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Abstract

Although many studies on the fatigue behaviour of tubular T-joints have been carried

nut thus far. the present study is done with the view 10 evaluating the tOlal fatigue life

of a joint in the prescnce of an asymmetric crack. using the principles of fracture

mechanics. l1lc studies made so far have only analyzed symmetric cracking. which

docs not generally occur during fatigue crtlcking, since it is assumed that the cracks lit

both the hot spot regions grow at the same ratc. Also vcry few studies address the

issue of crack initiation life in tubular r-joints. OJ. Nwosu (1993) used the siress

strain approach using lhe Manson-Coffin equation. 10 c\'aluatc the initiation life. The

clastic life component was used 10 determine the coefficients. Tn Ihis study the author

has used both li\'t~s {plastic strain life. as well ~ elastic Simin life} to delennine the

coefficients used in the equation. The ex~rirnental results reported by lida (l987) on

tubular joints have ~n used to deletrnine them. The range of obtained coefficients

cht."ck with the prescribed limits given in earlier studies. The purpose of the study was

to usc and comp3Te the results of thc numerical model in verifying and correlating the

experimental investigation of the tubulnr T·joints, which is being carried out in the

Strength I.aboratory of Fnculty of Engineering, Memorial University.

The line spring clement was used to model the crack; the reason being that the other

known method. viz., that of using singular three dimensional elements would render the

iv



problem impractical in the light of computer time and memory space availahle ;1\ the

Faculty of Engineering. Using the stress intensity !actMs ol;ltnined fWl11 the line spring

model. the through.thickness crack propagation Iii\: was uhtail1l:d llsing Paris' law.

While the crack initiation compared \'Cry well with the e.'\~rilllenlal \"llul'. the crack

propagation life compared only favourably with the experimental vulue. The pwcedure

reqllired to improve the computed crack propagation life is given in thc discussion Ill'

results.
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Chapter 1

1 Introduction

I. J Background

What we identify as fatigue failure today was first analyzed in great derail by

Wohler IAlmar.Nlrss (1985)], in his pursuit of a cause for railway axles to fall well

helow the then dt:sign load. This phenomenon has been observed in other structures as

well, although it was not until the subject of fractore mechanics was well developed that

it was possible to have a clearer understanding of il.

Steel offshore: structures an: fabricated by welding together various tubular

componellts, and experience nucru3ting loads in service; hence fatigue is a (attar to

reckon with in the design of the structure. The fluctuating loacd could be attributed to

several sources such as wave, wind. and cumn! loads, in addition to lhe fluctuating deck

loads. These steel frame type structures arc invariably fabricated from tubular members

thai are welded together externally. The abrupt changes in geometry give rise 10 stress

concentrations in the region. and are also likely to aetas crack initiation sites. It is clear

therefore that in designing the structure. the joint would have to be designed for fatigue

strength. The traditional, design based on SIN curves. requires only a knowledge of !.he

hot-spot stresses and strains and does not take into account the presence of initial flaws.



The advantage of using the fracture mechanics apr-roach is thai all initial crack whkh

grows, serves as a critical parameter in estimating the useful life of the component: such

a phenomenon is disregarded in the traditional approach. The fracture mechanics design

methodology assumes that a erne!.: ex isis at a crilical location and advance" as lhe Slre.~S

intensity changes due 10 a changing load. The slrcss intensity fa,tor depends upon the

~LppJied load, crack depth and the geometry of the joint. It is assumed Ihat the stress

intensity faclor in the crack region varies linearly as a function of the nominal hot-spOl

!:tress, which in ntrn is a function of the applied oominal stress onthc join!. It is lhis

method lhat has been used in this HUdy.

The theoretical stress at the tip of a crack is characterised by the stress intensilY

factor. While a closed fonn solulion is possible for simple geometries, it is not possihlc

to) derive a closed fonn solution for a complex geometry such as a tubular T ·joil1l.

Several teclmiques have been developed 10 overcome such difficulties of which a

numerkal technique is one such and is an approximate method. In this study thl: finilc

element method is used 10 detennine the stress intensity factors numerically, using the

"J\BAQUS~ finite element software package.

Crack growth consisl of two phases. an initiation stage and a propagation stage.

While the initiation life caMot be estimated by the use of finite clement method. the

propagation life can be estimated by such means. The initiation tife has been estimall:d

using the experimental data, obtained for several T-joints and the nominal hot-spot



str,lin, obtained from the finite element analysis, and is based on the [ow cycle strain life

method. The crack propagation life has been estimated using Paris' equation.

1.2 Scope of study

The objectives of this study are threefold. The principal reason is that no studies have

been done on stress distribution and fatigue life eSlimalion in tubular I-joints for

asymmetric crack growth as the governing feature. In addition far Ihe crack initiation

life has not been included in a proper maMer in the faligue life calculations of tubular

T-joints. although it has been the object of study by many. In the present study, the

auttUlr has used experimental data oblained by IHa (1981) to compute the iniliation life

of the tubularI·joinl.

This finite element model also served as a design model for computing the load

to be applied on Ihe tubular I·joint for the experimental work currenlly being done

towards Ihe Ph.D. thesis work of a fellow gr.,duate student (M!). Cheng Shumin). Fig.

Lion page five shows Ihe tubular T-joint that was used in the experiment

1.3 Organization of the thesis

The layout of the Ihesis is, as described below. Ihis study emphasizes in the

main, the use of Ihe finile element melhod for fatigue life assessmenl of a tubular T-joint

subjected to axial lensile load at Ihe brace.



Chapler IWO covers the liter1lUre concerning the dc"clop~Rt of the finite

clement method in the realm of fracrure mechanics. :and its :application to tubular T

joints. especially the line-spring clement. It :also covers the theo~licaldevelopll1Cl\ts in

the field of fracture meclwiics. Chapter three deals with the theoretical basis and the

development of the degenerated isoparametric elemen!. which has been used to mocJcI

the shell structure; the approximations made and the advantages of using a degenerntcd

shell element have also been outlined. Ctulpter four covers: i} Description of the

mooelling procedure; ii} Ways in which the accuracy of the model was checked; iii}

Stress pallems around the weld loe, and their variations as the crack front advallCed

through the thickness and along the weld toe region; and iv) Variations in lhe SIF's and

their physical significance.

Chapter five discusses lhe initiation and propagation lives and the method by

which the initiation life was derived from experimental data. II also discusses the

differences belwetn computed and experimental data, the likely causes, and the methods

by which the values could be reconciled. Chapter six gives the conclusions drawn from

the study as well as areas of funher interest.



Fig. 1.1 Tubular T-joint



Chapter 2

Literature Review

Introduction

Fixed offshore structures are rabricated from tubular sleel members. Such

sections arc well suited to being used as structural members in offshore structures. tor

several reasons. The section has a very low drag coefficient nnd the same bending

stiffness in all directions perpendicular 10 its axis; it also has good torsional rigidity and

is insensitive to lateral load directions. Although the tubular section ilSelf is less prone

to stress concentrations, the interconnections and joints which are usually welded,

prescnt structural discontinuities that give rise 10 high stress concentrations. The

integrity of such structural ~nnections is critically dependent on the behnviour of thc

component welded joints which resist the dynamic for«s of wind. wave nod currents

IlI1d the topside loading.

It has been established that Ihe initial nnw or impcrfeclion present in the

structure, which could be the result of the process of manufacture, fabrication, or usage,

propagates under fatigue loading and spreads along the intersection before it penetrates

through the thickness and causes failure of the joint. The complex lay.()ut of such II

joint precludes II precise mathematical derivation of the stress and strain fields in and



around the weld_ To study the behaviour of deformation and failure of the joint.

engineers have developed experimental as v,-ell as analytical rnelhods. Two methods

of fatigue life evaluation of tubular joints are currently used in lhe offshore industry.

The first is the hot spot stress - SIN method - which is widely used in design

procedure; the second is the fracture mechanics method. Details of the two methods

are given in the subsequent sections of this study.

The principles of fracture mechanics and the finite element method have been

successfully used to some degree of sophistication, in analyzing the stress fields around

a complex and cracked tubular joint. The recent advances in computer technology have

made the application of nwnerical techniques a viable alternative to analytical and

experimental methods. which could be prohibitive under certain circumstances.

Notably, the finite element method has been well developed to model a region with the

attributes of a crack. IOwards analysis. The pertinent literature available in this area of

study are reviewed in this chapler, to understand the state-of·the-art developments in

the analysis of faligue and fracture of tubular T·joints.

2.1 Hot..spot - SIN Approach to Fatigue Life Evaluation

It is now known tlult a low fatigue strength in a welded joint could be traced

to the presence of stress raisers or stress concentrations around the welded regions of

a tubular joint. Thus, a proper design 3g3inst f3tigue failure would take into account

the stress concentration factors and the corresponding stresses in the calculation of the



fatigue life of a welded tubular joint. The stress distributions at the joint nrc \'Cry

complex and are dependent on, the nature of the loading, and the geometry of the joint

In design work, welded joints are divided info classes, each of which with its

characteristic design data. For e.g., all tubular joints fall into class 'T". The class is

dependent upon the geometrical arrangement of the joint, the direction of fluctuating

stresses, and the method of fabrication and inspection [Almar·N.css: (1985)). The

locations where the highest stresses occur are called hor spots. In the case of a tubular

joint, the :stress concentration factor (SCF) is defined as the ratio of the hot spot stress

a ..... to the nominal stress aN in the brace; hence it can be looked upon as a scaling

factor of the nominal stress.

SC F • a.....
cr,

(2.1)

Stress concentration factors may be determined by various mcthods, vii'~,

analytical, computational, and experimental. Several parametric formulae for stress

concentration factors have been derived. The earliest stress concentration fllCtor

fannulae covering simple tubular joints under tensile loading were formulated by Beale

and Toprac (1967). At present, the frequently used equations arc altribul00 to Kuany

et. al. (1975), Wordsworth and Smedley (1978), Underwater Engineering Group - UEG

(1985), Efthymiou and Durkin (1988) and Hellier et. al. (l990b).

Kuang et. a!. (1975) derived formulae for non·reinforced T, K, and TK joints,

using FE models, whieh did not include the effects of the weld. Efthymiou and Durkin



(1985) presented parametric equations for T. Y, and K joints, having analyzed 150 FE

moods using thrce dimensional shell elements with the weld influence considered. The

parametric formulae. derived by the various researchers just noted, differ from one

another. which could be due to the model idealisations and the type and size of finite

clements used. A notable drawback in the derivations is the fact that the innuence of

inherent defeets and residual stresses are not considered. Although an offshore

structure is fabricated carefully to prevent local distortion and/or cracking, routine

insJlCttion of the structure during service would reveal the presence of cracks; hence

u proper analysis of tubular joints would require the use of the fracture mechanics

approach.

The stress concentration factors are basically related to the degree of ovalisation

of the chord section under the action of the brace loads. Since the stress concentration

factor depends on the type ofjoint and the loading, it must be verified that the formula,

which is used to determine the slress concentration factor, is for ajoint that represents

the physical behaviour of the joint under review. The parametric quantities used for

the stress concentration factor are given below, Fig. 2.1 shows the geometrical

quantities,

Diameter ratio

Wall thickness ratio

Chord length

P=dJD,
,-vr,
a=LID,

Chord stiffness

Gap diameter

Brace inclination angle

The geometrical parameters of the chord are indicated in simple letters while



10

those of the brace nre referred 10 in capital letters.

ct3
'~.

'- 'Ie

.l ID""'.

Fig. 2.1 Tubular joint symbols

The generalised ronn of the parametric equation for the stress concentrntion factor is

given by:

(2.2)

....'here C is a constant, and the parametric quantities arc defined as above; nl, 02, n3,

n4, oS, n6 are exponents and 9 is the intersection angle betv.'C'Cn members. Dover and

Dharmavasan (1982) have derived simple interpolation functions for each mode of

loading; from which the coefficients for stress concentrntion rnctors could be

determined. Stress concentration factors may be obtained from t,=sts on full scale sleel

joints. small scale acrylic models or finite element analyses, but for most design anu

re·certification work. the stress concentration factors are estimated using parametric

equations. Dover ct. al. (1991) analyzed the statistical ...ariabi1i~y of the equations

fonnulated by KUMg et. al. (1975), Efthymiou and Durkin (1988), Wordsworth and
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Smedley (1978), Underwater Engineering Group-UEG (1985), and Hellier et. al.

(199O). They used a stccl joint d:llabase and concluded thaI the then available database.

while being adeqUtltc for some categories of tubular joints, is insufficient for many.

Having detennined the stress concentration fnctors and the corresponding

nominal stresses. the hot spot stress of any joint could be evaluated. In the hot spot -

SIN method. the expected fatigue life is calculated first by locating the pre-determined

hot spot siress ranges under the given varying cyclic wave loadings. which are then

located on the S·N diagram (obtained from experiments) 10 detennine the permissible

number of cycles for each of the stress ranges. The basic SIN curves are obtained from

a statistical analysis of experimental data and is given in a log-log plot with the stress

mnge l!.a on the vertical axis and Ihe number of cycles 10 failure Nr on me horizontal

a...is. The faliglJ( life is lhen calculated using a damage summation law, e.g., the

Miner·Palmgren fonnula:

(2.3)

where.

k '" No. of stress ranges

D is the accumu[3tcd dam3ge due to varying stress cycles

n, ,. No. of slress cycles in a stress block i with a constant stress range .0.01and

Ni .. No. of cycles to failure at a constant Slress range .0.0,.

Fatigue design of welded structures is based on constant amplitude SIN data.



"
However an offshore structure will experience a I03ding that is stochastic in nalure.

The development of fatigue damage under stochastic looding is termed cumulative

damage. Of the several theories thilt can be found for calculating cumulative damage.

the Miner's summation is much simpler and conforms with the fracture m~'Chanics

approach. The assumption in the Miner summation is that the damage on the structure

per load cycle is conSluol at a given slress range and is D=I/N. where N is the consllml

amplitude endurance at the given stress range. In a constant amplitude lest, the failure

criterion is Dr 2: 1 [Almar-Nmss 1985]. An accurate estimate of slres~ distribution at

a tubular joint can be obtained only by finite element analysis or by strain gauge

measurements. For practical applications. parametric fonnulae arc needed to calculate

the stress concentration factors or innuence coefficients under single modes of loading.

The disadvantage of the method is that any defect or imperfection whieh can be

considered to shorten the life of the structure is not considered in the calculation. It

gives us only a conservative estimate of the number of single mode cycles and is

therefore a pass or fail criterion; the method cannot be used to compute the residual life

of a component in service.

2.2 Fracture Mecbanics Approach to Fatigue Life Evaluation

The discipline known as frncture mechanics was developed to explnin failures

due to ductile or brinle fracture. which couldn't be reconciled with thc then

conventional design criteria available at that period. The phenomenon of fracture of

solids is complicated and depends on a variety of factors, which include microscopic



JJ

and macroscopic imperfections where the fracture initiates or grows. The study of the

process of fracture depends at the level it is observed. At one extreme, fracture is

concerned with the rupture of bonds, which calls for a knowledge of quantum

mechanics to explain the phenomena. Al the other extreme the material is considered

to be a homogenous continuum, which calls for the application of continuum mechanics

and classical thermodynamics to evaluate observed phenomena. The analysis of

fracture al an intermediate level involves the movement of dislocations, slip bands etc.

Hence the study of fracture is interdisciplinary and can be analyzed at three levels:

atomic, microscopic. and the continuum. Here it is approached at the continuum level.

Central to the subject of fracture mechanics is the assumption that all materials

contain original defe(ts in the form of cracks and voids. which impair the load carrying

capacity of the structure. If the material is assumed to fail owing to the presence of

a defect, it could be reasoned that the stress in the neighbourhood of the defect has

reached a critical value. One of the applications that fracture mechanics has in

engineering design is to determine the critical load of the structure, based on the size

and location of the defect. Therefore. an understanding of the nature of the crack in

terms of its geometry and stability is the key to understanding the mechanism of

failure. Fracture mechanics as applied to engin~~ring is used to determine the capacity

of a structure with an inherent defect to bear a load. Thus with the new design

philosophy the following questions arise:

I) What is the maximum crack size that a material can sustain safely?



2) What is the strength of the structure as a function of cmck size?

3) How does the crack size relate to the applied loads?

4) What is the critical load required to extend a crack of known size. and is the

crack extension stable or unstable?

S) How uoes the crack size increase as a function of time? (Gdoutos 1990)

To answer the above questions a parameter called the crack driving force is

defined which is a function of crack size. geometry. material properties. and loading

<.:nnditions. The critical value of the crack driving force is called the frllcture

toughness, which ex.presses the ability of the material to resist fracture in the presence

of a given crack. Inglis (1913) showed that local stresses around an elliptical hole

would be several times that of the applied stress. His investigation gave the first real

clue to the mechanics of failure, for the reason that an infinitesimally narrow elliptical

hole in the limit. could be considered :0 represent a crack.. Griffith (1920) was the first

to investigate the nature of cracking in his work involving the fracture of glass. He

considered an isolated crack in a solid subjected to an applied stress and formulated a

basis for its extension in terms of the energy theorems of classical mechanics and

thennodynamics. He explained the size effect· the thinner a specimen of a glass rod

is. the greater is its strength· and propounded a new theory of fracture of solids. He

also discovered that the fracture strength is inversely proportional to the square root of

the crack size. in brittle fracture.
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Ilowcver it was not until almost after the end of the second world war that his

theory received attention. It was Irwin (1958) who used the singular stress fie ld,

derived earlier by Williams (1952) using the eigenfunction expansion method, to

introduce the concept of the stress intensity factor. What is characteristic of the stress

distribution al the base of a stationary, part through crack, is the fact that a square root

singularity exists at the cmck front where the stress gradient is large [Williams 1957}.

The fracture mechanics method uses the stress intensity factor to describe the elastic

stress field nt the crack front. A fundamental principle of linear-elastic fraclure

mechanics is Ihal tbe stress field ahead of the crack is characterised by a single

parameter K. Hence K acts as a scaling factor for the crack tip stress field. This factor

is a function of the applied stress field, crack length and geometry. The stresses and

displacements ahead of the crack tip shown in Figure 2.2, derived by Irwin (1958), are

given by:

[~ 1 [-,- ];[(9)2E 2n i

(2.4)

where fij(9} and £;(9) are functions of 9 in the expressions for stress and displacement

respectively. K is the stress intensity factor for the corresponding mode of

deformation. Once the stress intensity factors have been detennined, a fatigue crack

propagation law. such os Paris' equation, is used to obtain the number of cycles before

fnilure (fatigue life) in the region of stable crack growth.
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Fig. 2.2 Rectangular and polar stress components around a crack lip: plane stress and
plane strain states

A clearer understanding of fatigue could be had. if the fatigue life is resolved

into three characteristic stages of initiation, propagation, ami fracture. Initiation is

analyzed at the microscopic level while propagation is analyzed at the continuum level.

The total fatigue life is given by:

N I Cycles during crack initiation

N" Cycles during crack propagation

Crack initiation cannot be defined precisely. For small notched components like

welded joints, it is usually assumed Ihal N1 is the number of cycles within which a

crack of an initial size - usually of the ortler of tenths of a mm • grows. Fatigue
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resistance of lest specimens subjected to stress rc:versals up to about 10) cycles is

known as low cycle fotigue, during which lime it could be assumed that crock initiation

takes place. The fatigue crnck initiation life N; of a notched specimen can be evaluated

by anyone ofthc four empirical equations given in eqn. (2.5). Dowling (1979) and

Lawrence (1980) have shown that the local stress-strain approach can be used to

estimate the crock initiation life while the fracture mechanics approach can be used 10

estimate the propagation life. Engc5vik (1982) has suggested thai the size of the region

of plasticity is of the same order as a typical grain size. i.e., about 0.01 mm and that

the initial crtlck size should be much grc3tcr than the plastic zone size.

Stress Method

o•• (Cllr-ao)(2Nll~

Strain Mtthod

<•• (a', ~ .,1 12N, I' • <',( 2N, )'

Morrow ( 1968 )

Socie ct. al. ( 1978 )

Slress - Strain Method

(.' -. )'o. l;, • --'E-'- (2N; y~ .. (a', - 0'0 ) !;', (2NI )(~.<)

Manson - Coffin relationship for low cycle fatigue

~ .. ~(2NI)b .. ~Ir( 2N,)<

(2.S)

where O"r <2 fatigue strength coefficient: ~'I = fatigue ductility coefficient; 0'. = nolch

stress amplilUdc; ~. - notch strain amplitude; 00 - notch mean stress; .1.l; =6~. + .61;,.

the subscripts c and p refer to the elastic and plastic ranges in the stress-strain

hysteresis curves; b - fatigue strength c)(ponent; c - fatigue ductility exponent.
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An accurate prediction of thc fatigue wIck propagation life is important Itl

determining fatigue life. From a design point of view. the question may be stated as

follows; determine the number of cycles Ihat an engineering component can withstand

before a crack can grow from an initial crack size 3u 10 a maximum permissible size

a... Fatigue crack propagation daln nrc obtained from the crack specimens subjected 10

fluctuating loads and the change in crack length is recorded as a function of loading

cycle.

One of the earlier mathematical models of fatigue crack propagation was

proposed by Head (1953). He considered an infinite platc with the central crack of

length 'n' subjected to a sinusoidally applied stress ta. Modelling Ihc cleml:nls ahead

of the crack tip as rigid-plastic work hardening tensile bars and the remaining clements

as elastic bars, he arrived at the relation;

(2.6)

where 'a' is the crack length, N is the number of cycles, the applied stress is cr, amI C1

is a constant. This can also be written in terms of the stress intensity factor by

~ .. C K/ (2.7)

The fatigue crack propagation law, proposed by Paris and ErdogW'l (1963) is a

generalised equation of the one above derived by Head and is a widely used crack

propagation Jaw, eqn. (2.8).
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(2.8)

where .1.K '" K.... - KIN.' with KlIW< and Kmin refer to the maximum and minimum values

of the :.iTCSS intensity factors in the load cycle. The constants C and m are determined

expcrimcnlally from a plot of log (6K) V5. log (da/dN). The value of m is usually in

the range 2.5 S m S 4.5 for welded steel and is usually assumed 10 be equal 10 three,

by reason of which it is called the third power law while C is assumed to be a material

consmnt. Paris' equation does not however account for the crack growth behaviour at

low and high levels of .1K. As K..... approaches the critical level K., an increase in

crack growth is observed. Forman ct. aJ. (1967) proposed the following:

C ("K)" ; R ' K_
(I-R)K,-6K Kmin

(2.9)

where C and m are material constants and K" is the critical stress intensity faclor. For

low values of L\K Donahue et. al. (I972) have proposed the following:

*.C("K-"K,l" (2.10)

wherc 6K'h denotes the threshold value of 6K. Klesnil and Lucas (1973) showed that

the crack growth rate given below is valid in the propagation and fracture regions and

that 6KI!I is given by:

where 6K",(O) is the threshold value at R:::>O, an~l 'r is a material parameter. Erdogan

and Ratwani (1970), Austen and Walker (1977), and SchulZ (1981) proposed
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generalized crack propagation laws, which arc applicable in all three regions of crack

growth. Given below is the equation obtained by Erdogan and Ralwani (I1)]O);

do
dN

C ( I • ~ I" (6 K - 6 K•• )

K<-(I .~)6K

K...~ .. K ..",
~.~

where C and m are empirical constants. Dowling and Begley (1976) anLi Dowling

(1977) suggested an equation of the ronn:

#; . C (61)" (2.13)

to incorporate the J-integral concept to elastic-plastic crack propagation. However lh~

J-inlcgral cannol be applied to elastic-plastic problems if unloading occurs. 6J is the

variation of J owing to a change in the effective crack length due to plasticity.

Brock (1974) concluded that many of the above empirical formulae arc found

to be reasonably accurate in a limited region or for a limited sci of data. Thus no

particular expression for crack growth rate will have significant advantages over the

others. Although the fracture mechanics approach has much potential, the method hll:i

not been developed to II degree that would render it II standard failure critcrion. The

fracture mechanics approach is onen used in residual life calculations nnd is based on

II crack growing from an initial size to a critical size. This method docs not usc II lixcd

failure criterion.
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2.2.1 Modes of Crack Extension.

Consider a crack extending along the Xl plane through the: thickness (Fig. 2.2).

LeI the crack front be parallel 10 the Z-axis with the origin of the system of axes at the:

midpoint of the crack front. Irwin (1958) drew attention 10 the fact that there are three

independent kinematic movements of the upper and lower crack surfaces. The

relevance of the crack extension modes is that an arbitrary crack extension could be

resolved into one or a combination of modes in the analysis. These modes are

illustrated in Fig. 2.3.

~
y §Y ~YI : : /" iJ' ,..... X _' ~ ••••• - X/", , •••••- X

Opening Mode I Sliding Mode II Tearing Mode III

Fig 2.3 The three basic modes of crack extension.

The three modes are defined as follows:

I) Opening Mode I. The crack surfaces separate symmetrically with. respect to th.e

planes XV and Xl.

2) Sliding Mode II. The crack surfaces slide relative to each other while

maintaining symmetry and skew-symmetry with respect to the planes XV and

XZ. respectively.
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3) T~aring Mode III. The crock surfaces slide relative 10 each other while being

skew-symmetric with respect to planes XV and XZ.

2.3 Developments in The Finite Element Method

The finite element method is used widely, to solve two-dimensional and thn:e

dimensional boundary value problems. Solutions could be derived using one or the two

types of elements which are commonly used for the purpose, viz., (i) conventional and

(ii) singular elements. The disadvantages in using the conventional elements is thaI a

very large number of elements is needed to model the tCllion close 10 the crack lip. On

the other hand, the singular clements have the requisite square root singularity

embodied in the fonnulation and hence a smaller number of elements could be used 10

model tbe crack tip. Henshell and Shaw (1975) nnd Barsoum (1976) proposed that the

sought after square root singularity at the crack tip could be achieved by displacing the

mid·side node in an eight node<! quadrilateral isoparamelric element to a distance of a

quarter length of the side of the comer node where the singularity is needed; this is

achieved by requiring that the Jacobian [JI be singular at the crack tip, or that the

detenninant of J vanish at the crack tip. It has also been shown that the element

contains the rigid body motion modes. constant strain modes, satisfics the nc:ccSSllry

conditions for convergence and passes the patch test [Irons and Razzaque 19721. which

the other special crack tip clements lack. Ilarsoum (1977) proposed collapsing one side

of an isoparametric element to fonn a tri3ngu]ar element with quarter point nodes. He

also showed that triangular elements possessed the same singularity in the interior as
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well as on the boundary. These elements could have either 1/..[r or lIt singularity

while rectangular clements have a I/vr singularity only on the boundary. The

alternating method developed by Shah and Kobayashi (1972), and Smith (1972) uses

two analytical elasticity solutions for infinite and semi-infinite solids. The first solution

is for an elliptical crack in an infinite solid. The second solution is for an un-crocked

semi-infinite body subjected to uniform normal and shear stresse:.. Pian and Madya

(1977) proposed the hybrid singular elements; they are the stress-hybrid and

displacement-hybrid elements. The advantage in using these clements is that the stress

intensity factors, K 1• Ku and KlIl arc obtained as part of the solution. In these elements,

the stress singularities are represented by K1, Kn and KllI , and the near field two

dimensional stress solutions at the crack front.

2.3.1 Extraction of stress intensity facton

If the stress intensity factors are included in the finite element formulation, they

are evaluated once the problem is solved. The stress intensity factors are obtained

directly from the solution if the following elements are used: the enriched element of

Benzley (1974). and Hilton (1977); and the stress hybrid element orrong and Atluri

(1977). and Atluri el. al. (1978). However. if any other type of element is used, the

stress intensity factors have to be derived from the finite element solution. Three

methods are used for the derivation; they are the crack-opening displacement method,

the virtual-crack extension method, and the force method.



2.3.2 Crack-opening displacement method

The crack opening just behind the crack front is compared with the

corresponding two-dimensional case to determine the stress intensity (nctor. The two-

dimensional solution lIssuming plane slmin is given below.

4(I-V')~
v ~ K1--E-Jin

(:!.14)

where v is half of the crack opening displacement at a distance of r from the I:r(ll:k

front. Two methods are used in the evaluation. In the lirst method the I:rJck opening

displacement allhe node next 10 the crack front is substituted in the equalion above to

derive Kl . In the second approach the crack opening displacement volues at various

locations from the crack front are used to derive the apparent strcss intensity lbctor.

Linear regression is used thereafter to determine the value at K, at r '" O. The

conventional finite element method of Miyamoto and Miyoski (1971) and Amlo ilmJ

Yagawa (1971); the quarter point element ofBarsoum (1977), and Wu (19114); and the

singular element of Tsang (1981) are used in the lirst method while Ihe singular

elements developed by Htmshell (1975), Boom and van Fossen (1976), and Blackhurn

and Hellen (1979) have been used with the second method. The negative lcature of

the approach is that the state of stress around the craek front of being either plane strain

or plane stress has to be presupposed. Such a presupposition yields a faclor of ( I .

y2 ) in the case of plane strain, by which the stress intensity factors dilTer. The plane

strain assumption is made along the crack front and the plane stress condition is



assumed where the crack front meets the free surface.

2,3,3 Virlual Crack Extension Melhod

Hllilen (1975), McGowan and Raymund (1979), Blackburn and Hellen (1979),

and Hall el. al. ([979) have used this method extcnsive[y. The stress energy release

rate G is computed and the stress intensity factor is derivcd from it. The strain energy

release mte is given by _~ where U is the strain energy of the structure and c is half

the crack length. The stress intensity factor K, can be calculated from:

K'
G .. ~

E'

(2.15)

where E' is a material constant. Parks (1974), and Hellen (1975) extended the method

to analyze three-dimensional problems.

2,3.4 Force Method

The forces ahead of the crack front and normal to the crack plane are useLi to

ev:lluate the strcss intensity factors. In the two-dimensional case, the near field stresses

l1hend of thc crack tip are the same for the plane stress and plane strain situations.

Therefore, the use of the two-dimensional stress solution ahead of the crack tip would

eliminate an assumption of the stress state. Raju and Newman (1977 a-c, 1979 a,b)

used the finile e1rment forces ahead of Ihe crack fronl and nonnal 10 the crack plane

,mu compared these results with those obtained by integrating the near field stresses

from the two-dimensional solution. The stress intensity factors were evaluated as in
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the COD method.

2.4 Line Spring Model

The main idea orlhe line-spring model is the substitution ora three-dimensiolllll

body with a part through surface crack, by a two-dimensional body with a part-thmuH11

crack. The increase in the compliance of the member is accounted for by the

introduction of line-springs. each of which is equivalent to a single Lodge-cracked plllte

under plane strain conditions. Fig. 2.4 gives on illustration of the concep' IAkimin mu!

Nikishkov. 1989]. The virtue of the linc-spring model is in ils simplicity. It rcdu~~cs

the three~dimensional problem to one of being a two-dimensional problem. The line

spring model has been proven to reduce the lime of computation in comparison with

other numerical methods. It has also proven (0 be useful in studying the effects of

plasticity in shell plate structures in a part-through crack problem. The line-spring

model for surface flaws was originally proposed by Rice and Levy (1972). This

formulation is based on the Poisson-Kirchhoff bending theory for thin plates ilnd shells.

Subsequcm developments have used the Reissncr plate theory to lake into account the

shear in the transverse direction. Howevcr, Parks (1981) pointcd out that Ihe

discrcpancy between the higher ordcr plate theory and thc classical theory is nul

significant if the length of the crack is larger than the thickness of the plate or shell

(i.e., if the crack is not a short and deep crack).
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Fig. 2.4 The concept of the line-spring model

Rice and Levi (1972) analyzed a plate, containing a surface crack penetrating

through part of the thickness and subjected to tensile stretching and bending, with its

compliance coefficients being chosen to match those of an edge crack strip in plane

strain. To illustrate the strengths of the line-spring model, the problem described above

was solved using the finite clement method by German et. al. (1983). With this model.

Rice and Levi (1972), Parks el. al. (1981), Delale and Erdogan (1982), and German et.

al. (1983) analyzed the surface cracks in plates and cylindrical shells. Parks (1981)

used the line-spring model to estimate the J·integral and crack tip opening displacement

for some surface cracks in plates and shells. Kumar and German (1985) used it with

the J. deformation theory of plasticity to obtain a fully plastic crack solution. Earlier

Dill and Saff (1978) developed the slier-synthesis model similar to the line-spring

model, which was applied 10 surface cral:ks and plates.

The limitations of the line-spring model are:

I) Thai it can be applied to plates and ::ohell structures only.

2) That accuracy suffers when Ihe aspect ratio of the crack is very small. The
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aspect ratio is given by OJic. whele a is the depth of lhe crack and c is half the

length of the crack which is assumed (0 be elliptic.

3) ThaI the stress intensity factors are lower if there is a stress concCnlraliOll ncur

the crack site, as shell models can only describe linear stress distributions

through the thickness [Du and Hancock. 1989J.

2.5 Applications

2.5.1 Semi·Elliplical surface cracks in a pillte

Several investigators have worked on the problem of semi circular cracks ( ale

'" t ) in plates. With shallow crack depths. i.e" afT < 0.2, Tracey (1974) used the six

noded singular element with the crack opening disp13cement method; Pian and Madya

(1978) used the stress-hybrid elements; Blackburn and Hellen (1979) used the fifteen

noded singular element ilnd the virtual crack extension method while Yagawa and

Nishioka (1980) used the superposition method. The solutions obtained by these

individuals compared favourably with one another.

Newman and Raju (1979) reviewed the solution of the surface crack problem

to cover a broad range of crack growth parnmeters; ( 0.2 S alc S I ) nnd ( 0 ~ arf s

0.8 ) where a is the crack depth, c half the crack length nnd t the cross sectional

thickness. For shallow cracks afT S 0.3, and near semi-circular cracks 0.6 S ale S I,

the stress intensity factors obtained by: Smith and Alavi (1971), and Shah and

Kobayashi (1972) using the altemating method; Raju and Newman (1977 a-e) using the
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finite clement method; and Newman and Raju (1979 a,b) using the line-spring model.

showed good agreement. The results obtained for deeper ( afT > OJ ) and semi

elliptical 0,2 ~ ale S 0.6 cracks were less promising. The results showed considerable

discrepancies. which Newman believed was the result of improper definition of the

boundary conditions.

Parks et.al. (1981) and German ct. a!. (1983) analyzed surface cracks with 0.2

<: 3Ie <: 0.667 with 0.2 < arr <: 0.8. Delale and Erdogan (1982) and Dill and Saff

(1978) analyzed surface cracks with ale "" 0.2 at afT '" 0.4 to 0.8 using Ihe linc-spring

method. The results obtained by bolh teams weTC reasonably consistent althe deepest

point; nevertheless the disparity between the results sC1:med to be the greatest at the

free surface. In addition, the results for shallow cracks were more consistent thM those

obt3incd for deep cracks. The results were most inconsistent when ale = 0.7 and 3fT

= 0.2 (short and deep cracks).

Although there arc many ways to evaluate the stress intensity factors of semi

elliptical crocks, notably the line-spring method of Rice and Levy (1972) has been

extensively applied to tubular joints and flat plates by Kumar, Gel,nan and Schwnacher

(1985) because it is computationally efficient. The basic method developed by Rice

and Levy for mode I has been extcnded by Parks (1981) and Desvaux: (1985) to include

modcs II and III also. They also found agreement better than 3% between the line

spring calculation and a full three dimensional solution at the deepest point of the crack
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with an aspect ralio ale of 0.2. in a nal plate.

2.5.2 Line spring and three-dimensional analysis or a tubular joint

Chu (1984) and Burdekin (1985) showed that the local slress concentration

affects only the stresses near the surface of the lubes where the stresses deviate from

the thin shell theory over about 2(}% of the plate thickness. Cracks subject to this local

slress concentration omnol be modelled elTectively by the line-springs unless :lccounl

is taken of the local stress concentration by using a correction ftletor. The development

of a crack. growing on a curved path under the chord-brace intersection, can be

pr~dicted by considering the orientation of a small angled kink on the crack tip which

maximizes either K1 or G. The close agreement between experimental and computed

data shows that the local stress concentrations. caused by the wcldments. which have

not been modelled, has no effect on the analysis. Dover ct. al. (1991) came up with

a simple relation for a wide range of crack shapes, given by the following equation:

~ '" 0.167 [ y] ~ 0.05 l'f'02 ] (2.16)

These ratios compare favourably with computed and experimental data.

Huang et.al. (1988) modelled a tubular welded T-jointeontaining semi·elliptical

cracks located at the chord and brace intersection which was analYlCd using the Iinc

spring model and the virtual crack extension method. The chord and brace were
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modelled with eight noded curved shell elements while the critical region of the chord

brace intersection was modelled using twenty noded isoparametric brick elements.

Compatibility between the bricks and shell elements was achieved using transition

clements which had eighteen, twelve aM fifteen nodes produced by degenerating

twenty noded brick elements. The same joint was also modelled using eight noded

doubly cun:cd shell elements with the cracks represented by the line-spring model. The

mesh was generated using commercial codes and weTC optimized by the method

suggested by Sloane and Randolph (1983) for the frontal solution. The models were

subjCCIC~ to unifonn nxial force on the brace and the ends of the ChOTci were built in.

Three crack geometries were analyzed which consisted of semi elliptical cracks with

a maximum depth to thickness retio afT of 0.6 and 0.9 and a surface length 2en' ~ 4.

They concluded that the line-spring concept of Rice and Levy provides a flexible and

computationally efficient method of calculating the stress intensity factors of cracks in

tubular joints for cracks with depths greater than arr = 0.2; the computational effort

being comparable to determining the hot spot stress concentration by shell analysis.

The line-spring, and the three dimensional solutions yielded results that were consistent

to within 3.5% at the deepest point and showed good agreement along the whole crack

front; shallow cracks showed similar results with a discrepancy of2.5% at the deepest

point.

2.6 Stress Intensity Faclor Evaluation

Central to the application of linear elastic fracture mechanics in fatigue analysis



is the detennination of the stress intensity factor ranges. Stress intensity factor

solutions are now available for a wide range of geometries. e,g., Spedal Technical

Publications by the American Society for Testing and Materials [ASTM Sland,lrds

1981). Unfortunately, the available solutions to evaluate the stress intensity factors

prove inadequate where a structure has a complex geQmetry and loading. Thus there

is a need to develop simpler and inexpensive methods, even al the expense of hcing

less acewate than the established methods.

An equivalent stress intensity factor based on the energy release rotc is tlelincd

as;

(2.17)

for a mixed mode fracture problem, where K" K II• and Kill arc the stress intensity

factors for Ihree independent modes and v is lhe Poisson's mtio. Rhee ct, al. (1991)

developed an empirical formula by which the stress intensity factor solutions III the

crack front point on a curved tubular surface could be evaluated and is given by:

(2.18)

where a'=af1', c'''3cJd, .=tff, y=onr. 1~=JlO, a is the crack depth, T i5 Ihe chordal

thickness, c is the crack length, d is lhe brace diameter, t is the brace thickness, D is

the chordal diameter, an is the nominal stress and F = Fl,F j• F. is the joint geometry
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[:lclor. F, is the crack size factor and Fl is the joint and crack coupling factor.

Has.....elJ and Dover (1991) found out thai the stress intensity factor solutions for

tubular joints are innuenctd by the degree of bending and crack shape assumptions.

Pook c1. a!. (1992) observed that: (i) mixed mode loading may occur when a crack

developed under forces acting along one axis is subjected 10 a force applied along

another nxis, and (ii) mixed mode stress intensity faclors cannot be determined

analytically and that numerical methods could prove costly. Consequently the

approxim3tc mixed mode siress imcnsity factors for pan-through cracks in tubular

welded joints could be modelled as warped parHhrough surface cracks for Mode t and

approximations for Modes II and III could be based on the exact analytical solutions

for an elliptical crack in an infinite body.

The general fonnul" for the stress intensity factor of edge craeks in two

dimensions is given in eqn. (2.17). Dijkstra eL aI. (1993) show that

(2.17)

where Ml is the stress intensity concentration factor for the influence of the weld

geometry. M is a correction factor for a flat strip or plate and indices m and b are for

membrane and bending, respectively. More infonnation on how to determine the

geometrical correclion faelors M and M~ can be found in the studies of Dijkstra e1. al.

(1989). and Van Straalen and Dijkstra (1993). Ritchie and Voennans (1985), and

Kristiansen and Fu (1993) analyud surface cracks in welded tubular joints. The values



obtained along the crack front showed good agre~mcnt between estimated and

computed values except at the free surface. The latter concluded that: (i) the SITC~S

intensity factor ratio (l • kr (free surface point) is aflccted by various factors in
l kr (The deepest point)

particular by the weld notch stress concentration; (ii) in tubular joints an increase in the

stress intensity factor occurs in a limited free surface region. which thcy attributed to

the curved crack configuration and varying stress distribution !llong the joint

intersection; and (iii) the displacement approach could give reasonable approximations

if it is used with a detailed three dimensional mesh. Nwosu (1993) verified that with

suitable modifications Ilnd the correct contact algorithm. the usc of Jjne-sprjn~ clements

was found suitable for evaluating the stress intensity factors in tubular welded joints.

Bowncss and Lee (1993) concluded that a cracked T-joint model. in which chord saddle

cracks were simulated using line-spring elements was successfully validated against

existing ex~rimental and three dimensional results.

2.7 Fatigue Life of Tubular Welded Joints

The phenomenon of flltigue crllck initiation which is studied at the microscopic

level is a very complicated problem and a few quantitative theories have been proposed

for its study, Fatigue cracks generally occur at localized high stress concentration

regions where the stress exceeds the yield stress of the material. Since the loadin~ in

the brace is an axial or bending load, the weld toe crack propagation will be

predominantly the opening mode. Dover and Dharmavasan (1982) showed that the
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crnck5 present in tubular joint! grow steadily through the wall thickness at a fairly

const1l\l rate. Wylde and McDonald (1981) sho....~ thai cracks of size I to3 mm ....~re

present at less than 10% of the total life of II ~lded tubular joint. de Back and

Vacssen (1981) sho.....'ed that initiation life is about 30% of the crack-through life for

a tubular T-joint. For a ease of axial loading Munaswamy ct. al. (1987) showed that

the crack initiation life was about 34.6% of the Iolal life in air at 250 MPa (hot spot

nominal stress) and 46.6% in simulated sea waler at 160 MPa. Vagi ct. al. (I99D

investigated Ihe effcci of thickness in welded steel joints and observed that the

thickness had the largest e(fcct on crack initiation, whilst having lillie effect on crack

propagation. Bell & Vosikoysky (1992) pointed out that many cracks initiate along Ihe

weld toe and grow into onc another to fonn fewer and larger cracks. Hence the actual

shape of a crack is governed more by coalescence rather than by crack growth of a

single elliptical crack. It was also found that coalescent life was a significanl

percentage of the propagation life. To estimate the contribution of crack coalescence

in the propagation life,4n empirical crack shape development function was developed

and given by:

~ • e -h (2.18)

where k is a function of the stress level and weld toe geometry. Nwosu (1993)

concluded thai the rotios of crack initiation life to total life range from 13-26% for

axially un-stiffened tllblliars, from 34-55% for in-plane bending loads, and from 12

24% for out-of-plane bending loads, and that the local Slrain approach could be used
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successfully to predict the fatigue cflIck initiation life of tubular \veldl'tljoints. Skoru(X\

and Skorupa (1993) studied the fatigue crack initiation period of welds in structural

steels failing at the weld toe. For their study. they analyzed a crudfoml welded joint

in mild steel subjected to axial stresses. They concluded that: (i) in the presence of a

high positive notch mean stress, the fatigue crack initiation life N( estimates h.'\SCd on

low cycle fatigue provided inconsistent values; and (ii) only the two stage approoch.

which includes initiation and propagation enables satisfactory prediction orlhe lulal life

in both, sound and under-cut welds. Pang (1993) modelled and analyzed the behaviour

of semi-elliptical crack coalescence and growth. A comparison between tho.:

computational result and lesting showed that at low stresses there WllS good agreement

while the same could nol be said for higher stresses, although the computed life was

conservative. Tos et. al. (1993) used two models of a welded joint with multiple semi·

elliptical cracks to model the crack shape development; thcy observed that: (i) while

the multiple crack model provides a beller simulation of crock shape development and

fatigue life, both models were found to under-predict the fatigue life when the total

stress range was used in the integration of Paris' equation; llJld (ii) differences in crock

shape development are largely responsible for the differences in the predicted lives

between the forcing function simulations and the multiple crack simulations. llucak

et. ai, (1994) showed that the hot spot stresses affected the development and

propagation of cracks in welded hollow joints. They considered several forms of

cracks to analyze the crack propagation pattern changes and proposed a modified

cumulative damage rule.
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2.8 Summary

The literature thal has been reviewed relales to the developments in the

application of !he finite element method and the application of linear elastic fracture

mechanics for assessing the fatigue life ofa cracking tubular T-joint It has also been

obsel"led that since the line-spring elements do not model correctly, the nonlinearity of

surface stresses around the crack or singularity region, the results obtained by them are

not good around surface penetrating zones. Also for short and deep cracks the line

spring elements do not give good results. The subsequent chnplers describe the

application of the line-spring medelle a tubular T-joint subjetted to an axial load. The

cracked structure has been modelled using line-spring elements.
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Chapter 3

Theoretical Background

3 General

The analysis of tubular joints would require the methods used in the an31ysis (If

shell structures. A shell is the" ...malerialiS3lion of a curved surface" (Flilgge (1960)1.

in which the normal stress through the thickness is considerably smaller than the in-plnne

stresses and thus is neglected in the analysis. While analytical 5Oluliolt'l available for

shell structures are limited in their application to the many and varied joint design

situations, the finite element method has evolved to be • proven numerical techniq....c.

The possible type of elemenu that could be used in the finite element analysis could be

broadly categorized as:

1) Thin shell elements (Kirchhoff assumptions);

2) Thin/thick shell elemenrs (Reissner-Mindlin theory);

3) 'I'hree dimensional elements;

4) Modified or degenerated three dimensional elements;

The coRStraint imposed in the Kirchhoff theory is that the nonnal to the shell's

reference surface remains nonnal throughout the deronnation phase. In the Reissner·

Mindlin Theory, shear flexibility is assumed, which is to mean that the nonnats at the
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lOp and !"'ottom surfaces may not lie in a straight line during deformation. Three

dimensional elements give improved modelling at the tubular joint intersections and have

been used to model the joint along with the regular thin shell elements. In the modified

three dimensional category, Ihe most notewonhy formulation is the degenerated

isoparamelric element, in which the three dimensional stress and strain conditions arc

degenerated 10 shell behaviour. This was originally introduced by Alunad et.al. (1970).

There are many kinds of degenerated elements, which are used in the linear and

nonlinear anaJ~>:5 of thin or thick shells [I-linton and Owen, 19&4]. Degel'll:rated

clements need only CO continuity of displacements across the inter-element boundaries

compared with other elements based on shell theory. Hence it is advantageous to use

such elements in estimating the stress intensity factors of tubular joints. The eight noded

degenerated r.erendipity shell element, shown in Fig. 3.1, is one such element that has

been used by many in the analysis of tubular joints; hence that element is used in this

investigation. The degenerated element was improved considembly by the reduced

integration method, with the intention of avoiding the incidenct: of "self locking" [Wu

and Abel, 1991]. The assumptions in the fonnulation are:

l) The nonnals to the mid-surface remain nonnal throughout the defonnation stage.

2) The strain energy corresponding to the stresses perpendicular to the mid surface

is disregarded, i.e., they are constrained to be zero.

Five degrees of freedom are considered at each node, consisting of three

translations and two rotations. The two rotational degrees of freedom correspond to
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rotations about the two surface axes.

Fig. 3.1 The degenerated isoparametric element. [Hinton and Owen. 19841

3.1 Coordinate Systems

In defining the geometry of [he element, four coordinate systems aTC employed;

they are,

1) Global coordinates

2) Curvilinear coordinates

3) Nodal coordinates

4) Local coordinates

Global coordinate system

The global coordinate system (x, y, z) is a cartesian orthogonal system and is

located at a conveniently chosen point.

Curvilinear coordinate system.

The curvilinear coordinate system is a cartesian system, in which ~. '1 and rare
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a sel of onhogonal axes. ~. II are in the middle plane. while r lies in the thickness

direction. The element is bounded by surfaces given by equations ~±l =0; T/± 1=0;

l± 1=0. Fig. 3.2 shows a typical element and its disposition in relation to the axes.

Nodal coordinate system

The origin of the nodal coordinate system is located at the f' node on the mid-

surface and is a right-handed system of cartesian coordinates. Such an arrangement is

shown in Fig, 3.3. As an infinity of vector directions normal to a given direction can

be generated. one panicular scheme has 10 be decided upon. Schemes other than the

described below are quite possible. A vector V1/ is derived by laking the vector cross

product between the unit vector along the global x axis direction and VJh i.e., VII ". i

conventional i. V21 is constructed so thaI VII' V:u. V:l/ fonn a right-handed cartesian

coordinate system. If i ® Vu ". 0; then VII = j 0 VlI• I, andj are unit vectors in the

global x and y directions; j denotes the jrh node.

(-I

FLg 3.2 The curvilinear coordinate system of a shell element and its disposition to the
global axes [Zienkiewicz 1977)
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Fig. 3.3 The coordinate systems and associated displacements for a degenerated
isoparametric element [Zienkiewicz 1977)

Local coordinate system

This is a cartesian syslem of coordinates defined at the sampling points when:in

stresses and strains are to be calculated and is showli in Fig 3.3. The axis perpendicUlar

to the surface termed z', is taken perpendicular to the surface r:::conSlant; the OIher two

local axes x' and y' are detennined to complete an orthogonal triad. Such a coordinate

system is used to calculate the stresses and strains al the sampling point.

3.2 Element geometry

With reference to Fig. 3.2, the external faces of the element arc curved, while

the sections across the thickness are maight lines. The curvilinear coordinate r is

approximately normal to the mid-surface, since it may not lie in the thickness direction.

The global coordinates of the top and holtom points that correspond to a given node on

the mid-plane surface are used to define the element geometry. In the isoparamctric
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formulation, the coordinates of an arbitrary point are given in terms of the nodal

coordinates and shape functions. A relationship between the global and curvilinear

systems for any point within the element is given by:

where N; is a shape function thai takes the value of unity al node j which is a node on

the edge of the mid-surface as shown in Fig. 3.3. The number eight denotes the number

of shape functions. p is a tensor index. used instead of i. Alternately the above equation

can bt: written in terms of the mid-surface nodal coordinates and the veClOr connecting

the top and bottom points. which gives the directional thickness. as shown in eqn. 3.3.

{',I· t. N,(!,,) (',1.-.· t. N,(!")jV,, (3,3)

VJi :> I xp )"'" - ( xp }boIrom with P = 1, 2, 3,

3.2.1 Displacement field

The assumption that the strains in a direction normal to the mid-surface are

negligible. suggests that the displacement of an arbitrary point could be defined by the

translation of its associated mid-point. and the rotation of Vl1 vector. as indicated in

Eqn.(3.1). Cti • and 11, correspond to the rotational degrees of freedom ;"bout the mid-

surface axes.

( u, }

The element displacement field could then be given by: { •. }

• 8 h •
. I: N,(!"Hu, 1_ • I: N,(!")"';!v,,, -v,,] (3.4)

i'I r-I 11
1
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where "l!' "2; are the column unit vectors, ~ is the shell thickness ilt node i and CY" and

Oi are the scalar rotational quantities as shown in Fig. 3.3, p: 1,2,) is used as before.

3.2.2 Stress-strain formulations

The stresses corresponding to the strains are defined by matrix fI' and arc relaled

by the elasticity matrix D'. f<J' and (10' represent initial strain and stress stales. The

matrix. D' includes elastic components for an isotropic material; it could be modifit:d to

include anisotropic properties as well.

",-
rI.. T~". .. rI • D'(e' -e~)+u~

i.,:,

',- U
l
l,l

',- u/ 2.2

" 1"'1' UI1.1+U'U

1','1' U'IJ+U",1

"(,'t' U
I

1•l +U'J,1

(3.5)

(3.6)

where u', ,,' are the displacements and strains expressed in the local coordinate system

and E')J=O. since the stresses are negligible in that direction.
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E and , are the Young's modulus and Poisson's ralio. respectively. The factor k is

included to improve the shear deformation approximation, which is seen to be somewhat

linear, when in fact for homogeneous cross-sections. the shear stress distribution is

known to be parabolic.

3.2.3 Element properties and transfonnations

Matrices that involve element propenies consist of a volume inlegral which in its

general form is given by 1Sdxdydz· 1bc matriJ: S is a function of the coordinates.

The stiffness matrix. for example, is given by Set, 'I, n=BTDO where B is the strain

shape function matrix. and D is the elasticity matrix. To determine the stresses and

strains in terms of the local COOrdinates, two transfonnations are necessary.

1) Curvilinear to the global system

2) Global to the local system

The first transformation for the displacement is given by:

(3.8)

This equation relates the displacements U", given in lenns of the global coordinales 10
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the displacements U,pi given in tenns of the curvilinear coordinates. The compuncnlJ>

of the matrices Vpj and V,pj are the components of the displacement vectors exprcs~t.l

as row vectors, given in terms of the two coordinate systems. [J i = (X~I.I' U' where

J is the .lacobian and Xpj are the components of a matrix containing the position v(.oclor

of an arbitrary point within the element as row vectors, being [unctiolls of (!, 'I. j).

The derivatives of the displacement components in the global direction ilTC now

transfonned to functions of the local coordinates by the transformation:

(3.9)

where U' and U are the componenlS of the displacement in the local ilnd glohal

coordinate systems, respectively. The matrix () is fonned by the unit vectors along the

directions of Ihe local axes x', y'. z'. i.e., 8 "" [ v'" v':. v'J ). The strains arc

derived from the displacements by the relationship:

,'on,tl
",

ai .. w,
(3.10)

"a,

where i takes the values from J to 8. 8 being equal to the number of nodes; 'At' denotes

the j'lll node of an element e IZienkiewicz 1977].
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3.3 Crack initiation

Fatigue initialion is a process of cumulative plastic sirain, which is associated

with the movement of dislocations that takes place more at the surface than in the bulk

of the material. Hence, fatigue initiation is a surface phenomenon although exceptions

have been observed, in which case initiation takes place within the material, 35 in e.g.

carburized. case hardened steels. Fig. 3.4 shows such a fcnnation as a resull of cyclic

stress. Fig. 3.5 shows the stress-slrain curve for such a cyclic loading. The total strain

has been shown in tcons of the elastic and plastic components, of which .6.Ep quantifies

the permanent deformation [Almar-Nress 1985J.

Dowling (1979) proposed a method to estimate the total fatigue life of a notched

component. This method combined the local strain l!.jlproi,ch to predict crack initiation

life and a fracture mechanics approach to predict the crack propagation life [Bannantine

ct. al. 19901. Crack initiation behaviour is not amenable to the laws of fracture

ml:chanics; hence its life cannot be evaluated by such means. Dowling proposed that

when the length of the crack is smaller than the extent of the notch stress field, the

strain-life approach could be used to determine the crack initiation life or early growth

from a notch. Several factors affect the strain-life such as heat treatment of metals.

mean stress effects etc. [Bannantine et. al. 1990]. It has been observed that the crack

initiation life becomes significant in the total life of the joint only in the event of small

wall thickness. post weld improvements etc. The Mart",on - Coffin's equation, given

below in eqn. (3.11). will be used to determine the initiation life.
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The four coefficients required for this analysis. viz.• a'r • f'r. b. and c arc cocfficicnl~

whose values will be detennined from the resullS obtained by (Iida 1987) for tuhular

joints whose chord Ihicknesses are in the range 0 - 10 rom. a', is the fatigue slrength

coefficient, b is the fatigue strength exponent. c is the fatigue ductility component, f'f

is the fatigue ductility coefficient, 2Nr is the reversals 10 failure or the iniliation life, .tlE

is the tolal strain amplitude, and E is the modulus of elasticity,

Fig. 3.4 The development of pennanent slip bands. caused by plastic flow [Almar-N:css
1985)

Fig. 3.5 Cyclic stress·strain response [Almar-Nress 1985J
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3.3.1 Fatl2ue Crack Growth Formulation

Fracture mechanics is the discipline concerned with the study of cracks and their

behaviour. Under the assumptions of linear elasticily valid for fatigue crack growth

problems. the stress intensity factor characterizes the crack lip behaviour. It has been

shown that the energy available for fracture or the crack driving force is directly

proportional to the square of the stress intensity factor. It may be expected therefore

that under fatigue loads, the fatigue crack growth rate will be governed by the variation

in the stress intensity factor .1K during the load cycle. The application of fracture

mechanics approach to crack propagation life evaluation requires ascertaining of tile

stress intensity factors at defects. In tubular T-joints. the most likely area for the

presence of defects would be the hot spot zone of the weld toe regian. Before the stress

intensity factor at a defect could be evaluated, the following have to be known:

1) Crack position

2) Interaction of adjacent cracks

3) Crack profile

4) Residual stresses

Even though multi-nucleation sites are observed during the crack initiation life

of a fatiguing structure, only one crack becomes a dominant crack (with an

approximately elliptic profile) during the coalescence of these multi-nucleating crack

sites; hence only a single crack will be considered in the computation of the crack

propagation life of the T-joint. The single crack location or position will vary depending
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on the type of applied loadlloads acting on the tubular joint; the tendency 10 cr.lck will

mainly depend on the magnitude of the stresses experienct."d :HOUnd the m:u:imum

stress/strain concentration region of the weld loe, known as the hot-spot, (Ihis region will

he detennined during the stress analysis phase oflhe computation). The residual stresses

present in the hot.spot region of the weld toe will generally be compressive on the

surface of the hot spot region. due to the differemial cooling process; hence it will not

have any significant influence on the fatigue life of the lubular joint. The factors

considered in this study do nOI take into account the environment and its effects. wlikh

in the case of marine environment, coulll be significant as well as unpredictable.

3.3.2 Line spring model for the evaluation of stress Intensity factors

The line spring element has been used to model a crack at a cracked site. This

model has proven to be a relatively simple and efficient one (or detcnnining stress

intensity (actors. Rice and levi (1972) introduced the model by which a surface flawcd

place, exposed to far field tension and bending, was analyzed within the context of the

two dimensional generalized plane strain and plate bending theory. The part through

cracked section is represented as an assemblage of the two dimensional edge cracked

elements; the middle surface of the plate on one side of the line spring is free to displace

and rotate relative to the middle surface on the other side. as shown in Fig. 3.6. The

magnitudes of separation due to the cracked region, along the middle surface of the plate

is expressed in terms of a displacement 0, and a rotation 9, at any point along the crack

line and are functions of the tension N and the bending moment M per unit length,
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transmitted at that poin!. This force N and the bending moment M arc related 10 the

displacement 6 and rotation 9 by linear spring coefficients (compliances) called line

springs. The cracking that follows lhe application of this tensile force and moment is

called mode I cracking. The aim of the line spring model is to avoid a complete three

dimensional analysis of a surface cracked component which would, if it were not

cracked, be considered as a shell structure. The fint step is to take into account the

local loss of stiffness of the shell due 10 the pan·through crack. To evaluate the

additional compliance generated by the crack, a comparison is made between a cracked

and an un-cracked strIp under plane strain conditions. For a given loading (N, M) and

crack. geometry (a. I, H), the defonnation of (6, 9) caused by the crack is defined as:

6, ~ 6-6.

e, ~ 8 - e.

(3.12)

where the subscriplS c and DC stand for a crack and no crack situation. 0< and 8< refer

10 displacemenls in the crack plane. which can be expressed in tenns of !he end momenls

and forces by means of a compliance matrix C; C is a function of (all). and represenls

the influence of the crack on !he local stiffnes5 of the shell. Parameters a, t and II are

the crack depth. plate thickness in the direction of the crack and the distance of the crack

respectively, from the loaded end as shown in Fig. 3.6.

[::] .Ie 1[:] (3.13)
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Fig. 3.6 The crack mode I for using line spring element

The first assumption in the llne spring element is thai the surface crack can h:.:

represented as a continuous line of springs. having bending and tension stiffnesses In,t

depend on the local crack depth. The second assumption is lhat al a given cross Sl.'Clion

of the pan through crack, the stress intensity factor is equal I? the corresponding stresli

imcnsity factor of an edge-cracked strip umer the same: tension and berxling forces. The:

relationship between (N ,M) and the displacemenu (0,. 8J for mode I ddormation is

given in terms of the compliance matrix C:

(3.14)

The coefficients O'ij have been derived by various authors, using the energy compliance

relations, which are polynomials in X ::: alt. The relevant eqU:l\ions are:

(3.1S)
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F;(X) • X'~ D,"X"
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(3.16)

(3.17)

ell and D1 are coefficients of the polynomial ai and Fij respectively. Such polynomials

cuuld be derived from polynomial fits of finite element results obtained for edge cracked

strips with various alt ratios, or by using the energy compliance method. [De. Langre

and Ehersalt, 19871. While considering the surface crack as that due to the assemblage

of a number of edge-cracked plane strain specimens, as shown in Fig. 3.7, it must be

borne in mind that the variation of the bending stresses along a single edge-cracked strip

introduces transverse shear and the variation of the bending moments and axial forces

between the various edge-cracked specimens introduces shear across the specimens. This

will cause two additional modes of cracking known as mode II (shear) and mode III

(torsion) cracking as shown in Figs. 3.8 and 3.9. Hence a proper analysis must consider

all three modes of cracking, The Slress intensity factors. which result from tension,

shear and twisting are represented by K[. ~l' and Kur respectively; these have been

obtained by Tada (1973) and Desvault (1985), as follows:

(3.18)

(3.19)
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(3.22). .
a(",) '" !arcsin [s~n"" 1d.

Sin'"

where (J, '" Nit, (Jb = 6M/t1
, and F,(a/t). Fb(a/t) are the tension and bending shape

functions. T is the shear stress, which could be approximated [0 Vlt, where V is lllc

shear force. The stress intensity factor for mode III is made up of a shear component

and a twisting component whose contributions are denoted by KIll.c' and KIlI.To where FII

is shape function for mode It deformation, Q and T arc the shear force and twisting

moments, respectively [DesYaux. 19851.

Fig. 3. i The basic idea of the line spring model (Akirnin and Nikishkov 19891
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Fig. 3.8 Mode II defannation due to shear

Fig. 3.9 Mode 111 deformation due to shear and a twisting moment

3.3.3 Implementation of the Line Spring

It has been observed that in a tubular T joint subjected to an axial tensile force.

stress concentration is greatest at the saddle of the weld toe. The saddle region. being

the critical one, would be the most likely location for crack initiation. Therefore, in
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detennining the stress intensity (aclOn with a view to delennining the fatigue life of the

crack. it is important that the crack be located where lhe stress concentration is grc;llcsl.

The line spring is used along the through~crack line between two rows of clements and

represent the stiffness of a crack at that point; the line spring clemem will have the same

nodes on either side of the through-crack line. Fig. 3.10 illustrates such a layout.

."
~. "
_~n~:~
opposite side 3
of crack

FIg. 3.10 The layout of the line spring dementlHibbitt et.
aL 1989)
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3.4 Fatigue Crack Growth Model

The stress intensity faclOrs used [0 compute the fatigue life are those evaluated

at the deepest point. which in the model occurs at the saddle. The line spring model has

been shown to give excellent results for flaws which aren't 100 deep nor too shallow

IHibbitt et.al. 1991). The fatigue crack growth by crack depth a and the load cycle N

could be related to the stress intensity factor range .6.K by Paris' equation:

(3.23)

where C, m arc crack growth constants. A typical schematic plOl of daldN YS oK is

given in Fig 3. II. Growth law corresponding to region II would be used to evaluate

propagation life of the joint. -#Fi is the change in crack depth per cycle N. The fatigue

life is given by:

N • [ d.
. c(t.KI"

where 3i and a f are the initial and final crack depths, respeclively.

(3.24)

1··
I:~.

~18K

Fig 3.11 Schematic of da/dN vs.6K plot (UEG 1985]
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Chapter 4

Stress Analysis of Tubular T-.Joints

4 General

The analysis of the stress and strain distributions of any structural component

would help in highlighting to the designer critical design locations; in the C:lSC uf a

rubular T-joint subjected to axial tension, it has been shown that lhe weld toe region

prescnt in the r·joint intersection is the critical region and that the saddle point of the

weld toe has the largest stress. Such maximum stress values have been defined in tcml~

of parametric design ~"{juations, which have to be determined experimentally for the

configuration that is of interest; such a procedure could prove to be an expensive one.

A viable alternative to such a method would be to model the configunllion and analy7.c

it numerically, which is purpose of this study. Fig. 4. 1 gives the configuralion and the

table below gives the joint parantelers, of the T -joint used in this sludy.

Joint Parameters
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Fig. 4.1 The geometry of the T-joinl

4.1 Mesh Generation

The mesh for the tubular joint was generated using the features made available

in the •ABAQUS" finite clement program. The joint itself consists of three components,

namely, the plug, chord. and brace. Fig. 4.2 shows the model components of 3 tubular

T-joint.

Fig. 4.2 Model components of the I-joint
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It is somewhat obvious that while a fine and uniform discretization would yield gool.l

results, the p.oblem itself would bctome computationally inefficient and unwieldy.

Such considerations would lead to suggest that a discretization in which a fine mesh is

obtained in an area of interest and a coarse one elsewhere. would be optimal: hence ;I

fine mesh was used in the weld toe area. The aspect ratio oftllcse elements amund the

weld toe, was maintained at near unity. The aspect ratio is the ralio of an clement's

height to its length. Care was also taken to avoid excessive distortions of the clements

away from critical areas, which would lead to erroneous rcsulls. The transition from

a fine mesh to a course one. was made to he gradual. The curved surface of the chord

was developed in a local coordinate system as a rectangular planar surface and then

mapped as a cylindrical surface to the global coordinate system. 11lC chord and plug

were discretized 10 having a fine mesh near the weld toe with the degree of fincness

diminishing from it gradually, as one moved away from the weld toc. The plug and

chord consisted of two regions of mesh. The first region "A" consisted of the mesh

between the plug and an almost square region with circular arcs for its sides. The

second region "B" was the mesh between such a square and the edges of the rcttangJe.

Fig. 4.3 shows such a layout.

The brace was generated as a cylindrical 5urface in the global coordinate system

with similar modelling considerations in mind. The half model was developed first.

from which the full model was derived llsing the fearures for copying nodes ancl

elements. The half model was used to analyze symmetric behaviour and the full model
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was used to study asymmetric behaviour. Three types of elements were used 10 model

the joint; the eight noded isoparamctric element with five degrees of freedom per node,

and the six noded shell triangular element with five degrees of freedom per node. The

six noded line spring element was used to model the crack.

Reglon B

Fig. 4.3 The finite element discretization of the chord

4.1.1 Boundary Conditions

For the half model, all nodes at the end of the chord were constrained i.e., all

the degrees of freedom for such nodes were made to equal zero. The nodes on either

side of the brace and lOp and bottom-most generators of the chord were constrained to

possess symmetry about a plane perrendicular to the Y axis, which in terms of the

degrees of freedom are; u, = uy = U, = (j), "" !P, == 41. = 0 and uy = t/J. = $. "" 0,
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respectively. The nodes at the lOp end of the brace, upon which the axial load beats.

were constrained for rotational degrees of freedom. The full model of the tubular joilll

was also constrained similarly, except that the side nodes of the brace did not warmnt

any boundary conditions.

4.1.2 Loading

The axial load was applied as a tensile and concentrated load al each node 10 the

lOp most nodes of the brace, according to the following equation:

F JN, dx • ~ { ~) ; wh,re F = n.t ;, til< [o,co acting on," un;! ,I,m,m, N, I,

the shape function for a quadratic element and I is the length of an element, along which

the load acts. 00 is the applied stress in the lOp of brace.

4.1.3 Convergence

Convergence tests were carried out 10 determine an optimum number ofdivisions

at the intersection. It was found that stress cOlICentration factors obtained for sixteen

divisions at the intersection - for lhe quarter model. compared favourably with the results

obtained using twenty four, thirty two and fony divisions. The results are given in Fig.

4.4. These results were also generated for the tubular T-joint used in an earlier

experimental program (Munaswamy el. al. 1987] and the experimental values compared

with the values obtained. Fig. 4.5 shows the computed and experimental values.
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Quarter model
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Fig. 4.4 The stress concentration factors obtained for various divisions around the weld
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Fig. 4.5 The computed stress concentration factors for an earlier test model Munaswamy
et.a1.11987)

4.2 Stress Analysis of a Tubular Joint

The stresses around the joint are analyzed to dctcnnine the regions of high
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stresses where a crack would most likely grow allhough the presence of" crack would

depend on a number of other facto~. Stresses arise from three main cause~:

1) The nominal stress; Ihis is the response of the joint to the applied load.

2) Defonnation stresses; these stresses arise to maiOlain continuity allhe inlcrsection

as the tubular walls deform.

3) Notch stresses; these stresses are introduced at a geometrical discominuity. such

as that found in the welded and cracked regions.

Nominal Stresses

Nominal stresses are the stresses applied to the member (in this case, the brace)

due to the externally acting loads. Depending on whether the applied load is an axial

or bending load, the magnitude of the nominal stress is computed by dividing the applied

load or momen!, by area or sectional modulus, as the case may be.

Deformation Stresses

In a tubular joint subjected to an axial load, the tendency to deform is more at

Ihe saddle than allhe crown for a given axial load. This allows a grealer ponion of load

10 be distributed 10 the saddle region, which is necessary 10 maintain Slructural

continuity. Thus, the stiffness varies from crown to saddle, which gives rise to a

maldistribution of stresses around tile weld toe region as shown in Fig. 4.6.
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Notch Stresses

Notch 5uenes are the result of a geometric discontinuity in a tubular T joint.

The section changes abRlptly at the weld toe, which gives rise to notch stresses (UEG

1985). Fig. 4.6shows the maldistributionofstcesses in a typical T-joint underm axial

tensile load.

REDISTAl6UTlON Of STRESSES

"TTHE WELD TOE

Fig. 4.6 Maldislribution of stresses at the weld toe

In analyzing the stresses around the weld lOC, lhrec situations have been considered:

I) The stress distribtilKm in the absence of a crack

2) The stress distribution in the presence of a symmetric crack

3) The stress distribution in the presence of an asynunctric crack

4.2.1 Stress intensity factor enluation

It would seem reasonable 10 model the line-spring where the stress concentration

factors derived from the finite elerrle,"lt computuion compare closely with those obtained
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from parametric formulae. TIle parametric stress concentration factors could oot be

determined for me joint since the parameter l' did not fall within the prescribed limits

for which the most of the available fonnula held good; hence a comparison was not

available for the SCF computed for the joint. Thus, the line-spring elements were

modelled at the intersection, where the stress concentration factor was greatest, as shown

in Fig. 4.7.

BRACE ELEMENTS

CHORD ELEMENTS /

l
UNE SPRING ELEMENTS

Fig. 4.7 Line-spring elements at t:be intersection

The line spring element was used in this srudy as lhe fmite element idealisation for

modelling a semi-eUiptical crack. Twelve elements were placed symmetrically about lhe

saddle point at the intersection to represent lhe crack. The crack was modelled on the

shell surface with the depth of the crack perpendicular to lIle surface. The crack was

defined as being positive or negative according to the convention shown in Fig. 4.8.
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~
~

(Open on +N surface)

'NElgatlYe' Clack
(Open on·N surface)

Fig. 4.8 Sign convention for crack orientation

The method by which the line spring is made to be an integral pan of the model is

shown in Fig. 3.7. The crack was modelled as a semi-elliptical crack whose major axis

equalled the length of the chord joining the two extremities of the crack. The projection

of the length between nodes al the intersection on the major axis was taken to be the

position along the axis, for which the depth was calculated.

The stresses obtained were given in a local coordinate system, whose local axis

SII (I[ a given point is defined as the projection of the global x axis onto the shell

surface. S~l is derived in such a manner that the normal to the surface and SII' i.e., the

projection of the global x axis onto the surface fonn a right handed orthogonal

coordinate system. Should the global axis be nonnal to the shell surface, the local 1 -

direction is taken to be the projection of the global z axis onto the shell ~urface. Fig.

4.9 shows such an arrangement.
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Fig. 4.9 The orientation of (he local 1-2-3 axes

To compute the radial and tangential stresses. an expression was t1crivcl.l I'm the

angle J3 between a radial line emanating from the plug and the generator of the chord

given by:

arccos [ hsin8 cos¢ ]; where R, r, 8, and ,p. are as shown in Fig. 4.10. and
JR 2 + rhin2 8cos2 t/1

~ .. ~=>.
cosO sintjl

Fig. 4.10 The definition of the angle (J
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4.3 Results and Discussion

Tile stress concentration factors for the T·joint were computed for the brace and

chord respectively. It was clear thai the chord had the larger stress concentration factors

than the brace, which meant that the crack would initiate at the chord weld toe region

of the intersection, Fig. 4.11. Hence, only the stresses at the chord end of the

intersection would be of interest.

•~L-~ "_,_._-,-.",__~ .,-.•~

lb.~.......-.l""_IOt,"'_Iron"'_poInl·tldeg ....

Fig. 4.11 Stress concentration factors for uncracked chord and brace

The radial and tangential stresses were the preferred stresses 10 work with instead

of the principal stresses, bet:ause it was deemed that in dealing with the principal

stresses, the stress orientation would need to be known; this would leave one with less

physical insighl imo the stress dislributioll than a stress system based on a curvilinear

system that would take into account the geometry of the configuration. For the

symmetric case the radial stresses at the intersection reduced greatly as the crack grew

in depth arounrJ the weld toe region, while the tangential stresses increased with
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increasing crack depth as shown in Figs. 4.12 and 4.13, respectively.

Str,,, ...Ilo·redialslrfta/nomlnaistres.
3S~

lmm-crackdllpth

2mm

:~~",l.
~

\.~~- , 4m;:;;-
10 _~.---o ,2

, -'
'mm

o I
8mm

.,-~ I
~ ~ ~5 ~

Thaanglflaround the weld loe . m&UUred Irom the saddle point-lndegrM'

Fig. 4.12 Radial stresses at the intersection, for various crack depths

25 Stres.ratio-tanQerltial.tr,.. /nomlnalstre.=u,--~ _

I

:: ~\ ~~~J
5~Crlldldepth lncreaslnglrom1mm·6mmin ~-I Increments oI1mm

o~+ ~__~

Fig. 4.13 Tangential stresses at the intersection for various crack depths

The tangential and radial stresses for the asymmetric case were observed to be similar
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10 the synunetric situation for the cracked side. whilst the radial and tangential stresses

on the uncracked side decreased with increasing crack depth as shown in Figs. 4.14 and

4.15.

..~_._-'
~ AoyrrwnM;c aalnD

Fig. 4.14 Radial stresses around the weld toe on the uncracked side

,,~--'_-I---

Fig. 4.15 Tangential stresses around {he weld lOe 00 the uncracked side
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2The Mises equivalem stress, which gives an indication of the tendency to crack

increased progressively at dislanCes away from the saddle point {along the greater circle}

as shown in Figs. 4.16 and 4.17 respectively, for the symmetric and asymmetric cases.

For the symmetric case. neaT the crack site the Mises equivalent stress along the weld

toe reduced gradually till a certain crack depth (between 4-5 mm) and lhereafter

increased. as seen in Fig. 4.18; lhis is due (0 the decrease of the radial stress and the

corresponding increase of the laIlgential stress at the saddle region, as shown in Figs.

4.12 and 4.13. Additionally, this increase towards the later stages of crack growth also

indicates the increased influence of shear Stresses at the crack region, leading to

dominance of ~l and Km values. as shown in Fig. 4.19 and 4.20.

30rS- ~.,--"".- .....,- .....

25 Symmetric aacking

:J
o

,
25.4

II'K:rMling a-* dIpltt , mm·8mm

~~ f;---,
78.2 101.6 127

AMIll1 dIItanc:e from laddIe·mm

Fig. 4.16 The variation of the Mises equivalent stress ratio away from the saddle point,
along the chord
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2OJ, \ \

15 .... \

Fig. 4.17 The variation of the Mises stress ratio away from the saddle point along the
chord.

Symmetric cracklng

:1

~=:alll':,;'"""

Fig. 4.18 The variation of the Mises equivalent stress along the intersection
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3 NonnIIMd ......~I-*",l('
Symmetric aacldng

12line-spring
elements

000
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o

Modell

o
o

, oo~~~~oi
oo.~ "- 0

00 ~ I~GXt~fromlmm ~ .00
o ~_---.:.~':::~::.::~na-uof 1 mm

117.5 22.5 -87.5

Theanglearoundlt.weldlOe.measuredfrom1henddlelll*lt·i1~

-C~rml

1+1 234 5()5

Fig. 4.19 SIF mode II variation along the crack front (Normalized SIP Ku=
Kuh'_<no>ln)

Mode III /;-

Symme<rlc aadting

'~2'''''_'1 elements .

-. -o -
-1 ....-... - - r

, ~cndlOlpflfromlmm

lO'mmln~of1mm

The lingle mound the weld lOll, measl.W*l from 1he .1ddIe point ·in degfMa

C"i'ii3i'"""~

~5.11

Fig. 4.20 SlF mode III variation along the crack front (Normalized SIF
~D=KlIly_(no>ln)
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1be variation of the Mises equivalent stress for the un-eracked side. for the asymmetric

cracking situation is given in Fig. 4.21. As the crack depth increases on the opposite

side, the Mises stress decreases uniformly on the un-cracked side. decreasing its

tendency to crack.

.~.......~
AaymlnMrlc cnddng. llIlQ'acMd Ilde

.-!-I-_--

Fig. 4.21 The variation of the Mises equivalent stress ratio away from the saddle
point on the un-cracked side

The predominant mode of crack advance was observed to be the I<. for the symmetric

and asymmetric cases; hence only Kl was considered in calculating the propagation life

of the joint. It was observed thai ~ was greatest at the saddle point. until the crack

reached a panicular depth, after which the K, value for the saddle point decreased as the

crack advanced. This pattern was observed for both lhe symmetric and asymmetric

cases. The variation of Kt for symmetric cracking at the weld toe is shown in Figs. 4.22

and 4.23. This observation was taken to mean lhat the energy available for fracture or

crack: growth through the lhiclmess decreased at the saddle region, while the energy
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available for crack growth along the weld roe increased; nevertheless the stress intensity

faclOrs at the extremities of the crack were observed to be always lower than those

obtained for intermediate points, which suggests that the dominant SIF region could

probably be along some other direction going into the chord than along the weld toe.

Similar observations could be made for stress intensity factors obtained for asymmetric

cracking.

NormaIzed SIF
40~

35

:J
15

10

Symmetric cracking

r-

I
, mm

5mm

/
5 "... lnaeasing crack depltl 1 IMl - 4 mm ,

4.5mm 5mm

~1 02 U M 0.5 M ~ M M

Normalized crack front angle

Fig. 4.22 SIF Mode I variation along the crack front (Normalized SIF = ~ I 0_

(n,)'").
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_~F

30~

5.21lVl'l

l~ CJlIdl; depltl 5.2mm-6mm.
10 lnincnlmenbofO.,2rrvn

("

,L
o 0.1

Symmetric crackIng

,.,

Fig. 4.23 SIF Mode I variation along the crack front (Normalized SIF = K. I 0'_

<rao)lf2).

The SCF on the un-<:racked side decreased very gradually for the asymmetric

crack as shown in Fig. 4.24. SIFts obtained for asymmetric cracking were equal to

those obtained for symmetric cracking. For relatively smaller crack deplhs, the SIF's

for the asymmetric situation increased with increasing crack depth. as shown in Fig.

4.25. It is clear from Fig. 4.25 that the difference in the SIF's for the two cases

increases as the crack depth increases with lhe asymmetric crack front having the higher

SIP values, which accounts for a shorter propagation life for an asymmetric crack. The

crack growth behaviour, or [he manner in which the SIF's vary for the two cracking

situations is similar. The slight drop in the SCF values (Fig. 4.24) for the asymmetric

situalion could be consequential to the redistribution of stresses around the weld toe, due

to the stress relieving that takes on the crack side, as the crack advances.
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Asy1M'Ietric aacklng

o~__
10 87.5ThII...___..-..Id-.-..cltrom......pon·iol__

Ciiil<aiPii'~
~45.'

Fig. 4.24 The variation in the SCF's on the un-<:racked side - asymmetric cracking
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0+---_
67.'
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~-~

l~.-e,-e

Fig. 4.25 A comparison of lhe SIF's for symmetric and asymmetric cracking
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The deformation of the brace and the chord for symmetric and asymmetric cracking are

shown in Figs. 4.26 10 4.28. II is seen Ihal the brace remains straight for symmetric

cracking, while it inclines towards the uncracked side for asymmetric cracking.

Fig. 4.26 Deformation of model· symmetric cracking

Fig. 4.27 Deformalion of model - Asymmetric cracking
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1AxlaI tension

Asymmetric cracking

Fig. 4.28 View from the uncracked side of joint. for the case of asymmetric cracking
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Chapter 5

Fatigue Life Prediction

5.1 Crack Initiation and Propagation Lives

In the traditional fracture mechanics approach 10 fatigue crack growth. it i~

assumed thaI an initial defect already exists and that fatigue life is made ur tlf lhe

propagation alone. A clearer understanding of fatigue could be had, if Ihe fatigue life

is resolved into three characteristic siages of inilialion. propagation. and fr.ll:tU!'C.

Initiation is analyzed at the microscopic level while propagation is analY7.cd at the

continuum level. The total faligue life NT is given by:

(5.1)

where Nl "" Number of fatigue load cycles for crack initiation. aOll N, "" Number of

fatigue load cycles for crack propagation. Crack initiation cannot be defined precisely.

For discontinuously jointed components like welded joines, it is usually 3ssumctl thai Nl

is the number or cycles within which a crack or an initial size· usually or the order nr

tenths or a mm • grows. It has been oh~crvcd thai the crack initiation lire becomes

significant in the lotal lire or the joint only in the event or small wall thickness, low

ratigue stress range, post weld improvcmcnls ctc. The Manson Coffin's equation (5.2)

will be used 10 determine the initiation lire. The rour coerficients required ror this

analysis viz., a'r. E'" b. and c are coefficients whose values were detennlned using the
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plot shown in Fig. 5.1 for crack initiation life obtained by (Iida 1987) for several T-joint

configurations. a"1 is the fatigue strength coefficient, b is the fatigue strength exponent,

c is the fatigue ductility exponent, t'f is the fatigue ductility coefficient. 2Nf is the

reversals to failure or the initiation life, l:\f is the total strain amplitude. and E is the

mmJulus of elasticity. Manson Coffin's equation is given by:

(5.2)

This equation is solved by a combination of the results from finite element analysis,

which gives the strain al Ihe critical hOI-spot region. and the use of existing data for

crack initiation in thin walled tubular joints. It is assumed thai the strain component

obtained from the elastic numerical analysis is almost the same as the total strain used

in Eqn. (5.2).

z

~
~
ti
X

Z).IO··..,...-'~""\-~...."..-...Je..,.."""'
102 ,05 to" 10~ t06 10"

CRACK INITIATtON LIFE, N;

Fig. 5.1 Crack initiation life
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The coefficients requireri to compute lhe iniliation life were detem\ined using the results

given in Fig. 5.1. In the high reversals to failure range, i.e., 101
- 101 , a mid-range line

(for thicknesses ranging from 0 - 10 mm) was determined from the upper and lower

bound lines. This line was taken 10 represent the elastic strain of a T-joim having a

chord thickness between 0 - 10 mm. The gradient of thf: elastic line and Ihc imcn.:ept

would give the two coefficients band a'I' respectively. In the lower reversals tll failure

range, Le., IOl - 1Q3, the mid-range line was bounded by the upper and lower hound

lines and was constructed to give a steep slope, as much as was possible whilst nnt

deviating in excess of tbe exact mid-range line; the reason being that for most ductile

steels f', z:> 1, and for strong steels f'f "" 0.5 (Bannantine et.al., 1990). However, it

was observed in this situation that the best possible slope yielded a vllluc of 0.1125 for

f'r, which is a little low. The values for the coefficients (1' r, b, and c were 3%.64 MPil,

-0.0985 and -0.699, respectively.

S.l.1 Propagation life

Growth rate of a fatigue crack is governed by changes in the stress intensity

factor :1t the critical cracked region. The equation proposed by Paris and Erdogan

(1963) would be used to determine the propagation life of the crack, viz.,

(5.3)

where AK = K"", - Krnifl' with K..w. and Kmia referring to the maximum and minimum

values of th.e stress intensity factors in the critical hot-spot region of the welded zone

during the fatigue load cycle.
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If da/dN versus .6K for a crack is plotted on a logarithmic scale an approximately

sigmoidal curve results, as shown in Fig. 5.2.

ReWonl Relllonli Rel;lon11l

No~oontinull COnlinwm
ITrCmrusms mechanism

(lIrialionllTo",thj

Fig 5.2 Schematic daldN Vs aK plol

The constants C and marc detennined empirically from a plol of

log (6K) vs. log [ ..:R ). The value of m is usually in the range of 2.5 S m S

4.5 for welded Sttel, and is usually assumed to be equal to three. while C is a material

constant. Paris' equation does not however account for the crack growth behaviour at

low and high levels of .6.K. For example it is possiblp. for a crack not to advance if the

value of L\K is less than the threshold value. If there are a high proportion of cycles

near the threshold. the crack growth predictions will be conservative and an adjustment

would have to be made. The Paris equation should not be used if there are a large

number of cycles at high stress intensity values, e.g., K"... > 0.7 K lc '

To calculate the absolute fatigue life by fracture mechanics requires more caution

IUEG 1985). To use appropriate values for C and m, the relationship obtained by
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[Gurney 1979) has been uored. where C and m are related by the following equation:

•.2,-----------

(5..4)

3.'

m 3.0

2.6

2.2

Key:
• $lruQ(l.lral &leel$
CI Hi9h$l~nglhsleels

lC Weldniotlll. ""

~
1·'1-"""'0"-""--""'0-""""-""l"'O-~""---~I""-"''''-~'+O-~'''--lO~-o~O~

o

Fig, 5.3 Shows the relationship between the fatigue life coefficients C and m

Several values nave been suggested for tne material constants C and m. based on the

various factors Ih1'\t would affect the material composition and stress state of the joint

such as the metal microstructure, marine fouling, cathodic protection, mean stress, allll

fatigue thresholds (UEG 1985). For Ihis study, lhe values computed for C and marc

J.832xlO'u and 3.0, respectively. In computing the propagation life the maximum

crack depth was incremented by 0.2 mm. starting from 0.2 mm up to 6 mm, which

means that an initial defect of 0.2 mm nas been assumed. The difference between the

stress intensity factors was taken to be ~K, for which the propagation life was computed.

Fig. 5.4 shows the fatigue life obtained for the symmetric and asymmetric cases.
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Crack depth·mm
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275 kilo cyd8s 336 kilo cycles

, 1
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: ~ ~ym_,,,a,,,,,gt ':'.:", C ,
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Fig. 5.4 Crack propagation life ( xl<Y cycles)

5.2 Discussion of results

Table A gives a comparison of the computed and experimental values obtained

for (he initiation and propagation lives. The experiment was done towards the Ph.D.

thesis work of a fellow graduate srudent (Ms. Cheng Shumin).

Table A

It is evident that while the initiation lives compare favourably, lhe propagation lives do

not. The reason for a low propagation life is the fact that computed stress intensity

factors are higher than the actual values. This could be subslamiated by the fact that a

fractional value between 0.9 and 0.8 of the computed value would yield lhe observed
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value, as shown in table B. If il were possible to delennine the paramC=lric stress

concentration factor, me crack would have been modelled in a region with 3. SCF value.

comparable with thai obtained from the paramelric equation - as outliIlL'1.l in the paper

by (Ou and Hancock 19(;9). This however was not possible. as the parameter 'Y 1Ik1 nol

come under the prescribed limits.

Table B

Two methods could be adopted to overcome the difference:

Place the line spring away from the inle~tion. e.g. one row away from the

inlersection; this would yield stress intensity (aclo.'S lower than those obtained at

the intersection.

ii) Increase lhe thickness of one or two rows of the brace near the weld toe to

represent Ihe weld thickness.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A study of the fatigue life of a tubular T-joint using the linear fracture mechanics

approach is presented. Since the finile element modelling preceded the experiment that

is now being carried oul in the structures laboratory (for Ms. Cheng Shumin), it was not

possible to use the cxperimcmaJ values as a "check" to model the T·joint. This model

was consequenlly used to corroborate the results of a previous experiment done by

Munuswamy et. a\. (1987); Ihe computed SCF's compared favourably with the

experimental values. The crack was modelled at the intersection. which with hindsight

we see that. it under-estimates the actual propagation life. The crack might have been

modelled away from the intersection. if it were possible to calculate the parametric SCF,

as lhen, the crack would have been modelled in a region having a similar SCPo In lhe

experiment, the tubular T-joim developed an asymmetric crack, which means that the

comparisons made would be in reference to such a crack analyzed, numerically.

A comparison of the computed values with the experimental shows that:

I) The SCF's at the weld toe compared well with the experimental values.

2) The computed propagation life for an asymmetric cracking, was only 55% of the



experimemal crack propagation life.

3) The stress imensity factor is del1ned as. K = (J .. ..[(lI"a)·Y, where K is the stress

intensity factor, a is the crack depth, and Y is the magnil1c:llion f;letor. The

SIP's obtained for an asymmetric crack were greater than those obtaincLl fnr a

symmetric crack, for lhe same slress and crack depth: hence i\ could he

concluded that for a tubular T·joim. lhe cracking will predominantly he in an

asymmetric manner.

4) In estimating the fatigue iife of a tubular T-joint. the propagation life based un

asymmetric crack growth would give a lower value, unless the line-spring

elements are placed at the right location.

5) The local strain approach could be used to detenninc the initiation life tlf the

tubular T·joinl.

6) Line-spring elements could be used to determine the stress intensity factors along

the crack front in structures such as tubular T-joints,

6.2 Recommendations for future research

As a continuation to the work that has been done, the following facts come across

as being worthy of further study.

To obtain values for the stresses and propagation life. after properly modelling

the first row of the brace elements at the intersection to account for Ihe thickness

of the weldment. Also the line spring element must be placed in between the

first and second row of the chord element.
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ii) To investigate the stresses and propagation ]ife for other types of joints using the

principles of linear fracture mechanics.

iii) To analyze the problem taking into account the effects of plasticity

iv) To carry OUI compact tension specimen tests and determine the values of C and

m, for the material of the tubular T-joint.



'li

Bibliography

Ahamcd, S.. Irons, [l M.. Zienkicwicz. O. c.. 1970, ..1,,(/IJ'.~is of 711ick flml Thill "'110:11
Structures by Curved Fillile Elcmems. In\. 1. Num. Meth. Eng.. Vol. 2. ]970, pp. 419 •
451.

Akimin, S.A.• Nikishkov. G.P., 1991. Weigllt FII/,,·/itm CalCl/ll/lion fllr Surfflce (hlck.I'
Using Ihe Line-spring Model. International journal of Fracture 47. pp. 241-256.

A!mar·Nress. Fatigue Handbook, 1985. Published by Tapir. Norges tckniskc hiigskolc.
7034 Trondheim·NTH, Norge.

Ando. Y. and Yagawa, D., 1977, Recelll Del'dopmc!I1fs in Fillite Element A-If!/ltud of
Three-Dimensional Crack problems ill .Japan. ProC. Int'!. Conference on Frl1\:lurc
Mechanics and Technology, Hong Kong, Sijthoff and Noordhoff Publishers, Vu1.l. pro
1513·1520.

Annual Book ofASTM Standards, 1981. Standard test method for plane-stmin fracturc
touglmess of metallic materials. Part It), E399-81. pp. 592-621

Atluri, S.N.• Nakagaki, M. Knthiresan, K., Rhee. H.C. and Chen. W.H .• 1978. lIyhrid
Finite Element Models for Linear and Nonlinear FracfIlre Mechanics. NtlJlIcriClll
Methods in Fracture Mechanics, Proc. ofthc First Intcrnational Conference of Swansc:l
International Conference, Swansea. Wales. 1978. pp 52-66.

Austen, LM. and Walker, E. F. 1977. Research Report PT-6795-8-77-t\.

Bananntine, lA., Comer, l.J. and Handrock, 1. L. 1990. Fundamentals of Melal
Fatigue Analysis. Prentice Hall

Barsoum. R.S., 1976, On The Use ofI.mpartlmetric Finite Element.f in Linear Fractare
Mechanics. International Journal for Numerical Methods in Engineering. Vol. 8. No.1,
pp.25-37.

Barsoum, R.S., 1976, A Degenerated Solid Elclnml for Linear Fracture AnalY,I'i,l' /If
Plate Bending and General She/f.~. International Journal for Numerical Methods in
Engineering, Vol. 10, No.1, pp. 551-564.

Barsoum, R.S., 1977, Triangulal' Qllurler-Poinl Elemenis as Elastic and Perfectly
Plastic Crack Tip r:lements. International Journal for Numerical methods in



92

Engineering, Vol. I I, pp. 85-98.

Uelllc, A. and Toprac, A.A., 1%7, Analy.viJ of Ill-Plane r. Yand K welded Tubular
Connections. Welding Research Council, Bulletin 125, October.

Uell, R. and Vosikovsky, 0" 1992, A FUligue Life F,~edic(ion Model for Mulliple
Crach in Welded Joints for Offvhore Structures. Offshore Mechanics and Arctic
Engineering, Vol. III-B, Materials Engineering, ASME.

Bcnz[cy, S.E. 1974. Representation of Singularities in Ihe !soparametric Finite
Elements. Intermltional Journal of Numerical Methods in Engineering, Vol.8. pp. 537
545.

Bhuyan, G.S.• Swamidas, A.SJ.• Vosikovsky, 0 .• 1988. Influence a/Environmental and
Mechanical Variables on Fatigue Crack Growth Rale in CSA GJO.2/M 350 wr Siee!'
International Journal of Fatigue.

Blackburn, W.S. and Hellen, T.K., 1979, Calculation 0/ Stress-Intensity Factors in
Threc-dlmensions by Finite Element Method. Intemational Journ3l of Numerical
Methods in Engineering. Vol.ll, pp. 211-229.

Boom, IN. and van Fossen, D.V., 1976, An Evaluation 0/ The TlI"enty-Noded
Quadratic Isoparametric Singularity Brick Elements. International Journal of Frnclurc,
Vo1.12. pp. 161-163.

Bowness, D., and Lee, M.M.K., 1993, Stress Fields and Stress In/cmity Factors in
Tubular T-Jolnl-'. Orrshore Mechanics and Arctic Enginecring Vol. III-B, Materials
Engineering ASME pp. 839-846.

Brock, D.. 1974, Elementary Engineering Fracture Mechanics, Noordhorr, International
Publications.

Bucak, O. Mang, F. and Herion, S., 1994, Development and Propagation a/Cracks in
Welded Hollow Section Joints Under Uniaxial and Multi-axial loading. OITshore
Mechanics in Arctic Engineering, YoU, Materials Engincering, ASME. pp. 159-166.

Burdekin, F. M., 1985, Enginecring Design Against Fracture at Stress Concentrations.
Mnlcri31 Science and Technology, VoU, pp. 487-493.

Chu. W.H.. 1984. Msc. Thesis, UMIST.

dc Back, J, and Vaessen, a.F.O.• 1981, Fatiguc and Corrosion Fatigue Behaviour of
Offshore Structures. ESCE Convention, 7210-KB/61602, Delft.



De. Langre. E. and Ebcrsolt. L.. 1987. The U.~e vf(/ Nell' !.ine Spring Shell EIt'lIIt'lf( for
Elastic Surface Crack A.nlll}'Si.~ Fatixlle. Fract. Engng. Maler. Struc!. Vol. 10. Nli. :!.
pp.153-167.

Delale. F. lind Erdogan. F. 1982. Application of !.ine-Sprillg .\/odd til II ()'lil1drklll
Shell COn/aining a Circ/lmferemial or tlxial Parl-Thro/l~" Crack. Trans. ASME. Series
E, Jourrntl of Applied Mechanics. V,,1.49, pp. 97-102.

Desveaux, OJ. 1985, The Line-Spring Model for Surface Flaw. !III ExtelJ.violl to ModI'
2 and Mode 3. M. Sc. Thesis, Depl. of Mech. Eng., Mass. Insl. Tech.. Camhridge.
Boston, U.S.A.

Dijkslra, 0.0., Snijder, H.H. and van Straalen, 1.) .. 1989. FatiKl/1! ('flick Urmr/lr
Calculations Using Stress Intensity Faclor.v for lVeltl Tue Gevmetril!s. Ofrshnrc
Mechanics lind Arctic Engineering. The Hague. The Netherlands, March 19-23. pp.
137-143.

Dijkstra, 0.0., van Straalen, I.J., and Noordhoek, C., 1993, A Fracilire IIIcdllll1ics
Approach ofFatigue ofWelded Joints in O.u:~hore Structures. Offshore Mechanics amI
Arctic Engineering, Vol. III·B Materials Engineering, ASME. pp. 675-680.

Dill, H.D and SaIT, C.R., 1978, Environment-Load Interaction Effecl.I· 01/ ('/'IIt'k
Growth. Air force Flight Dynamics Laboratory. AFFDL-TR·78-1J7.

Donahue. RJ., Clark, H.M.• Alanmo. P., Kumble. R.. and McEvily, "J., 1972, Cradt
Opening Displacement and the Rate of Fatigue Crack Growth. International Journal
of Fracture Mechanics 8, pp. 209·219.

Dover, W.O., Kare, R.F. and Hall, M.S.• 1991, The Reliability vf SCF Predictions
Using Parametric Equations: a Statistical Analysis. Proceedings of the Tenth
International Conference on Offshore Mechanics and Arctic Engineering, Stavengcr.
Norway, pp. 453-459.

Dover, D.W. and Dharmavasan, 5.,1982, Fofigue Fracture Mechanic.v Analysis tifT
and Y Joints. Offshore Technology Conference, Paper No.4404, Houston.

Dowling, N.E. and Begley, 1. A., 1976, Fatigue Crack Growlh During Plasticily and
the J Integral in Mechanics ofCrack Growth. ASTM STP 590, Americnn Society for
Testing and Materials, Philadelphia. pp, 82-103.

Dowling, N.E.• 1977, Crack Growth During low-Cycle Fatigue or Smouth Axiul
Specimens. in Cyclic Stress-Strains and Plastic Deformation Aspects ofFutigue Crack
Growth. ASTM STP 637, American Society for Testing and Materials, Philadelphia.
pp.97-121.



D"wling, N.E., 1979, Fatigue (1/ Nmches and the Local Stmin and Fructur<: ''''Iec/mnks
IIpproadte.\·. ASTM STi' 677, pp. 247-273.

Du, Z.Z., and Hancock, J.W., 1989, Stress Intensity Faclors a/Semi-Elliptical Cracks
in a Tuhular Welded Joint UJ"jng Line Springs and 3D Finite Element;;. Journal of
[)rcssurc Vessel Technology, Vol. III, pp. 247-251.

Efthymiou, M. and Burdekin, S., 1985, Stress Concenlrations in T/Y and
CiaplOw:rfapped K.JlJints, Developments in Marine Technology, Vol.2, pp. 429·440.

Efthymiou, M. and Durkin. F., 1988, Development of Stress Concentratioll Factor
Formulae and Generalised Influence Function.v for Use in Fatigue Analysis. Offshore
Tubular Joint Conference. London.

Engcsvik. K.M., [982, Anulysi.r ofUncertainties in Fatigue Capacity of Welded Joints.
Report Ur·82-17, Department of Marine Technology, University of Trondheim.

Erdollan. F. and Ratwani. M.. 1970. Fatigue and Fracture of Cylindrical Shells
Con/etillillK a Cin'wnferelliial Crack. International Journal of Fracture Mechanics,
Vo1.6. pp. 379-392.

FJiiggc, W. 1960, Stresses in Shells Springer. Berlin 1960

Forman. R.G., Kearney, V.E. and Engle, R.N., 1967, NI/merical Analysis of Crack
f'ropl/glllion ill ()'dic-Lol/ded Structures Journal of Basic Engineering, Trans. ASME,
Vo1.89. pp. 459-464.

Gdoulos, E.E.. 1990, Fracture Mechanics Criteria and Applications, Kluwer Academic
Publishers.

German. N.D.. Kumar V., and de Lorenzi, 1983, Analysis ofSurface Cracks in Plates
find Shf!l/s Using the Lille.Spring Model and ADINA. Computers and Structures,
VoU7. Nos.5·6. pp 881·890.

Gri!lilh. A.A. 1~·10. Tlte Phenomena of Rllplure and Flaw in Solids. Transactions,
Royal Society of London, Ser. A. Vol. 221, p. 163.

Hall. C.A. Raymund, M. and Palusamy. S.• 1979, A Mocro Elemenl Approach to
CO/IJputing Strf!ss-llItf!llsily Factors for Three-Dimensional Structures. International
Journal of Fracture. VoI.1S, pp.231-245.

Haswell, J. and Dover, W.O., 1991, Stress Intensity Factor Solulions for Tubular
.Ioillf.v. Offshore Mechanics and Arctic Engineering, Vol. III·B, Materials Engineering,



ASME. pp. ~61·~68.

Head. A.K., 1953. The Groll'/h (~"Fllli):.I/(! Crack. Philosophical Magazitw. VllJ.44. pp.
925-938.

I'kllen, T.K.. 1975.011 The Method olVirl/wl Crack £rte/l.fiOll.f. 11IICrnalillnai JllUrI1al
of Numerical Methods in Engineering, Vol. 9. pp. 187-207.

Hellicr. A.K.. Connolly, M.P. and Do\"er. W.O.. 1990a. S/YI:.~.I' Gllln'lIlrdticm Factor.I'
for Tubular Yalld T Joints. International Journal of Fatigue. Vol. I. pp. 13-2:\.

Hellier. A.K.. Connolly. M.P.. Dover. W.D. and Corderoy. DJ.I-\., 199Gb. l'ww/h'lric
Equations /0 Predict the Full Scale Siress DiSlriblltilm ill Tllhll/llr IYl'M'd r-,1rJil/{.~.

Proc. oflhc First Pacific/Asia Offshore Mechanics Symposium. Seoul. Korell. pr. 2111
293.

Henshell. RD. and Shaw. K.G.. 1975. Crack Tip Elemell/.r are IJllIlece,~,I'II(V.

International Journal for Numerical Methods in Engineering, Vol. 9. 1975. pp. 4I)S-5nl).

Hibbil. Karlsson & Sorensen Inc.. 1994. Reference Manuals. Vcr. 5.4

Hilton. P.O., 1977. A Specialized Fillite E!elll(!/Jt Approuch ji" Three-J)imemio/llil
Crack Problems ill Plales alld Shells Witll Cracks. Lcidcn. Noordhoff Inl. l'ublishillg.
pp.273-298.

Hinton. E., Owen, D. R. J., 1984. Finite Element Software for Plates lmd Shells.
Pineridge Press, U.K.

Huang, X, Ou. Z.Z. and Hancock. J,W.. 1988. A Fillite E!emelll Eva{ulI!ioll oJ/lit'
Stress Intensity Fac/ors ofSurface Cracks in a Tuhular .Ioint. Offshore Technl1lugy
Conference, P'lper No. 5665, Houston.

Iida. K.. 1987, Slate of the Art in Jopan. Steel ill Marine structures. Edited by
Noordhoek, C., de Back., J, Elsevier Science Publishers B.V., pp. 71-98.

inglis, CE. 1913, Stresses ill a Pla/e Due 10 ,he Pre.fence rifCrach and Sharp
Corners, Proceedings, Institute of Naval Architects, Vol.60.

Irons. 8.M. and Razzaque, A., 1972, Experiments with Ihe Putch Tesl for Cflnv('rxence
ofFi/lite Elemenls. Foundations of Finite Element Method with Applications to Partinl
Differential Equations, A.:ademic press, pp. 557-587.

Irwin, G.R.. 1957, Analysis afStresses and Strains Near the Endofu Cruck Traver.l'inJ:
a Plate. Transactions, ASME, Journal of Applied Mechanics, Vo1.24.



96

Irwin, a.R., 1958, Fr(fc'fwe, Encyclopedia of Physics. VoL6, Elasticity and Plasticity,
pr·551-590.

KlcsniJ, M. and Lucas, P.. 1973. £f!r:Cl o/Stress Cyclic A~ymmetry on Fatigue Crack
~rtJl\'l". 1972. Material Science Engineering. Vo1.9. pp. 231·240.

Kristiansen. M.O. and Fu, B.• 1993, The Free-Surface Stress I"tenslty Faclor D/Slirface
Cracks in Tubular Joint models. Orfshore Mechanics and Arctic Engineering, Vol.I1I
a, Materials Engineering, ASME pp. 795-801.

Kuang, lO., Potvin, A.B. and Leick, R.D., 1975, Siress Concentrations in Tubular
.Il1ill/.f. Offshore Technology Conference Paper, No.2205. Houston.

Kumar, V., German, M.D. and Schumacher, B.l., 1985, An Analysis ofElastic Surface
('rtlcks ill Cylinder.f Uving the Line-Spring Model and Shell Finile Element Method.
Journal of pressure Vessel Technology, Vol. 107, pp. 403-411.

Kumar. V. and German, M.D.• 1985, Srudies of the Line-Spring Model for Nonlinear
Prohlems Transactions of the ASME, Vol.I07, pp. 412·420.

Lawrence. F.V., Jr. 1980. Predicting Ihe Fatigue resistance ofWelds. Fracture Control
Program Report No. 36, Conege of Engineering, University of Illinois at Urbana
Champaign.

Manson. 5.S., Discuss/on. Trans. ASME. J. Basic Eng., Volume 84, No.4, pp. 5)]·
537.

McGowan, J.J. and Raymund. M., 1979, Stress-Intensity Factor Solutions for Internal
Longitudinal Semi-Elliptical Slirface Flaws ill a Cylinder Under Arbitrary Loading.
Fracture Mechanics, C.W. Smith (editor) ASTM STP 677, American Society for
Testing of materials, pp. 36S·380.

Miyamoto, H. and Miyoski, T.• 1971 . .-l"aly.~i.r ofStress-Intensity Factors for Surface
Croded Trnsion Plole. Proc. of Symposium on High Speed Computing of E1a!>tic
Structures. Leige, Belgium Vol.!. pp. 137·15S.

Morrow. 1.. 1968, Fatigue ProperlieJ u{.\h'wls. Fatigue Design Handbook, Society
of Auloffil1live Engineers, pp. 21-30.

Munaswamy, K.. Williams. P. and Swamidas, A.SJ., 1987, Fatigue Tests of
unstiffened Tubular T·Joints, Progress report AMCA-DSS Project DS6 File No.
23SQ.23440-4-9276 Serial No. OSQ84.004]1. submitted to Materials Technology
Centre. AMCA. Ottawa. 122 p.



'>7

Newman, J.e., Jr. and Raju. I.S" 1979a, Analysis of SUrfilCl! ('filCh ill F;IIi/tO 1'1111<''\'
Under Tension and Bending Loads, NASA TP 1578. Nalionlll Aeronautics anJ Sflm:c
Administration.

Newman. J.e., Jr. and Raju. I.S.. 1979b. Analysis vf SlIr/ocl! Crades ill Fiui/I! "'l/1l'.~

IInder Tension and Bending Loads. NASA TP 1578, National Aeronautics ,\Ill! Spacl:
Administration.

Newman. J.c., and Raju, 1.5., 1981, Faligul! Cmck Grow/I, Study IIf Rc.\'il!lIl1l ....'Ir,'s.~
Effie/s. International Journal of Fatigue 14, No.4. pp.23]·237.

Nwosu. OJ. 1993. Faligue Strength Analysis a/Offshore Tubul"r We/ded Joill/.I" Un,}l'/'

COrlStOn! Amp/illlde Loading: Local Strain and Fracture Mechanics tlpprolld.. Ph,D,
Thesis, Memorial University of Newfoundland 51. John's. Canada. pp. 285-290.

Pang, H.L.l, 1993, Fatigue Crack Growth alld Coalescence 11/ Sm:/(/(;e Crads.
Offshore Mechanics And Arctic Engineering. Vol. IlI-B . Materials Engineering.
ASME. pp. 485-491.

Paris, P. and Erdogan, F., 1963, A Critical Analysis of Crack Pr(}p(/~l/tiol1 1.(lM.
Journal of Basic Engineering. Trans. ASME. Vo1.85. pp. 528-534.

Parks. D.M.• 1974, A Stiffness Derivati~'e Finite Element Technique for Dellmnillutitlll
of Crack Tip Stress Jnrensity Focrors. International Journal of fracture, Vol. I0, pp.
487·502.

Parks, D.N., Lockett, R. and Brockenbrough, J.R., 1981, Slreu-lmcn.\·Uy {o"/Ictor.\' jill'
Surface Cr{Jcks in Plates and Cylindrical Shells /Ising Llne.Spring Finite ElWlCnlS

Proc. of the Winter Annual Meeting, ASME. Washington, D.C, pr. 279-285.

Parks. D.M., 1981a, Inelastic Analysis ofSlIrface Flaws Udn}{ the Line-Sprilll: Model.
Advances in Fracture Research (ICF), Vo1.5, pp. 185-194.

Parks, D.M., 1981b, The Inelastic Line.spring Estimates of Elu.ftk·-Plastlc Fracture
Mechanics Paramelers for Surface.Cracked Plates and Shell.f. lournal of Pressure
Vessel Technology, Vol.l03. pp. 246·254.

Parks. D. M., and White, C. S.• 1982, Elastic Plastic Line Spring Finite Elements for
Surfacl!. Cracked Plates and Shells. ASME publication, Pressure vessel and piping Vol.
58

Pian, T.H.H. and Moriya, K., 1977, Three-Dimensional Crack Elemenl by A.~sumed

Slress Hybrid Model. Recent Advances in Engineering Sciences. Proc. of the 14th
Annual Meeting, Bethlehem. PA, pp. 913-917.



98

Pian, r.H.H. and Moriya, K" 1978, Three-Dimensional Fracture Analysis by Assumed
Stress lIybrid Elements. Numerical Methods in Fracture Mechanics, Proe. of The First
International Conference, Swansea, Wales, pp. 363·373.

Pook, L.P, Kam, J.c.P. and Mshana. Y" 1992, On Mixed Mode Fatiglle Crack Growth
in Tubular Welded .Ioint.f. Offshore Mechanics and Arctic Engineering, Vol. tH·B,
Materials Engineering, ASME, pp. 251-255.

Raju, I.S. and Newman, le., Jr" 1977a, Three-Dimensional Finile Element Analysis
ojFinite.Thicknrss Fracture Specimens. NASA IL D-8414, National Aeronautics and
Space Administration, 42 pages.

Raju,I.S. and Newman, le., Jr. 1977b, Improved Stress./nlensity Factor for Semi
Elliptic Slirface Cracks in jinite Thickness Plates. NASA TM X·72825, National
Aeronautics nnd Space Administration, Washington, DC.

Rnju. 1.5. and Newman. J.e.. 1971c, Improved Stress·lntensity Factor for Semi.Effiplic
Surfacc Cracks in Finite Thickness Plates. NASA TM X-72825, National Aeronautics
and Space Administration, WashinglOn, DC.

Raju, I.S. and Newman. J.C., Jr.• [979a, Siress-Inlensity Factors for a Wide Runge of
Semi-Elliptical Surface Cracks in Finite Thickness Plates. Engineering Fracture
Mechanics. VaLli. pp. 817-829.

Raju. I.S. and Newman, lC., Jr .• 1979b, Slress-lntensity Faclors for Two·Symmetric
Corner Cracks. Fracture Mechanics ASTM STP 677, American Society for Testing
of Material, pp.411·430.

Rhee, H.C., Han, S. and Gipson. 0.5., 1991, Reliability of Solution Method and
Empirical Formulas afStress Intensity Factors for Weld toe Cracks ofTubular Joints.
Offshore Mechanics and Arctic Engineering, Vol. III·B, Materials Engineering, ASME,
pp. 441.452.

Rice. lR. and Levy, N.• 1972a, Some Remarks on Elastic Crack Tip Stress fields
Intemational Journal of Solids and Structures, Vol.8, pp. 751·758.

Rice, lR. and Levy, N., 1972b, The Parf.lhrough Surface Crack in an Elasllc Plale
Joumal of Applied Mechanics, Vol. 39, pp. 185-194

Ritchie, D. and Voermans, C. W.M., 1985, Stress Intensity Factors In an Offshore
Tub,,'ar Joint Test Specimen. Proceedings of the Fourth International Conference on
Numerical Methods in Fracture Mechanics. pp. 715-725.

Ritchie, D.. 1986. Private Communication.



..
Schulz. 1981, Procedllres for (he Predictioll of FCllif,:lIc Life of T"bulllr Jf)jms.
International Conference on StC'e1 in Marine Structures, Paris. pp. 254·308.

Shah. R.C.. ;md Kobayashi. A.S., 1972. 0" tire S"':fi,,:r Flu\!" Problem. Physical
Problems and Computational Solutions. ASME. pp. 79·124.

Shah. R.C., and Kobayashi. AS.. 1974. £JIiplicol Crack ill a Fillj(e-Thjd,~u Ploll'
Subjected 10 Tensile Bending Loading. Transactions ASME. Joum:ll ofPrcssurc Vessel
Technology. Vo1.96. pp. 47-54.

Skorupa. M" and Skorupa. A., 1993, Significance of Crack /nitiQtivlI Period ;/1
StruCl/lraf Steel Welds. Offshore mechanics and Arctic Engineering Vol. 111·11
Materials Engineering ASME pp. 715-720.

Sloane, S.W. and Randolph. M.F., 198]. Automatic Efcmf!nt Reordering jilr Fillile
Element Analysis w/l1l Frontal Solution Schemes. International Journal for Numericlll
Methods in Engineering, Vo1.l9. pp. 1153-1181.

Smith. F.W. and Alavi, M.J., 1971. Stress·lntenslty Foctors/or a Penny.Shaped Crlld:
in a Holf-Spoce. Engineering Frtlcture Mechanics, Vol. J. pp. 241·254.

Smith, F.W., 1972. Dt~/oslic analysis of the Pcut·CirClllar Surfacr Flaw Pmhlcm hy
the A/lernaling Method. Physical Problems and Computational Solutions ASME. flfl.
125-152.

Socie. D.M. Mitchell. R. and Cowfield, D. M., 1978, Fundamentals afModern FoliXlle
Analysis. FCP Repon, No. 26, University of Illinois, UtOOna_

Tada, H., Paris, p.e.. and Irwin, G.R., 1973, The Slress Analysis ofCrncks Handbook,
Del Research Corporation Hellerto,",,11, PeMSylvania.

Tong, P. and Atluri, S.N.. 1977, On Hybrid Finile Element Technique for Crack
Analysis. Proc. Infl. Conf. on Fracture Mechanics and Technology, Hong Kong,
SijlhofT and Noordhoff Publishers, Vo1.2, pp. 1445-1466.

Tos, H., lambert, S.B.and Burns, D.J., 1993, Fatiglle Lift Predlcllonfor Welded .Ioin/.r
Under Variable Amplitude loading Using a Multiple Crack Model. Offshore
Mechanics and Arctic Engineering, Vol. III-B, Materials Engineering, ASME, Pfl. 697·
707.

Tracey, D.M., 1974, Finite Elements for Three·Dimenslonal Elastic Craclc Anuly.fls.
Nuclear Engineering in Design, Vo1.26, pp. 282·290.

Tsang, A.A., 1981, A Compadson a/Three-Dimensional Finite-Elemenl Sulutiuns for



100

the Cumpacl Specimen. International Journal of fracture, VoU?, pp. R12S·R129.

Underwater Engineering Group. 1985, Design of tubular Joints for OjJshore
S/ruclure.f. UEG Publications, URT 33.

van Straalcn, I.J., and Dijkstra, 0.0., 1993. Prediclioll of the Faligue Behaviour of
Welded Sleel and Aluminium Structures with the Fmc/UTe Mechanics Approach. Paper
\0 be Published in the Journal of Constructional Steel Research.

Williams. M.L., 1952, Stress Singularities Reslliling.from Various Boundary Conditions
ill Angular Corners of Plales in Extension. Journal of Applied Mechanics, Vol 19, pp.
526·528.

Williams, ML, \957, On The Siress Distribution at Ihe Base of a Slallanary Crack
Journal of Applied Mechanics, Trans" ASME, Vol.24, pp. 109-114.

Wordsworth. A.C. and Smedley, G.P.. 1978, Srress Concentrations at Unstiffined
Tubular Joints. European Offshore Steel Research Select Seminar, Paper 34,
Cambridge.

Wordsworth, A.C. and Smedley, J.P., 1978, Stress Concentrallons al Unstiffened
Tllbular Joln/s. Lloyds Register of Shipping, London, European Offshore Steel
Research Seminar, pp. J 1.

Wordsworth, A.C., 1981, Slress Concen/ration factors at K and KT Trlbular Join!s.
Proceedings, Fatigue in Offshore Structural Steel, Institute of Civil Engineers,
Westminster, London, February, 1981.

Wu, S. and Abel, A., 1991, Application of line.spring element in Analysis ofSlress
Intensify Factor and Fatigue Crack Propaga/ion o/Tubular Joints. lot. Symp. Marine
Structures, September, 12-15, Shanghai, China.

Wu, X.R., 1984. Stress-Intensity Faclors for Semi Elliptical Slir/ace Cracks Subjeclcd
10 Complex Crack Face Loading. Engineering Fracture Mechanics, Vo1.l9, pp. 387
405.

Wylde. J.G. and McDonald, A.• 1981, Modes 0/ Faligue Crack Development and
St!ffil/:ss Measurements in Welded Tublilar Joints. Paper 9 in Fatigue of Structural
Steel, Conf. Organized by the Institulion of Civil Engineering, London.

Yagawa. G. and Nishioka. T., 1980. Superposition Methods for Semi-Circular Surface
Crack. Internationlll Journal of Solids and Structures, Vo1.l6. pp. 585-595.

Vagi. J .• Machiada, S., Tomita, Y. lUId Matoba. Mo, 1991, Influencing Factors on



\0\

Thickness Effect ofFatigllt Streng'/' jlJ As-Wdded JIJlms forS'l'd 8IrllcllIl".'.o;'. Offshore
Mechanics and Arctic Engineering. Vol. III·B. Materials Engineering, ASME. pp. 305·
313.

Zienkiewicz. 0. C.. 1983, The Finite Element Method. McGl1lw~Hi1I and StlllS. New
York










	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Dedication
	008_Acknowledgements
	009_Abstract
	010_Abstract v
	011_Table of Contents
	012_Table of Contents vii
	013_Table of Contents viii
	014_List of Figures
	015_List of Figures x
	016_List of Figures xi
	017_List of Symbols
	018_List of Symbols xiii
	019_List of Symbols xiv
	020_List of Symbols xv
	021_Chapter 1 - Page 1
	022_Page 2
	023_Page 3
	024_Page 4
	025_Page 5
	026_Chapter 2 - Page 6
	027_Page 7
	028_Page 8
	029_Page 9
	030_Page 10
	031_Page 11
	032_Page 12
	033_Page 13
	034_Page 14
	035_Page 15
	036_Page 16
	037_Page 17
	038_Page 18
	039_Page 19
	040_Page 20
	041_Page 21
	042_Page 22
	043_Page 23
	044_Page 24
	045_Page 25
	046_Page 26
	047_Page 27
	048_Page 28
	049_Page 29
	050_Page 30
	051_Page 31
	052_Page 32
	053_Page 33
	054_Page 34
	055_Page 35
	056_Page 36
	057_Page 37
	058_Chapter 3 - Page 38
	059_Page 39
	060_Page 40
	061_Page 41
	062_Page 42
	063_Page 43
	064_Page 44
	065_Page 45
	066_Page 46
	067_Page 47
	068_Page 48
	069_Page 49
	070_Page 50
	071_Page 51
	072_Page 52
	073_Page 53
	074_Page 54
	075_Page 55
	076_Page 56
	077_Page 57
	078_Chapter 4 - Page 58
	079_Page 59
	080_Page 60
	081_Page 61
	082_Page 62
	083_Page 63
	084_Page 64
	085_Page 65
	086_Page 66
	087_Page 67
	088_Page 68
	089_Page 69
	090_Page 70
	091_Page 71
	092_Page 72
	093_Page 73
	094_Page 74
	095_Page 75
	096_Page 76
	097_Page 77
	098_Page 78
	099_Page 79
	100_Page 80
	101_Chapter 5 - Page 81
	102_Page 82
	103_Page 83
	104_Page 84
	105_Page 85
	106_Page 86
	107_Page 87
	108_Page 88
	109_Page 89
	110_Page 90
	111_Bibliography
	112_Page 92
	113_Page 93
	114_Page 94
	115_Page 95
	116_Page 96
	117_Page 97
	118_Page 98
	119_Page 99
	120_Page 100
	121_Page 101
	122_Blank Page
	123_Blank Page
	124_Inside Back Cover
	125_Back Cover

