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 tion distances. . .

B ABSTRACT
’ -

Computer programs are developed to calculate radio propagation losses over
the ocean surface. The effects of the ocean surface roughness are evaluated
L b
'through numerical implementations of modiﬁed’ surface impedance expressions.

The surface roughness is expressed in terms of standard eccanoguphxc models for

the dxrecuoual ocean wave helghl spectral donslty The modified surface

impedance Ay A used with cither  planar earth propagation model, for short

propagation distances, or a sphencal earth propagauon model for long pmpnga—

. %
5 <
The planar earth solution for the elpctric field distant from the source, is

derived using a spatial d

t

-spatial Fourier, trans!t‘)rm of the electric field. No assumed boundary -conditions

are_used in the derivation; the method sl:ppiies its own boundary. condi!io‘ns. ‘As
well, the surface impedance and the choice of sou;ce remains _arbitrary. For sv.
highly conducuve surface, such as the ocean surface, and an clementary vnman
electric d:pole source, the expressions rednce to the chusuml planar earth rmults
For long propagstmn distancesy the effects of radio wave diffraction ground

the curVature of the eanh sesurface are slgmﬂcant A computer program hu

been written using modern compact computer code which implements the clasgl- .

cal residue series results for ground wave spherical earth propagati‘on. ‘I.[xe pro-

gram accounts for rough surface effects using an imp'lemcntation' of the, modified r

surface impedance for a. rough ocean surface. Transmission lgss results for-a
vagiety of frequencies in the MF and HF bands and a variety of sea states are

presented which\compare favourably to previous results.

position method and exp s ed in the form of the
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. CHAPTER 1

INTRODUCTION

1.0 GENERAL INTRODUCTION

In radio communications a practical question which arises is the maximum
usable rangé of & given transmitter. A major component of such s prediction is
the abilily to estimate the sPength of the electromagnetic field distant from its
source. Models for the electromagnetic (EM) field in empty space are relatively

simple; it is the problem of determining the modification.to this field due to the

presence of the earth’s surface which is not trivial. It is the problem of estimat-

ing the earth’s effects on the propagation of electromagnetic waves to which our

attention is directed. In particular, it is the numerical evaluation of ‘models for

radio propagation over the earth, in effort to estimate the power losses as a func-
‘ tion of thpropagation distance which is of interest.

Analytical models for ground wave radio propagation have been developed
for many years. Around the time of the development of radio, at the turn of this
century, pH;'sicist;. mathematicians and engineers developed analytical models
which predicted. the behaviour of electromagnetic ¥ields in the presence of the -
carth's surface. New theories as well as refinements to the old have been
developed in the subsequent years so that more accurate predictions for an elec-

tromagmatic field in theApmsence of the earth are possible. In this thesis models




« s
for EM propagation over the earth are considered and computer models for radio

wave propagation losses in thie presence of the ocean surface are proposed. Many
signiﬁc‘anl factors which affect the propagation of radio waves, such as the electr-
ical properties of the surface, the surface roughness, say for example caused by

~ ocean waves,'as well as the curvature of the earth's surface and the diffraction
losses associated with the curvature are considered: Of course the characteristics
of the source, such as the operating frequency, are also included in the modelling
effort.

As afirst step‘in this investigation, a solution to the classic problem of radio
propagation over a flat surface is developed, by an alternale analysis. By using a
spatial decomposition method, expressions for the clectric field from an arbitrary
sourcgpover a planar surface with arbitrary electrical parameters is dorivcd‘, This

_ cxpression is in the form of the spatial Fourier transform of the-field. A n cle-
mentary vertical dipole source as well as a highly conduclive earth surface, suc!;
as the ocean surfaceis assumed, and the classical integral solution to* the plane .
earth problemis derived. The results are not startling, but significant since an
alternate’approach to the pr‘(;)lem has been used. As well the clectric ‘ﬂcld for
any finite source and. an arbitrary surface impedance could be determined, pro-
viding the inverse spatial'Fourier transform of the electric field could be deter-
mined.

Diverging slightly from this result, models for the surface impedance, which
represents the electrical ‘properties of the surface, for propagation over a rough

ocean surface are examined. These results will enable the prediction of radio

wave ission losses lor," P ion over a rough sea. Assuming a rough




wind driven sea, models for the surface ithpedance which account fo#The interac-
ti‘on between the EM wave and the ocean surface are implemented in a computer
program. The expressions for the modified surface impedu:l:e‘ne in terms of the
ocean wave height spectral density. -For the surface impedance‘ calculations a
standard ocesnograghic model for t}e wave height spectral density is assumed.
‘The calculated values for the surface inwnpce may be used in numer,iul
trapsmission loss mode’|s to enable th'e prediction of transmission losses in the
ocean environment.

T[ne' plane earih ‘model for EM bropagation over the earth is suitable for
relatively short distanceil. For longer distances the effects of diffraction around
the spherical surface of ‘the earth become significant. ;’Annlyticnl models have

+ 2 ey
B

ped for pk jon over a earth by other

been
investi;ntols: We proceed to develop a c\;fnpgnber program which i;nplemenls a
resic;ue series solution to the spherical earth model. The achieved result is a
numerical model which predicts the transmission losses for ground wave propaga-
tion over the ocean !jlrfICE includ’ﬁf the effects of the earth’s curvature. The
inﬂuenc: of ocean waves on the propagation of EM waves ue determined through
the implementation of modified surface unpedmce expruslons for the ocean sur-
face. Typical numerical results for these transmission lossa are presented in

;raphxcal form. : e

1.1 LITERATUME REVIEW

Many theoretical models for the propa;gtion of electromagnetic waves along

the earth’s surface, have been d in the li hrough uns century.

Sommerfeld [1909,1926,1940] presented a solnhon for the pmpagallon overla

= {— . B

ke«
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planar surface separating two homogeneous hall sp:m‘o(.din‘ering electrical pro-
perties. The upper half space was characterized as air and the lower as a dissipa-
tive ground. The source was assumed to be a vertical dipole located in the upper
half space. Sommerfeld's physical explanation was the existence of a space wave
and a surface wave, both components being required to satisfy the Maxwell's
equations with the specified bound ary conditions. ;

Based on an' integral formulation of the planar earth problem by Van der
Pol and Niesson [1030], No_rtoll [1935,1936,1937] proposed a series solution for- _
mula. Norton proposed that the electric field could be divided »invto three com-
ponents; the direct ray (direct path between source and observ‘ntié{:“ points), the
reflected ray (depending on a Fresnel reflection coefficient), and a sirface wave.
‘These formula facilitated numerical computations, enabling Norton to present the
planar earth transmission loss versus distance graphxully

Wait [1954,1957) gave Norton's solution to the plane earth problcm in an
alternate form. Utilizing the surface impedance concept, Wait developed the
same asymptotic and convergent series solutions as Norton. In addition, Wait
developed another um‘l#t!:e Norton asymptotic series valid when the phase of
the numerical distance, 4, is x> ¢ >0, which gives rise to ghe trapped surface

wave phenomenon discussed by Wait [1970).

for the ion over a spherical earth have also been investi- .

gated by many authors. These methods are extensions of Watson's [1918/1919]
investigations of the field from a radially -oriented dipole in the presence of a
hom:geneons dissipative sphere. The solution was in the form of a series of
spheri‘cal Hankel fungtjfns and Legendre polynomials. This series was ot ’pruti-
s




cal for p ati bl due to the number of terms of the series
required for convergence. Indeed this series solution was only applicable to elec-

tric field problems when the length was a signifi fraction of the radius of

the sphere. Following Watson's approach, the harmonic series was transformed
into an integral in the complex plane. Van der Pol and Bremmer

[1937,1038,1930) formujated this type of contour integral for the propagation of

radio waves along the earth. The sph Hieal Han\kel functi were

by Hankel functions of order 1/3 and ‘the Legendre polynomials replaced by the

leading term in their asymptotic expansion. Using these approximations Van der

Pol and Bremmer wrote a residue series solution for the contour integral which
was_suitably simple for nur‘nerical» comPulation;. Norton [1941] used this formu-
lation to generate numerical results. .

Using an’indepcndenl analysis, Fock [1945] obtained a similar residue series
solution. Fock used an approximation for the Watson's spheri\cal Hankel func-
tions in terms of the Airy functions [Abramowitz apd Stegun, 1985]. It is this
approximation which commonly appears in the literature, although Wait [1970]

suggests that both results achieve similar results. -~

In a different h to the spherical earth ion problem, Bi

[1949] also uses the geometrical theory of difiraction to determine another
approximate solution. This saddle point approximation is valid only when the
source and observation points are well above the horizon, that is for high receive

and transmit antenna

and short tion distances. For these situa-
tions Bremmer suggests that the residue series may be poorly cofivergent. For

short distances there are two additional approximation formulae for the spherical
’ 1



earth attenuation function. For a small adiusof curvature and low frequency s
power series expansion may be used, as developed by Wait [1958,1958) and Brem-
mer [1958]. At a large radius (small curvature) an expansion in terms of the
plana’ﬁ’i&_ﬂh (Norton) attenuation function is given by Wait [1056] and Bremmer
|1958f;iiau|ls using both these methods and for a variety of surfdce impedances
have been presented by Hill a2d Wait [1980).

The mveshgalmns of the eflects of sur[ace mughness on the propagation 6f
electromagnetic waves over the carth’s surl'ace commenced with Fe\nberg s [1044]
results. Feinberg formulated the problem in an integral equation and gave a
result for ‘small surface height irregularities. The result di’d not account for }lw
effect of finite surface conductivity. Rice [1951), using a perturbational analysis,
treated the problem of scattering from slightly rough random surfaces. Wait
[1857] derives an expression for the surface impedance of a slightly corrugated
but otherwise perfectly conducting surface. This result was for the indugtive con-
tribution when the height and period of the corrugations are small compared to _
an electrical wavelength. Wait [1959,part 1] also derives an effective surface
impedance for a perfectly conducting surface hlvi;lg a uniform distribution of
hemispherical bosses whose electrical parameters are arbitrary. Wait [1950, part
2[ also discusses the effect of the earth's curvature using such a rougﬁ surf‘,u
model. .

/Barrick [1971a, 1071b] derived a result for the modifed surface impe’ﬂl!ince of
a rough sea, using Rice's perturbation method. This analysis assumes a random
periodic surface which may be described by the average beight dpectral density of
the surface. Usmmnhrd\ocnnognphic models for the ocean average wave

i
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height spectral density, Barrick esti the additional ission losses due

to the roughness of the surface.
By an alternate approach, Srivastava [1984] derives an expression for the
) modified surface impedance of a rough ocean as part of his analysis of the back-.
scattered radar cross-section of the ocean surface. The analysis, based on the
l.h‘mry of genetalized functions, is an extension of Wal;h's [1980] generala
approach to rough surface scatter. The analysis nssum_e; an elementary vertical
electric dipole source located near a surface described by the average ocean wave
" height spectral density. The surface impedance expression obtained h)i Srivastaya
as well as that oblained by Barrick both reduce to that of Feinberg in'the limit-
) ing case. - <
1.2 SCOPE OF }HESIS s
In this thesis solutions for ground wlave propagation over a homogenecous
carth (spherical and planar earth models) are examined. The primary objective is
to develop computer programs which will predict the transmission loss for radio
wave propagation over a planar or spherical earth model with or without surface
roughness at HF (3-30 MHz.) and lower radio frequencies. )
Initially, ground wave propagation over a planar earth with arbitrary electri-

aal parameters and an arbitrary source-are studied. A solution for this problem is

~deived in the two di jonal spatial Fourier domain. The analysis is
g —_—

" "based on a technique developed by Walsh [1980] for a general formulation for

fough surface propagation and Seattering. The miethod uses Heaviside functions

to spatially decompose the electric field equation into three equations: the field

“above the surface, below the surface and an equation linking the fiels at the .
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boundary. Thus it is clear that the method supplies itd owa boundary conditions.

By asummg an elementary veruw electric dlpole source the |n|egnl solu~ o
tion derived herein is the same as that derived by Sommerfeld 1900, 1026]. For
a highly condnctive surface the integral solution reduces to that'derived by Wait __
[1970). Following Wait's results, thé series soliTions for this integral have been
. g -

o 7

This series solution may be easily implemented in a computer program and

presented.

results presgnted in graphical form. For r.elmlively small separation dislnnct’s
between source and observatjon points, diffraction effects around the sphcriml. :
surface of Lbe‘ earth are negligible, so that lhe'planm carth model will yield datis-
factory. propagation loss results.. The limit of népﬁubilily of the Ehnn; carth
solution is generally considered to be d = 50// /> where d is the sepn;&lion_dis- .
tance in miles and / the radio.frequency in megahertz [Jordan and Balmain,
1968). The obvious advantage for using this solution for short distances is the
small amount of computer resources required to calculate the planar euth‘ series

- solution. =

(",) _ When large separation distances between the source and observation paints
are considered, the additional effects of diffraclion around the curvature of the
carth become significant. Several authors have prescited sofutions to the prob-
lem of ground wave electromagnetic propagation over a spherical earih. . Based
on classical techni:;nes Fock [lﬂ‘its] and Bremmer (1949) have prcscv;tcd residue
series appréximn'tions to the contour integral formulation of this problem, as
given by Watson [1910]. Using these results, an cficient Fortran program is
developed which ev;lustef th residue series solution for the ground wave electric

~—a
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field for a finitely conducting spherical earth. A previous computer program,

wriuen‘ by Berry and Chrisman [1986], also implemented the residue series equa-
tions for the electric field. The prograr documented in this research offers many
advantages over the Berry and Chrisman implementation. In particular, an alter:
nate technique is used to evaluate the- poles of the residue series. Berry and

Clrrisman use a series expansion for the poles, as developed by Bremmer [1949).

The new program uses a Newton iteration technique on the pole defining equa-.

tion, to estimate the poles of the residue series. As well, the new program is writ-
ten iy modern Fortran-77 source code using complex arithmetic, permitting a

compact, fast and easy to follow program. The methods used by Berry and

,*C_hrismnn placed significant limitations on the adaptability of their program to

smallef computers. . =

To account for tlhg effects of surface roughness on the propagation of radio
waves over a spherical or planar earth modél, expressions for a mcd‘iﬁed surface
i}npednnce, for 'a rough wind driven sea, lrave been examined and implemented.
The modnﬁed surface impedance presented by Barrick [1971] has been imple-
mented in a computer program, using a suitable ocearographic model for the
ocean surface height spectral density. This model is implemented in a Fortran
subroutine subprogram of the planar and spherical earth propagation program,
and uses a stand?rd\packnge program (IMSL) to perform the required integration.

An alternate expression for the modified surface impedance, developed by Srivas-

tava {1984], has also been ined. The expression developed by Srivastava has

" been implemented, with some simplifying assumptions. A Neumann-Pierson [Neu-

" mann et al, 1085] model-for the ocean surface height spectral density and caleu-’



\

late transmission losses over a rough spherical earth using the Srivastava model is

'
assumed. Comparisons of the results from the two surface impedance expressions

are p ted. Calculati for the ission losses using the Barrick model »
are available for comparison from Barrick [1970]. Fortran source code listings of

the rough surface spherical earth model is included in the appendix.

€



CHAPTER 2

THE PLANE EARTH SOLUTION
FOR THE ELECTRIC FIELD

2.0 GENERAL ¢

In this section a classic problem in electromagneti¢ propagation theory is .

approached by a new formulation. The problem is that of propag;tion over a
planar surface of finite clectrical properties. This analysis follows the methods of
Walsh [1980], originally develt;p;d for rough sutface propagation and scatter. It
is not expected that the analysis will reveal any startling new results; rather it
will yield a set of general equations for the electric field in the spatiad Pourier
transform domain. In these equations the choice of a source remains arbitrary
and no assumptions are made regarding the electrical properties-of the planar
surface, or on the behaviour of the fields on the surface. The electric feld for'a
given source may be evaluated, sssuming the fnverse spatislefourier transitmns

may be determined. 5

In ;.he last two sections of this chapter, the electric field for elementary verti-
cal djpole antennnsis derived as a specific case. This result, in the spatial (x,y)
Fourier transform domain, is ed\liv‘slent to the integral equation derived by Som-

merfeld [1009,1926). As well, a highly conductive surface, such as the ocean syr-
face, is assumed yielding an equivalent result to that of Wrﬂ.—[lWO].

v

[ ¢



The method of solution utilizes a spatial decomposition of the clectric fieldy,
for components in the half spaces above and belew the earth interface. The
medium above the surface is approximated by ‘free space’ and is assumed to con-

tain the source. The medium below/the surface is characterized by its electrical

properties, namely; the cond ity, the pe¥ ility and the permittivity. Fig-
ure 2.1 illustrates the geometry of the problem assumed for this analysis.

A basic partial differential equation, which the cleetric ficld must satisfy, s
derived using the Maxwell equations, the electrical properties of the complete
space and the spatial decomposition of the fields. The partial differential equa-
tion is itself decomposed into.two wave equations, for the fields above and below
the surface, and & third equation which the fields must satisfy at the boundary
(boundary conditionis). Jt may be noted that no external boundary conditions are
applied; the boundary equation is a product of the analysis. .
A sel of two coupled, convolution type, integral cquations are then derived

using the fundamental solutions to the wave equation. - Solving the $wo integral
g .

yields a functional relationship between the source electric field and the
electric field above the interface, in the spatial Fourier transform domain. The
electric'field, for any given source, may be determined from these equations pro-

vided the inverse spatial tr: may be d ined. For el 'y vertical

dlsctbic Hiplaanveaning; this resviting intoaraiequation for Che elestris Aeld i
shown to be equivalent to that which was derived by Sommerfeld [1909,1926).
Finally, a highly conductive surface is assumed, the results of which are
equivalent to the integral s(;lved by Wait [1970].
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2.1 INITIAL ASSUMPTIONS

The problem of determining a model for the electric field above an assumed
planar earth model has been approached and solved by many investigators,
among the earliest i)eing Sommerfeld (1909,1926] who determined expressions for
the space wave and surface wave portions of the electric field. The plane earth
problem is described as the propagation of electromagnetic fields through a
medium approximately diseribed as 'free space' over a homogencous planar sur-
face with arbitrary electrical propertics. Somme‘r(cld assumed a vertical electric
dipole source. This work derives the complete clectric field above a planar surface
for an arbitrary source as a ;;;ecxal case of the VQM‘ [1980] general treatment of

propagation and scattering from rough surfaces. N

The -analysis begins by deriving the basic partial differential equation for
propagation of eclectromagnetic fields over a planar earth. This is derived by an
electric field decomposition approach as described by Walsh [1980). First, expres-
sions describing the electri¢al properties of the complete space are derived. In the
half-space above the planar surface the electrical propelrtim are described by the
following: : .

o= the permeability ,

€ = the permittivity , J

—0"Ngg.conductivity
Similarly, In ihe half space below the planar surface we have

o =" the permeability , P .
€ = the permittivity ,
o, = the conductivity . 5




As well, it is assumed that s =0 describes the location of the pln‘nar surface
separating the two half-spaces. The electrical properties of ti:e complete space
may be described nsgng the Heaviside functions, which are defined as .
0, <0 L
Bz)w: {1, >0
Using the Heaviside function (z), the electrical properties of the complete space
may be wrilten in terms of the the electrical constants prescribed for the com-

plete space as
©

G| EekfE)) 5 : i ' (21)
e=nh()+a (1-h(z)) (2.2)
and 2 .
a=p . (2.3)

‘The terms containing (1- A (z)) are the electrical properties of‘Lha space below the
- surface and terms containing only &(z) are electrical properties of the space above
the surface. Thus a set of three equations, (2.1), (2.2), and (2.3) describe the
electrical properties of the complete space. The. Maxwell equations in time-

harmo‘ni: form, using the usual conventions for symbols, are given as

vxB'=-juB , . (2.4)
sxHB=jub+T , (2.5)
v-B=0 1 . (2.8)

and -
vb=p. (2.7)

It is assiimed that the Maxwell equations apply to the complete space. We also -

assume that the media both above and b;zlow the surface are linear and isotropic.




With these assumptions we also have the following relationships:

B=pd forallzs , (2.8)
U=(E=[ql(x]+l.[l~l(x)]]£ i (29)

and N
Jo=o (1-4(z)) B . (210) «

The parameter J, is defined as the conduction current density.

2.2 BASIC PARTIAL DIFFERENTIAL EQUATION

We now proceed to derive Lhﬁuic partial differential equation for the plane
carth problgm, by using the Maxwell equations and the assumptions in the pr'.w‘i‘-
ous section. The curl of the electric field, v x E, is written in terms of the mag-
netic field # as follows: =¥ S

UXE=-juB=-jumA . 2.11)

By taking the curl of both sides of equation (2.11), v x v x°E is expressed as

UXUXE=-jupvxi . (2.12) L
We substitute the expression for the curl of A in terms of the displacement ]
current vector, B, and the current density, 7, from equation (2.5) into our --

expression for v x v x E. (This yields

XuxE=-jum|[jub+T] . . (2.13) i
The current density 7 may be written as two sepau/tc components, one for the !

conduction current density and a second for the source current density. We write

o)

- E ¢

i
i
T il . (2.14) "‘f
|
!




The parameter s is the source current density and the parameter 7, is the con-
duction current density. By using this convention for tife current density, equa-
tion (2.13), for the curl of the curl of the electric field, may be expanded to

obtain »
s

oxuxEm=-jum[jub Tl ] T )
A useful vector identity which may be applied to equation (2.15) to decom-
£i
posev x v E is , 1
vxvxE=yvE)-vE
The equation (2.15) may be décompased by using the above vector identity. We

use expressions (2.1) and (2.2) for permittivity and conductivity. The ded

Y. P

version of (2.15) is

O E)- B =-june [ (pe) B+ su[whe)+ataen ]| E+7 ] 216)
The appearance of equation (2.16) may be simplified greatly by firg’ making the

following definitions for the relative permittivity and the refractive index:

%
no= |t +—
I

By using the above definitions equation (2.18) is

v’Ei-vJ’y,u,[n,«,' (1-0)) 44 |E=jond+v (v-B) . (217)

The right hand side of this equation containg the gradient of the divergence *

of B which may be i

preted by using previous results. Com ing with

equations (2.9) and (2.10), we may note the following:

Z*:un-:w[m%]
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- [-.[I-A;.|]+ju‘..t(.)u,| x~l(.)]}]! &

-;w[[.ﬂ;’—‘w](:-u.)]ﬂ,u,)]{ (2.18)
The quantities D, and ¢, are defined as follows:

Brmiflnlte | . J
jw
s % : . o
The definitions for B, and ¢, are applied to (2.18), which may be written as
n,=[(|'[l~‘(l‘]+(.l[l]]t . (2.16) /
Equation (2.10) may be inveged, yielding an expression for £ in terms of J,, the

Heaviside functions, and the electrical properties of the complete space. This

expression is
7
. [ ll-‘*leﬂ_+m]5_[i,ﬂ;l+ﬂﬂ]5
o «© £ o P ;

. '
‘ . % [% 8) E.":.V ©) ] 5. (220
This relationship maf be used to interpret the divergence of the electric
field, v - E. By taking the divergence of both sides of equation (2.20), we arrive
at a suitable relationship between the divergence of lht)eleelric field, lh_e quantity .
D, and the requisite electrical properties. The divergelice of { is . i

o'-t
'

v B ;%-vi# v (M2)DB,) . }2.21)

The term - (h(z) D) in the above expression may also be interpr/eted by

.expanding the derivatives as lollovf ~N . -




v (M) B.) =h() (9D, |+(v Ale) B
ENGICR ARTE ATHI
where
b= tim B,
Py i .
» ;
is the value of the quantity B, immediately above the surface and &u) is the
Dirac delta function and i is a unit vector along the z axis. Equation ¥.21) for

the divergence of E may-be written using the above results as
= 4

; v-E=%v-n,+ y [n(:)[v B )+i- n*sm] (2.22)

In order to intérpret the dlvergence of the quanfity b, we return to equa-

* tion (2.5) for the curl of #, and expand it using the definition for D« This
« %

cnables writing v x A in the following form: 4

oxHB=T+jub=T+7%jub=Ts+juwb, . ~ (2:23)
By using the identity v- (v x #) =0, we obtain an expression for ¢ - D, in

terms of the source current density, J; from equation (2.23). By taking the diver-

gence of both sides of equation (2.23) yields 2
v loxf) =v-] +jov-B. =0 .~
. B
The divergence of J, may be obtgined from the above as
v B = '-"— vd (2.24)

!
By assnmpuon, lh: suppon of the source currept density’ 7, lies wholly in the

half space >0 T’henl'orn, it is obvious that A(z) (v-J,) may be deduced

immediately from equation (2.24) as




N

Me) (98] =-S5 A v,
The expression for v £ in equation (2.22) may be simplified considerably by
using the above result for A(z) (v- D, ). Aflter some algebra ¢ - E is written in

terms of J;, 5.*, sd the Dirac delta function, &:). This expression is

where D, * is lhe value of the quantity O, immediately above the surhceysinte
D= a B+ ,

where E* is the value of lhe electric field immediately pbove the surlnce we may

write equation (2.25) for ¢ - E in terms ol the surface’ field. For notational con-

venience we use the symbol \

E, =E*=lim E , <
NI
to rt:'present the value of the electric field immediately above the planar surface
in the positive half space. Equation (2.25) may be simplified using the expression
for D,*, and we now write the following also using our notation for the surface

electric field:

V'E“’i:l.vi""i,;l [ 8a] (2.26)
The above expression for v - E is an interpretation in terms of the source current
density 7, the refractive index f and the surface electric field £, in the positive
half-space. We may also write a similar expression in terms of the surface elec-

tric field in the We half-space. Returning to equation (2.19) we write

E=[1';511L+L}.Ll]bif['Ln.n.mni%]ﬁ. e

N

‘““‘ [+ 82a40] . (225)
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Following the same method used to derive equation (2.26) we may write

1 -6
v E-;v 5.——';Tv-[ll-l(tll5.]

o'~ L o
v d -2 (k) v B- B )

vl o+ i o] (2.28)

P

C
Jwe
The expression J,~ is the value of B, immediately below the surface, and is
defined by -
B =lim D,
R
‘Also it is apparent from equation (2.19) that, O, = ¢'E", where E- is the electric

field immediately below the surface in the negative half-space_ E- is defined as
FemBE=B", D
L e
where we now use the notation E, for the surface electric field in the negative_
half space. By using these results, a second equation for v - E may bg written in.
. terms of the surface electric field, E,, and the source current density 7;. We now

write ¥

= )
vE-rlovdsmi-n[iBa] . | (2.29)
By taking the gradient of equations (2.27) and (2.29), two equations may be writ-
ten for v(v - E). The two equations are as followsam i

vivE)=-si-vlvi)+ (2.30)

viv-E) =»J.:”’ v(v:7) +(nd -If)v(l B, q;)} : (2.31)

Either of these equations may be used in equation (2.17) to obtain the basic par- _-

tial differential equation for the electric field.” However, since our present
: 5

\
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interest lies mainly in determining the electric field in the half space above the
planar surface, equation (2.30) in terms of the surface field above the surface is
most suitable. By using (2.30) in equation {2.17), the following expression is

obtained: TRe @

9E + gty ["n’ (1-mz)) *’t(x)] E=jun], - '—:‘TVlV’],]

"u

Solaa] e
In order to simplify the appearance of equation (2. 32) A ‘Source Current Dcnslly

Operator operating on the source current dcnslty Js is defined below as

e 1] =g fotg weira] , 8
Also, two additional definitions may be made which represent the the lectrieal
properties of the complete space as follows:
F
W=k (h()+ (1-5T2)) nd ) s
k= wlpoty .
The preceding definitons are applied o equation (232) and the resulting equa-

tion is written as

FE 4+ B =-Tg (] +2 — v[i‘»s, s(,)] . . (2.33)
g

We have dgrived the basic partial differential equation (2.33) which the élec-
tric field E must satisfy. It is obvious that X ¢ condition has been used in
deriving (2.33). By a similar approach, an expression for the magnetic field, ﬂ
could be achieved. However, our primary interest is again the electric field so

that we neglect the details of this derivation and present only the final partial




differential equation. The magnetic field must satisly the following equation:

FA+R 0 =-To (Ts) -jw(w-¢) (¢ x H) &) .
Ei\he‘r of -these equations are equally suitable for this analysis but we choose
equation (2.33) in the following sections.

We now proceed to spatially decompose the electric field. This decomposi-
tion will result in three separate equations. The first two will represent the elec-
tric fields abave and below the interface (respectively) separating the ;wo media.
The third equation will define a set of boundary conditions which must be
satisfied at the interface. !n this manner no external boundary conditions need

‘be applied.

2.3 ELECTRIC FlELD DECOMPOSITiON

" The complele electr\c field may be separated into fields above and below the
planar surhce by nsmg the Heaviside functions. To effect this decomposition we
first write the electric field E as

E=h(z)E+(1-4(2)) E . (2.34)

This exprssionr may be used to spatially decompose the wave equation
{9*E + 12 E) as written in equation (2.33). The right band side of (2.34) above is
substituted for E in the left hand side of (2.33), the basic partial differential
equation for the electric field. f‘mm equation (2.34), we may proceed with the

_complete decomposition in a term by term manner as follows:

VB = () B) + A [0-he) E | (2.35)
Each’ term of equation (2.35) n;ay be examined individually. The first term on the

right hand side of (2.35).for the electric field in the upper (positive) half-space is
T, -



first decomposed into its Cartesian compogents. We write

v‘[h(a)El-v‘!N-)E. 13+ (M) B i +97[A()EE
Consider, only, the i term, ¢? [ A(:) E, |. .
FLAEE =9 (9 (AE )
The gradient of 4(z) £, may be expanded as
v (A(z)E) =hz)OE +E wh
) (, =Ma)E, +i Eu &) e
« and by taking the divergence, we write
GUAGEIE =0 A B =9 [hE)E +iEy &) |
=GB 49 B voae) 4y (1B 40 ]
~b() VP E +i 1 (9E ) )+ o [i B q.)] . (238)
Similarly, we may write expressions fdr the y and 2z colhponenu as
G E =G E +i - (95 ) dre [16, 8] . @a7)
G E =G E +i - (95 ) dn+ o [i B K] L (238)
where E, E, E, are the Cartesian components of E,. E, is the surface electric

field immediately above the interface, defined as
E, = lim E
-0t -
We combine the equatigns (2.36), (2.37) and (2:38) to obtain the expansion for
1) Efas
‘ - ) ;
P EI= 00 B+ (2] e (o (1540 ] |
o [semaa]}itfv [taan]}s <239
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We now turn our attention to the second term of equation (2.35), for the
electric field below the surface, and effect the same type of decomposition as

above, viz.,
FlO-ANE =o' [(1-46) & 2+ [(-46) 5 |4 e
+ot [(-he) ]2
Taking, for example, only the # component, we expand v [u .Ap))e,] as

v[-benE = (-seN v B2 Eu )

and by taking the divergence we obtain
G [0-ben B )= -s6N B [1 (B ) | se)-v- [2 Bu i) ]
Omitting the details of the expansions for the j and : con:nponcnts, we may write
. B
FU-pENE 1= (1-46) 9 E - [2£] &)
M PP PR T PP |

A{v<[i_E_,5(x)]}i (2.40)

In the above E., E., E., are the cartesian components of E,, which is the sur-

face electric field immediately below the surface. E, is defined as
. '

E. = im E

i -
2" E)

In equations (2.30) and (2.40), the symbols l%l and ]%] denote the normal
derivatives of £ immediately above and below the surface. For reference
(2B} T, + A 1 3

() = [ om)*) s+ [ bom) ]+ [ 1980 ] (2an) -

By inserting the spatial decomposition, equation (Z,M)gm (2.33) and by
I

’



+pplyiog the expressions for o* [3(+)E] and o* [(1-4(+))E] a3 shown in equations
(230) and (2.40), it is obvious that the basic equation (2:33) is satisfied if the

electric field satisfies the following equations:

by [EarrE ] = e m (2.42)

() [¢E + i8] =0 . (243)
[I—";E f~[€.§]>]nlil oo [#E B an]) s
o [ite-mmra ] i {o[s (£a-5u 0]} s

=(nd -1 [+ a{:)] g (2:41)

The symbols 5 ,i ar'g the Cartesian unit vectors and 72 = k?nd.

The equations (2.42) and (2.43) are the governing equations for the electric
field above and below the iaterface. The third cquation (2.44) represents the
boundary condition which the field must satisfy at the interface.

2.4 REDUCTION TO INTEGRAL EQUATIONS i

The three ‘equations (242 , 2.43, and 2.44) may be reduced to cor

type integral equations. We/mnkc use of the fundamental solutions to the wave

equation in the form of Green's functions, \\
' 3
Kals.w.2)= ﬂ"‘;—’fﬂ 3 / (2.45) i
~
!
1



(\ c 27
i) \) (248)

Kelzwe) = —

In the above we have used the following:

»
re= (P y?et)

PR vt
j oy
1= knd = f‘ll. - %7;-' -

These functions, Ko, and K ,, must satisfy the following equations:
@ Kt B Ko =- &z2)dy) &z) . (2.47)
VKot Ka=-%=z)8s) &) - (2.48)
Two identities epable the use of Green's functions to determine expressions
for the electric field. The identities are
FUMDE) ¢ Ku= [MIE )9 Kar )
and

FU1-AG)E] * Ka= [(1-4G)E] * O'Ka - (2:50)
The asterisk () has been used to denote a three dimensional spatial convolu-
l.i‘on with respect to x, y, and z. It has been assumed in equations (2.49) and
(2.50) that these convolutions exist. The above identities may be used with the
decog\posit;on: for the electric ﬁ?ﬂ. equations (2.39) and (2.40), to wril‘c convolu-

tion equations for the decomposed electric field. We §eput the decomposition for

v [A (1)5] from equation (2.39) as

v'lh(r)El=ﬂl')v’E'r[%—fl’ﬂx)+{r [eeam)])s

+ [474 [+5 q:)]}i +{v» [i'E..l(x)]ll. . (@51)




Also, the decompesition for ¢* [(l - h(z)) E] from equation (2.40) is repeated as
SO-2 e E = (-4 028 - 2] an)
—'[v[is_,s(.)]}u{v [i s_,'q.)]]y
,!v-[is.,q,)]].- NG

The identity equation (2.49) and the expression for ¢ [A(z) £ |, equation

(2.52), may be combined to form equation (2.53) as follows:
he) OB ¢+ Ko+ [I J s(,)l * Ko+ [{9 [ane ] )i+

(v s oo o [rnae ]}

‘Ko
=LAGIE ]« {42) &) 8e) - Koy )

=G E - [h() B Ky (2.53)

Severalof the terms i equation (2.53) shove may be regrouped. This yields
|A(=)E|+[A(:1lv’é‘n‘tl]wr..-»[[ ] m] :
Ao [Tl o s |
o [rwra]) ) ome -

The form of equation (2.54) may be simplified by examining and simplifying

several of the terms. These terms are

RS [»qz)s.]}x-—[suax)]s .




A-IV'[‘ll)E.]}i=:—‘[E.,R:)]i )
o[ a1 ]} 5 - & [ 00] s

‘The above terms are combined to yield

[ [rwm]joe o s ] Joofo- [ranm ] )] oo
O IR ) PR ) PR ET
~(& [aa]}een

As before, E, is the surface field in the positive hall-space. This simplification

may be used to rewrite equation (2.54) in the following form:
+
[Mz)E )+ [A(x)(v’é ++¢E) ] . k.,.--[l%l q.)] * Ko

- [% [& m]] * Ko (2.55)

Equation (2.42), the d d basic partial differential equation, may be sub- ,

siiluwd into (2.55). This yields the following equation for the electric field above

the surface:

[h() B | =-Te [T5) * Ko~ ¢ Ko . (258)

(35 o+ [ [m]

An expression for the electric field below the surface may be obtained by a °

similar decomposition. Omitting the details of this decomposition, the resulting

equation is given below:



H-aen )= { (£ ]q.]; [ l(n”ur.. (257)

We now return to the equation for_the boundary conditions, equation (2.44).
The same simplification applied to equation (2.54) for the field Thove the surlace,
may be used for the boundary condition equation. Fquation (2.44) for the boun-

dary condition may be written using these simplifications as

(1) () Jaors 2 182000 ]

‘o[ B )

= -1)v [ B a)] (2:58)

Equations ™ (2.56) and (2.57) decompose the electric field into two com-
ponents, the electric field above the surface and the electric field below the sur-
face. These equations along with (2.58) express the field in terms of the following

four functions:

- (28] 50

It is the problem of determining these functions to which our attention  is now '

directed. To this aim, we define the incident (or source) electric ﬁeld in terms of
the source current operator, operaling on the source current densuy The
incident electric fleld is

E =-Te [s] * K
The expression -Tgg [/s] has already been defined. By usinxm incident electric

field notation equation (2.56) is written as

B E1=E - { [£) w1+ 2 8 40 ]) « o (250)
’
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It Y also be noticed that

8 y
[-,; (& q-)]]f-r?. ).,
since E, is a function of (z,y) only. The function #(z) is the derivative of the

Dirac delta function, defined as

o) = 2 du)

This permits (2.59) to be written as

'

(A E|= B+ [AHe0) 8e)- B 45) | # Ko
+
with the function #*(z,y) defined as »[3—?‘} . By using a property of a convolu-
tion,

e ) o Ko=) o 20
cquation (2.59) may now be wrilten as

9Ky
£l
Equation (2.80) represents the electric field above the surface in terms of the

[h(z)E)=E +R*z.0)8z) ¢ Ko~ E, &) ¢ (2.60)

incident or source electric field E,, the surface electric field E,, and the {unctio{
RHzw) The same operations are performed on equation (2.57), the equation for

the field below the surface. This yields

[(1-4()) B )= -F(z.0)Hz) Ko+ B 615 ) ¢ Kog (2.61)
; = (F de) B 810 ) < K

where the function #(z,y) is defined as

ron= (2]

K

sicrsetfos



The boundary condition equation may be rewritten using the above
definitions for ¥z .y) and R(z,y) as
-RMz)H2) +E 8%z )+ R(z.)8z)-Ea 6'(1) s
Lo[sBan)] (2.62)

=(né-1) v [4 B a0
N\ow, we examine the right hand side of (2.62) and decompose the electric field
* function ¢ [ <, 2] as ’ s
vl B4 )]=—[ ‘B a:)]n—[‘ Baa]i+v 2 [ Ban ]
ca (B ] et [ 8 ]amis [18 oot
=vo [#B Jans [B st

The operator v,, is The gradient with respect to x and y defined by
; ~

L] 2 a .
o=z )4 )i B Y

By using this d position, the boundary 7" ion equation (2.62) may b; writ-
len as
- . ’
[#r s st ]+ [Rleara-Bsta)] . (269
az

: [v.. [i -E, ]6(1)+ [a -E,]n .s'(,)]

=(nd-1) [oa [ -B] &)+ [+-2]2010)]

By rearranging equation (2.63) we may write the following expression:
(At -Bote)] = [Femrm-E o]

L [v., [i8 )an+]s & ]:1.):] . (2.64)




Equation (2.64) may be used to rewrite equation (2.61), the equation for the

electric field below the surface, as

n

Ill-N'))Ei-[-l‘l‘lx,r)A v..[rt.]]qxxrk.u
s
+[,.L,_f[rtf]5]s1.):x.. (2.65)
ng
which is an equation Tor the electric field below the interface in terms of the sur-
face electric field E,, and the function R*. We now have an equation for the
clectric field above (2.60) and below the surface (2.65) in terms of the same two
unknowns #*(z.5) and &. We proceed t6 develop integral equations in order to
determine these functions. Considering equation (2.65), we then choose a plane

:=2z*>0forallx andy so that [| - l(:‘)] E =0. Equation (2.65) then becomes

0= Fla) ¢ Kt L2 [0 G0) K] (2.66)

wherg

Fen=fun+to, 18]
El [:'i. ]l

G(z.9)=E -

Equation (2.68) may now be written as the following integral e‘qunlion:
0=—f [F(s'9Ka(z-3',y-y"3s)ds'dy'+
F
z f!c(l'.l’)K..(z-z','A"’,x)la'l,'] " (2.67)
HH

Taking the first term of (2.67), we perform a two-dimensional spatial Fourier

transform and simplify by changing the order of integration. This is accomplished

X A"

as follows:



JI TP w ) Ka( 22", y-y" s )exp(-sK, 5 - jK,y) ds dy ds'dy’
Ty 2ty

!

= JF (') [[Kealz-2' y-y's) expl-iK,z - jK,y) ds dy ds'dy’
]
P

(29" expl-jK, 2"~ K, ) [ [ Koglw.v 2]

7
Cexpl- K, u - K, v) du dv da'dy’ (2 68)
In the above expression, we have made the substitutions, v =z -:' and

- v=y -y" Y

‘The two dimensional (x,y) spatial Fourier transform of the Green's function

K is determined in Appendix ‘'A’, and the result repeated below as

KK, Ky.2) = [ [ Koglz.9.2) expl-iK, z - jK, y) dz dy
o]

_oella ] Ue)
20, b

(2.60)
where the un8erscore denotes the spatial Fourier transform. As well, the con-
stants in (2.60) are defined by the following:

Ug = VAT,

=k

M= KI+K?

In the plane z =:*> 0, the transform of the Green's function is

kar o xRl Ue)
e ==

With the aid of equatjon (2.69) for the spatial (x,y) Fourier transform of K oz,

the first term of equation (2.67), as simplified in (2.68), now may be written as

[1PEw [—""‘"2',;' ) ]un(éf

- K,y dzdyt . (2.70)

We now examine the second term of the integral equation (2.67). The sccond

term in (2.67) is simplified in a similar fashion to the first, yielding
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r ) S
F’; [!’vl’c("l") [ﬂ%ﬁ expl-jK, 3"~ 3K, y) ds'dy’
exp (-] 2|+ Ug)
=-[[d(") [——(—1———'—] expl-jl 2/~ Ky y") dz'dy' (2.71)
oy

‘The integral equation (2.67) may be written using the #bove simplifications as

I [c (zh)+ ’_(JT’J ] exp(-]2 |4 Ug) expl-iK, 2!~ jK,u) 'ty =0 . (2.72)

g

Equation (2.72) is one of the two integral equations to be solved in order to
determine the two functions R*(z,y) and E,(z,y) . We now/-derive a second

“integral equation. Consider equation (2.60) which is written agafn below as
’
1AGIET=E+ | Rus) 8e)-E 64] « xa
Choosing & plane = =1 <0 for all (=), then [A(2)2] = 0 and equation (2.60)
. -
becomes
~
Fo = [Rrensa) + B840 ] » Ka
=[[-RY'y ) Ka(s-2" 5y 2 ) ds'dy’
iy
e [UE.(z',y')K.,.(H'. P )nw] ; (2.73)
'y .
where A(‘.'is the incident electric field evaluated in a plane s =" <0 .

The two dimensional ( x and y ) spatial Fourier transform of the function

Ko is given by
- )
Ko = ﬂL_zl'vJ_J_ ) (2.74)
where .
U= W-ET |

M=K+ K2 .




The Fourier transform of equation (2.73) is taken using the transform of K o, from
(2.74). By using the same substitution of variables as in equation (2.68), that
w=1-z"and v =y -y’, as well as the spatial Fourier transform of Ky, we may
obtain equation (2.75) in the same manner as we obtained equation (272). This
yields the following equation for the two-dimensional spatial Fourier transform of

the incident electric field below the interface:
Ey =[] Rty ) LYy g, 2 i, v ety
Py
+ 2 [j[ Buoy) 2L L0y i,y e L (29)
oy

The derivative of Ko is taken with respect to «, for z =z~ < 0., The derivative is

vl

5 o |eelieio) | el
@ h]“ﬁ['T" -

By using the above, equation (2.75) may be wrilten as

2

et
2E,ep( |27 |U) = [ [E. LA ‘j," ]np« Kex' - K, ') ds'dy’_y (2.76)
4 AR
The two integral equations which are to be solved are equations (2.72) and

(2.76). These are repeated below as

0= :r’j [E ('3 + ﬂ;"—"l ]‘e-p(.;‘ Ue Joexpl- K, '~ K, 3") da'dy*

and
2B ew( || V) =] [s,(,',,',.ﬂfv'-.vll,,,( K- Ky sy
& Yy

2.6 SOLVING THE INTEGRAL EQUATIONS

We first examine equation (2.72) for some obvious simplifications. The con-




slnn; factor in (2.72) may be removed, which yields

o=1f [al'ﬂl'lf’—(;—"ﬂ]np(-ll(.l"lk,v'ib'lr’ (217)
A
The equation (2.77) implies a relationship between the spatial Fourier transforms
(x y transforms) of the functions @ (.y) and F (z.y). The implied relationship is
Sivenby

0= Up QUK+ UG KG) . (2.78)

Where E(K,.K,) is the two dimensional spatial Fourier transform of 7 (z,y).

Similarly, @ (K, .k, ) is the two di i spatial Fourier transform of & (z.4).
By using the expression for P (s.y) and € (z.y) developed in equation (2.66),

- equation (2.78) is cxpressed as \

0=Us ]] [b'.(x’,y')r

(¢-E );] exp(-iK, 2"~ jK, ') dz'dy’

14 [E*(x ,m._l_v,v {2 B ) expl- Kzt K, v byt (2.79)

where E,, is the compouent of the surrace field E, in the i unit vector direction.
By using a property of the Fourier transform, we may expand the term v, E,, as
iy Euu = _(: )i o—[s_,).
L2 (e,)s + 2 (5
I By = 5 lEu)t + E (Ba)¥

=-i K, E, 3

i K Eyi
Again, the underscore notation has been used for the two dimensionabx,y) spa-
“

tial Fourier transform. We may now write equation (2.70) as

(2.80)
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The above equation may be regrouped and sn expression for A*(K,.K,) doter-
mined. This expression is ‘
e

lj,K,E&1+; K,E‘Lioll.gli] (2.81)

;
BHK, K) = -Us By + 2

Equation (281) may be separated into (Mree parts by way of its vector
nature. Each new equation is a representation of one of the three Cartesian com-

ponents of B*K, .K,). This separation is as follows:

ngd -1

RAK, K ) = e B % 7 [ix&] . (2.82)
S |

BAKL ) = U En + P [ B (2.83)

)
and

M

BAKK) = -0 By 2L (280)
7L

=-Us E, +Ug

Ur
- Au_,,’ Eu_

This yields three equations relating the Cartesian components of the spatial
Fourier transforms of Z*(z.y) to the Cartesian components of the spatial Fourier

transform of E,. Equation (2.76) is repeated below as

R
2By exp (1571 0) = [ f | Bt - BUE0) g ot sy u as'ay?

oy
This vector equation relates the spatial Fourier transforms of the incident field
below the interface (£, ), to the surface field (£, ) and the function #*. This in

tyrn may be written as three equations, one for each of the three Cartesian com-

ponents of the functions, as follows: : ~




L]

20 By ew(|57| U) = U By - RAK, K,) (285)

20 Ep el 137] U) = U By - RAK,K,) . (2.86)
and

2V Ey exp( | 27| U) = U E, - RAK, K,) (2.87)

We first examine the x component of £, in equation (2.85). This expression
inay be expanded using R, (K, .K, ) from equation (2.82). The result of the expan-

sion is

2UEyy exp(| 27| U)=U Ey + Ug E,, - 30 By . (2.88)
Ear Ey E.

ng

In a similar manner, expressions for the y and z Cartesian components of £, may

be determined. Following the method for the x component, we obtain

zus,expu--ru)-u_EszEm-%ﬂ;‘[mﬂL] . (2.80)
and
~N Ue
20 By ool 57 U)=U By + S By (2.90)
;

We may now determine the surface electric field for an arbitrary incident
(source) electric field and a surface of arbitrary electrical properties, provided the
inverse spatial Fourier transforms of the Cartesian components of the surface
fieid ciny. be evaluated. The spatial Fourier transform of the ¢ component, usiog

equation (2.90), is .
: 20U ng i
éu_:m—&‘zxp(ll 1) . (2.0f)
Accordingly, we may also write the # and the j components from equations

2.88) and (2.89) respectively as
(2.88) (2.89) gz ly e

»
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2 .
Ex = groy Buwewllnl V)
2U nd -1
+ (o3| [t e sad owir
22U
= o e o) E.L‘\"m[l’( E_,L]] (2.92)
and
\
B PPl [K F] (2.03)
Uy U P ROy el 2T

Equations (2.91), (2.92) and (2.93) are expressions for the electric field on the
surface in terms of the two-dimensional spatial Fourier transforms of the Carte-
sian components of the surface electric field. For a given incident (source) clee-
tric field, we may solvé these equations for the surface ficld, nssuming the'inverse
Fourier transforms may be determined. We may note that fio assumptions have
been made, as yet, regarding the nature of the source electric field or the nature

of the electrical parameters of. the surface.
’

2.8 THE ELECTRIC FIELD ABOVE THE SURFACE

The results of section 2.5 express the three Cartesian components of the sur-
face electric field in terms of the properties of the surface and an arbitrary fune-
tion for the spatial Fourier transform of the incident electric field. By using these
results for the surface electric field, we may now proceed to determine the electric
field anywhere in the half space above the surface. Again, to maintain the gen-
erality of the source, the field above the surh}ce is expressed as a function of the
source field. The final equations in this section maj be used to determine the
electric field above the surface for a given source electric field, assuming the

inverse spatial Fourier transforms may be evaluated. We now return to equation

S~
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(2.59), repeated below as

8 1=8 + [{[£) an- B ooy | (2.0

Choosing a plane z =:* > 0 for all (x,y), equation (2.94) becomes
]

+
Euz_;[,["_’?] q,),:,u.;}:x.. (2.05)
8z
Where we have defined E, as the electric field above the surface and E, as the
incident (source) field above the surface. Performing the convolution in equation

(2.95) yields

R =
E =E, ¢]' 'ﬁ*( 2y K (z-2' y-p' 2 ) dz'dy’
L R K oryyte ) dsty (2.96)
iy

We now take the two-dimensional spatial Fourier transform of equation (2,96).
This yiclds an expression for E, in terms of £+ and E,. This expression is
Eo+[[BY2' ) [“P(‘ 2;/‘ ul] expl-jK, 2’ - jK,y") dz'dy’
Lo
expl-|2*] U) ; ¥
JEG="y) [ 2 ] exp(-jK, 2"~ jK, y") dz'dy’ | (2.97)

Ty i

where U = AT+ £? and 3* = K, + K,>. We perform some simplifications on equa-

tion (2.97) which now becomes ~

2V exp(|2*| V)E =2V E, exp(|2*| U)+ U E + B¥K, K,) . (2.98)
Fquation (2.98) may now be written in terms of its three Cartesian components

as follows:
2U exp(| a*| U)Ey =20 By exp(|2*] U)+ U ET# RAK, K,) (2.99)
20 expl] 2*| U)Ey = 20U Eyy expl| 2%] U)+ U By + RHK, K,) . (2.100)
e
.
f
\



and

20 expl] %] U)Ey =2 U Ew expl]5%] U)+ U By + RAK,K,) (2.101)
We now utilize the expressious for R*(K,.K, ) developed in equation {2.82) to
expand equation (2.99) as

20 expl(| +¥] U)Ey =2 U Ew expl] %] U)+ (U - Ug)Eyy

ad -1

e (LA (2.102)
Equation (2.102) may be further ded by using expressions already developed
for the surface components of the electric ficld, E,, and E, in equations (2.92)

and (2.91). The expansion of equation.(2.102) is

20 exp(|2¥] U)Ey =2 U Eyy exp(|2%] U
2 _|_

(l,
+2UU+U exp(l 2] U) | By + +—"—[)I(E,.]
v2u AV e e el v) (2.103)
Und + Ug i =

Simplifying further, equation 12,103) becomes .
)

U -Ug o S
ﬁ“"—-‘uw,\"‘ e l(lz7] - 1241 0)
_2v nd-1 . a6
i a all LL-  (V B P VI R R
We now examine’ equation (2.100) to d ine the equi pression for

E,_in terms of the spatial Fourier transforms of the source field. By using equa-

tion (2.83) for the R,*(K, K, ) term we may now wrile equation (2.100) as

20 By =20 B el ] £¥] U)+ (U-Us) B + 2

The above equation is now in terms of the surface components, £, and E,, of

the electric field. Below, we expand equation (2.105) using the expressions for

;' [ime] - (2.105)"
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these surface field components, which are derived in terms of the source electric
field. This yields an expression for the j component of the electric field above
the surface as a function of the source electric field, as follows:

~,
2U Ey exp(|:%)| U)=2U Euy =xp(lz*| v)

(nd

+2U U*U exp(| 27| U) | B m[;x Ea)
(nd
+2um[;i( ) Ew expl| 27| U) . (2.106)A

By performing similar simplifications used for the # component, we arrive with a
similar expression for the j component of the electric field above the surface. The

expression for the j component is

U - U
E\L“E&+U+u‘z£&ﬁv((lx./\lgl)u'
d-1
Y w121 Y L 2on)

Finally, we consider the : component of the electric. field above the surface
from equation (2.101). By expanding this equation in terms of the expressions for
the surface field components, from equation (2.91), we obtain the following
expression: 5

2U expf| 2*| U)E,,__zugu_expu,ﬂ )

2U nd
Ho-0F ) vy Buestlel )

=2U Eg exp(] %] U)

& Ung -Ug
2U —5——EE, i . .
+ Ui U Ey exp(] 27| V) (2.108) _

Again, we simplify equation (2.108) and obtain

Ung

Bum Bt Sl g (it - 1 A0 (2.108)
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The equations (2.104), (2.107) and (2.109) describe a solution for the electric
field above a flat surface of arbitrary electrical properties for an arbitrary
incident ( source ) field. These relationships are written in terms of two dimen-
sional spatial Fourier transforms of the electric fields, with one equation for each
of the Cartesian components of the complete field. For any given incident elec-
tric field, the electric field above the surface may be determined if the inverse
spatial Fourier transforms may be determined. Again, we must note that at this
point no assumptions have ‘yel been made regarding the. electrical properties of
the sur\‘ac’e, As weli we have not invoked any of the classical boundary condi-
tions, which the fields must satisfy at the surface; rather the method of solution
has provided its own boundary condition equation. By using the equations for
the Cartesian components of the electric field, we may determine the electric field
for any finite source if the inverse spatial Fourier transforms may be solved.
That is we have achieved a set of general expressions from which the electric field
may be evaluated for any specified source. We repeat these three equations
below for comparison as follows:

-,
~—*5'~“+u+ur, Eyepl(l27] - [s*1N 0]
2U -1 ] o
e el LM (B B P VT B L
By =B ¥ o By en((15°] - %1 V)
B~ B ¥ T Lnewllls
20 N§ -1 . | %
YURU Ung U [i & Bu] oottt - 14D 0) (2.107)

and

s !
U nd - Us . /
Eu.=5u.‘m§m"9lll' |- 1:*)0) . (2.109)
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We now diverge from the case of an arbitrary incident field. In the next sec-
tion e develop an expression for-the incident field from an elemental dipole
source. This is used to determine expressions for the field above a flat surface for

an elementary vertical electric dipole source.

2.7 INCIDENT FIELD FROM AN ELEMENTAL DIPOLE SOURCE

In the previous section we have derived expressions for the three Cartesian
components of the electric field of the electric field above a planar surface. These
three équations express the field in terms of the spatial Fourier transforms of the
Cartesian ccmponenis of the source (incident) electric field functions. In this sec-
tion we will determine the incident electric field for an eleraentary vertical elec-
tric source and evaluate the function in planes above and below the s‘l‘xrface, in
agreement with our methods for evaluating the surface fields. The final results of
this section are the two-dimensional (x and y) spatial Fodrier transforms of the
incident electric fields above and be]ow; the surface. As usual the prima}y
interest is in the electric fields distant from the source, so that we present only
the ‘far field’ approximation of the elementary dipole source field, in the spatial

Fourier transform domain.

The source current density for an elementary dipole source is given by Jor-

dan and Balmain [1968] as

T, = Iw)dl &) 8y) 8z - ho)i (2.110)

where &g is the height of the dipole above the surface, Iow) is the dipole current,

_ & is the dipole length, and J, is the source current density. The incident electric

field as defined in equation (2.59) is repeated below as

£

-~



| E=ta[l]ex @y
In the above, T is the source current density operator, r = (3% +y* +2°}* and

exp [-jkr

Ko=
e ixr

(the Green's function).

. '
We now determine Tgp [7] using the source current density, 7, as given in equa-
tion (2.110).
e IS . 2
Tm[Z] T [v[v 7 ) +# ],]
First the divergence of the source, current density, v-7,, is examined and
expanded using equation (2.110). In terms of the source current, /4w), and the
dipole length, df, ¢ -7, is given by
vli=v (lod &z)8y) &z ho)i )
=1Iodl &z)&y) 8, (:~ho)
In the above equation the subscript on the Dirac delta function represents the
partial derivative, and the partial derivative with respect to z is given by
ale-bd =2 [de-ha]
Continuing, we take the gradient of the divergence, v (v -J,) as
(9T ) S (Lodt §2) 8y)6,(z-ho)
= 108 { 80D K0V 6, (s-hl2 + 83D, (5) b, Lo-holi + o) o) bl -hol | i
where we again use the subscript notation for the x, )ﬂi 2 partial derivatives.
For reference, the x and y partial derivatives are u’!ollows:
a
bife)reg-ta) L It

)= 5 8)
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The complete expansion of T [7, ] may now be written as

(2)8(0) 8, (2-ho)# + &z Vb, (v) 6, (2 -ho)i

(B ) Bl -ho) + 67 6) Ko) 8eho)) 5 @.112)
The incident electric field E, is separated into its Cartesian componeats, E,, ,
E,, and E,. The vector components in equation (2.112) are now written

separately as equations (2.113) thirough (2.115). This yields the following:

sl
1o dt . exp(-jkr

L B {amanaesg | o o) (2.113)
1, dl - j

E, !.'T%{qm,(n:.(m.,)]-ﬂ‘t_'f—” o (2.114)

By = o | &) bule b0 + £ ) ) - | ¢ ZEEEL (21

First, consider only equation (2.113) for the # component. A useful property of a

convolution is g . #

%a(x;'x,.=q,). —;‘-K,,. :
By using the above property, E, is written as

Bar= ;u.,[‘('l‘(v)ﬂ:ho)’ \ sloitr) K
.
~--»}'A<[-' e
“-lL‘l‘{Kzlﬂvlﬁ(s n,)} l ‘s ]ﬂ(l_’"l]

By performing the convolution in the nbove, E, is

lodl z(a-ho) (3 3k ,,) expl-jkry)
et 2 S Al

Toa—F (2.116)



In equation (2.1186) the variable r, is defined as

ry=( 22 g% (1-hoP P :
By analogy to the E, component, the E, component may be deduced as follows:

B g 0 v('»M]{i»aik‘k,}"vﬂf'x)
inr,

n
Thé ¢ and j components of the incident field have been determined above, and
e pow tura our attention to the the i component. Consider E,, which is
repeated below as
Iodl

Jweg

{280 8 -ha) 4 4780 ) ) 49 ) o Z2LB) (2 11)

The first term in the above equation for E,, denoted by T,, is examined below
and the.partial derivatives expanded as follows:
xp(- 7k
To= { fe) o) dle-pa) | o 2L
3 | exp(jkr
={ae)an de-na | o 2 | 2RLE)
a z J k x ) exp(-jkr
= {orspseaa) o [[5e s ) et

={de) s se-hg | o [L‘

k222 35 ka* 347 xp(-Jk
_+4—+_]_24u_1 (2.110)

The second term of (2.118) is added to equation (2.117) to give the total z com-

ponent of the incident field &, as

(#1801 8a-ba) ) ¢ /

r

3jkat 328 B 1 Sk ]| eeli) L
T Yt : - 4nr

o Lot l(x-f;u)’ [_3,_.,3)"7“]_[*"__'_}__“7*1']"P(‘lk'l) (2.120)
Jwe ry e n ] " anr,

(2n7)

o~



The ‘Far Field' approximation is invoked upon equations (2.118), (2.117),
and (2.120) for the Cartesian components of the incident field. That is, we

neglect all terms in these equations which decay more rapidly than -"— The total
\

incident field E, is then evaluated through its i sndd components as follows:

E,~0 , (2.121a)

E, =0 , (2.121b)
Todl  , exp(-j k ry) exp(-) k) 4

s LR T (2.121¢)

In the above, the 'dipole constant’, ¢, is defined as

IR
R | &
« o Jwulo

“The three equations, (2.121a), (2.121b) and (2.121c) show that the incident field
distant from the source may be approximated only by its ; component. The far

field

jon is typically idered valid for radial di (ry), greater

than 100 radio wavelengths.

The above expression for E, is now evaluated in a plane : =&~ < 0 below

the surface, to yield

4
By =G, 55"(‘—‘:%"—' ; (2.122)
E,, and r, are defined by - '
N R Cad A e Uil i %

By' using the results in Appendix 'A’, we take the two-dimensional (x,y) spatial
Fourier transforme of equation (2.122) for E,,. The expression is

Y el e -ho | U) 2 ' (2.123)

Ey =, T

-




where

U=VX_F  ad M=K+ K
The underscore denotes, as befote, the spatial Fourier trangform of a function.
We may also evaluate £, in a plane above the surface at + =:*> 0, and in a

similar manner to the above we write

- exp(-s b r)
By o, eltn) (2124)
In cquation (2.124) E.,, and r, are defined by
L N I B A A
Again, by taking the spatial Fourier transform, we write £,, as
exp(-| 2t -ho | W)
By = Cp———i———— (2.925)

These results may be used as the incident electric field from an elementary
vertical clectric dipole source, in order to evaluate the far field approximation of
the electric field above a flat surface. These results in equations (2.123) and
(2.125) are applied as the source field in the equations from the preceding section,
section (2.6), for the electric field above a planar surface. We now proceed to
evdluate the electric field above the planar surface for an elementary vertical clec-

tric dipole source. 4l

2.8 THE ELECTRIC FIELD FOR ELEMENTARY ELECTRIC
DIPOLE ANTENNAS

In the preceding setion we have derived the incident clectric field for an cle-
mentary vertical electric dipole source. In this section we assume that both’the

observer ‘and the source are elementary vertical electric dipole antennas.” This
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means that we are assuming that both transmit and receive sntennss will be ele-
mentary electric dipoles. In the far field approximation of the electric dipole act-
ing as a source, the i and § Cartesian components of the electric field are negligi-
ble. Therefore, by reciprocity, the electric dipole acting as a receiver is sensitive
only to the i component of the electric field. This implies that for these anten-
nas only the i component of the electric field is significant. However, we note

that from equations (2.104) and (2.107), for £, and E,, the ¢ and j components

3 ligibl

are non-zero even when the source field are
By the preceding argument for vertical dipole transmitter and receiver the # and
§ components may be neglected.

We now proceed to derive the ¢ component of the electric field above the
planar. surface. First, consider the expression for E, in the spatial Fourier
transform domain. Equation (2.109) for £, is repeated below as

Und - Ug

¢ =ty -t
Tra o Buer il - 14N 0)

By Bt
“The expressions for E,, and . from equations (2.123) and (2.125) respectively

are repeated as follows:

expl-| 2 - ho| V)
Eu=Ci———p——

"ind X

The above cxpressions for £,, and E,, are inserted into equation (2.109), which

yields

epl- 1+ hol U)
A
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ung -ug e(157]
* Ung + Up

(2.126)

The argument of the exponential in the second term of the above equation may
be readily simplified. Examining just the argument of the exponential we write
LUl =¥ - e = ho ) U) = ((z*+ Ko V)

This simplification permits (2.¥¥6) to be rewritten as

expl-2*-ho| U) = Und - Ug exp( (s*+ho) U)
=0 {‘T* ’—'—_—"-"a'v‘}

B Und + Us 20 {2437}
An cquivalent expression for (2.127), after some algebra, is
exp(-| ¥ -ho | U)
s a
i ko] U .
i [ 1o dle el Nkl 0) | (2.128)
Ung + Ug 20 .

We now take the inverse spatial (K, k,) Fourier transform of equation (2.128).
The first two terms of (2.128) may be easily recognized and their transforms
determined, since they are just the Fourier transforms of a Green's function. The

inverse transform of (2.128), yielding E,, is

Cofexpl-i kR expl-ikRy) G i

Eu=ﬁ{*7‘——;—m—fzr} (2.120)
In the above, R, and R, are defined as follows: -

Re = (2% y% (z-ho}* ,and Ry =(2%+ %+ (2 + ho))*
The integral P in equation (2.120) is written as .

! - U expl-(z* + ho) U) .
L 2 Bl BXRCAS ¥ D0l .130)
P ,!’{ T B 0 exp(jK, z + jK,v) dK, dK, (2» )
~



The integral P corresponds to the Sommerfeld [1949] integral for the surface
_ wave portion of the solution, which has been evaluated approximately by many
authors. We now assume that the surface is highly conductive to arrive at the
s
solution for P as presented by Wait [1970]. This will permit the approximation of
the inverse transform or the z component of the Je‘msc field above the surface as
described in equation (2.129). For a highly conductive surface the refractive
index n, is such, that
¢ nd >>1
Therefore it may be assumed that
Ug = Mok =)k n,
By using the above assumption, the integral P in equation (2.129) becomes 4
3t |
o Lt
Tap potas Muﬂj]g,: + ik, y) dK, dK, . (2.131) -1

- .
ool 4Rl U) i o feosts - o) Qds . (2132) '

The following definitions apply to (2.132):
K, =)cos¢

K, =)sing

z = posf

v = pind




The two integrations in equation (2.132) may be separated as follows:

Y
P=c [ ——expl-| 1%+ ho| V)
o ulu+—’i]
[ v
- »
‘f exp(-J phcos(é l))li}l\ (2.133)
PRI

A,
Considering the bracketed term in equation (2.133), we may simplify the integral

using the relationship

.- - ‘
J expl-jprcos(é-8) d0= [ expljprcosa) da g
o d

=_} explj phcosa) da
=2 { explj phcosa) da
=22 Joph) .

The function Jg(z) is the Bessel function o

tion (2.133) may now be written as

B
P= [ ——2 —exp(-| 2t +ho| V) JbN) d2 (2.134)

im0 "[U’ﬁ

no

Again, we utilize our assumption of a highly conductive surface so'thal’

¥ N
Lx~a for ng>>1 .«
no

The variable 4 is the surface impedance, following the definition for the surface

impedance as proposed by Wait [1970]. By using the surface impedance apRroxi-
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mation for a highly conductive surface, the integral P now reduces o the kmiliar'

form of The integral presented by Wait [1070]. The integral is

P-_anﬁfm—exn(-wmluwwux (2.135)

An approximate solution for the integral P is given by Wait [1970], and repeated

below as

P= [L']% [1-Fr)] ZLERL l (2.136)
w N

The following definitions apply to the above equation:
Flw)=1-j Vaw ¢ erfe(j Vu)
efeliVa) =2 [ expls?) dz
o
2
=-ikt SR,
and

R
+h
e i

"'="[ )

C gent and asymptotic series i for the function F(w) are well
known and are available in Wait [1970]. As well, more rigorous expansions of the
integral P ore given by Furutsu [1950]. :

As was originally expected, the results of this derivation were not startling;
rather the final result for the electric field over a smooth spherical earth of high
conductivity and using an elementary 'vertical electric dipole source have been
previously obtained. As well, the integral formulation for a surface of arbitrary
conductivity has also been determined previously [Walsh, 1982 and’ Furutsu,

1059]. Equations (2.104), (2.107) and (2.109) yield a set of equations for the
w

(2%
'

i
|
|
|
|
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Cartesfan c‘omponenls of the electric field for an arbitrary source and a smooth
planar surface of arbitrary conductivity, in the (x,y) spatial Fourier transform
domain. For any given source electric field, $ay for example any source other
than the elementary vertical electric dipole, we may use these equations to find
expressions for the electric field distant from the source, provided the inverse spa-
tial transforms may be determined.

The approach used to determine these three equations was to spatially
decompose the electric field into equations for the field above and below the
boundary. A third equation, representing the conditions which the field must

satisfy at the boundary, is provided as a product of llhc‘analysis. These equations

are then reduced to integral equations, and solved with a function representing

the source électric field remaining arbitrary. It is obvious that no external boun-
dary conditions are applied, and no assumptions are made regarding the electrical
" properties of the lower ‘medium. This method is based on the approach
developed by Walsh [1980] for the treatment of rough surface propagation and
scatter, and applied to backscatter from the ocean surface by Srivastava [1984].
In the final two sections of this chapter we assume an elementary vertical clectric
dipolevsource and a highly conductive surface, which yields the classical result for

this problem by an alternate method. g
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J CHAPTER 3

ROUGH SURFACE EFFECTS

3.0 GENERAL v
The derivation of a solution for the electric field above a highly conductive ,
planar earth, from the previous chapter, assumes a perfectly smooth interface
between the upper and lower media. We have modelled the upper medium
approximately as ‘free space’ and the lower medium in terms of its electrical pro-
perties which are assumed known and finite. By llsin;_the methods of Wait
[1970), these properties are in the form of a surface impedance, A, which is nor-
malized to the intrinsic impedance of free space. From Wait [1970) the normal-

ized surface impedance is

z,
aEaE o, . (3-1)

In equation (3.1), 2, is the surface impedance in ohms and Z,= 120 is the
impedance of free space gJso in ohms.” The surfue'!mpedance Z,, is defined as
the ratio of the tangential electric field, E,, to tangential magnetic field, #,, at
the air-ground interface (the surface). The surface impedance is
’
. £
Z=-gt (3.2)

For a plane wave at grazing incidence, Wait [1070) has expressed the normalized



surface impedance using the refractive igdex, no, Which was defined in Chapter 2.

The normalized surface impedance A, using Wait's notation is

3.3

N P 33)
It may be assumed that the plane wave definition of normalized surface
impedance is applicable to the elementary vertical electric dipole source, assumed

in our analysis. For the case of a highly conducting surface, such as the ocenn,

the normalized surface impedance may be approximated by

a=L . (34)

For a highly conductive surface, the refractive index is such that n¢ >> f For

convenience, we now refer to the normalized surface impedance A as the surface

impedance. We wish to consider a more general surface, where the- interface has
small height irregularities. Of particular interest is the ocean surface, at frequen-

cies in the MF (0.3-30 MHz) and HF (30-30.0 Miz) andjradio frequency bands

where the domil mode of radio p ® ion is the surface wave.

3.1 THE MODIFIED SURFACE IMPEDANCE (OCEAN SURFACE)

A iderable amount of i ion hag been written in the literature

regarding the rough surface propagation and scattering problem. By restricting

this discussion lo propagation over the rough ocean surfacey we find that two

() L) -
analyses are particularly, relevant. Barrick [1970, 1071a, 1071%] has derived /

expression for the surface impedance of the ocean, which is modified to account
for the effects of ocean waves on the sea surface. Barrick has modelled the ocean

as a random rough surface and assumed a plane wave incident on the surface at
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grazing aggles. The modified surface impédance expression is in terms of the spl‘-
tial height spectral density (nd the electrical properties of the surface. The spa-
tial height 3pectral density is a particularly convenient method of describin‘g
ocean surface roughness, since semi-empirical models for the ocean wave height
spectral density, assuming a rough wind driven sea, are available.

Srivastava [1084], in an alternate analysis, has investigated a modified sur-

face impedance for a general rough surface, assuming an elementary vertical elec-

tric dipole source. When applied to the ocean surface, this expression also uses

the ocean wave height spectral R?sity, to characterize the surface roughness.
Srivastava has used a method based on Walsh [1080] to derive this expression, as
we have also used in the previous chapter for the smooth planar earth model.

In Barrick's derivation the surface is described by a lwo—dime!xsionnl Foun/ex
series over a finite area. A Rice [1951] pbriurbation analysis on the electric field
above the surface is performed, resulting in an expression for the surface
impedance in terms of the Fourier coefficients of the surface. By assuming a ran-
dom surface, extending to infinity, a statistical average is determined. This
yieJds dn expression for the modified surface impednnc; in terps of the height

spectral density of the surface. This expression is
= 1 ®® i -~
Ba=a+g [[F(pW)W(p.s)dp ds . (3.5)
o

In equation (3.5), &, .is the modified surface impedance, A is the surface

impedance, and the function F(p,¢) is given by

P A (PP g7 koi )

2
Flpg)= +4 %ﬂ,,] .
ea(4?+1)
v

4
I
1




The function 5'is v

ve i ) e a2
The parameters (p,¢) are the ocean surface spz:zial wave numbers. The function
W(p.q) is the average ocean wave height spectral density model as a function of
ocean wave number. The wave height spectral density is an even function of
(p.q) such that W(p,g)=W(-p,-¢). The above expressions may be evaluated in
terms of the sea conditions through the wave height spectral density model and
the electrical properties of the surface through the unmodified surface impedance,

A. A highly conductive surface is assumed. Of %ourse, we recognize that the sur-

face impedance is a function of freq through the clect tic wave
number, 7l -
/" Srivastava [1984) uses an alternate analysis lo determine a dillrent expres-

St A : A
sion for thg modified surface impedance. This analysis derives the modified sur-

§ . '
face impedance directly from the electric fild above a random periodic surface,

using the Walsh [1980] field d ition approach. ‘This expression is

ko(p cosb4q aind)?

D(p.a)+tkad

B (~kocord, ~kguind ) =A+%_”[
s re

kol(pcosbtqaing) D' (p.q)
4( os & +

!

i | 9

#n20 + —#inf+ - cos 8
R [ ko ko /

[ s ) ) i o oo

The function D ‘(pq) is expressed as

]
[A’.[p+k,cnl&)'-[ qn,,n-..:)’] Sy ——

D'(puq )= "
(roa )=, [(, 4 kgeon0 ) 4 (g +ﬁuinﬂ]‘—tn’]

3 Jor imaginary rool.
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The Srivastava [1984] expfession for the modified surface jmpedance sppears
radically different from that given by Barrick [1970). As well, we note that this -

expression is dependent on the direction of p ion relative to the di
distribution of the wave height spectrum, and that no assumptions are made with
regard to the electrical properties of the surface. Several simplifications may be
performed on this exprmsion. so that it is in a similar form to that used by Bar-
rick. pe

We may assume, as with Barrick, that the surface is highly conductive. l?
this case the surface impedance is much less than uhity (A << 1) . Using this -
assumption, orders of ‘A% and A® are assumed to equal zero. A second important
assumption is that we are inler‘uted in the surface impedance along the propaga-
tion path/bclwecn a radio transmitter and a_receiver. For simplicity we may

consider this the x-axis, so that the angle ¢ will be equal to zero. The modified
.

surface impedance &, may be expressed as ~
- 1 »? Bkopb' A pg?
4. “«{{[.'.A“M—A’T, Wiraldpa . (37)

The function §(p ,q) is defined by

1 R
= [‘-’ -l(rth) -l’]  for real root

bty o v
3 [(r +ko) +97-4¢ ] 5 Jor imeginary rost
X . b}
and 3 ¥ .
ko - % = wave number of the fundamental. )

The third term.in Srivastava's integral for 3, is




’ [Ar {—:l Wipa)
Yt may e essilys shown that the contributionfrom this term is zerc. This fanc
tion is an odd function of 5, since W( p,¢ ) and ¢ are even functions. We may
now write equation (3.7) as ;
K.=A4—:-{{———”-ﬁ:°; Y i) s (3.8)
All definitions in the abowe equation are as previously established. .

In order to ev‘alnate either the Barrick [1070] or the Srivastava [1084] expres-
sions for the modified surface impedances, the height spectral density of the sur-

face must be determined.

3.2 OCEANEURFACE HEIGHT SPECTRAL DENSITY

. /
The frequencies of interest are in the HF and VIF ranges, and as a conse--

quence the higher gravity waves in the ocean will be most important (due to the

wavelength ble to the radio wavelength). These waves are considered to

be generated by winds blowing over the surface.

O hers have developed many i-empirical models, which
represent the relationship between the wave hn':ht spectral density and the direc-
tional velocity of the vltind blowing over the surface. There are several lpploli-{
mations which apply in general to all these models, the first being that of a fully
developed sea. A fully developed sea means that the wave height spectrum con-
tains componex;ts at all frequencies u_nd that each component contains the max-

imum gnergy of which it is capable for a given wind condition. This, of course,
may require a considerable length of ti .

=~




A setond assumplion Iy that the winds are constant over a large enough spa:
. B

tial area for the wave spectrum to be b One final approximation is

that the spectrum ignores the concept of swell. The long wave length wind waves
which are of interest may propagate over long distances. Therefore surface rough-
ness/conditions may exist which are not generated by local wind conditions. This
phenomenon, ealled swell, may contribute to the roughaess.in aay local ares.

For this investigation, /we will choose a standard oceanographic model for_
the occan wave height spectral density, for rough wind driven seas. The chosen

model is the Neumann-Pierson model with assumed cosine squared directionality,

as proposed by Neumann, Pierson and James [1955]. From Barrick [1971a], this,

expression is - ’ N

c [p cosa+q nna]’

(e +q1'

Wip.gd= exp

29 AH YR

Uz (1447)"

The constant € =3.05 is an empmcal ace_a_nographir: colftant, ¢ = 9.81 is the
acceleration of gravity in metres per second, and U is the wind velocity in metres
per second. The parameter o is the angle between the wind direction and the
mdi/o propagation: path direction. The propagatior path direction is assumed to
be along‘ an arbitrary x axis (& = 0), such that o is the angle formed b;' the wind
direction and the x axis. A factor of qne-half is also multiplied by the ocean
wave hdight spectral d€isity. This accounts for the assumption that the spectral
density jexists symmbtricn];y over all spsce, and pot just in the forward wind half
space is\lsed by the oceanographers

or thl'! work only one wave height spectral denslty model is nsed w caleu-

lnle( the mod\ﬁed surface impedance. Compsmon between alternate . specua.l




models is not necessary since Barrick [1970] has already utilized several different
models. The change in modified surface impedance using different models is, as
expected, not large. w4

3.3 NUMERICAL EVALUATION OF THE MODIFIED SURFACE
IMPEDANCE ’ . .

In order to evaluate numerically either equation (3.5) or (3.8) for the

modified surface impedance &, we must first rmine_a suitable ”rcgion of

integration for the integrard. That is, we wish to define finite limits on the
integrands to satisfactorily approximate the integral, To acgomplish this we
2 v ot . Rt
write the expression for I,nll'ne odean wave height spectral density using polar coor-
dinates. The Neumann-Pierson model becomes
. & 2 2 N . -
W5 g, A by ) O ($2a) ., [Wl . (3.10)
T et . s g -
In the Mbove-expression A and ¢ are the polar coordinates such that p = X cosg,
.
¢ =)Xsing, and all other variables are as for the Cartesian coordinate system

definitions.

The ocean wave height spectrum will be a maximum when the wind velocity

direction is along the radio ion direction, ding to the angle
a=0. We may write the height spectral density as

-“w ( X cosg, X sing ) =Lc[>“) F(4) . (3.11)
The functions G () and Fléi are

e =3

U .
Q r(o)f:u’(o] 4 ,

s

(- % 7
ramrted vl B
N

Vi
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By assuming that the wave height density spectrum is band limited, a max-
imum limit may be set-on x , beyond which W( X cosg sing)’ if assumed to be

zero. It may be shown that

| W{ xcospasing) | <10* for A > 150 ,

S W(NcospAsing ) | >10° (for A< 10

*In the above the following assumptions have been made:

U.=600 knots ,

melres
=081 —p ,
4 . ec?

¢=0" .
For the one directional spectrum we may assume integration limits for numerical

computation such that p, =0, p,=160, ¢,=-7 and ¢,= . These limits are

applied to the integratians as follows:

U
Ba=0+[[Flpa]W(p.a)drdg
“ha

* .This establishes a region of i whigh will approxi the‘integral
satisfactorily. Several methods of numerical integration were tested, including
eflicient Gaussian quadrature routines, Romberg intc‘gn‘lion and Monte Carlo
techniques. Howeve‘r, even a 96 point Gaussian quadrature integration would not
yield a satisfactory ~a}pproximntio‘n‘ to the integral. A lwodimensionn;l Simpson
Rule program was developed, which yielded the most snlhfi;low results." As a
consequence of ‘this choice of rautine, the surface irnp‘ednnce calculation requirés

significant compule‘r time, on the order of two to three minutes,(CPU) for each

caleulation.




The criteria for deciding that a surface impedance result is satisfactory are,
that A is approximately equal to A. for small wind speeds, that A. should
increase with both increasing sea state (wind speed) and frequency and that at
low frequencies A, should be approximately equal to A. In addition, the results
achieved by implementing Barrick’s expressions should compare favourably with
ti:‘e results presented by Bartick [1970). This will indicate any problems with the

numerical i

of Bar{iil{‘s pressi It-is also expected that the
results achieved using Srivastava's expressions will generally be similar to the™ s
results achieved using Barrick's expressions.
To compare the results of the two surface,impedance expressions, the
modlﬁud surface 1mpednnce has been calculated and plotted versus frequency, for
“several typlcal wind conditions. Figurés 3.1 and 3.2 display plots of Dx{mcks

model for Lhe mudlﬁed surfzce imped: versus freq g ing typical

values for the relative permittivity ( ¢, = 80.0 ) and conductivity (g=40) of the
ocean surface. Figure 3.1 illustrates the real part, and an\lre 3.2 the corruvond-

ing inyaginary part. Results for wind speeds of 0.0, 10.0, 200 and 30.0 knols are

plottgd on the same set of axes. This jmplementation of. Barrick’s model yiclds
differences with respect to the results presented by Barrick [1971b] for fre- .
qugncies less than six Megahertz and the 20 and 30 kn wind speeds. These

ifferences may be attributed to either the numerical integration routine or to the

! jon of the int d. The i ion was lished by a .
Simpson's rule algorithm, and up to 1,000,000 integrand points were, used to cal-
culate the double integral. However, the large grid of integrand boinu did not

dramatically improve the results below six Megaliertz. A further investigation

—
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into the behaviour of the i d and the i i hni below six

Megahertz, is warl to d ine the cause of the differences.

Figures 3.3 (real part) and 3.4 (imaginary past) show a similar set of plots
usigg Stivastava's model. For all wind conditions, the differences between the
results produced with cither model are not significant. However, the differences _
observed between results using Srivastava's model and Barrick’s [1971b] results at

Megah are signi Since similar problems are

freq below six
observed with the present implementation of Barrick’s model, it may be con-
" cluded that the dilferences'are due (o the numerical implementation and"ge hot

dule to the differences between Barrick’s and Srivastava's surface impedance

models. Further i igation of the numerical impl ion may a

solution to the observed differences. i
In the surface impedance calculation program the results are based on the
frequency of interest, and the surfacé parameters input to the program. When
the wind speed is zero the integral is not,calculated, which in turn sets the out-
put of the program to A. This is done Yo conserve the CPU resource, since the
jon is Iy time g The i d for the odiication to

tho surface impedance s given as two real function sgproutincs, one represantig
the real part and the other representing the imaginary part. These are external
to the surface impedance program, since they are only called by the Simpson’s
rule intcg‘n‘llion routine. The user may also select either the expression for the
Barrick [1670] surface impedange or the Srivastava [1984] surfoce impodance. ;A
Fortran source code listing of the surface impedance subroutine ZMP, which cal-

culates the modified surfncc‘impcdnnce is included with.the rough spherical earth
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propagation-program in Appendix '

In the previous chapter expressi

developed. These

5 for the electric field for a smooth planar
earth were

i ions (2.129) and (2.138) may be
chapged to include th?_eﬂuu of mrhﬁe roughness, through the modified surface
impedance for the ocean surface. The modified surface impedance may be
included by substituting p,.. ,and w, for p, and w in these equations, where p,,

and w, are defined as follows:

and

(= 4+h9)?
Ry

m,,.]+
Sl >

‘The modified surface impedance outlined in this chapter permits the evalua-
tion of the surface wave electric field for propigation over roug'x ocean surfaces.

Using the plane earth model, developed in Chapter 2, we may predictethe ground

wave electric field slren’gth over a rough surface for short distances. For long dis- -

tances the effects of difiraction around the curuture of the earth bemm: impor-

tant. We now proceed to outline the sphenul earth model, which will account
for the diffraction effects. ¢ =%

’
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e,
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CHAPTER 4
i . N
. GROUND WAVE
" SPHERICAL EARTH MODEL
. L]
4.0 INTRODUCTION

) 5%
In Chapter 2 we derived equations for predicting the electric field strength, \\_/

distant from the source, for propagation over an s_sgmed planar earth model.
An clementary vertical electric dipole source was considered. Although satisfac-
tory for many :pplluuon:. the pllnnr earth expressions do not account for the
effects of diffraction of the elcctromagneuc waves nround the curved surface of/~
~the carth. lt has been suggested that the planar *®rth mudel should be only

applied to proplglts distances, d, such that

4< T‘_F s g (4.1)
the d is the p jon distance in kil and f the radio fre-

quency in megth!‘ru. The* propagation . distance is defined as the distance
between the Source and the observation points. For distances greater than this

suggested limit, models are lvnilable which account for diffraction effegts. These

E models, which- are based on,clnsslca.l snalysﬂ, also assume elementary vcmeal .

clectric dlpole antennas, | o )
N

-AL lnrg_e dislnnces,}mm,}ho sotrce, up fo several hundreds of kilomegtrp!, the




most significant mode of propagation is that of diffraction of the ground wave
around the spherical surface of the earth. For extremely long distances the
effects of the earth's upper atmosphere, yielding the so-called ‘Sky-Wave' mode,
cannot be ignored. However, iin this section we/will examine only the gmund.
wave mode and the influence of Lh‘e earth's curved surface on this mode of propa-
* gation. This restriction limits the ra}xg’e of distances to which_l the ground wave
'sphérical earth model may be applied. This range of applicability is, unfor-
tunately, n wgll defined in the literature but a limit of 300 kilometres is sug-
gested. )
The general solution to the spherical carth prdpagation problem was
describéd by Watson [1919). He cxamined expressions for the electric field dis-
tant from a radially oriented elementary vertical electric dipole source at a height

hr above a homogeneous sphere. The electrical propertics of the sphere are

described b\y\thq‘,, ittivity, bility and conductivity, while the space sur-

rounding the syﬁere is approxi d by 'free-space’ with its fated electrical
properties. ’l‘h\g«gpurce field was expanded into a series of spherical harmonic.
functions and by using the Maxwell equations, in spherical polar [o'rm, a‘rigormla
solution for the electric-field distant from the source and a height h; above the
spherical surface was determined. The soluﬁ‘on for the field in the presence of
the surface was also in the form of a series of spherical harmonic functions using
spherical Hankel functions and Legendre polynomials. Watson's solution,
although rigorous, was impractical for radio propagation problems since the series
converged very slowly, that is an enormous number of terms was required to

;l:ietermine a value for the electric field strength; It may also be noted that this
. . X N , . .

w‘ S




series solution was applied to many other wave propagation problems success-
fully, in which the ratio of the radius of the sphere to the wavelength is small. In
this case the series rapidly converged to a solution. For gréund wave propagation
of radio waves in the MF/HF /VHF frequency bandg;" covering the frequencies
0.31300,0 )iﬂjz,_ the ratio of the eartl;'s radius fo’ radio wavelength is approxi-
mat;\ly' £ v

o 84 X 10° meters

~
2y 1000 meters o0

‘The parameter a is the approximate earth's radius and X the radio wave]engih at
a frequency of 0.3 MHz. Thus, for this problem we expect the series to converge
slowly. )

Since the direct summation of the series’is not.practical for radio propaga-
tion problems, Watson transformed the sum of the series of harmonic functions
into a contour integral of a continuous variable. Following the methods of Wat-
son, Vnnlder Pol and Bremmer [1939] as well as Fock [1945,1985] write a residue
series approximation of this contour integral.. This series, in terms of the sum of

the residues of the poles el the contour integral; proved to converge rapidly for

most calculati and facilitated ical results. The principal difference
between the Fock and Van der Pol:Bremmer ‘ex!)rmsions is that Fock ths used"
the xtsymptotic ‘expressions for the Hankel functions, in terms of the Airy func-
tions, yielding simpler and easier to implement expressions. It is this residue
series expression upon which we we focusiour attention. '

The objective of .this work 'is not to perform a new analysis on the groungy
wave sphm"icnl e;-'zh propagation problem; rather it is to provide a numerical

facility with which to calculate paih losses for propagation over a spherical earth.




Ay s
As well, by using the modified surface impedance expressions from Chapter 3,.the

path losses for propagation over a spherical rough ocesn iurface may be

predicted. The resulting ical puting packagf is applicable to propaga-
tion in the upper MF,HF and lower VHF frequency bands. i

4.1 DESCRIPTION OF THE MODEL " * .

The geometry of the ground wave spherim earth propagation model is

described, with the aid of figure 4.1.” An elementary vertical electric dipole source”

“(oriented radially) is located at a height h; above a sphere of radius a, and
transmming’st’ an angular frequency of w, ~mdians per second. This yiefs a
corresponding wave number k, and wavelength of . The electric field strength is
observed,at a height Ay above the sph‘er'\cal surface and a distance D from the
source. The electrical properties of the sphere, namely the permittivity, conduc-
tﬁ'wity and permeability, are described by the.surface impedance A which has
already been defined. The space outside.the sphere is ‘appmximnteszy *free-
space’. The spherical polar coordinate syslem,\p,&@), with the origin located at
the centre of the sphere is used.

Expressions for the residue series approximation for the electric fleld above a
spherical earth, written in terms of the Hertz veétor are available from Fock
‘[1905], Bremmer [1949] or Wait [1970]. Wait and Fock both write the series in
terms of the Airy functions. Berry and Chrisman [1965,1966] derive expr(ssmns
for the clectric field, E, for a radially ormntcd unit dipole source and in slandard
units of volts per metre, using Fock, Bremmer and Wait's results for the Hertz

vector. From Berry and Chrisman‘[msﬂ], the expression’for E, at a distance D

from the source is*written as

g

'
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The pnn.metels 1, are the p?les qI the contour mt.egrzl om. whlch ;he rcsldlu

series was derived. The functions /z(hs) and_ /,(A,) are the he»;ht goin func-

l.ions; which depend on the heights of the soutce. -(tansmitter) and observer .

(receiver) above the spherical surface. - These functions are defined a5 follows: Rt
. \\
- hr) Waltoopr ) | by g oY
Ir(br)= =, A %
; wih) . e
- B we . . . .
and . o -
s = ‘ E 1
Wilti-wm) v ® -k
Fallba)im i
LAES)

W, (1) are the Airy functions of l.ype n and of l.he argument ¢ and yg, ur are

defiged, '% - ’

, ik
S ey
e |
; 3 =
The poles of the contour ‘inle;ul are defined by thg equation L
W WiL)- @ Wilk) =0 L i o o V@)
We note the following property of the Airy functions .from Abramowitz and
Stegun [1972): - A ER
——
v .
2 < 4

“ au'v"_f.upl.,[n.4.7]] £ ool Jxl.)A('..l ) - T
= ' The function A (g,:t;) is defined by -\ X K
c i o Naed
‘ i v
L (e K - 2
‘(4--‘]— R h(“ll/rl‘rl i 4 Lo 3)




WhU) =1 W)

"The prime denotes ‘the derivative with respect to t. By'using this property, the —-

pole defining equation may be expressed as

¢ Np
Whk)- e Wi(t) =0 . 9 " (45)
The constant g, represents the clectrical-ongtants of the surface, and is defined
. . o
through the surface impedance, A. We write 3
£ ' . y
iw=-il) avit@ : .

where the’surface impedance A has been defined previously. For reference, A is

exprcss_ed in terms of the refractive index of the surface noas =~

no

The constants, ko, o, Ar, hg are as follows:

ko= %’ 3:; = wayenumber of the-fundamental *,
« = radius of the sphere ,
Ay = height of the source .

and '

hs = height of the observer .

In the expression for the electric field, equation (4.2), the parameters s, =’ and K
ath :

are - _ . k
i . 1 [k -3 J
=3l ¥ 8
1 T
=[]




and

. nedl
o [koa]d
K-Il.%\/:—-:[T] Ld . .
As well, we also Have the following: s
=
= % the angle formed by thé source, observer and sphere centre ,
Iodl =10 the dipole current moment -,

and
4 is the distance along the surface.

In the abavu. expression for 4,, in terms-of the surlice impedance a, the
morh['ed surfncc lmpcdzmce A, for a rough ocean surface as shown in Chapter B
'.’!nould be subsmuted In this manner the eﬁ‘ccts of a rough spherical ocean sur- .
face on the propngatmn of radio waves wonm included in the model. - By using

the modified surface impedance a,,we deﬁne G 8S

v

The above expression for 7. would replace ¢, in the expression for the electrie

"7 Tfeld E, in equation (4.3). This yields a model for radio wave pmplgntica over a

rough sﬂherical ocean su}fue, bnfed on the model for a rough wind driven sea
chscused in Chapter 3. ‘
Obviously, since the residue series is an lppm:nmnuon for a more ngorous
<olulmn to the spherical earth propagation problem, we expeet Iumts on thé
sppllcnhlhly of this model. ‘The residue series |pp_rox|mlhon is limited to

ground-wave type problems, to which the limit that the observer be no' more

than fifteen degrees above the radio horizon as seen from the transmitter applies.




A further limit is that, for. 'high antenna elevations, ln‘d. particularly if short dis-
tances are .i vplved, the residue series approximation becomes very slow to con-
verge. Also for the same cases the method used to determine tlie poles of the
contour integral may fail to converge. For these cases many A‘uthors. iﬁcluding

. r Fock [1965], Bremmer [1940) and Wait (1970}, have derived other approximate

solutions which are more appropriate. Since the principal area of interest for this

#$hesis is in ground wave propagation over a r«;’ugh ocean surfdce, with antennas

Jocated on or near the surface, we shall concentrat® only on the implementation
L of the residue series approximation‘ J s 0
The residue serics cnlculnnon of the elcclnc field distant I'mm the source E,

may be implemented in a ¢omputer progrsm to faclhtate numencu] results. . For

-, the most part the i follows tforwardly from the

P
shown i this section, The calculstmn of the Airy functions and the determina-

h i6 this latter

tion or the poles of the seriesare, however, not a lnvml matter,

problem to which we now turn our attention.

. ’
4.2 POLES OF THE RESIDUE SERIES

The poles of the Fock residue series are determined from equation (4.5)

which iy'epeated below as

Wi ) -et (=0 )
As before, W, (1,) are the Airy Tunctions, {, are the ];OIGS of the residuc series, and

¢ =-jvAVI-A? . L

“One method of determining 'lth&e poles is given by Bremmer [_l'MD] and -

implemented by Berry and Chrisman [1966]. An’estimate, r,, of the poles 1, is




determined using a differential equation. By using-s, as an initial estimate, stan-

- giud iterative numerital techniques may be applied to determine f,- To outline
this method, we temporarily use the notation of Bremmer [1949] to determine 7, .
From Bremmer [1949], the atim\lﬁ of the poles are determined by Ricatti's

% - & differential equation, -- - )
5 ¢ -
' J‘Tf.wr,ﬂ-w T ’ : {46)
y ‘The notation used by Bremmer uses the function & to describe the electrical pro-
T R pertics bf the surface. The function 51s given by
X .. % & TR 7.« ,
o “y o s=-ilkg )"%AJK'ﬁ‘ e :
' The I_‘unction &is related to g, by N
= 2 N
e sm-j 2 (kga) Py .
The methods used’ I;y B 7 ifically in the pole-d equation and

in describing the electrical properties of the surface, ‘differs from that of Fock due
mainly to the Airy function approximation, described ‘earlier, which is used in
&y Fock's derivation., Proceeding with the olgtline of Bremmer's method, we find

that r, gives n'nppr_oxin;‘ltion to the pola‘ 1, , which may be used in a Newton

" iteration on equation (4.5). The sximation r, may be d ined by expand-
5 g
ing the equation {4.5) in both convergent and asymptotic series. These series. may
[ 4 be obtained from Bremmer [1049], or- are easily verified by a standard series

~. - expansion of the solution for Ricatti's differential equation. The series are

T N SR L S S . )

and : &
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In the above; ,  and 7, o are as follows:

and

. The factors 1,  and r,,,'are‘tabulaled by Bremmer. The coeflicients of these

series are dctemuned by mvertmg the R:mu cqnahen and solving for cach

coefficient, ncratwcly Therefore, no gmcral ‘expression Ior the cocmcmnls Is pos-

- sible, - and hence only a fixed number of terms may be m:ludcd in any practical

: 1mplementmon,, However, by using a Inrge number of torms™ the series miy

mdeed converge to the value of rg whlch is easnly tested by stnndnrd nummcnlr

techﬁlques

Beny and, Chrisman [1966] determine the first cleven terms o( these series’

. and then perfoxm a Newton iteration on the Fock pole defining cquatlon (4. 5) tc

- determine- t. In practice ths- method was extremely slow and cumbersome for :

the particular computer wd (VAX 11/785). The parameter 4 for & highly cos-
ductive surface may be very small, as m the case for the ocean surrnce When this
method was implemented in Foman-'ﬂ on a Dlg}tal Equipment, VAX-11/785,
underflow and “overflow -erfors resulted when Jarge powers of & were nltempt’ed‘

This is due to the limited dynamic range of this minicomputer. The'climination

s - »
, of these errors required the use of sixteen byte variablesn Fortran. These opera-

tions requlre greater than the 32 data bm which this machme uses. To effect

th ese ¢ ions software

are used to simulate 84 data
\




'bits, which requires large amounts of CPU processing time to accamplish even

simple mathematical opentions.

A more practical method for determmmg the poles, was to tse the Bremmer

. (1949 results for 7, A§<r, o a3 nn initial appmxlmnhon and perfnrm a Newton
;- iteration directly on the pole deﬁmng equation (4:5). The Newton iterationr
method ’(or finding the poles of a function "1 (z) is. described from Carnahan,

- Luther and Wilkes (1969] as B

‘,l+l=,k.M . . ’ ) ) v(4.9)'
1) - £ - .
In equation (4. 9), s the initial cstlmste for the puls ot I l, and 2t +Vis the

..\) new approximation for the poles o( £(z). In the dase of_t!m poles of the residue

7 .
o series the iteration fo?i}m!n becomes = s .
~ # J ) o o W’l( -]_qv‘wl(‘l.] ,.- I A ‘ . (4 10] )
4 L W) e W) _ :
wh( ) G —
E sy
) wi( ) c -
3 - —— P
wh(r) s e .
gy w0 %
LAS] . -
A In the above equation, m represents the it‘erati’on nnn;bex and the Iollow.ing rela-
. 7
tionship has been used for sﬂhphﬁmhons 5 < 4
- . E '
- w".(x-]=;,ﬂw,[x,] . . g

The initial estimates of the poles of the residue series, used in the nbnve Newton

iteration, may be determined from the limiting me!or r,. That |s, 4° and ¢,

I
L




s r . 5w )
are proportidnal to r, , and 7100 85 tabulated by/Br‘emmer. The relationship is
; r.’ (2 l o
=(2 l‘ freo -
In the subrdutite program (Fmtran 77) which is used. to cvaluste the poles

of the residue series, the maxi number of iterations itted is arbitrarily

selected at thirty. The iterations on the poles is also terminated when the New-

ton iteration converges to a particula} value,- The convergence test i

<0 . C (4.11)

The overall melhpd for calculating the resldue séries polcs ylelded commr-’
able results to the ‘method as used by. Berry and Chrisman [1966]. In prachco,' g
this method consumed very small amounts o$ processing time, as opposed to the ]
time requlrcd by the lmp!ementsuon of Bremmers series for the poles 4. Ina
[1978] has used the Newton Iteration method:to determine 4. The EORTRAN
5, code p[ovi:]ed by Berry [1978] provided an il;liﬁal check for the nce\fncy of the

numérical results di ined by the algorithm described in this chapter. A FOR-

TRAN source code listing of the pole determining program is included with the
source codé listing of the co_mpleuz spherical earth mnv,del'program in Appendix
‘B o . )

¥ S - .

X N e R
4.3 EVALUATION OF THE AIRY FUNCTIQNS\,, a

The Airy functi s may be evaluated ding to standard asymptotic and

convergent series expansions. In this program the Airy functions have been”




L

. Y

d with a ‘V, series from Al itz and Stegun {l!ms],land by
using the asymptotic series from Berry and Chrisman [1965]. However, the
definitions of the Airy functions, as used by Fock, are significantly »diﬂ'evrent than

““those used in Abramowitz and Stegun. No convenient explanation was found for
“ A

this diff , but a relationship was d d by first finding a relationship
= between Fock's definition of the Airy functions 'm;d the fragtionsl order Hankel
_functions. Abr;ma\vitz‘ and Stegun then yielded a relslion;hip between the frac-
tional on!er Hankel' functions and the second ,deﬁnitionlof thé Airy, l’uncﬁans.
“The relationship is defined as follows. From Wait [1070] the Airy functigns may

‘b‘e expressed as

& .
Wile) =exol- j2fd) (3] uf’[
2 3
Fon = o 3
5 7 3w
Wi = expt-i3) () 0 [; & )’]
‘The functions H [ (z) are fractigpal order Hankel functions and are also defined
£ s !

o
" by Abramowitz ‘and Stegun [1072]. - Now, by using the definitions of the frac-

tional order-Hankel functions we may write the relationship betwgen” the Fock

of the Airy functi W.(t) and the Abramowitz-Sp for
Ai(t) and Bi(t). The relationships are . "R 4
Wit) = oxpl-i2) VR[4 () + 5 Bi()] LT 4
W) = exples ) VR [0 5 mine] ; (12)
.
Ai(3) and Bi(z) are the Airy functions as defined by Abramowitz and Stegun; and
Bi' are their derivatives. The ergent series ions for these func-
tions'are ; r )
v 4 o
s
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4 &
Aiz)=Ai(0) f (s) + Ai"0) g (s) . . (4.13)
Bi(z)=V3 Ai(o)/(.)_,«'(a),(.)] . (4.14)

Expansions for f (:) and y(z) are as lollovy/s:

/(:)=|+—: -Qlﬂ‘ %+ };—'11'¢~- :

soyme e Bata 280, 250,00

The two constants are Ai (0] = 0.3550280, and Ai’(0) = -0. '.'ssam The derivatives of

the Al‘ry functions are

Aif(z) = 4i(0) I ’(l)+ Aif0)g'(z) (4.14)
T B)=vE [Al(l))['(x) Au(n),'(:)] ) o (aasy
The runchons 1y and ,'(q are the denvauvcs of /(z) and g(z) regpectiyely.:
I‘hese convergent series expanslons are’ vahd» for lll 2, but are very slow to con-

VElxsr l‘ur 25>>1. This would also lead to numencal problems for terms with large

powers qf 2. These senes (pansi have been i d in & Fortran sub-

routine within the- spherical earth program to evaluate the Airy functions.
Altho;gh Berry and Chrisman_ ilﬂ%[ have written Fortran code to implement the
convergent expansions for W, (t), a test case demonstrated that e method used
to implement the expansions, again, required sixteen byg variables for the partic-

ular computer used in this application. A mofé suitable code was mritten using

- the alternate expansions for W, (t) in terms of Ai(t) and Bi(t).

It was determined, that for large arguments, numerical pmblems wouldJ arise

using the convergent series. For large the

W, (t) were available. As suggested by Abramowitz and Stcgun the uyg&mm

expansions of the Airy :functions were used for arguments of : such ’that

"|1| > 50. The asymptotic series expansions of the Airy functions are available

< -

N

W
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= . , f
from Berry and Chrisman [1085), in a form very convenient for numerical imple-
mentations. The particular series used for W,(:) and W,'(z) depend on the phase

of the variable 5. Four different expmsms are given for each Airy function for

fonee the laﬁowing regions: .
. . -
. . REGION | : | phasez | < 20.0° 2
# REGION Il : | phase z | > 100.0°

REGION_ TlA: -100.0° < phase z < -200"
REGION 1IIB: 20.0° < phase z < 1000°
.Commencing with REGION J, we set t =2/3 :%" and the Airy functions may be

evaluated from

: ) 5 ) }
\ w,(.)m.‘“[e' L(t) +(-1)* %e-_u(‘:)} %
\ I
[AOETE [g' M(l)+(~‘f}"“ et M- :)]
The functions L (t) and M(u are defined as
i * L(t)= ): U &
=)
M(t)= i Vit
2o
For k =0, we have Uy = V,=0and for £ >0 we have
7
U, = REH1)(@E43) - (6K -1
' EL 2167

v =\h 6k +|

ln REGION| ll let ¢ = 2/3(~«)*? and by using the functions L(l], Mt), zhe

Airy functions are \ =




In REGION IIIA, we let ¢ = 2/3 %2 and

ki
Wo(1) =~ (1) ‘exp{j(—l]' (t +%)] L1 5t .

1
O

WA= ) el (- D ML) ) »

W, ety i (n-2)e L(- i
m:”./[' 045 0 -2e L0

Wolz) 2 [e' M(I)-ifn/—z)z“ M[—l)] F
Finally, for REGION IITB, we let ¢ =2/3 ", and write W, :) and W, ) as

e~ [ s s e o] "
w_’(;)zﬁ [e'M(A)fj(n—l)e"M(—l)] P L

The regions for the phase of : are suggested by Berry.and Chrisman [1965),
buf the formulas are asymptotically valid in much larger regions. Berry and
Chrisman state that greater computational accuracy is achieved by using their
restricted regions. The formulas for the Airy functions have been implemented
and tested in a computer program for numerical Cumpl.ltntions, The program
written in Fortran-77 source code will compute the Airy functions for |7 | < 320.
The restriction on the magnitude of the argument is due to the fact that the
dynamic range of the particular computer (using four byte m:l variables }n the
compiter program) is limited to ~ + 10**. For l:\rggr values of z extc!lded vari-
ables ( sixteen byte variables) may be necessary, to evaluate the Airy functions
However, the tests performed using the residue series with frequencies in"the
MF /HF band and with antenna heights less than forty metres, the extended vari-

ables ‘are hot required.



4.4 SPHERICAL EARTH PEOGR‘AM STRUCTURE

The Fortran program used-to evaluate the spherical earth model has been
developed using a fairly modular structure. The program I!a.f many features in
common with'the implementation developed by Berry and Chrisman [1966]. The -
primary differences are that this version is suitable for implementation on smaller
mini computers (which the Berry and Chrisman program was not!) and the use of
modern Fortran-77 which enables tiie use of complex variable types. Thus the
program is more _compact, simple‘r to follow and réquires less processing time for
a typical run. As well different methods for caleulating several of the functions
required for the residue series (i.e. the poles ¢, } are implemented!

The main program evaluates the residue scries and determines coefficients
and constants required to find the vertical clectric field strength given a set of
mr;grs; ground constants and antenna heights. The central body of the main

program calculates the function

3

(1+2,)?
bo-a

Wilt, -dr) Wt - yw)
Wwit) -WilL)

Flo.L)=
where -all definitions remain as previously established. This function is not, a

function of distance, and is calculated only once for each run and stored for use

with the complete speaified set ‘of di The number of values of this func-
tion which are required, is determined by the number of poles 1, required for the’
clectric field to converge for the first selected distance. For the rest of the
specified set of distances, the stored values of F are used as long as the electric
field converges. Additionals values of F.are calculated automatically should the

number of stored values be insufficient for convergence.




i

All other functions required for the calculation of the electric ficld are deter-

* mined in Fortran subroutine or function type subprograms. These functions

include the poles l,., the Airy functions and the surlace{impedance'(or modified

sutface impedance).

For a rough spherical earth, the modified surface impedance as shown in
Chapter 3 is selected automatically by setting the input wind speed greater than
2ero. The modified surface impedance is included in the model by replacing the

parameter ¢, with the parameter q,,.: Por reference, we have .

'
L %’i avita?

.
o f T

o =-i[ 2] 5, iR £

The modified surface impedance, includigg roughness effects is &, and 4 is the

smooth earth surface impedance. R
From the caleulated electric field strength, in volts per metre, we tHen deter-

mine the spherical earth attenuation function, W(p), by analogy to the Norton

attenuation function, F(p), as was discussed in Chapter 2 of this thesis. The out-

“put of this function is more desirable, since the atienuation function, is gon- -

venient for determining transmisston losses in the units ofpower: (watts). The
spherical earth attenuation functien is then output in {abular form, using magni-
tude and phase rather than complex numbers/” As well, the attenuation function

N S
is ls0 output to a dats file for permanent stofage. A sample run, of the program

is also included in Appendix ‘B’ The sphcn"cal earth field calculation model was
implemented in VAX-11 Fortran-77, usipg a Digital Equipmént DEC VA’X-

11/785 computer. Numerical sresults computed with this model in the form of
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"transmission losses are presented in the following chapter.

The roiigh spherical earfh transmission losses demoiffated a problem with
this particular namerical model. For the cases of a rough wind driven sea®hd a
‘variety of transmit frequencies, the Newton iteration on some of the poles of the
sesidue series failed ;, converge. Tnitially the number of iterations on each pole
had been restricted to only twenty, which was {nsuflicientior cuses when the

nodified surface impedance. was highly inductive. By i

ing the
number of iterations to thirty-fivé, this problem was eliminated for all tested fre-

quencies and wind speeds. We niow proceed to investigate some numerical predic-

"~ tions of iransmission losses for propagation over a rough spherical earth.




CHAPTER 5

NUMERICAL RESULTS

5.0 TRANSMISSION LOSS .

A typical application for the spherical carth model would be to deteryine
the transmission loss for marine communications systems. This would include
point to point communications systems, radio navigation systems and radar sys-
tems operating in the HF and lower frequency bands. The spherical carth model
may be used to predict additional losses due to surface roughness, using the .

modified surface ) pression for the predicted ¢ ission loss may

be developed, using the rough spherical earth attenuation function, W,. We may
proteed to derive an expression for this trarsmission loss.
o The fiee space electric field for an elementary vertical electric dipgle source,

in the horizontal plane, is given as

i, ’

-t - ()]

The factor G, = —jupoledl is the dipole constant, R is the distance between the
J :

source and observation points, and k, is lhe wave numbcr of the fundamental.

Similarly, the ground wave field strength over a rough spherical earth is given, by

analogy to the fit earth modél as « E

20, W,
E =20t 2L ew(ciR) (5.2)



where W, is the fough spherical earth attenuation function. The attenuation

function is calculated using the program described in Chapter 4. From Jasik

[1961] the transmit antrnna gain in the horizontal direction is

2| Eo|?
P L

Equivalcnily, the transmitted power P, is

27 | Eo|*R?

P
Y o Gr

R (5.3)
In the above equations, 1, is the intrinsic impedance of free space, and P, is the
transmitted power (in watts).. The received power at a distance from a source,
I'o;‘tﬁrmﬂ'cctivc aperture 4, is

_1EI* .
Pe=dZl

where £ is the electric field distant from the source and 4, is the effective receive

b

antenna aperature. For ground wave propagation over a rough spherical earth,
using the electric field strength E, at the receive antenna, the received power dis-
tant from the source is

2Ga, 1B -

- e (5.4)

In the sbove equation Gy is the receive anl.em;n gain in the hoyi\mntal plane.
The transmission loss may be defined as the power ratio of the received power to
the transmitted power. The ratio of equlﬁon (5:4) to equatiop (5.3), representing
the t‘rnnsmission loss is '

Pi._MGrGa|E|®

P e R : 9

?

poL



From equations (5.1) and (5.2) we have

|E, |*

IEoI’u‘ 'w,|? .

By using the above ratio, equation (5.5) for the transmission loss becomes

458 Gr Gp | W, |? @
T = — R (5.8)
The above equation, (5.8), is an expression for the expected transmission

. losses for propagation over a rough spherical carth. This result may be used to

predict transmission losses for propagation over the ocean surface assumipg a

variety of sea states and radio frequencies. In the following section results for

propagation over a smooth ocean surface”are presented along with additional
losses attributed to sea state, for a variety of frequenties in the MF and!IIF

bands. ; . \l
C C |
/

6.1 SPHERICAL EARTH TRANSMISSION LOSS RESULTS /
The transmission loss for the spherical earth model, may be calculated’ for
various frequencies using equation (5.6). Initially we calculate the smooth spheri-
Lcal ear_th. transmission losses. In this case the surface impedance is caleulated
nsi;-ng the standard n;:thod, without using the rough wind driven sea model for

the modified surface imped: For a given operating freq , the transmis-

sion losses, in dB, may be calculated and plotted as & function of distance, in
kilometres. For‘this figure the permittivity of the surf age ¢, is assumed to 80.0

and the conductivity o assumed to be 4.0 mhos per meter. These constants are

chosen to approximate the electrical properties of the smooth ocean surface. Fig-

ure 5.1 shows the smooth spherical earth transmission loss for a variely of fre-
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quencies in the HF frequency band, plotted on the same set of axes. We'may
note that the transmission losses increase with both increasing frequency and

increasing distance separating the transmitter and receiver. In order to check

these computations, the results d in figure 5.1 may be compared with.
smooth spherical earth transmission losses presented by Barrick (1970 The
results presented in figure 5.1 for all frequencies, except 1.0 Megahertz which was
not computed by Barrick, compare with a high degree of Laccuracy to those
presenh'ad by Barrick [1970]. This comparison yields a degree of confidence in the
smooth- spherical earth transmission loss computation routine, sinée it compares
favourably with previous results. a

We now proceed to examine the transmission-losses for propagation across a
rough wind driven sea. For 'these results we/{mvc produced individual plots for
each frequency. On each set of axes the lransmis;ion losses for s,cye‘ral wind con-
ditions are plotted. As well we note that the losses are normalized to the smooth
spherical earth transmission losses, yielding plt‘)ts of additional loss; due to the
effects of interaction with the ocean waves, versus dista’nce fr:)m the source in
kilometres. Figures ;.2 through 5.10 are plots of nddedL;loss versus_distance for

various rrequencla in the HF band, usmg the Srivastava modiﬁed sirface

impedance preseuled in chapter 3. As with the smooth sphencal earlh transmis-
sion losses, the relatlve permittivity is assumed to be 00( ¢, =80.0:) and the
conductivity to be 4.0 mhos pey meter (o= 4.0 ). In these plots a negative ‘?'dfd
loss represents a decrease,in transmission losses reljtive to smooth earth (i.e.
lower losses). We note that in.many of these plots the additional loss may be less

than than 0.0 dB, meaning that the transmission losses for & rough ocean surface
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may actually be less than the losses for a perfectly smooth spherical surface.

This effect is particularly noticeable at the lower frequencies in the HF band and

with low sea states. Barrick [1970] has suggested, that this is due to the induc- .

tive contribution to the modified surface impedance, for slightly rough surfaces,
' and corresponds to the so-called ‘Trapped Surface Wave' effect discussed by Wait
[1970). We also note that for high sea states and all frequencies the additional
losses increase with distance, as may be expected.
In Chapter 3 it was 1 sted that both Barrick's and Srivastava's surface
impedance expressions achieved similar numerical results for the modified surface

impedance. Thus, as expected, the calculations for the additional tr
7’

loss due"lo ocean surface roughness yielded comparable results using either
modified surface impedance expression. As a comparison, a sét of figures simflar
t0-5.2 through 5.10 have been produ(;ed for the addition;'nl loss due to ocean-sur-
face roughness by using lheﬂoxgrc;s?m;né !or the Bnrri‘cki surface impcda‘nce. In
these figures, labelled 5.11 through 5.18, the additional loss due to ocean surface
roughness has been calculated and plotted versus distance using Barrick's
modified surface impedance expression for the same set of frequencies and wind
speeds as used to plot results using ‘ Srivastava's modified surface impgance
expression. Obviously, the added loss results from the two models are very simi-
Tar. There are no significant differences between the results achieved using cither
modified snrfac; impedance expression at any of the wind speeds, frequencies or

distances which were computed.

Barrick (1970] has also presented a num_ber of similar graphs of the addi-

tional transmission loss due to surface roughness. The results developed herein

‘ - | : ,
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N

for the additional transmission losses,. using Barrick’s modified surface impedance
model, compare favourably with those produced by Barrick [1970]. Fo’r frequen-
cies below six Megahertz some negligible differences were observed in the addi-
tional transmission loss calculations. These may be attributed to the irregulari-
ties observed in the implementation of Barrick's modified surface impedance cal-
culation developed in Chapter 3 of this thesis. For frequencies above six
Megahertz a remarkab]e degree of agreement between the both implementations
of the additional transmission losses, using Bamck 's modified surface |mpcdn(c,
has been achieved. This agreement may be anticipated, since both implementa-
tions of Barrick's modified surface impedance yield very similar results above six

Megahertaz. ‘

The calculation of the addia&a(l_mnsmission Josses using Srivastava’s
[1984] modified surface impedance may be compared with the losses computed
using Barrick's [1970] modified surface impedance, using the numerical implemen-
tations developed in Chapter 3. For fr‘equcncie‘s between 5.6 and 25.4 Megahertz,
the added loss c;ﬂculations using Srivastava’s modified surface impedance.models

are within 1.0 dB of the added losses computed using Barrick's modified surface

impedance, for all frequencies and wind speeds. At the 30.0 Megahertz frequency

the n‘dded loss using Srivastava's model is up to 3.0dB greater than that calcu-
»
lated using Barrick’s model lo‘ the higher sea states at distances less than 100.0

at dis-

km. The differences decrease with il ing distance, b
tances greater thap 200.0 km.
For the 1.0 and 3.0 Megahertz frequencies several differences between added

loss results produced using the two modified surface impedance models have also

f -

|
f
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been observed. The additional loss is 2.0 dB greater for calculations using
Barrick's model for a disl.u;u of 1000.0 kilometres and the 30.0 knot wind speed.
The observed differences decrease with decreasing fr‘equency. such that at 100.0
kilometres the difference is negligible. However, there are numerical problems as
outlined in Chapter 3 with the implementation of the modified surface impedance
models for frequencies below 8.0 Megahertz. The results for added losses
achieved using Barrick's and Srivastava's surface impedance models compare
favourably at all frequencies and wind specés, for the implementations developed
in this thesis. Thus, discrepancies with the results presented by Barrick [1970]
may be attributed to the numerical implementation of the surfﬁi’%@g@d@}zfe
models and not necessarily to the differences betwéen the surface imped;nce
-quels, fo’r frequencies less than six Megahertz. Fof frequencies above 6.0

ation of Barrick's

Megahertz the added loss calculati using the i
model and Srivastava's model from this thesis, compare favoyrably witl\_xcsulls‘

presented by Barrick [1970].




CHAPTER 8
CONCLUSIONS

\
{ S & @

The propagation of radio waves is a vital component of many communica-

tions and remote sensing systems. The ability to predict the amount of clec- E
i v . : .
trumagnetic‘ energy observed at a distance from its source, is critical to the

design, simulation and evaluation of such systems. In particular, the ogean

environment present§ unique chall to the appli jon of iications and
. -
remote sensing systems. In this thesis theories for ground wave electromagnetic

?ropqgnlion have been examined and applied to-the prediction of radio wave p(c»

. pagation losses over the ocean surface. These predictions may be utilized in the

al;alysis and simulation of marine based communications and remote sensing sys-
tems, operating-in th)MF (0.3-30 MHz) and HF (30-30.0 MHz.) frequency
bands. The‘ numerical implementations developed kicrein, haVe already been
applied to simf’llalions of the ground wave Doppler radar return from iceberg tar-

gets at 25 MHz [Walsh, Dawe and Srivastava, 1085].

‘

The principal objective of this worl as- to provide a‘numeriul [‘ncilily to
calculate the power losses for eleclmmag}e{k‘avu propagating across the ocean
surface. Either the planu- earth model derived in Chapter 2, or the spherical
earth prop¥ntion -model presgnted in C}mpter 4 is suitable for these calculatiods,
each mudel'possessink its respective limi';alions, The eﬂect{ of the oce:n waves

B i

1

- : . ik




on the propagation losses have been considered through a mddel for the surface
impedance of a rough wind-driven sea. The investigation began with a derivation
of the electric field propagating across a planar surface of arbitrary electrical pro-

perties. The surface impedance for a rough wind driven séa was also examined,

and an i ical evaluation developed. In Chapter 4, the classical
model for spherical earth propagation was pnsent‘ed, and a proposed numerical
" Jirpda) Tov splierieal. Gartl: propagation: over ‘& rogh ‘6eesn. wirfase: desebad:
" Finally, some ty‘pical “humerical results for the transmission losses, calculated by

this model, and using fi ies in the HF freq band were p. ted.

In Chnptcr} of this thesis, the.classic result for the gmu_nd'wave plane earth
propagation model has been derived by an alternate method. The micthod is
based on the analytical techniques proposed by Walsh [1980] for a general formu-
lation of the rough surface‘scattcr problem. By using a spatial decomposition oI’
the clcctnc ‘field, expressions for the electnc field over a surface of arbitrary

’ Aelecmcal parameters for an arbmaly finitg source have been derived, in the spa-

tial Fourier form domain. By ming an e y vertical dipole source

an integral solution for the electric field is presented which is -equivalent to the

Sommerfeld [109] solution. For a highly conducting surface this result reduces
. to that of Wait 1054, 1957]

The cln’s'sicusolulion to the propagation of EM waves over a spherical earth
was examined [Fock, iMG; Van der F;ol’and Bremmer, 1037, 1938, 1939]. This
solution is in the form of a residue series of ihe poles of a contour integral, which
was derived as a general solution to the spherical earth formulation by Watson
[1019]. A cor;lputer model using this solution has been developed, using a previ-

e/
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ous implementation [Berry and Chrisman, 1966] as a beochmark. The model

described in this thesis oﬁe_vs imp! in speed of p
in the implementation of the poles of the residue series, modern Fortran-77
source code as well as readability and compactness as compared to'the Berry and
Chrisman implementation. The program is also more suitable thansthe Berry
and Chrisman version for implementation on modern high speed mini computers
such as the Digilal’ Equipment VAX.

In this thesis we have also examined and implemented- analytil models for
the modified surface irqped;\nce for a wind driven occan. The modified surface
impedance accounts for. the additional effects of surface roughness on lhc‘*mpn-.
gation of radio waves over the ocean. The expressions afe wrilteh in terms of the
ocean wave height spectral density for-the rough sea. Two different models for
the modified surface impedance are implemented; Barrick's |B:urici, 1071] and
Srivastava's [Srivastava, 1084]. Although the expressions for the two models are
significantly different, the numerical results for each model are not significantly
different. As well the numerical results for Barrick's moddl compare favourably
with those previously presented [Barrick, 1971b], for frequencies in the six lo'
thirty Megahen; range of frequencies. These results [Srivastava, 1084; Barrick,
1970] are included in the spherical earth model to evaluate the transmissiorn losses
\for radio propagation inythe ocean environment. Graphical plots of transmission
losses for various frequencies and various sea conditions are presented. Barrick
[1970} has also presented plots of the predicted transmission loss (added loss) for
propagation across a rough ocean Asur!ace. which compare favourably to those

" presented herein, again;in the six to thirty Megahertz range. This yiclds a degree
- iy g
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of confidence in both“the numerical implementation of the modiéedisurfau
impedance and ‘the numerical model for spherical earth p‘;opagation: However,
for frequencies below six Megahertz, ?nediscrepancies between results a’chieved
with different implementations of the modified surface impedance are observed.
The differences.are probably due to numerical instabilities or due to the numeri-
cal integration.

Thus, we bave examined results predicting the behaviour of the electric field
in the presence of the earth’s surface. Based on these models a suitable computer
model which yields numerical predictions for radio wave transmission losses in
the marine environment has been developed. The model accounts for the effects
of diffractjoh around the spherical surface of the earth, an important considera-

.Lian when the source antenna and observer are sepa;ated by distances of more
than a few kilometres. As well we have ulilized expressions for the modified sur-
facye impedance of a rough wind driven sea, which predicts the effects of ocean

waves on the propagation losses.
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TWO-DNENQIONM SPATIAL FOURIER TRANSFORM OF THE
GREEN'S FUNCTION Ko,
We wish to determine the two dimensional spatial Fourier transform of K.;.,

the Green's function, deﬁn’)ed as

exp(~j ko Ro)

Ka=—pm (A1)
where k, is the wave number of the fnndamenul and
‘Re=VaTyi+ 22 . .
‘The spatial (s, ) Fourier transform of a function f (s,y) is defined as
F(KK)= [ [ J(w)exp(-iKez -jK,p)dzdy . (A2)
Pm—oy

The inver;e spatial Fourier transform is defined by
4 '
/(:,y)=4—l- i . j F[K,,K)txp[}l( x+;K,y) K, dK,
X, o

K, and K, are the z,y spatial wave numbm. The spatial Fourier transform of

K o, which is denoted by _{(_n(k, K, 2) is given by
© @ ep(-j koRo) ) z
- [ —m—— oK 2 - K, y)d dy . (A3)

1wy 47Re

‘We now write the above integral, transformed into the cylindrical polar coordi-

KoK, K

nate sysum Thereswit is | .

o Vit
Kg(\$s) = f ] ﬂi;ﬁ;;__}.,p[,; pheos(f-¢)) dodp . (A4)

Tl}s lo%win; definitions apply to equation (A.4):

K e <




K, =)\sing ,
3 =pcosf ,
y =psind .
Now, by making the substitution & =¢-¢ K, may be written as
= pexp(-j bV + 1) =0
='£°T f axp(-j pheos(e)) ¥ dp . (A5)
We first examine only the inner integral with respect to #. We now write'the ¢

integral as

>-4
L= [ exp(-j prcos(0)) d¢

ra
i

= [ ep(-ipreost) d@ c
=
e

=2 [ exp(-j phcost') d¥.
reo

=dxdgp)) . ) " (A
The function Jofp )) is thg Bessel function of order 0. Now, by using the above

4rsult, K oy may be written as .

o pexp(-j bV F 7))
Ka= [ . IdeN) 4
- VAt
The substitutions ¢ = V37 + ¢7, and
ra L
o+ 4
are made in the above expression for Ky, yielding

L‘“&%.-}:q exp(-j kot) JoAVITTR) dt . . (A8)

This expression may b‘e‘ rated into its two one for the real part,

and one for the imaginary part. The separation is
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Kn=3 [I'-Q i l.] . (A9)
The two integrals /, and /, are given by
- ¢ ¢
L= [ eosf-kot) Jo(AVIT=2) 4t S
e=lrl
= [ coslbot) SOV &, (A.10)
t=la]
L= [ siol-kt) JoAVIT=2T) @&
=l1] §
=- [ sin(kgt) LOVES) 4 § (A1)’
t=le) /
The above integrals, /, and 7, may be determined 'TDI# a table of integrals, such
s Gradshteyn and Riyzhik [1985]. The reglly are as follows: e
<121 V)
i = 7 ; 0<k <) Ar2)
P il VEFTR) P O<N< ko - (A
N .
0 Bk En
Iy= (A13)

o) JEFTR) § 0<A<ko

By combining the solutions for the integrals 7, and 7,, we may arrive at a solu-
tion for the spatial Fourier transfdrm of the function K. Neglecting the details,

we may write Ky as

ep- |2| U .
20 ; 0<kp<)
Ka=Jep(|s]U) : 0<h<ky 'A(A‘“)l
[ .

By analogy to the above derivation, we may also. use these results for the
.

Y

\




Green's Function K. We may immediately write the spatial Fourier transform

of Kog a8 %
expl- || Us)
20; L 0< k<
Ka= |ep(|s] Us) : 0<A<ky * (A-15)
20, - B

where K denotes the spatial Fourier transform of Ko;. In addition, we have the ~

following definitions:
Ky = I IR)
* xR '
. P=knd 2
Up =W, '
M=K+ KD -
Equations (A.13) and (A.14) are the results of taking the spatial Fourier
transforms of the functions K, and K¢, and are used frequently throughout the

text of this thesis. R
-7



134

Al APPENDIX B
Qough Spherical Earth Program Listing




PROGRAM GWAVE R

X

L
++CALCULATION OF THE GROUND WAVE USIN:;‘ THE

#s++424sFOCK RESIDUE SERIES AND THE

s+244++BREMMER SADDLE POINT APPROXIMATION

+++sJANUARY 15,1987 NEW CODE FOR L AND M SERIES

s+s0¢20+DECEMBER 29,1986 CHANGED TO SIMPSON RULE INTEGRATION

erereensvs

++esvsess0eFOR MODIFIED SURFACE IMPEDANCE
++esee4sSEPTEMBER 11,1986 REVAMPED THE DATA INPUT SECTION
#+s2042sAUGUST 17,1086 REVAMPED ESTIMATION OF

aearanans

++ssssssererssPOLES OF RES SER

weesesss AUGUST 15,1986 ADDED OUTPUT DATA FILE SELECTION

+s4+4s4sAUGUST 10,1986  ADDED TZER AND TINF(REVISED TAU)
sssssass JANUARY 3,1986  REVISED AIRY FUNCTIONS

wseevsssJUNE 13,1085 INCLUDED MODIFIED SURFACE IMPEDANCE

! DECLARE VARIABLES
COMPLEX C,Q,D,T(500),A1(500),DA1(500),2W, TS,E,F3(500) \
COMPLEX CL,RLK3,W,ZIMP BT(500)BR(500)MZ,LZ
COMPLEX SQV,SINQ,52NQ,S1DQ,52DQ,SR,SLIUM,SLIU,F2
REAL AMP(500),PHASE(500),DIST(500)

REAL PFREQ,FREQ,EPS,SIG,P DMIN,DELTA,DMAX,PLOMEGA




____REAL K,A,V,Z,AK,0LD_FIELD,NEW_FIELD
REAL THETA,X,FAC,WVEL PWVEL,ALPHA PALPHA
INTEGER 1_F3_CALC,J_CNT,J_START,J_MAX,|_D_CNT
CHARACTER+3 YON

CHARACTER*5 YON2

BYTE FILOUT/(20) w
COMMON/SNIT/WNUM,ALPHA, GRAV,WVEL,DELT
COMMON /RADPAR/ PFREQ EPS,SIG HREC,HTRAN,P
COMMON /RANG/ QﬁMN?DELTA,DMAX

COMMON /INOUT/KCHR,FILOUT,YON,YON2
COMMON /SURF/PWVEL,PALPHA,JTYPE

CALL INPAR IGET INPUT PARAMETERS /

IFROM EITHER SCREEN OR GW.PAR

#944440¢INITIALIZE AND CALCULATE CONSTANTS#s+

NOT A FUNCTION OF DISTANCEssssss

sssverane:

1_F3_CALC=0

LSTART=1 . .
J_MAX =200

C=CMPLX(0.0,1.0)

Cle=CMPLX(0.0,-1.0)

RI=CMPLX(1.0,0.0)

RJ=CMPLX(-1.0,0.0)



Pl=4.08ATAN(1.0)

FREQ=PFREQ1.0E06!FREQUENCY IN HZ
WVEL=PWVEL+0.5144458  IWIND VEL IN M/S
ALPHA=PALPHA*PI/180.0 IANGLE OF WIND IN RADS
DMIN=QDMIN ISTARTING DISTANCE
OMEGA=F0+PIsFREQ 1OMEG)=2PI(FREQ)
K=OMEGA/2.007025808  WAVE NUMBER
A=6.36739E06+P IEFFECTIVE EARTH RADUIS
V=((K*A)/2.0)++0.3333333 IV
AK=1196+SQRT(K/(A++3.0))+V++2.0 K (CONSTANT)
1=0.5/(V++2.0) w

K3=2IMP(EPS SIG,WVEL,ALPHAFREQ)  IDELTA MOD(SURF IMPED)
WRITE(6,+)'K3="K3

Q=CIsV+K3+CSQRT(RI-(K3++20)) 1q sub V

D=RI/(CMPLX(1.2509211,0.01+CONJG(Q))

1.D_CNT=0 IINITIALIZE COUNTER FOR DIST LOOP

J START=1 IINITIALIZE COUNTER FOR t sub s *
B=A+HTRAN N~
R=A+HREC

AT=(Ae*2.0/(BeR))+((B+R)/(A++2.0))++.1660666668  IT (CONST)
YT=K+HTRAN/V IY sub T
YR=K+HREC/V IY sub R

sesseassinsene

soneee

BEGINNING OF DISTANCE LOOP




. seossesstsssssssssnssessssqesses
10 E=CMPLX(0.0,0.0) INITALZEE &
THETA=DMIN®1000./A  IANGLEFORMED BY TRANSMITTER

ICENTRE OF EARTH AND RECEIVER
X=VsTHETA 1X - A CONSTANT
FAC=((4.0°PI*AK)/(SQRT(SIN(THETA))))*AT ICONST FOR RES
ISERIES

L
[F(HREC.LE.0.0.AND.HTRAN.LE.0.0) THEN

HHT=10 N
HHR=10
GO TO 108
ELSE
GoTO®
ENDIF
' IIF HREC=-HTRAN=0.0 THEN USE RESIDUE SERIES

IELSE TEST THE SADDLE POINT METHOD

+  CHECK VALIDITY OF SADDLE POINT m@x@'ﬂon N

9 IF((20°(X**2.0)0(YR+YT)).GT.(Xs+40}+(YRYT)ss20)}THEN  +
GO TO l_DS
IIF ALPHA IS COMPLEX THEN SKIP SADDLE POINT
ELSE ]

v SALPHA==SQRT((X+#4.0)+((YR-YT)s+2.0}




1 (200(X*+20)(YR4YT)))/(2.4X) IELSE COMPUTE ALPHA

ENDIF
! IF SADDLE POINT VALID THEN DO IT
1 OTHERWISE DO RESIDUE SERIES
IF([SAL#HA-Z.OLLT,0.0)THEN
GO TO 105

ELSE

+ese0040040sSADDLE POINT APPROXIMATION#sssssses =

WRITE(S,)' SADDLE POINT" , .
55=2.0/3.04(SALPHA)#+3.0 1s ,'»
SB=(YT+SALPHA++2.0)01.5
SU=2.0/3.0+SB tu

SPHI=4.0/3.0¢(SB-SALPHA++3.0) lp;ai ’
OMEGAT=2.0/3.0¢((YR+SALPHA#+2.0)+¢1.5-
1 (YT+SALPHA##2.0)#1.5}-X*SALPHA*+2.0
! omega(t sub0)

SQV=CI+V+K3+CSQRT(RI-(K3+(RI-SALPHA++2.0+2)}#+2.0)

tqsub V.

SINQ=MZ(CMPLX(0.0,55)) M) v
S$INQ=LZ(CMPLX(0.05S)) *  IL{is)
$IDQ=MZ(CMPLX(0.0,55)) M(s)

S2DQ=LZ(CMPLX(0.0,-55)) 1L(-is)




SR=(SALPHA*(SINQ/SZNQ)+CI*SQV)/(SALPHA+(SIDQ/S2DQ)+C+SQV)

1R
SLIUM=LZ(CMPLX(0.0,-5U)) 1L(-in)
R A} SLIU=LZ(CMPLX(0.0,5U)) 1L(iu)
. F2=(1.0+(CEXP(CMPLX(0.,-SPHI))sSRe(SLIUM/SLIU)+

1 (S2NQ/SZDQ)))*SLIU((1.0-SALPHA##2.0+2)0+2.5)

IF sub 2 ( sub V.t sub 0)

+Co AK*AT+SQRT(PI/X)/(SQRT(SIN(THETA)))*F2+
1 (CEXP(CMPLX(0.0,-OMEGAT)))*
2 CEXP(CMPLX(0.0-K+*DMIN#1000.))
ICALGULATE E FIELD .
. S~ ENDF B v

GO TO 265 !go to end of dist loop

++4+440sRESIDUE SERIES APPROXIMATIONs##s¢sessve 1

105 CONTINUE

/" IF(ILF3_CALC.LT.1)THEN . LI
f GO TO u.;» 1 IF F3(J) HAS BEEN CALGULATED
ELSE | FOR THIS SET OF INPUT
GOTO 220 1 CONSTANTS USE STORED VALUES
ENDIF

115 DO 200 J_CNT=J_START,J_MAX ILOOP CALCULATES F3(J)
\ . S=J_CNT-1 s {toub s




M1

Ji=1 INUM OF ITERATIONS ON T SUB j
OALL TAU(S,Q,T(J_CNT),A1(J_CNT))ICALCULATE POLES
1_F3_CALCw=1 ISET I_F3_CALC .
sesrrsernessananeanes
HEIGHT GAIN FUNCTIONS

sessarenasesns

[F(HTRAN.GT.0.0)THEN
CALL AIRY(1, T(J_CNT)YT,BT(J_ONT) 2W)
HHT=BT(J_CNT)/A1(J_CNT)

ELSE
HHT=1.0 : =

ENDIF i

IF(HREC.GT.0.0)THEN ' *

CALL AIRY(1, T(J_CNT)- YR BR(J_CNT),2W)
HHR=BR(J_CNT)/A1{J_CNT)

ELSE

srssarsnssrsiersse

CALCULATE E FIELD

F3(J_CNT)=((((RI+Z*T(J_CNT))+s2.5)/(T(J_CNT}HQ#+2.0))))HHT+HIiR
1 F3(Q SUBV, T SUBS)

)
E=E-+F3(J_CNT)sCEXP(CI*X*T(J_CNT))+(4.0+PIAK*AT)sCEXP(CMPLX(0.01.0)




\

1

210

220

1

2

35
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(KDMIN®1000.-P1/4.0))/(SQRT(SIN(THETA)))
OLD_FIELD=NEW_FIELD
NEW_FIELD=CABS(E)
IF(J_CNT-1)200,200,190
IF(ABS((NEW_FIELD-OLD_FIELD)/NEW_FIELD)-0.0005)195,195,200

{TEST CONV OF E FIELD O

ICNT=J_CNT
GO TO 210 y

CONTINUE * ,

ICNT=J_MAX ICALCULATION LIMITED TO 200 POLES ~

GO TO 265 e -

IF(I_F3_CALC)265,265,220
NEW_FIELD=00  ICALCULATE E FIELD FROM STORED
IVALUES OF F sub 3(q sub V.t sub )
Ez-cm’l.x(o'.o.n,o)
DO 250 J_CNT=1,ICNT
E=E+F3(J_CNT)+CEXP(CIsX*T(J_CNT)}*(4.0+P I+ AK+ AT} CEXP(CMPLX(0.0,-1 0)s
(K+DMIN®1000.-P1/4.0))/SQRT(SIN(THETA})

OLD_FIELD=NEW_FIELD 10LD_FIELD IS THE PREVIOUS
IVALUE OF E

NEW_FIELD=CABS(E) INEW_FIELD IS THE-PRESENT VALUE OF E
IF(J_CNT-1)250,250,235  / ' )
IF(ABS((NEW_FIELD-OLD_FIELD)/NEW_FIELD)-0.0005)265,265,250

IE FIELD CONV LI‘EST FOR STORED F3




250 CONTINUVE

J_START=ICNT+1
GO TO 115  !CALCULATE ADDITIONAL POLES (IF REQUIRED)

1_D_CNT=I_D_CNT+1 INCREMENT DISTANCE LOOP

' DIST(I_D_CNT)=DMIN

W=(CEXP(CMPLX(0.0,-K+DIST(I_D_CNT}*1000.))*
E*DIST(I_D_CNT))/(4.0+P1sFREQ#1 0E-10)

!ATTENUATION FUNCTION : 4

note that this W is defined such that

E=(CSUBd/2Pl) W EXP (JKR)/R '

THIS MEANS THAT W IS SCALED FOR ALL HEIGHT GAIN

FACTORS AND CONSTANTS

: [F(YON2.EQ.'F".OR.YON2 EQ.'FIELD" OR.

YON2EQ.'r.OR.YON2.EQ.'Seld')THEN
AMP(I_D_CNT)=CABS(E) ICOMPUTE E FIELD
PHASE(I_D_CNT)=ATAN2(AIMAG(E).REAL{E))

ELSE .

AMP(LD_CNT)=CABS(W) ICOMPUTE W FUNCTION
P SE{LD_CNT)—ATANZ(A]MAG(W),REALW
ENDIF

PHASE(]_D_CNT)=MOD(PHASE(I_D_CNT),6.2831853)

DMIN=DMIN+DELTA

43
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‘ IF(DMIN.GT.DMAX)THEN . e
CALL OUTPAR(DIST,AMP,PHASE,|_D_CNT) |0UTPUT RESULTS
IAND STORE INPUTS

!IN GW.PAR

ELSE &\

GO TO 10 ISELECT ANOTHER DISTANCE
B ENDIF

STOP s -

END

-
c

x - |
c \ I

SUBROUTINE INPAR

+¢9+GET THE INPUT PARAMETERS FROMs##vssves

.

#es+s0¢sEITHER THE SCREEN OR FROM GW.PARsssses

\ +SLAST MODIFIED : SEPT 11,1986

ssssvsssssssssssss BY : BARRY J DAWEsssssssses 3 ’

REAL PFREQ,FREQ EPS.SIG, HREC, HTRAN PWVEL, WVEL & ;
REAL DELTA DMAX,PALPHA,ALPHA P, QDMIN,DMIN

CHARACTER+3 YON :

CHARACTERSS YON2 ) .

CHARACTER*20 CTYPE




- BYTE FILOUT(20)
COMMON /RADPAR/ PFREQEPS,SIG HREC,HTRAN,P
COMMON /RANG/ QDMIN,DELTA DMAX
COMMON /SURF/ PWVEL,{ALPHA,JTYPE gt

COMMON /INOUT/ KCHR,FILOUT,YON,YON2

easeenens sesee

INPUT CONSTANTS

TYPE 800 & >
ACCEPT 852NCHR,YON  ISTORED PARAMETERS OR NEW
TYPE 801

ACCEPT 852,JCHR,YON2 IFIELD OR ATTNENUATION

TYPE 802

ACCEPT 851 K CHR, (FILOUT(ll),ll1=1 KCHR)
IF(NCHR.EQ.0.0R.YON.EQ.'N'.OR.YON.EQ."n".OR.
YON.EQ.'NO".OR.YON.EQ.'no')THEN

READ INPUT PARAWTERSvmoM TERMINAL

¥

TYPE 803 IGET gHE TRANSMIT FREQ

A‘CCEPT 850,NCHR PFREQ

IF(NCHR EQ.0)GO TO 900 !ASK AGAIN

TYPE 804

ACCEPT 850,NCHR EPS IGET PERMITTIVITY -
[F(NCHR.EQ.0)EPS=80.0 IDEFAULT TO 80.0 TYPICAL FOR OCEAN

TYPE 805 -

4“.




ACCEPT 850,NCHR SIG IGET CONDUCTIVITY
[F(NCHR EQ.0)SIG=4.0 IDEFAULT TO 4.0 MHOS/M FOR OCEAN
TYPE 800 >

ACCEPT 850,NCHR HREC IRECEIVE ANTENNA HEIGHT

[F(NCHR EQ 0)HREC=0.0 (DEFAULT TO 0.0 M

-<TYPE 807

ACCEPT SM,NC‘E.HTRAN ITRANSMIT ANTENNA HEIGHT

IF(NCHR.EQ.0)HTRAN=0.0 IDEFAULT TO 0.0 M

TYPE ED;

ACCEPT 850,NCHR,PWVEL IGET WIND VELOCITY IN NAUT Mi/HR
!FOR MOD SURF IMPED ’

IF(NCHR.EQ.0)P WVEL=0.0 IDEFAULT TO 0.0

TYPE 809

ACCEPT 850,NCHR PALPHA IGET WIND ANGLE W.R.T. TRANSMIT
IDIRECTION IN DEGREES

IF(NCHR EQ.0)PALPHA=0.0 IDEFAULT TO 0.0 DEG

TYPE 810 . i "

ACCEPT 850.NCHRP IGET EFFECTIVE EARTH RADIUS FACTOR

IF(NCHR EQ.0)P =4.0/3.0 IDEFAULT TO 1.3 FOR ERF. :

TYPE 811 '

ACCEPT 850,NCHR,QDMIN IGET INITIAL DISTANCE
IF(NCHR EQ.0)QDMIN=10.0!DEFAULT TO 10.0 km INITIAL /

TYPE 812 3 ,
ACCEPT 850,NCHR DELTA IGET INCREMENTAL DISTANCE

’



IF(NCHR.EQ O)DELTA=10.0!DEFAULT TO 10.0 km INCREMENT

TYPE 813

ACCEPT 850, NCHR DMAX

[F(NCHR EQ 0)DMAX=100.0

901 TYPE 814
ACCEPT 851,ICHR,CTYPE

IF(ICHR.EQ.0)GO TO 901

IGET MAXIMUM DISTANCE

IASK AGAIN

IF{CTYPE EQ BARRICK'.OR.CTYPEEQ. bartick . OR.

1 CTYPEEQ'B.OR.CTYPEEQ.)THEN

JTYPE=1
ELSE
JTYPE=2

*ENDIF

ELSE

IDEFAULT TO 1000 km MAXIMUM

ISELECT BARRICK SURF. IMPED.

IDEFAULT TO SRIVASTAVA SURI

READ INPUT PARAMETERS FROM STORED VALUES

OPEN(UNIT=1NAME='GW.PAR' . TYPE="0LD' ACCESS="SEQUENTIAL')

READ{1,+)PFREQ
READ(1,%)EPS
READ(1,+)SIG
READ(1,+JHREC
READ(1,-HTRAN
READ(1,-JPWVEL
READ(1,4)PALPHA

READ(1,*)P

ITRANSMIT FREQ

!EP;MN

1SIGMA
IRECEIVE ANTENNA HEIGHT
ITRANSMIT ANTENNA HEIGHT
1WIND SPEED
IWIND DIRECTION

IERF.

F. IMPED.

47




READ(1,4}QDMIN IMINIMUM DISTANCE - . h
READ(1,4)DELTA INCREMENTAL DISTANCE !
READ(1,+)DMAX IMAXIMUM DISTANCE

READ(1,2)JTYPE ISURF. IMPED. TYPE

CLOSE(UNIT=1,STATUS="KEEP")

ENDIF
800  FORMAT(#DO YOU WANT THE STORED PARAMETERS (IN GW.PARJY/N| > )
801  FORMAT($DO YOU WANT FIELD STRENGTH [F] OR ATTENUATION [A] > ') .

802 FORMAT('$TYPE THE QUTPUT FILE NAME |[DEF:SCREEN OUTPUT ONLY] > ')

803 FORMAT('$TYPE Tl:lE TRANSMIT FREQUENCY [MHz] >

804 FORMAT('$TYPE THE GROUND PERMITTIVITY [DEF=280.0] >4
805 FORMAT('$TYPE THE GROUND CONDUCTIVITY [DEF=4.0] ]

808 FORMAT('$TYPE THE RECEIVE ANTENNA HEIGHT [M] [DEF=0.0] > ')

807  FORMAT($TYPE THE TRANSMIT ANTENNA HEIGHT [M] [DEF=0.0 )

808 FORMAT(‘$TYPE THE WIND VELOCITY [NAUT MI/HR] [DEF=00] > ').

809" FORMAT(S$TYPE THE WIND VELOCITY ANGLE [DEG] [DEF=00] > ')

810 FORMAT('$TYPE THE EARTH RADIUS FACTOR [DEF=1.3] > : |
811 FOR'MAT(“TYFI;: THE START DISTANCE [DEF=10.0 km} > ¥ 4
812 FORMAT('$TYPE THE INCREMENT DISTANCE [DEF=10.0km| . > ’ }
:m . FORMAT(#TYPE THE FINAL DISTANCE [DEF=100.0km] > . i

814 FORMAT(4TYPE BARRICK OR SRIVASTAVA FOR SURF. IMPED. TYPE > )

850 FORMAT(QE15.7)

851 FORMAT(Q,20A1)

i
|

852 FORMAT(Q3A1) ;




RETURN

END

SUBROUTINE OUTPAR(D,A,PHS,MM)

¥ -
*WRITE THE DATA TO SCREEN AND/OR DATA FILEsseses
¢¢e+++2s AND'STORE THE INPUT PARI‘\METERS IN GW.PARssssess
#2ees20sLAST MODIFIED ;: AUGUST 15, 198G+ ¢ssessssscsnsss

ave

tssssssssss BY : BARRY J. DAWEsesseesss

DIMENSION D(MM),A(MM),PHS(MM)

INTEGER JTYPEKCHR

REAL PFREQ,EPS,SIGTRAN, HREC,P, QDMIN,DELTA
 REAL DMAX.PWVEL,PALPHA

CHARACTER*3 YON

CHARACTER®5 YON2

BYTE Fn,ou'r((m)

COMMON /RADPAR/ PFREQ,EPS,SIGHREC,HTRAN,P

COMMON /RANG/ QDMIN,DELTA,DMAX

COMMON /INOUT/KCHR FILOUT,YON,YON2

COMMON /SURF/PWVEL,PALPHA ITYPE

WRITE(s,1) ITITLE BLOCK ON SCREEN
IF(YON2.EQ.'F".OR.YON2.EQ.'FIELD'".OR.

149




1 YON2EQ.T.OR.YON2EQ.'8¢d')THEN
WRITE(S, 1000}P FREQ EPS,SIG,PWVEL PALPHA HREC HTRAN
@ 'WRITE(6,1001) ’
BSE
WRITE{S, |mwnnEQ,EPs,sm,pwva,Pqu1ywcmN
WRITE(6,1005) '
ENDIF : .
{ DO 330 NN=1,MM 10UTPUT RESULTS TO SCREEN
330 WRITE(6,1002)D(NN)A(NN),PHS(NN)
WRITE(6,1003)
WRITE(6,1)
WRITE(S,1)
IF(KCHR.GT.0)THEN IRESULTS TO DATA FILE (IF REQUESTED)
OPEN(UNIT=10,FILE=FILOUT,TYPE="NEW',ACCESS="SEQUENTIAL')
DO 331 NN=1,MM
33 WRITE(10,1006)D(NN)A(NN),PHS(NN)
‘CLOSE{UNIT=10,STATUS="KEEP")
ENDIF:

#eseesessssSTORE INPUT PARAMETERS IN GW.PAR FILE

OPEN(UNIT=1,NAME=!GW.PAR’, TYPE="NEW',ACCESS="SEQUENTIAL')
WRITE(1,*)PFREQ," ITRANSMIT FREQ' (

WRITE(1,)EPS,’ IEPSILON' |
|




1002
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WRITE(1,*51G," - ISIGMA"
WRITE(14}HREC, IRECEIVE ANTENNA HEIGHT*
WRITE(1,*)HTRAN, ITRANSMIT ANTENNA HEIGHT*
WRITE(1,*PWVEL, IWIND SPEED"
W!{lTE(l,')PALPHA.' !WIND DIRECTION' »~
WRITE(1,)P, ERF.
WRITE(1,*)QDMIN,’ 'MINIMUM DISTANCE'
WRITE(1,*)DELTA,’ IINCREM'_éNTAL DISTANCE'
WRITE(1,*)DMAX," IMAXIMUM DISTANCE"
WRITE(1,*))TYPE,’ ISURF. IMPED. TYPE' /
CLOSE(UNIT=1,STATUS="KEEP")

FORMAT(1H1,20X, 30HCALCULATION OF THE GROUND WAVE/14XMHVER
ITICAL POLARIZATION, FREQUENCY =F0.2,5H Mitz, /OXIHPERMITTIVITY
2 =F12,22H, EARTH CONDUCTIVITY =F1.3,8H MiOS/M,/14X, 1THWIND §
SPEED=F7.3,18H, DIRECTION ANGLE=F1.2,6H[DEG,/9X, BHRECEIVER i
4 HEIGHT=F1.2,25H[M|, TRANSMITTER HEIGHT=F7.2,3H[M)/ /28X, MHE
SLECTRIC FIELD/15X 49(1H+))

FORMAT(15X,1H*1X,12HDISTANCE(KM),1X,1Hs, 18HFIELD STRENGTH V/

1M,1He,2X,OHARG(RADS),2X, 1Hs)
FORMA'T(1sx,m-,l-‘lo.mx,1H-,x'x.!-:12:5[sx,lH-,lx}‘a.z,cx,m-)
FORMAT(15X A(1H+)) N

FORMAT(1H1) . & .
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1004 FORMAT(1H1,20X,30HCALCULATION OF THE GROUND W‘AVE/HX,M;WER
! ™ mici POLARIZATION, FREQUENCY =F9.2,5H MHs,/0X 14HPERMITTIVITY
2 =F7.2,22H, EARTH CONDUCTIVITY =F7.38H MHOS/M, /14X, .IHWIND §
3PEED=F7.2,18H, DIRECTION ANGLE=F7.2,6H[DEG.,/0X,16HRECEIVER
4 HEIGHT=F7.2,25H[M], TRANSMITTER HEIGHT=F7.2,3H[M]//25X,20HATTEN
SUATION FUNCTION/16X A9(1Hv))
1005 FORMAT(15X,1H#1X,12HDISTANCE(KM), 1X, 1H+,18HATTENUATION [|W]|,

11He,2X SHARG(RADS),2X,1He) |
> 1006 FORMAT(10X,F10.2,6X,E12.5,6X,F8.2)
RETURN
END
. o]
[+
syBliou‘rM: AIRY(KK,TF1F2) .
+04%4444494¢CALCULATE AIRY FUNCTIONS#ss#sssstssnsne
oo *LAST MODIFIED : JANUARY 3,1086¢sssasseseess
sessssssesanassens BY : BARRY J, DAWEssssosssasesss
COMPLEX T,G,Tl.,TZ,Yl,Y2,U,V,Fl,.F?,W1,W2,E,5x,Z4A,B,SuMl.SuM2
. COMPLEX GI,L2,MZ,WA,WB
1a G=CMPLX(0.0,.0) ISOME PRELIMINARIES .
v *

hy
s

>
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Gl=CMPLX(0.0,-1.0) - ) .
PI=40WATAN(LO),

IF(CABS(T)LT.50)THEN  ITEST MAGNITUDE OF T

CK1=00 1|T| < 80D0 CONVERGENT SERIES
CK2=0.0" 1 OTHERWISE DO ASYMPTOTIC SERIES
‘A2=-10 =

IF(KK.EQ.1)THEN
D1=0.0
D2=1.0
Al=-20
TI=CMPLX(1.000) .
TF=T
Y15 GMPLX(1.0,00)
Y2=T ’
ELSE
D1=20
D2=0.0
Al=10
Tl=(T--2.o/)/2.0
T2=CMPLX(1.0,0.)
Y1=T1
Y2=CMPLX(1.0,00)
ENDIF

r
Al=A1+3.0

183
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CK2=TRY2
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A2=A2+3.0 )
D1=DI+3.0 ‘
D2=D2+3.0

QI=A1/(D1+{D1-1.0)#(D1-2.0))
Q2=A2/(D2¢(D2-1.0)#(D2:2.0))

T1=TIsTes3.0:Q1 - -
T2=T20Tee3.00Q2

Y1=Y14T1

Y2=Y24T2

TRY1=CABS(Y1)

TRY2=CABS(Y2) . a
IF(ABS{(TRY 1-CK1)/ TRY1}0.5E-00)35,35,30

CK1=TRY1 v

GOTO%

IF(ABS((TRY2-CK2)/ TRY2)-0.5E-0040,40,30

U=1,080920060¢Y1+0.7945704253+Y2

Ve00TIOBAIIYLOASE S4BT

Fl=CWLX&REAL(I.'J)+AMAG(V),AIMAG(?R-EAL(V))

F2=CMPLX(REAL(U)-AIMAG(V) AIMAG(UHREAL(V))
B

ELSE

ASYMPTOTIC EXPANSIONS FROM ¢
NBS TECH NOTE #319 .




\

PHASE= ATAN2AIMAG(T).REAL(T))
IF(ABS(PHASE).LT.P1/0.0)THEN IREGION 1
| B=(20/a0pTeeLs 1 |PHASE OF T| < 20EGREES
F(KK.EQTHEN 1 CALCULATE W1 AND W 2
WA=CEXP(E)LZ(E)"
:wa=c/m(-s)~uz(-|~:)-c/z‘o
F1=(T+4-0.25)5(WA-WB)
F2==(T++.0.25)s(WA+WB)
ELSE ICALCULATE W'l AND W'2 7
WA=CEXP (E)*MZ(E)
WB=CEXP(-E}'MZ(-E}*G/20
F1=<(T+40.25)+(WA+WB)
F2=(T#40.25)+(WA-WB)
) ENDIF
9 . B Ii“(ABS[PHASE),GT.S.G-‘PI/B.B]‘I:HEN 1 REGION 2
E=(20/3.00(-T)e+15 1 [PHASE OF T| > 100 DEG
F(KK.EQ.JTHEN ’
F1=((~T)tt—u.zs)~cExP(</:l;(E+Pl/4.0))-LZ(GI-E)
F2=((-T)#+-0.25)s CEXP(G*(E+P1/4.0)}\LZ(G*E)
1 CALCULATE W 1 AND W 2
ELSE
Fl=((T)++0.25)+CEXP(GIV(E-P1/4.0)}MZ(GI'E)
F2e=((-T)++0.25)+CEXP(GY(E-P1/4.0))'MZ(G*E)
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J
q ICALCULATE W'l AND W'2
ENDIF N s &
" ELSE IF(PHASE.LE.5.0+P1/9.0.AND PHASE.GE.P1/0.0)THEN
) IREGION 38 .
E=(20/3.0)Tee1.5 120 DEG <= PHASE T <= 100 DEG
IF(KK EQ.1)THEN ’
WA=CEXP(E)oLZ(E)
WB=CEXP(-E)sLZ(-E)
Fl=(Tes-0.25pWA % .
F2=(T++-0.25)+(WA+Go WB)
ICALCULATE W 1 AND W 2,
ELSE !
WA=CEXP(E)*MZ(E)
7 WB=CEXP(-E)sMZ(-E)
Fl=(T++0.25)WA
F2=(T4+0.25)+(WA-G*WB)
» e ) " ICALCULATE W'1 AND W2
ENDIF ’
ELSE IF(PHASE.GE.-5.0+P1/9.0.AND PHASE LE.P1/9.0)THEN
% IREGION3A -
E=(20/30)Toe15 1100 DEG <= PHASE T <=-20 DEG
= IF(KK.EQ.1)THEN .
WA=CEXP(E)LZ(E) )
/ ‘wn‘-cm(.s)-l.z(.s)
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o . P
. E 4 )
Fle=(T#.0.25)+(WA-G*WB)
: Fo=(T+e0.25)"WA  ICALCULATE W 1 AND W 2
_— ELSE . ’ . -
* WA=CEXP(E)*MZ(E) ’ ‘
WB=CEXP(-E)*MZ(-E) ‘
N F1=(T*+0.25)(WA+G+WB) ;
F2=(T*+0.25)*WA ICALCULATE W'l AND W'2
ENDIF : ’
ENDIF
ENDIF ’ ) ¢ : P
RETURN 3
5 . N .
o ) g 5
; . c i
¢ COMPLEX FUNCTION LZ(DUM_ARG) ‘ .
++s+3244FOR ARY FUNCTIONS, SADDLE POINT METHOD++
! 8 4+404440LAST MODIFIED : JANUARY 15,1087ssssassoevs ‘ g
i : BY : BJ. DA . ‘ ‘ ’
[
COMPLEX DUM_ARG,SER_SUM,Z_ARG,NEW_TERM
REAL J_ONE,J_ONT,J_TWO ’ . : :
; ) REAL OLD_TERM,CHK_TERM,OLD_SUM,NEW_SUM,CHNG_SUM ‘




* SER_SUM=(0.,0.)

I ARG=10/DUM_ARG

NEW_TERM==16.0/216.0%Z_ARG IFIRST TERM OF SERIES

1 ONE=10
JCNT=10
SER_SUM=1.0+NEW_TERM | 2

NEW_SUM=CABS(SER_SUM) NINITIALIZE THE

CHK_TERM=1000. ICONVERGENCE TEST
OLD_SUM=NEW_SUM
OLD_TERM=CHK_TERM v

JONT=/J CNT+1.0

J_ONE=J_ONE+20 .

+

1 TWO=60+J_CNT -
NEW_TERM=NEW_TERM+Z_ARG*(1_TWQ:5.0)"
(J_Tw:)-a.o)-(.v_'rwall.o)/(zw@-.l_cm-l_om)
GHK_TERM=CABS(NEW_TERM)
SER_SUM=SER_SUM+NEW_TERM
mw_sw-bm(ssn_;w)

CHNG_SUM=(NEW_SUM-OLD_SUM)/NEW_SUM  ICALCULATE THE CHANGE

’

IF(ABS(CHNG_SUM).LE.0.SE-0)THEN ’ /’
LZ=SER_SUM . -
RETURN IRETURN IF SERIES CONVERGES

'ELSE IF(OLD_TERMLT.CHK_TERM)THEN - ‘

ISUM THE SERIES

IWHEN NEW TERM ADDED




! LZ=SER_SUM o 5 '
RETURN IRETURN IF SERIES DIVERGES
FLSE ‘
GO TO 100 ICOMPUTE ANOTHER TERM
ENDIF
RETURN N
END )
c
" . -

4

* COMPLEX FUNCTION MZ(DUM_ARG)

<
#+++++0sFOR ARY FUNCTIONS, SADDLE POINT METHOD#++

ssxx+20s[AST MODIFIED : JANUARY 15,1987¢s s sss0ass

BY :BJ. DA

COMPLEX DUM_ARG,SER_SUM,NEW_TERM,Z_ARG = s
. REA.IKJ_(;NE,J_CNT.J_TWO .

REAL CHK_TERM,0LD_TERM,NEW_SUM,OLD_SUM,CHNG_SUM

SER_SUM=(0.,0.) ‘ .o

7_ARG=1.0/DUM_ARG &

NEW_TERM=21.0/216.0¢Z_ARG " IFIRST TERM OF SERIES

J_ONE=10

1 ONT=10
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S

SER_SUM=1.0-NBW_TERM : L.

NEW-_SUM=CABS(SER_SUM) IINITIALIZE THE

CHK_TERM==1000. ICONVERGENCE CHECK

OLD_SUM=NEW_SUM

OLD_TERM=CHK_TERM

J_CN1“=-J_CN’5+1.0

J_ONE=J_ONE}20

J_TWO=60+J_CNT

Nsw_mM;NEw‘_TERM:z_Anc-(uwoq.a)- -
(1.TWO-3.0)+(J_TWO+1.0)/(216.0¢J_CNT+J_ONE)

CHIK_TERM=CABS(NEW_TERM) 7

SER_SUM=SER_SUM-NEW_TERM: 18UM THE SERIES

NEw_sum=CAns(sm:s\f;vM)'

CHNG_SUM=(NEW_SUM-OLD_SUM)/NEW_SUM o [CALCVLATETHE CHANGE

IWHEN NEW TERM ADDED
IF(ABS(CHNG_SUM)LE.0.5E-09)THEN
M2Z=SER_SUM
* RETURN IF SERIES CONVERGES THEN RETURN

ELSE [F(OLD_TERMLT.CHK_TERM)THEN

MZ=SER_SUM
- N >
RETURN - 5 |IF*SERIES DIVERGES THEN RETURN

’

o ELSE -
GOTO 100 ICOMPUTE ANOTHER TERM
'
ENDIF~ - N
.

~ 4
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SUBROUTINE TAU(S,Q,T,W1)

#s++s0¢+FIND THE POLES FOR THE RESDUE SERIES*

#++s00¢+USING THE NEWTON ITERATION METHOD####¢

##++++39sSEE CARNAHAN, LUTHER AND WILKES FOR#e+

«s2400ssNEWTON ITERATIONs¢sss 00 essttsnsessaree
% o

\ :
#+seeess[ AST MODIFIED : AUGUST 17,1086+ ##avese

BY : BARRY DA

COMPLEX Q,T,W1,DWI,W2,DW2,CC,TINE,TZER

JI=TFIX(S) = 5 .

SEE BREMMER (TERRESTRIAL RADIO WAVES) FOR T(S,0) AND T{(5,INF)

IF((CABS(Q))**2.0.LE, 1L.0)THEN
T=TZER(JS)  !USE T SUB (S,0)
T=T+Q/T | FOR INITIAL APPROX '
ELSE
T=TINF(JJ) ! USE T SUB (S,INF)
T=T+0/Q . !FOR INITIAL APPROX
ENDIF . -3

ICNT=0 d i




10 CALL AIRY(1,T,W1,W2) ICOMPUTE WI(T)
CALL AIRY(2,T,DW1,0W2) ICOMPUTE WI(T)
CCaxDW1/W1 IPERFORM NEWTON ITERATION
CC=(CC-Q)/(T-CC+Q)
T=T-CC
ICNT=ICNT+1 v
* IF(ICNT.GT.30)THEN  INUM OF ITERATIONS LESS THAN 30

WRITE(6,20)JJ+1
Q.D FORMAT(1X,'ITERATION DID NOT CONV‘ER(;E ON T WHEN §= 'l4) A
' RETURN = '
ELSE IF(CABS(CC/T).GT.0.5E-06)THEN
“ ICHECK FOR CONVERGENCE
: GOTO10  IONPOLE T SUB S AND
, p NTERATE AGAIN (IF NECESSARY)
ENDIF
~ RE‘A:URN IIF T SUB § CONVERGED
END ITHEN RETURN

COMPLEX FUNCTION TZER{KK)

4040444 eESTIMATE FOR T(S) WHEN | @ | << 1% [

ove

sesessas AST MODIFIED: AUGUST 10,1986 +

£ BY:B.J.D




COMPLEX PHS
REAL T(5)
DATA T/0.80861652,2.5780961,3 8257153,4.8918203,5.8513010/
PI=4.0"ATAN(1.0)
PHS=CEXP(CMPLX(0.0-PI/30))  IPHASE OF T(S,0)
IF(KK LE 4)THEN ' a
TZER=T(KK+1)*1 259?21 1*PHS-
! - T(SO)WHENO <=§ <=4
ELSE
Y1=1.1780972¢(4.0°KK+1)
TZER=PHS+((Y1++(2.0/3.0))*(1.0-0.14583333/(Y1++2.) +
1 0.12152778/(Y L#+4.}0.87395351/(Y1++6.)))

' T(S.0) WHEN S > 4

ENDIF
“*  RETURN Lo
END :
c
.
c

COMPLEX FUNCTION TINF(KK) -

*+04e00sESTIMATE FOR T(S) WHEN | Q | >> 1.+%

AST MODIFI’ED:.AUOUST 10,1080 sseese

BY: B.J.



COMPLEX PHS
REAL T(5)
DATA T/1.8557671,3.2446076,4.3816712,5.3866138,6.3052630/
PI=40sATAN(1.0)
PHS=CEXP(CMPLX(0.0-PI/3.0)  IPHASE OF T(S,INF)
IF(KK LE.4)THEN 8
TINF=T(KK+1)+1.2509211sPHS
! T(S,INF) WHEN 0 <=§ <=4
ELSE
Y2=21.1780072¢(4.0¢KK+3)
TINF=PHS*((Y2¢#(2.0/3.0))*(1.0+1.0/(0.62Y2¢+2.0}-
1 1.0/(7.20Y2¢4.0)+0.92028404/(Y2++6.0)))
! T(SINF) WHEN S > 4
ENDIF
RETURN

COMPLEX FUNCTION ZIMP(A,B,C,D,AA)

PROGRAM CALCULATES MODIFIED#

E IMPEDANCI




20000ses[NPUT S>> > > sesesesesssseaceesssssascsss

=EPSILON (REAL#4) sssee

(REAL®4)
sssssvsasssssarssC=WIND VELOCITY (REAL#4) sesssee

e

D=ANGLE OF WIND VELOCITY (REAL+4)

ssssssssssessesssAA=FREQ (REAL¢4) +e00ssssssssee

erssvel

**03000sQUTPUT >>>>> »

oo

#esvssussnassnseszIMP=SURFACE IMPEDANCE (COMPLEX)s
«seseaesLAST MODIFIED : .&m 13, 1985 sesvessreses

seesesssusssnsscss BY : B.J, DAWE #seves

IMPLICIT REAL*8 (E-H,0-Z) !ALL VARIABLES RE/\L'G.‘
COMPLE?_('I& DELT,DELMOD IWITH THESE EXCEPTIONS
REAL#*8 ALPHA K, K2

INTEGER+*4 ERROR1,ERROR2,IER1,IER2,ITYPE

REAL#4 A,B,C,DUM1,DUM2 -~
COMMON)/SNIT/WNUM,ALPHA,GRAV, WVEL,DELT

COMMON /SURF/ DUMI,DUM2ITYPE
-EXTERNAI. BAFR,BAFI,FUNCTR,FUNCTI

{INTEGRANDS ARE EXTERNAL FUNCTIONS

EPS=DBLE(A) ISET ALL REAL&4 INPUTS TO

SIG=DBLE(B) IREAL+8 N
WVEL=DBLE(C)

ALPHA=DBLE(D) |
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168 *
-
FREQ=PBLE(AA)
Pl=$415026828D0 1PI
EPSO=1.0D-09/(36.000¢P1) ! EPSILON SUB 0
GRIAV=0,81D0 1 ACCEL DUE TO GRAVITY
OMEGA=2.0D0+PI*FREQ 1 ANGULAR FREQ
WNUM=OMEGA /2.997925D08! WAVE NUM
K=WNUM 7
K2=K+K 5
INITIALIZE DELTA (SURF IMPED)
DELT=DCMPLX(1.0D0,0.0D0)/(CDSQRT(DCMPLX(EPS -SIG/(OMEGA*EPSO))))
IF(WVELLLT.0.1D0JTHEN
ZIMP=CMPLX(DELT) .
RETURN UIF WIND SPEED = 0.0
ENDIF * \THEN RETURN DELTA
INTEGRATION LIMITS
AX=0.0D0
BX=10.0D0 .
AY=-P] ’
BY=PI
AERR=1.0D-03 :
INTEGRATION ‘
IF(ITYPEEQ.1))THEN
. integration for barrick surface impedance

DELT=DCONJG(DELT) ITHIS IS FOR BARRICK'S CONVENTION




SIMPR=SIMPSON(BAFR,AX BX,AY BY)
WRITE(6,*)' SIMPR=",SIMPR
. SIMPI=SIMPSON(BAF1,AX BX,AY BY)
' i WRITE(6,+)'SIMPI="SIMP1
DE’LMOD=DCONJGJDELT+D.25D0'DCMPLX(SIMPR.SIMPI))'
ITHIS RETURNS US TO OUR CDNVE’N‘[ION
ELSE
integration for srivastava surface impedance
SIMPR=SIMPSON(FUNCTR AX,BX AY,BY)
WRITE(S,#) SIMPR="SIMPR
SIMP1=SIMPSON(FUNCTI,AX,BX,AY ,BY)
WRITE(S,+'SIMPIt SIMPI
DELMOD=DELT+0.25D0¢DCMPLX(SIMPR,SIMP1)
ENDIF
) ’ ZIMP=CMPLX(DELMOD)

RETURN \ J

. END

REAL+*8 FUNCTION FUNCTR(XP,YP)

#sesse0sREAL PART OF INTEGRAND FOR SRIVASTAVA'S soonee

*MODIFIED SURFACE IMPEDANCE##+

*LAST MODIFIED : JUNE 13, 1085 sessss

bt

Y

I :‘_“,‘l“( sa¥

e




168

o~

esnesssssosaassss B s B DAWE ssnsvsssesssnfins

IMPLICIT REAL¢8 (A-H,0+Z)
¢ REAL#8 K K2 )
COMPLEX*16 D,BPR,CINT,DCMPLX,CDSQRT DCONIG

" COMMON /SNIT/K,A,G,UD_

X=XP+DCOS(YP)

Y=XP+DSIN(YP)
s CALCULATE WAVE HEIGHT SPECTRUM
$SQ=Xos2. 0+Yee20 : -~
IF(SQ.EQ.0.0D0)THEN -

W=0.0D0
. . ELSE
w=).msno-((x-n‘c«‘s(k)w-bsm(,\n--zo/

L ((Gee28)(sQeeas))e

DEXP(—?.G‘G/(U"’l.ﬂ'bSQRT(SQ))) :

>

ENDIF .
! CALCULATE INTEGRAND

f K2=K#s20

[~ : iaPn-DCONJG((CPSQRT(DCMPLx(Kz-(X+K]ne.w--2u,o.nDo)))/
| DCMPLX(K0.000))
CINT=DCMPLX(W,0.0D0)*(DCMPLX(X*X.0.000)-DsDCMPLX(<+X,0.0D0}s hl
¢ 1 BPR)/(BPR+D)

FUNCTR=DREAL(CINT)*DSQRT(SQ) N g




RETURN

c

¢ -
- c

REAL+*8 FUNCTION FUNCTI(XP,YP)

-
 *euss+IMAGINARY PART ORNTEGRAND FOR ssessssrissscs .
4+4444+4SRIVASTAVA'S MODIFIED SURFACE IMPEDANGES s4+++
) s4000444LAST MODIFIED : JUNE 13, 1985 s+ssssssnsossere '
R sessersereesarsses BY : B.J. DAWE --unnuvtnn‘nu
) :
' IMPLICIT REAL#8 (A-H,0-2) ¢
REAL#8 K,K2
i / COMPLEX~16 D,BPR,CINT.DCMPLX CDSQRT DCONJG .
g COMMON/SNIT/K,A.GUD )
X=XP+DCOS(YP)
Y=XP+DSIN(YP) *
' CALCULATE WAVE HEIGHT SPECTRUM o
SQ=X*+2.0+Y*+2.0 é ' )
) \’ : IF(SQ.EQ.0.0D0)THEN s F
W=0.0D0 :

. - » ¥
\ ELSE , L
W=1.5026D0¢(X*DCOS(A)+Y+DSIN(A))#+2.0/

1 (G#2.505Qe#3.25)¢ :

'




170

2 DEXP(-20D0+G/(U*+2.0+DSQRT(§Q))) h
ENDIFE. ) & !
! CALCULATE INTEGRAND
Kb=Kee20 R
BPR=DCONJG((CDSQRT(DCMPLX(KZ-(X-+K)++2.0-Y+2.0,0.000)))/
I DCMPLX(K,00D0)) i
v CINT=DCMPLX(W,0.0D0)+(DCMPLX(X*X,0.000}-D*
' \ 1 /i)CMPLx(K-x.o.onn)-n?n)/(spmo)
* FUNCTI=DIMAG(CINT)*DSQRT(SQ)
RETURN
END '

REAL+8 FUNCTION BAFR(XP,YP) »

#es+s92sREAL PARP OF INTEGRAND FOR BARRICK'Sesses

. [ED SURFACE sessrensns,

+s40004sLAST MODIFIED : JUNE 13, 1085 seseseseses

BY :B.J. DAWE .
s = 2 5 .
IMPLICIT REAL+8(A-H,0-2) ” v @ i
REALSKKZ  ,° '
[ . .
) COMPLEX¢16 D,BPR CINT,BARD,DCMPLX,CDSQRT,DCONJG i 2
‘ ' COMMON/SNIFYK.A,6.UD o - T
Ly i < ’ A . - gt
& ) " . ’
A & o2 - ’ -
) |“' * ) 1‘ * ] -

s,
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X=XP+DCOS(YP)
Y=XPDSIN(YP)
i . BARD=DCON.|(£(D) 5
' CALCULATE WAVE HEIGHT SPECTRUM
SQ=X++2.0+Y%+20 o
IF(SQEQ.0.0)THEN
W=0.000
\@_‘g\; )
W=1.5025D0¢((X*DCOS(A)+ Y*DSIN(A))++2.0/ ’ )
1 ((G#*2:5)+(5Qe+3.25))e \
3 DEXP(-2.0D0*G/(U*+2.0¢DSQRT(SQ)))
ENDIF

! CALCULATE INTEGRAND - =

BPR=(CDSQRT(DCMPLX(K2-(X+K}**2.0-Y*+2.0,0.0D0)))/K
CINT=W+((X+#2.0+ BPR\BARD+(X++2.0+Y*+20K+X))/
1 (BPR+BARD(BPRBPR+DCMPLX(1.0D0,0.000)))+
2 BARDS#((X#+2.0-Y+#2.0)/2.0D0+ (K*X)))
nfu-'ksnnm(cm)-nsqaﬂsq)
RETURN . o ) -
END ]

el REALs8 FUNCTION BAFI(XP,YP)

" .8 ¢ .
* . . ¥y S

.




_sessesss[MAGINARY PART OF INTEGRAND FOR BARRICK'Seesse

+es002¢sMODIFIED SURFACE IMPEDANCE##seesssssssssresces

ssssevesAST MODIFIED : JUNE 13, 1985 sssvseseves

N . sssee4s BY : BJ DAWE

—_ IMPLICIT REAL*8(A-H,0-2)
. -REAL*8 KK2
' COMPLEX16 D,BPR,CINT,BARD,DCMPLX,CDSQRT,DCONIG
. COMMON/SNIT/K,A,G,U,D
' X=XP+DCOS(YP) .
Y=XP+DSIN(YP)
BARD=DCONJG(D) -
1 CALCULATE WAVE HEIGHT SPECTRUM
. SQ=X#42.04Y++20
. J IF(STEQ0.0)THEN
W=00

. ELSE

\
W=1.6025D0¢(X*DCOS(A)+ Y +DSIN(A))++2.0/

v (G#+2.645Q143.25]+DEXP(-2.0000G/
. 2 . \(Us2.0sDSQRT(SQ)) ,
. ENDIF © g
i ! CALGULATE INTEGRAND
Ke=K02.0




~ A
BPR=(CDSQRT(DCMPLX(K2-(X+K)+#2.0-Y++2.0,0 0D0))l/K
CINT=Ws((X*+2.0+ BPR¥BARD*(X+*2.0+Y++2.0-K+X))/
| 1 (BPR+BARD=(BPRBPR+DCMPLX(10D0,0.000))+
2 BARDS(X+32.0:-Y++2.0)/2000+(KsX))) ’
BAFI=DIMAG(CINT)+DSQRT(SQ) N
RETURN s,
END - '
c
c
REAL+8 FUNCTION SIMPSON(FUNCT XL XU,YL.YU)
see4s044TWO DIMESIONAL SIMPSON RULE INTEGRATIONs++s
* sesge4s+FOR A FIXED NUMBER OF POINTS#sss4sssvssssrss
++4+44+sROUTINE USES THE FUNCTION SIMP1sesesesuseses
¢+42404sLAST MODIFIED : SEPT 23,1986 gessess .
ssssnsssusasgsiven BY : B.J. DAWE ssssssossssssnssse
IMPLICIT REAL#8 (AH,0-Z)
EXTERNAL FUNCT !
L N=10 tnam of pointa
H=(XU-XL})/(2.0¢N)
XINC=XL+H ¥
IFLAG=0 i ’
DQ 20 [=1,2¢N-1 ‘
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. %

. .

IF(IFLAG EQ.0JTHEN
SUM=SUM+4.0sSIMP1{FUNCT, YL,YU XINC)
.

IFLAG=1
BLSE .. .
SU);I==SUM+2:0'51MPI(FUNCT,YL,YU,XINC)
IFLAG=0
ENDIF
XINC=XINC+H
CONTINUE  ° 4
TREAT ENDPOINTS
SUM=(H/3.0)+(SIMP1(FUNCT, YL, YU,XL)+SIMP1{FUNCT, YL, YU,XU)+ SUM)
SIMPSON=SUM..
RETURN -

END

REAL*8 FUNCTIONSIMP1(FUNCT, YL, YU, X)

" +s+4040sPART OF SIMPSON'S RULE INTEGRATIONssssssossees

oo

eese4s0sLAST MODIFIED : JUNE 13, 1985 seesesiesneneens

ssvssssssssqessess BY : B.J, DAWE sese

+SEE FUNCTION SIMPSONss#sssssssenssssnsss

§ |

IMPLICIT REAL#8 (A-H,0-2)

# -




20
N

EXTERNAL FUNQT_> )
H=(YU-YL)/(2.0N) /
YINC=YL+H,
FLAG=0
Dovmly ]e_ll-,ill:l-l

[FHFLAG EQO)THEN +

SUM=SUM+4.0sFUNCT(X,YINC) : ' o

IFLAG=1

ELSE -
IFLAG=0

YINC=YINC+H

CONTINUE

° _TREAT ENDPOINTS  ~
- i

SUM=SU.M4”20'FUNCT(X,YINC)

- v ‘/

4 SUM=(H/3.0)s(FUNCT(X,YL)+FUNCTIX,YL)+ SUM)

SIMP1=SUM
RETURN
END
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