiable.

All such numerical simulations involve a great deal of computations and hence
CPU time. Owing to the numerous variables that affect the flow simulation, it
becomes increasingly time consuming to try and study the effect of each in order to
obtain as accurate results as possible. Due to such limitations, only the horizontal
oscillatory flow past some relevant body sections was studied. This helped in
predicting the swaying forces only. However, it is possible to simulate other motions
such as the roll motion of a ship by changing some of the boundary conditions.
Care must be taken to take into consideration the fact that the shape of the body
changes with respect to the rigid free-surface. Also, in order to be able to try the
various combinations of input variables, we should lock for better(faster) solvers
for equations, such as the Poisson's equation for the stream function, to cut down

the ional time. Better simulation algorithms could also be developed to

lower the computational effort by coming up with other techniques to reduce the
number of computational elements to be tracked.

The Vortex-In-Cell Method when coupled with the conformal mapping tech-
nique enables us to simulate flows and predict the forces on a body with a cross-
sectional shape that can be generated from a unit circle. Some common body-

sections and some that are important to us in the area of Naval Architecture were

9



studied. It is possible to simulate flows past other cross-sections, like that of a
cylinder with a multiple number of fins. etc.. and predict the forces and moments.
This could help in the design process and improving on the shape of the sections

of a moving craft, for instance, and cutting down on unwanted motions.
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