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Abstract

This study deals with the dynamic characteristics of plates submerged in water

using analytical and experimental methods. The plates considered have two kinds of

boundary conditions, one with clamped-free-clamped-freo( CFCF) supports, another

with simple-free-simple-free(SFSF) supports. They are submerged in water at differ-
ent depths,

For the experimental study, modal testing of the two plates is carried out in aiv

and in water. The effect of the depth of

of the plate is investigated. The

simply supported condition was simulatcd by using a notched plate with a clamped

end and the finite element software ABAQU.

used to determine the dimensions of

the notch. The appropriatcness of the tested plates as models of the CFCF and §
plates is verified. The added mass factor. which is used to account for the decrease
in natural frequencics, and the increase in modal damping ratios for the vibrating
plates submerged in water have been cvaluated for the first five modes. The effert of
the plate boundary conditions on the vibration of plates in water is also investigated.

In the analytical study, a thin plate undergoing a flexural bending vibration in i
body of homogeneous, incompressible and inviscid fluid whose motion is irrotational,

is considered. The governing equation for the surface displacement of the plate-fluid

system is derived. [n the effort to solve the velocity potential, the general lincarized

fluid free surface boundary condition is applied. The relationship hetween the added
mass and the depth of submergence above and below the plate is established.

The analytical solution is applied to the CFCF and SFSF plates submerged in



water, and the experimental and analytical studies on the added mass due to the

1. The maximum diffc between the | and

presence of fluid are

the predicted added mass factors is found to be within 7.916%.
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Chapter 1

Introduction

In a large class of dynamic problems, the structure cither contains or is surrounded
by fluid. Examples include safety analysis of nuclear reactors, seismic analysis of
large liquid storage tanks, dynamics of ships, and submarines. In these problems, the
structural displacement modifies the flow field, which in turn affects the structural
responses. Generally, these are categorized as fluid-structure interaction problems.

In fluid-structure interaction problems, natural frequencies, damping ratios and
mode shapes of a structure are diferent from those in air. The prediction of these
changes due to the presence of fluid is important, as this makes it possible for a
designer to select appropriate structural parameters, geometry, damping coatings,
etc, to suppress structural vibration.

Many studies on the fluid-structure interaction problems have been carried ont
by analytical, numerical and experimental methods. Stu.dies performed by Rayleigh(1877],
Lamb{1921], Peake and Thurston[1954], Dowell and Voss[1963], Qisi[1988] and Robin-
son and Palmer(1990] presented analytical solutions for predicting the fluid cffect on
the vibration of simple structures such as circular or rectangular plates. Numerical

studies carried out by Marcus[1978], Volcy et al.{1979], Muthuveerappan{1978, 1979,



1980] and Everstine[1991] investigated complex structures and /or complex boundary
conditions of struciures and fluid. Reports of experimental studies on submerged can-
tilevered plates[Lindholm, 1965 (Budipriyanto, 1993], on perforated plates[De Santo,
1981], and on a cylindrical structure[Randall, 1985], have been published. In general,
these studies have exposed the mechanism of fluid-structure interaction problems
and /or presented methodologies Lo estimate the fluid effect on the vibration of sub-
merged structures. The fluid effect on a structure can be considered as an added mass

for lower modes, and as an added mass and an added damping for higher modes. How-

ever, neither analytical nor i I study which i i the effect of the
depth of submergence on a rectangular plate oriented horizontally has been reported
before. Also, there is no reference in the open literature which investigates exper-
imentally the effect of bounda;y conditions on the vibration of rectangular plates

submerged in fluid.

lytical lar plates

This thesis presents and experi 1 studies on
submerged in water at different depths with the intent of gaining an insight into
the mentioned subjects. The plates have two different boundary conditions, one
has clamped-free-clamped-free(CFCF) supports and the other has simple-free-simple-
[ree(SFSF) supports. The organization of the study is made in the following manner:

Literature review of previous studies on fluid-structure interaction problems is
given in Chapter 2.

The theoretical basis of modal analysis is reviewed in Chapter 3. Some practical
considerations related to the experimental modal analysis, such as the B&K 2034
analyzer involved in data acquisition, and STAR software used in modal pararneter

estimation are also discussed.



Chapter 4 deals with the experimental study on the CFCF and SFSI plates

both in air and in water of 6 different depths of submergence, respecti

. A notched

plate with clamped ends is suggested to approach the SFSF plate, and finite clement
software ABAQUS is used to determine the dimensions of the notch. Results and
discussion are presented.

An analytical solution to an clastic rectangular plate, which undergoes flexural
bending vibration in a body of homogencous, incompressible and inviscid fluid whose
motion is irrotational, is presented in Chapter 5. The relationship between the added
mass and the depth of submergence is established. Also, the validity of the presented
solution is assessed by applying it to the CFCT and SFSF plates.

Chapter 6 makes conclusions on the study.



Chapter 2

Literature Review

2.1 Previous Work on the Fluid-Structure Inter-
action Problems

2.1.1 Analytical Approaches

‘The analytical study on fluid-structure interaction problems was initiated by Rayleigh
[1877). He calculated the increase of inertia for a rigid vibrating plate in an infinite
baffle. Afterwards, Lamb(1921] considered the problem for the first axisymmetric
flexural mode of a circular plate clamped at its edge. The plate was placed in an
aperture of infinitely rigid plane wall in contact with water. The method developed
was based on the calculation of the kinctic energy of fluid in terms of the velocity
potential; and the Rayleigh method was used in the calculation of the resonance
[requency of the plate in fluid. Lamb’s work was extended to the case of the vibration
of a circular plate by Peake and Thurston(1954], for two different boundary conditions
at its edge, simply supported and clamped. Their theoretical results agreed with the
experimental data to within 10%.

Kwak and Kim([1991] also investigated the fluid effect on the natural frequen-

cies of circular plates in water. The plate was simply-supported, clamped and free,



respectively, at its edge and underwent axisymmetric vibrations. The Hankel Trans-
formation technique was used to obtain a qualitative measure of the fluid effect. It
was found that the natural frequencies of clamped and simply supported circular
plates were sensitive to the fluid boundary conditions while the natural frequency of
the free edge plate was not sensitive to it.

The approach presented by Espinosa and Gallege-Juarez[1984] is for evaluat-
ing the fluid effect on the frequencies of circular plates. Unlike other analyses, no
assumption was made as to the magnitude of the wavelength in respect to the lincar
dimensions of the plate. The method was applied to a waler-loaded circular plate
vibrating in its axisymmetric modes and confirmed by experiment, study.

Dowell and Voss{1963] examined a clamped rectangular plate in contact with
fluid and presented a method to estimate the effect of fluid loading on its natural
frequencies. It was found that the fluid acted as an aerodynamic spring or as an
added mass attached to the plate. Pretlove[1965] extended Dowell and Voss’s work
considerably. By considering a simply supported plate loaded on one side by a finite

fluid-filled cavity, he addressed a problem in reconciling plate and fluid boundary

diti The plate displ were d as a weighted sum of mode shapes
of the plate in vacuo and expanded in terms of orthogonal functions which individually

satisfied the fluid boundary conditions. Thus, fluid and plate boundary conditions

were satisfied si

However, the di expression is not in terms
of normal modes of the combined system, as the mode shapes in vacuum are not
eigenfunctions of the coupled governing equation.

More recently, Qaisi(1988] has studicd the simply supported and the clamped

plates by similar methods. His study extended previous work by the application

o



of matrix methods to evaluate natural frequencies and mode shapes of the plate in
contact with fluid.

Junger and Frit[1972] also considered a simply supported plate. In the analysis,
the surface displacement was expanded as a weighted sum of modes of the plate in

vacuo, but fluid side wall boundary conditions were not included. The near fielet

and far field were discussed. It was luded that the plate-fluid coupling
is small for large plates, in which the only effect of the fluid is as an added mass.
Davies(1971] discussed this coupling in some detail, examining the relation to the
damping and added mass effects.

The analysis presented by Robinson and Palmer[1990] is of a problem in which
the plate and fluid modes are compatible; the plate mode shapes are not coupled by
the fluid. Unlike the above analyses, the hydrostatic pressure exerted by the displaced
liquid was incorporated. Free motion in a general combined mode was investigated,
and constraints on the mode shapes developed. The particular case of a floating plate
with edges constrained to have zero slope was then studied.

The above analytical approach has advantages for predicting the effect of the
surrounding fluid on the vibrating plates qualitatively, but it is restricted to very spe-
cial cases. In contrast, numerical approaches such as the finite element method(FEM)
and the boundary element method(BEM) make it possible to solve complex structures

as well as complex boundary conditions of the structure and fluid.

2.1.2 Numerical Approaches

In the effort to ically solve the str fluid i ion problems, various

approximate methods have been proposed to define the transient interaction loading.



They are often based upon the asymptotic behaviours of fluid wave motion, i.c.. at
cariy time(high frequency) of the interaction the fluid loading tends to be a damping
force and at late time(low frequency) Lo tends to be an inertia force of added mass.

Everstine[1991] investigated a cylindrical shell with flat end closures submerged
in fluid by finite element method and boundary clement method. The low frequency
vibration was considered, and fully-coupled added mass matrices were calculated.
The FEM was implemented using NASTRAN while the BEM was performed using
NASHUA and NASTRAN. Both methods were proved capable of computing accurate
submerged resonances.

Another rigorous finite element method for fluids was developed and discussed

by Chowdhury[1972], which was used by Muthuveerappan{1978, 1979, 1980] to carry
out extensive studies on the structure-fluid teraction problems. The study was
carried out for a square cantilever plate by varying the following factors: (i) depths
of immersion; (ii) aspect ratios; (iii) plate boundaty conditions(simply supported,

clamped and free at its edges); (iv) plate materials(steel, aluminum and copper);

and (v) fluid densities. Results 1 indi d the d d of the natural

frequencies of the sut I cantilever plate on depth of water above and below Uhe

plate, and on the lateral extent of the watcr. As the submerged depth increased the
variation in natural frequencies became less, and this variation was appreciable only
in the fundamental frequencies. The mode shapes in water varied slightly from those

in air. Relationships were established showing the dependence of the non-dimensional

on plate ials and fluid densiti
Fu and Price[1987] investigated plate-fluid interaction problem by using hydroc-

lasticity theory and being accomplished by the FEM. The plate considered was of can-



tilever support, partially or totally immersed in fluid. The interactions were defined

in terms of dry mode shapes, natural frequencies, principal coordinates, frequency-

1 i Tl T : i ST

The effect of the free surface was considered. The validity of the hydroelas-

ticity theory and the accuracy of the chosen numerical techniques were assessed by

ictions with the experi | data available.

Numerical methods, whether FEM or BEM, can be applied to solve com-
plex fluid-structure interaction problems. However, both methods require enormous
amounts of computational time and effort. Furthermore, it is not easy to obtain an
accurate measure of the fluid effects by either method. Besides, the validity of the
results obtained by the analytical method or the numerical methods can be appro-
priately assessed only by experimental study. Thus, experimental methods have been

widely used in the i igation of the add d probl

2.1.3 Experimental Approaches

Jezequel[1983] carried out a study whose main goal was to obtain an experimental
model which could be used in the modal synthesis methods. The added mass was
identified by using the measured modes of the structure, both in air and in con-
tact with the fluid. The model which expresses the dynamic behaviour of the fluid-
structure system was obtained through an optimization procedure. The method was
confirmed by applying it to the case of a plate partially immersed in water.
Randall[1985] carried out dynamic studies on a cylindrical structure in air and
submerged in water. Modal analysis techniques were used to identify the natural

frequencies and mode shapes under both conditions.



De Santo[1981] accomplished experimental study on perforated plates vibrating
in water. The water effect was expressed in terms of added mass and hydrodynamic
damping. Dimensionless formulas which gave accurate values for the added mass
and lower bounds for the hydrodynamic damping force in the lincar and nonlincar
damping ranges were presented.

Lindholm et al.[1965] studied extensively cantilever plates in air and in water by
experiments. The plates were vertically-placed or tilted, with different aspect ratios,

chord ratios and thickness. The results were 4 with theoretical predictions

based on simple beam theory or thin-plate theory and the chordwise hydrod.

strip theory. An | factor was introduced Lo achieve good theoretical

and experimental correlation. The fluid free surface and partial submergence effects
were also investigated. It was concluded that: (i) natural frequencies of the plate
decreased and node lines of mode shapes shifted when it was submerged in (luid;
(ii) the added mass factor changed with the submerged depth of the plate, but the
significant change occurred only when the submerged depth was less than about one
half span length of the plate.

The experimental studies carried out by Budipriyanto[1993] examined uncracked
and cracked cantilevered plates in air and submerged in water. It was found that the
natural frequencies reduced by as high as 26.8% and the damping increased by 5 times
in-air value when the water level was just about the middle of the plate thickness. For
full submergence where the water level was about 230mm above the upper surface of

the plate, a maximum natural frequency jon of 40% and damping increase of

about 6 times in-air value were observed.



2.2 Summary

Previous studies which have been reviewed above have investigated the dynamic char-
acteristics of structures in fluid. Most of these studies have examined the change in
natural frequencies of the structures due to the presence of the fluid. Some have
studied the changes in damping ratios and mode shapes. The mechanism of the fluid-
structure interaction problems has been exposed. The study presented in this thesis
is focused on the study of the effect of the depth of submergence on the vibration of
rectangular plates oriented horizontally. The effect of plate boundary conditions on
the vibration of plates submerged in fluid is also investigated. Both analytical and

cxperimental methods are used.



Chapter 3

Modal Analysis Theory

Modal analysis is the process of characterizing vibration properties and behavionr
of a linear system by modal parameters. This process is often referred Lo as modal
modelling. Modal modelling focuses on three key properties of a vibrating system:
natural frequencies, damping ratlios, and mode: shapes.

In the subsequent sections, theorctical basis of modal analysis will be reviewed;
then experimental modal analysis will be addressed. In the discussion of the experi-
mental method of modal analysis, considerable considerations will be given to some
practical problems related to the B&K 2034 analyzer and the STAR software de-
veloped by Structural Meas irement Systems, which are used in the analysis of the
experimentally obtained frequency response functions and the modal parameter esti-
mation. Also, the calculation of added mass factors [rom the natural frequencies of a

vibrating structure in air and in fluid is discussed.

3.1 Theoretical Basis of Modal Analysis

In order to apply modal analysis to a system, this system is assumed to satisfy the

following conditions[Allemang, 1987]:



(i) The system is lincar. This implics that the response of the system, due to any
combination of forces which applied simultancously, is equal to the sum of the

individual response to each of the forces acting alone. Under this assumption,

the system beh can be ch d bya lled in which

forces applied to the system have a form convenient for measurement and pa-
rameter estimation rather than being similar to the forces actually applied to

the system in its normal environment.

(ii) The system is time-invariant. This means that the system parameters such as
the equivalent mass, the stiffness and the damping ratio are constants instead

of functions in time.

(iii) The system is idered to follow Betti-Maxwell's reciprocal theorem. The

theorem states that the deformation at point j due to a force applied at point
k is equal to the deformation at point k due to a force at point j. Under this
assumption, it is required to measure only a column or a row of the system

frequency response functions.

Consider the governing equation of vibration for a multiple degree-of-freedom

system with viscous damping
[MI{#()} + [CH(0} + (K N=()} = {£(&)} (3.1)

where
[M]: n x n mass matrix;
[C): n x n damping matrix;

[K): n x n stiffness matrix;



{()}: n x 1 vector of accelerations:
{&(t)}: n x 1 vector of velocities;
{z(t)}: n x 1 vector of displacements:
{f()}: n x 1 vector of forces.

Application of Laplace transform to Equation 3.1 yiclds
[s%1M] +5(C] + [KI{ X (s)} = {Fls)} + (1M] + [CH{X (@)} + MU X))} (3.2)

where s = 8+ jw is the Laplace variable; {:X(0)} and {X(0)} are the initial displace-
ment and velocity vectors at time t = 0; {.X(s)} and {F(s)} arc the displacement
and force vectors in the Laplace domain. If the initial conditions are zero, Equation
3.2 becomes

[$°(AM) + S[C) + [KI{X(s)} = (P} ()

Let [B(s)] = s*[M] + 5[C] + [K], then Equation 3.3 can be rewritten as
[B(s)){X(s)} = {F(s)} (3.4)

This is an equivalent representation of Equation 3.1 in the Laplace domain. By

defining [H(s)] = [B(s)]™", Equation 3.4 becomes

{X(s)} = [H(s)|{F(s)} (3.5)
where [H(s)] is called the transfer function matrix. Let the Laplace variable s = jw,
then one has

W = (Bl = (BGw) o
(G = (B = FoEdey (16)

where [B(jw)] = [-[M]w? + jw[C] + [K]]; adj[B(jw)] is the adjoint matrix of [B(jw)]
and det(B(jw)] is the determinant of [B(jw)].

13



Since hoth the adjoint matrix of B[(jw)] and the determinant of [B(jw)] are
polynomials in jw, the element of [H(jw)] is a rational fraction in jw. Therefore, it is
possible to represent any element of the frequency response function matrix [H (jw)]

in a partial fraction form:

(G = 3114

N L

3.7

(41

jw—w " jw

wiiere [A,] is the r-th residual matrix which reflects the corresponding mode shape;
w, is the r-th complex frequency, whose imaginary part gives the damped natural
frequency and whose real part gives the damping coefficient. A = designates the
corresponding complex conjugate.

For the homogeneous solution:
[B(w){ X (juw)) = {0} (3.8)
The characteristic polynomial equation is obtained from
det[B(jw)] = 0 (8.9)

The roots w; of the characteristic Equation 3.9 are called eigenvalues or complex

fi i bstituting an eig lue into the equation of motion 3.8, solving for
X(jw) and normalizing the values of X(jw) to unity yield the eigenvector U; corre-
sponding to the eigenvalue w;.

It can be shown that modal vectors are orthogonal with respect to one another
if they are weighted with respect to the mass matrix [M] and the stiffness matrix
[K]. It can also be shown that modal vectors are orthogonal to one another if they

are weighted with respect to the damping matrix [C] when proportional damping is

assumed.



Equation 3.1 can be written in the modal space. The transformation from
physical space to modal space is given by
{z(0} = [UKa(1)} (3.10)
where
[U}: modal matrix, (U] = (Uy,Un, .., Uan);
{q(t)}: displacement vector in modal space.
Substitution of Equation 3.10 into Equation 3.1 gives
IMIIUNEO} + [CIUIGW} + (KUHa(D) = (1D} (311
Pre-multiplying by [U]7 gives
WM} + UITCIV G} + U IR)Ua@)} = U7 (1) (312)
When the damping of the system is proportional, application of the orthogonality

properties of modal vectors yields the generalized diagonal mass, stiffness and damp-

ing matrices:

(M) = U [M][U) (3.13)
€= wrrenwi (3.14)
(K] = )" (K)W] (3.15)
Rewriting Equation 3.12 as
({i()} + [CHa()} + [R){a()} = {P(1)} (3.16)

where {P(t)} = [U]T{f(t)} is the force vector in modal space. It is noticed that cach
equation uncouples from the other and represents an individual modal response of

the system[Ewins, 1984].



3.2 Experimental Modal Analysis

lxperimental modal analysis is the process of experimentally determining the modal
parameters of a linear, time-invariant system. Equation 3.7 is the general matrix
form that is used in modal analysis. Continuous systems have an infinite number of
degree-of-freedom; however, in general, only a finite number of modes are needed to
describe the dynamic behaviour of a system. In the frequency range of interest, the

modal ters can be esti d to be i with Equation 3.7. In the lower

and higher frequency ranges, residual terms can be included to handle modes in these
ranges. In this case, Equation 3.7 becomes

Aike Ase
e
Jo—w | je—wr

Hajo) = Palio) + 30 1+ Qu(i) @17

where Pj(jw) is lower residual, and Qix(jw) upper residual. In many cases the lower
residual is called the residual inertia which reflects the inertia of the lower modes and
is an inverse function of the frequency squared; and the upper residual is called the
residual flexibility which reflects the flexibility of the upper modes and is constant
with [requency.

In experimental modal analysis, frequency response functions are used as inputs
so that modal parameters could be estimated. Since it is assumed that the Betti-
Maxwell theorem can be applied to the system, modal parameters can be estimated by
measuring either a column or a row of the system frequency response functicns. Thus,
the frequency responsz function plays an important role in the experimental modal

analysis. The response functions are firstly determined by experiments

and then used to estimate the natural frequencies, modal damping ratio, and mode

shapes of the system. Thus the experimental modal analysis comprises mainly of two
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phases, the measurement of frequency response functions and the modal parameter

estimation.

3.2.1 Measurement of Frequency Response Functions

Before di ing the of f

q response functions, an appropriate
excitation signal should be chosen.

Excitations which are widely used to drive the tested structure in order to
measure frequency response functions include slow-sine sweep, fast-sine sweep, i
pact(impulse), step relaxation, and random. The fast-sine sweep was used to drive
the plates in this experimental study. The advantages of using the fast-sine sweep
are: the relatively short measurement time, the possibility of reducing leakage crror
and the high signal to noise ratio[Ewins, 1984).

The fast-sweep sine is a periodic deterministic signal. It is formulated by sweep-
ing a sine wave signal up and down within a [requency band of interest during a single
sample period. The suitability of the sweep rate can be checked by trial and error.
Measurement is made twice by once sweeping up and the second time sweeping down
through the frequency range. If the same curve results in the two cases, then the
sweep rate is appropriate.

In this experimental study, the B&K 2034 analyzer is chosen to take the mea-

urement of fr response fi i It is a fast, flexible, and [ully self-contained

two-channel Fast Fourier Transform analysis system. The resolution lincs arc 801.
Noise will be unavoidablv involved in the measurement. This noisc can result
from three sources: (i) noncoherent noise resulting from stray electrical signals or

unmeasured excitation sources; (ii) signal processing noise produced during analysis



due to the use of discrete Fourier Transform to convert time into frequency domain

i noise due to 1i behavi of the studied

o vice versa; and (jii)
system needed to be considered in the signal processing methods. These noisss are
climinated by utilizing a signal averaging procedure and sufficient length of data with
proper windows and frequency resolution.

The B&K 2034 analyzer provides five error reduction techniques to minimize

errors in the of response functions: (i) choice of the appropri-
ate frequency response function estimator; (ii) use of signal averaging methods; (iii)
choice of proper frequency resolution, and (iv) use of a suitable weighting function
or window. Appropriate consideration should be given to each of these in order to
ensure that 'correct’ measurement is made.

Frequency Response Function Estimator

Based on the assumed noise input into the system, the frequency response function
estimating procedure can be grouped into three different methods, i.e., Hy, H; and

H,. H, assumes that noise exists in the output and the input is free of noise. Hence
[H}{X} ={¥} - {n} (3.18)

Hy assumes that the noise is present in the input and absent in the output,
(XY - (€1} = (v} @.19)
H, assumes the noise to exist both in the input and output signale, consequently

VLX) = {e}} = {¥} - {n} (3.20)
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Figure 3.1: A system with noise

The B&K 2034 analyzer utilizes the spectral approach for estimating frequency

response functions given by[B&K 2034 analyzer manual, 1987]

= G"!l oD
H = e (3.21)
G,
Hy = Zzi (4.22)

where
G, is the input auto-spectrum and equal to ©%, XiX};
G,y is the output auto-spectrum and equal to T, Yi¥;;

Gy = G,z is the cross-spectrum, and equal to S0, X;

=T VX
In an actual measurement situation, the r.oise occurs both in the input and output
as shown in Figure 3.1 in which apostrophe denotes the true measured input and

output. Therefore, H and H; are further defined as

= 1(1 + )
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where
Il is the true frequency response function of the system;
= 2% is the relative amount of noise at the input, = & + &;
= §2 is the relative amount of noise at the output, 7 = 1 +7s.
It can be seen that H, is the lower bound and H is the upper bound of H.
The level of confidence in frequency response function measurement can be
estimated by the coherence function which is defined as

e fGul _ GaGie
GuGyy~ GaCiy

+* is real valued and varies from 0 to 1. Zero value of the coherence function means

that the response is generated by noise or a source other than measured input. When
the coherence function is one, however, the measurement is perfect, i.e., the output

is caused by the measured input.

Leakage And Windowing

Leakage is a direct consequence of the truncation which occurs during sampling a
finite length of time history coupled with the assumption of periodicity. One practical
solution to the leakage problem involves the use of weighting functions or windows.

ing involves the imposition of a prescribed profile on the time signal prior to

performing the Fourier Transform. By applying a weighting function or a window,

error in [requency response functions can be reduced.

Windows available in the analyzer are R Transient, E:
Hanning, Flat Top and Kaiser Bessel[B&K 2034 analyzer manual, 1987]. Alle-
mang[1987] suggests the use of Hanning window for stationary signals. In this study,
Hanning window is used in the signal analysis.
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Averaging

Signal averaging is the process involving several individual time records, or samples,

before a result, which can be used with confidence, is obtained. Lrror caused by

leakage and spurious random noise can be reduced by averaging so that the a

and statistical reliability of frequency response functions are improved.

Several time averaging methods, such as Lincar, Exponential und Peak A

aging, are available in the analyzer. These can be performed with or without the
overlapping of the time record. The overlap process in intended to enhance the
measured data by including consecutive history data before the previous data are
completed. In the analyzer, the degree of overlap could be 50%, 75% or a maximum
of 85%. The number of averaging required are determined by two major considera-
tions, the accuracy and statistical reliability desired, and the noise level in signals. In
the experiment of this study, Linear Averaging method with 75% overlap was used

and the number of averaging was 20.

Zoom

Because of the constraints imposed by the limited number of discrete points available
due to the block size, the maximum frequency range to be covered and/or the length of
time sample available or necessary to provide good data, the limitations of inadequate
frequency resolution arise. The common solution is to *zoom’ in the frequency range
of interest and to concentrate all the spectra lines into a narrow band between [fin
and frng:.

In addition, increase of the frequency resolution minimizes the leakage crror,

Zoom means the ion in freq span of which automatically
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requires a longer time history record. When the frequency response function peak
is narrower than the frequency resolution, error occurs. In this case the frequency
response function will "leak” or be wider than the region of interest. Resonant and
anti-resonant peaks of the frequency response function are susceptible to this type of
error. In the experiment carried out in this study, zoom of 50Hz frequency span is

used to obtain more accurate measurement.

3.2.2 Modal Parameter Estimation

Modal imation is the estimation of damping, and mode shape
from the measured data which may be (i) in a relatively raw form in terms of force

and response data in the time or frequency domain or (ii) in a processed form such

as frequency response or impul P functi Modal

carried out in this study is based upon the measured data being the frequency re-
sponse functions. The computer software package used to perform the estimation is
STAR(Structural Testing, Analysis and Reporting), version 4.00, developed by Struc-
tural Measurement Systems. Besides its capability to identify the modal properties of
mechanical structures, STAR provides functions such as measurement display, real-
time animated mode shape display and data handling. :

When a structure is excited using a broadband input force, many modes of

vibration are excited simul ly. Since the is assumed to be linear,
frequency response functions are really made up of the sums of the resonance curves
for each vibration mode. In other words, at any given frequency, the frequency
response function is made up of the sum of motions of all the modes of vibration

which have been excited. However, the contribution of each particular mode to the
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overall motion is generally greatest in the vicinity of its resonance peaks.

The amount of the contribution due to adjacent modal resonance curves to
the overall frequency response function value at a mode’s natural frequency is called
modal coupling. The degree of modal coupling in a frequency response function is
governed by the modal damping ratio and the frequency separation of the modes.
According to the mode-coupling degree of a system, two modal parameter estima-
s, (i) single degree-of-freedom(SDOF) imations and (i) multiple
degree-of-freedom(MDOF)
available in STAR[STAR manual, 1990}.

tion

p can be used. These two Lechniques are

SDOF Techniques

In cases where modal coupling is light, the frequency response function data in the
vicinity of each modal resonance peak can be treated as if they are the responses of
a SDOF system or a single mode of vibration. In other words, in the measurement
of frequency response functions of a system with light modal coupling, it is assumed
that the contribution of the tails of adjacent modes near each modal resonance peak
is negligible. Algebraically, this means that the magnitude of the frequency response
function is effectively controlled by one of the terms in the series, that being the one
relating to the mode whose resonance is being observed. In this case, SDOF curve
fitting methods can be used to identify the modal parameters.

STAR provides several SDOF techni such as Coincident Peak, Quad

Peak, Complex Peak and Polynomial. When using a SDOF technique, modes in the
test data should be relatively uncoupled. A peak on an frequency response function

plot should occur in relative isolation {rom other peaks and should be relatively
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uncontaminated by residual contributions from higher and lower modes. One key
disadvantage is that they tend to be less accurate than the more sophisticated MDOF
techniques. If accuracy is not a top priority, SDOF techniques can provide results

with minimum cffort and computer resources.

MDOF Techniques

where modal coupling is heavy, an SDOF modal parameter estimation method may
yield parameters with large errors. In cases of heavy modal coupling, the parameters
of all the modes must be estimated simultaneously using a MDOF method. STAR
provides users with a MDOF estimation technique named the Rational Fraction Least
Squares(RFLS) polynomial method. This method fits a polynomial function in a
rational fraction form, to a frequency response function using a least square error
technique.

The RFLS method allows users to have better chance of accurately determining

how many modes are actually in the specified f range. This is
by over-specifying the maximum number of modes. There may be repeated modes, or
modes very close in frequency, that appear as one mode. By over-specifying the max-
imum number of expected modes, one has better chance of accurately determining
mode size in the specified frequency range. The true(actual) modes and compu-
tational(artificial) modes of the structure are identified according to the "Stability
Diagram” window(STAR manual, 1992]. As stated earlier, MDOF estimation tech-
niques offer improved accuracy in cases where the frequency response function data
contain heavy modal coupling and/or the structure has local modes. However, they

are more demanding of computer resources.
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3.3 Added Mass Factors

s decre:

When a structure is submerged in fluid, natural frequerci se and damping
ratios increase. It is more appropriatc to use the non-dimensional value, added mass
factor(AMF), to measure the change in natural frequencics due to the fluid-loading

effect. The added mass factor to be determined is based on the obtained modal

The necessary parameters are natural [ ics of Lested structures in

vacuum and in fluid. For structures having a relatively higher density, the natural

frequency in air is sufficiently close to the that in vacuum. This allows the wse of the
in-air natural frequency for added mass calculations.
For continuous systems such as plates, the systems have an infinite number of

degrees-of-freedom. However, in gencral, only a finite number of mods 2 needal Lo

describe the dynamic behaviour of a system. As stated earlier, modal parameters of

these modes can be esti d from the 4 response functions in the

requency range of interest. Also, because of the orthogonality of mass, stilfness and

eristics

damping matrices with respect o the mode shape matrix, the dynamic charac

of the system can be represented as, in modal space,

Migi+Cigi + Kui =0 i=1,...,n (3.23)

where M;, C; and I; are the modal mass, modal damping and modal stiffness of the

i-th mode, respectively. The und d natural fi is

(3.24)

When a structure vibrates in fluid, it is subject to fluid effect. As stated carlier, the

fluid effect can be accounted for hy an added mass and added damping ratio. From
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this point of view, Equation 3.24 is valid for a vibrating plate both in air and in fluid.
Also, hecause physical stiffness of the plate remains unchanged whether it is in air or
in fluid, modal stiffness T; remains the same if mode shapes are assumed unchanged
duc to the presence of fluid. In this case, one has

Mijia _ 2

=l o el 3.25)
Misic — Whuia (3:20)
where Miair and M are the modal masses of the i-th mode of the structure in
air and in water, respectively. If M; is used to designate the added mass due to the

fluid effect on the structure, then 3 ;i can be written as

Miguia =
We define an added mass factor as

AMF =

then from Equation 3.25, one has

Wi

AMF =( (3.26)

W'xllu:d
3.4 Summary

In this chapter, the theoretical basis of modal analysis is reviewed, and experimental
modal analysis techniques have been discussed. Some practical problems related to
the measurement of [requency response functions and modal parameter estimation
have been considered also. In addition, the calculation of added mass factors from

the natural frequencies of a vibrating structure in air and in fluid is discussed.



Chapter 4

Experimental Investigation

Experimental studies are an important tool in the investigation of the behaviour of
vibrating structures submerged in fluid. Expecrimental studies make it possible to
gain a direct insight into problems whose analytical solution is difficult to obtain.

In this chapter we describe experiments Lo study the vibration response of two
flat plates which are horizontally oriented and with different boundary conditions.
Experiments on the plates in air and submerged in water are reported. One of the
plates has clamped-free-clamped-free(CFCF) supports while the other has simple-
free-simple-free(SFSF) supports. The effect of the depth of submersion on the vi-
bration response has been -itudied by varing the depth from 0 to 327.5 mm in five
steps.

In the subsequent sections, experimental setup used in the study followed by
method of calibration are introduced. Detailed study on modelling of the simple
supports involved in the boundary conditions of the SFSF plate using finite clement
software ABAQUS is presented. Description of the modal testings on CFCF and
SFSF plates both in air and in the submersion of six different water levels is given.

Results and discussion are -resented.
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4.1 Experiment Setup

To measure the vibraticn of each plate, 15 PCB 330A accelerometers are used and
mounted at acquisition points on the plate. These accelerometers are selected not only
because they are light, each weighting 3 grams together with its mounting socket, and
as small as ¢11 x 21.5 mm, but also because they have high sensitivity of 200 F 40
mV/g.

The experiment setup used in the experiment is shown in Figure 4.1. Fast sine
sweep excitation was selected so that the best results for coherence and frequency
response functions would be obtained. A sweep sine signal generated by the func-
tion generator was amplified by a power amplifier then input to the vibration exciter
to excite the tested plate through a connecting rod shown in Figure 4.2. A force
transducer was attached between the connecting rod and the tested plate to measure
the excitation force which then was amplified by the dual mode amplifier. The re-
sponse signal of the vibrating plate was measured by accelerorneters, then amplified
by the differential amplifier. Finally, both force and response signals were input to

the oscilloscope to monitor and the analyzer to perform Fast Fourier Transform so

that frequency response functions and cok functions were obtained. These data
were then exported and stored in a PC computer for analysis using STAR.

The connecting rod between the vibration exciter and the force transducer is
comprised of three parts, as shown in Figure 4.2. Part 1 has two functions. One
is to connect the vibration exciter to the long steel rod part 2; another is to adapt
preload by adjusting the coupling length with part 2. Part 3 is designed to protect
instruments from overloading; the middle part whose diameter is ¢ is made of mild

steels and will be yielded when the exciting force becomes large.
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Figure 4.1: Experiment setup
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To carry out the measurements in water, a 1300 x 550 x 800 mm tank was built.

The wall of the water tank was made of plastics and d on steel
frames which were used to strengthen the wall. The level of the free water surface
with respect to the plate was controlled by the depth of water in the tank. The tank
was fixed to a rigid platform so that it did not vibrate when the plate was excited.
When the experiment in water was carried out, the accelerometers and all connections
of wires submerged in water were water-tight using vaseline. A photograph of the

setup is shown in Figure 4.3.
4.2 Calibration

The calibration of the testing system is carried out in two steps. The first step involves
the calibration of the excitation channel which includes the force transducer and the
dual mode amplifier. The second step involves the calibration of the response channel

which includes the accelerometers, the differential amplifier and the scanner.
4.2.1 Excitation Channel

The setup for the calibration s shown in Figure 4.4. The standard weight was applied
on the force transducer. The signal produced by the transducer was amplified by the

dual mode amplifier which was properly set so that the expected channel sensitivity
of 2V/Ib was obtained. The multimeter was used to measure the output.

In order to apply the weight on the force transducer, two pieces of 98 x 74 x 10
mm aluminum plates were used. The force transducer was attached to the plates
by screws, and the effect from the weight of the plate and screws was avoided by

grounding the amplifier before the standard weight was applied. The calibration was
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Figure 4.4: (a)Calibration setup for the excitation channel; (b) Setup used to apply

loads to the force transducer

repeated five times and the readings were shown in Table 4.1. The sensitivity equation
was estimated using the Least Squarc Method. As expected, the function of the input

and the output is linear in the calibration range, which is cxpressed by
¥ = 0.021428 4 2.118572
Where x is a load in pounds and y is a reading in voltages.

4.2.2 Response Channel

The setup for the response calibration is shown in Figure 4.5, The accelerometer to
be calibrated was attached to the socket of the calibrator, which outputs a constant
level of 1g(RMS) at a frequency of 80.125Hz. The output of the accelerometer was
amplified by the differential power amplifier and sent to the analyzer to calculate the

auto spectrum. The sampling time was 85, averaging number was 20 and Hanning
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Table 4.1: The readings of calibration for the excitation channel

Feading(V]
Load(le) T [ 2 | 8 | 4

0.5 1.050 | 1.10 | 1.08 | 1.08 | 1.J15
1.0 2.15 | 2.14 | 2.16 | 2.09 | 2.05
1.5 3.05 | 3.03 | 3.02 | 298 | 3.06
2.0 4.10 | 4.12 | 3.99 | 4.15 | 4.03
2.5 5.15 | 5.10 | 5.08 | 5.10 | 5.06
3.0 6.13 | 6.03 | 6.04 | 598 | 6.02
3.5 7.10 | 6.95 | 7.00 | 7.10 | 7.04
4.0 8.12 | 8.09 | 8.14 | 7.96 | 8.02
4.5 9.05 | 9.07 | 9.01 | 9.00 | 9.12
5.0 10.10 | 10.12 | 10.10 | 10.05 | 10.00

window was used. The calibration for each channel was done one by one, and the

scaled sensitivity factor of each channel was then estimated and shown in Table 4.2.

4.3 Tested Plates

The sample length of tested plates is measured 655 x 201.65 x 9.36 mm, which were
cut from AISI C-1020 cold-rolled steel plate stock. In order to exclude the effect
of material difference between plates, only one plate is used for the two different
boundary conditions. One is CFCF supported, another is SFSF supported, which are

shown in Figure 4.6. Only the first five modes are of interest.
4.3.1 CFCF Plate

In the experiment, the plate was clamped horizontally between two 300 x 300 x 27.5

mm steel blocks over a plate length of 300mm at each chordwise end. The lower
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Table 4.2: The sensitivity factor of the response channels

Channel No. | Accelerometer series No. | 1 RMS(V) [ Scaled factor
1 20502 1.1533 1.3873
2 19912 1.2570 12729
3 20093 1.1832 1.3523
4 19944 1.6000 10000
5 20397 1.1662 1.3720
6 19593 1.2369 12936
7 20082 1.4849 10775
8 20505 1.3360 11976
9 20403 1.2570 1.2729
10 20236 15652 1.0222
11 19579 1.4492 11041
12 19612 1.3620 11747
13 19906 1.3454 1.1892
14 19907 1.4306 L1184
15 19568 1.2884 1.2419

T RMS is the Root of Mean Square.
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Figure 4.5: Calibration setup for the response channel

block was attached to a heavy I beam support, which was welded to the bottom of

the tank. The support height is 275 mm.
4.3.2 SFSF Plate

It is more complicated to obtain the SFSF plate in practice than the CFCF plate.

Thus some detailed discussions are called for.

Survey of Different Approaches to A Simple Support

"Hinged” support and "edge” support are widely used to accomplish a simple sup-
port. However, a hinge always involves some friction. Thus the moment at a "hinged”
support will not be equal to zero. The friction moment may be a constant or propor-
tional to the reaction exerted by the support. For an edge support, then, since the

support is off-center, rotation will result in a tangential friction force which produces
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Figure 4.6: (a) Dimensions of the plates; (b)Clamped-free-clamped-free(CFCF) plate;
(c)Simple-free-simple-free(SFSF) platc
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both a resisting moment and an axial load.

The effect of friction moments at simple supports is similar to that of decreasing
the dimensions of a plate, by an amount ranging from close to zero for"rictionless”
hinges to a maximum of about one half the thickness. For supports at the two ends,
the amount is one times the thickness(Donnell, 1976].

Because of the shortcomings involved in these two approaches, a "notched”

plate with a clamped end is i to approach the dition of simple supports.

Thus, a plate having notches is clamped at the immediate outward ends, as shown in
Figure 4.7, can be used to simulate the SFSF plate. Obviously, it is the dimensions

of the notches that govern the accuracy of the approach.

Dimensions of the Notch

The finite element method is a powerful tool to predict the dynamic behaviour of
systems. In this study, the general purpose finite element program ABAQUS, version
5.1, developed by Hibbitt, Karlsson and Sorensen Inc., was used to determine the
optimal dimensions of the notch.

S8R5 shell element was chosen to discretize the plate in this study. It is a 8-node

doubly curved shell element; each node has 5 deg f-freedom(three displ

and two in-surface rotations). It has a 3 x 3 middle surface integration for mass, body
forces and surface pressure calculation and a 2 x 2 reduced integration for constitutive
calculation and output. 5 integration points are chosen through the shell thickness.
They are located from the bottom to the top surface of the shell, with equal distances
between two adjacent points{ABAQUS manual, 1992].

In order to select an appropriate mesh for the plate, tentative calculations are
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Table 4.3: Natural frequencies(Hz) obtained using two meshes

Mode No. | Mesh 1| Mesh 2

1 51.33 | 51.33
2 204.01 | 203.98
3 222.58 | 221.22

4T | 459.39
5 478.55 | 476.40

performed to a notched plate with notches measured 3 x 0.6352 mm. Two different
meshes are used; mesh 1 has 175 elements, but the size of element changes abruptly;
mesh 2 has 413 elements and the size of element changes gradually, as shown in Figure
4.8. The first five natural frequencies of the simulated SFSF plate are calculated
and listed in Table 4.3. The results obtained with two meshes correlate quite well
between themselves, suggesting that mesh 1 is reasonable and reliable to perform the
calculation of the notched plate.

To investigate the effect of the notch dimensions on boundary condition, three
notches are investigated. The notches have the width of 3 mm,4 mm and 5 mm
which are approximately 1k, 2h and Lh, respectively. The depth of the notches is
measured 0.07h, 0.08h, ..., and 0.13h, respectively. The natural frequencies of the
first five modes for the notched plate are calculated using ABAQUS. Also, the first
five natural frequencies of the ideal SFSF plate are estimated by ABAQUS in which
mesh 3 is used. These frequencies are listed in Table 4.4 for comparison.

In order to judge which notch is the best, the root of mean square(RMS) of the
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(2)

(b)

(c)

Figure 4.8: (a) Shell element mesh 1
(b) Shell element mesh 2
(c) Shell element mesh 3
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Table 4.4: Natural frequencies(Hz) of the SFSF plate

©
w
-

Mode No. 1

o

Ideal SFSF 51.015 | 205.660 | 228.600 | 465.510

491.600

10.07 | 51.332 | 204.010 | 222.630 | 439.520
0.08 | 51.741 | 204.570 | 223.700 | 460.630
0.09 | 52.251 | 205.180 | 224.480 | 461.590
3mm | 0.10 | 52.871 | 205.880 | 225.000 | 462.520
Simulated 0.11 | 53.606 | 206.690 | 225.610 | 463.500
0.12 | 54.460 | 207.630 | 226.110 | 464.570
0.13 | 55.435 | 208.710 | 226.580 | 465.750

478.650
480.920
482.540
483.810
484.870
485.820
486.730

0.07 | 50.932 | 202.600 | 218.670 | 455.150
0.08 | 51.256 | 203.230 | 220.500 | 457.000
0.09 | 51.652 | 203.820 | 221.780 | 458.350
4mm | 0.10 |52.131 | 204.440 | 222.730 | 459.470
0.11 | 52.700 | 205.110 | 223.490 | 460.490
0.12 | 53.363 | 205.870 | 224.130 | 461.490
0.13 | 54.124 | 206.720 | 224.690 | 462.540

469.840
473.950
476.760
478.810
480.400
481.710
482.840

0.07 | 50.596 | 200.980 | 213.550 | 449.350
0.08 | 50.877 | 201.810 | 216.520 | 452.470
SFSF 0.09 | 51.210 | 202.490 | 218.510 | 454.560
5mm | 0.10 | 51.606 | 203.120 | 219.950 | 456.110
C.11 | 52.074 | 203.760 | 221.050 | 457.380
0.12 | 52.619 | 204.430 | 221.930 | 458.500
0.13 | 53.245 | 205.170 | 222.660 | 459.570

458.310
465.080
469.590
472.780
475.160
477.030
478.570

Thotch width; Foefficient of the notch thickness.
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Figure 4.9: RMS versus notch dimensions

non-dimensionzlized deviation(NDD) of each natural frequency for a simulated SFSF
plate from the ideal one is estimated and shown in Figure 4.9, in which

NDD; = %

S NDD?

RMS =

where f; and f are the natural frequency of the i-th mode for an ideal SFSF plate
and the simulated SFSF plate, respectively.
From Figure 4.9, it is found that, the minimum RMS 1.595% is obtained when

the notch has a width of 3 mm and a depth of 0.7488 mm. However, considering the
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notch strength, the handling convenience during the test, the difficulty in manufactur-
ing and the sizes of the milling tools available, the notch is measured 3.2 x 0.936 mm:
‘The natural frequencies of the first five modes for the notched plate are estimated in
the same way, and the RMS is 1.885%.

Natural frequencies are one aspect of concern; another one is the concurrence
in mode shapes between the ideal and simulated SFSF plates. Figures 4.10 and 4.11
show the mode shapes of the two plates. It is found that mode shapes of the first
five mode for the two plates are in good agreement with each other. The consensus
of natural frequencies and mode shapes indicates that the simulated SFSF plate is

good approach to the ideal SFSF plate.

4.4 General Procedures of Experiments

The experiment was performed firstly to the CFCF plate then the SFSF plate both
in air and in water. For the experments in water, the depth of submersion above
the plates h varied from 0 to 327.5 mm in five steps while the water level below the
plates remained 275 mm. The driving point was located at 327.50 mm from each
end, 30 mm off center; the responses of the plates were collected only at acquisition
points of the 2 plate area because of the symmetry of the plates, as shown in Figure
4.12. The positions of these points were determined, based on the predicted dynamic
behaviour of the plates in the first five modes, so that all of the modal responses could
be obtained.

Each test was performed in two steps. Firstly, sinusoidal sweep excitation with
normal frequency span 200Hz was done to roughly locate the resonant frequency for

the first five modes. Secondly, sinusoidal sweep excitation with frequency span 50Hz
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228.60Hz
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Figure 4.:0: Mode shapes of the ideal SFSF plate



2308 205.57Hz

224.50Hz 461.87Hz

482.79Hz

Figure 4.11: Mode shapes of the simulated SFSF plate
- notch size: 3.2 x 0.936mm
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Figure 4.12: The distribution of the driving point and acquisition points

around each resonant frequency was performed to obtain frequency response functions
s0 that modal parameters could be identified. In both sweep excitations, the average
number was 20 and the sweep time was 1.8 seconds. The frequency response function

at each acquisition point was obtained by the analyzer and stored in the PC computer.

4.5 Modal Parameter Estimation

By using STAR software package, modal parameters of CFCF and SFSI" plates both
in air and in water are identified from the measured data. It is noted that the mode
shape values at the points where the response has not collected are estimated by using
the responses of symmetrical and anti-symmetrical points. The natural frequencics
and modal damping ratios are tabulated in Tables 4.5 and 4.6. Because the mode
shapes of the plates in water have not shown discernible variations from those in air,
only the modal shapes of the plates in water are displayed, as shown in Figures 4.13

and 4.14.

a7



Table 4.5: Modal frequencies and modal damping ratios of the CFCF plate

T Number T 7 3 1 5

Mode | Type Ist Tbd. | 1st Fts. | 2nd bd. | 2nd ts. | 3rd bd.
In Freq.(Hz) | 100.348 | 244.986 | 279.089 | 522.486 | 536.104
Air Damp.(%) | 0.1850 | 0.2617 | 0.1874 | 0.1694 | 0.1965
Partial Freq.(Hz) | 69.505 | 203.310 | 205.382 | 435.175 | 405.725
Submersion | Damp.(%) | 0.553 | 0.3185 | 0.5886 | 0.2267 | 0.5474
“0.1 | Freq.(Hz) | 59.828 | 180.961 | 174.240 | 388.723 | 353.397
Damp.(%) | 0.6258 | 0.3356 | 0.6970 | 0.3303 | 0.5614

Full 0.2 | Freq.(Hz) | 58.155 | 179.574 | 172.700 | 385.894 | 346.815
Damp.(%) | 0.7106 | 0.3462 | 0.6983 | 0.3668 | 0.5741

0.3 | Freq.(Hz) | 57.837 |179.218 | 169.501 | 385.874 | 345.300
Damp.(%) | 0.742 | 0.3605 | 0.7055 | 0.3870 | 0.5897

04 | Freq.(Hz) | 57.510 | 179.158 | 167.250 | 385.845 | 345.233
Submersion Damp.(%) | 0.765 | 0.3622 | 0.70.73 | 0.4339 | 0.5947
0.5 | Freq.(Hz) | 57.444 |179.152 | 167.010 | 385.739 | 344.999
Damp.(%) | 0.7812 | 0.3664 | 0.7079 | 0.4531 | 0.5977

Thd.-bending mode; Tts.~ torsional mode; *&.




Table 4.6: Modal frequencics and modal damping ratios of the SFSF plate

I Number 1 2 3 1 5

Mode | Type Lst Tbd. | 2nd bd. | st tts. | 3rd bd. | 2ud ts.
In Freq.(Hz) | 50.871 | 198.500 | 211.448 | 442.750 | 455.832
Air Damp.(%) | 0.1947 | 0.2115 | 0.2598 | 02501 | 0.2205
Partial Freq.(Hz) | 34.520 | 145.468 | 176.400 | 334.636 | 380.993

Submersion Damp.(%) | 0.5191 | 0.8338 | 0.3165 | 0.5489 | 0.3043

-0.

Freq.(Hz) | 30.100 | 125.500 | 155.873 | 288.125 | 338.638
Damp.(%) | 0.5448 | 0.8867 | 0.3225 | 0.0.5930 65

Full | 0.2 | Freq.(Hz) | 29.204 | 121.250 | 154.670 | 283.125 | 335.367
Damp.(%) | 0.5739 | 09146 | 0.3365 | 0.6207 | 0.374d

0.3 | Freq.(Hz) | 28.910 | 119.250 | 154.569 | 282.410 | 334.667
Damp.(%) | 0.5891 | 0.9526 | 0.3428 | 0.6434 | 0.4424

0.4 | Freq.(Hz) | 28.800 | 117.250 | 154.500 | 281.870 | 335.320
Submersion Damp.(%) | 0.6062 | 0.9562 | 0.3494 | 0.6855 | 0.4433

0.5 | Freq.(Hz) | 28.723 | 117.125 | 154.510 | 281.795 | 335.040
Damp.(%) | 0.6126 | 0.9754 | 0.3572 | 0.7080 | 0.4453

Thd.-bending mode; Tts. torsional mode; *.
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57.444Hz

167.01Hz

179.152Hs 344.999H:

385.739Hz

Figure 4.13: Mode shapes of the CFCF plate in water
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28.723Hz

117.125H3

154.510Hs 281.795Hz

335.040Hz

Figure 4.14: Mode shapes of the SFSF plate in water
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Table 4.7: Natural frequencies(Hz) of the CFCF plate in air

Mode | ABAQUS | Ezpcriment | Devialion(%)

1 117.99 100.348 14.952
2 269.52 244.986 9.103
3 324.66 279.089 14.037
4 576.77 522.486 9.412
5 636.68 536.104 15.797

4.6 Discussion
4.6.1 Experiments ia Air

The natural frequencies of the first five modes for the CFCF and SFSF plates ob-
tained using the finite element software ABAQUS are given in Tables 4.7 and 4.8.
Experimental values are also given in the same tables. It is found, for the CFCF plate,
that the maximum deviation of 15.797% is present while less than 6% deviation exists
in the SFSF plate.

The relatively good agreement between the experiment and the FEM obtained
for the SFSF plate affirms that the notched plate with clamped ends is a good ap-
proach to the SFSF plate.

The di in the cstimation of the f between the two methods
may be cxplained by the following two aspects. On one hand, any decrease in the
actual support rigidity from the infinite value assumed in the finite element method
or slippage at the fixed ends will lead to a decrease in natural frequencies. The effect
of support strains or slippage in fixed supports is similar to that of increasing the
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Table 4.8: Natural frequencies(lz) of the SFSF plate in air

Ideal SFSF Simulated SFSF
Mode | ABAQUS | ABAQUST Experiment | Devialion(%)

1 51.02 52.70 50.871
2 205.60 T 198.500
3 228.60 224.59
4 465.51 161.87
5 491.60 482.79

length, by an amount ranging from close 1o zero 1o a maximum of about one half
the plate thickness for one fixed end[Donnell, 1976]. This effect is more critical for

the CFCF plate than for the SFSF plate, because the notches greatly de the

rigidity demand for the fixed ends.

On the other hand, the experimental values are generally lower than that ob-
tained by the FEM as a result of the finite density of the air and the fact that the
frequencies from the finite element method are upper bounds, since the stiffness of
the plate was overestimated by use of the finite element method. Also, it shonld be
pointed out that the range of 0.30mm deviation exists in the plate thickness so that

the assumptions of uniform plates in the finite clement method is deviated.

4.6.2 Experiments in Water

It is observed that due to the presence of the fluid, natural frequencies of vibrating
plates decrease and modal damping ratios increase. However, mode shapes have

not shown discernible change, and node lines remain in their original position. The

following comments may explain the reasons. In the experiments, the plates are
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placed symmetrically in the tank both in the x and y directions. The water effect on
the plates can be modeled as the added mass and the increase in damping ratios while

the stiffiess remains the same as that in zir. However, the increase in the density

and damping ratios does not change symmetry of the system. Because of the system
symmetry, both the chordwise node lines and the spanwise node lines will remain in

their original positions.

Natural Frequencies

Table 4.9 shows the percentage change in the natural frequencies when the plates arc

submerged in water. Where the values are calculated by

It=Le o

The results in Table 4.9 show that the depth of submergence has approximately
the same effect irrespective of the type of boundary conditions. To illustrate this, let
us consider the first bending mode. Once the plates come in contact with water, one
sces a decrease in the first natural frequency of about 30%. As the depth increases, the
rate of decrease in the natural frequency diminishes until a certain depth is reached
beyond which the natural frequency does not change. One also notices that the change
in the natural frequency is slightly greater in the case of the SFSF plate than in the
case of the CFCF plate.

More interesting characteristics will be found if the non-dimensionalized value,
added mass factor(AMF), is used to measure the frequency change due to the fluid
effect. According to the discuss'on in Chapter 3, the AMF can be determined from
natural frequencies of tested plates in air and in fluid. The increase in the added mass
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Table 4.9: Percentage decrease in natural frequencies of plates in water

Moe type 1st Thd. | 2nd bd. | 3rd bal. | st Fis. | 2nd ts.
Partial Submersion | 30.736 | 26.410 | 24320 | 17.012 | 16711

0.0 | 10379 | 37.568 25.601

crer| Rl 02 | 42007 | 38.120 26.143
03 | 42.364 | 39.266 26.147

Submersion | 04 | 42.689 | 40.073 5.870 | 26.152

05 | 42.755 | 40.159 | 35.647 | 26.873 | 26.172

Partial Submersion | 32.142 | 26.717 | 24.419 | 16575 | 16.118

0.1 3 26.283 | 25.710

SFSF|  Full 0.2 36.053 | 26.852 | 26.427
0.3 39 36.215 [ 26.900 | 26.581

Submersion | 0.4 10.932 26.932 | 26.438

05 10.995 26.928 | 26.499
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factors, which is equivalent to a decrease in the natural frequencies, is estimated using
Equation.3.26. These data have been plotted in Figures 4.1 and 4.16, where the value
coinciding to % = 0 corresponds to the case of partial submersion.

Figures 4.15 and 4.16 display the following features:

(i) Added mass factors increase with the increase of the depth of submergence for
all modes; however, they approach to limiting values with the increase in the
depth of submergencce. This indicates that the effect of the free fluid surface on
the plates attenuates as the distance from the plates becomes large. Moreover,
the limiting values of AMFSs for the bending modes are generally approached at

a deeper submergence than that for the torsional modes.

(ii) Added mass factors have strong dependence on the mode shape type. Bending
modes have much higher AMFs than the torsional modes do. Let us take the
added mass factors of the CFCF plate when it is fully and deeply submerged
in water as the example. The limiting value is 2.052 for the first bending mode
while the corresponding value for the first torsional mode is 0.870.

For torsional modes, the fluid dynamic pressure produces effect on the vibrating
plate in the form of moment instead of force as in bending modes. Thus the arm
of force is also a factor to govern the fluid effect in torsional modes. However,
the aspect ratio(the ratio of width to length) of the plates is 0.308; so the small
arm of force results in a small perturbation to the fluid field and added mass

factors for the torsional modes.

(iii) For the same mode type, added mass factors have dependence on the mode

order. The lower the mode order, the higher the added mass factor. The
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(iv)

higher the mode order, the lower the depth of submergence at which the AMF
approaches its limiting value. This is in agreement with the results obtained by
Fu and Price(1987).

Let us take the bending modes of the CFCF plate to illustrate. The limiting
value of the AMF for the first mode is 1.144 times that of the second mode, and
1.450 times that of the third mode. Because of the higher inertia of the fluid, its
response to high-frequency vibrations is less than its response to low-frequency
vibrations. Thus this results in the surrounding layer of fluid, involved in motion
by the vibrating plate, becomes thinner than that of the plate vibrating at a
low-frequency.

The limiting values of the AMF for the first bending mode is obtained when &
reaches 0.5 or even higher, while the constants for the second and third bending
modes are obtained when ’—:‘L is about 0.4 and 0.3, respectively. As stated earlier,
as the fluid layer involved in motion by the vibrating plate is determined by the
vibrating frequency, further increase of submergence level does not bring more
{luid into motion after the depth of submergence has approached to a certain

value.

Added mass factors increase abruptly once the plates come in contact with
water. Let us consider the bending modes of the CFCF plate. When the plate
is partially submerged in water, the added mass factor is 1.084, 0.847, and 0.746
for the first, second and third bending modes, respectively. These values are
almost equal to half of their limiting values. This phenomenon seems to show
that both free fluid surface and the water tank bottom have approximately equal

effects on the submerged vibrating plate when it is far from these boundaries.
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Besides, it is also observed that the fluid effect alters the mode order and the
extent of mode-coupling of the CFCF plate. This results from a unequal decrease
of natural frequencies in bending modes and torsional modes duc to the prescuce of
water. When the plate is submerged in water, the thicd mode and fifth mode of
the plate in air whose modal frequencies are 279.0891z and 536.10411z shift to the
second and forth modes, respectively, as shown in Table 1.5, Also, when the plate is
in air, the second and the third modes ate uncoupled /lightly-coupled(peak difference
is 34.103Hz). However, these two modes become heavily coupled(peak difference is

2.072Hz) when it is partially submerged in water.

Modal Damping Ratios

The increase in modal damping ratios due to fluid cffect when the plat

merged in water are estimated by

Eptuid

&
and plotted in Figures 4.17 and 4.18, where & and &g are the modal damping
ratios of the plates in air and in water; the value coinciding with % = 0 correspands

to the case of partial submergence. Several features are shown:

(i) The modal damping ratio increases due to the presence of the fluid, but ap-

proaches to a limiting valuc as the depth of submergence increases. When the
plates are fully and deeply submerged in water(%=0.5), the maximum increase
of 3.61 times is observed, which occurs to the second bending mode of the SFSF

plate.
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(ii) Similar to added mass factors. the modal damping ratios have strong depen-
dence on the mode shape type. The modal damping ratio for the bending
modes exhibit greater increascs than that of torsional modes when the plates
are submerged in water. When the SFSF plate is fully and deeply submerged
in water(4=0.5), the modal damping ratio for the first bending mode increases
to 3.15 times while the damping ratio for the first torsional mode increases to

1.37 times.
4.6.3 Fluid Effect versus Plate Boundary Conditions

As stated earlier, the fluid effect on the vibrating plates causes the decrease in natural
frequencies and the increase in modal damping ratios. However, this effect varies
between the two plates because of the variation in their boundary conditions.

From Figures 4.15 and 4.16, it is observed that boundary conditions show little
cffect on added mass factors of torsional modes. For the CFCF plate, the limiting

values of AMF's are 0.870 and 0.835 for the first and sccond torsional modes, respec-

tively, which compares with the correspouding values of 0.883 and 0.870 for the
plate.

However, the effect of boundary condition on added mass factors of bending
modes is distinct. To illustrate this, let us sce the first bending mode. The iimiting
value of the AMF for the SFSF plate is 2.127 while the corresponding value for the
CFCF plate is 2.052.

This occurrence might be illustrated using the plate theory. It is boundary

litions that determine the frequency equation of the plate. Thus the houndary

conditions govern fluid-loading effect through natural frequencies. From Tables 1.5
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and 1.6, it is observed that SFSF plate has lower corresponding natural frequencies
than the CFCF plate does. This makes the SFSF plate involve a thicker layer of fluid
atound it into motion. Thus a greater added mass factor results in.

On the other hand, the effect of boundary conditions on modal damping ratios

is not as distinct as expected. It may be the v of the fluid motion that

overwhelms this trend.

4.7 Summary

A notched plate with clamped ends is suggested to simulate the SFSF plate, and
finite element software ABAQUS is used 1o optimize the dimensions of the notch.
Experiments are carried out on the CFCF and SFSF plates both in air and in water
at six different depths of submergence, respectively. Experimental study on the plates
in air demonstrates that the tested plates are good models of the CFCF and SFSF
plates. It is found, from the experimental study on the plates in water, that the fluid
effect on the submerged vibrating plates has two aspects, the decrease in natural
frequencics and the increase in modal damping ratios. Mode shapes have not shown
discernible changes due to the presence of fluid.

The added mass, which is used to account for the fluid-loading effect, and the
increase in modal damping ratios due to the presence of fluid have been evaluated for
the first five modes of the two plates. Several important characteristics on the added
mass and modal damping ratios have been clearly illustrated. The effect of the plate
boundary conditions on the added mass factors and the increase in modal damping

ratios of the plates is also



Chapter 5
Analytical Study

As stated earlier, analytical solutions to the fluid-plate interaction problems, in which
the plate is in contact with fluid on one side, exist in the literature. However, the
problem in which the plate is loaded by fluid on two sides has not been considered
before. Also, no study of the effect of the depth of submergence above and below the
plate on the response of the vibrating plate has been reported.

In this chapter, a plate loaded by fluid on two sides is considered. The analytical
solution to the vibrating rectangular plate submerged in fluid is sought. The approach
is applied to the CFCF and SFSF plates and assessed using results obtained by the

experimental study of Chaptar 4.

5.1 Formulation of the Problem

An uniform, flat, h 1l l in a body of fluid is con-

placed plate,
sidered, as shown in Figure 5.1 The plate undergoes small-amplitude free bending
vibration. The fluid motion due to the vibration of the plate produces dynamic pres-
sures py(z,y,t) and py(z,y,t) on the upper and lower fluid-plate interfaces Sy and

S, respectively.
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Figure 5.1: A rectangular plate submerged in a body of fluid

The plate of a length a, breadth b and thickness h has a constant mass per
unit arca m and flexural rigidity D, where D = ﬁ(%:;r), in which E is the Young’s
modulus of the plate material, v is the Poisson ratio, and h is the thickness of the
plate. For a small-amplitude bending vibration, where membrane stresses in the plate

arc negligible, the response of the plate is governed by, see Gorman [1982]

PW(z,y,t &
mEWBLD 4 oy = et~ ()
where W(x,y,t) is the upward displ of the plate A from its static

cquilibrium position.
The fluid, of density py, is assumed to be homogeneous, incompressible, inviscid
and its motion irrotational. Thus, the velocity potential, ¢(z, y, z, ) satisfies Laplace’s

cquation, given by

V20(z,1,2,t) =0 (5.2)
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Since the fluid motion is irrotational. the unsteady Bernoulli equation
99 L s -
g et 5P1(6% + 8 + 62) + pygz =0 (5:3)

can be applied, where

Under the assumption that the plate undergoes a small-amplitude vibration,
the resulting wave motion on the fluid surface is of small-amplitude also. Neglecting
the nonlinear term (¢2 + ¢; + ¢2) for small-amplitude waves, Equation 5.3 can be

replaced by its linearized form, i.c.,
¢
prgp F gz =0 (5.4)
Since waves are assumed to be small, the lincarized free surface boundary condition

(5.

can be applied on Sr, where w is the angular frequency of the wave motion cansed
by the vibration of the plate.

On the bottom of the tank, the normal component of velacity is zero, ic.,

B

(e = 0 (5.6)
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At the plate-fluid interfaces Sy, and Sy, the kinematic boundary conditions are given

by
2 aw .
P |e= =iy ) B (5.7)
Using Equation 5.4, we have
a . &
ﬂ/ylf ls=-ty +pu = prghy =0 on Sy (5.8)
=—(u+h) +PL = psg(h + h)=0 on Sp (5.9)

Substitution of Equations 5.8 and 5.9 into Equation 5.1 gives the following governing

equation

9 -
mo (s +) ‘a—f li=-n] + DV'W = pygh =0 (5.10)

5.2 Solution of the Problem
Consider now the response of the fluid and the plate in any one combined mode. The
displacement of the small-amplitude bending vibration of the plate can be assumed

as

W(z,y,t) = W(z,y)T(t) (5.11)
We will also assume the velocity potential ¢(z,y,=,1) in the form of
&z, y.2,t) = Glz,y) F(2)S(t) (5.12)

Substituting Equation 5.12 into Equation 5.2 gives

&£F(z)
dz?

F(z)V*G(x.y) + Gz,y) (5.13)
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G(z.y) is a function of x and y, and F(z) is a function of z, so the following equation

holds, viz.,

(5.14)

which can be written as
V3G + 4G =0 (5.15)
'F—_': =0 (5.16)

where p? is a real constant, and p is the plane wave number, which is determined by
the vibrating frequency of the submerged plate and fluid houndary conditions in the
x-y plane.

Substituting Equations 5.11 and 5.12 into Equation 5.7 gives

Glz,w)S(t) = Wiz, p) e (5.17)
where
. dT
==
dF
Fa) =
Applying Equation 5.17 to Equation 5.12 gives
8(z,y,2,t) = F(2)W(e,y) (5.18)
We also have
AT () %
b(z,y,2,0) = F(2)W(z,9) 5 (5.19)
P ez
The combination of Equations 3.11, 5.18, 5.19 and Equation 5.10 gives
T+ whe (5.20)
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and

~-3'W=0 (5.21)

Del

ils of the derivations of Equations 5.20 aud 5.21 are given in Appendix A, where
Wyt is he natural frequency of the plate submerged in fluid; 4 is a constant deter-
mined by the piate boundary conditions. wyis can be expressed as

_bBt_
nt me

3
Whtuid =

where

r
m =il -7
m" is called the added mass due to the fluid-loading effect.

Solving Equation 5.21 subject to the boundary conditions of the plate yields the
values of 3 and w g as well as the mode shapes. However, the previous experimental
work done in the field of fluid-structure interaction has confirmed that the dynamic
loading of the fluid has an insignificant effect on mode shapes of submerged plates,
sce Bspinosa[1984] and Barone and Gallego-Juarez{1972]. The experimental study
involved in this work also demonstrates this point. Thus, it is reasonable to apply this
assumption in the analysis hereafter. Under this assumption, the dynamic analysis of
a plate submerged in fluid is reduced simply to the determination of the added mass
and changes in natural frequencies and damping ratios due to fluid effect. However,
the change in damping ratios is not considered in the analytical study because of the
assumption for the fluid. Thus the change in the natural frequencies of the plate can
be subsequently estimated once the added mass has been evaluated.

If the plate vibrates in air. the response equations corresponding to Equations
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5.20 and 5.21 can be obtained by assuming m* = 0. i.c..

where

(5.26)

and w,, is the natural frequency of the plate in air.
The constant ' is determined by plate boundary conditions, which are the

same whenever the plate is submerged in fluid or in air. Thus one has

Wi

Equation 5.27 displays the relationship between natural frequencies of the plate in

fluid and that in air. Obviously, the added mass m” due to fluid-loading effect. is the

only element to be estimated. The non-dimensional quantity, 2 in Equation 5.27 is

defined as the added mass factor(AMF), which is also used to account for the effect

of the surrounding fluid on the vibrating plate.

5.3 The Added Mass of a Plate Submerged in
Fluid

Equation 5.23 shows that the value of the added mass can be obtained once the

function F(z) has been solved using Equation 5.16. $(z,y, z,1), and conscquently F(z),
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are not continuous at the fluid-plate interfaces duc to the presence of the vibrating
plate. So it is appropriate Lo cvaluate F(z) by considering the two bodies of fluid
individually, the fluid fields above and below the plate. The functions corresponding

to these two bodies of fluid arc designated as Fi(z) and Fy(=), respectively.
5.3.1 The Fluid Field above the Plate (F})

Consider the equation corresponding to Equation 3.16

&R
-dz—; -t =0 (5.28)
subject to the following boundary conditions:

(i) On the frce fluid surface Sy where z=0, the linearized free surface boundary

condition Equation 5.5 combined with Equation 5.12 gives

an

- (5.29)
(i1) On the fluid-plate upper interface Sy where z = —hy, the kinematic boundary
condition Equation 5.7 combined with Equations 5.11 and 5.12 yields
, Wia,y)T
Blagyea——=t= 5.
== G st St

Previous studies in the literature considered two extreme cases for the free surface
boundary condition:
(i) The zero-frequency condition, w = 0, which yields

d6
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that is.

means that the vibrating plate is deeply submerged in fluid and the free fluid sur-

face is static. This condition was applicd by Lamb{1921] and McLachlan[193:

to a circular plate and corresponds to the infinite rigid wall condition.

(il) Infinite (requency condition, w — oo, which yiclds

that is,

Py |e=o=10

This condition was applied by Kwak and Kim{1991] in solving a circular plate

problem. The practical condition of w is between these two extremes.

When the higher frequency limil is assumed, the previous cquation rednces Lo
6 = 0 at the free surface, on which the pressure fluctuations due to the vibrating
structure may be neglected{Hylarides and Vorus, 1982]. The imposition of this sim-
plified condition immediately discards flexible structures with low natural frequencies,
since in these cases the natural frequencics of the structure are most likely low. In

sfied

this study, Equation 5.29 will be considered as the boundary condition to be s
on the free surface.

The general solution o Equation 5.28 is given by
Fi(z) = Me' 4+ Age™™ 5.31)

gt



where Ay and A, are constants. A negative real constant, —u?, is assumed on the
right-hand side of Equation 5.14, so [(z) cannot be represented as a trigonometric
form, since the fluid disturbance should die out as we move away from the plate.
Applying Equations 5.29 and 5.30 to Equation 5.31 gives

_ g+ w? Wiz, )T
' Wllon + wPyemrh = (gp = w)e R ] Glz,y)S(D)

A

_ gp~w? Wiz, y)T
= dllgn + wB)e = (g — wP)erh] Glz,y)S(2)

Ay

"Thus a unique solution can be written as

(Cre™ + e*)(gp — o) Wiw,y)T

Fil)= illgn+ e = (g = P)em] Bz, )T (632)
where
C= x e f; (5.33)
5.3.2 The Fluid Field below the Plate (F3)
Consider the equation corresponding to Equation 5.16
";—rj — W =0 (539)

subject to the boundary conditions:

(i) The boundary condition on the bottom of the tank, Equation 5.6 combined

with Equation 5.12 becomes

an

- (5.35)




(if) On the fluid-plate lower intetface ), whete = = = (hy 1), the kinematic howd-

ary condition, Equation 5.7 combined with Equations 5.11 and 5,12 yields

_ W)t
== BT

Similarly, a unique solution can be obtained as

cmnlhththa) (e YT
Bl = (G o+ e Sy e, SO
where

julhitha+ k) (5.38)

5.3.3 Added Mass Calculations

The added mass expressed by Equation 3

is comprised of two components, ind
each one of them is related to the fluid-loading effects from one body of fluid. Thus,

the added mass m* can be rewritten as
mt=mi -+ mp

where

[
i = =yt Lot (5.49)

% iy
=0

ity (5.40)

Using Equations 5.32 and 5.39 yiclds the component mj of the added mass

* 2ph
LGt -
mi =~ (5.41)
The added mass component mj is obtained using Equations 5.37 and 5.40
L ppl e o
iy =L s (5.42)




To use Equations 5.41 and 5.42 for the calculation of the added mass per unit
arca of the plate, m*, one needs to determine the values of z and Cy. This is discussed

in the following scctions.

Estimation of the Plane Wave Number

“The experiments discribed in Chapter 4 are obtained using a finite rectangular plate
subinerged in a body of water contained in a finite tank. If we were to solve the
polential flow problem, the following boundary conditions on the sides of the tanks

would have to be satiisfied. These are

2
Tz lems

4=0 (543)

Z*:j‘y:t%z=0 (5.44)
where L; and Ly are the length and width of the tank, respectively. However, we will
avoid solving the potential problem. Instead, we will find a value for 4 based on a
heuristic approach.

In the experiments described in Chapter 4, the natural frequencies of the plates
were oblained [rom modal analysis of the plate response to an external excitation.
"T'his excitation produced plate vibrations in both bending and torsional modes. Let us
see what happens when a torsional mode is excited in addition to the bending mode.
It is reasonable to expect that the fluid motion in the x direction to be determined
by the bending vibration of the plate. Thus, the value of . is expected to equal to
the modal wave number of the plate in the x direction, k;. Also, because the CFCF
and SFST plates are [reely supported in the spanwise edges, the modal wave number

in the y direction, k, corresponding to cither one of the first three bending modes, is

T4



equal 1o zero, thus one has

Since

one has

(5.15)

The torsional mode, on the other hand, will excite fluid motion in the y direction.
The net result will be that the bending modes are coupled by torsional mades due to
the fluid motion in the y direction.

The torsional vibration of the plate will produce two waves travelling in opposite
directions. These waves will soon be reflected on the tank walls and will form a basic
mode wave motion, which is a standing wave whose wave number g, depends only

on the tank width. Thus,

o
m=7

The net wave motion will be the sum of the wave motions in the x and y directions,

with a plane wave number y given by[Kundu, 1990]

This value of p can then be used in Equations 5.41 and 542,
This rationale is used to calculate the wave number for the different hending

modes as shown in Table 5.1. In these caleulations, the value of py is kept constant

7



Table 5.1: Wave number of the CFCF and SFSF plates

Tus u
Mode | 15t Tbd. | 2nd bd. | 3rd bd. | Ist bd. | 2nd bd. | 3rd bd.

CFCF plate | 6.5838 | 10.9798 | 15.2176 | 13.1853 | 15.8450 | 19.0285
SFSF plate | 4.7051 | 9.2598 | 13.8294 | 12.3550 | 14.7055 | 17.9377

“T'The lollowing values are used in the calculation:
(i) steel properties: p = 7850kg/m?, E=2.07 x 10" N/m?, v = 0.3;
(i) the natural frequency of the plates in air fu;, takes the values
obtained by experimental method.
thd.-bending mode.

at

M=

where L, = 0.55 since the same transverse wave exists for the three bending modes.

Coefficient C;

Consider the coefficient Cy expressed by Equation 5.33

gp+w?
= % (5.47)

which relates to the gravity acccleration g, angular frequency of the wave motion in
fluid w, and the wave number .

Obviously, the frequency of wave motion at the free fluid surface equals to the
frequency at which a plate submerged in fluid vibrates. Thus when a plate vibrates

at its natural frequency of one bending mode, one has
W = wiia = 27 fair(1 + AMF)~% (5.48)
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Wave number g is determined using Equation 5.16 in which

where

m = 7850 x 9.36 x 107" = 73476 kg/m*

__ER 207 x 10" x (9.36 x 10~
T12(1-07) 12(1 - 0.32)

D

551445 Nf/m
Substitution of 4 and w into Equation 5.47 gives C, = f(AMF, fui,). When AMI is

equal to 0.5, 1.5, 2.5 and 3.5, respectively, the graph of C, versus [, is plotted in
Figure 5.2. It is observed that

Cy=-1 when [y 240Hz

The lowest natural frequency of the CFCF and SFSF plates in air is 50.87 111z, thus
Equation 5.41 can be simplified to

py =1+ et
1 fethn

my=

(5.49)

5.4 Discussion of the Results

5.4.1 The Added Mass from the Fluid Field above the Sub-
merged Plate

Substituting the values of y given in Table 5.1 into Equation 5.49 gives the values

of mj. The di ional added mass coefficient AMFy can then be plotted as

¢4



Frequency(Hz)
—— AMF=0S — AMFsLS
- AMF=25 = AMFR35

Figure 5.2: C) versus the natural frequency fair

a function of the depth of submersion h,. The relationship is shown in Figures 5.3
and 3.4 for the two plates CFCF and SFSF, respectively. The two curves portray
the same general characteristics. For 4 less than about 0.06, the non-dimensional
added mass coefficient, AM F increases linearly as the depth of submergence. The
relationship then becomes nonlinear and the values of the AM F, for different modes
taper off to constant values independent of the depth of submergence. The limiting
value for the AMF} is higher for the lower bending vibration modes.

For the CFCF plate, the limiting values of AM Fy are 1.03219, 0.85893 and
0.71523 for the first, second and third bending modes, respectively. The corresponding
values for the SFSF plate are 1.10157, 0.92549 and 0.75872. However, for both plates,

8
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AME, reaches 98% its limiting value when & is approximately 0.28. 0.22 and 0.19

for the first, second and third bending modes. respeetively.

5.4.2 The Added Mass from the Fluid Field below the Sub-
merged Plate

Similarly, the relationship between the non-di ional added mass coefficient AM [y

and hy for the CFCF and SFSF plates can be obtained using Equation 5.42, as shown

in Figure 5.5 and 5.6.

Figure: and 5.6 show certain common characteristics for AV F, in both

© AM I decreases with the increase of the distance hy for all bending modes.

For a value of % greater than about 0.2, A.M Fys approach to limiting values. It is so
because the tank bottom effect on the vibr:ting plate diminishes with the increase of
the distance between them.

In addition, AMFy and AM F; have the same limiting values for ihe corre-
sponding mode of plates. This fact indicates that free fluid surface and the water
tank bottom have equal effect on the submerged plate when it is far from these

boundarics.
5.4.3 Total Added Mass of the Plates

1f hy = 275 mm, which is the same value as that in the experimental study, AM F can

be estimated by using Equation 3.42, which corresponds Lo the partial submersion
case when hy is zero. This, together with the values of AMF; in Figures 5.3 and
5.4, gives the total added mass factor for the CFCF and SFSF plates submerged at

different depths, as shown in Table 5.2,
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Table 5.2: Predicted added mass factors for the CFCF and SFSF Plates in water

CFCT plalr

Sk

T plalt

Mole Ist Thi.

2ndd bd.

Brd b,

15t bl [ 2ned bal. | 3 .

Partial submeegence | 1.53366

0.85921

LD | 0.92606

to.0i
0.02
0.03
0.04
0.05
0.06
ull 0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.18
6.20 | 2.00261
025 | 2.03870
030 |2

0.35
0.40
submergence | 0.45 | 2.06498
0.50 | 2.06548
0.60 | 2.06578
0.70 | 2.06384
0.80 | 2.06581
0.90 | 2.06585
1.00 | 2.06585

0.91301

1.69152
1.70862
L7176
71694
T2
71799

1809
1814
TISH
T1814

T
7|

5
0.97090
L0497
L1104
16862

143049
1.43049
19
1.43049

2.20560
2.20560

[RUREA]

bd.-bending mode; +4+.

82




5.5 Comparison between Experimental and An-
alytical Results

and 5.8 show Lhe comparison belween the analytical and experimental stud-

ies on the added mass factors, where "ana.” and "exp.” mean the results obtained
by the analytical method and the experimental method, respectively; the values co-
inciding with % = 0 correspond to the cases of partial submergence. It is found
that both analytical and experimental studies are in good agreement. However, small

discrepancy does exist. The deviation between the measured and predicted added

mass factor is calculated nsing

and tabulated in Table 5.3, where AMF® and AMF? are the added mass factor
obtained by experimental and analytical method, respectively.

Table 5.3 shows that the deviation of the SFSF plate is generally greater than
that of the CFCT plate, and the largest. deviation is 7.916% which occurs for the

S|

" plate. The discrepancy is mainly attributed to the divergence in boundary
conditions of both plates and fluid between the analytical and experimental studies.

Possible reasons to cause the discrepancy are:

(i) As stated carlior, any decrease in the actual support rigidity due to support

strains from the infinite value assumed in the analytical method or slippage

ai the fixed ends will lead to a decrease in natural frequencies. This error is

brought in by the manufacturing of the CFCF and SFSF plates.
(ii) The plate area is smaller than the fluid surface in the experiment study. The
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“Table Deviation between analytical and experimental study on added mass fac-

tors

Mode 15t Tbd. | 2nd bd. | 3rd bd.

Partial submergence | 1.679 -1.302 | 4.119

010 | 3.256 | 2470
CFCF plate Full 020 | -1.275 | -4.959
030 | -2.189 | -0.214
submergence | 0.40 | -0.939 | 3.742
050 | -0.677 | 4.173

Partial submergence | 5.749 -7.553 | -1.106

0.10 | 0.815 -7.625 | -1.770
SFSF plate Full 0.20 | -5.290 | -7.916 | -4.037
0.30 | -4.403 | -4.238
submergence | 0.0 | -3.878 0.825
0.50 | -3.188 L1110 | -3.330

Tbd.-bending mode; T2,



analytical solution presented in this study. however, basically assumes that the

piate has the same area as the surface of the flnid.

(iii) The side wall boundary conditions in fluid are not fully satisfied.

(iv) The assumption of inviscid fluid. irrolational motion and Tinear waves in the

analytical study is only an approximation.

(v) The unavoidable noise involved in the experimental study is another reason 1o

cause the discrepancy.

5.6 Summary

The solution to a vibrating plate loaded by fluid on two sides is presented. The
general linearized fluid free surface boundary condition is applied. The relationship
between the added mass due to the fluid-loading effect and the dept of subuergence
above and below the plate is established.

The presented analytical solution is applicd to the CFCI® and SFSF plates,
The comparison between the analytical and experimental studies on the added mass

factors of the CFCF and SFSF plates submerged in water is made, and the good

cpancy is 7.916%, whicl oc

agreement between them is observed. The biggest d

to the SFSF plate.
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Chapter 6

Conclusions

When a structure vibrates in fuid, the interaction between the structure and fluid
results in a decrease in the natural frequencies and an increase in the damping ratios
of the vibrating structures. This thesis has investigated the fluid-plate interaction
problem using analytical and experimental methods.

In the experimental study, a notched plate with clamped ends was used to
simulate the simple support in the SFSF plate, and finite element software ABAQUS
was used to optimize the dimensions of the notch. Experiments were carried out

on the CFCF and SFSF plates both in air and in water at six different depths of

pectively. For the experi | study on plates in air, the obtained
natural frequencies of the plates were compared with that from the finite element
program ABAQUS. The maximum deviation of 15.797% was observed in the CFCF
plate. It was concluded that the notched plate with a clamped end is a good approach
to the SFSF plate, and tested plates were good models of the CFCF and SFST plates.

For the experimental study on plates in water, it was observed that due to the
presence of the fluid, natural frequencies of submerged vibrating plates decreased and

modal damping ratios increased. lowever, mode shapes did not show discernible
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changes. The added mass factor and the increase in modal damping ratios of the two

plates due to the presence of the fluid were evaluated for the first five modes. The

effect of plate boundary conditions

i the vibration of the plates in water w

investigated. Conclusions drawn from the experinental study are:

(i) Added mass factors and damping ratios increase with the fnercase of the depth
of submergence for all modes: however, they approach limiting values with the

increase in the depth of submersion.

(ii) Both added mass factors and damping rations have strong dependence on the

mode shape type.
(iit) Added mass factors have dependence on the mode orders.

(iv) Both free fluid surface and the water tank bottom have approximately the
same effect on the submerged plate when the vibrating plate is far from these

boundaries.

Analytically, the solution to a vibrating rectangular plate loaded by fluid on
two sides was presented. The general lincarized fluid free surface boundary condition
was applied. The relationship between the added mass duc to the fluid-loading effect.
and the depth of submergence was cstablished. In seeking the analytical solution, the
following assumptions were made: (i) the plate undergoes a small-amplitude bending
vibration and results in a small-amplitude wave motion in the fluid; (i) the fluid is
homogeneous, incompressible, inviscid and its motion is irrotational; (iii) the dynamic

loading of the fluid has an insignificant effect on mode shapes; (iv) the plate field in

the x-y plane has the same size as 1hat of the “uid surface,
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The presented analytical solution were applied to the CFCF and SFSF plates.
A good agrcement between the analytical and experimental studies on the added
mass factors for the two plates in water was obtained. This demonstrates that the
presented analytical solution can be used to predict the fluid effect on the natural

frequencics of rectangular plates submerged in fluid at different depths.
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Appendix A

Derivation of Equations 5.20 and

5.21

As stated earlier, a separable solution to the bending displacement of a plate and the

velocity potential in fluid can be sought in this study, i.e.,
W(z,y,0) = W(z,y)T(t)

é(z,y,3,t) = G(z.y) F(2)S(t)

Then

By applying Equations 5.18 and 5.19, one has

F
-(hth) ~ Y |

2l p—
~(hi+h) _a_af le=-my=WTlzz

VW = TV'W

Applying Equations A.3,A.4 and A.5 to Equation 5.10 gives

— F F _— -
mWT + “[F le=—(h+h) =7 ls=-n]JWT + DTV'W — pygh = 0

F

(A1)

(A2)

(A3)

(A4)

(A5)

(A.6)



where the term pygh is a static load. it has effect only on the equilibrium position, but

not on the dynamical response. So Equation A.6 can be solved without considering
this static term.

Consider the cquation

mWT + /I]{% Je=—th 48y =75 |e=-tJWT + DTV = 0 (A7)
that is,
(m+m Wi+ DTV'W =0 {(AS)
where
m" = PI‘T;F:T (hy+h) -% | — | (A9)

In the Equation A.8, W(z,y) and T(t) arc, respectively, functions of position and

time only, so the following relationship holds

(A.10)
that is,
(A1)
VW -3W =0 (A.12)
where
&= ’_"."")_"‘
2 -
B = Wl = "’J—"‘"(’2+ s, (A13)

96















	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Abstract ii
	009_Acknowledgements
	010_Table of Contents
	011_Table of Contents v
	012_Table of Contents vi
	013_List of Figures
	014_List of Figures viii
	015_List of Tables
	016_List of Symbols
	017_List of Symbols xi
	018_List of Symbols xii
	019_Chapter 1 - Page 1
	020_Page 2
	021_Page 3
	022_Chapter 2 - Page 4
	023_Page 5
	024_Page 6
	025_Page 7
	026_Page 8
	027_Page 9
	028_Page 10
	029_Chapter 3 - Page 11
	030_Page 12
	031_Page 13
	032_Page 14
	033_Page 15
	034_Page 16
	035_Page 17
	036_Page 18
	037_Page 19
	038_Page 20
	039_Page 21
	040_Page 22
	041_Page 23
	042_Page 24
	043_Page 25
	044_Page 26
	045_Chapter 4 - Page 27
	046_Page 28
	047_Page 29
	048_Page 30
	049_Page 31
	050_Page 32
	051_Page 33
	052_Page 34
	053_Page 35
	054_Page 36
	055_Page 37
	056_Page 38
	057_Page 39
	058_Page 40
	059_Page 41
	060_Page 42
	061_Page 43
	062_Page 44
	063_Page 45
	064_Page 46
	065_Page 47
	066_Page 48
	067_Page 49
	068_Page 50
	069_Page 51
	070_Page 52
	071_Page 53
	072_Page 54
	073_Page 55
	074_Page 56
	075_Page 57
	076_Page 58
	077_Page 59
	078_Page 60
	079_Page 61
	080_Page 62
	081_Chapter 5 - Page 63
	082_Page 64
	083_Page 65
	084_Page 66
	085_Page 67
	086_Page 68
	087_Page 69
	088_Page 70
	089_Page 71
	090_Page 72
	091_Page 73
	092_Page 74
	093_Page 75
	094_Page 76
	095_Page 77
	096_Page 78
	097_Page 79
	098_Page 80
	099_Page 81
	100_Page 82
	101_Page 83
	102_Page 84
	103_Page 85
	104_Page 86
	105_Chapter 6 - Page 87
	106_Page 88
	107_Page 89
	108_References
	109_Page 91
	110_Page 92
	111_Page 93
	112_Page 94
	113_Appendix A
	114_Page 96
	115_Blank Page
	116_Blank Page
	117_Inside Back Cover
	118_Back Cover

