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Abstract
The characteristies of the gronnd-wave propagation over a cliff are investigated

using both the residue and the compensation methods. The two methods are re-

viewee and compared. The theorieal analysis for the ground wave propagating from
sea to carth is presented in detail, The residue method employes Fourier transform

and Green theorem, while the compensation method employes the surface impedance

technicque. The analysis of the two methods are reintroduced in a more clarified way.

The differences between the assumptions of t* > two methods are identified and com-
parisons of the relative results are illustrated.

“The flat-cliff approximation is used to obtain the terrain coefficient so that the
problent can be solved when the antennas on the cliff top are close to the cliff edge.

fons of terrain cocllicient and field distribution over the cliff as well

The final expres

s the s

are presented.

An approximate analysis expression, called the two terms approximation, is pre-

imation

sented in this work to caleulate terrain coefficient. The two terms approy
is based on the flat-cliff approximation of Green theorem methed. It simplifies the
numerical calculation of the problem.

Graphs are shown in this work to describ the fields changing over the ocean and
over the ¢fiff for the transmitters on the cliff and on the ocean separately. The

numerical results are in a good agreement with availible literature data.

The expressions and results given in this work can be used to determine the
optimum location and height of an antenna over a cliff.
Presently, a prototype bistatic radar system which uses ground wave propaga-

tion for over the horizon target detection is being built on a cliff at Cape Race,



Newfoundland. The radar has a log periudic array antenna as the transmitter amd

a linear array as a receiver. The results. data and the program given in this work

are very helpful in designing new groundwave radar antennas on the efill since the
program can be used o determine the optimum location and height of the ansennas

for both the source and the receiver
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Chapter 1

Introduction

1.1 Research Rationale

The problem of el ic ground I ion over an i
earth has attracted much interest for a long time, for it is relevant to communica-
tions, navigaticu and applied geophysics.

With the advancement of ocean exploration, radar is increasingly nsed to de-
tect targets at sea and collect environmentally related data from the ocean surface.
Often, the land based radar is located on a cliff or beach and works at high fre-
quency employing ground wave propagation mode. Thus. the study of gronnd wave
propagation over 2 cliff becomes of great importance.

Presently, a prototype bistatic radar system which uses gronnd wave propagation
mode for over-the-horizon target detection is being operated on  cliff at Cape Race,
Newfoundland. The radar has a log periodic array antenna as the transmitter, and
linear array antenna as a receiver. Both the transmitter and the receiver are located
on the cliff. In this thesis, our attention will focus on the ground-wave propagation

between sea and land in both directions across the cliff.



The ground wave propagation over a clifl is a problem of wave propagation over
an inhomogencons earth surfacs which consists of two sections with different heights

and electrical properties. The wave path includes land and sea. The land is higher

than or equal to sea-level. The land and sea have different clectric permitti

and conductivities.

1.2 Previous Work

The Hertz potential due to a vertical clectric infinitesimal dipole at the surface of a

splierical, homogencous earth was derived by van der Pol and Bremmer in 1933 [1].

Wait [2] developed the series expressions of the electr etic field of
the above case in terms of magnetic vector potential in 1962.

Many papers have been published on the problem of ground wave propagation
over a smooth earth (no vertical discontinuities) consisting of several sections with
dilferent electrical properties. Among the various theoretical approaches to the
problent was an analytical approach initiated by Griinberg [3] and developed by

Feinberg [4

In Griinberg's work, the adoption of approximate boundary conditions and a
standard application of Green's theorem led to an integral eqsiation for the normal
component of I at the surface of the earth. He solved the problem for the case of
two carth media, where one of them has infinite conductivity. The two media were
separated by a straight boundary. The incident field was taken to be a plane wave.
As an approximate treatment, Griinberg considered that the direction of the wave
propagation al a great distance beyond the boundary is the same as that of the

incident wave,
7



Griinberg's work was generalized by Feinberg [45]. Tn Feinherg's work, thern

was a difference in that a transmitter was located at a finite distance from the

boundary. The espressions that were derived took into account i various pusitions

of transmitter and receiver with respect to the boundary.

Feinberg [6] emphasized that, for a smooth earth, the terrain inhomogencities du
not have the same effect for ail parts of the wave path but are dependent on their
locations, When the inhomogeneily extends only for a short distance so that the
flat-earth approximation can be used for that part, its eflect is most serious when

the inhomogeneity occurs in a terminal area of a long wavepatl. while its”effect is

negligible when the inhomogeneity occurs in the middle past. Conversely, o matter
where an inhomogeneous area occurs in the wavepath, its effect is accummlated when
it extends over a long distance along the wavepath.

Clemmov [7] showed that the case of a single land/sea boundary for i flat earth
was adequately treated by an integral equation method applivd to a dillraction
theory. The land/sea problem was a two-dimensional problem where the sea was
replaced by a perfectly conducting, semi-infinite plane sheel; and the transmitter
was a vertically polarized line-source. He took it as a generalization of the classic

Sommerfeld half-plane diffraction problem.

In a later paper [8], Clemmow gave a theoretical investigation of vertically po-

larized radio waves propagating across a boundary hetween two earth scctions with
different complex permittivities. The problem was treated as a two dimensional one.
The earth surface was assumed to be flat. He solved the boundary value problem

for a plane wave incident at an arbitrary angle; the scattered field due to surface

currents was expressed as an angular spectrum of plane waves, and this formulation




led to dual integral equations solved by the methods of contour integration. After
considering the case of both the transmitter and receiver at same ground level, he
gave an approximation for an elevated transmitter and receiver. The attenuation
and phase curves in a numerical example were given.

Bremmer [9] gave the extension of Sommerfeld’s formula for the propagation of
radio waves over a flat earth with inhomogeneous soil conductivities. The integral
equation used by Bremmer was based on Green’s theorem. The solutions for two

adjacent regions of h electric were treated ically with

the aid of two different expressions for the field near the separating boundary and for
the field far beyond this boundary. The rigorous solution of the integral equation was
proved to be identical with the corresponding expression derived in a very different
way by Clemmow [8].

There are two other methods to solve the problem of propagation over an inho-
mogeneous earth taking earth curvature into account, which are the compensation

method [10] and the residue method [11-15].

b J

and surface i

Using an ej
tion based on the compensation method, Wait [10] obtained final expressions for
propagation across two or three section earth with the same heights. He also solved
radio wave propagation over a perfectly conducting curved ground[16]. In another
paper [17], he presented the results for propagation over two section earth with dif-
ferent heights. He also extended the method to three dimentional problem. However,
his method and results are only applicable to long distance sections [10].

The residue method was developed by Furutsu [11-13). It gives the expressions

of the i fficient and field distribution for an inh: earth with




o

different heights and different electrical properties.
Since 1955, Furutsu d=veloped the theory of propagation of electromagnetic

waves over spherical inhomogencous earth, where the waves are transmitted across

one or two boundaries of di: inui ing different earth media. By employ-

ing Fourier transform, Furutsu obtained the formulae corresponding to the ordinary
Watson formula [18] for a homogeneous earth. He compared the results with those
he got in the case of a flat earth. Then he derived the general expression for the wave
propagation across any number of discontinuous boundaries with Green’s theorem.

Also, the formulae of field strength in the case of a flat earth, for diffraction of
ground waves by a ridge having finite breadth and finite electrical conductivity were
derived by Furutsu [12].

Furutsu's formulae for an inhomogeneous earth gave a multiple series to calcu-

late the terrain (; ion) coeffici When the jon distances over all
sections of the terrain were large enough , the series was so well convergent that
one could use the first term alone to calculate the cliff gain. When the propagation
distance over any section was so small that it could be regarded as a flat plane,
series convergence became very slow and the formula was not available for practical
use. When the terrain was reduced to a homogeneous earth by letting all the heights

and electrical properties of the section be equal, the series uniformly reduced to the

1l-ki B series for a h spherical earth. When the lengths of
the internal sections were sufficiently large, the effects of the terminal sections over
which the transmitter and receiver were located became isolated, so the terminal
effects or terminal gain could be evaluated in detail. The terminal gain could be

used in the same way as the ordinary antenna height gain function had been used



for the ground wave propagation over 2 homogencons spherical earth.

The ebstacle gains were numerically illustrated as functions of the distance be-
tween the obstacle and the path terminal for the typical examples of a ridge. a bluff
on a homogeneons carth and a cliff at a coastline. The obstacle gain defined in the
paper was the gain caused by the earth inhomogencity and the gain caused Ly the
antenma height. The latter was called the terminal gain too, for the inhomogeneity
in the vicinity of the path terminal was particularly emphasized by the effect of an-
tenna height. These obstacle gains tended to become constants when the distance
increased. On the other hand, at short distances, the gains were directly affected
by a diffraction loss, interference between the direct and reflected waves, and other
effects which were not optical in character. A convenient expression of the obstacle

gain was introduced for the poor convergence of the relevant residue series. It could

be used in the same way as the ordinary antenna height gain over a homogencous

carth. Several figures of ridge gain, bluff gain and cliff gain were shown in Furutsu’s

work [14,13].

Based on Furutsu's analysis, Pielou, Milson and Herring presented extensive nu-
merical results in case of a cliff [19]. In this work. graphs of site gain contours were
given for various combinations of cliff height, path length and frequency. The vari-
ation of site gain versus both cliff height and distance inland were also shown. It
appeared that cliff height and overland losses contributed independently to the site
gain. If the losses from cliff height and from distance inland were given separately,
summing these two losses provided an estimate of the expected overall site gain.
These authors pointed out that there were a number of restrictions inherent in Fu-

rutsu’s theory: (i) a path consisting of two or more short sections could not be mod-



Hed: (i) sections must have vertical boundaries: (iii) only two dimentional terrain

height variations are allowed so that coastal refraction effects could not be mondil

(iv) reflected sionals from a cliff face were neglected. In Favntsu's expr

o],

wave propagates {rom earth o sea, while in Pielou’s results, wave propagates from

sea to earth which were compnted employing unpublished expre

1.3 Scope of Thesis

The purpose of this work is to determine the field distribution for ground wave
propagation over a clifl. which is a special case of ground wave propagation over
an inhomogencous earth. The two directions of propagation across the ¢liff are
considered. A new approximation is introduced to calenlate the normalized field
distribution. Based on the residue method, the expressions of terrain coelficient, lill
gain and field strength . cliff case are given. A user-{riendly computer program is
developed to obtain the numerical results for different clifl parametess.

The general formulafor propagation over a homogencous carth is given in € 'hap-

ter 2. The principle to obtain the solution for an inhomogencous carth using homo:
geneous earth solutions is described.

The residue method is reexamined in Chapter 3 for ground wive mode.

In Chapter 4, the compensation method is reviewed and compared with the

residue method.

Based on the residue method and the ion method, new approxitnated
expressions for cliff case are given in Chapter 5. These include field distributions, cliff

gains and terrain (attenuation) coeffici The two directions of wave

sea-land and land-sea, are d. The new

two terms approx-




imation is vbtained to simplify the numerical calenlation and reduce the computer
titne,
We show that when the source antenna is located on the cliff top, the groundwave

propagates fron land to sea. The signal returned from the target goes over the cliff

and reaches the receiver antenna on the cliff top. The wave reflects and diffracts at
the liff edge between land and sea. The reflection and the diffraction change the
fiekd distribution over the cliff and the sea. On the other hand, the surfaces of land
and sea with finite electrical parameters absorb the electromagnetic energy of the
wave, All of these facts cause attenuation of the ground wave. So the attenuation
of the ground-wave over a cliff depends on the electrical parameters of the sections.
the antenna heigins, the cliff height and the distances between the antennas and the
clilf edge.

In Chapter 6, numerical results are presented and discussed. Graphs show the
influence of changing antenna heights, cliff heights and distances between antennas
and clifl edge on the terrain coefficient. Approximate and detailed expressions are
used to obtain the proporties of different cliff parameters.

Chapter 7 gives the conclusion.

A computer program is developed to realize the numerical calculation for the
grownd wave propagation over a cliff. The results have good agreement with those

published.



Chapter 2

General Formulae of Propagation
Over the Inhomogeneous Earth

In this chapter, the general formulas for radio wave propagation over an inhomoge-
neous earth are derived from first principles. At first, we define the terrain coeffi-
cient. Secondly, we present the expressions of electric and magnetic fields £ and #,
respectively, in terms of the magnetic vector potential A in two sets of coordinates;
spherical coordinates and the coordinates which are based on Cartesian coordinates
that take into account the curvature of the earth. This is followed by using bound-
ary conditions and applying source conditions for homogeneous earth problem in
the two coordinate systems. At last, we present expressions for the fields over an

inhomogeneous earth geometry.

2.1 Geometry Of The CIliff Boundary

The present terrain structure consists of an air section below which two sections of

both different earth radii r; and different propagation constants k; (i=2, 3) exist

as shown in Fig. 2.1. Throughout the derivation, the source S and receiver R are
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Figure 2.1: Form of three section terrain

over diflerent sections and their heights from the centre of the earth are rs
and ry, respectively. Their distances from the cliff edge are d; and dy measured
along a mean carth surface of radius a which is taken at sea level. In Fig. 2.1 (a),
wave propagates from land to sea, whilein Fig. 2.1 (b), wave direction is from sea
to land.

When radio frequency wave propagates along the surface of the earth, its charac-
Leristics are influenced mainly by the profile and electrical properties of the earth's
surface. The attenuation coefficient has been introduced [14] which is dependent
on the earth’s curvature, finite ground conductivity, the source and receiver heights
above the ground, as well as distances to the cliff edge.

[f Eis the electric field strength in the case of cliff, the attenuation coefficient A
has been defined such that[10]

E=AE, (21)

i



In compensation method. £y i written as

T

d

where F is the vertical electric field of a vertical eleetrie dipole of moment 11 at
distance d = dy + dy. where both source and roceiver parts are assumed 1o b just

above the surface of a perfectly conducting ground plane, jig is the permeability of

the air. « is the frequency of the source. 0 = dfu, where ais the earth radins.

In the residue method. the definition of the attenuation coeflicient A is [14]

(24

In this work, where we use two methods; the residue methad{11-15] and the com

pensation method[10]. £} of the residue method is defined asl14]

kg
+dy)

skl @0

where kg is the propagation constant in free space, 27 /A and Ay is the wavelength

in free space. Ef is considered to be the electrical field strength in free space. 1 is

half of the field strength above perfect conducting ground.
Although some authors [10][14] call A an attenuation coeflicient, the author
disagrees with this name. When A increases, the field strength increases. So A does

not stand for the attenuation of the ficld. The author believes that it should be

called terrain coefficient whose value is less than unity. For perfectely conducting
homogeneous ground, the terrain coefficient A rises up to unity. In this work, A wil
be denoted terrain coefficient.

For later convenience, the numerical distance c, is employed, which is defined by




(1
(25)
Aund the numerical height y, is defined by {14]
g
po= k(e —a)l) i = (26}
foa

where 1y < 1y in Fig. 2.1(a) and 3 23 in Fig, 2.1(b).

2.2 Field Expressions In Different Coordinate Sys-
tems
2.2.1 Earth Curvature Modified Cartesian Coordinate Sys-
tem
For a vertically polarized current carring conductor of surface current density J
amp/m, the magnetic vector potential A has only one component in the z direction

3. From the Maxwell equations, we obtain the equation [13]:

(92 4+ RIA(7) = ~J2(7) @7

where Fis the position vector at the observed point.

For an infinitesinal current element located at 7. we set
k2T = [0,0,6(F ~ 7)), A7) = [0,0,6(7,7)] (28)

and get

(V2 4 K] (F, ) = —K*6(F = ) (29

Here, §(F) is Dirac delta -function in three dimensional space. Also, V operator in

Cartesian coordinates is V ,&,%). For any medium, the wave constant kis



defined as
K = (e + o /iegw)w? [ (2.10)
where ¢, and o are the relative permittivity and the conductivity of the medium,
respectively. g is the permittivity of the free space and c is the light speed.
According to the vector theorem in appendix A, and setting uy = z, uz = y and
uz = z for coordinate elements dx, dy and dz, any curved line element ds can he
expressed as
ds? = h}ds® + hjdy* + h3dz* (2.11)

where hy, h; and hj are defined as
L _oF L _OF . _OF
gy = a—:. haio = a—;. hado = 5:— (212)
s the position vector. &, jo and % are the coordinate unit vectors,
If the curvature of the earth is taken into account, the values of k; (i=1,2,3)
become
h=h= :- ha=1 (213)
and equation (11) gives
ds? = (z/a)*(dz? + dy?) +dz* (2.14)
V? of equation(2.9) can be obtained in the earth curvature modified Cartesian Co-
ordinate system by substituting ki, h; and h; into equation(A.6) in appendix A.
Since E and H are related to magnetic vector potential A = 5 by the following
relations
E = fl—V xV x4
Jjwe

VxA (2.15)

T
]




14

Using expressions (A.5) in appendix A and (2.13), the components of the £ and A

are expressed in terms of ¢ for the curved ground as follows:

2,
s _i:u:x;;z
& = —j:u:y;)z
E, = —j‘.:%[%'*%]
H, = ;‘;—‘:
H, =0 (2.16)

2.2.2 Spherical Coordinates

In spherical coordinates, the three parameters ki, ; and h;y become (23]

hy=1, hg =r, hg =rsind (2.17)
Since the current density vector J is in the d; direction, the magnetic vector
potential Ais A,d,. Accordingly the h Helmholz equation can be written
(2
2, A
(VP4 K )T =0 (2.18)

where V2 can be found using (2.17) and (A.6) of appendix A.

Letting A, = rU, the above equation becomes
(V+WU=0 (2.19)
The components of £ and # can be expressed in terms of U [2]

E, =& (k+&)(rV)



B =%

B =it

H, =0

Hy - —,‘,—, o

H, = -1 (2.20)

2.3 Analysis of a Vertically Polarized Infinitesi-
mal Dipole over Ground (Homogeneous Case)

This homogeneous problem is a two section problem. Section 1 is air space above
section 2; the ground which is smooth earth with radius ry, as shown in Fig. 2.2.
The two sections have different wave numbers ko and ky,, where m takes value 2 or 3
to accord for the different ground parameters in later chapters. For a vertical dipole
above the curved ground, the equations for the magnetic vector potentiai A = A,i
in earth curvature modified Cartesian coordinates become [21]

(V +B)Au(7) = —pb(F-73) 22 2
(V7 + k2 Aem (7) =0z<z (221

where 70 = rp, is the z coordinate of the boundary between the earth and air.
In the spherical coordinates, the equations for the magnetic vector potential
A = A becomes [2]

(V'Hg)fr-'l ==6(F=F) r3ra

weedm o (222)



Figure 2.2: Form of two section terrain

From the continuity condition of the tangential components of the fields at the
boundary, one can use the following boundary conditions in the earth curvature

modified Cartesian Coordinate system [15],
(#1)s = (¥m)s g
(57 2w, = 5t L) (223)
57 5 h)s X 2.
Where 3/dn = 8/9:.  *
and in spherical coordinates(2]
(Ar)en = (Arm)m :
T )rm = (k”aA’"‘ Ve (2.24) |

k5 ,6Ar1

The source condition can be derived from equation (2-7) and equation(2-9)[21].

Now, let us consider an electric dipole oriented in z dircction. Because ¢y is continu-

ous at every point of space and continuous at the point of the source, integratiug two
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sides of equation (2.21), we obtain the source conditions in Cartesian coordinates

(Ao = (Bece
I S X (225)

The boundary conditions and the source conditions are used to decide the un-

known constants in the solutions of the equations.

2.4 The Inhomogeneous Ground Problem

In this case, there is one air section over two ground sections. The two ground
sections are to have different level and different parameters. If ¢/(z) and y"(z) are
continuous functions, we have
f[ll"[(V’c"V) 1Y = $7(VETI9) + 1g)dv = ~[¥/(s).9"(s)]  (2.26)
From Green's theorem, we have[15]
(o) o) = [ LBy — g LDy
W) = [[W (G50 — ¥ (G s (2:21)
Having obtained the wave function tp, for the homogeneous earth with radius rp,
and the propagation constant kr as shown in Fig. 2.3, where m takes 2 or 3, we
define 13,(rr, 3) as the wave function of the inhomogeneous problem, while 12(s, rs)
is the wave function for the homogeneous case at r = r; where the source exist.
Setting 1'(s) = ¥a2(rr,s) and $”(s) = 2(s,rs) in equation(2.26), and taking the
integration volume as the domains of media &, in the entire range z > a; in addition

to the k; domain. The left side of equation(2.26) becomes

J, ~[aa(rr,7)6(r = rs) — Ya(r,rs)é(r — ra)ldv



= —Va(rr,7s) + ¥a(rR, 7s)
= —[¥32(rr, 53), ¥a(s3, 75)] (2.28)

where s; is the surface enclosing the above volume. It extends from z = a;, z 2 0
to z < az, = = 0 as shown in Fig. 2.3.

We obtain the wave propagating over a cliff as

Yaa(rR,rs) = Yarr,rs) + [Paa(rr, 53), Ya(s3,7s)] rR >

Ya(rR,7s) = [Yaa(rr, 83), Ya(sa,rs)] rR <2 (2.29)

where 3; is the surface including the regain (2), i.e. z <0, z < r; as shown in Fig.
2.3. Note that a(rp,rs) = 0 if r; < rg since the second term of integration in
(2.28) does not include the receiver point rg.

Now, we set /(s) = 9sa(rn, s) and 9" (s) = s(s, 7s) in equation (2.26), i.e. the

source is in regian (3). Accordingly, one may get the following relation
YaalrR,rs) = Ya(rr,vs) + [Yaa(rr, 52), Ys(s2,75)] (230)

Setting rg = s; in (2.30), we have the expression of Ys(r, s3). After we substi-

tute (2.30) into (2.29) and omit the higher order terms, we get
Ya(rrirs) = Ya(rr,rs) + [Yo(rrs 83), ¥a(sa,7s)] rR> 12
Yaa(rrirs) = [Ps(rr, 8),¥alsars)] TR<T2 (231)
This is a first order approximation. The higher order terms are important only

when rg or rg exists in the immediate vicinity of the vertical boundary surface. The

amplitudes of these terms decrease rapidly with distances from the boundary.




Figure 2.3: Integration domain of eq. (2.31)

Now, if we have obtained the wave functions 1, and ;3 for homogeneous earth of
radii r; and ra, respectively, we can use equation (2.31) to derive the wave function

32 for three section problem with radii r; and r3.



Chapter 3
Residue Method Approach

The wave function for the inhomogeneous earth with two sections which has béen

derived using Fourier transforms and Green'’s theorem [11-15] will be reexamined for
ground wave propagation mode. The terrain (attenuation) coefficient is obtained
for an inhomogeneous earth of one long distance section (sea) while the other is a
short section (coast). Present work will examine the derivation applied to the given
geometry and determine appropriate expressions to the ground wave propagation
mode of a coastal based ground wave radar. Present analysis is based on considering
the boundary of the cliff is vertical to both the path and the earth surface, and it
is infinitely along y direction, since the method is applicable to a two dimensional

problem.

3.1 Terrain Coefficient for an Inhomogeneous Prob-
lem

‘The terrain coefficient for the inhomogeneous problem is obtained in three steps.

First, the wave function for the homogeneous earth is derived by means of Fourier

transform. Secondly, the wave function for an inhomogeneous earth is obtained

20
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using the results of a homogeneous earth by means of Green's theorem as illustrated

in Chapter 2. Finally, the expression is arranged to get the terrain coefficient.

3.1.1 Wave Function for a Hi Earth

The wave function for a homogeneous earth is the solution of the vector potential in

s i Fourier

is used to change the three dimensional
problem into a one dimension problem and the solution in terms of Fourier integral

Helmholtz"

for s equations is given. Then, the unknown constants in the

solution are decided by using boundary conditions. The final solution is obtained by
performing inverse Fourier transform, i.e. by employing complex contour integration
in the complex plane.

Taking the curvature of the earth into account and using equations (2.9) (2.13)

and equation (A.6) in appendix A, we have
.‘ax(z zz((32)'+(a 1)+ RIG(ET) = =k8E-7) (1)

Where the direction of z-axis is vertical to the surface of the earth whose radius is a.
#*and  are position vectors of the source and the observor, respectively. (7, ) is
the field radiated due to the vertical infinitesimal linear current source at the point
7.

Solution of the above equation will start by introducing the sets of the function

¥a(r) and ,(r) [24] as possible solutions for the homogeneous equation
(VP +E)y(r) =0 (3.2)

By considering three separate functions for the variable x, y, z, the function % can




be written as
Ua(r) = e~ histinl gy (z) (3.3)
Balr) = ehiHhavlf(z) (3.4)
Where A2 = M 4 A2, A, and A, are variables in frequency domain.
Using either ¥y or ¥, in Eq.(3.3) and (3.4), we get

18
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G2+ - Th=0 @)

The general solutions for fj are in the form of a Hankel function, i.e.
fiz) = (k2)PHDD (kz)
n = (N +1/4)'? (3.6)
Where H{!)(z) and H{)(z) are the first and second kind Hankel functions of order
n and argument x, respectively.

Defining f}(z) as the wave propagating along the positive z-direction in the
domain z > a, and f(z) as the wave along the negative z-direction in the domain
2 < a, equation (6) can be modified to give the following set of two equations.

Hz) = (ko2)PHP(koz) z2>a
@) = () VPHO (k) 2 <a @7

Where ko and &, are wave numbers in air (2 > a) and ground (z < a) respectively.

bstituti jon(3.8) into equation(3.3) and (3.4), $£(r) and Fx(r) are

given by
1) = e g)

Balr) = i) @9
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Substituting the above ons into equation(2.27), and using the relation
ds = (z/a)?dzdy, we get

B3 () ¥5(s)] = (B3 (), ¥(s)] = 0 (3.9)
and
@i (o) vi(e)) = ~Bi (s (o] = RPN 6 - X)  (3.10)
where

S(A=X) = 8(A—A)6(N2— X))

W = GPEEE R E) - FEw s e

I

From the outward propagating wave condition, (r,r’) can be written as
wnr) = [T el 2>
- /_ = Di(ra () z< (3.12)
Where 2’ is the source height.
Using equation (2.26), and equations (3.1) aud (3.2), one can get
) = [htr)str -
= / K2BH(r)RS(r =) + Y(r,r') » O)dv
= [E-TRNA + R )+ 9B + BT
(5 (o), o NS (313)

Substituting equation (3.12) into (3.13), one gets

D) = /_:dxm(a)&;(a)]a'(»\).(.«, = —(27)%c(N)a"(X) (3.14)
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In a similar way, we can obtain the expression for ¥y(r') in terms of a*(\'). So
we determine the a*()) and a~(A) in equation (3.14) as
) = =) NF ()
et = ~(2m) NP5 () (3.15)
Substituting above a*(\) and a~()) into equation(3.12) leads to:
W) = =0 [T D EANE ) 2>
= —@n)? 7 A (B 2 <2 (3.16)
At the boundary i.e. z=a, the constant ¢()) is obtained as
= 20 20,
N = ST (@)K £ (2)ema = S (a)(K ,E”‘ (2)):=a (3.17)
In the integration domain, A? ~ k3, and [k; — Ala 3 1, for very large order n,
we can write f5 (z) as
fiz)~ Zm(k,z)"”(k.}z’ — ) VA= =neos™) (n/kas)=/4] (3.18)
ks
The above expression is still valid under the condition |\/k322 —n?| > 1 and
arg(/kEz? —n?) # —2=. This leads to
a 2 o
() =i =R () @.19)
fi(a+ A2)/fi(a) = VPR Az (3.20)
substituting (3.19) into (3.17) and realizing that the wave number above z = a is
ko, while it is k; for z < a, ¢(A) becomes
3 oE
N = (@GS (@) =ik - XS ()]
= -2ifi(a)ff @)k () (321



Where
ba(\) = 2kF/[kS + kih(N)]

hA) =

K =
nlza) = [/ ) 3.2

Substituting the above expressions (3.8), (3.20) and ( into (3.16), the solu.

tion of the wave function in free space above ground medinm i becomes
" . LI IV
Un(nr) = =g [ M ba(Na(zrm)
PRI PR T Py T
d\ = diddg, 221, Y St 1:4.23)
Where rn, is the radius at the surface of ground medinm m.
To find the wave function in the region = > =’ > ry, we procead as folloing,
For the case of = > rp and ' > 1y, we divide the space into three regions i.e.
(1) 222,(2) 2 22rmand (3) z <ry. For the first region of = > &' . wave

propagates outward, so wave function of (3.16) can be rewritten as
bir,r') = —(2x)"2 /,, JHANe M=) 2> sy 324)
o0

Where A()) is a propagation coefficient.

For the second region of 2’ > z > 7, there are direct wave from the source
(inward) and reflected wave from the ground surface (outward) so that the wave
function of (3.16) becomes
¥(rr') = —(21)"/_:(9('\)/“2) + R ff(z))em Nty 1> 225,

(3.25)




Where D()) and R()) are derictive and reflected wave coefficients.

For the third region when z < r,, wave function of (3.16) becomes
o - ;
) = =20 [ " F@AN S (e P I s <, (326)
Where
f(2) = (ko) 2 HP (koz) 2> 1m

£(2) = (khz) " HD(koz) 2> 1m
157(2) = (ka2) P HO (kyz) 2 <1m (3.21)

Applying the boundary conditions of (2.23) at z = rp, we have
S5 (rm)D(N) + £ (rm)B(N) = fi7 (rm)e(N) 3 (2) (3.28)

K 7 (Yemrn D) + K7 £ emr O) = ) ) 2 (e
(3.29)

and from the source condition of (2.25) at z = 2/, we have
JEEDM) + ()R - fiH()AR) =0 (330)

Solving the above set of three linear equations for three unknowns A(A), D()) and
R()) finally gives,

B = = B ks e emrn = i o emrn (33D
and

Ba= SEUFEE ) S (rm) = f5(2) + Q)@ (rm) £ (rm )k
(S (rm) B f3 (2 smrm = J5 (rm) 2 13 (2)e=rm)] (3.32)



b

Defining g")(z',rm) = f5 (z')/f5 (rm), A(\) is given by

Dy

4= 5
_ B (rm)loa(#'srm) = o', )] 4o L (rm)
J Y e vy I )

- Bor('srm) = 982", 7))

B )29 (2, rm)mem — Z9M(z1Tm)emra]
Substituting ¢(A) = £/ (rm) /i (rm)] ' K5ba(}) into the above equation, we have
4 = Bloaeira) = gl )l ()t

2902, m)smrm = 2902 Tm)smrm

+c(Nga(2srm) S5 (rm) (3.33)

02 Tm)
e )

(3.34)
The wave function is given by
W) = =@n) [ S A igy

_ké_z pd [ﬂ,‘\“(f’. ™m) — g\(Z, r...)]h(zy'm)l~.u.(x_x')+h(v—y’)lﬂ
412 Joso (2902, rm) = Za(z, )l

7 BbN)as (2! radas(zy eI 2 > oy

(3.36)

.
8r?

The above expression can be simplified by using the following parameters

() = 2R+ Kuha (V)]
hn) = ilar(esrm e
M) = el
(3.37)

Finally, expression (3.35) can be rewritten as follows

Unlrir) = ok [ Kt ralom(Nas(<s7) = (243/Kn)




the form

W = ﬁ I ras(e,ralbaNan(<'r2) - (28785)
(ha(A) = BV () (a2 s7) = g, r2))]

emilh(E=2) 4 Xa(u=y)]

2>72n (341)

Y = ‘_‘/m AN ba(N)ga(2', ra)e= P2 H1a(s" =)+ /TR (rs=s)]
872 Jooo

z>ry, Z'<n (3.42)
Substituting ¥, and 13 into eq. (2.27),(2.31), the inhomogeneous wave function for
a receiver in the air section above region 3 (soil) due to source in air above region 2
(sea), 13, is given by

vo = [ & / Al )

——'1’:(";:' P)a(ryrs)s=rs

= sﬂ)’ / / AN,k bs(X)gx (2R, 73)

k2 — X ‘
RLELLM] U

]
[ 7) = ZE(00) — BP0 () - o ra]
/_"w e ii=M)egy /_: =Ny (3.43)

where zg and zp are the z components of the source and the receiver positions. One
should notice that in the above integration using the surface s, z is set to r3 and x

changes from —oo to 0.



(ha(X) = BE(0) " ga(#, ) = 98]
ez a-Vld) 2> ' > (3.38)
Since a) 3> 1 and A = ko, expressions for gx(z,) and g{')(z,) can be sim-
plified as follows
ga(irm) = x(Be)/x(Bm)
ozrm) = xV(B.)/x(Bn) (3.39)
The details of this modification are included in appendix B, where
xB) = BHBCHR)
X0) = Ao
B: = (2/koa)P(koz — Aa)
B = (2/koa)"(korm — Aa)
ko= Kk -K)™? (3.40)
H,3(z) is the Hankel function of the order 1/3 and argument x. The super script
(1) and (2) represent inward and outward propagating wave, respectively.

3.1.2 Wave Function for the Inh 8! Earth

For the inhomogeneous earth problem under study where the terrain includes three
sections, i.e. air, soil and ocean shown in fig. 2.1, the wave function can be obtained
by substituting the wave functions of homogeneous earth mentioned in the previous
section into expression (2.27). For the case shown in Fig. 2.1.b where r; < r3 and

the source is above or on the top of surface r;, the wave functions ¥; and ¥; are in



Real axis

Figure 3.1: Integration path of A] for eq. (3.43)

From the defination of the functions b,,()),g: and hm())in equation(3.37), (3.39),
we obtain
—»
[(@ )yx(z )lemrs = /KB MoArra)  (344)
k3 k2 oz
and setting ' = —z, we have

..
[
aad S 0 i
[D ety = o ecishdy = 026(3 - da) (3.45)

/“ emihMdegy = foo i —A gy
-

where (A} — A1)~ denotes the condition Im(A] = ;) < 0, and thus the integration
path of A{ is along the infinitesimal lower side of A; path (Fig. 3.1). In Fig. 3.1,a
set of poles exist nearly along the broken line.

Substituting (3.44) and (3.45) into (3.43) and arranging, we get

Yn = 3 / /‘” .mxk/b;‘(A)gA(rg.rz)h(x)g»(za,r:)u, - ,S)




[B2(N)ga(25,72) = (2k3/K)(ha(A) = BV (A (ga(zs,m2) =
9(z25,m2))e"Pims=Nntaws=Nyum) (3.46)
Performing the integrations with respect to X, and A, of Eq. (3.46) using the
residue method leads to presenting the term by(A)~'(As1 —A1)~!, where Az; denotes
the set of poles of the function b3()') in the X-plane. On the other hand, we have
poles of by(A) when Ay = Az in Ay-plane. So 3 is given by
1 ol i =
v = 3 [ ke el = )
Resy =, (b2(N)gn (25, m2)| Resyy=ay s [ba(X) g1, (2R, ma)]

eiMzs=2izathaus=Nua) (3.47)

where

BOYT = gl + Ry
= - osgt (rsuradfoagaro )
dax = oy = (k3/ks)(koa) [ko(koa) ™ (rs — 72) + 73 — 7a]
Gl#Tm) = Omky' ‘(kaa)‘“:—zgrm(z. T'm) (3.48)
With 0, = ~i(kpp/ko)(koa) ™3, 7 = 2736, for m = 2,3 and k, = \/k = X2,
Substituting the terms given by €q.(3.47), ¥32 reduces to
Ya(rr,rs) = E jm dﬁ(?ﬂ’fofa)‘ /2 A'(zg|da)r,
5[05 9m(rar2) = 07" gr,(ra,m2))
[ko(rs = r3)(koa) ™2 + 13 = 73] (2 = 1/203) "
expl=ikoda( — 1+ (ko) o)

(25, ra)e U us ha(n-zs)+ ] (3.49)



where A'(zg|ds)s, is given by

Alzld)e = (7/2)/(kod)'/*(koa) (7 = 0.5/0%) " grn(2,7m)

e ilkod( R =1+(koa) 2 m) +3] (3.50)
32 can be expressed in another form(15]
$aa(rR, rs) = 2A(zRlds, da2s)po(rriTs) (3.51)

where to(rg, r's) is the wave function in free space and given by

2

Yolra,7s) = :‘Tde-"‘v‘ (3.52)

Where d = d3 + d3.
Also A(zp|ds,da|zs) is called terrain coefficient, this coefficient is not different

than the attenuation coefficient represanted in [10][11-15]. It is given by
A(znlds, dalzs) = 3 (d/da)!/* A'(zRlda) ey Trrs(r2)gm(2572) (3.53)
)
where

1
Tom = E["?h(’s- r1) = 07'gl, (ra )]
[kolra = ra)(koa) /% 4 73 = )
(2= 1/2o;)-Iu—ﬂqd:(?—l-(-(ioa)'"’h) (3.54)

Similarly, for the case of r; > r3, Ty, is found in the following form [11]

Tam = 316304 (rars) = 65" gnlrarrslliora = ra)(koa) ¥ 7 = ]

(2= ]/20;)—le-"hda((?)—lﬂ‘o-)""ﬂl (3.55)
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3.1.3 Terrain Coefficient

To derive one expression of the wave function for both r; < r3 (Fig. 2.1.b) and
r2 2 3 (Fig. 2.1.a), we can add a section between cliff and ocean, the height of
which is higher than or equal to the heights of the cliff and the ocean , and then let
the width of the section tend to zero. The new geometry is shown in Fig. 3.2. In
this way, the terrain coefficient is expressed as(11]

A(znlds, dalzs) = Y (d/da)"* A'(zlda)r, T(ds)ry ragr (25, 72)

A
|2, B 21 (3.56)

where
Tdi)ryry, = limita—so 3. T(d)nnT(d2)rem

= 365" dhlrrslan(rirs) = o7 an(rars)gh(rerl
(2 = 1/268) [ko(ra = r3)(kor)/* + 73 = 7]
e—‘h‘n[(n/-)—lﬂh-)"”':l

T2 T2 T2 (3.57)

where ¢'(z,am) = [X'(A)/X'(Am)lr=rn and X'(B) = Zx(B). 1f r4 = rs, that means
r3 < r3, T), becomes the same as Tn,y, in equation (3.52). This is because
gi(ra,ra) = 1 and gr(rs,r4) = L. If g = ry, for the similar reason, expression
T, reduces to that of equation(3.55).

Substituting 7 = 2-/%n and ym = ko(rm — a)(%)!/° into eq. (357 ), the

generalized terrain coefficient is finally written as follows [14]

Ar =Ty ulrleata)] ety - )



k3

a. from land to sea b. from sea to land
Figure 3.2: Geometry for eq. (3.57)
fos(yno)ezpl—ics(ys + ts))
g £ty (vas) fos (v42) = @aes (va) i, (942)]
(o= va+ta—ta) (t2 = gf)™*
fu(ysa)ezpl—ica(ya +t2)] (3.58)
where

0.0180;/f)'/?
70.0180,/f

and fis the frequency, €, and o are the relative permittivity and the conductivity

g = —ilkoro/2) L& (3.59)

€ri

of the ground, respectively. The values of ¢, (m=2,3) stand for the roots of the
equation (14]
W(tm) = quW(tm) =0 (3.60)

W(t) can be expressed by Airy function

W(t) = Vre~"/2[Ai(t) + iBi(t)] (3.61)



‘Where Ai and Bi are [18]:

4i() = TVLl6) = Tl )
Bi(t) = VA/3I1l€) + Lysl6)) (3.63)

I, is modified Bessel Function of order n, and argument £ = 3%/2.
The function f;,,(y) withy;; = yi~y; is the ordinary height-gain function defined
by
fin(y) = W(tm = 9)/W(tn) (364)

And fi (y) is defined by
Jiay) = W'(tm ~ y)/W'(tm) (3.65)
When the ground wave propagates from earth to sea, the generalized terrain coeffi-
cient may be written as [14]
A = Tylr(cs+ea)]V2eM4(ty - 3)
fus(yra)ezpl=i(ca + ca)(ys + ta)) Fey (3.66)
where
Fyy = Syleft, (va0) fua(yaa) = qafes (yas) £, (vaa)]
(ya=va+ta=ta) M (t2 = 43) " fua(ys2)
ezp[—ies(yz — ya + ta — ts)] (3.67)
when yr3 2 ya3.

One should notice that Fy, is a function of ¢z, ysz, y43 and ysz, but independent

of the other antenna height yr; and the distance c3 of section 3.



3.2 Expression for One Short Section

Assuming ¢; < 1 is the parameters setting for this case. It means that the source
is close to the edge and d3 is long and c; is large. When ¢; < 1, the convergence of
the residue series F, becomes very slow. So, the flat-earth approximation is used in

the short section to obtain F,. Defining the variable t as[12]

(= \fdn/2kohm(Ne" /4 (3.68)

and modifying the function hn(}) for the flat-earth approximation to be in the form

hn(A) 2 y/2Ra[(rn/@) ko~ A] = \f{korm/aff — 2, A~ ko, rm~a  (369)

gives the following relationships:

iA=ko)dn = £ +il(rn/a) ~1kodn
A = 2idn)tdt
bm() = 2um/(t+um)
tn = (ko/k,)\/kodn/2e™
ba(N) = (2uN)\/t2 - ikedn(an — an)at + ufl]

N

W= (ko/k,) kodw/2e
(= N7 =ida[)? -2
@ = ikodn(ka) " [ho(ri = r)(koa)™> +n]  (370)
where N = 2,3, [ =2,3 and
(2R/K)hn(D) = KD ga(zirm) — 6z, )] = (imt)(e™ 25 = &¥5)
ga(arn) = €A

fa = (2= ral\ko/2ne™ (3.11)



The functions J,(u, f) and J,,(f) are defined as[12]

halsf) = #cl[('{’)z“"]"(‘+u)"6“"“"dt
In(f) = limy—ootidy(u, f)

- 1 N\2 _ 211~ —ift
- ﬂ,/cq(:,) a)te at

On the condition kydy(rm —rn)/a € 1, we have

(3.72)

TN dn)nrygrn(airn) = e Menl=Nkdn((yNg! (1) ~ ungn(rmiri)]

™

Jnlun, SR +IR) + %u." alrms r)Un(0, S — fR) = In (0.7 + Ji))

+ponlrmilUn (R = ) + Il + 3]

Applying this to the expression of F,, we finally have [14]

Fyy = exp(ty)[ua((es/92) fi(vaa) = fu(vas))ds(u2, fua + fs3)
+%(h/qz)"z/|',(yu)(1u(0' fa= fs2)=Js(0, fa + fs1))
+3huv)lfa =) +dolfa + )] vs2 Sva

Fyy = ezp(ty)[ual(ee/92) (1) = fu(vas)lo(u2, fa + f2)

+2{0/02) a0 00, S~ Faa) =3 (0, e+ fa)
1 1ol0a5) sz~ fea) + IS + )]
+fuluss)  ¥s2 2 ya
where
w = fide

1. -
fa = 50.'“vsz¢"l'

(3.13)

(3.14)



1. .
fo = 551”2114#"“

ty = [ia(ts+ys-y2)]'/? (3.75)
and ¢ is the numerical distance of section 2 with definition given in (2.5) and

Jolenf) = e+t el - ita)
+3le = tal e f +itn)
—2(a — )" e(f +i2)] (376)

with €(z) as the error function given by:
IR o
z) = h /' et 3

Using the residue method, the terrain coefficient for long distance sections or
multiple sections with one short section can be obtained. Because the ground wave
radar problem is a special case of two sections with one short section, it can be
solved with the residue method.

When we use the residue method, several considerations should be taken into
account. The first one is how to differentiate between the long distance problem and
the short distance one. From the condition ¢; < 1, we have (di/a)(koa/2)*/® < 1.
It means that the distance d; satisfies d; < Aslaa’/’/r when the problem is a short
distance one, where ) is the wave length and a is the earth’s radius. Also, the
method can be generalized for use in long distance problems and multiple section

problem with only one short distance section.




Chapter 4

Compensation Method Approach

Compensation method is used to obtain the terrain coefficient of ground wave prop-
agation over inhomogeneous earth with two long distance sections. The boundary
between the cliff and ocean is also vertical to the wave propagation path and the
reflected mode is ignored.

In this method, the definition of multiple impedances is used to derive the ex-
pression for the terrain coefficient. The result can be extended to three dimensional
problem with a finite long boundary between the cliff and ocean.

The method proceeds as follows; first, the wave function for ground wave propa-
gation over homogeneous earth is obtained. Then, the terrain coefficient for ground

wave ion over the inh

earth is derived using the definition of

multiple impedance and the results of homogeneous problem.

4.1 Analysis of Two Section Problem

In this case, spherical coordinates (r, 0, 4) are used and the source of the field is an
infinitesimally short electric dipole located in free space at r = b and 6 = 0, and

oriented in the radial direction as shown in Fig, 4.1.

39
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Figure 4.1: H, sections for ion method
‘The vector magnetic potential satisfies the equation(2]
(V2 + I:’)? =0 (4.1)
Substituting A, = rU into above equation, we get
(V2+ KU =0 (4.2)

Using the method of separation of variables, the solution of the above equation

in free space is ¢ independant and can be d by spherical fi ions in the
form [11]

U=U+U, (4.3)
where

Ue(r,0) = "‘“C"2(2,+1):."’(1:,,-)1."’(::0&)?(ma), 26 (44)

U,(r.O)—ﬁ}:(iﬂl)h"’(bnr)h"’(h:b)i’(me). r<b (49)




ko
PN .-~ <=
km . 5
0
0

Figure 4.2: R the distance between source and receiver
where Co = —Ids/Ariew and A" (kor) and A{"(kor) are the first and the second
kinds of spherical Hankel functions of order j and argument kor, respectively. Also

U 0) = 2222 300 + 0B ()P cos) 9)
3=0

where U, has the proper singularity as R — 0, and U, remains finite. As shown in
Fig. 4.2, R = Vb +r? — 2rbcosh.
From the boundary condition Ey = —Z Hy at r = a, we get

;l_-%rlf(r. )rma = Ziaall(r,O)rma (1)

Substituting U into the boundary condition, B; can be expressed as
W (koa) Llogzh{(z) = iA

By= —— 100 ras 29T 25 T T P00, (3) 4 4.8
W(koa) Llogahe) i w

where A = awZ/ko = Z[no and = ka.
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Using the watson transformation and the residue method to U, the poles of the
integration
U= =i [ ¥ 11 cose - 8)1dv (49)
L sinur v
are located at the points v = v, which are the solutions of
M) = di:lagzhs”(z) —iA=0 (4.10)
with v = n— 1 and then, using the relation (Appendix B)
= 1
ahya(z) = e ((~2r /3) MO H(3)(~2r)7) (411)

where v =z + z'/°r, we have

- 11 -insa 5 Ja(R1) fulha)eimeX
U = 2Ug(2r X )% ;——%_ g (4.12)
where i
L(X3 - 27,0
],,,an([:)(x‘ )] (013)
Hypal5(-2n)2)
and
= M _ _g-1/3,-1
° = ez =29
U = Id.u""‘“'
3 ricwa?(6sind) 1/
h = r-a
hy = b-a
X = (ka)'/%0
Xi = (koa)/%(2hi/a)'® (4.14)

The function f,(h;) is called a height-gain function and it becomes unity as h;

approaches zero.
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We can find that it is the same expression of the series for terrain coefficient as

that in the residue method, here U is tha same as $/r in the residue method.

4.2 Analysis of the Inhomogeneous Problem

Based on the solution for h problem and ional relation between

electric field and magnetic vector potential for far field, the expression for the vertical
electric field E, at a great circle distance d = r6 measured along the homogeneous

earth’s surface is given by [7]

E. = AES (4.15)
where
B= Tl kot (4.16)
and
ol —ict,) W(t, — W(t, —

S
where 2ficss) = f,(hs).

= (hoa/2)'%0, ys = (2/ka}Phohs, yn = (2/koa)Phin

—i(ka/2) P, A=2Z)120m,  ky=wje (4.18)

where E is the vertical electric field of the dipole at distance d from a vertical
electric dipole of moment Il at height ks where both are assumed to be just above
the surface of a perfectly conducting ground plane. W is the same function as W of
expression (3.61) in Chapter 3.

If the path includes one section with the impedance Z,, the mutual impedance



2zm between dipoles at A and B of lengths I, \nd Iy is written as

”w‘o“ ik 11 1/2
Bl A(d, Z)[1 + Thod kgm](amo) (4.19)
where
Ald, 2,) = emiel(aayiry E2p(=izta) (4.20)
Y

tr—q}
Here A is the terrain coefficient for a special case, hs = hp = 0.
If the path includes two sections with the impedance Z; and Zs, the mutual
impedance z/, between the dipoles A and B over the boundary is expressed
Llyi pow
o raHOY kg
®od 1+

™ ARG LB ()

,m k.,d*
where A’ is the terrain (attenuation) coefficient dependent on d,Z; and Z;. We have
oy e A ([ Bx B x A
2= “bj/s[s,,xﬂ. B x ) 7dS (4.22)

in the above equation, i is a unit vector in the radial direction, E, and H, due to
current I, are the field over the surface S with surface impedance Z3, E; and Hj

due to current Iy are the field over the surface S with surface impedance 2.

Using the i boundary conditions for the ial vectors
Zo(i x Hlat) = Bay 2ol x Hi) = By (4.23)

we change eq,(4-19) as
Lly(sty = m) = [ [[(Far- Bu)(Zo - Z2)dS (4.24)

Because the tangential magnetic fields have the form

H.'x:ik;:‘;"e"‘“'(1+ T A2 Z) - (nxf)lm(,/u)]"’ (4.25)



0
Figure 4.3: Form of inh¢ sections for ion method
and
kol L 1 e ot
Hyz =5 e (1 + ‘.,W)A(S- Z)- (i x 5)[,.»,“/“] (4.26)
where ['and § are unit vectors in the directions of i ing I and s, ively. |

and s are indicated in Fig. 4.3.

A2 2) = AGZ)+ g | [ SPbletl=dlg, g
G(s,1)A(s, Z2)A'(l, Z3, Z3)cos'dS (4.27)
where & is the angle by Tand §, and

Glol) = (Lot 1"’<1+‘,¢M X+ )

sin(s/a) am(l/u)
dfa
= L@l “*:m k,,d') (4.28)

The integration for terrain coefficient given above is a three dimensional expres-

sion. The term ezp(—iko(s + [ — d)] varies rapidly except in the surface region of
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5+1~ d. Using this region and neglecting 1/kos , 1/kol in G(s,1) . The integration
can be found in

§ B ikoa/? | fos Zy(a) = Z
AT 2) = Az 45 [T =2

A(d - &, Z3)A'(a, 22, Z:
—mt’a—)a];‘v-,—’—’)p(u,,u,)da (4.29)
where
Fluug) = (%)‘“ j ’“’ ezp(—i;—ru’)du (4.30)

is a function of cliff length, and the length of the cliff is small compared with the

distances between antennas and cliff edge. In the integration,

up = (koa/r)"*cotf + cot(d — )]y (a)/a
uz = (koa/m)"/?[cot® + cot(0 — )]/ *yz(a)/a (4.31)

when u; — —oo and u; — oo, the function F(u;,u2) becomes unity. That means
that the length of the cliff edge tends to infinity so that the problem becomes a two
dimensional one.

The same as we discussed in the residue method, A’(l, Z,, Z5) in the integration
can be replaced by A(l, Z). It is a first order perturbation.

The terrain coefficient for a smooth two-section spherical earth is

Z3-2;

, . kod
A7) = AGZ) - (EynTs

4 A(d— oy Z3)A'(, Zy)
i T ey da>0
A'(d,23,23) = A(d,Z3), d3<0 (4.32)
I ducing the natural

@ = —i(ka/2)"%(Z2/n0)



gz = —i(kaa /2" Zyyna)

e = (koa/2)" (d/a)

¢ = (hoa/2) 0 /a)

ey = (koa/2)"(ilyfu) [ERE]

the terrain (attenuation) coefficient for the homogencons path is given by

A(d.Z2) = Alc.q2)

Aa.Z3) = Al q3): (1.34)
where t; and 3 are solutions of
W) —gW(t)=0 =23 (1.45)
Then we get the equivalent form for eq.(4.29)
o) = Al + (5 - [ Al
- e -e Ty R
+€ (4.36)
where
= Atea) = (7)o = W) DX = u;(r:( -
If the relation
45— q:)%: m = (4.38)

is satisfied, we have £ = 0.
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The source and observer are at finite heights hs and hg, respectively. We use

the height gain function, the attenuation coefficient can be written as

Hesgn) = (Pl -0 T (o =l 1 1, )

(4.39)
where
- 2
fulhs) =ML vs = (=) Phohs
(1332 2
fulhn) = Hgcusl, yn=(h—u)'/’kahn (4.40)

here the height of the antenna should be small compared with the radius of the
carth.
Using mode-match method and considering a step (a cliff), the terrain coefficient

is given by [17]

A=T% W(" W= 93) o ty) Sy caplie - c,)¢,]M (441)
where W(’:) : the Au-y function and Ny, is a normalization constant
N = [ Wtm = Pdy = (tn = GOV () (442)
and 8,,., is a scattering coefficient
iy (ﬁ)m Wit — 1/41)W'(¢:y: K‘;),;Z(_ht: Yaa)W'(ts — ya) (443)
the i flicient and Ny, into the expression of the terrain

coefficient, we can find that the terrain coefficient in the compensation method

is the same as that in the residue method. So both the residue method and the

compensation method give the same terrain ient. But, the comp
method only obtained the solution for the long distance problem. If a radar is

located close to cliff edge, we can only use the residue method to find the solution.



Chapter 5

Final Expressions for Cliff Case

Based on the residue method, the final ions for ground wave p ion over

a cliff are given in this chapter. Because the distance between the radar antenna
and cliff edge at Cape Race is from 50 meters to 200 meters which is a short distance
for the working fi the flat-cliff imation is used.

5.1 Terrain of Long Distance Sections

If both land and sea are of long distances, we can use the original formulae to get

the ions of the terrain ( ion) coefficient. When the wave propagates

from land to sea, letting ys; = 0, from the defination
Jim(y) = W(tn = y)/W(tm) (5.1)
Sin(¥) =W (tn = y)/W'(tm) (5.2)
then f(yaz) = f'(ya2) = 1. We obtain
A = Ylr(ca+ea)] et - g3)
t
fis(ymo)ezp[—i(ca + c2)(ya + taj] Py (5.3)

49



where

Foo= Ylaaflivea) = q2fu (ya))
2
(s =+ ta—12) "Mt = 3) 7" [ialys2)
exp{=iealys = ya +t2 = ty) (5.4
If the wave propagates from sea to land, that means ys = 0, 50 f(va) = f'(ya3) =

1. The cliff gain /7, becomes

Fy = Ylaafulus) = a2fiy(e)]

(13 = 2+ ts = 2) (12 = 43) ™ fuays2)

erpl=1cxyr — ys + t2 — ta) (3-
5.2 Flat Cliff Approximation

When the antenna on the chff top is close to the cliff edge. the numerical distance
¢ (wave propagating from land to sea) or c3 (wave propagating from sea to land)
is so small that the cliff top can be considered as a flat section. In this case, the

expressions for {lat-carth approximation is applied.
5.2.1 Propagation from Land to Sea

From the expression of y, for y1z > ysz in Chapter 3, we can obtain the simplified
expression of F, for cliff case, where the source on the cliff top is closed to the edge

and gy =0

Fy = eapl(ta)’llyeh(aafi(ve) = f(vsa) (/e f2)
+ el o) Sy (445) (a0, ) = I (0, Fs2)
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3 fulva)=Julfs2) + Il + Fuluss)
= exp(t)yal(95/92) fi (v13) = fs(vio)l s (Vi fisz)
+fislysa) (5.6)

Because the curvature of the earth is still involved through the term of ty; in the

functions Ji,(z, f) and Jiy(f), we may set ta; — 0 to avoid the influence.

From
tay = lico(ts+ys —y2))
= [i(da/a)(koa/2)"/*(ta + Kolrs — a)(2/koa)''? = ko(rs — a)(2/koa)'*|'/?
= i(dy/a)talkoa /2" + ko(rs = ra)] .7)

we can get when a — oo, t33 — 0.

We simplify the expressions of Ji,(z, f) and Ji(f) as

taa = 0
Ju(zf) = elle(f) - 27 e(f +i2)]
() = o) (58)
other have the same i as before.

The cliff gain F, for flat earth approximation is given in

Fy = expl(ts)1y/al(as/as) iy (ve2) = fis(wsa)l s/, f32) + fi(300)
= Jilyso) + Vehlao/0afiy(ve) = Fulvalle e el fsa) — el fa + /)]
(.9)
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5.2.2 Propagation from Sea to Land
When the ground wave propagates from sea to land, A may be written as

A = Tylrles + )] e (b2 — )
fa(ysadezp[—iles + &2)(v2 + )| Fy (5.10)
When receiver on cliff top is close to the edge, the distance d, is very short so

that ¢4 « 1 and ¢; is large. The flat-cliff approximation is used to obtain Fi,.

Fo = \/asl(02/95), (vea) = (5l (/s Srs) + oo () (5.11)

the parameters involved are defined by

dy = igjes

Js = 5 amac

ti = [ieslta + 32— p)]V? (5.12)
and the other can be calculated with the ions given in section

5.2.1.

5.3 Two Terms Approximation

Rewritting the expression of cliff gain F},, we can express it in the three terms as
Fy=R+Fh+F (5-13)

where

Fu = exp(t)\/da(as/a2) fy (v65) e (Vi f2) (5-14)



53

Py = explt)Vdafu(vaaVos (v, ) (5.15)

Fy = fu(yss) (5.16)

Where, F3 is a function of the antenna height and cliff height, but it has no relation
with the distance between the antenna and the cliff edge. F and F; are the functions
of the distance dz, the antenna heights and cliff height. When the distance between
the antenna and the cliff edge changes, F3 is a constant while £y and F; will change.
We consider cliff case, where Gearth = 0.005, €cartn = 15, Oueo = 4 and €,eq = 80.
Comparing the three terms in the expression of Fiz, we find that the third term of
the three plays the most important role. If we cancel the first term, the difference
between the results from this simplification and from flat-cliff approximation is less
than five percent. So the further approximation can be realized by cancel the first

term in the expression of F},. We can write

Foy = fuluma) - ezpl(tal IV fulyaa) (o, fo) (5.17)
It is called the two terms approximation.
In this way, the terrain coefficient A becomes
A =T, [r(ca + )]V 2e="4(ts ~ ¢f)™! fia(ysa)ezpl-ilea + a) (2 + ta)]
[fialyra) = exp(Ba )V foa(yaa) s (Vs fra)] (5.18)



Chapter 6

Numerical Results And
Discussions

The numerical results based on Green theorem method are shown in this chapter.
The clilf cases we are interested in include wave propagation from sea to earth
and from earth to sea. Here, the flat- cliff approximation is used. The two terms
approximation is applied too.

“The electrical parameters involved are set as the conductivity of the earth o, is
0.005s/m. the relative permittivity of the earth ¢, is 15 . the conductivity of the

sea g, is 4s/m. and the relative permittivity of the sea €, "5 80.

6.1 Numerical Results for Radar

From Fig. 6.1 to Fig. 6.4, the frequency of interest is 6.75 MHz with corresponding
wave length Ao = 44.44m. The source is considered to be an infinitesimal dipole
antenna,

Fig. 6.1 shows the change in Eg of expression(2) and EY of expression(25) with

distance d(= d; + d3). In calculating E¢, the value of Il was set to unity. Since the
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angle 0 is very small in the range of interest. the factor (0/sinf)!* also approaches

wnity. According to above considerations. the two curves are proportional to v
another as shown in Fig. 1.

Figure 6.2 shows the electric field distribution over the sea, where the distance
d2 is 300 meters. distance d3 is 200 km and the elitf height is 15 meters. In the
calculations, expressions resulting from the Gireen theorem method are used. It is
clear that the wave strength propagating to the sea decreases, as the transmitter
height over a cliff is increased. More noticeable is the reduction of wave strength
with the increased hight of the recciver over ihe sea.

The receiving antenna array of Northern Radar prototype system in Cape Race

has average d3 2 30 meters. Fig. 6.3 gives the distribution of IX on the vertical plane
30 meters from the cliff edge. It is observed that as the source whicl is 200 ki from

Al the receiver loration,

the coast increases in height, the field strength decrea
the field increases until the height is about 40 meters. Then it starts decreasing in
a fluctuating manner with the increase in height.

Figure 6.4 gives field strength changing with distance dy. Where the height of
transmitter is zero at sea and the heights of receiver on ground are 0, 10 meter, 20
meter and 30 meter. In this graph. it is found ot that, for a good signal reception.
the receiver should be put at a higher level as it becomes further from the cliff edge

to avoid ground absorption.



o
=

are different for different values of the parameters .

In Fig. 6.8, || decreases at first then increases as the height of the source on
the cliff top increases. If frequency is lower, the maximum point of |4] is higher.
The closer to the cliff edge the source is located. the lower the maximum puoint of
1A} is.

Fig. 6.9 shows that the terrain coefficient decreases smoothly and lightly as the
height of the receiver increases from 0 to 30m.

Fig. 6.10 to Fig.6.14 show the coresponding conditions of I'ig. 6.5 to ig. 6.9,
but the direction of wave propagation is from sca to land. If we change the sonrce
and receiver, Fig. 6.10 to Fig. 6.14 give almost the same curves as Fig. 6.5 to Fig.
6.9.

Among the five parameters, the hight of the antenna on the cliff top, the dist

rce
between the antenna on the cliff top and the cliff edge, and the distance between the
target on the ocean and the cliff edge are important on the signal recciving, while
the hight of the cliff and the hight of the target on the ocean are not important.
To sum up, we should put both the source and the receiver antennas as close to
the cliff edge as possible to obtain the best information from the sea. The computer
program given in this paper can be used to determine the heights of the source and

receiver at different distances from the cliff edge.
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6.2 Two Term Approximation and Five Param-
eters

There are five parameters in the expression of A. These are the distance between
the source and the cliff edge d,.the distance between the receiver and the cliff edge
d.. the hieight of the eliff I, the height of the source h, and the height of the receiver
hy. Fig. 6.5 to Fig. 6.14 give the results for one of five parameters changing in turn.

The frequencies used in Fig. 6.5 to Fig 6.14 are 3MHz, 5\Hz and 8Mhz. Fig.
6.5 to Fig. 6.14 show the absolute value of the terrain (attenuation) coefficient
from the two terms approximation. The terrain coefficient is expressed as [A| =
|E/Ey]. When the frequency increases from 3MHz to 8Mhs, the terrain coefficient
will decrease. When the height above sea increases, the terrain coefficient decreases
at first and then increases.

From Tig. 6.5 to Fig. 6.9, the source is on the cliff top and the receiver (or
target) is on the sea. Where d, = 50m, d, = 200km, h = 25m, h, = 25m and
hy = 3m. From Fig. 6.10 to Fig. 6.14, the source is on the sea and receiver is on
the cliff top. Where d, = 200km, d, = 50m, h = 25m, h, = 3m and h, = 25m.

IFrom Fig. 6.5, we can find that the terrain coefficient |A| decreases if the distance
hetween the source and the cliff edge increases. \Where the results of two terms
approximation are very close to those of the flat-cliff approximation.

Iig. 6.6 gives the variation of terrain coefficient over sea with d,. \Vhen the
distance between the receiver and the cliff edge d, incr ses from 100km to 600km,
the terrain coefficient decreases. The field is absorbed by the water.

In Fig. 6.7, |A| decreases gradually as the height of the cliff increases. The curves
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Figure 6.5: variation of terrain coelficient over sea with J,
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Chapter 7

Conclusion

Fhie detanled pees, ron ol e ge

vsethond in sobvine the st wave prop-

aratvn over a el Bas boen poerfored finthis thesieo \ con s betweens the

vt et wisd e compensation method has been preseated. For gronnd
wirves tadar application. melitied espressions of terrin coctlicient. il gais and
tield streneth for Ll case are wiven

A wser frivndbs compmiter progiazn s developed to obtam the abote paraeters
for etz gronnd wave radar sites. The results of the program give very ood

agteerent with the data published.

7.1 The Difference of the Two Methods

The residue methed and the compensation method are different in their derivations.

Fa in their expressions and the problems solved by them,
The residue method and the compensation method use different technigue to
get the solution. Fourier transform and Green theory were used to derive the wave

function in the residue method, while the defination of the ground impedance was

used in the compensation method.
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T e e e mwethod, £ s

o eetri
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e B it compense o awthoad, B

el above o perfeet conducting stonnd
Becarzse thee Hat- il approsimation sas sl the resisdse e ol s available o

s inhomogeneons earth sleny with one <hott st

v Mt the connpen

<aatioon mwethod van only e wsed for - problem witl s

Stk e sewctione. On e

fer Ll the

sesicine et hod i applicd to the t while

tise compensation method is for the e dimensional probln

7.2 The Similarity of the Two Methods

Aithonel the residue and the compersation methods ave dufferent methods to ol

the foin

s ol dlectromagnetic field strength of o temam of tvo sections, then

tinal expressions of the terain coeflicient for fong distance probien e the s

Becanse ol the same attenzation coctherents in the two methods and p i the

Ine et hond proportional 1o K7 in the compensati

0 imethed. the two metheods

the same relative field strength distributions.

The vesidue technigue was used in both of the nethods. T thee residue

oot hiesel

residne techuique was used to obtain the integration value fog <he wave funetion

o inl s earth, In the pensation method, the resplne technique was

used 1o get the solution for homogeneonus cartl.

Both of them gave their wave functions of inhonog

wons problem based on the
soution of the homogencous problen.

The two methods have used

pproximations during their derivations, And cither

of the general expressions of the two methods is expressed in series. In addition,
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7.3 Two Terins Approximation

e nethod and nnerical cilonla

ool oty thiee flat o BE apoprescitnation: fon the 1
e e approsiation, e 1wo teros approsimation is given in this work

fal cF case of this thesis, the maximum relative error of the two

I the

vt thee Hat o BAE appressi » than five pereent. Bu:

terns approsin

the relative etior inepeases s the distance o, inereases. This inerease becones fast

~ Sorwe shonld put antennas as close 10 the o

whiis shie Trepionics o B

sl
We can use this method 1o solve the il problem when the sonree or recener on

w1 will simplify the program design and save the

the eBll s elosed 1o the oli
computer caleulation tine,

A nmber of cases of field strength distribution related to Northern Radar Cape

site have heen presented with the two term approximation.
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Appendix A

Coordinate Exchange in Vector
Theory

In any orthogonal coordinate system (u;, uz, u3), for position vector 7, we have

a7 oF a7
dr = —du, + Hduz + a—du;\ (A1)

hy, hy and hj are defined as

F .

Buz = hiés

5‘_2 e

=

Bus = ot (A2)

Here, ¢, é; and é; are unite vectors. For any scalar function ¢ and vector A

109 1 9% 1 0%
=y By B s B e

VA=

9
hlh’h:(a—ul(hzham) &+ aT,“‘""A” + a‘—u;(hzhlAa)] (A4)

hé hé; hés
VxA= (A5)

B
’hAx hyAy haA:

Tahaha
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oo L2 hha38 | 0 hhO8 | 0 hisoe
V= e an h w Tk Bt O ks Gu) (A9

In Cartesian coordinates,

hi=hy=hy=1 (A7)
In spherical coordinates,

h=1 hy=r hy=rsind (A8)



Appendix B

Derivation of the Function g(z,7m)

In Chapter 3., the function f}(z) is given by
[H2) = (koz) P HP(koz), n= \Ja?h +1/4 (B.1)

Now, write v = n and koz = 7 = v + A%, For a large order, the following

Bessel function expressions are recalled [20]

J(v+ BV'P) = 2R A(-2'P8) + O(v™") (B.2)
Yo+ Bv'P) = 2P PB(-2'PB) + O(v™) (B3)
Where Ay(z) and Bi(z) are Airy functions of z. Accordingly, H)(v +

B'WM13) can be written as

HM v+ ') = 3w+ B0) = jYi(v + B'F)
= 2V3R(A(=2'28') + j Bi(=2'PF) + (1 4 5)O(v-1)

= U3, ~13gixls /zx/nlgﬁg-illﬂ /3/(2113‘;:)“‘_(_211351)+i5‘(_gllﬂﬂ')]

= PP [i3\[ARFHNE) + O™

ki



where £ = 2/3(2'/38')/%. Now by letting 2'/*3' = B, one may write
HO( + By 3) ~ 9113y =113ein18 ﬂnhﬁm( 3:/1)
V3
A can be found as

B = v'(r-v)

R

(ad)™3(koz = a)

For A =~ ko, one gets

4

(ako) ™ (koz = aX)
238" = (2/ako)'/*(koz — a))

R

8

Using the definition of gx(z,rn) and above results, we can write

(k)
HP(korm)

n(arn) = S/ ) = (
qum
= (2
Tm 21/a,,-i/s,;xle;;-|/:ﬂl/73(2(§%ﬁ)
_ (_’_)I/z ﬂ‘“yﬂs 5[;3/:)
' AUHGE
For z = rp, we finally get

BHONER) _ x(6,)
9err) * G g = XA

21/3p; -|/a=,»/s3-|/zﬂ|/nﬂ(zg(§Ba/z)

8

(B6)

(B.7)

(B.8)

(B9)



Appendix C

Derivation for Computer
Program

C.1 Roots t,

From the equation

W' —gW =0

we have
W' —qW' —qW=0

and from

W'-tW =0
we have

W' = W

W = W
So we obtain

(C.1)

(C2)

(C3)

(C4)

(C.5)



It ives

‘ﬁ—; =(tm—¢")" (C.6)

We can write the series of t as
t(0) 2 tn(0) o
=g Ak ma!—" + e

tm = tm(0) + £, (0)g + [(h))

where

dtn/dg = (tn—g¢")"
dtn/dg® = ~(tm —¢")7(tn — 20)
= —(tmn — ")+ 2(tn — ¢")"
&tn/dg’ = dfdq(d’tn/dg’)
= 3(tm — ") = 10g(tn = ¢°)™* + 8¢ (tm -~ ¢)7° + 2(tm — ¢*)*
d'tn/dg' = d/dg(dtn/dg’) (c.8)

set ¢ = 0, we have

o = -

o) = -é

o) = t—fm-aft%

wo) = -F-g ©9)

so we have

7
o= g e g T~ G s 0

]
i




let x=1/q, and

dtm/dz = (dtm/dq)(dg/dx)

= =@t =o'
= (1-taz?)™!
when z =0, ¢ — 0 and we have
0(0) =1
o) =0
tn(0) = 2m
() = 6

and
oo Loga e
tn = 12+ am1 + 31000+ 30"+

C.2 Error Function
Error function is defined as[1]
erf(z) = %/ﬁ et
and
erfe(z) = ir [ ccnde = 1= erf(s)

So we have

€(z)

%za[e"’df
(1 =erf(2))
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(C.1n)

(C.12)

(C.13)

(c.14)

(C.15)

(c.16)



because the series expression for erf(z) is
(-1t
erfle) = Z,, (20 +1)

We finally obtain

((z)=e” =

C.3 Airy Function

Hankel function of order 1/3 can be written in the term of Airy functions{1]

2
HAGH
Ai(z) and Bi(z) can be expressed

Ai(z) = cif(z) - cag(2)

Bi(z) = V3{(af(z) + cg(z)

where

Lo 147, 14710
1 +...

fl2) = 1+—Z+Tz +—— ki
9(z) = z+—: +Z 3o 238

a

u

]

LR S
Vre s 2nt])

&i*/5.\ [3/2[Ai(~2) + iBi(~2)]

204 ...

4i(0) = B-(o)/\/' = 0.355028053887817

~Ai'(0) = Bi'(0)/V3 = 0.258819403792807
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(C.17)

(C18)

(C.19)

(C.20)

(can)
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