CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)













SYMMETRIC AND ASYMMETRIC CRACK
DEVELOPMENT IN TUBULAR T - JOINTS

by

© Samuel Paranavitana

A thesis submitted to the School of Graduate Studics
in partial fulfilment of
the requirements for the degree
of

Master of Engineering

Faculty of Engineering & Applied Science
Memorial University of Newfoundland
January 1996

St. John'’s Newfoundland Canada



Bl \onaibay
of Canada du Canat

Bibliothé ue nationale

Direction des acquisitions et

Acquisilions and

Bibliographic Services Branch  des sevices bibliographiques
395 Welington Streat 395, rue Welington

Ottawa, Ontara Oftawa (Onfario)

KIAD K1AON

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Vourlie. Vote relérnce

Ouie Note rteronce

L'auteur a accordé une licence
irrévocable et non exclusive
permet a la Bibliothéq
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13938-7

Canadi



To those who gave me all the encouragement

especially my wife, Tara



Acknowledgement

I would like to take this opportunity to thank the following people for their support and
encouragement throughout my Master's program,

Dr. J.J. Sharp, Dean of Graduate Studies, who cleared the way and made it possible for
me to pursue my goal of obtaining a Master’s degree.

Dr. A.S.J. Swamidas, Supervisor, mentor and friend, whose patient guidance and
financial support made it possible to pursue my degree with a single minded purpose
and determination.

Dr. D.I. Nwosu for taking time. out of his busy schedule to teach me all about the
finite element package - "Abaqus", the program and its application to my work.

The Encon Insurance Group for the Encon Endowment, which 1 was privileged to
receive for the year 1994-1995.

The Personnel at the C-CAE for their cooperation in computer related problems,

Finally, T would like to thank my wife and those who cared, for their unstinted support,

iii



Abstract

Although many studies on the fatigue behaviour of tubular T-joints have been carried
out thus far, the present study is done with the view to evaluating the total fatigue life
of a joint in the presence of an asymmetric crack, using the principles of fracture
mechanics. The studies made so far have only analyzed symmetric cracking, which
does not generally occur during fatigue cracking, since it is assumed that the cracks at
both the hot spot regions grow at the same rate. Alsa very few studies address the
issue of crack initiation life in tubular T-joints. D.I. Nwosu (1993) used the stress-
strain approach using the Manson-Coffin equation, to evaluute the initiation life. The

clastic life was used to d ine the i In this study the author

has used both lives (plastic strain life, as well as elastic strain life) to determine the
coefficients used in the equation. The experimental results reported by lida [1987] on
tubular joints have been used to determine them. The range of obtained coefficients
check with the prescribed limits given in earlier studies. The purpose of the study was
to use and compare the results of the numerical model in verifying and correlating the
experimental investigation of the tubular T-joints, which is being carried out in the

Strength Laboratory of Faculty of Enginecring, Memorial University.

The line spring element was used to model the crack; the reason being that the other

known method, viz., that of using singular three dimensional elements would render the



problem impractical in the light of computer time and memory space available in the
Faculty of Engineering. Using the stress intensity factors obtained from the line spring

model. the through-thickness crack propagation li

was obtained using Paris’ law.

While the crack initiation compared very well with the experimental value, the crack

life d only with the experimental value. The procedure

required to improve the computed crack propagation life is given in the discuss

results.
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Chapter 1

1 Introduction

1.1 Background

What we identify as fatigue failure today was first analyzed in great detail by
‘Wohler [Almar-Nass (1985)], in his pursuit of a cause for railway axles to fail well
below the then design load. This phenomenon has been observed in other structures as
well, although it was not until the subject of fracture mechanics was well developed that

it was possible to have a clearer understanding of it.

Steel offshore structures are fabricated by welding together various tubular

and i ing loads in service; hence fatigue is a factor to

reckon with in the design of the structure. The fluctuating loacs could be attributed to
several sources such as wave, wind, and current loads, in addition to the fluctuating deck
loads. These steel frame type structures are invariably fabricated from tubular members
that are welded together externally. The abrupt changes in geometry give rise fo stress
concentrations in the region, and are also likely to actas crack initiation sites. Itis clear
therefore that in designing the structure, the joint would have to be designed for fatigue
strength. The traditional, design based on S/N curves, requires only a knowledge of the

hot-spot stresses and strains and does not take into account the presence of initial flaws.
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The advantage of using the fracture mechanics apgroach is that an initial crack which

£rows, serves as a critical parameter in estimating the useful life of the component; such

a is di inthe it approach. The fracture mechanics design
methodology assumes that a crack exists at a critical location and advances as the stress
intensity changes due to a changing load. The stress intensity factor depends upon the
zpplied load, crack depth and the geometry of the joint. It is assumed that the stress
intensity factor in the crack region varies linearly as a function of the nominal hot-spot
stress, which in turn is a function of the applied nominal stress on the joint. It is this

method that has been used in this study.

The theoretical stress at the tip of a crack is characterised by the stress intensity
factor. While a closed form solution is possible for simple geometries, it is not possible

to derive a closed form solution for a complex geometry such as a tubular T-joint.

Several i have been d ped to such di ies of which a
numerical technique is one such and is an approximate method. In this study the finite
element method is used to determine the stress intensity factors numerically, using the

"ABAQUS" finite element software package.

Crack growth consist of two phases, an initiation stage and a propagation stage.
While the initiation life cannot be estimated by the use of finite element method, the
propagation life can be estimated by such means. The initiation life has been estimated

using the experimental data, obtained for several T-joints and the nominal hot-spot
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strain, obtained from the finite element analysis, and is based on the low cycle strain life

method. The crack propagation life has been estimated using Paris' equation.

1.2 Scope of study

The objectives of this study are threefold. The principal reason is that no studies have
been done on stress distribution and fatigue life estimation in tubular T-joints for
asymmetric crack growth as the governing feature. In addition far the crack initiation
life has not been included in a proper manner in the fatigue life calculations of tubular
T-joints, although it has been the object of study by many. In the present study, the

author has used experimental data obtained by Iida (1987) to compute the initiation life

of the tubular T-j

This finite element model also served as a design model for computing the load
to be applied on the tubular T-joint for the experimental work currently being done
towards the Ph.D. thesis work of a fellow graduate student (Ms. Cheng Shumin). Fig.

1.1 on page five shows the tubular T-joint that was used in the experiment.

1.3 Organization of the thesis
The layout of the thesis is, as described below. This study emphasizes in the
‘main, the use of the finite element method for fatigue life assessment of a tubular T-joint

subjected to axial tensile load at the brace.
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Chapter two covers the literature concerning the development of the finite
element method in the realm of fracture mechanics, and its application to tubular T-
joints, especially the line-spring element. It also covers the theoretical developments in

the field of fracture mechanics. Chapter three deals with the theoretical basis and the

P of the i ic element, which has been used to model
the shell structure; the approximations made and the advantages of using a degenerated
shell element have also been outlined. Chapter four covers: i) Description of the
modelling procedure; ii) Ways in which the accuracy of the model was checked; iii)
Stress patterns around the weld toe, and their variations as the crack front advanced
through the thickness and along the weld toe region; and iv) Variations in the SIF's and

their physical significance.

Chapter five discusses the initiation and propagation lives and the method by

which the initiation life was derived from experimental data. It also discusses the

between puted and i data, the likely causes, and the methods
by which the values could be reconciled. Chapter six gives the conclusions drawn from

the study as well as areas of further interest.



Fig 1.1 Tubular T-joint




Chapter 2

Literature Review

2 Introduction

Fixed offshore structures are fabricated from tubular steel members. Such
sections are well suited to being used as structural members in offshore structures, for
several reasons. The section has a very low drag coefficient and the same bending
stiffness in all directions perpendicular to its axis; it also has good torsional rigidity and
is insensitive to lateral load directions. Although the tubular section itself is less prone
to stress concentrations, the interconnections and joints which are usually welded,
present structural discontinuities that give rise to high stress concentrations. The
integrity of such structural connections is critically dependent on the behaviour of the
component welded joints which resist the dynamic forces of wind, wave and currents

and the topside loading.

It has been established that the initial flaw or imperfecdon present in the
structure, which could be the result of the process of manufacture, fabrication, or usage,
propagates under fatigue loading and spreads along the intersection before it penetrates
through the thickness and causes failure of the joint. The complex lay-out of such a

joint pi a precise math i ivation of the stress and strain fields in and
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around the weld. To study the behaviour of deformation and failure of the joint.
engineers have developed experimental as well as analytical methods. Two methods
of fatigue life evaluation of tubular joints are currently used in the offshore industry.
The first is the hot spot stress - S/N method - which is widely used in design
procedure; the second is the fracture mechanics method. Details of the two methods

are given in the subsequent sections of this study.

The principles of fracture mechanics and the finite element method have been
successfully used to some degree of sophistication, in analyzing the stress fields around
acomplex and cracked tubular joint. The recent advances in computer technology have

made the application of ical techni a viable al ive to analytical and

cxperimental methods, which could be prohibitive under certain circumstances.

Notably, the finite clement method has been well developed to model a region with the
attributes of a crack, towards analysis. The pertinent literature available in this area of
study are reviewed in this chapter, to understand the state-of-the-art developments in

the analysis of fatigue and fracture of tubular T-joints.

2.1 Hot-Spot - S/N Approach to Fatigue Life Evaluation

It is now known that a low fatigue strength in a welded joint could be traced
to the presence of stress raisers or stress concentrations around the welded regions of
a tubular joint. Thus, a proper design against fatigue failure would take into account

the stress concentration factors and the corresponding stresses in the calculation of the
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fatigue life of a welded tubular joint. The stress distributions at the joint are very
complex and are dependent on, the nature of the loading, and the geometry of the joint.
In design work, welded joints are divided into classes, each of which with its

characteristic design data. For e.g., all tubular joints fall into class "T". The class is

upon the ical ar of the joint, the direction of fluctuating

stresses, and the method of ication and i ion [Al Nwss (1985)].  The

locations where the highest stresses occur are called /ot spots. In the case of a tubular
joint, the stress concentration factor (SCF) is defined as the ratio of the hot spot stress
Oy to the nominal stress oy in the brace; hence it can be looked upon as a scaling
factor of the nominal stress.
scP = Jm @
Ox
Stress concentration factors may be determined by various methods, viz,

analytical, and i Several ic formulac for stress

concentration factors have been derived. The earliest stress concentration factor
formulae covering simple tubular joints under tensile loading were formulated by Beale
and Toprac (1967). At present, the frequently used equations are attributed to Kuang
et. al. (1975), Wordsworth and Smedley (1978), Underwater Engineering Group - UEG

(1985), Efthymiou and Durkin (1988) and Hellier et. al. (1990b).

Kuang et. al. (1975) derived formulae for non-reinforced T, K, and TK joints,

using FE models, which did not include the effects of the weld. Efthymiou and Durkin
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(1985) presented parametric equations for T, Y, and K joints, having analyzed 150 FE
models using three dimensional shell elements with the weld influence considered. The
parametric formulae, derived by the various researchers just noted, differ from one
another, which could be due to the model idealisations and the type and size of finite
clements used. A notable drawback in the derivations is the fact that the influence of
inherent defects and residual stresses are not considered.  Although an offshore
structure is fabricated carefully to prevent local distortion and/or cracking, routine
inspection of the structure during service would reveal the presence of cracks; hence
a proper analysis of tubular joints would require the use of the fracture mechanics

approach.

The stress concentration factors are basically related to the degree of ovalisation
of the chord section under the action of the brace loads. Since the stress concentration
factor depends on the type of joint and the loading, it must be verified that the formula,
which is used to determine the stress concentration factor, is for a joint that represents
the physical behaviour of the joint under review. The parametric quantities used for

the stress concentration factor are given below. Fig. 2.1 shows the geometrical

quantities.
Diameter ratio p=d/D, Chord stiffness y=DA2T
Wall thickness ratio  t=t/T,  Gap diameter p=g/D
Chord length a=L/D, Brace inclination angle =6

The geometrical parameters of the chord are indicated in simple letters while



those of the brace are referred to in capital letters.

Fig. 2.1 Tubular joint symbols

The generalised form of the parametric equation for the stress concentration factor is

given by:
SCF = Ca™ B 1™ y™ p™ sin™9 @2)

where C is a constant, and the parametric quantities are defined as above; nl, n2, n3,
n4, n5, n6 are exponents and O is the intersection angle between members. Dover and
Dharmavasan (1982) have derived simple interpolation functions for each mode of
loading, from which the coefficients for stress concentration factors could be
determined. Stress concentration factors may be obtained from tests on full scale steel

joints, small scale acrylic models or finite element analyses, but for most design and

re-certification work, the stress ion factors are esti d using
equations. Dover et. al. (1991) analyzed the statistical variability of the equations

formulated by Kuang et. al. (1975), Efthymiou and Durkin (1988), Wordsworth and



1
Smedley (1978), Underwater Engineering Group-UEG (1985), and Hellier et. al.
(1990). They used a steel joint database and concluded that the then available database,

while being adequate for some categories of tubular joints, is insufficient for many.

Having determined the stress concentration factors and the corresponding
nominal stresses, the hot spot stress of any joint could be evaluated. In the hot spot -
S/N method, the expected fatigue life is calculated first by locating the pre-determined
hot spot stress ranges under the given varying cyclic wave loadings, which are then

located on the S-N diagram (obtained from i to ine the

number of cycles for each of the stress ranges. The basic S/N curves are obtained from
a statistical analysis of experimental data and is given in a log-log plot with the stress
range Ao on the vertical axis and the number of cycles to failure N on the horizontal
axis. The fatigue life is then calculated using a damage summation law, e.g., the
Miner-Palmgren formula:

D = = 23)
where.
k = No, of stress ranges
D is the accumulated damage due to varying stress cycles
n, = No. of stress cycles in a stress block i with a constant stress range Aa; and

N, = No. of cycles to failure at a constant stress range Ac;.

Fatigue design of welded structures is based on constant amplitude S/N data.
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However an offshore structure will experience a loading that is stochastic in nature.
The development of fatigue damage under stochastic loading is termed cumulative
damage. Of the several theories that can be found for calculating cumulative damage,
the Miner's summation is much simpler and conforms with the fracture mechanics
approach. The assumption in the Miner summation is that the damage on the structure
per load cycle is constant at a given stress range and is D=1/N, where N is the constant
amplitude endurance at the given stress range. In a constant amplitude test, the failure
criterion is Dy 2 1 [Almar-Nass 1985]. An accurate estimate of stress distribution at
a tubular joint can be obtained only by finite element analysis or by strain gauge
measurements. For practical applications, parametric formulae are needed to calculate
the stress concentration factors or influence coefficients under single modes of loading.
The disadvantage of the method is that any defect or imperfection which can be
considered to shorten the life of the structure is not considered in the calculation. [t
gives us only a conservative estimate of the number of single mode cycles and is
therefore a pass or fail criterion; the method cannot be used to compute the residual life

of a component in service.

2.2 Fracture Mechanics Approach to Fatigue Life Evaluation

The discipline known as fracture mechanics was developed to explain failures
due to ductile or brittle fracture, which couldn’t be reconciled with the then
conventional design criteria available at that period. The phenomenon of fracture of

solids is complicated and depends on a variety of factors, which include microscopic
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and macroscopic imperfections where the fracture initiates or grows. The study of the
process of fracture depends at the level it is observed. At one extreme, fracture is
concerned with the rupture of bonds, which calls for a knowledge of quantum

hanics to explain the At the other extreme the material is considered

to be a homogenous continuum, which calls for the application of continuum mechanics
and classical thermodynamics to evaluate observed phenomena. The analysis of
fracture at an intermediate level involves the movement of dislocations, slip bands etc.

Hence the study of fracture is interdisciplinary and can be analyzed at three levels;

atomic, mi ic, and the i Here itis at the i level.

Central to the subject of fracture mechanics is the assumption that all materials
contain original defects in the form of cracks and voids, which impair the load carrying
capacity of the structure. If the material is assumed to fail owing to the presence of
a defect, it could be reasoned that the stress in the neighbourhood of the defect has
reached a critical value. One of the applications that fracture mechanics has in
engineering design is to determine the critical load of the structure, based on the size
and location of the defect. Therefore, an understanding of the nature of the crack in
terms of its geometry and stability is the key to understanding the mechanism of
failure. Fracture mechanics as applied to engineering is used to determine the capacity
of a structure with an inherent defect to bear a load. Thus with the new design
philosophy the following questions arise:

1) What is the maximum crack size that a material can sustain safely?



2) What is the strength of the structure as a function of crack size?

3)  How does the crack size relate to the applied loads?

4) ‘What is the critical load required to extend a crack of known size, and is the
crack extension stable or unstable?

5) How woes the crack size increase as a function of time? [Gdoutos 1990]

To answer the above questions a parameter called the crack driving force is
defined which is a function of crack size, geometry, material properties, and loading
conditions. The critical value of the crack driving force is called the fracture
toughness, which expresses the ability of the material to resist fracture in the presence
of a given crack. Inglis (1913) showed that local stresses around an elliptical hole
would be several times that of the applied stress. His investigation gave the first real
clue to the mechanics of failure, for the reason that an infinitesimally narrow elliptical
hole in the limit, could be considered to represent a crack. Griffith (1920) was the first
to investigate the nature of cracking in his work involving the fracture of glass, He
considered an isolated crack in a solid subjected to an applied stress and formulated a
basis for its extension in terms of the energy theorems of classical mechanics and
thermodynamics. He explained the size effect - the thinner a specimen of a glass rod
is, the greater is its strength - and propounded a new theory of fracture of solids. He
also discovered that the fracture strength is inversely proportional to the square root of

the crack size, in brittle fracture.
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However it was not until almost after the end of the second world war that his

theory reccived attention. It was Irwin (1958) who used the singular stress field,
derived carlier by Williams (1952) using the eigenfunction expansion method, to
introduce the concept of the stress intensity factor. What is characteristic of the stress
distribution at the base of a stationary, part through crack, is the fact that a square root
singularity exists at the crack front where the stress gradient is large [Williams 1957].
The fracture mechanics method uses the stress intensity factor to describe the elastic
stress field at the crack front. A fundamental principle of linear-elastic fracture
mechanics is that the stress field ahead of the crack is characterised by a single
parameter K. Hence K acts as a scaling factor for the crack tip stress field. This factor
is a function of the applied stress field, crack length and geometry. The stresses and

displacements ahead of the crack tip shown in Figure 2.2, derived by Irwin (1958), are

given by:
o, = K(210)7 f,(0)
) 2.4)
K r )
= == L fi(8
" [ 2E ] [ I ] 1
where f(8) and f(6) are functions of 6 in the i for stress and

respectively. K is the stress intensity factor for the corresponding mode of
deformation. Once the stress intensity factors have been determined, a fatigue crack
propagation law, such as Paris” equation, is used to obtain the number of cycles before

failure (fatigue life) in the region of stable crack growth.
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Fig. 2.2 and polar stress around a crack tip: plane stress and
plane strain states

A clearer understanding of fatigue could be had, if the fatigue life is resolved
into three characteristic stages of initiation, propagation, and fracture. Initiation is
analyzed at the microscopic level while propagation is analyzed at the continuum level.
The total fatigue life is given by:

N, = N, + N,

N, = Cycles during crack initiation

N_ = Cycles during crack propagation

Crack initiation cannot be defined precisely. For small notched components like
welded joints, it is usually assumed that N; is the number of cycles within which a

crack of an initial size - usually of the order of tenths of a mm - grows. Fatiguc
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resistance of test specimens subjected to stress reversals up to about 10° cycles is
known as low cycle fatigue, during which time it could be assumed that crack initiation
takes place. The fatigue crack initiation life N; of a notched specimen can be evaluated
by any one of the four empirical equations given in eqn. (2.5). Dowling (1979) and
Lawrence (1980) have shown that the local stress-strain approach can be used to
estimate the crack initiation life while the fracture mechanics approach can be used to
estimate the propagation life. Engesvik (1982) has suggested that the size of the region
of plasticity is of the same order as a typical grain size, i.c., about 0.01 mm and that

the initial crack size should be much greater than the plastic zone size.

Stress Method
o) (2N) Morrow (1968 )

Strain Method

g, (f'ée)(ZN,)’~§’,(2N.)‘ Socie et.al. ( 1978 )

(25)
Stress - Strain Method

Sk (G"_E%) (N + (o - 0, ) B (2N, )¢

Manson - Coffin relationship for low cycle fatigue
AE _ Tt oN 1L E (aN ¢
5 =g (2N )« 82N,

where o' = fatigue strength coefficient: &', = fatigue ductility coefficient; o, = notch
stress amplitude; &, = notch strain amplitude; o, = notch mean stress; A = A, + A,
the subscripts e and p refer to the elastic and plastic ranges in the stress-strain

hysteresis curves; b = fatigue strength exponent; c = fatigue ductility exponent.
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An accurate prediction of the fatigue crack propagation life is important to
determining fatigue life. From a design point of view, the question may be stated as
follows; determine the number of cycles that an engineering component can withstand
before a crack can grow from an initial crack size a, to a maximum permissible size
a.. Fatigue crack propagation data are obtained from the crack specimens subjected to
fluctuating loads and the change in crack length is recorded as a function of loading

cycle.

One of the earlier mathematical models of fatigue crack propagation was
proposed by Head (1953). He considered an infinite plate with the central crack of
length “a’ subjected to a sinusoidally applied stress . Modelling the elements ahead
of the crack tip as rigid-plastic work hardening tensile bars and the remaining elements

as elastic bars, he arrived at the relation;
3
a? (2.6)

where ‘a’ is the crack length, N is the number of cycles, the applied stress is o, and C,

is a constant. This can also be written in terms of the stress intensity factor by

W = CK} 2.7)

The fatigue crack propagation law, proposed by Paris and Erdogan (1963) is a
generalised equation of the one above derived by Head and is a widely used crack

propagation law, eqn. (2.8).
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— = C(AK)" 238)

where AK = K., - K, with K, and K, refer to the maximum and minimum values
of the siress intensity factors in the load cycle. The constants C and m are determined
experimentally from a plot of log (AK) vs. log (da/dN). The value of m is usually in
the range 2.5 S m < 4.5 for welded steel and is usually assumed to be equal to three,
by reason of which it is called the third power law while C is assumed to be a material
constant. Paris’ equation does not however account for the crack growth behaviour at
low and high levels of AK. As K,,, approaches the critical level K,, an increase in

crack growth is observed. Forman et. al. (1967) proposed the following:

da ___CcKy . op o Ke 29)
IN T (T-R)K.-AK X,

where C and m are material constants and K_ is the critical stress intensity factor. For

low values of AK Donahue et. al. (1972) have proposed the following:

da
— = C(AK-AK,)" (2.10
dN ( o) :
where AK,, denotes the threshold value of AK. Klesnil and Lucas (1973) showed that

the crack growth rate given below is valid in the propagation and fracture regions and

that AK,, is given by:
L8 - c(aK™ - AK,");  AK, = (1-RYAK,(0) @11

where AK,(0) is the threshold value at R=0, an< ¢ is a material parameter. Erdogan

and Ratwani (1970), Austen and Walker (1977), and Schiitz (1981) proposed
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generalized crack propagation laws, which are applicable in all three regions of crack

growth. Given below is the equation obtained by Erdogan and Ratwani (1970):

du C(1+)" (AK-AK,), K. *+ K

2 B o= om m o (2,12)

N K. -(1+B)AK Ko - K,

where C and m are empirical constants. Dowling and Begley (1976) and Dowling
(1977) suggested an equation of the form:

da m
— = C(aAJ 2.13)
dN (a7)

to incorporate the J-integral concept to elastic-plastic crack propagation. However the
J-integral cannot be applied to elastic-plastic problems if unloading occurs. Al is the

variation of J owing to a change in the effective crack length due to plasticity.

Broek (1974) concluded that many of the above empirical formulac are found
to be reasonably accurate in a limited region or for a limited set of data. Thus no
particular expression for crack growth rate will have significant advantages over the
others. Although the fracture mechanics approach has much potential, the method has
not been developed to a degree that would render it a standard failure criterion, The
fracture mechanics approach is often used in residual life calculations and is based on
a crack growing from an initial size to a critical size. This method does not usc a fixed

failure criterion.
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2.2.1 Modes of Crack Extension.
Consider a crack extending along the XZ plane through the thickness (Fig. 2.2).
Let the crack front be parallel to the Z-axis with the origin of the system of axes at the
midpoint of the crack front. Irwin (1958) drew attention to the fact that there are three
independent kinematic movements of the upper and lower crack surfaces. The
relevance of the crack extension modes is that an arbitrary crack extension could be
resolved into one or a combination of modes in the analysis. These modes are

illustrated in Fig. 2.3.

Sliding Mode II

Opening Mode 1 Tearing Mode III

Fig 2.3 The three basic modes of crack extension.

The three modes are defined as follows:

1) Opening Mode I. The crack surfaces separate symmetrically with respect to the
planes XY and XZ.

2) Sliding Mode II. The crack surfaces slide relative to each other while

symmetry and ski y with respect to the planes XY and

XZ, respectively.
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3) Tearing Mode III. The crack surfaces slide relative to each other while being

skew-symmetric with respect to planes XY and XZ.

2.3 Developments in The Finite Element Method

The finite element method is used widely, to solve two-dimensional and three-
dimensional bouadary value problems. Solutions could be derived using one of the two
types of elements which are commonly used for the purpose, viz., (i) conventional and

(ii) singular elements. The di: in using the i elements is that a

very large number of elements is needed to model the region close to the crack tip. On
the other hand, the singular elements have the requisite square root singularity
embodied in the formulation and hence a smaller number of elements could be used to
model the crack tip. Henshell and Shaw (1975) and Barsoum (1976) proposed that the
sought after square root singularity at the crack tip could be achieved by displacing the
mid-side node in an eight noded quadrilateral isoparametric element to a distance of a
quarter length of the side of the comner node where the singularity is needed; this is
achieved by requiring that the Jacobian [J] be singular at the crack tip, or that the
determinant of J vanish at the crack tip. It has also been shown that the element
contains the rigid body motion modes. constant strain modes, satisfies the necessary
conditions for convergence and passes the patch test [Irons and Razzaque 1972], which
the other special crack tip elements lack. Barsoum (1977) proposed collapsing one side
of an isoparametric element to form a triangular element with quarter point nodes. He

also showed that triangular elements possessed the same singularity in the interior as
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well as on the boundary. These elements could have either 1/+/r or 1/r singularity
while rectangular elements have a 1/y/r singularity only on the boundary. The
alternating method developed by Shah and Kobayashi (1972), and Smith (1972) uses
two analytical elasticity solutions for infinite and semi-infinite solids. The first solution
is for an elliptical crack in an infinite solid. The second solution is for an un-cracked
semi-infinite body subjected to uniform normal and shear stresses. Pian and Moriya

(1977) proposed the hybrid singular elements; they are the stress-hybrid and

hybrid elements. The ge in using these elements is that the stress
intensity factors, K;, K;; and Ky;; are obtained as part of the solution. In these elements,
the stress singularities are represented by K;, K;; and Ky, and the near field two-

dimensional stress solutions at the crack front.

2.3.1 Extraction of stress intensity factors

If the stress intensity factors are included in the finite element formulation, they
are evaluated once the problem is solved. The stress intensity factors are obtained
directly from the solution if the following elements are used: the enriched element of
Benzley (1974), and Hilton (1977); and the stress hybrid element of Tong and Atluri
(1977), and Atluri et. al. (1978). However, if any other type of element is used, the

stress intensity factors have to be derived from the finite element solution. Three

methods are used for the derivation; they are the k-opening di: method,

the virtual-crack extension method, and the force method.



2.3.2 Crack-opening displacement method

The crack opening just behind the crack front is compared with the

case to d inc the stress intensity factor. The two-

dimensional solution assuming plane strin is given below.

2.14)
2n

where v is half of the crack opening displacement at a distance of r from the crack

o
v e gAY

front. Two methods are used in the evaluation. In the first method the crack opening
displacement at the node next to the crack front is substituted in the equation above to
derive K;. In the second approach the crack opening displacement values at various
locations from the crack front are used to derive the apparent stress intensity factor.
Linear regression is used thereafter to determine the value at K, at r = 0. The
conventional finite element method of Miyamoto and Miyoski (1971) and Ando and
Yagawa (1977); the quarter point element of Barsoum (1977), and Wu (1984); and the
singular element of Tsang (1981) are used in the first method while the singular
elements developed by Henshell (1975), Boom and van Fossen (1976), and Blackburn
and Hellen (1979) have been used with the second method. The negative feature of
the approach is that the state of stress around the crack front of being cither plane strain
or plane stress has to be presupposed. Such a presupposition yields a factor of ( 1 -
V2 ) in the case of plane strain, by which the stress intensity factors differ. The plane

strain assumption is made along the crack front and the plane stress condition is



assumed where the crack front meets the free surface.

23.3 Virtual Crack Extension Method
Hellen (1975), McGowan and Raymund (1979), Blackburn and Hellen (1979),
and Hall et. al. (1979) have used this method extensively. The stress energy release

rate G is computed and the stress intensity factor is derived from it. The strain energy

release rate is given by -2U where U is the strain energy of the structure and c is half
ac

the crack length. The stress intensity factor K can be calculated from:

K (2.15)
T w
where E'is a material constant, Parks (1974), and Hellen (1975) extended the method

to analyze three-dimensional problems,

2.3.4 Force Method

The forces ahead of the crack front and normal to the crack plane are used to
cvaluate the stress intensity factors. In the two-dimensional case, the near field stresses
ahead of the crack tip are the same for the plane stress and plane strain situations.
Therefore, the use of the two-dimensional stress solution ahead of the crack tip would
climinate an assumption of the stress state. Raju and Newman (1977 a-c, 1979 a,b)
used the finite element forces ahead of the crack front and normal to the crack plane
and compared these results with those obtained by integrating the near field stresses

from the two-dimensional solution. The stress intensity factors were evaluated as in



the COD method.

2.4 Line Spring Model

The main idea of the line-spring model is the substitution of a three-dimensional

body with a part through surface crack, by a t i i body with a part-through
crack. The increase in the compliance of the member is accounted for by the
introduction of line-springs, each of which is equivalent to a single edge-cracked plate
under plane strain conditions. Fig. 2.4 gives an illustration of the concept [Akimin and
Nikishkov. 1989]. The virtue of the line-spring model is in its simplicity. It reduces
the three-dimensional problem to one of being a two-dimensional problem. The line-
spring model has been proven to reduce the time of computation in comparison with
other numerical methods. It has also proven to be useful in studying the effects of
plasticity in shell plate structures in a part-through crack problem. The linc-spring
model for surface flaws was originally proposed by Rice and Levy (1972). This
formulation is based on the Poisson-Kirchhoff bending theory for thin plates and shells.
Subsequent developments have used the Reissner plate theory to take into account the
shear in the transverse direction. However, Parks (1981) pointed out that the
discrepancy between the higher order plate theory and the classical theory is not
significant if the length of the crack is larger than the thickness of the plate or shell

(i.e., if the crack is not a short and deep crack).
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Fig. 2.4 The concept of the line-spring model

Rice and Levi (1972) analyzed a plate, ining a surface crack

through part of the thickness and subjected to tensile stretching and bending, with its
compliance coefficients being chosen to match those of an edge crack strip in plane
strain, To illustrate the strengths of the line-spring model, the problem described above
was solved using the finite element method by German et. al. (1983). With this model,
Rice and Levi (1972), Parks et. al. (1981), Delale and Erdogan (1982), and German et.
al. (1983) analyzed the surface cracks in plates and cylindrical shells. Parks (1981)
used the line-spring model to estimate the J-integral and crack tip opening displacement
for some surface cracks in plates and shells. Kumar and German (1985) used it with
the J, deformation theory of plasticity 1o obtain a fully plastic crack solution. Earlier
Dill and Saff (1978) developed the slice-synthesis model similar to the line-spring
model, which was applied to surface cracks and plates.

The limitations of the line-spring model are:

n That it can be applied to plates and shell structures only.

2) That accuracy suffers when the aspect ratio of the crack is very small. The



28
aspect ratio is given by a/c, where a is the depth of the crack and ¢ is half the
length of the crack which is assumed to be elliptic.

3) That the stress intensity factors are lower if there is a stress concentration near
the crack site, as shell models can only describe linear stress distributions

through the thickness [Du and Hancock, 1989].

2.5 Applications
2.5.1 Semi-Elliptical surface cracks in a plate

Several investigators have worked on the problem of semi circular cracks ( a/c
=1) in plates. With shallow crack depths, ie., a/T < 0.2, Tracey (1974) used the six
noded singular element with the crack opening displacement method; Pian and Moriya
(1978) used the stress-hybrid elements; Blackburn and Hellen (1979) used the fifteen
noded singular element and the virtual crack extension method while Yagawa and
Nishioka (1980) used the superposition method. The solutions obtained by these

individuals compared favourably with one another.

Newman and Raju (1979) reviewed the solution of the surface crack problem
to cover a broad range of crack growth parameters; (0.2 <a/c <1 )and (0 <a/T <
0.8 ) where a is the crack depth, ¢ half the crack length and t the cross sectional
thickness. For shallow cracks /T < 0.3, and near semi-circular cracks 0.6 S a/c < 1,
the stress intensity factors obtained by: Smith and Alavi (1971), and Shah and

Kobayashi (1972) using the alternating method; Raju and Newman (1977 a-c) using the
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finite element method; and Newman and Raju (1979 ab) using the line-spring model.
showed good agreement. The results obtained for deeper (&/T > 0.3 ) and semi
clliptical 0.2 < a/c < 0.6 cracks were less promising. The results showed considerable
discrepancies, which Newman believed was the result of improper definition of the

boundary conditions.

Parks et.al. (1981) and German et. al. (1983) analyzed surface cracks with 0.2
< ale < 0.667 with 0.2 < &/T < 0.8, Delale and Erdogan (1982) and Dill and Saff
(1978) analyzed surface cracks with a/c = 0.2 at &/T = 0.4 to 0.8 using the line-spring
method. The results obtained by both teams were reasonably consistent at the deepest
point; nevertheless the disparity between the results scemed to be the greatest at the
free surface. In addition, the results for shallow cracks were more consistent than those
obtained for deep cracks. The results were most inconsistent when a/c = 0.7 and &/T

=0.2 (short and deep cracks).

Although therc are many ways to evaluate the stress intensity factors of semi
elliptical cracks, notably the line-spring method of Rice and Levy (1972) has been
extensively applied to tubular joints and flat plates by Kumar, Gei:an and Schumacher
(1985) because it is computationally efficient. The basic method developed by Rice
and Levy for mode I has been extended by Parks (1981) and Desvaux (1985) to include
modes II and III also. They also found agreement better than 3% between the line-

spring calculation and a full three dimensional solution at the deepest point of the crack
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with an aspect ratio a/c of 0.2, in a flat plate.

2.5.2 Line spring and three-dimensional analysis of a tubular joint

Chu (1984) and Burdekin (1985) showed that the local stress concentration
affects only the stresses near the surface of the tubes where the stresses deviate from
the thin shell theory over about 20% of the plate thickness. Cracks subject to this local

stress concentration cannot be modelled effectively by the line-springs unless account

is taken of the local stress ion by using a ion factor. The devel

of a crack, growing on a curved path under the chord-brace intersection, can be
predicted by considering the orientation of a small angled kink on the crack tip which

maximizes either K, or G. The close between i and

data shows that the local stress i caused by the which have

not been modelled, has no effect on the analysis. Dover et. al. (1991) came up with

a simple relation for a wide range of crack shapes, given by the following cquation:

2 _oue7|[2] + o005 |l202 (2.16)
] T T

These ratios compare with d and i data.

Huang et. al. (1988) modelled a tubular welded T-joint containing semi-clliptical
cracks located at the chord and brace intersection which was analyzed using the line-

spring model and the virtual crack extension method. The chord and brace were
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modelled with eight noded curved shell elements while the critical region of the chord-
brace interscction was modelled using twenty noded isoparametric brick elements.
Compatibility between the bricks and shell elements was achieved using transition
elements which had cighteen, twelve and fifteen nodes produced by degenerating
twenty noded brick elements. The same joint was also modelled using eight noded
doubly curved shell elements with the cracks represented by the line-spring model. The
mesh was gencrated using commercial codes and were optimized by the method
suggested by Sloane and Randolph (1983) for the frontal solution. The models were
subjected to uniform axial force on the brace and the ends of the chord were built in.
Three crack geometries were analyzed which consisted of semi elliptical cracks with
a maximum depth to thickness ratio /T of 0.6 and 0.9 and a surface length 2¢/T =4,
They concluded that the line-spring concept of Rice and Levy provides a flexible and
computationally efficient method of calculating the stress intensity factors of cracks in
tubular joints for cracks with depths greater than /T = 0.2; the computational effort
being comparable to determining the hot spot stress concentration by shell analysis.
The line-spring, and the three dimensional solutions yielded results that were consistent
to within 3.5% at the deepest point and showed good agreement along the whole crack
front; shallow cracks showed similar results with a discrepancy of 2.5% at the deepest

point,

2.6 Stress Intensity Factor Evaluation

Central to the application of linear elastic fracture mechanics in fatigue analysis
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is the determination of the stress intensity factor ranges. Stress intensity factor
solutions are now available for a wide range of geometries, e.g.. Special Technical
Publications by the American Society for Testing and Materials [ASTM Standards
1981]. Unfortunately, the available solutions to evaluate the stress intensity factors
prove inadequate where a structure has a complex geometry and loading. Thus there
is a need to develop simpler and inexpensive methods, even at the expense of being

less accurate than the established methods.

An equivalent stress intensity factor based on the energy release rate is defined

ETRE
K, = [K.’ K :"V)] @17

for a mixed mode fracture problem, where K;, Ky, and K, are the stress  intensity
factors for three independent modes and v is the Poisson’s ratio. Rhee ct. al. (1991)
developed an empirical formula by which the stress intensity factor solutions at the

crack front point on a curved tubular surface could be evaluated and is given by:

K, = F(p.v.a"¢') o, fra (2.18)

where a'=a/T, ¢'=3c/d, T=UT, y=D/2T. 3=d/D, a is the crack depth, T is the chordal
thickness, ¢ is the crack length, d is the brace diameter, t is the brace thickness, D is

the chordal diameter, o, is the nominal stress and F = F,F,F,. F, is the joint gcometry



factor, F, is the crack size factor and F; is the joint and crack coupling factor.

Haswell and Dover (1991) found out that the stress intensity factor solutions for
tubular joints are influenced by the degree of bending and crack shape assumptions.
Pook et. al. (1992) observed that: (i) mixed mode loading may occur when a crack
developed under forces acting along one axis is subjected to a force applied along
another axis, and (ii) mixed mode stress intensity factors cannot be determined
analytically and that numerical mecthods could prove costly. Consequently the
approximate mixed mode stress intensity factors for part-through cracks in tubular
welded joints could be modelled as warped part-through surface cracks for Mode I and
approximations for Modes II and III could be based on the exact analytical solutions

for an elliptical crack in an infinite body.

The general formula for the stress intensity factor of edge cracks in two
dimensions is given in eqn. (2.17). Dijkstra et. al. (1993) show that

K= [Mn M, 0, + My, M, 3] V/(7a) 217

where M, is the stress intensity concentration factor for the influence of the weld

geometry, M is a correction factor for a flat strip or plate and indices m and b are for

More i ion on how to ine the

and bending, resp!
geometrical correction factors M and M, can be found in the studies of Dijkstra et. al.
(1989), and Van Straalen and Dijkstra (1993). Ritchie and Voermans (1985), and

Kristiansen and Fu (1993) analyzed surface cracks in welded tubular joints. The values
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obtained along the crack front showed good agreement between estimated and

computed values except at the free surface. The latter concluded that: (i) the stress

k, (free surface point)

intensity factor ratio o = is affected by various factors in

k, (The deepest point )
particular by the weld notch stress concentration; (ii) in tubular joints an increase in the
stress intensity factor occurs in a limited free surface region. which they attributed to

the curved crack configuration and varying stress distribution along the joint

and (iii) the di: approach could give reasonable approximations
if it is used with a detailed three dimensional mesh. Nwosu (1993) verified that with
suitable modifications and the correct contact algorithm, the use of line-spring clements
was found suitable for evaluating the stress intensity factors in tubular welded joints.
Bowness and Lee (1993) concluded that a cracked T-joint model, in which chord saddle
cracks were simulated using line-spring elements was successfully validated against

existing experimental and three dimensional results.

2.7 Fatigue Life of Tubular Welded Joints

The phenomenon of fatigue crack initiation which is studied at the microscopic
level is a very complicated problem and a few quantitative theories have been proposed
for its study. Fatigue cracks generally occur at localized high stress concentration
regions where the stress exceeds the yield stress of the material. Since the loading in
the brace is an axial or bending load, the weld toe crack propagation will be

predominantly the opening mode. Dover and Dharmavasan (1982) showed that the
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cracks present in tubular joints grow steadily through the wall thickness at a fairly
constant rate. Wylde and McDonald (1981) showed that cracks of size 1 to 3 mm were
present at less than 10% of the total life of a welded tubular joint. de Back and
Vaessen (1981) showed that initiation life is about 30% of the crack-through life for
a tubular T-joint. For a case of axial loading Munaswamy et. al. (1987) showed that
the crack initiation life was about 34.6% of the total life in air at 250 MPa (hot spot
nominal stress) and 46.6% in simulated sea water at 160 MPa, Yagi et. al. (1991)
investigated the effect of thickness in welded steel joints and observed that the
thickness had the largest effect on crack initiation, whilst having little effect on crack
propagation. Bell & Vosikovsky (1992) pointed out that many cracks initiate along the
weld toe and grow into one another to form fewer and larger cracks. Hence the actual
shape of a crack is governed more by coalescence rather than by crack growth of a
single elliptical crack. It was also found that coalescent life was a significant
percentage of the propagation life. To estimate the contribution of crack coalescence
in the propagation life, an empirical crack shape development function was developed

and given by:

2.em (2.18)
c

where k is a function of the stress level and weld toe geometry. Nwosu (1993)
concluded that the ratios of crack initiation life to total life range from 13-26% for
axially un-stiffened tubulars, from 34-55% for in-plane bending loads, and from 12-

24% for out-of-plane bending loads, and that the local strain approach could be used
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successfully to predict the fatigue crack initiation life of tubular welded joints. Skorupa
and Skorupa (1993) studied the fatigue crack initiation period of welds in structural
steels failing at the weld toe. For their study, they analyzed a cruciform welded joint
in mild steel subjected to axial stresses. They concluded that: (i) in the presence of a
high positive notch mean stress, the fatigue crack initiation life N; estimates based on

low cycle fatigue provided inconsistent values; and (i) only the two stage approach,

enables sati: y iction of the total life

which includes ini

tion and p

in both, sound and under-cut welds. Pang (1993) modelled and analyzed the behaviour
of semi-elliptical crack coalescence and growth. A comparison between the
computational result and testing showed that at low stresses there was good agreement,
while the same could not be said for higher stresscs, although the computed life was
conservative. Tos et. al. (1993) used two models of a welded joint with multiple semi-
elliptical cracks to model the crack shape development; they observed that: (i) while
the multiple crack model provides a better simulation of crack shape development and
fatigue life, both models were found to under-predict the fatigue life when the total
stress range was used in the integration of Paris’ equation; and (ii) differences in crack
shape development are largely responsible for the differences in the predicted lives
between the forcing function simulations and the multiple crack simulations. Bucak
et. al. (1994) showed that the hot spot stresses affected the development and
propagation of cracks in welded hollow joints. They considered several forms of
cracks to analyze the crack propagation pattern changes and proposed a modified

cumulative damage rule.
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2.8 Summary
The literature that has been reviewed relates to the developments in the
application of the finite element method and the application of linear elastic fracture
mechanics for assessing the fatigue life of a cracking tubular T-joint. It has also been
observed that since the line-spring elements do not model correctly, the nonlinearity of
surface stresses around the crack or singularity region, the results obtained by them are
not good around surface penetrating zones. Also for short and deep cracks the line-
spring clements do not give good results, The subsequent chapters describe the
application of the line-spring model to a tubular T-joint subjected to an axial load. The

cracked structure has been modelled using line-spring elements.



38
Chapter 3

Theoretical Background

3 General

The analysis of tubular joints would require the methods used in the analysis of
shell structures. A shell is the **...materialisation of a curved surface'" [Fliigge (1960)],
in which the normal stress through the thickness is considerably smaller than the in-plane
stresses and thus is neglected in the analysis. While analytical solutions available for
shell structures are limited in their application to the many and varied joint design
situations, the finite element method has evolved to be a proven numerical technigue.
The possible type of elements that could be used in the finite element analysis could be
broadly categorized as:
1) Thin shell elements (Kirchhoff assumptions);
2) Thin/thick shell elements (Reissner-Mindlin theory);
3) Three dimensional elements;

4) Modified or degenerated three dimensional elements;

The constraint imposed in the Kirchhoff theory is that the normal to the shell's
reference surface remains normal throughout the deformation phase. In the Reissner-

Mindlin Theory, shear flexibility is assumed, which is to mean that the normals at the
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top and hottom surfaces may not lie in a straight line during deformation. Three
dimensional elements give improved modelling at the tubular joint intersections and have

been used to model the joint along with the regular thin shell elements. In the modified

three dimensional category, the most is the
isoparametric element, in which the three dimensional stress and strain conditions are
degenerated to shell behaviour. This was originally introduced by Ahmad et.al. (1970).

There are many kinds of degenerated elements, which are used in the linear and

nonlinear analy:ss of thin or thick shells [Hinton and Owen, 1984]. Degenerated

clements need only C° inuity of di across the inter-el t

compared with other elements based on shell theory. Hence it is advantageous to use
such elements in estimating the stress intensity factors of tubular joints. The eight noded
degenerated serendipity shell element, shown in Fig. 3.1, is one such element that has
been used by many in the analysis of tubular joints; hence that element is used in this
investigation. The degenerated element was improved considerably by the reduced
integration method, with the intention of avoiding the incidence of "self locking" [Wu
and Abel, 1991]. The assumptions in the formulation are:

1) The normals to the mid-surface remain normal throughout the deformation stage.
2) The strain energy corresponding to the stresses perpendicular to the mid surface

is di: i.e., they are ined to be zero.

Five degrees of freedom are considered at each node, consisting of three

translations and two rotations. The two rotational degrees of freedom correspond to
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rotations about the two surface axes.

Fig. 3.1 The degenerated isoparametric element, [Hinton and Owen, 1984]

3.1 Coordinate Systems
In defining the geometry of the element, four coordinate systems are employed;
they are,
1) Global coordinates
2) Curvilinear coordinates
3) Nodal coordinates

4) Local coordinates

Giobal coordinate system
The global coordinate system (x, y, z) is a cartesian orthogonal system and is

located at a conveniently chosen point.

Curvilinear coordinate system.

The curvilinear coordinate system is a cartesian system, in which £, 7 and { are
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a set of orthogonal axes. £, 7 are in the middle plane, while ¢ lies in the thickness
direction. The element is bounded by surfaces given by equations £+1=0; y£1=0;

¢+1=0. Fig. 3.2 shows a typical element and its disposition in relation to the axes.

Nodal coordinate system

The origin of the nodal coordinate system is located at the i node on the mid-
surface and is a right-handed system of cartesian coordinates. Such an arrangement is
shown in Fig. 3.3. As an infinity of vector directions normal to a given direction can
be generated, one particular scheme has to be decided upon. Schemes other than the
described below are quite possible. A vector V), is derived by taking the vector cross
product between the unit vector zlong the global x axis direction and Vy, i.e., Vy; =i
® Vi Vyi={%}op - {%:}onom Where p=1,2,3 is a tensor index used instead of the
conventional i. V is constructed so that Vy;, Vy, V,; form a right-handed cartesian
coordinate system. Ifi ® Vy, = 0; then v, = j ® Vy, i, and j are unit vectors in the

global x and y directions; i denotes the ifh node.

Cuvilinear Coordinate

AiJ
L ax Global coordinate system

Fi.g 3.2 The curvilinear coordinate system of a shell element and its disposition to the
global axes [Zienkiewicz 1977]
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Tocal coordinate
system

Global coordinate system Nodal coordinate

Fig. 3.3 The i systems and it i for a
isoparametric element [Zienkiewicz 1977]

Local coordinate system
This is a cartesian system of coordinates defined at the sampling points wherein
stresses and strains are to be calculated and is shown in Fig 3.3. The axis perpendicular

to the surface termed 2z, is taken per i 10 the surface {: ; the other two

local axes x’ and y' are ined to complete an triad. Such a coordinate

system is used to calculate the stresses and strains at the sampling point.

3.2 Element geometry

With reference to Fig. 3.2, the external faces of the element are curved, while
the sections across the thickness are straight lines. The curvilinear coordinate { is
approximately normal to the mid-surface, since it may not lie in the thickness direction.
The global coordinates of the top and bottom points that correspond to a given node on

the mid-plane surface are used to define the element geometry. In the isoparametric
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formulation, the coordinates of an arbitrary point are given in terms of the nodal
coordinates and shape functions. A relationship between the global and curvilinear
systems for any point within the element is given by:
; (1+¢) : (1-1)

(%) = E. N, (£m) LTS ;‘ N,(&m) L x, )
where N; is a shape function that takes the value of unity at node i which is a node on
the edge of the mid-surface as shown in Fig. 3.3. The number eight denotes the number

of shape functions, p is a tensor index, used instead of i. Alternately the above equation

can be written in terms of the mid-surface nodal i and the vector

the top and bottom points, which gives the directional thickness, as shown in eqn. 3.3.
8 8

(%) = 20 N8R (% g 3 NilE) 4V, Y
ot =

VJ,={xp)w—(xp }mei(hp=1.2.3.

3.2.1 Displacement field

The assumption that the strains in a direction normal to the mid-surface are
negligible, suggests that the displacement of an arbitrary point could be defined by the
translation of its associated mid-point, and the rotation of Vy vector, as indicated in
Eqn.(3.1). o, and B, correspond to the rotational degrees of freedom about the mid-

surface axes. The element displacement field could then be given by:
@

{u,} = ﬁ N, (£m) {u, )md”w # "Ex Nr(E"’)'l;["m = Vy) 3.4
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where vy, vy are the column unit vectors, h; is the shell thickness at node i and «,. and

; are the scalar rotational quantities as shown in Fig. 3.3, p=1,2,3 is used as before.

3.2.2 Stress-strain formulations

The stresses corresponding to the strains are defined by matrix ¢’ and are related
by the elasticity matrix D', ¢’ and oy’ represent initial strain and stress states. The
matrix D’ includes elastic components for an isotropic material; it could be modified to

include anisotropic properties as well.

0.
a,
o =t t = o = D(e-eb)+ap 6.5
L
Tyt
'
€ Wy
.
€, u,,
€ = YV o= Julpruly, 6.6
Ve ulyyruly,
Yyrer u'yyruly,
where u’, ¢ are the di: and strains in the local i system

and €'y,=0, since the stresses are negligible in that direction.
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E and » are the Young's modulus and Poisson's ratio, respectively. The factor k is
included to improve the shear deformation approximation, which is seen to be somewhat
linear, when in fact for homogeneous cross-sections, the shear stress distribution is

known to be parabolic.

3.2.3 Element properties and transformations

Matrices that involve element properties consist of a volume integral which in its

general form is given by I Sdxdydz- The matrix S is a function of the coordinates.
The stiffness matrix, for example, is given by S(£, n, {)=B"DB where B is the strain
shape function matrix, and D is the elasticity matrix. To determine the stresses and
strains in terms of the local coordinates, two transformations are necessary.

b} Curvilinear to the global system

2) Global to the local system

The first transformation for the displacement is given by:

v, =001y, 1 3.8

This equation relates the displacements U, given in terms of the global coordinates to
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the displacements U, , given in terms of the curvilinear coordinates. The components

of the matrices U, and U, are the of the di vectors

as row vectors, given in terms of the two coordinate systems. [J] = Xiis

1. where
Jis the Jacobian and X, are the components of a matrix containing the position vector
of an arbitrary point within the element as row vectors, being functions of (¢, n, {).

The derivatives of the displacement components in the global direction are now

transformed to functions of the local coordinates by the transformation:

tv,,l1 =[el"ly

P

1061 3.9

'
pip

where U’ and U are the components of the displacement in the local and global
coordinate systems, respectively. The matrix 6 is formed by the unit vectors along the
directions of the local axes x', y', z', i.e., = [ v',, v', v'; ]. The strains are

derived from the displacements by the relationship:

4

aj Y%

¢ =B'{.p; af=1w
i @.10)

a, o

B,

where i takes the values from I to 8, 8 being equal to the number of nodes; 2 denotes

the i* node of an element e [Zienkiewicz 1977].
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3.3 Crack initiation

Fatigue initiation is a process of cumulative plastic strain, which is associated
with the movement of dislocations that takes place more at the surface than in the bulk
of the material. Hence, fatigue initiation is a surface phenomenon although exceptions
have been observed, in which case initiation takes place within the material, as in e.g.
carburized, case hardened steels. Fig. 3.4 shows such a formation as a result of cyclic
stress. Fig. 3.5 shows the stress-strain curve for such a cyclic loading. The total strain
has been shown in terms of the elastic and plastic components, of which Ae, quantifies

the permanent deformation [Almar-Nass 1985].

Dowling (1979) proposed a method to estimate the total fatigue life of a notched
component. This method combined the local strain 2pprozch to predict crack initiation
life and a fracture mechanics approach to predict the crack propagation life [Bannantine
et. al. 1990]. Crack initiation behaviour is not amenable to the laws of fracture
mechanics; hence its life cannot be evaluated by such means. Dowling proposed that
when the length of the crack is smaller than the extent of the notch stress fieid, the
strain-life approach could be used to determine the crack initiation life or early growth
from a notch. Several factors affect the strain-life such as heat treatment of metals,
mean stress effects etc. [Bannantine et. al. 1990]. It has been observed that the crack
initiation life becomes significant in the total life of the joint only in the event of small
wall thickness, post weld improvements etc. The Manson - Coffin’s equation, given

below in eqn. (3.11), will be used to determine the initiation life.
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Ae 9/ ' <
5 T’(ZN’)I’ + ¢/ (2N @10

The four coefficients required for this analysis, viz., o', €, b, and ¢ are coefficients
whose values will be determined from the results obtained by (lida 1987) for tubular
joints whose chord thicknesses are in the range 0 - 10 mm. o', is the fatigue strength
coefficient, b is the fatigue strength exponent, c is the fatigue ductility component, €'
is the fatigue ductility coefficient, 2N, is the reversals to failure or the initiation life, Ae

is the total strain amplitude, and E is the modulus of elasticity.

! |
P
g 7 ,-;’. //- Extrusion
5 (7 g 17 |z
e /7 3
9 =2 o We
‘ i Intrusion

Fig. 3.4 The development of permanent slip bands, caused by plastic flow [Almar-Niss

=

Fig. 3.5 Cyclic stress-strain response [Almar-Nass 1985]
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3.3.1 Fatigue Crack Growth Formulation
Fracture mechanics is the discipline concerned with the study of cracks and their
behaviour. Under the assumptions of linear elasticity valid for fatigue crack growth
problems, the stress intensity factor characterizes the crack tip behaviour. It has been
shown that the energy available for fracture or the crack driving force is directly
proportional to the square of the stress intensity factor. It may be expected therefore
that under fatigue loads, the fatigue crack growth rate will be governed by the variation

in the stress intensity factor AK during the load cycle. The application of fracture

mechanics approach to crack ion life ion requires ining of the
stress intensity factors at defects. In tubular T-joints, the most likely area for the
presence of defects would be the hot spot zone of the weld toe regicn. Before the stress
intensity factor at a defect could be evaluated, the following have to be known:

1) Crack position

2) Interaction of adjacent cracks

3) Crack profile

4) Residual stresses

Even though multi-nucleation sites are observed during the crack initiation life

of a fatiguing structure, only one crack becomes a dominant crack (with an

approximately elliptic profile) during the of these multi ing crack
sites; hence only a single crack will be considered in the computation of the crack

propagation life of the T-joint. The single crack location or position will vary depending
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on the type of applied load/loads acting on the tubular joint; the tendency to crack will
mainly depend on the magnitude of the stresses experienced around the maximum
stress/strain concentration region of the weld toe, known as the hot-spot, (this region will
be determined during the stress analysis phase of the computation). The residual stresses
present in the hot-spot region of the weld toe will generally be compressive on the
surface of the hot spot region, due to the differential cooling process; hence it will not
have any significant influence on the fatigue life of the tubular joint. The factors
considered in this study do not take into account the environment and its effects, which

in the case of marine envi could be si as well as

3.3.2 Line spring model for the evaluation of stress intensity factors

The line spring element has been used to model a crack at a cracked site. This
model has proven to be a relatively simple and efficient one for detcrmining stress
intensity factors. Rice and Levi (1972) introduced the model by which a surface flawed
plate, exposed to far field tension and bending, was analyzed within the context of the

two dimensional generalized plane strain and plate bending theory. The part through

cracked section is as an of the two di i edge cracked
elements; the middle surface of the plate on one side of the line spring is free to displace
and rotate relative to the middle surface on the other side, as shown in Fig. 3.6. The
magnitudes of separation due to the cracked region, along the middle surface of the plate
is expressed in terms of a displacement 8, and a rotation 6, at any point along the crack

line and are functions of the tension N and the bending moment M per unit length,
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transmitted at that point. This force N and the bending moment M are related to the
displacement & and rotation by linear spring coefficients (compliances) called line
springs. The cracking that follows the application of this tensile force and moment is
called mode I cracking. The aim of the line spring model is to avoid a complete three
dimensional analysis of a surface cracked component which would, if it were not
cracked, be considered as a shell structure. The first step is to take into account the

local loss of stiffness of the shell due to the part-through crack. To evaluate the

dditional i 8 d by the crack, a ison is made between a cracked
and an un-cracked strip under plane strain conditions. For a given loading (N, M) and
crack geometry (a, t, H), the deformation of (8, 6) caused by the crack is defined as:
5 =6-b, (3.12)
6.=0-0,
where the subscripts ¢ and nc stand for a crack and no crack situation. &, and 6, refer
to displacements in the crack plane, which can be expressed in terms of the end moments
and forces by means of a compliance matrix C; C is a function of (a/t), and represents
the influence of the crack on the local stiffness of the shell. Parameters a, t and H are
the crack depth, plate thickness in the direction of the crack and the distance of the crack

respectively, from the loaded end as shown in Fig. 3.6.

o N (3.13)
[ 1ol



Fig. 3.6 The crack mode I for using line spring element

The first assumption in the line spring element is that the surface crack can be
represented as a continuous line of springs, having bending and tension stiffnesses that
depend on the local crack depth. The second assumption is that at a given cross section
of the part through crack, the stress intensity factor is equal to the corresponding stress
intensity factor of an edge-cracked strip under the same tension and bending forces. The
relationship between (N,M) and the displacements (5, 6,) for mode I deformation is

given in terms of the compliance matrix C:
la,
B (3.14)

o
c.2t-A) [ ™ g
E 7% %

T
The coefficients oy have been derived by various authors, using the energy compliance

relations, which are polynomials in X = a/t. The relevant equations are:

2% . z3FF @.15)
a [
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“w.(x) = XY CoXe (3.16)
"
"
F(X) = X}, D"X" (3.17)
w0
C, and D; are ients of the pi ial o; and Fy respecti . Such

could be derived from polynomial fits of finite element results obtained for edge cracked
strips with various a/t ratios, or by using the energy compliance method, [De. Langre
and Ebersolt, 1987]. While considering the surface crack as that due to the assemblage
of a number of edge-cracked plane strain specimens, as shown in Fig. 3.7, it must be
borne in mind that the variation of the bending stresses along a single edge-cracked strip

introduces transverse shear and the variation of the bending moments and axial forces

between the various edg ked i i shear across thy il This
will cause two additional modes of cracking known as mode II (shear) and mode IIT
(torsion) cracking as shown in Figs. 3.8 and 3.9. Hence a proper analysis must consider
all three modes of cracking. The stress intensity factors, which result from tension,
shear and twisting are represented by K, Ky, and Ky, respectively; these have been

obtained by Tada (1973) and Desvaux (1985), as follows:

KI:JH[F,[%]%‘F,[;]%] 3.18)

K, = 7/7a F, [E] Q1)

t



@3.2n
Kig =2Q

Ky = -2 [2% [%]Ic(w»%]

v "
_ ma, _ . [ sing
y=T2 Gy = ‘[amsm’m]dw

3.22)

where 0, = N/t, 0, = 6M/t%, and Fy(a/t), Fy(a/t) are the tension and bending shape
functions. 7 is the shear stress, which could be approximated to V/t, where V is the
shear force. The stress intensity factor for mode II is made up of a shear component
and a twisting component whose contributions are denoted by K, o, and Ky, where Fy,
is shape function for mode II deformation, Q and T are the shear force and twisting

moments, respectively [Desvaux, 1985].
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Fig. 3.7 The basic idea of the line spring model [Akimin and Nikishkov 1989]
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Fig. 3.8 Mode II deformation due to shear

Shoa forca ving ot

Fig. 3.9 Mode III deformation due to shear and a twisting moment

3.3.3 Implementation of the Line Spring
It has been observed that in a tubular T joint subjected to an axial tensile force,
stress concentration is greatest at the saddle of the weld toe. The saddle region, being

the critical one, would be the most likely location for crack initiation. Therefore, in
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determining the stress intensity factors with a view to determining the fatigue life of the
crack, it is important that the crack be located where the stress concentration is greatest.
The line spring is used along the through-crack line between two rows of elements and
represent the stiffness of a crack at that point; the line spring element will have the same

nodes on either side of the through-crack line. Fig. 3.10 illustrates such a layout.

~
~ N —
—_—
TS = shell slements
\/ N s Y/
N N, 2
AT A
N AN _ - —
7 -, - =
7 )\/ Saction A-A
" - \
typical line spring elemen
\
10
z Shell d Ihrough crack line
20
y )
" nodes represerting ¢
X
Shell e g OPPOSte side 3

of crack

Fig. 3.10 The layout of the line spring clement [Hibbitt et.
al. 1989]
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3.4 Fatigue Crack Growth Model
The stress intensity factors used to compute the fatigue life are those evaluated
at the deepest point, which in the model occurs at the saddle. The line spring model has
been shown to give excellent results for flaws which aren’t too deep nor too shallow
[Hibbitt et.al. 1991]. The fatigue crack growth by crack depth a and the load cycle N

could be related to the stress intensity factor range AK by Paris’ equation:
42 c(ag)" (3.23)
dN
where C, m are crack growth constants. A typical schematic plot of da/dN vs AK is
given in Fig 3.11. Growth law corresponding to region II would be used to evaluate

propagation life of the joint. dﬂ% is the change in crack depth per cycle N. The fatigue
life is given by:

& I da (3.24)
. C(aK)"”

where a; and a, are the initial and final crack depths, respectively.
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Fig 3.11 Schematic of da/dN vs AK plot [UEG 1985]



Chapter 4

Stress Analysis of Tubular T-Joints

4 General

The analysis of the stress and strain distributions of any structural component
would help in highlighting to the designer critical design locations; in the case of a
tubular T-joint subjected to axial tension, it has been shown that the weld toe region
present in the T-joint intersection is the critical region and that the saddle point of the
weld toe has the largest stress. Such maximum stress values have been defined in terms
of parametric design equations, which have to be determined experimentally for the
configuration that is of interest; such a procedure could prove to be an expensive one.
A viable alternative to such a method would be to model the configuration and analyze
it numerically, which is purpose of this study. Fig. 4.1 gives the configuration and the

table below gives the joint parameters, of the T-joint used in this study.

Joint Parameters

Type of joint | D mm T mm

B
i
ole
4

N
No
O

Tee 508 6.35 0.5 1 40 7.2




59

Dimansions in mm
=254

wall thickness t = 6.35
1=1219

wallthickness T = 6.35

L=1829
Fig. 4.1 The geometry of the T-joint

4.1 Mesh Generation

The mesh for the tubular joint was generated using the features made available
inthe "ABAQUS" finite element program. The joint itself consists of three components,
namely, the plug, chord, and brace. Fig. 4.2 shows the model components of a tubular

T-joint,

Fig. 4.2 Model components of the T-joint
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It is somewhat obvious that while a fine and uniform discretization would yield good
results, the problem itself would become computationally inefficient and unwicldy.

Such considerations would lead to suggest that a discretization in which a fine mesh is
obtained in an area of interest and a coarse one elsewhere, would be optimal; hence a
fine mesh was used in the weld toe area. The aspect ratio of these elements around the
weld toe, was maintained at near unity. The aspect ratio is the ratio of an eclement’s
height to its length. Care was also taken to avoid excessive distortions of the clements
away from critical areas, which would lead to erroneous results. The transition from
a fine mesh to a course one, was made to be gradual. The curved surface of the chord
was developed in a local coordinate system as a rectangular planar surface and then
mapped as a cylindrical surface to the global coordinate system. The chord and plug
were discretized to having a fine mesh near the weld toe with the degree of fincness
diminishing from it gradually, as one moved away from the weld toe. The plug and
chord consisted of two regions of mesh. The first region "A" consisted of the mesh
between the plug and an almost square region with circular arcs for its sides. The
second region "B" was the mesh between such a square and the edges of the rectangle.

Fig. 4.3 shows such a layout.

The brace was generated as a cylindrical surface in the global coordinate system
with similar modelling considerations in mind. The half model was developed first,
from which the full model was derived using the features for copying nodes and

elements. The half model was used to analyze symmetric behaviour and the full model
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was used to study asymmetric behaviour. Three types of elements were used to model
the joint; the eight noded isoparametric element with five degrees of freedom per node,
and the six noded shell triangular element with five degrees of freedom per node. The

six noded line spring element was used to model the crack.

Fig. 4.3 The finite element discretization of the chord

4.1.1 Boundary Conditions

For the half model, all nodes at the end of the chord were constrained i.e., all
the degrees of freedom for such nodes were made to equal zero. The nodes on either
side of the brace and top and bottom-most generators of the chord were constrained to
possess symmetry about a plane perpendicular to the Y axis, which in terms of the

degrees of freedom are; u, = u, =u, = ¢, =

¢, =0Oandu, =¢, = ¢,=0,
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respectively. The nodes at the top end of the brace, upon which the axial load bears,
were constrained for rotational degrees of freedom. The full model of the tubular joint
was also constrained similarly, except that the side nodes of the brace did not warrant

any boundary conditions.

4.1.2 Loading
The axial load was applied as a tensile and concentrated load at each node to the

top most nodes of the brace, according to the foliowing equation:

1
F J Ndx = % 4 5 where F = gyt is the force acting on an unit element, N, is
1

the shape function for a quadratic element and / is the length of an element, along which

the load acts. g is the applied stress in the top of brace.

4.1.3 Convergence

Convergence tests were carried out to determine an optimum number of divisions
at the intersection. It was found that stress concentration factors obtained for sixteen
divisions at the intersection - for the quarter model, compared favourably with the results
obtained using twenty four, thirty two and forty divisions. The results are given in Fig.
4.4. These results were also generated for the tubular T-joint used in an earlicr
experimental program [Munaswamy et, al. 1987] and the experimental values compared

with the values obtained. Fig. 4.5 shows the computed and experimental values.
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Fig. 4.5 The computed stress concentration factors for an earlier test model Munaswamy
et.al. [1987]

4.2 Stress Analysis of a Tubular Joint

The stresses around the joint are analyzed to determine the regions of high
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stresses where a crack would most likely grow although the presence of a crack would

depend on a number of other factors. Stresses arise from three main causes:

n The nominal stress; this is the response of the joint to the applied load.

2) Deformation stresses; these stresses arise to maintain continuity at the intersection
as the tubular walls deform.

3) Notch stresses; these stresses are i ata i i inuity, such

as that found in the welded and cracked regions.

Nominal Stresses

Nominal stresses are the stresses applied to the member (in this case, the brace)
due to the externally acting loads. Depending on whether the applied load is an axial
or bending load, the magnitude of the nominal stress is computed by dividing the applied

load or moment, by area or sectional modulus, as the case may be.

Deformation Stresses

In a tubular joint subjected to an axial load, the tendency to deform is more at
the saddle than at the crown for a given axial load. This allows a greater portion of load
to be distributed to the saddle region, which is necessary to maintain structural
continuity. Thus, the stiffness varies from crown to saddle, which gives rise to a

maldistribution of stresses around the weld toe region as shown in Fig. 4.6.
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Notch Stresses
Notch Stresses are the result of a geometric discontinuity in a tubular T joint.
The section changes abruptly at the weld toe, which gives rise to notch stresses (UEG
1985). Fig. 4.6shows the maldistribution of stresses in a typical T-joint under an axial

tensile load.

NOMINAL STRESS [HTFFT

REDISTRIBUTION OF STRESSES
AT THE WELD TOE

GWN
/

u

Fig. 4.6 Maldistribution of stresses at the weld toe
In analyzing the stresses around the weld toe, three situations have been considered:
n The stress distribution in the absence of a crack
2) The stress distribution in the presence of a symmetric crack

3) The stress distribution in the presence of an asymmetric crack

4.2.1 Stress intensity factor evaluation

It would scem to model the line-spring where the stress

factors derived from the finite element computation compare closely with those obtained
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from parametric formulae. The parametric stress concentration factors could not be
determined for the joint since the parameter v did not fall within the prescribed limits
for which the most of the available formula held good; hence a comparison was not
available for the SCF computed for the joint. Thus, the line-spring elements were
modelled at the intersection, where the stress concentration factor was greatest, as shown

in Fig. 4.7.

CHORD ELEI‘ENTS/ UINE SPRING ELEMENTS

Fig. 4.7 Line-spring elements at the intersection

The line spring element was used in this study as the finite element idealisation for
modelling a semi-elliptical crack. Twelve elements were placed symmetrically about the
saddle point at the intersection to represent the crack. The crack was modelled on the
shell surface with the depth of the crack perpendicular to the surface. The crack was

defined as being positive or negative according to the convention shown in Fig. 4.8.
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‘Positive' Crack
(Open on +N surface)

e
ﬁ
"Negative' Crack
(Open on -N surface)
Fig. 4.8 Sign convention for crack orientation
The method by which the line spring is made to be an integral part of the model is
shown in Fig. 3.7. The crack was modelled as a semi-elliptical crack whose major axis
equalled the length of the chord joining the two extremities of the crack. The projection

of the length between nodes at the intersection on the major axis was taken to be the

position along the axis, for which the depth was calculated.

The stresses obtained were given in a local coordinate system, whose local axis
Sy, at a given point is defined as the projection of the global x axis onto the shell
surface. Sy, is derived in such a manner that the normal to the surface and S,,, i.e., the
projection of the global x axis onto the surface form a right handed orthogonal
coordinate system. Should the global axis be normal to the shell surface, the local 1 -
direction is taken to be the projection of the global z axis onto the shell surface. Fig.

4.9 shows such an arrangement.
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Projection of x-wos
ono sudace.

Fig. 4.9 The orientation of the local 1-2-3 axes

To compute the radial and tangential stresses, an expression was derived for the

angle B between a radial line emanating from the plug and the generator of the chord

given by:

arccos Asindcose ; where R, r, 8, and ¢, are as shown in Fig. 4.10, and
R+ sin’0 cos’¢

cosf  sing

Fig. 4.10 The definition of the angle 8
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4.3 Results and Discussion
Tie stress concentration factors for the T-joint were computed for the brace and
chord respectively. It was clear that the chord had the larger stress concentration factors
than the brace, which meant that the crack would initiate at the chord weld toe region

of the intersection, Fig. 4.11. Hence, only the stresses at the chord end of the

intersection would be of interest.

4o Stros conoontraton tactor

CHORD.

BRACE

Fig. 4.11 Stress concentration factors for uncracked chord and brace

The radial and tangential stresses were the preferred stresses to work with instead
of the principal stresses, because it was deemed that in dealing with the principal
stresses, the stress orientation would need to be known; this would leave one with less
physical insight into the stress distributior: than a stress system based on a curvilinear
system that would take into account the geometry of the configuration. For the
symmetric case the radial stresses at the intersection reduced greatly as the crack grew

in depth around the weld toe region, while the tangential stresses increased with



70

increasing crack depth as shown in Figs. 4.12 and 4.13, respectively.

Stress ratio - radial stress / nominal stress

s AVEREEE S RO U b
1 mm - crack depth
30 -
m
- 2m
“emm
4mm
5mm
0 258 |
6mm
B -
%0 675 4 25 0 225 45 675 %0
The angle ind the weld toe , int - in de

Fig. 4.12 Radial stresses at the intersection, for various crack depths

Stress ratio - tangential stress / nominal stress

\ |
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increments of 1 mm

o+
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‘The angle around the weld toe, measured from the saddle point - i degrees

Fig. 4.13 Tangential stresses at the intersection for various crack depths

The tangential and radial stresses for the asymmetric case were observed to be similar
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to the symmetric situation for the cracked side, whilst the radial and tangential stresses

on the side with i ing crack depth as shown in Figs. 4.14 and

4.15.

creasing ik Geg? 1 -4, 1
rcamaes 1 2

s @« =@»s o as & &5 %

Fig. 4.14 Radial stresses around the weld toe on the uncracked side

1o SEoen concmoeatonfacr - angesl srva romel e

Asymmetric cracking

Fig. 4.15 Tangential stresses around the weld toe on the uncracked side
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2The Mises equivalent stress, which gives an indication of the tendency to crack

p ively at di: away from the saddle point (along the greater circle)
as shown in Figs. 4.16 and 4.17 respectively, for the symmetric and asymmetric cases.
For the symmetric case, near the crack site the Mises equivalent stress along the weld
toe reduced gradually till a certain crack depth (between 4-5 mm) and thereafter
increased, as seen in Fig. 4.18; this is due to the decrease of the radial stress and the
corresponding increase of the tangential stress at the saddle region, as shown in Figs.

4.12 and 4.13. Additionally, this increase towards the later stages of crack growth also

the i i of shear stresses at the crack region, leading to

dominance of Ky and Ky, values, as shown in Fig. 4.19 and 4.20.

Stress ratio - mises equivalent stress / nominal stress

20 - mdduinsdli et IR R T
- \ Symmetric cracking

\
24
15 X
10 - N\
54 A

I <
o —

i = T
0 24 508 762 101.6 127

Radial distance from saddle - mm

Fig. 4.16 The variation of the Mises equivalent stress ratio away from the saddle point,
along the chord
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Fig. 4.17 The variation of the Mises stress ratio away from the saddle point along the

chord.
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Fig. 4.18 The variation of the Mises equivalent stress along the intersection
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Fig. 4.19 SIF mode II variation along the crack front (Normalized SIF K;=
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Fig. 4.20 SIF mode II variation along the crack front (Normalized SIF
Kin=Ku/ Ypon(720)'?)
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The variation of the Mises equivalent stress for the un-cracked side, for the asymmetric

cracking situation is given in Fig. 4.21. As the crack depth increases on the opposite

side, the Mises stress i on the ked side, ing its
tendency to crack.

g5 S0 el Mises squvlontsrss nominlsress ra

Asymmetric cracking - uncracked side

o 284 508 2 1018 121
Radial distance from saddle - mm

Fig. 4.21 The variation of the Mises equivalent stress ratio away from the saddle
point on the un-cracked side
The predominant mode of crack advance was observed to be the K, for the symmetric

and asymmetric cases; hence only K; was i in ing the p ion life

of the joint. It was observed that K; was greatest at the saddle point, until the crack
reached a particular depth, after which the K; value for the saddle point decreased as the
crack advanced. This pattern was observed for both the symmetric and asymmetric
cases. The variation of K, for symmetric cracking at the weld toe is shown in Figs. 4.22
and 4.23. This observation was taken to mean that the energy available for fracture or

crack growth through the thickness decreased at the saddle region, while the energy
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available for crack growth along the weld toe increased; nevertheless the stress intensity
factors at the extremities of the crack were observed to be always lower than those
obtained for intermediate points, which suggests that the dominant SIF region could
probably be along some other direction going into the chord than along the weld toe.

Similar observations could be made for stress intensity factors obtained for asymmetric

cracking.
Normalized SIF
- = e N S L s
Symmetric cracking
36 - N
= =
30 4 Bt RN
25 / \
/ o S mm ‘
o S
1mm ‘
15
10 -
5 = Increasing crack depth 1 mm -4 mm, ﬁ
4.5mm 5mm
0-— =2 PRECE 1. S e
o 0.1 0.2 03 04 05 06 07 08 09 1

Normalized crack front angle

Fig. 4.22 SIF Mode I variation along the crack front (Normalized SIF = K, / g,
(mag)'?).
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Fig. 4.23 SIF Mode I variation along the crack front (Normalized SIF = K, / o,,,
(729)'?).

The SCF on the ked side very for the ic
crack as shown in Fig. 4.24. SIF’s obtained for asymmetric cracking were equal to
those obtained for symmetric cracking. For relatively smaller crack depths, the SIF's

for the ic situation i with i ing crack depth, as shown in Fig.

4.25. It is clear from Fig. 4.25 that the difference in the SIF’s for the two cases

increases as the crack depth increases with the asymmetric crack front having the higher

SIF values, which accounts for a shorter ion life for an ic crack. The
crack growth behaviour, or the manner in which the SIF’s vary for the two cracking
situations is similar. The slight drop in the SCF values (Fig. 4.24) for the asymmetric
situation could be consequential to the redistribution of stresses around the weld toe, due

to the stress relieving that takes on the crack side, as the crack advances.
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Fig. 4.25 A comparison of the SIF’s for symmetric and asymmetric cracking
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‘The deformation of the brace and the chord for symmetric and asymmetric cracking are

shown in Figs. 4.26 to 4.28. It is seen that the brace remains straight for symmetric

cracking, while it inclines towards the uncracked side for asymmetric cracking.

T AXIAL TENSION

SYMMETRIC CRACKING

Fig. 4.26 Deformation of model - symmetric cracking

r—

UNDEFORMED MODEL

ASYMMETRIC CRACKING

Fig. 4.27 Deformation of model - Asymmetric cracking
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] Axial tension

Asymmetric cracking

Fig. 4.28 View from the uncracked side of joint, for the case of asymmetric cracking
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Chapter 5

Fatigue Life Prediction

5.1 Crack Initiation and Propagation Lives

In the traditional fracture mechanics approach to fatigue crack growth, it is
assumed that an initial defect already exists and that fatigue life is made up of the
propagation alone. A clearer understanding of fatigue could be had, if the fatigue life

is resolved into three characteristic stages of initiation, propagation, and fracture.

Initiation is analyzed at the mi ic level while ion is analyzed at the
continuum level. The total fatigue life Ny is given by:

Ny =N, +N, (5.1)
where N; = Number of fatigue load cycles for crack initiation, and N, = Number of
fatigue load cycles for crack propagation. Crack initiation cannot be defined precisely.
For discontinuously jointed components like welded joints, it is usually assumed that N;
is the number of cycles within which a crack of an initial size - usually of the order of
tenths of a mm - grows. It has been observed that the crack initiation life becomes
significant in the total life of the joint only in the event of small wall thickness, low
fatigue stress range, post weld improvements etc. The Manson Coffin’s equation (5.2)
will be used to determine the initiation life. The four coefficients required for this

analysis viz., o'y, €', b, and ¢ are coefficients whose values were determined using the
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plot shown in Fig. 5.1 for crack initiation life obtained by (lida 1987) for several T-joint
configurations. ¢ is the fatigue strength coefficient, b is the fatigue strength exponent,
¢ is the fatigue ductility exponent, €”( is the fatigue ductility coefficient, 2N, is the
reversals to failure or the initiation life, Ae is the total strain amplitude, and E is the

modulus of elasticity. Manson Coffin's equation is given by:
A 9 .
5 - TN Ny 62

This equation is solved by a combination of the results from finite element analysis,
which gives the strain at the critical hot-spot region, and the use of existing data for
crack initiation in thin walled tubular joints. It is assumed that the strain component
obtained from the elastic numerical analysis is almost the same as the total strain used

in Eqn. (5.2).

HOT SPOT STRAIN RANGE, Eys

00 10° 10° 10° 107
CRACK INITIATION LIFE, Nj

Fig. 5.1 Crack initiation life
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The coefficients required to compute the initiation life were determined using the results
given in Fig. 5.1. In the high reversals to failure range, i.e., 10°- 107, a mid-range line
(for thicknesses ranging from O - 10 mm) was determined from the upper and lower
bound lines. This line was taken to represent the elastic strain of a T-joint having a
chord thickness between 0 - 10 mm. The gradient of the elastic line and the intercept
would give the two coefficients b and o', respectively. In the lower reversals to failure
range, i.e., 10° - 10°, the mid-range line was bounded by the upper and lower bound
lines and was constructed to give a steep slope, as much as was possible whilst not
deviating in excess of the exact mid-range line; the reason being that for most ductile
steels €' = 1, and for strong steels ¢, = 0.5 (Bannantine et.al., 1990). However, it
was observed in this situation that the best possible slope yielded a value of 0.1125 for
€', which is a little low. The values for the coefficients ¢'r, b, and ¢ were 396.64 MPa,

-0.0985 and -0.699, respectively.

5.1.1 Propagation life
Growth rate of a fatigue crack is governed by changes in the stress intensity
factor at the critical cracked region. The equation proposed by Paris and Erdogan

(1963) would be used to deterrine the propagation life of the crack, viz.,

da
— = C(AK)" (5.3)
N (AK)

where AK = K, - Ky, with K, and K, referring to the maximum and minimum
values of the stress intensity factors in the critical hot-spot region of the welded zone

during the fatigue load cycle.
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If da/dN versus AK for a crack is plotted on a logarithmic scale an approximately

sigmoidal curve results, as shown in Fig. 5.2.

o | Regont Regonl Regon Il

N Continuum

mechanisms ‘mechanism i
(striation growth)

= failure
2
& Z
O m
E dwdN=AAK
% [ Threshold
3 24K -
th. Staic failure
P ‘mechanisms
Log 4K
Eio

Fig 5.2 Schematic da/dN Vs AK plot

The constants C and m are determined empirically from a plot of
log (AK) vs. log d_; . The value of m is usually in the range of 2.5 < m <
4.5 for welded steel, and is usually assumed to be equal to three, while C is a material
constant. Paris’ equation does not however account for the crack growth behaviour at
low and high levels of AK. For example it is possible for a crack not to advance if the
value of AK is less than the threshold value. If there are a high proportion of cycles
near the threshold, the crack growth predictions will be conservative and an adjustment
would have to be made. The Paris equation should not be used if there are a large

number of cycles at high stress intensity values, e.g., Kp > 0.7 Ky

To calculate the absolute fatigue life by fracture mechanics requires more caution

[UEG 1985]. To use appropriate values for C and m, the relationship obtained by
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[Gurney 1979] has been used. where C and m are related by the following equation:

c . Lusxio* G
895.4"

4

Key:
38 * Structural steels

o High strengih steels

% Weld matal
34 a Haz

€ = 1315X1074/BI5.4™
m 3.0

2.8
22|
8 \n

o~ 20~ ™ T8 T o 50
Fig. 5.3 Shows the relationship between the fatigue life coefficients C and m

Several values have been suggested for the material constants C and m, based on the
various factors that would affect the material composition and stress state of the joint
such as the metal microstructure, marine fouling, cathodic protection, mean stress, and

fatigue thresholds [UEG 1985]. For this study, the values computed for C and m are

1.832x10"" and 3.0, pectively. In ing the ion life the

crack depth was incremented by 0.2 mm, starting from 0.2 mm up to 6 mm, which
means that an initial defect of 0.2 mm has been assumed. The difference between the
stress intensity factors was taken to be AK, for which the propagation life was computed.

Fig. 5.4 shows the fatigue life obtained for the symmetric and asymmetric cases.
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275 kilo cycles 336 kilo cycles

o ) |
e Asymmetric. cracking| sﬂm

100 125 150 175 200 225 250 275 300 325 350
Kilo cycles

Fig. 5.4 Crack propagation life ( x10° cycles)

5.2 Discussion of results
Table A gives a comparison of the computed and experimental values obtained
for the initiation and propagation lives. The experiment was done towards the Ph.D.

thesis work of a fellow graduate student (Ms. Cheng Shumin).

Table A
Life x 10° Initiation Propagation
Experimental values 600 500
Computed values 570 275
It is evident that while the initiation lives compare , the p ion lives do

not. The reason for a low propagation life is the fact that computed stress intensity
factors are higher than the actual values. This could be substantiated by the fact that a

fractional value between 0.9 and 0.8 of the computed value would yield the observed
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value, as shown in table B. If it were possible to determine the parametric stress
concentration factor, the crack would have been modelled in a region with a SCF value,
comparable with that obtained from the parametric equation - as outlined in the paper
by [Du and Hancock 1989]. This however was not possible, as the parameter y did not

come under the prescribed limits.

Table B

The propagation life in kilo cycles, for fractions of the obtained SIF Mode 1

Fraction 1 0.9 0.8 0.7
Propagation lfe | 215 | a7 537 502

Two methods could be adopted to overcome the difference:

i) Place the line spring away from the intersection, e.g. one row away from the
intersection; this would yield stress intensity facto.s lower than those obtained at
the intersection.

ii) Increase the thickness of one or two rows of the brace near the weld toe to

represent the weld thickness.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A study of the fatigue life of a tubular T-joint using the linear fracture mechanics
approach is presented. Since the finite element modelling preceded the experiment that
is now being carried out in the structures laboratory (for Ms. Cheng Shumin), it was not
possible to use the experimental values as a "check" to model the T-joint. This model

was consequently used to corroborate the results of a previous experiment done by

Munuswamy et. al. (1987); the SCF’s d with the
experimental values. The crack was modelled at the intersection, which with hindsight

we see that, it und til the actual ion life. The crack might have been

modelled away from the intersection, if it were possible to calculate the parametric SCF,
as then, the crack would have been modelled in a region having a similar SCF. In the
experiment, the tubular T-joint developed an asymmetric crack, which means that the

comparisons made would be in reference to such a crack analyzed, numerically.

A comparison of the computed values with the experimental shows that:

D The SCF's at the weld toe compared well with the experimental values.

2) The ion life for an ic cracking, was only 55% of the
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4)

5)

6)
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experimental crack propagation life.

The stress intensity factor is defined as, K = o*\/(ma)*Y, where K is the stress
intensity factor, a is the crack depth, and Y is the magnification factor. The
SIF's obtained for an asymmetric crack were greater than those obtained for a
symmetric crack, for the same stress and crack depth: hence it could be
concluded that for a tubular T-joint, the cracking will predominantly be in an
asymmetric manner.

In estimating the fatigue iife of a tubular T-joint, the propagation lifc based on
asymmetric crack growth would give a lower value, unless the line-spring
elements are placed at the right location.

The local strain approach could be used to determine the initiation life of the
tubular T-joint.

Line-spring elements could be used to determine the stress intensity factors along

the crack front in structures such as tubular T-joints.

6.2 Recommendations for future research

As a continuation to the work that has been done, the following facts come across

as being worthy of further study.

i)

To obtain values for the stresses and propagation life, after properly modelling
the first row of the brace elements at the intersection to account for the thickness
of the weldment. Also the line spring element must be placed in between the

first and second row of the chord element.
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ii) To il igate the stresses and ion life for other types of joints using the
principles of linear fracture mechanics.

iii)  To analyze the problem taking into account the effects of plasticity

iv)  To carry out compact tension specimen tests and determine the values of C and

m, for the material of the tubular T-joint.
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