CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)













Neural Network Based Incipient Fault
Detection of Induction Motors

By
oMohd. Rokonuzzaman, B.Sc. Eng.

A THESIS SUMBMITTED TO THE SCHOOL OF GRADUATE
STUDIES IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING.

FACULTY OF ENGINEERING AND APPLIED SCIENCE.
MEMORIAL UNIVERSITY OF NEWFOUNDLAND.
MARCH, 1995

ST. JOHN’S NEWFOUNDLAND CANADA.



National Libr Bibliol
I*l of C’:::ua e du Calna

Acquisiions and

ue nationale

irection des acquisitions et

Bibliographic Services Branch das services bibliographiques

5 Welinglon Stret
Ottawa, Otiawa
Fv KIACNG

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and

395, rue Welinglon
tawa (Ontano)

You e Ve deeoce

O o Note diarence

L'auteur a accordé une |Icence
irré ble et non

per a la Bibiiothéq
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de iere et sous

in any form or format, ki
this thesis available to

juelq forme que ce soit pour

persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-612-01914-4

Canada

mettre des exemplaires de cette
thése & la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.



Abstract

An incipient fault detection scheme of induction motors through the recog-
nition of frequency spectra of the stator current has been developed in this
thesis. It is based on the adaptive resonance theory of neural networks. This
fault diagnosis scheme is not only capable of detecting a fault but also can
report if it cannot identify a particular fault so that necessary preventive
steps can be taken to update the underlying neural network to adapt to this
undetected fault. Moreover, it can update itself to cope with this dynamic
situation retaining already acquired knowledge without the need of retraining
with the old patterns.

A laboratory experimental set-up using a digital signal processing(DSP)

has been employed to collect the ire spectra of the stator

current at different fault conditions. A wound-rotor induction motor has been
used as the test motor to create different types of faults making unbalance
in the stator and rotor circuits. A 24-bit high speed DSP board has been
used with a personal computer to develop a real-time interactive software to
collect the spectra. A driver for the HP-plotter has also been developed to
directly plot the frequency spectra of the stator current .

Adaptive resonance theory(ART) based network is a recent addition to
the neural network family. A new software has been successfully developed
and implemented in the laboratory experiment using ART neural network,
Its performances in training, recalling and dynamic updating have been stud-
ied with a set of example patterns. The incipient faults of a 3-phase wound
rotor induction motor have been successfully diagonized by this neural net-

work.
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Chapter 1

Introduction

Fault diagnosis has been an active area of research in both the engineering

and computer science communities. In spite of the many advances in this

with many q

area, fault di is still remains unan-
swered. With advances made in technology, complexity is a major factor
that we have to deal with. Complexity confronts us, perhaps, when some-
thing breaks down. We are forced to come up with more effective techniques

and analysis for detecting and di ing such lies. Di ic analy-

sis is not always itative. In fact much detection and di ic analysis
is heuristic, and results from repeated and long time cognitive experiences.
In the last decades, ac drive installation has shown tremendous growth both
in size and complexity. The interruption of service due to faults in a motor
drive installation is often costly and could interfere with public safety in some

installations.



These motors are exposed to a wide variety of environments and condi-
tions which make the motor subject to incipient faults. These incipient faults,
if left und d i to the degradation and eventual failure of the

motors. With proper monitoring and fault detection schemes, the incipi-
ent faults can be detected in their early stages, and maintenance and down
time expenses can be reduced while also improving safety. Thus, the motor
incipient fault detection can be used in the motor preventive maintenance

programs also.

1.1 Incipient Fault Detection of Induction
Motors

1.1.1 A Brief Description

Although rotating machines are usually well constructed and robust, the
possibility of incipient faults is inherent in the machines due to the stresses
involved in the conversion of electrical energy to mechanical energy and vice
versa [1, 2]. Incipient faults within a machine will affect the performance of
the machine before major failures occur. With proper system monitoring and
fault detection schemes, maintenance costs can be reduced and reliability of
the machines can be improved significantly.

An experienced engineer may detect and diagnose the motor faults by ob-

o d

serving the motor’s

However,

are expensive and difficult to train. It is, therefore desirable to automate

2



the system monitoring and fault detection schemes rather than to rely on
an expert to perform continuous on-line monitoring. Several fault detection
methods have been developed, each with their own prospects and constraints.

Some techni require ive di i i and/or off-line fault

analysis to determine the motor condition. For instance, the radio frequency
monitoring scheme injects radio frequency signals to the stator winding of
a machine and measures the changes of the signal waveform to determine
whether the winding insulation contains faults [2]. This technique requires
expensive equipment and is justified only for use with large and expensive
machines. Other popular techniques, such as particle analysis which requires
bringing the motor oil samples to a laboratory for analysis [2] to determine
the motor condition, are more suitable for overhaul or routine check-up rather

than on-line monitoring and fault detection,

The parameter estimation approach [3] is a non-invasive fault detection
scheme. Non-invasive fault detection schemes are based on easily accessi-
ble and inexpensive measurements to predict the motor condition without
disintegrating the motor structure. These schemes are suitable for on-line

monitoring and fault detection purposes. Due to their economical and non-

features, are often preferred by many
engineers. However, the parameter estimation approach requires an accurate
mathematical model and an elaborate understanding of the system dynam-
ica based on a set of system parameters. The parameters arc usually chosen
to reflect the motor conditions. For example, the bearing condition will

affect the damping coefficient of the motor’s mechanical equation. As the



bearing wears out, the damping coefficient increases. Thus, the parameter
estimation approach can be based on the motor’s mechanical equation and
measurements to estimate the value of the damping coefficients. After esti-

mating the numerical value of the chosen parameter, a means to translate the

d | values to Li is required. The major

difficulty with the parameter estimation approach is that an accurate mathe-
matical model is required, and is usually difficult to obtain. Other techniques
like non-parametric surface fitting method also require case by case specific
mathematical analysis. In addition, the interpretation of the fault condi-
tions, which is a fuzzy concept using rigorous mathematical formulations, is

generally impractical and inaccurate.

On the other hand, use of an artificial neural network for fault detection
is also a non-invasive technique [3, 4] . But, unlike the parameter estimation
approach, neural networks cen perform fault detection based on measure-

ments and training without the need of complex and rigorous mathematical

models. In addition, heuristic i ion of the motor conditions, which
sometimes only humans are capable of doing, can be easily implemented in

the neural network through supervised training,

1.1.2 Mathematical Analysis of Induction Motor

In order to successfully perform fault detection, different sets of criteria are
needed to define a motor’s status at different operating conditions. The

fault detection of a 3-phase induction motor has been used for illustration

4



purposes. It is worthwhile to describe the fault detection problem in mathe-

matical terms to facilitate future discussions on the subject.

b ical Description of Motor D;

An induction motor can be described by the following state equations in the

siaticnary reference frame:
dli] _[An An][ i B,
ale]=lm 2]+ (5]
= Az+Bv, (11)
i,=Cz (12)
‘Where

Stator Current i, = [ idy Tgs IT
RotorFluz ¢, = [ 44 ¢ ]’

Stator Voltage v, = [u.. Vg ]T

¢ An =~(R,/(6L,) + (1 -6)/(67.)) I=aul
® Ay =M/(8L,L)(1/7,) lpd ) = rial+ainnd

5



o Ay = (M/7,) I=am]
® Ap = —(1/7) I=wl=a,nl+aiz]

® By =1/(6L,)I=b;1

c=[110]
=[3t]

23]

10

R, and R, are stator and rotor resistances, respectively,

L, and L, are stator and rotor self inductances, respectively,
M is mutual inductance,

Leakage coefficient § = 1~ M?/(L,L —1),

Rotor time constant 7, =L — r/R, and

w, is motor angular velocity in radian/seconds.

Input current depends on the motor parameters R,, R,,L,, L., M and é.
An internal faull in the machine will be reflected in the stator current of
the machine. It is possible therefore, to detect the fault from the analysis of
stator current.



1.2 Artificial Neural Network for Fault De-
tection

1.2.1 Expert Approach for Fault Detection

As stated previously, the interpretation of a motor’s condition based on nu-
merical value is usually a difficult task because fault detection is a fuzzy con-
cept and usually requires experience [5). Therefore, in many cases, heuristic
interpretation of the results, which only humans are capable of doing be-
comes necessary. An experienced engineer can diagonose the motor’s condi-
tion based on its operating conditions an? measurements without knowing
exact mathematical model of the motor. The approach is simple and reliable,

and the licated hy ical relation is embedded

in the engineer’s

knowledge about the motor. However, an experienced engineer may not be

able to give detailed i ding his/her ing and logic used
to make the decisions, simply because experience belongs to the fuzzy logic

realm and is difficult to describe accurately in exact mathematical terms.

As it turns out, this human expertise approach has many advantages
over the parameter estimation approach. However, the major drawback of
the human expertise approach is that experience is difficult to transfer and

Both and engineers usually transfer experience and

knowledge through I and b ics, which are i time
consuming and inaccurate. In practice, the experience and the knowledge

used by expert engineers to perform motor fault detection and or diagnosis

7



historical fault detection data gathered by the experts.

1.2.2 Learning Skills of Artificial Neural Networks

With the emerging technology of artificial neural networks, the human ex-
pertise approach can be mimicked and automated [6, 7, 8]. Artificial neural
networks(ANN) can be trained to perform motor fault detection by learn-
ing expert’s knowledge using a representative set of motor data [9]. In the
case of an induction motor, incipient faults can be detected by analyzing
the frequency spectrum of the stator current as shown in Fig. 1.1(a)-(b).
Now it is clear that the stator current spectrum carries the signature of an
internal fault within the machine. So by training an ANN with the values of
spectral component related to particular faults without the need of mathe-
matical models, the ity of the imation approach can be
avoided. Once the ANN is trained appropriately, the network weights con-
tain the knowledge needed to perform fault detection, which is equivalent to
the expertise gained by an engineer over the years in machine fault diagnosis.

1.3 Literature Review

ANN s have been proven to be capable of successfully performing motor fault
detections [9, 10]. One of the advantages of this type of pattern recognition
techniques is that it can save time in information processing in run time,

where all the computational complexities are done off-line in the training



Frequency Spectra of Stator Current

(©

Figure 1.1: (a) Frequency spectra of input current of a healthy machine.(b)
Frequency spectra of input current of a faulty machine. (c). Model of Neural
Network based fault related spectra identification system.



period of the network.

When developing an ANN based system to perform a particular pattern
classification problem, typically the process is to gather a set of examples or
training patterns, then using these examples to train the underlying ANN.
During the training, the information is coded in the system by the adjust-
ments of the weight values. Once the training is deemed to be adequate,
the system is ready to be used in the real-time situations, and usually no

additional weight modification is required.

This operational scenario is acceptable provided the problem domain has
well-defined boundaries and is stable. Under such conditions it is possi-
ble to define an adequate set of training inputs for whatever problem be-
ing solved. Unfortunately, like many realistic situations involving incipient

fault detection of induction motors, the envil is neither bounded nor

stable. To solve this dynamic behaviour conventional Feed-forward Neural
Network(FNN) suffers a major set back.

Mo-Yuen Chow and others [3]-[5],(9]-[11] have done significant works in
neural network based incipient fault diagnosis of induction motors. But they
have used FNN as fault diagnosis tool and in their research work they have
neglected this dynamic operational scenario which is an indispensable part
in real-world environment. M.F. Abdel Mageed and his colleagues [12] have
used Hierarchical neural network, but this neural network also suffers the
same limitation as FNN. The same limitation also prevails in the research
works of F.Filippetti [13, 14], Chin-Teng [6] and their colleagues. Moreover,

10



the reporting ability of the neural network, if it cannot diagnose a partic:lar
fault has not been considered by them. So, there is a need to carry out a
research work to find suitable neural network which is not only capable to
diagonose a fault but also can report if it cannot, so that preventive steps
can be taken to update the neural network to adapt to this new fault, while
retaining the already acquired knowledge without retraining of the already

trained patterns.

Math

| analysis as i in section(1.1.2) makes sense that

wave shape of the stator current carries the signature of internal condition
of the machine. R. Natarajan [15] has used the stator current to diago-
nise the fault by only measuring its value, not though the spectral analysis,
which is necessary for neural network based fault detection scheme to get
better result. F.Filippetti and M.Martelli [13] have considered the frequency
spectra of the stator current as the key fault related information carrier of
the fault diagnosis scheme, but they have mot reported a detailed study of
frequency spectra of the stator current at different fault conditions. B.C.
Papadias [16] and others have given an outline to develop an expert system
for troubleshooting of electrical machines, but the collection of fault related
information is not mentioned. While the focus of research work of Mo-Yuen
Chow and others [3]-[5],[9)-[11] is towards the applicability of neural network
in the incipient fault diagnosis of induction motors specially in bearing fault,
they have not considered the spectral analysis of the stator current. At this
present state, it is evident that it is important to pay attention to collect the

frequency spectra of the stator current at different fault conditions.



1.4 Objective of the Present Work

The long-term objective of this work is to improve the state-of-the-art of in-

cipient fault diagnosis of induction motors. The specific short-term objectives

are summarized in the following three points:

o To find a neural network suitable for incipient faults detection of electric
machines. This fault diagnosis scheme is not only capable of detecting
a fault but also can report if it cannot identify a particular fault so
that necessary preventive steps can be taken to update the underlying
neural network to adapt to this undetected fault.

© To develop a laboratory set-up to collect frequency spectra of the stator
current of induction motor in real-time using digital signal processing
techniques, and to collect frequency spectra of the stator current at
different fault ditions for the i | induction motor.

o To train the selected neural network with fault related frequency spec-
tra of the stator current and to study the performance of the trained

network to diagonise faults in noise free as well as noisy conditions.

1.5 Overview of Thesis

The contents of the theses can be summarized in the following chapters:

12



Chapter 2 covers a survey of available neural networks. A comparative
study has been done to select a neural network to satisfy one of the

objectives.

Chapter 3 discusses the software implementation of the selected neural net-

work. It’s performance has been tested with a number of examples.

Chapter 4 explains the related algorithms and techniques to collect the
fault related frequency spectra of the stator current of a three phase
induction motor. This chapter also gives a brief outline of the digital
signal processing (DSP) board as well as the DSP library. Salient
features of the software developed as part of this work to acquire real
time frequency spectra of the stator current has been also described in

this chapter.

Chapter 5 explains the performances of the selected neural network to clas-
sify faults based on fault related frequency spectra of the stator current.
A model based on the selected neural network for on-line incipient fault
diagnosis system for the induction motor has also been reported in this

chapter.

Chapter 6 contains the conclusions and recommendations for future work.
It has been explained that there is a good prospect to do further work
on the irrespective of design parameter, type of machine as well as
operating conditions fault diagnosis system. Moreover, the scope of
development of multi-machine fault diagnosis system to make it cost-

effective and user-friendly has also been emphasized.

13



Chapter 2

An overview of Artificial
Neural Networks

2.1 Introduction

A neural network is a massively parallel distributed processc+ that has nat-
ural ity for storing i 1 k ledge and making it available

for use [17]. It mimics the brain in two respects:

a). Knowledge is acquired by the network through a learning
process.

b). Inter-neuron connection strengths, usually known as synaptic
weights, are used to store the knowledge.

The procedure used to perform the learning process is called a “learning
algorithm”, the function of which is to modify the synaptic weights of the
network in an orderly fashion so as to attain a desired design objective. The

14
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‘weights

Figure 2.1: Model of a neuron

use of neural networks offers a number of benefits, among them nonlinearity,
input-output mapping and adaptivity are most important.
2.1.1 Models of a Neuron
Fig. 2.1 shows the model of a neuron. Three basic elements of the neuron
are explained as follows:

1. A set of synapses or connecting links, each of which is characterized by

a weight or strength of its own.

2. An Adder for summing the input signals.

3. An activation function for limiting the amplitude of the output of the

neuron.
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A neuron K can be explained by the following equations:

5

up =Y T (2.1)
i=t

Uk = p(ur = 0;) (2.2)

where 21,%2,...,Zp are input signals; wy;,Wk,...,ws, are the synaptic weights
of neuron k; u is the linear combined output; 0y is the threshold; ¢ is the
activation function; and y is the output signal of the neuron. The use of
threshold 6y has the effect of applying an affine transformation to the output

uy of the linear combiner in the model as shown by

v = up =G (2.3)
The output can be d by the following
vk = p(v) (24)

Types of activation function
Generally used three different types of activation functions are described he-

low [17):

1. Threshold Function:
For this type of function as shown in Fig. 2.2(a)

R AR =
w={3 0% eo
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(2.7)

2. Piecewise-Linear Function:

A Piecewise-linear function as shown in Fig. 2.2(b) can be explained by
the following equation:
1, if v23}
pv)=1{ v, if —1>v>-1 (2.8)
0, if v}
3. Sigmoidal Function:
The Sigmoidal function as shown in Fig. 2.2(c) is by far the most com-
mon form of activation function used in the construction of artificial ncural

networks as explained by the following equation:

1
o(v) = TFezp(=av) (2:9)

where a is the slope parameter.

2.1.2 Network Architecture

Learning algorithm to train a neural network depends on the way it is struc-

tured. In general, there are four different classes of network architectures:

1. Single-Layer Feedforward Networks.
2. Multilayer Feedforward Network.
3. Recurrent Networks.

4. Lattice Structures
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Figure 2.2: Activation Functions: (a) Threshold Function. (b) Piecewise-
Linear Function (c) Sigmoidal Function

2.1.3 Artificial Intelligence and Neural Networks

The aim of artificial intell; (AI) is the devel of di

or
algorithms that require machines to perform tasks that apparently require
cognition when performed by humans. An Al system must be capable of:

1. storeing knowledge;

2. appling the knowledge stored to solve problems;

3. acquiring new knowledge through experience;



An Al system has three key p i ing, and

learning. Al can be ibed as the formal i ion of a language of al-

gorithms and data representations in a top-down fashion. On the other hand,

b tbuted

neural network can be d d as parallel di with a nat-
ural learning capability, and which usually operate in bottom-up fashion. For
the implementation of cognitive tasks, it therefore appears that rather than

seek solution based on Al or neural network alone, a more potentially useful

approach would be to build d jonist models that incorp
both of them.

Some important neural networks have been explained briefly in the folow-
ing sections ending with a comparative analysis for the selection of proper

neural network for incipient fault detection of an induction motor.

2.2 Backpropagation

Backpropagation neural network(BPN) as shown in Fig. 2.3 learns a prede-
fined set of input-output example pairs by using a two-phase propagate-adapt
cycle [18]. After an input pattern has been applied as stimulus to the first
layer of the network units, it is propagated through each upper layer until
an output is generated. This output pattern is then compared to the de-
sired output,and error signal is computed for each output unit. The error
signals are then transmitted backward from the output layer to each node
in the intermediate layer that contributes directly to the output. However,
each node in the intermediate layer receives only a portion of the total er-

ror signal, based roughly on the relative contribution the unit made to the

19



Figure 2.3: The three layer BPN architecture

original output. This process repeats, layer by layer until each node in the
network has received an error signal that describes its relative contribution

to the total error. The training dure of a BPN can ized in the

following points:
1. The vector, X, = (Zp1, Tpa, curveny Tpn)' i8 applied to the input units.
2. The net-input values to the hidden layer units are calculated:
netl; = iw:,-z,i +06} (2.10)
3. The outputs from the hidden layer are calculated:
inj = f}(nety; (211)
4, For output layer the net-input values to each unit is calculated:

L
netty = ; Wi + 6 (2.12)
=1

20



5. The outputs are calculated:

Opi = fi(nety,)

6. The error terms of the output units are calculated:

&y = £} (netyy) Z oy
7. The weight on the output layer is updated:
wi;(t + 1) = wi;(t) + n6puin
8. Weights in the hidden layer are updated:

wh(t +1) = wh(t) + néhz:

(2.13)

(2.14)

(2.15)

(216)

The following equation is the measure of how well the network is learning.

1"
E;=§E‘»‘~

(2.17)

When the error is acceptably small for each of the training-vector pairs,

training can be discontinued.

2.3 The Binary Associative Memory(BAM)

and the Hopfield Memory

A type of memory called an associative memory is a subject matter of this

section. In fact, the concept of associative memory is a fairly intuitive one:

associative memory appears to be one of the primary functions of the brain

[18].
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x layer

y layer
Figure 2.4: BAM architecture

2.3.1 The BAM

The BAM consists of two layers of processing elements that are fully inter-
connected between the layers. The units may, or may not, have feedback
connection to themselves. The general case is shown in Fig. 2.4. For the
L vector pairs that constitute the set of examplers should be stored, the

following matrix can be constructed:

W = ¥1X} + ¥oX5 + oo + YIXG, (2.18)

This equation gives the weights on the connections from the x layer to the y
layer. To construct the weights for the x layer units, it is necessary simply

to take the transpose of the weight matrix, wt
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BAM Mathematics
On the y layer
net? = wx (2.19)

where netV is the vector of the net-input values on the y layer. In terms of

the individual units, g,

nett = Sy (2:20)
=1
On the x layer
net® = wty (2.21)
,..
netf =3 yjwji (2.22)
i=1

The quantities n and m are dimensions of the x and y layers, respectively.
The output values for each processing element depends on the net input
value, and on the current output value of the layer. The new value of y at

time step ¢ + 1, y(t + 1) is related to the value of y at time step ¢, y(t) by

+1, net!>0
w(t+1)=1 ult), net!=0 (2.23)
-1, net!<0
Similarly, x(t+1) is related to x(t) by
+1, netf >0
zi(t+1) =4 =i(t), netf =0 (2.24)
~1, netf <0

BAM Processing

To recall the information using the BAM, the following steps should be per-

formed:
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. The initial vector pair, (Xo,Yo) is applied to the input elements of the

BAM.

2. Information is propagated from the x layer to the y layer; and the
values on the y-layer are updated.

3. The updated y information is propagated back to the x layer and the
units are updated.

4. Steps 2 and 3 are repeated until there is no further change in the units

on each layer.

2.3.2 The Hopfield Memory

Hopfield memory(HM) can described as a derivative of the BAM {18]. There
are two types of Hopfield memory as described below.

Discrete Hopfield Memory

Fig. 2.5 illustrate the structure of discrete Hopfield Memory.

Continuous Hopfield Memory

Continuous Hopfield Memory has same useful properties of associative mem-
ory but it can accept analog input making it closer to natural neuron. More-
over, it can be represented by analog eletronic circuit making it suitable for

VLSI implementation.



Figure 2.5: Discrete Hopfield Memory

2.4 Simulated Annealing

It is possible to extend the analogy between information theory and statis-
tical mechanics in order to place neural network [18] in contact with a heat
reservoir at some, as yet undefined temperature. If so, then it is possible to
perform a simulated annealing process whereby gradually lowering the tem-
perature while processing takes place in the network, in the hopes of avoiding
a local minimum on the energy landscape as shown in Fig. 2.6. This sit-
uation can be better explained in the neural network known as Boltzman
Machine.

2.4.1 The Boltzman Machine

The basic architecture of this type of neural network can be explained by
Fig. 2.7 [18).
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As the discrete HM, the system energy can be calculated from
1o
E=-33 3 wjziz;. (2.25)

2 {3 i
Where n is the total number of units in the network, and z is the output of
the kth unit. The energy difference between the system with z + k = 0 and
z, =1 is given by

AEy = net; (2.26)

The recall p dure is done by the simulated i dure with x’

as the starting vector on the visible units. The procedure is described by the

following algorithm:

. All the outputs of all known visible units are forced to the values spec-
ified by the initial input vector, x’

»

All unknown visible units and all hidden units are assigned random

output values from set 1,0.

.

A unit, z, at random is selected and its net-input, net; is calculated.

L

Steps 3 and 4 are repeated until all units have had some probability
of being selected for update. This number of unit-updates defines a

processing cycle.

o

. Step 5 is repeated for several processing cycle, until thermal equilibrium
has been reached at given temperature, T.

o

Temperature T is lowered and step 3 through 7 are repeated.
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Learning in Boltzman Machines

A reasonable approach to train a Boltzman machine can summarized in the

following way:

1. Artificially the temperature of the Boltzman machine is raised to some

finite value.

2. The system is annealed until the equilibrium is reached at some low

temperature.

3. The weights of the network is adjusted so that the difference between
the observed probability distribution and canonical distribution is re-

duced.

4. Steps 1 through 3 are repeated until the weights no longer change.

2.5 The Counter Propagation Network

For a given set of vector pairs, (Z1,41),(225Y3)se+++++3(Zns¥n ), the counter prop-
agation network(CPN) can learn to associate an vector x on the input layer
with a vector y at the output layer [18]. If the relationship between x and
y can be described by a continuous function ¢ , such that y = ¢(x), then
CPN will learn to approximate this mapping for any value of x in the range
specified by the set of training vectors. This situation is known as forward

mapping of CPN and its structure is shown in Fig. 2.8,
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x Input vector 'y nput vector

Figure 2.8: Forward-mapping CPN
2.5.1 CPN Building Blocks

The building blocks of CPN are explained in following section:

The Input Layer

The input layer of processing elements is shown in Fig. 2.9. The total input
pattern intensity is given by J = ¥; I;. Corresponding to each I;, a quantity
can be defined

;=1 (Z I.-)—l (221)

The vector, (8,03, ,©,)t is called a reflectance pattern. It should be
noted that this pattern is normalized in the sense that T°;©; = 1.
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Figure 2.9: Layer of input units of a CPN

The Instar

The instar is a single processing element as shown in Fig. 2.10

Assuming the initial output is zero, and that a nonzero input vector is
present from time ¢ = 0 until time, ¢ when the output can be defined

u(t) = %nei(l —e) (2.28)
The equilibrium value of y(t) is defined by

= snzt. (2.29)
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Figure 2.10: This figure shows (a) the general form of the processing elements

(b) the instar form of processing elements

Competitive Networks

Fig. 2.11ll the i ion that impl ipetition among

the instars. The unit activations are determined by differential

and simplest form is defined by

;= —Azi+ (B - z;) [f(2:) + neti] — z: [Z FEAEDM ﬂC‘k] (2.30)
ki ki

The Outstar

Fig. 2.12 shows an outstar. It is composed of all of the units in CPN outer
layer and a single hidden-layer unit. During the training process, the output

values of the outstar can be calculated from
i = =i + by; + cneti. (2.31)
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Input vector, |
Figure 2.11: A layer of instars arranged in ¢ CPN

2.5.2 Training the CPN

The training procedure of CPN can be summarized in the following points:

1. Aninput vector is selected from all the input vectors to be used for the

training.

»

Input vector is normalized and is applied to the CPN competitive layer.

L

The winner should be determined .

-

. For the winning unit, only, a(x — w)should be calculated and unit's

weight should be updated according to the following equation:
w(t +1)= w(t) +a(x-w) (2.32)
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Figure 2.12: Outstar and its relationship to the CPN archit (a).
Outstar structures in CPN network (b). A single outstar unit is shown

5. Steps 1 through 4 should be repeated until all input vectors have been
processed once.

6. Step 5 should be repeated until all input vectors have been classified
properly.

7. The network should be tested to see the effectiveness.

2.5.3 Forward Mapping

It has been assumed that all training has occurred and that the network is
now in a production mode. For the input vector I it is necessary to find
the corresponding Y vector. The required processing can be done by the
following algorithm:
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. The input vector should be normalized, z; = I.-/(\/E )

»

Input vector should be applied to the x-vector portion of layer 1 and a
zero vector should be applied to the y-vector portion of the same layer.

@

. Since the input vector is already normalized, the input layer only dis-
tributes it to the units on layer 2.

»

Layer 2 is a winner-take-all competitive layer. The output of each unit
can be calculated as follows

.~ { é ﬂ:n:::‘;":et,-ﬂ forallj#i em)

5. The single winner on layer 2 excites an outstar

2.6 Self-Organizing Maps

In Self-Organizing Maps(SOM), the CPN network is modified such that,
during the learning process, the positive feedback will extend from the cen-
tral(the winning) unit to the other units in some finite neighborhood around
the central unit [18]. In the competitive layer of the CPN, only the winning
unit was allowed to learn; in the SOM, all the units in the neighborhood that
receive positive feedback from the winning unit participate in the learning

process.



2.6.1 Unit Activations

The following equation defines the activation of the processing elements

di = =ri(yi) + neti + 3 2 (234
7

The function 7;(y;) is a general form of a loss term. If z; takes the form of
the Mexicanhat function, then the network will exhibit a bubble of activity

around the unit with the largest value of net input.

2.6.2 The SOM Learning Algorithm

The learning process can be defined by the following equation

W,

i = a(t)(x - wi)U () (2.35)

where the w; is the weight vector of the ith unit and x is the input vector.

For an input vector X, the winning unit can be determined by
[l = wel| = mingfjx — wi| (2.36)

where index c refers to the winning unit. This can be explained as

t) + aft)(x — wi(t) ieN,
otherwise

wi(t+1)= { i (2.37)

2.7 Spatiotemporal Pattern Classification

Neural networks as described previously are suitable for the recognition of

spatial information patterns. Spatiotemporal pattern classifier can classify
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th et 1

Figure 2.13: Grossberg’s formal avalanche structure

time-correlated sequence of spatial patterns [18].

2.7.1 The Formal Avalanche

The foundation for the deveivpment of the network architectures discussed
in this section is the formal avalanche structure by Grossberg as shown in
Fig. 2.13.

2.7.2 Archi es of Spati poral Networks(STNS)

Fig. 2.14 shows an that the i I patterns

(STPs) from spoken word. At each instant of time, the output of the spec-

trum analyzer consists of a vector whose components are the powers in the
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Figure 2.14: Power Spectra generated from speech
various channels.
2.8 The Neocognitron
This is a special type of neural network tailored for the recognition of hand

written characters [18]. The main pathways for neuron leading from the
retina back to area of the brain as the visual, or striate, cortex.

2.8.1 Neocognitron Architecture

The ing el ts(PEs) of the itron are ized into modules

that shall refer to as levels.Each level consists of two layers: a layer of simple
cells, or S-cells, followed by a layer of complex cells, or c-cells.
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282 N itron Data P:
S-cell Processing

Here it has been considered that the index k; refers to the kth plane on level
1. Each cell on a plane can be labeled with a two-dimensional vector, with
n indicating its position on the plane and v refer to the relative position of
a cell in the previous layer lying in the receptive field of the unit n. The

equation for the S-cell can be written as :

1+ TR Se ki, 00 k)-Ua, (ka1 + v)
Usi(ki,m) =ri¢ [ T+ 0 (k) Vom

THn

(2.38)

where the function ¢ is a linear function given by
z 220

¢(z)={ 0 220 (2.39)

C-cell Processing

Usually, units on a given C-plane receive input connections from one, or at
most a small number of S-planes on the preceding layer. The output of a
C-cell is given by

L+ iy 1k k) e, d(v)-Un(kn +v)
1+ Va(n)

Ugi(ky,n) = ¢ [ 1 (240)
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The function ¢ is defined by

Wz) i (241)
Where f is constant.
2.9 Adaptive Resonance Theory(ART)
Adaptive resonance theory(ART) is an ion of the itive-learning

schemes(CPN) [19]. A key to solving the stability-plasticity dilemma is to
add a feedback mechanism between the competitive layer and the input layer
of a network. This feedback mechanism facilitates the learning of new in-

formation without destroying old i i ic switching between

stable and plastic modes, and stabilization of the encoding of the classes done
by the nodes. The results from this approach are two neural network archi-
tectures that are particularly suited for the pattern classification problem
in realistic environment. These network architectures are ART1 and ART2.
ART1 and ART? differ in the nature of their input patterns. ART1 networks
require that the input vectors be binary . ART2 networks are suitable for
processing analog or gray-scale patterns [20].

2.9.1 ART Network Description

Fig. 2.15 shows the basic features of the ART architecture. There are two

types of memory,
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Figure 2.15: Model of ART system

1. short term memory(STM) that develops over the nodes in the two

layers.

2. long term memory(LTM), top-down and bottom-up weight between Fy
and F, layers.

Pattern Matching in ART

The pattern matching cycle in ART can be defined by Fig. 2.16 [20].
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Figure 2.16: A pattern matching cycle in an ART. (a) pattern-matching
attempt (b) reset in (c) final recognition (d) end of matching cycle

2.9.2 ART1

The input vector to ART1 is binary and it shares the common architecture
of the ART. It's processing can summarized in the following points:

1. Input vector I is applied to F. F; activities are calculated as follows
L

HETR AT+ B) G ne
2. The output vector for F; is calculated as
1
siehai { e g (2.43)

3. S is propagated forward to F; and the activities are calculated as

M
Tj= Y sizi (2.44)
=1
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. Only the winning F; node has a nonzero output:

e { 1 Tj = man, TRV

0 otherwise (243)

. Output from F; is propagated back to F;. Net inputs from F; on the

units of F; are calculated as

N
Vi= Y ujzy (2.46)

=1

. New activities are calculated as

L+ DiVi- B

=TT AT+ D+ G 240

Tii
As in step 2 out on values s; is calculated,

The degree of match between the input pattern and the top-down tem-
plate is given by the following equation

(248)

. If| S|/ |I|< p, then v, is marked as inactive, zero the outputs of F;.

and it is necessary to return to stepl. If not then we have to continue.

Bottom-up weight has to be updated on v; only

=k if viis active
| d
Gl { 0 if v is inactive (249)

. Top-down weight is updated coming from vy only to all F1 units

. [ ifwidindive
Zu= { 0 if v is inactive (250)

Input pattern should be removed. All inactive F2 units should restored
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2.9.3 ART2
This neural network is similar to ART1. It only differs in the sense that its

input paltern is analog signal.

2.10 Comparative analysis and selection of
suitable Network

In case of incipient fault detection of induction motor based on spectral

recognition, an ANN should have the following properties:

Low training time.

o

Ability to learn new knowledge while retaing the old one without any

retraining of past pattern

| i

Traning process should have certainity to reach global minima.

-~

It should accept analog input pattern.

:

Input pattern should be in spatial domain

.

It should have ability to report if it can not classify a particular pattern.

~

It should be a general purpose ANN, so that necessary modifications

can be done to make it suitable to the present problem domain.



To select a proper ANN for this purpose salient features of different ANNs
have been summarized in the following Table. From Lhe previous discussion
it can be concluded that ART2 satisfies the necessary characteristics to be
accepted as suitable neural network in incipent fault detection of an induc-
tion motor. Detailed software implementation and performance of ART2 are
explained in the next chapter.

Table-2.1
Comparative Performances of Different ANN Techniques.
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Chapter 3

ART?2 Neural Network

3.1 Introduction

In response to the questions of dynamic updating and training time of conven-
tional neural network, adaptive resonance theory(ART) has been proposed
by Grossberg, Carpenter and others [19] . ART2 is a special version of ART
having the property of analog input. In the implementation phase it has
been modified to have an additional property of reporting if it cannot find a

match for an input pattern.

3.2 ART2 Architecture

The structure of ART2 can be represented by Fig. 3.1. It consists of two sub-
AS) and orienting sub 05).
The AS consists of two layers of processing elements (PEs), F1 and F2 and

system known as
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Figure 3.1: The overall structure of ART2

a gain-control system G.

3.2.1 The Attentional Subsystem

The activities of processing elements on the layers F'1 and F2 can be defined

by the following dynamic equation as

e = =z + (1 — Azi)Jf — (B + Czi)Jg (3.1)

where J} and J; are the excitory and inhibitory inputs to the kth unit,
respectively. The precise definition of A, B and C depends upon the layer
and for this case B and C' have been considered to be zero. Here it has
been considered that z); and z,; refer to the activities on 1 and F2 layers,

respectively. Here v; represents the nodes on F1 and vj those on F2. The
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Figure 3.2: Structure of processing element on Fy layer

constant € determines how fast z; reaches to equilibrium.

Processing on F1

A single processing element on F1 with its ~cious inputs and weight vectors
can be represented by Fig. 3.2 [19). The units calculate a net-input value
coming from F2 in the usual way:

V= Tz @2

The values of individual quantities in the defining equations of F'1 and
F2 vary according to the sublayer being considered. For the sake of con-
venience, the appropriate values of the parameters for layer F1 have been
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summarized in the Table 3.1. Based on the table, the activities on each of
the six sublayers on F1 can be ized by the following

Table 3.1
Values of parameters on F-1 layer

Quantty
Layer A D It i
w 1 i Li+au, 0
x e 1 w, il
u e 1 u vl
v ! t Sz +bf(g) 0
[ 1 1wt Y ey 0
. 3
9 L ! P lipl
r e [ i+ op flufl +cpll
wi=Ii+au (3.3)
ahs
i === 34
I o)
v = f(zi) + bf(a:) (3.5)
Ry, M
MM @
pi=ui+) g(w)z; 3.7)
H
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The form of the function f(z) determines the nature of the contrast en-
hanchement that takes place on F). A sigmoid might be the logical choice
for this function, but Carpenter’s [20] choice is

00<z<0

z z>0 (3.9)

fz)=

where 0 is a positive constant less than one.

Processing on F2
Fig. 3.3 shows a typical PE on F; layer. Bottom-up weights are calculated
according to the following equation
Tj =Y pizyi (3.10)
7
The output on F2 is given by the function

d Tj=maz,T, VK

9(w) ={ 0 akariae (3.11)

3.2.2 The Orienting Subsystem

From the parameter table and the defining equation of ART2, the actiuvites
on the layer r on the orienting subsystem can be defined by

Ui +cpi
lhull + licell
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Figure 3.3: Structure of processing element on F; layer
Here it has been assumed that e = 0 and the condition for reset is
?
e | (3.13)
[

1t should be noted that two sublayers p and u participate in the matching
process. As top-down weight changes on the p layer during learning, the
activity of the units on the p layer also changes. The u layer remains stable
during this process, so including it in the matching process prevents reset

from occurring while learning of a new pattern is taking place.

3.2.3 Gain Control in ART2

The three gain control units on F1 nonspecifically inhibit the x,u, and q
sublayers. The inhibitory signal is equal to the magnitude of the input vector
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to those layers. The effect is that the activities of these three layers are

normalized to unity by the gain control signals.

3.2.4 Least-mean-square Equations

Both bottom-up and top-down Least-mean-square equations have the same

form as shown below:

i = g(y)(pi = 23) (3.14)

for the bottom-up weights from v; on F; to v on F, and

(3.15)

50 = g(wi)(pi —

for top-down weights from v; on F; to v; on Fy. If vy is winning node, then
from the previous equations it can be shown that

Zn = d(ui + dzig - z53) (3.16)

and similiarly

Ziy = d(u; + dziy - zig) (3.17)

with all other #; = 2 0 for j # J. For the fast-learning case for the

equilibrium values of the weights:

(3.18)

=z =
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where it has assumed that 0 <d < 1

3.2.5 B Up Least. quare Initializati

The bottom-up weight vectors can be initialized by the following relation:

llzll < 11_.1 (3.19)

It is also possible to accomplish the initialization process by setting the
weights to small random numbers. Alternatively, the initialization process
can be performed also by the relation

2(0) £ (3.20)

1
(1-d)yyM
3.2.6 ART2 Processing Summary

In this situation only the asymtotic solutions to the dynamic equations, and.
the fast-learning mode have been considered and it has also been consid-
ered that M be the number of units in each Fy sublayer, and N be the
number of units on F; . Parameters are chosen according to the relations
a,b>0,0<d< 1,‘_‘_1 0<0<1;0<p< ;e << 1.Top-down weights
are initialized to zero 2;; = 0 and bottom-up weights are initialized according
to

%0 S T T = d)\/M (3.21)

The processing can be now summarized in the following points [18]:
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It is necessary to initialize all layer and sublayer outputs to zero vectors,

and to establish a cycle counter to a value of one.

An input pattern I should be applied to the w layer on F;. The output
of this layer is
w = I+ ay; (3.22)

. Forward propagation to the x sublayer should be done:

w;
§ = ——— 3.23,
T 8
. Propagation forward to the v sublayer is done
vi = f(2:) + bf() (3.24)
The result should be propagated to the u sublayer,
v
U= —— 3.25
I o)
Forward propagation to the p is done by
pi=u;i +dzy (3.26)

where the Jth node on the F; is the winner of the competition on that

layer. If F; is inactive, p; = u;.
It is necessary to propagate to the q sublayer

o= P
5= e @21

Steps 2 through 7 should be repeated to stabilize the values on Fy
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9. The output of r layer is calculated

- ui +epi
e+ [lull + flepll

(3.28)

10. Whether a reset condition is indicated should be determined. If p/(e +
lirll) > 1, then a reset signal to F; should be sent. Any active node
on F, should be marked ineligible for the competetion and the cycle
counter should be set to one and should be returned to step 2. If
there is no reset, and the cycle counter is one, cycle counter should be
incremented and continue with step 11. If there is no reset, and the
cycle counter is greater than one, then it necessary to skip to step 14,

as resonance has been established.

11 The output of the p sublaer should be propagated to the F; layer and
the net inputs to
M
Ty =Y mzj (3.29)
i
12. Only the winning F2 node has nonzero output.

d T =maz,T;

(@)= { 0 otheruise (330)
13. Step 6 through 10 should be repeated.
14. Bottom-up weights on F; unit should be modified
TI—.. (3.31)
15. Top-down weights from the winning F unit should be modified
fy= (3.32)
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16. Input vector should be removed and all inactive F; units should be
restored and now it is the time to return to step | with new input

pattern.

3.3 ART2 Simulator

ART2 has been implemeted using Object Oriented software development
methodology. It has been considered as an independent class structure so

that an instance of this class can be easily used to an application software

like on-line conditi itoring system of induction motor.

3.3.1 Model of ART2 as an Object

The model of ART? as an object can be shown in Fig. 3.4. Salient features of
this object are pattern encoding and decoding through training and recalling,
dynamic addition and deletion of neurons in the network. Fig. 3.5 shows
the flow chart of training algorithm of ART2.The detailed program listing is
given in Appendix-A.

3.3.2 Modified Structure of Training and Recalling
Pattern in the Network

To add the property to give a unmatched signal if it cannot find a pattern
in the network and also to to make the training process faster, the pattern
encoding and decoding technique has been slightly modified as shown in Fig.
3.6.



Figure 3.4: Model of ART2 as an object

3.3.3 Dynamic Updating

In the object model of the network, it should be noted that there are pro-
visions for addition and deletion of nodes. So, the structure of the ANN
is not. d ined by the initial Due to this ad ART2
type neural network is suitable for a dynamic scenario like incipient fault
detection, which does not require retraining of the already trained patterns.

Moreover, using this dynamic property it is possible to make optimum use

of the computing resources.

3.4 Experimental Varification of Performance

For the experimental purpose, the number of neurons in layer F; and F, have
been i to 6 and 9,

The following have
been initialized with specified values:

a = 10;b = 0.10;c = 0.08;# = 0.2;e = 0.0;p = 0.995. Initial bottom-up
weight=2.08, initial top-down weight=0.0.
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| Train the net

Figure 3.6: Modified Training and Recall Algorithm of ART2

3.4.1 Training of the Neural Network with test Patt-
tern

Pattern of the exemplars and corresponding training results are shown in
Table 3.2. Table 3.3 and Table 3.4 represent the bottom-up and top-aosn
weight matrices, respectively. In the training session it should be noted that
the network has stored both the patterns 2 and 3 in the same class, though the
vectors are seperated by euclidian distance /{65 — 60)7 + (15 — 13)? = 5.38.
This type of behaviour is suitable to classify like patterns in same class to
realize fuzzy nature of the problem. But when two vectors are far apart as
in case of patterns 3 and 4, the network classifies them in seperate classes.



Table 3.2

Set of Training examples Used to Train ART2

Pattern: Training Result.

60.00.0 20.011.0 20.0 0.0 10.0 0.0 18.0 | stored in class

60.016.0 31.0 0.0 17.0 0.0 0.0 0.0 13.0 | stored in class

65.0 16.0 31.0 0.0 17.0 0.0 0.0 0.0 15.0 | stored in class

50.0 11.0 31.0 0.0 0.0 0.0 23.0 0.0 12.0 | stored in class

5. | 50.0 0.0 25.0 0.0 22.0 30.0 20.0 0.0 18.0 | stored in class 3

[ 6. | 67.025.0 44.015.0 0.0 10.0 11.0 0.0 17.0 | stored in class 4

7. | 68.026.0 48.0 21.0 20.0 0.0 0.0 10.0 0.0 | stored in class 5

17.0 27.0 42.0 16.0 27.0 20.0 40.0 0.0 13.0 | No more neuron

Table 3.3

Bottom-up weight matrix after training.
10.19 | 10.50 | 9.89 | 8.64 | 9.97 | 9.25
00 |2.80 |[0.0 |00 {3.72]3.54
3.64 [5.42 |6.13 |4.32 | 6.55 | 6.53
0. 0.0 [0.0 00 [00 [2.86
4 12.97 0.0 [3.80]0.0 |272
0. 0.0 51800 |0.0
0. 4.55 [3.46 | 0.0 [ 0.0
0.f 0.0 {00 (0.0 [0.0
0. 00 311100 |00

Table 3.4

ht matrix after training.

364]0.0 |00 [00]3.27
2.97[0.0 |00 [00]0.0
0.0 [0.0_[4.55[0.0] 0.0
3.80 | 5.18 | 346 | 0.0 | 3.11

.25 | 3.54 | 6.53 | 2.86 | 2.72 | 0.0 | 0.0 | 0. .0




3.4.2 Dynamic Neuron Addition

As number of neurons in the output layer F; is 6, so it can classify only
six classes of patterns. Now in case of a dynamic system the network should
have the ability to update it to handle this new situation. Using Add-Neuron
behaviour of the network this can be accomplished as shown in Table 3.5 after
addition of a new neuron. No retraining of previous patterns is necessary.
Now, after the addition of last pattern new bottom-up and top-down weight
matrices are given in Table 3.6 and Table 3.7, respectively.

Table 3.5

New training vector to train after neuron addition.

Pattern: Training Result,

after training.
9.97 1 9.25

3.72 | 3.54
6.55 | 6.53
0.0 [ 2.86
0.0 272
00 ]0.0
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Table 3.7
Top-down weight matrix after training.

10.91/0.0 [3.64]|0.0 [3.64(00 [00 {0.0[327
10.50 [ 2.80 | 542 | 0.0 [2.97[00 [00 [0.0[0.0
989 [00 [613/0.0 [0.0 [0.0 [455]0.0({0.0
864 [00 [432]0.0 [3.805.18 [346]0.0[3.11
9.97 [3.72 [6.55( 0.0 |0.0 [00 [00 [0.0[0.0
9.25 [3.54 |6.53]2.86]2.72[00 [00 [0.0[0.0
2.80 [4.44 [691] 2.63[4.44[3.29 [ 658 0.0[0.0

3.4.3 Pattern Recall from the Network

The performances of the network in pattern matching are given in Table
38. From Table 3.8, pertinert information can be highlighted. In case of
pattern 1 the euclidian distance of the recall pattern from the closest trained
pattern is /(5.0 - 0.0)7 + (15 — 10) = 7.07, but the network has classified
it as member of class 0. But when the distance is very high as in case of
patterns 5 and 7, the network has reported that it is unable to classify, instead
of giving some false classification result. This is one of the most important
behaviours from the neural network for the diagnostic purpose of incipient

faults of an induction motor.



Table 3.8

Pattern matching result of the trained network.

Pattern:

Training Result. |

60.050 20.011.0 20.00.0 15.0 0.0 18.0

classified as class 0

60.016.0 31.00.0 17.010.0 0.0 0.0 13.0

classified as class 1

65.016.0 31.00.0 17.00.0 0.0 0.0 150

classified as class 1

50.011.0 31.00.0 0.0 0.0 23.0 0.0 12.0

classified as class 2

50.00.0 25.00.0 22.00.0 110.00.0 18.0

unable to classify

™ ."|9’ P‘]:“l.“'(!‘-"

67.0 25.0 44.0 15.0 0.0 10.0 11.0 0.0 17.0

classified as class 4

68.026.0 8.0 21.0 20.00.0 0.0 10.00.0

unable to classify

17.027.0 42.0 16.0 27.0 20.0 400 0.0 13.0

classified as class 6
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Chapter 4

Fault Related Information
Collection

4.1 Introduction

From study it has been noticed that the waveform of the stator current of
an induction motor carries the signature of internal status of the machine
[15]. The frequency spectra of the stator current can be considered as the

information carrier of the incipient faults [13].

4.2 Model of Spectra Collection

The input current to an induction machine is an analog signal. But due
10 the rapid devel of digital sigaal ing(DSP) techniques, it is
comparatively easy now to use these tools to get the frequency spectra of the

stator current. The model of spectra collection can be explained by the Fig.
4.1



Induction Motor

Figure 4.1: Model of Fault Related Spectra Collection

4.3 Discrete Time Signals and Systems

A signal can be defined as a.funcﬁon that conveys the information, gener-
ally about the state or behaviour of a physical system [21]. The independent
variable in the mathematical representation of a signal may be either contin-
uous or discrete. Continuous-time signals are defined along a continuum of

variable. Con-

time and thus are by a
tinuous time signals are often referred to as analog signals. Discrete-time
signals are defined at discrete times and thus the independent variable has
discrete values. Digital signals are those for which both time and amplitude

are discrete.
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Figure 4.2: Representation of discrete-time system
4.3.1 Discrete-Time Signals: Sequences

1 b PR

Discrete-time signals are rep: as of num-

bers. A sequence of numbers z, in which the nth number in the sequence is

denoted by z[n}, is formally written as

(4.1)

where n is an integer.

4.3.2 Discrete-Time Systems

A discrete-time system is defined mathematically as a transformation or op-
erator that maps an input sequence with values z[n] into an output sequence
with values y[n] [21]. This can be denoted as

yln) = Tzl (4.2)

and is indicated pictorially in Fig. 4.2.
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4.3.3 Sampling of Continuous-Time Signals

Typical method of obtaining a discrete-time signal o vofa

time signal is through petiodic sampling, wherein a sequence z[n] is obtained

from a conti ime signal z.({) according to the relation

2[n] = 2,(nT), ~00,n, 00 (*.3)

where 7' is the sampling period, and its reciprocal, f, = 1/T, is the sampling

frequency, in samples per second.

Nyquist Sampling Theorem:
Let z(t) be a band-limited signal with
X(j) =0 for 10> 0w (44)

Then z.(t) is uniquely determined by its samples
2] = ze(nT),n = 0,41, 42, .o if

o
2= 75> 20 (4.5)

The frequency Qy is commonly referred as the Nyquist freyuency, and the
frequency 2§y that must be exceeded by the sampling frequency is called
the Nyquist rate.
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4.3.4 The Discrete Fourier Transform(DFT)

For a finte length sequence z[n] of length N generally the DFT analysis and
synthesis equations are written as (21]

N=1
Analysis equation: X[k = 3 zln]W§", k=01, N=1 (46)
=

N-1
Synthesis equation: 2jn] = 1lv T XIWE, 1=0,1,., N =1 (47)
k=0
Here Wy = e=itr/N)
4.3.5 Computation of the Discrete Fourier Transform

The DFT is an important component in many practical applications of
discrete-time systems. To make the DFT computation faster a number of
efficient algorithms have been developed collectively known as fast Fourier
transform(FFT).

Decimination-In-Time FFT Algorith:
Algorithms in which the ition is based on d ing the se-
quences zfn] into ively smaller sub: are called deciminati

in-time algorithms. An (N/2) point DFT can be represented by

(N/2)=1 (N/2)-1
XK= Y alerWif,+ W5 L aler+ Wi, (48)
=0 =0
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——|  Antialiasing Continuous to discrete
s [ lowpassiitor X0 time conversion

Figure 4.3: Processing steps in the discrete-time Fourier analysis of a
continuous- time signal

Decimination-I FFT Algorith

For a sequence z[n] the output sequence X[k] can be divided into smaller and
smaller subsequences in the same manner. FFT algorithms based on this

dure are ly called decimination-in-f Igorithm. The
N/2 point DFT of the N/2-point sequence cau be represented by

/-1
Xlor] = ;, ([n]) + zfn + (N/2))WiGzyr = 0,1,2, e, (N/2) = 1 (4.9)

4.3.6 Fourier Analysis of Signals Using the Discrete
Fourier Transform

The consistency between the finite-length requirement of the DFT and the
reality of indefinitely long signals can be accommodated exactly or approxi-

mately through the concepts of windowing, block processing, and the time-

1 d

Fourier The ing steps in the discrete Fourier
analysis of a continuous time signal can be represented by Fig. 4.3. Fig. 4.4

is the illustration of the Fourier transforms .
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Figure 4.5: DSP56000 Block Diagram

4.4 Motorola’s DSP56000 DSP Family

The DSP56000 and DSP56001 are the two members of Motorola's Family
of HCMOS, low-power, general-purpose DSPs [22]. Block diagram of the
DSP56000 is shown in Fig. 4.5. The DSP56001 features 512 words of full-
speed, on-chip, program RAM, two preprogrammed data ROMs, and special
on-chip hard
into the program RAM. The DSP56001 is an off-the-shelf item since there are
1o user-programmable on-chip ROMs. The DSP56000 features 3.75k words
of full speed, on-chip, program ROM instead of 512 words of program RAM.

to permit ient loading of user programs

The central part of the processor consists of three execution units oper-

ating in parallel:

1. the data arithmetic logic unit(ALU)
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2. the address generation unit(AGU)

3. the program controller

The DSP56000/DSP56001 has microcontroller unit (MCU)-style on-chip pe-

ripherals, program memory, data memory, and a memory expansion port.

The microprocessor unit (MPU)-style ing model and i

set allow straightforward generation of efficient and compact code. The high
throughput of the DSP56000/DSP56001 makes it well-suited for communi-
cation, high-speed control, numeric processing, computer applications, and

audio applications. The main features making this throughput are as follows:

o Speed: At 1025-million instruction per second(MIP), the DSP56000/DSP56001
can execute a 1024-point complex FFT in 3.23 ms.

o Precision: The data paths are 24 bits wide, providing 144 dB of
dynamic range; intermediate results held in the 56-bit accumulators

can range over 336 dB.

o P Each hip ion unit(AGU, program controller,data

ALU), memory, and peripheral operates independently and in parallel
with the other units through a sophisticated bus system. The data
ALU, AGUs and program controller operate in parallel so that an in-
struction prefetch, a 24-bitx24-bit multiplication, a 56-bit addition, two
data moves, and two address pointer updates using one of the three
types of arithmetic can be executed in a single instruction cycle. This

parallelism allows a four-coefficient infinite impulse response(IIR) filter
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section to be executed in only four cycles, the theoretical minimum
for single-multiplier architecture. At the same time, two serial con-
trollers can send and receive full-duplex data, and the host port can

send/receive simplex data.

Integration: In addition to the three independent execution units, the
DSP56000/DSP56001 has six on-chip memories, three on-chip MCU-
style peripherals (serial ication interface(SCI), synch se-
rial interface(SSI), and host interface), a clock generator , and seven

buses (three address and four data), making the overall system low

cos’, low power, and compact.

Invisible Pipeline: The three-stage instruction pipeline is essentially
invisible to the allowing strai program devel-
opment in either assembly language or a high-level language.

ion Set: The 62 i i ics are MCU-like, mak-
ing the transition from ing mi to
the DSP56000/DSP56001 as easy as possible. The orthogonal syntax
supports controlling the parallel execution units. The hardware Do
Loop instruction and the repeat instruction make writing straight line
code obsolete.

DSP56000/DSP56001 Compatibility: The DSP56000 is identical
to the DSP56001 except for the following features:

- 512-word x 24-bit, on-chip program RAM instead of 3.75k program
ROM.



- 32-word x 24-bit bootstrap ROM for loading the program RAM from
either a byte wide, memory-mapped ROM or via the host interface.

o Low Power: As a CMOS part, the DSP56000/DSP56001 is inherently
very low power; however, three other features can reduce power con-
sumption to exceptionally low levels.
~ The WAIT instruction shuts off the clock in the internal processor
portion of the DSP56000/DSP56001.

- The STOP instruction halts the internal oscillator.
~ Power increases linearly with frequency; thus, reducing the clock fre-

quency reduces power consumption.

Fig. 4.6 is a block diagram of DSP56001 based board PC-56 [23]. The main

subsystems are as follows:
1. The DSP56001 processor.
2. External 16k data RAM.
3. Parallel data port that is between the PC and the board PC-56.
4. Single channel analog inve;x{ace.

5. Interrupt-driven interface to the outside world.
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Figure 4.6: PC-56 Block Diagram

4.5 Ariel’s Interface and DSP Library

A good set of routines for communication of the board with the PC and digital
signal processing are provided by Ariel Corporation [24] in a C call-able
software library. A brief description of the library is given in the subsequent

sections:

4.5.1 Interface Library

The PC-56 interface software provides a means to configure and control the
PC-56 for user applications through the use of C call-able routines [24). The
package consists of both 56000 and PC based routines, which when used to-

gether allow straightforward control over a user’s 56000 application program.
Ariel Monitor(ARIELMON ) is the required 56000 monitor. It is a super-
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o forward and inverse FFT,
o magnitude, phase, dB computation (log),
« windowing, scaling, and data acquisition.

Processing of data consists of executing one or more of these commands in a

given sequence.

4.6 Application Software for Spectra Collec-
tion

With the proper use of interface and DSP library, an application program
has been developed as part of this work to collect frequency spectra of stator
current at different fault conditions. The salient features of algorithm is
shown in flowchart form in Fig. 4.7. The detailed program listing is given in
Appendix-B and Appendix-C.

4.7 Experimental Setup

To acquire different faults related spectra of the stator current of an induction
motor following equipment were used:

® Induction Motor.
o Current Probe.

* DSP board



set of debug monitor(DEGMON), and provides the means for communicating
with the PC in the form of up-load/down-load of program and data memory,
ion and ination. It is tied ificall,

as well as user program ini
to the PC routines, which are compatible with Microsoft C V5.1 and Quick
C. Other Microsoft languages can use these routines by using the appropriate
declarations for setting up the proper C calling convention.

4.5.2 DSP-Library

The FF Ty is a software package which enables the PC-56 or DSP-56 boards
to function as FFT co-processors in an IBM PC/XT/AT or compatible com-
puter. In addition to processing data from the PC, it also supports real time

data acquisition using the analog interfaces available on the board.

User has access to the FFTyg functions by using low level drivers in
conjunction with a set of 56000 programs and data files. The general pur-
pose drivers perform basic functions necessary to control the 56000 and up-

load/down-load data to the co-processor board.

56000 software consists of a monitor program, which is loaded during the
boot cycle, and an application program, loaded by the monitor under control
of the PC. The monitor provides the means for communicating with the PC
(i.e. up-load/down-load of program and data memory) and is tied specifically
to the PC driver routines. The application program consists of a set of FFT
related functions which can be initiated by the PC through Host commands.
These include:

%



Initialize the DSP

Initialize Graphics and
Plotter

Load DFT routines to
DSP board

Sample and Display
Fraquency Specira

Yos
Get operating and Fault
Condition.

Plot the spectra.

m

Figure 4.7: Flowchart of the application program




Supply | 2
® 1s
Hertz.

Stator Winding,

DSP Board.

Figure 4.8: Block diagram of the experimental setup.
* IBM PC

« HP-plotter

The experimental setup is shown in Fig. 4.8. In this figure Cl1, C12, C21,
C22, C23 and C33 are individual coils in the stator winding.

4.8 Spectra for Different Fault Conditions

In the laboratory, different types of faults have been occurred in an induc-
tion machine. The laboratory wound-rotor induction motor has the following
specification:

Specification:



e Phase: Three

o Voltage: /23 volts

« Frequency: 60/50 Hz

© Speed: 1725/1425 r.p.m

o Full-load Currents: 21t A
o Horse Power: 2.5/2 H.P.

o Poles : 4

The motor was operated at 208v and 60 Hz at no-load condition. Spectra
related to different fault currents are shown in the subsequent sections.
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4.8.1 No Fault condition:

This is the operating condition which is identical to the set-up as shown
in Fig. 4.8. The frequency spectra of the stator current is shown below.
Here, in addition to the fundamental component there are also three higher

frequencies as the stator current is not perfectly sinusoidal.

Frequency Amplitude

~60db)

~70dby 100 200 300 400 500 600 700 800 900
Frequency in Hz :

Figure 4.9: Frequency spectra at no fault condition.
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4.8.2 Stator phase 1 is open:

Under this operating condition, the phase 1 of the stator has been discon-
nected from the power supply. The corresponding current spectra is shown
below.

Frequency Amplitude
'
w
2
&

L L I L L L L L L
=70dby 100 200 300 400 500 €00 700 800 80O

Spectral Freguency in Mz

Figure 4.10: Frequency spectra when stator phase 1 is open.
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4.8.3 Stator phase 2 is open:

To do it in the Laboratory the phase 2 of the stator was disconnected from

the power supply. The corresponding current spectra is shown below.

~10dbg

-20db}

~30dbf

-40dtE™

5005
-60dt™
L ! ! 1

=70dbg 100 200 300 400 500 600 700 800 800
Spectral Freguency in Hz

Frequency Amplitude

Figure 4.11: Frequency spectra when stator phase 2 is open.

4.8.4 Stator phase 3 is open:

Under this condition as current probe is in phase 3 as shown in Fig. 4.8,

every frequency component has zero value .
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4.8.5 Short circuit fault through resistance in Stator
Phase 1:

This is the condition when coil C11 as shown in Fig. 4.8 was disconnected
and a resistor of value 9.5 ohm was connected externally in its position. The
corresponding frequency spectra is shown below.

~10db-

~20dty

-30dt}

~40dt

~50d

Frequency Amplitude

~B0dkE

~70dH]

Spectral Fregquency in Hz
Pruitiidratiort e toadich P b

iFigure 4.12: Frequency spectra when stator one coil of phase 1. has been
externally replaced by a resistor.
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4.8.6 Short circuit fault through resistance in Stator
Phase 2:

Under this condition coil C21 as shown in Fig. 4.8 was disconnected and
a resistor of value 9.5 ohm was connected externally in it's position. The

corresponding frequency spectra is shown below.

~10dbE™

~20db

~30dbe™

~40dbe™

~50dbE™

Freguency Amplitude

-60db

=70dl 400 200 300 400 500 600 700 800 900
Spectral Freguency in Hz
SR Y S

Figure 4.13: Frequency spectra when statoftone coil of phase 2. has been
externally replaced by a resistor.



4.8.7 Short circuit fault through resistance in Stator
Phase 3:

At this condition coil C31 as shown in Fig. 4.8 was disconnected and a resistor
of value 9.5 ohm was connected externally in its position. The corresponding
frequency spectra is shown below.

Frequency Amplitude
'
&
4

~40d
-50d!
-60dl
=70d! o8- 0558 ook bod Y50 koa b

Spectra) Frequency in Hz

Figm:e 4.14: Frequency spectra when stator one coil of phase 3. has been

externally replaced by a resistor.
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4.8.8 Short circuit fault in Stator Phase 1:

This is the condition when coil C11 as shown in Fig. 4.8 was disconnected
and coil C12 was directly connected to T1. The frequency spectra under this

operating condition is shown below.

~10dbE

Frequency Amplitude

~70d| 401

Spectral Frequency in Hz
—_—

Figure 4.15: Frequency spectra when stator dne coil of phase 1 was shorted.




4.8.9 Short circuit fault in Stator Phase 2:

Under this condition coil C21 as shown in Fig. 4.8 was disconnected and coil
(22 was directly connected to terminal T2. The frequency spectra is shown

below.

~10db-

-50dbE-

Freguency Amplitude

~60dbE

=7 40
Spectral Frequency in Hz :
—_— e

Figure 4.16: Frequency spectra when stator 8ne coil of phase 2 was shorted.
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4.8.10 Short circuit fault in Stator Phase 3:

At is the condition coil C31 as shown in Fig. 4.8 was disconnected and coil
€33 was directly connected to terminal T3. The corresponding frequency

spectra is shown below,

~10dbE~

~20db~

=40db~

~50dbt™

Frequency Amplitude

—60dbE™

100 200 300 400 500 €00 700 800 S00
Spectral Frequency in Mz
;Spectral Frequancy. in. W

Figure 4.17: Frequency spectra when stator one coil of phase 3 was shorted.



4.8.11 Rotor open circuit fault in phase 1:

According to the Fig. 4.8 the rotor terminals M1,M2 and M3 are short cir-
cuited. To make an open circuit fault the rotor’s phase M1 was disconnected.
Under this condition, the frequency spectra of the stator current is shown

below:

-10d~

~20dtE™

~30dtE~

~40dbE

~50db~

Freguency Amplitude

~60dbE™

L L
—70d 407 200 300 400 500 60O 700 8O0 900

Spectrel Freguency in iz

Figure 4.18: Frequency spectra. of the stator current when rotor one phase

MI was open circuited.
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4.8.12 Rotor open circuit fault in phase 2:

At this condition M2 was disconnected from the close loop of M1, M2 and
M3 in rotor’s circuit. Under this condition the frequency spectra of the stator

current is shown below:

~10dbx-

~20db-

~30db-

~40db-

~50dbx-

Frequency Amplitude

-60db-

L L L L L L 1 L
=70d I UL L1 I | S L1+ - | - L[
Spectral Frequency in hz
——— T

Figure 4.19: Frequency spectra of the stator current when rotor phase M2

‘Was open circuited.




4.8.13 Rotor open circuit fault in phase 3:

To make an open circuit fault in rotor’s phase M3, only M1 and M2 were
connected and M3 was left open. Under this condition the frequency spectra

of the stator current is shown below:

o o
100ty
8| -200
3
E
'E‘ -30dbj
5| -40dny
£
§
E
3| -s0dn
g
&
-60db
~70dt
Spectral Freguency in he

Figure 4.20: Frequency spectra of the stator current when rotor phase M3

was open circuited.
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4.8.14 Rotor phase 1 is shorted to neural:

Under the no fault condition, the rotor’s terminals M1, M2 and M3 are
connected in a single loop as shown in Fig. 4.8. Now to make this fault M1
was disconnected from the loop and it was hooked up to the neutral point
of the rotor. It was noted that this type of fault has little impact on wave

shape of the stator current whose frequency spectra is shown below:

Frequency Amplitude

Spectral Freguency in Hz
—_— e e R

Figure 4.21: Frequency spectra of stator current when rotor phase M1 is
shorted to neutral.
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4.8.15 Rotor phase 2 is shorted to neural:

At this condition M2 was disconnected form the close loop and it was con-
nected to the neutral point of the rotor. The corresponding frequency spectra

is shown in figure below.

~10dly

~20dh

~30db)

-40dt)

~50dix

Frequency Amplitude

~70dby

0
1 Fregquency in Hz

Figure 4.22: Frequency spectra of stator current when rotor phase M2 is

shorted to neutral.
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4.8.16 Rotor phase 3 is shorted to neural:

Here the rotor terminal M3 was connected to neutral and the terminals M1
and M2 are shorted. Following figure shows the frequency spectra of stator

current under this condition,

-10db;

~20db;

~30dby

~40db;

~50db

Frequency Amplitude

~60db;

~70dy

Spectral Frequency in Hz
fosidasl bl L L L

Figure 4.23: Frequency spectra of stator current when rotor phase M3 is
shorted to neutral.
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4.8.17 Rotor short circuit fault through resistance in
phase 1 :

Under this situation it has been considered that phase one of rotor was short
through resistance. To make this fault in laboratory M1 was disconnected
from the loop as shown in Fig. 4.8 and a resistor of value 6 ohms was
connected externally in parallel to M2 and M3. The corresponding frequency

spectra is shown below.

~10dbE

~20dbE™

~30dbE~

~40dbt~

~50dbE™

Frequency Amplitude

~60dbE™

bl 100 200 00 400 500 600 700 8OO SO0
Spectral Freguency in e |
LSBectnal Frequency dn e &

Figure 4.24: Frequency spectra of stator current at rotor short circuit fault

through resistance in phase M1.
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4.8.18 Rotor short circuit fault through resistance in
phase 2 :

M2 was disconnected from the loop and a resistor of value 6 ohms was con-
nected externally in parallel to M1 and M3. The corresponding frequency

spectra is shown below.

o
~10dbF-
8| -20d-
5
H
E
g ~30dt
g ~4odnf-
H
§
Z
8| -so0dnt
&
~B0odbE
~70d 100200 300400 500 600 760 8060 960

Spectral Fregquency in Hz
A O

Figure 4.25: Frequency spectra of stator current at rotor short circuit fault

through resistance in phase M2 .
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4.8.19 Rotor short circuit fault through resistance in
phase 3 :

To make this situation in the laboratory M3 was disconnected from the loop
and an external resistor of 6 ohms was connected in parallel to M1 and M2.

The corresponding frequency spectra is shown below.

~40dbE~

~20dbE™

~30dbE

~40dbE~

~50dbE—

Frequency Amplitude

-60dbE™

vl
~70db 100 200 300 400 500 600 700 600 800
Spectral Fregquency in Hz

Figure 4.26: Frequency spectra of stator current at rotor short circuit fault

through resistance in phase M3.
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4.8.20 Rotor phase 1 is unbalanced through an exter-
nal resistor:

In this situation a resistor of 6 ohms was connected in series with the coil

M1 without disturbing the close loop situation. The following figure shows

the corresponding spectra.
o d
— 100
8 <
]
H
=
N
by
H
H
3
2|
H
&
—70dby 100 200 300 400 500 €00 700 600 800
Spectral Freguency in Hz —

Figure 4.27: Frequency spectra of stator current when there is an unbalance

in rotor circuit due to an external resistor in phase M1.



4.8.21 Rotor phase 2 is unbalanced through an exter-
nal resistor:

To make it happen in the laboratory a resistor of 6 ohms was connected
in series with M2 in the same way as the previous one. The corresponding

frequency spectra is shown below.

~50d

Freguency Amplitude

-50dH

~70dt

Spectral Frequency in Hz
S/ e A

Figure 4.28: Frequency spectra of stator current when there is an unbalance

in rotor circuit due to an external resistor in phase M2.



4.8.22 Rotor phase 3 is unbalanced through an exter-
nal resistor:

A resistor of 6 ohms was connected in series with M3 . The corresponding

spectra is shown below.

~10dt™

-20dtx™

-30db~

~40dbt~

-50dbi™

Frequency Amplitude

-60dty™

ol

~70dby 100 200 300 400 S00 B00 700 300 900
Spectral Frequency in Hz
SRR Tequency AN W .

Figure 4.29: Frequency spectra of stator current when there is an unbalance

in rotor circuit due to an external resistor in phase M3.
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4.8.23 Simultaneous open circuit fault in Rotor phase
2 as well as Stator phase 1:

To make this happen in the laboratory M2 was disconnected from the close
loop of the rotor’s circuit and phase one of stator was disconnected from the
supply. The corresponding frequency spectra of the stator current is shown
below. )

~10dbf™

~20dbf™

-30db™

~40dbE™

~50dbf~

Frequency Amplitude

~60dbf~

~70dbg+" 400 200 300 400 500 600 700 BOO 900

0 Spectral Freguency in Hz

Figure 4.30: Frequency spectra at simultaneous open circuit fault in Rotor:

phase 2 as well as Stator phase 1,
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4.8.24 Simultaneous open circuit fault in Rotor phase
2 as well as Stator phase 2:

To make this happen in the laboratory M2 was disconnected from the close
loop of the rotor’s circuit and phase 2 of stator was disconnected from the

supply. The corresponding frequency spectra is shown below.

~40dbe—

~20dbE—~

~30dbE—

~40dbg

Frequency Amplitude

~60dtE~

Spectral Frequency in Hz
_— s

Figure 4.31: Frequency spectra at simultaneous open circuit fault in Rotor *

phase 2 as well as Stator phase 1.
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4.8.25 Simultaneousopen circuit fault in Rotor phase
2 as well as Stator phase 3:

At this condition, as stator’s phase 3 was open , 50 there is no stator current

in phase 3 .

4.8.26 Remarks on Fault Related Frequenency spec-
tra of the Stator Current

Though a sinusoidal voltage was applied to the motor terminals, the fre-

quency spectra of the stator current carries some higher harmonics in addi-

tion to the fund | due to the inusoidal wave shape of the stator

current. 1t should be noted that in the frequency spectra at different fault

ditions, f beyond 5th b is are not perfectly di-
visable by the fundamental; it is due to the slightly non periodic nature of

the stator current.

The frequency spectra of the stator current in case of stator’s open circuit
fault in phase 1 as well as phase 2 are almost identical, though they are
different from those of other types of faults. So, it is difficult to differentiate
stator open circuit fault in phase 1 from that in phase 2. The same situation
is also pievailing in case of rotor open circuit fault and short circuit faults.
Moreover, in case of rotor’s phase to neutral short circuit fault, the spectra of
the stator current is very close to that in case of no fault condition. But the
spectra of the major types of faults are significantly different, which opens

up the door to use neural network based fault diagnosis scheme .
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Chapter 5

Fault Recognition by ART2
Neural Network

5.1 Introduction

The performance of ART? in pattern recognition both in noise free as well
as noisy conditions has been reported in chapter 3. This neural network

not only capable of classifying patterns accurately but also can report if it
cannot do so. Moreover, it is suitable in dynamic environment like incipient
fault diagnosis of induction motor, as it does not require retraining of already
trained patterns to adapt itself to new faults. Frequency spectra of stator
current at different fault conditions have been reported in chapter 4. As
patterns of those spectra are different for different types of faults, pattern
recognition technique can be applied on these spectra to diagonise incipient
faults of the induction motor. Under this situation, ART2 neural network
can be used to diagonise incipient faults of induction motors based on pattern

recognition scheme of frequency spectra of the stator current.
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Table 5.1: Table of Faults with unique number.
Serial No._| Pattem No. Inciplent Faults.
0 INo

fault in Stator's phase 1
fault in Stator's phase 2
tawl

Itin Stator's phase 3

tauh through resistance in Stator's Phase 1
fault through resistance in Stator's Phase 2

fault through resistance in Stator's Phase 3

|
i

ugh resistance in Rotors Phase 3

[Rotor's phase 1 unbalanced by an extermal series resistance

20 |Rotors phase 2 unbalanced by an exiemal series resistance
1 [Rotors phase 3 unbalanced by an extemal serios resistance
2 Simultanocus open circult fault in Rotors phase 2 as woll as Staiors phase 1
3
4 3

5.2 Training Data Set

To formulate the fault related spectra in a two-dimensional training data set
it is convenient to give unique number to each fault as shown in Table 5.1.
The corresponding values of spectral components have been shown in Table
5.2. In this work eight major classes of faults have been studied. To give
unique class numbers to different classes of faults pattern number has been
used, where the leftmost character of the pattern number represent the class

of faults. No fault condition has been numbered as '0’.
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Table 5.2: Fault related spectral compcnents in matrix form .

Frequency in Hz.

60] 120] 160] 240] 300] 319] 361] 4201 444 571] 540] e60] e91] 780] 821]
=50]

o] -10} 30| =52}
- YV T T ) ]
S ]I T T 53 ]
g 13 L—
3| [l BT =
3 = =53
2 2|
3 23 - =
=3 31[ [ ol s se] - 3¢
2 3] ca —a7] -20] -s0[ -4
331 1 -s0| -1s] -s0| 24 BT

=TI
=39 -]

5.2.1 Data Reduction:

Now to get a suitable training matrix representing patterns of different favlts,
the following processing have been performed on the matrix of Table 5.2, and

alter these processing a new matrix has been obtained as shown in Table 5.3.

1. All the components having negative values have been deducted from
70 to make them positive as minimum value of a component may be
-10.
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Table 5.3: Training Matrix of fault related current spectra.

Frequency in H:

T 320] _180] 2a0] 300] 313 3m| 30

- ool .00 Toroo] b.00
g EY 26.00)
g Sa:sol 2600
3
2 28
3 EE
g
] 2 o0o
) 34 0.00)
5 oo
o-00
S0 X
oo
o
oo
s0.0 n:.,l

B,EL‘L‘:Enaﬂﬂ‘::ﬂﬂ:ﬁﬂﬂﬂﬂﬂﬁta

00| 31.00] 25. X
8.00] 10.00[ 12.00l 14.00] 16.00] 18.00}

o[ _0.00] 55.00]
83 o.00] 2.00] 4.00f

2. All blanks cells have been filled by zeros to make them sensible to neural
network.

3. Spectral components of higher frequencies have been shifted to lower

empty spaces as there are only few components at that region.

4. As fund; is de

s0 it has been reduced by fifty
percent to give importance to other components which really carry fault

related information.
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Table 5.4: Faults mapping of the trained network in high precision domain

Seia N, | Paieen No. oiert Faut

5.3 Structure of the Network

Now the matrix as shown in Table 5.3 represents the training matrix. As
this is a 25x10 dimension matrix, so the cornponents on F1 layer of ART2
should be 10. Now there are 25 different patterns to be recorded in the neural
network, but a number of them are similar, so the number of nodes on F2

layer should be less than 25. For this reason it has been choosen to be 20.
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5.4 Training of the Network

Training of the network has been performed in high precision domain. It
should be noted that training time with 25 patterns of dimension 10 as shown
in Table 5.3 is very low and it is less than one minute. At the end of the

training the k ge of fault diagnosis is now in the weight
vector and the network has classified diffcrent patterns as the signature of
corresponding faults as shown in Table 5.4. The bottom-up and top-down
weight matrices are shown in Table 5.5 and Table 5.6, respectively. From
Table 5.4 some i remarks ding the fault classification of ART2

based on frequency spectra of the stator current, can be noted in the following

points:

1. Faults having pattern numbers 11 and 12 have been classified in the
same group. As their frequency spectra of the stator current are similar,
so the network is unable to differentiate between them.

»

In case of pattern numbers 51 and 52 as frequency spectra are similar,
so network has grouped them in the same class. It should be noted
that the spectra of pattern numbers 51,52 and 53 have similar shape
to that of pattern number 0. So, there is a chance that network may

rotor’s short-circuit-t tral fault as no fault condition.

L

The same situation is prevailing in case of pattern numbers 71 and 72
as well as 81 and 82. In fact in such cases, as the spectra are close to
each other, it is difficult for the neural network to differentiate between

them.



Table 5.5: Top-down weight matrix of the trained network.

8.34| 0.00| 5.56| 0.00| 5.56/ 0.00] 0.00/ 0.00/ 5.00
7.24| 5.79| 6.90] 0.00| 3.79] 0.00] 0.00] ©0.00| 2.89
0 0.00/ 3.04] 3.80| 4.56| 5.32| 6.07

0

[

6

0.00] 5.83| 0.00] 0.00] 3.44] 4.77] O
2.89] 0.00/ 0.00] o0.00/ ©0.00/ 3.28/ 0.00

0

0

0

0

3.72] 3.54] 0.00] 0.00] 0.00] 0.00]
2.95] 4.98 0.00] 0.00] 0.00] 0.00
3.31] 3.98] 0.00[ 0.00[ 0.00[ 3.81
4.70| 2.72| 7.49| 2.72 6.26) 0.00/ 0.00] 0.00| 4.90
9.87| 0.00| 6.58] 0.00] 3.95] 0.00] 0.00] 0.00] 0.00] 0.00
9.00] 0.00] 6.30] 0.00] 4.50| 0.00] 0.00] 0.00] 3.%0] 0.00

8.93] 0.00| 6.25| 0.00] 0.00] 4.47] o0.00[ 0.00] 4.17] 0.00

6.85| 7.68| 2.91| 3.32 3.11 0.00' 3.74| 0.00] 2.70[ 0.00
6.14| 6.70] 6.51| 2.79] 2.60] 0 @l 3.16 0.00] 2.60] 0.00]
6.18| 7.01] 6.83| 3.69] 2.95] 0.00] 0.00] 0.00] 0.00[ 0.00
6.13| 5.67| 7.66| 4.57] 2.56] 0.00] 0.00] 0.00[ ¢.00[ 0.00
4.80] 0.00] 0.00] 0.00] 0.00] 0.00] 9.00
0.00] 5.56| 4.01] 3.75] 4.53| 2.72| 0.00
| 0.00] 0.00[ o0.00] 0.00[ 0.00[ 0.0
u.00[ 0.00] 0.00] 0.00] 0.00] 0.00] 0.00

S
o
o
=3

Table 5.6: Bottom-up weight matrix of the trained network.

8.347.24]o0.00]6. 62]¢ - 4¢[¢.02]6.17]

13[6-19]4.08]0.00]0.
0.00[5.75]0.00]0.004-82[4.61]4.98[3. €1]5.36]0.00]0.00
6]s.90] 50[7.74 68[8.13(7.12]0.00]0.0

00[0.00]2.89]3.7:
04[5.83]0.00[3.54]
0]

00[0.00} 00{0.00[4.010.00]o. 00}
00]0.00[0. 00| 00/0.00[3.75]0.00]0. 00f

o 32[3.4¢ 00]0. 00} 00]0.00]4..53]0.00[0.00
5002 7]4.71]3.28]0.00] [6.00]2..72]0.00]0.00]
00]0.00[s.6: 1o.000.00) [o.00]0.00]0.00]0.00]




5.5 Fault Recognition by the trained net-
work.

To test the diagnostic performance of the trained network both in noise
free as well as noisy conditions, the training data set was taken as first test
pattern and after that noisy data set. The performance of the network to
diagnose the fault in noise free condition is identical to that of Table 5.4. To
simulate a noisy situation, random noise was added to spectral components as
shown in Table 5.8. Every bordered cells including shaded cells are corrupted,
but shaded ones are corrupted heavily. Now the trained network has been
asked to diagnose the faults related to these noisy spectra and the diagnostic
performance is reported in Table 5.7. From this table it should be noted that
the trained network is unable to detect three faults in this noisy condition.
This operational scenario can be improved to handle higher noise margin,
but that will loose accuracy by training the network in low precision mode.
Under this situation the pattern mapping in training stage and fault diagnosis
performance in previous noisy situation are shown in Table 5.9 and Table
5.10, respectively. Table 5.10 aparently shows better performance with only
one detection failure but Table 5.9 shows that the network has mapped the
rotor short-circuit-to-neutral fault as no fault condition. Thus there exists a
need for optimization of accuracy and noise margin. It is beyond the scope

of this thesis.
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5.6 Model of ART2 neural network based
Incipient Fault Detection System

Based on the performance of ART2 neural network in fault diagnosis of in-
duction motor using the frequency spectra of the stator current, it is evident
that the basic requirements for incipient fault detection of induction motors
can be met with ART2 neural network based system. Fig. 5.1 gives the
schematic of such a fault detection system. Here the controller gives the
frequency spectra of the stator current to the trained network which detects
the present internal condition of the machine. If it can diagnose a fault,
the controller gets specific fault related information from the corresponding
database and can report to the user. If the neural network is unable to
detect a fault, the controller asks the user for information related to the spe-

updates its knowledge-base as well as the

cific situation and si

underlying neural network.
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Table 5.7: Fault related noisy current spectra.

o
43[ 30.00 o0.00] 20.00. 13.00] .00
s1{ 30.00] o.00] 22.00] o0.00] 15.00] .00)
32 30.00]__0.00] 20.00 0.0/ 16.00] 0.00]
33 30.00] 0.0 21.00] 0.0 0.00] o
‘61[_33.00[37.00[ 1¢.00[ ¥6.00] 13.00)
62| 33.00] 40.00] 3s.00] 13. 00}

.00)

00|
-00]
.00

21 33.30]_26.00
72[ 3330 31.00[
73[ 33.30] 25.00]
€1 31.30] o0.00f 00| 2109
82["31.50[o.oof 0.00[_44.00 22.00
#3[ 0.00[ 200l 4.00[ e.00] s.00l 10.00] 12.00[ 14-00[ 16.00]

Table 5.8: Diagnostic test result of the trained network in noisy situation.
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Table 5.9: Faults mapping in training phase in low precision domain.

CoTM T

i Fatn
Far
G ok B phe 17
St kS phae ¥ 2
e bt ks phse 3
[Bnrt St ot g peeen - Sy P T
[hort St Pugh rsmen in Gimors Phase 7
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Figure 5.1: Model of ART2 neural network based on-line incipient fault di-
agnosis system for induction motors.
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Chapter 6

Conclusions and
Recommendations for Future
‘Work

6.1 Conclusions

In this thesis an incipient fault detection scheme of induction motors based
on ART? neural network has been developed. This fault diagnosis scheme is
not only capable of detecting a fault but also can report if it cannot diag-
nose a particular fault, so that preventive steps can be taken to update the
underlying neural network to cope with this undetected fault while retaining
the already acquired knowledge without retraining of the trained patterns.
The accuracy of this fault diagnosis scheme is susceptable to noise margins.

For lower noise level, it gives high accuracy in its performance.

A laboratory experimental set-up based on DSP techniques to collect the

fault related frequency spectra in real-time of the stator current of induction
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motor has been developed. This is a general purpose frequency spectra collec-
tion system, which can be used for other purposes. Frequency spectra of the
stator current of a wound-rotor induction motor at different fault conditions
making unbalance in the stator as well as rotor circuits have been collected.
From the patterns of the spectra it is evident that the major faults can be
detected from these spectra through a pattern recognition scheme. But it is
difficult to differentiate similar faults as they have identical frequency spec-

tra.

ART?2 neural network has been implemented using object oriented soft-
ware methodology. Its training, recalling and dynamic updating performance
have been studied. It’s training time is very low in comparison to the popu-
lar Feedforward Neural Network. It can update its knowledge to cope with
the new pattern while retaining the acquired knowledge without the need of
retraining.

In this thesis work, only stator current has been considered as fault related
information carrier. But in order to develop a comprehensive fault diagnosis
system, multi-sensors based scheme may give better result. This is beyond
the scope of this thesis. Through this research work the present state-of-
the-art of incipient fault detection of an induction motor has been improved
to find better neural network and to collect fault related frequency spectra
of the stator current, which can be used as a basis for the development of

robust and comprehensive fault diagnosis system for electrical machines .
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6.2 Recommendations for Future Work

From previous work [25] it is evident that information from a single sensor
is not good enough to identify all possible faults that may occur in induc-
tion machines. As for example, stator current usually does not carry the
signature of the bearing faults. Therefore it is necessary to pay attention
in multiple sensors based scheme. Performance of 2 machine fault diagnosis
systen: should be independent of operating conditions of the machine as well
as the design parameter variations. Moreover, the system should report not
only the type of faults but also the extent of the detected fault. To make it
cost-effective and user-friendly for the maintenance engineer in the case of
a large manufacturing plant, a single system should be capable to diagonise
faults of multiple machines.

The future work should also consider both the theoretical as well as the
experimental study to select the optimum number of sensors necessary to
collect all major faults related information. For example, a vibration sensor

may be necessary for bearing faults.

Data from multiple sensors should be reduced through neural network

based filter to avoid redundant information.

Usually faults related information are inated by the i of
operating conditions as well as the design parameter variation of the machine.
It is thus necessary to develop suitable neural network based filter to get noise
free fault. related information.

As the extent of a particular fault is fuzzy in nature, therefore, in such a
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case the application of fuzzy logic should be explored. A neuro-fuzzy comput-
ing model should be developed for the incipient fault diagnosis of electrical

machines.

19



Bibliography

[1] T.S. Sankar,* Diagnosis and Monitoring for AC Drives,” IAS Conf.
record, vol. 1, 1992, pp. 370-377.

[2] Peter J. Tavner, James Penman, Condition Monitoring of Electrical Ma-
chines,Research Press. Ltd. John Wiley & Sons Inc.

(3] Mo-Yuen Chow and Sui-Oi Yee, “Methodology for On-line Incipient
Fault Detection in Single Phase Squirrel-case Induction Motors using
Artificial Neural " I[EEE Tr ion on Energy Ce
vol. 6,n0. 3, Sept. 1991, pp. 536-545.

[4) Mo-yuen Chow, Robert N. Sharpe and James C. Hung,“On the Ap-
plication and Design Consideration of Artificial Neural Network Fault
Detectors-Part II,” JEEE Transaction on Industrial Electronics, vol. 40,
no.2, April, 1993,pp. 189-196.

=

Mo-Yuen Chow, Griff Bilbro and Sui Oi Yee,“Application of Learning
Theory to an Artificial Neural Network that Detects Incipient Faults in
Single Phase Induction Motors,” International Journal of Neural Sys-
tem, vol.2, No.1&2, 1991, pp. 91-100.

120



[6] Chin-Teng and C.S. George Lee, “Neural-network based Fuzzy Logic
Control and Decision System,” IEEE Trans. on Computers, vol. 40, No.
12, March 1991, pp. 1320-1335.

[7] Timo Sorsa and Heikki N.Koivo,“Neural Network in Process Fault Di-
agnosis,” IEEE Trans. on System, Man, and Cybernetics, vol. 21, no. 4,
March 1991, pp. 815-825.

[8] Petri A. Jokinen, “Comparison of Neural Network Models for Process
Fault Detection and Diagnosis Problems,” IJCNN Seatle 91, vol. 1, pp.
239-244.

[9] Paul V. Goode and Mo-yuen Chow, “Neural/Fuzzy Systems for Incipient
Fault Detection in Induction Motors,” IECON’93 vol.1,pp.332-337.

[10] Mo-Yuen Chow, Peter M. Mangum and Sui Ou Yee ,“A Neural Net-
work approach to Real-time Condition Monitoring of Induction Motors,”
IEEE Tr ion on Industrial El ics,vol. 38, no. 6, Dec. 1991, pp.
448-453.

{11] Mo-yuen Chow, Robert N. Sharpe and James C. Hung,“On the Ap-
plication and Design Consideration of Artificial Neural Network Fault
Detectors-Part 1,” IEEE T tion on Industrial El ics, vol. 40,
no.2, April, 1993, pp. 181-188.

[12] M.F. Abdel Mageed, A.F. Sakr, A.Bahgat,“Fault Detection and Iden-
tification using Hierarchical Neural Network-based System,” IECON'99
vol. 1, pp. 338-342.

121



[13] F. Filippetti and M.Martelli,“Neural Networks Aided On-line Diagnos-
tics of Induction Motor Rotor Faults,” IAS Conf. record, 1993, pp. 316-
323.

[14] F. Filippetti and M.Martelli, “Development of Expert System
Knowledge-base to On-line Diagnosis of Rotor Electrical Faults of In-
duction Motors,” IAS Conf. record, 1992, pp. 92-99.

[15] R. Natarajan,“Failure Identification of Induction Motors by Sensing Un-
balanched Stator Currents ,” IEEE Transaction on Energy Conversion,
vol. 4, no.4, December, 1989, pp. 585-590.

[16] C.A. Protopapas, S.D. Kaminaris, AV. Machias and B.C. Papadias, “An
Expert System for Fault Repairing and Mai of El ical Ma-

chines. ," IEEE Transaction on Energy Conversion, vol. 5, no.1, March,
1990, pp. 79-83.

[17] Simon Haykin,Neural Networks : A Ce hensive Foundali
Macmillan College Publishing Company, USA, 1994.

(18] James A.Freeman and David M.Skapura,Neural Networks Algorithm,
Application and Training Technigues, Addition-Welsy Publishing Com-
pany, 1991.

[19] Gail A.Carpenter and Stephen Grossberg,“Invarient pattern recognition
and recail by an attentive self-organizing ART architecture in a nonsta-

tionary world,” Proceedings of the IEEE First International Conference
on Neural Networtks, vol. I1, June 1987, pp. 737-745.

122



[20] Gail A.Carpenter and Stephen Grossberg,“ART2: Self- ization of
stable category recognition codes for analog input patterns,” Proceedings
of the IEEE First International Conference on Neural Networks, vol. 11,
June 1987, pp. 727-735.

[21] Alan V.Oppenhein and Ronald W.Schafer,Discrete-Time Signal Pro-
cessing, Prentice-Hall,Inc,New Jersey 17632,1989.

[22] DSP56000/DSP56001-Dsigital signal Processor : User’s Manual, Mo-
torola, 1990.

(23] Operating Manual for the PC-56 : DSP Co-processor Board, Ariel Cor-
poration, 1989.

[24] DSP Developer’s Tooikit for the Motorola DSP56000/DSP56001, Ariel
Corporation, 1989.

[25] Toshio Fukuda, Koji Shimojima, “Multi-Sensor Integration System with
Fuzzy Interfe and Neural N ks,” I ional Joint Confer-
ence on Neural networks, vol. 11, 1992, pp. 757-762.

123



APPENDIX ‘A’  Program listing for ART2 Neural Network.

This is the program for implementation of ART2 neural network. Art2 has becn
implemented using object oriented software development methodology. So it can be used
as a class library to add its feature to application program. Dynamic memory operation has
been used to handle all matrices, so virtually the size of input patter is determined by the
memory of the system. It also includes an user interface routine to train and test a neural
network. It has been written in Borland C++ under 0/S MS-DOS for IBM PC
environment.

include <stdlib.h>

#

#include <io.h>
#include <conioh>
#include <stdio.h>
#include <alloch>
#include <math h>

#define TRAIN 10
#define RECALL 11
#define DEFINE 12
#define QUIT 13

const features=>5;

const type=4;
const DBSIZE=10;

int train_net(char *fname,int fea,int type,char *fnamel);
int recall_net(char *fname,char *result);
int menu();
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L

class art2{

private:

float avfbvf,cvtv,dvfevrovf;
float *uwpf,*dwpf;

int *f2n;

int Nvi,Mvi;

public:
art2(float aavf=10.0,float abvf=10.0,float acvf=.1 float atvf=.2,float advf=.9,float
aevf=0,

int lN‘lV}’felhlm,inl aNvi=type,float arovf=1.0);
20:

int lnill|(ﬂo|l *1);
m( recall(float *I);

int dcﬁne(m fu.mt type);
int parameters(float ¢,float ro);
int give_fea_type(int *M,int *]

art2 oart2;

[esvsssessnsasersseses An interface to train snd test the Network *°%*

/ /

main()

int N,MUo 5
float e,¢
char fnlme(l 0),fname1[10]);

Uo=109;

while(Uo 1=QUIT)
{

menu();
c=getch();



ifte="t" [|c="T" || c="1")Uc=TRAIN;
ifle="r’ || =R’ || c=2")Uo=RECALL;
iffc="d" || e='D" || =='3"YUo=DEFINE;
ifle='q" | =Q [|c=4)Uo=QUIT;

switch(Uo)
{
case TRAIN:
printf{"\n\n\n");
printf{"\n Pattern’ features  =");scanf("%d" &M);
print{"\n Classification Types=");scanf{"%d",&N);
printfi("\n Pattern File name  =");scanf{"%s",fname);
printf{"\n Weight File name  =")scanf{"%s",fnamel);
train_net(fname,M,N,fname1);
break;
case RECALL:
pnnﬂ'("\n\n\n\n\n\n" %
printf("\n Recall Patter File name  =");scanf("%s",fname);
printf{"\n Recall result File name  =");scanf{"%s",fname1);
recall_net(fname,fnamel);
break;
case DEFINE:
print{™\n Please Enter value of ‘¢’ =");scanf{" %", &s);
printf{™\n Please Enter value of 'ro'=");scanf{"%f",&o);
‘oar2. parameters(e,ro);
break;
case QUIT:
Uo=QUIT;
printf{"\n\n\n\ *#*% Thanks a lot **** ");
break;
}
)
retumn |;
}
C

lrﬂ::lrﬂ‘(::; aavffloat abvffloat acvffloat anffloat advffloat aevf,int aMyvi,int aNvifloat

avf=aavf;
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Mvi=aMvi;
Nvi=aNvi;
rovf=arovf;

pr=( Nvi);

2n=(int *)farmalloc(sizeof{int)*Nvi);
float uiwvE,diwv:

uiwvF=2.236;

diwv=0;

for(int i=0;i<Nvi;+H)

'Mvi*Nvi);

{

for(int j=0j<Mvi;+j)
*(uwpfH*Mvitjy=uiwvf;

£2n[i}=0;

for(i=0;i<Mvii++)

for(int j=0j<Nvi;+j)
*(dwpf+i*Nvitjy=diwvf;

}

farfree(uwpf);
;xrﬁee(dwpﬂ:

I S ST

L

int art2::show_uw(FILE *%p)
printf{"\n");
for(int i=0;i<Nvi, ++)
{
printf("\n");
for(int j=03j<Mvi;++j)
printfl "%f ", *(uwpf+i*Mvi+j) );

fprintf{fp,"\n \n Bottom up weight:\n");
for( i=0;i<Nvi;++i)
{



fprintfifp,"\n");
for(int j=03j<Mvi;++j)
fprintf{fp, "%f ", *(uwpf+i*Mvi+j) );

sssessssre;

Display and store the top down Weight ***"

/

int art2::show_dw(FILE *fp)
{
print{"\n");
for(int i=0;i<Nvi;++i)
printf{"n");
for(int j=0;j<Mvi;+tj)
printfy "%f " *(dwpf+i*Mvit) );
}
fprintf(fp,"\n \n Top_down weight:\n");
for(i=0;i<Nvi;+H)
{
fprintf{fp,"\n");
for(int j=0j<Mvi;++j)
fprintf(fp, "%f ", *(dwpf+i*Mvitj) );
}
retum |;
}

, ,

int art2::train(float *1)

int counter,J,*f2,i13,i14=0;
float *u,*v,*

float *q,*qb,*r,*T;
float *p,*g;

float *fx,*fq;

float nv,nvp, test] test2; /normalized value
int eq,reso;

1=0;
2=int* Yfarmalloc(sizeof(int) *Nvi);
u=(flost *)farmalloc(sizeof{float)*Mvi);



v=(float *)farmalloc(sizeof{float)*Mvi);
w=(float *)farmalloc(sizeof(float)*Mvi);
x=(float *)farmailoc(sizeof(float)*Mvi);
q=(float *)farmalloc(sizeof{float)*Mvi);
qb=(float *)farmalloc(sizeof(float)*Mvi),
r=(float *)farmalloc(sizeof(float)*Mvi);
T=(float *)farmalloc(sizeof(float)*Mvi);
p=(float *)farmalloc(sizeof(float)*Mvi);
g=(float *)farmalloc(sizeof(float)*Mvi);
fx=(float *)farmalloc(sizeof{float)*Mvi);
fq=(float *)farmalloc(sizeoffloat)*Mvi);
n.
counter=1;

for(int i=0;i<Mvi;++i)

bl
pli}=0.0;g(i}

for(i=0;i<Nvi;++i)
£2[i]=1; i13=0;
for(;)
{do
{

do{
if{i13=0)

for(i=0;i<Mvi;++)
wlil=Ifi}+avf*ufi};
nv=0.0;
for(i=0;i<Mvi;++)
nv=nv+wlil*w[i];
nv=sqri(nv);
for(i=0;i<Mvi;+H)
xlil=wlil{evE+nv);
for(i=0;i<Mvi;++)

if(x[i] >tvi)x[iJ=x[i]; else fx[i]=0.0;
folil=qlil;
vlil=fx[i}tbvf*fq[i];
}
nv=0;
for(i=0;i<Mvi;++)
av=nv+v[i]*v[i];
nv=sqri(nv);
for(i=0;i<Mvi;++)
ulil=v[i}/(evFtnv);

for(i=0;i<Mvis++i)
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plil=ulil+dve* *(dwpf+I*Myiti);

nv=0;

for(i=0;i<Mvis++)
nv=nv+p[i]*pil;

nv=sqri(nv);

for(i=0;i<Mvi;++)
qliJ=pliJ(evf+nv);

e=1;

for(int i=0;i<Mvi; +)
{
ifqb(i] I=[i])eq=0;
)qb[lhm:

}

while(eq==0);

nv=0;nvp=0;
for(i=0;i<M

nv=sqri(nv);
for(i=0;i<Mvi;++)
nvp=nvp+p[i]*p[i]*cvF*evf;
(nvp);
for(i=0si<Mvi;++)
rlil=(ulitevf*plil/(evtnviavp);
nvp=0;
for(i=0;i<Mvi;++i)
nvp=nvptii]*x[if;
nvp=qri(avp);
testl=rovfl(evf+nvp);/printf{"n %f" testl);
if{test1 >1)
{
2{3]=0;
counter=1;
+HI;
iftJ==Nvi)return -1;
}
)
while(test] >1);
iflcounter >1)i14=1;
ificounter=1)
{

++counter;



for(int j=0;j<Nvis++j)
{
T()=0.;
for(i=0;i<Mvi;++)
TH=Pli)* *(uwpftj*Mvi+i).
;‘[il-‘l‘m'ﬂl.il;

#=0;
for(j=0;j<Nvis++j)
(T <TGDI=;
ﬁ-:(:-o.Kanw)
if==1)
Tli)=avT();
else T[j}=0.0;
)

}
i13=1;
if(il4=1)break;
}

for(i=0:i<Mvi:
‘(WW‘MVM)‘“U]/( 1-dvf);

for(i=0;i<Mvi;++)
*(dwpftI*Mviti)=uli}/(1-dvf);
2a[i=1;

farfree(f2);] wu);wv).
farfree(:

/ /
[aserrennssesrsen. ]

+ee2900¢ Pattern Matching **%**%
/ /

int art2::recall(floar *I)
{
int counter,*f2,),i13,i14=0;

float *u,*v,*w,*x;

float *g,’ 'qb e 0

float

float 'fx,'fq,

float nv,nvp. testl test2; linormalized value
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int eq,reso;

for(int

f2=(int *)farmalloc(sizeof{int)*
u=(float *)farmalloc(sizeof(float)*Mvi);
v=(float *)farmalloc(sizeof(float)*Mvi);
w=(float *)farmalloc(sizeof(float)*Mvi);
x=(float *)farmalloc(sizeof(float)*Mvi);
q=(float *)farmalloc(sizeof{(float)*Mvi);
qb=(float *)farmalloc(sizeof(¢loat)*Mvi);
r=(float *)farmalloc(sizeof(float)*Mvi);
T=(float *)farmalloc(sizeof{float)*Mvi);
p=(float *)farmalloc(sizeof(float)*Mvi);
g=(float *)farmalloc(sizeof{ float)*Mvi);
fx=(float *)farmalloc(sizeof{float)*Mvi);
fq=(float *)farmalloc(sizeof(float)*Mvi);
counter=1;
i=0;i<Mvi;++i)
{

uli}=0. 0w(i=0.0;
x[i]=0.05q[i]=0.0;b[i]=0.0;
oli]=0.0;T[i]=0.0;p[i}=0.0;
glil=0.0;

for(i=0;i<Nvi;++i)

i13=0;
for(;;)

£2(i]=1;

{
iRi13=0)

{
for(i=0;i<Mvi;++i)
wlil=I[i}+avf*u[i];
nv=0.0;
for(i=0;i<Mvi;++i)
avenvHw[il*w(il;
nv=sqri(nv);
for(i=0;i<Mvi;++i)
x[il=w[i}/(evf+nv);
for(i=0; |<va )

|f(x[|] >tvfx[i]=x(i]; else fx[i]=0.0;
i)=q[i];
v[l]=fx[|]+bvf'fq[|].

nv=0
rm(i=o;i<Mvi;++i)
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av=nvv{i]*v(il:
nv=sqri(nv);
for(i=0:i<Mvi:++i)
ufi}=v[il(evF+nv),
} /13=0;
for(i=0;i<Mvi;++)
plil=uli[+dvf* *(dwpf+J*Mvii).
nv=0;
for(i=0;i<Mvi;++i)
nv=nv+p[i]*p[i;
nv=sqri(nv);
for(i=0;i<Mvi;++i)
qli=pliJi(ev+nv);

=1;

for(int i=0;i<Mvii++)

{
if(qb[i] '=q[i))eq=0;
qblil=qil;

) U8
while(eq=0);

nv=0;nvp=0;

for(i=0;i<Mvis++i)
nv=nv+uli]*uli];

nv=sqri(nv);

for(i=0;i<Mvi;++i)
nvp=nvp+pli)*pli]*cvirev;

nvp=sqrt{nvp);

for(i=0;i<Mvi;++i

rlij=(uli}+cvf*pli])/(evi+nv+nvp);

mno.
nvp=0;
for(i=0;i<Mvi
nvp=nvp+]

i);

nvp=sqri(nvp);
testl=rovf/(evf+nvp)//printf{ "\n %f" test1);
ifftest] >1)

{

2(]=0;

counter=1;

+;
if{J=Nvi)return -1;
}

}
while(test] >1);



if{counter >1)il4=1;
iffcounter=1)
{
“++counter;
mn.
for(int j=0;j<Nvis++])
{
Tjj=00;
for(i=0;i<Mvi; ++)
TE+=pli]* *(uwpf+j*Mvi+i);
';'UJ'TU]'DUI;
mna.
=0;
for(j=0;j<Nvi;+j)
(T[] <T(])=5;
for(j=0j<Nvi;+tj)

ifj==))
Tli]=dvf*T(];

else T[j}=0.0;

}

ifi20[3) =0)=-1;
farfree(f2):farfree(u);farfree(v);

farfree(p);farfree(g); f-tffee(fx)»,
farfree(fq);

return J;

)

Add a New Neuron to clessify more classes *******:

o9

!

int #rt2::add_neuron()

float *nuwpf, *ndwpf;

int *nf2n;

+HNvi;
L i i*Nvi);
P i Mvi*Nvi);
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nf2n=(int *)farmalloc(sizeof(int)*Nvi);

float uiwvE.diwv,;

uiwvF=2.236;

diwvE=D;

for(int i=0;i<Nvi-1;++)
{

for(int j=0;j<Mvi;++)
*(nuwpf+i*Mvi+j)=*(uwpf+i*Mvi+j);
n2nfi}=f2afi);

}
nf2n[ij=0;

for(int j=03j<Mvi;++j)
*H(nuwpf+i*Mvitj)=uiwve,

farfree(uwpf);

uwpf=nuwpf;

for(i=0;i<Nvi-1;++)

{
for(int j=0;j<Mvi;++j)
*(ndwpf+i*Mvitj)=*(dwpf+i*Mvi+j);
for( ,=o,,<Mv. i
dwpfﬂ‘Mv.ﬂ):-dlwf
farfree(dwpf);
dwpf=ndwpf;
return I
}

/
[s#aessreassses Define the Net by features and type of clusses *#94¢ssess:
!

int art2::define(int fea, int type)

oart2.Mvi=fea;
oart2.Nvi=type;
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uwpf=(float *)farmalloc(sizeof(float)*Mvi*Nvi);
dwpf=(float *)farmalloc(sizeof(float)*Mvi*Nvi);
f2n=(int *)farmalloc(sizeof(int)*Nvi);

float uiwvf,diwvf;

{

for(int j=0;j<Mvi;++j)
H(uwpf+*Mvit)=uiwv;

f2n[i]=0;

}
for(i=0;i<Mvi; ++i)

j=0;j<Nvi;++j)
*(dwpf+i*Nvitj)=diwvf;

::parameters(float e,float ro)

ev=e;
rovf=ro;
retum 1;

}

U
[swswsensussusases Give the values of feature and Type $*#4##xaxs arenssssssnssss)

! !

int art2::give_faa_type(int *Mint *N)
*M=Mvi;
*N=Nvi;
retum 1;

}
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[#xsxsnnnnsserarnarerer User interface 10 train the Net #*4++sssseressassnssssnssse)

int train_net(char *fna..e,int fea,int type,char *fnamel)

FILE *fp;
float data;

long int handle,fsize;
intij,f;

char *buff,vbuflfDBSIZE];
float *pattern;

int M)N;

oart2.give_fea_type(&M,&N);
handle=open(fname,0);
fsize=filelength(handle);

buff=(char *}fannatloc(fsize);

pattem=(float *)farmalloc(sizeof{float)*fea);

close(handle);
fp=fopen(fname,"rb+");if(fp==NULL)retum -1;
fread(buff, 1,fsize,fp);

(i0;i ¥ th"Yoc", i]); printf{"\n\n");
oart2.define(fea,t;pe):

=0;
for(i=0;i<fsize;++i)

{
while(buff[i}==32)++i;
if(i==fsize)break;
if(bufili] 1=13)

{

=0;

for(;;)

{

vbuff[j]=bufifi];

i
uff[il=13 || buff[i]==32)break;

size)break;

}
Vouff[j}=\0";
data=atof(vbuff);

if(f <M)
{

137



pattern|f]=data;
+;

)

iftbufffi}==13)

(

while(f =M){pattern[f}=0.0;++f}
+Hsf=0;

Tnz.min(pnmn);

}
else {++i; printf{™\n ");
}

}
farfree(buff);
farfree(pattern);
felose(fp);

fp=fopen(fnamel,"wbr+");
oart2.show_uw(fp);
oart2.show_dw(fp);
flose(fp);

retumn 15

}

l;
Jo9ee * User interface for pattern

/

int recall_net(char *fname,char *result)

int i,j.f,rtype,patno;

char *buff,vbuff[DBSIZE];
float *pattern;

int M)N;
oart2.give_fea_type(&M,&N);
handle=open(faame,0);
fsize=filelength(handle);
buff=(char *)farmalloc(fsize);

close(handie); w
fp=fopen(fname,"rb+");if( fp==NULL)return -1;
fread(buff,1,fsize,fp);

1 for(i=0;i<fsize;+ i)printf{"%c" buffli]);printf{"\n\n");
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fpr=fopen(result,"wb+");
fprintf(fpr,” Pattern Matching Result Of ART2\n\n"):
f=0;patno=0;

for(i=0;i<fsizesr+i)
{

while(buflTi}=32)++;
if(i="fsize)break;
if(bufii] 1=13)

{

J=0;
for(;;)

vbuff[j}=buffli};
i

if(buffTi]=13 || buff]ij=32)break;
if(i==fsize)break;
if(j==DBSIZE)break;

}
vbuff[j]=\0;
data=atof(vbuff);

if(f <M)

pattern[fl=data;
+;

)
if(buffi]=13)
{

++patno;
while(f 1=M){pattern[{]=0.0;++)
+Hisf=0;
rtype=oart2.recall(pattern);
fprintf{fpr,"\n");
if(rtype=-1)
fprintf(fpr, "No Matched pattern of pattern No=%d ",patno);
else fprintf{fpr,"%d is the Matched pattem of pattern No=
%d",rtype+1,patno);
}

}
else {++; printf{"\n ");
}

}
farfree(buff);
farfree(pattern);
felose(fp);
felose(fpr);
return 1;

}
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l
[essessessassssessssssssesess Userinterface main meny *4*+osssssssssssssnans;

l;

int menu()
clrscr();
printf{"\n\n\n\n\n\n *e#¢ TEST OF ART2 %)
printf("\n\n\n 1. Training");
printf{"\n 2. Recall");
printf{"\n 3. Define Parameters");
printf{"\n 4. Quit");
return 1;
}

/

END
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APPENDIX “B” Program listing for real-time frequency spectra acquisition..

This program is for real-time frequency spectra collection of the stator current of a
induction motor using digital signal processing(DSP) technique.

#define MAX_COM 80

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <dos.h>
#include <graph.h>
#include <math.h>

#include "pc56.h" /* header fie for global pc56 declarations '/
#include "pc56exth”  /* external variable definitions

/* defined in PC-56 library (init_56.c) 'l
#include "fft_56.h" /* fit_56 definitions ¥/
#include "demogrph.h" /* graphics definitions */
#include "printer.h"
#include "plotter.h"

extem unsigred long int DATA; /# data array o

extem unsigned long int COEF; /* sin/cos table *

extem unsigred long int WINDCOF, /* window coefficients */

extemn long int maxN; /* maximum data size */

/

[#sesarssnnonnvensaussanes Function ./
! !
void initgrph(long int);

void demoplot(int [], int ], int, int, int);

void pause(void);

! /
/0 #wswanseveseassesnssesGlobal data arrays for trausfers, etc **+++ese

l /

float fo;

int arrays1[{2048], arrays2[2048],in;

char c,xstep=1;

int parray[514],diff,counter=0,parrays2[514],dis_counter=0,signal,avcycle=1;
int fre[100],amp[100];

char tbuff[50];
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mainQ
{
struct dostime_t start, finish;

char key,tbuff[ 128];
int errcode,j,max;

int points, endloop, count, dspopt, plotopt;

long int n, I, fsamp, space, presample;

int bpfilt,
o

int option, timopt, comp_flag, word_size, usr_flag;

unsigned long int retcode;

/* Initialize variables, etc */

long int x_memflag = OL;
long int y_memflag = IL;

/* Initialize Essential graphics text mode */

_setvideomode(_ERESCOLOR);

n=1024L;
1=513L;
fsamp = 800L;

bpfilt=1;
gain =4L;
timopt = 0;
plotopt = 0;
dspopt=1;

/* Initialize fR_S6 program */

errcode = init_fit(&n, &I);

ifferrcode != no_eror){
printf{"™aFATAL ERROR %d - cannot initialize\n",errcode);
exit(1);
}

/# Initialize AIC parameters */

errcode = init_aic(&fsamp, bpfilt, gain);

ifferrcode I= no_error){
printf{"\aFATAL ERROR % - cannot initialize\n",errcode);
exit(1);
}
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/* Initialize AIC converter */
errcode = emd_56(adinit);
if(errcode == err_hostcmd)
printf("aERROR %d Unable to initialize AIC\n" errcode);
/* Load user command fft routine */

errcode = load_usr("demofft.lod",usr);
if{errcode !=no_

error]
printf("ERROR % in loading user command\n",errcode);
points = ; /* comvert to integer */
_reset:

if(tdspopt){
errcode = cmd_S6(sample);
for(i=0; i<n; i++)
arrays2(i] = 0;

else{
emcode = cmd_56(ust);  /* Execute on time to fill array*/

for(i=0; i<n; i++)
arrays2[i] = graph_ulx;
}

/* Sample and display until keyboard is hit */

count =0;

if(timopt){
endloop = 10; /* initialize loop count if timing */
_dos_gettime(&start);

dof
errcode = dwnarras{arraysl, I, X_SPACE, DATA);
/* Start process, display arrays|, erase arrays2 */
ifldspopt)
errcode = hostemd(usr);
else
errcode = hostemd(sample); /* start process */

m arrays2,points,yellow,plotopt); */

/* When complete, download into arrays1 */

‘while(!dsp_done()){ /* wait for 56000 code to be finished */
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}
rov_hp(&retcode);

errcode = retcode; /* conversion to int */

if(errcode != no_error)
exit(1);
errcode = dwnarras(arrays2, |, X_SPACE, DATA);
/¢ Start process for next array, display arrays2, erase arrays1 */

if{dspopt)
errcode = hostemd(usr);

else
errcode = hostemd(sample); /* start process */

i<t L4+)

for(i

{
_settextcolor(1);
sprintf{tbuff,"%d ",i);
sﬂmﬂpos1uon(25,8+i‘5+i/4-ti/5);
outtext(tbuff);
selcolor(li),
_moveto(48+i*45,349);
_lineto(48+i*45,340);
_moveto(48+i*45+22,349);
_lineto(48+i*45+22,345);
}
_setcolor(6);
_rectangle(2,0,90,639,349);
_setcolor(7);
_moveto(48,95);
_lineto(48,335);
_lineto(638,335);
setcolor(14);
_settextcolor(14);

for(i=0;i<pointsi+)
{

if{arrays2[i] >310)arrays2[i}=310;
arrays2[i]=310-arrays2[i];

)
for(i=0;i<5;++i)arrays2[i]=0;

max=0;
for(j=0;j<points;+-+)

if{arrays2[max] < arrays2[j})
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, max=j;
; (~=°;2<pohns;*‘*j)
ifferrays2[] < (arrays2{max])'s )
[i1=0;
}
for(i=0;i<points; ++)
{
i

max=i;
for(j=ij<i+25;+4)
{
iftarrays2{max] < amays2ljl)
max=j;

)
for(=ij<i+255+4)

ifji=max)
arrays2[j}=0;

i+=24;

}

}

S orpEtH)
{
‘%wm
Mmm(""”"""'m’
_setcolor(14);
e+ *xsep M)
(arrays2(i] !

s 1=0) ays2)
Hineto(48+i¢xstep,3 o

}

_settextcolor(1);
7
for(i=0;i<8;++)

intf(tbuff,"-%d0db" j);
sprintf{{ ion(24-i#2-1/4,2);
ff);

Zouttext(tbu

_setcolor(5);
_moveto(47,335-1*31);

/* Draw the Spectra on the video Screen */



_lineto(37,335-i°31);
_moveto(47,335-i*31-15);
Tlineto(d2,335-i*31-15);
S

)

_settextcolor(14);
_setcolor(5);
_rectangle(3,0,0,639,88);
=0,
for(i=0;i<points;++i)

if(arrays2(i] 1=0)
{

inetp
if(in%60 <17)
in=in-in%60;

if(kbhit() 1=0){
c=getch();
ifle="p")
;ﬂuﬂo;
”
diff=0;signal=0;
for(i=0;i<points;++i)
ifdis_counter >0)
{

_moveto(10+i*xstep,339);
_lineto(10+i*xstep,arrays2(i));

)
diff+=abs(parrayil-arays2(i});
signal+=310-arrays2(i);
pammay[ij=amays2[i];
sprintfbuff,"%d ",310-wrrays2[i));
iffi<15)



_settextposition(7,0+i*3);

else if(i >=15 && i<30) _settextposition(7+1,04(i-15)*5);
else if(i >=30 && i<45) _settextposition(7+2,0+(i-30)*5)
else _settextposition(7+3,0+(i-45)*5);

_outtext(tbuff);

}
signal+=1.0;
sprintf(tbuff,"Error=%d Signal=%d per. of Error=%d
" diff,signal,((diff*100)/signal));

_settextcolor(14);
_setcolor(0);
_rectangle(3,0,0,100,20);
_settextposition(0,0);
if(dis_counter >1)
_outtexi(tbuff);

if(kbhit() 1=0){
c=getch();
iflc="q'){_setvideomode(_DEFAULTMODE); exit(1)}
ifle="p')
gettext();
getch();
}

counter=0;
4-+dis_counter;
for(i=0;i<points;++i)
parrays2i}
¥

/* When complete, download into arrays1 (at top of loop) */
while(ldsp_done()){ /* wait for 56000 code to be finished */
}

rev_hp(&retcode);
emcode = retcede; /* conversion to int */

if(errcode != no_error)
exit(1);

counti+; /% increment counter */

if (timopt){
endloop = endloop-1;

else
endloop = Ikbhit();
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H
‘while(endloop);
if(timopt)
_dos_gettime(&finish);
else(
key = getch(); /* get character */
switch(key)({
case('t): 1# toggle display */
case('T):
dspopt = ldspopt;
goto _reset;
break;

case('f /* freeze display */
F):
‘while(Ikbhit(){
)
key = getch();
goto _reset;
break;
1* graph with points */

case(1): /* graph with lines */

case('Q): /* Quit display */

default: /* Ignore all other keys */

if{timopt){
printf{"Start %d.%2.2d Finish %d.%2.2d\n" start.second,
start.hsecond, finish.second, finish.hsecond);
printf{"Executed loop %d times, %d spectra displayed\n",
count, 2*count);

}
_setvideomode(_DEFAULTMODE);
}
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/
[saessensssarensesssssnanasss Get User Option

int gettext()
{
float fp;
int ij,in;
_settextposition(0,0);
printf{"Frequency spectrun of | of induction motor at Condition: \n");
scanf{"%s"tbuff);

init_serial();
init_plotter();

for(i=0;i<100;++i)
fre[i]=-1;

i=0;j=0;
for(i=051<500;+-+)
(
ifarrays2[i] >0)
i
fp=fp®2.4; in=fp;
if{(in%60 <17)
inin-in%60;

if(in <1000)

frefjj=in; fp=amays2[i;
p=({p/217)*70; amp[j}=fp;
+i;
ifG>1)
{
ifffrefj- 1}=fre[;-2])
iffamp(j-1] >amp(j-2]) amp[j-2}=amp[j-1};
frej-11=-1; ~j;
)
4
; }
iffj==MAX_COM-I)break;
}
/* Plot the spectra */

plot_graph(fre,amp,"Rotor's phase  replaced by external resistor of 6 ohms");
return 13}
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LPPENDH “C”  program listing of HP-plotter driver.

‘This is the program for Six pen HP-plotter driver to get real-time plot of frequency spectra
of the stator current of an induction motor..

#define RED 1

#define GREEN 2
#define BLACK 3
#definc PURPLE 4

#define RIGHT_MOST_X 10000
#Hdefine UP_MOST_Y 8500
#define DVELOCITY 7

#dcfine MVELOCITY 38

#dcfine DEVELOCITY 10

#include <stdio.h>
#include <dos.h>
#include<stdlib.h>

! d
[s9ssrenanasussssnssssnsnanncs Plot The spectra **++esnsssssssssnsunsanssssnn/

int plot_graph(int fre[],int ampl[], char title[])
{

float famp;

intij,value,x,y;

int x1,y1,x2,y2,xdstep,xhdstep,xsstep, ydstep, yhdstep,ysstep,sdh,shdh, ssh, xdim, ydim;
x1=1250; yl=2000; x2=7250; y2=6000;

xdim=1000;ydim=7
dstep=100xhstep=50;

edge_rect(x1,y1,x2,2);
plot_absolute(x1,y1);
fm(i=0;i<(xdim/xdslcp):+*i)

plct lineto(0,sdh);

y=sdb;
|;lm_ulau'v=(x,y);
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plot_absolute(x1,y1);
x=xI;

for(i

;i<(xdim/xhdstep);++i)

{

plot_lineto(0,shdh);
x+=(x2-x1)/(xdim/xhdstep);
y=shdh;
plot_absolute(x.y1);

plot_absolute(x1,y1);
for(i=0i<(xdim/xsstep);++i)

{
plot_lineto(0,ssh);
quz xl)l(xdxwmep).

plm_relntive(x,y);
}
plot_absolute(x1,y1);
for(i=0;i<(ydim/ydstep);++i)
plot_lineto(sdh,0);

x=sdh;
y=(y2-y1)/(ydim/ydstep);
plot_relative(x,y);

plot_absolute(x1,y1);
fw(i-‘o;iqydim/y'ldsw)zﬂi)

plm_linﬁo(shdh,o);

y-(yi -y1)(ydim/yhdstep);

;alo\ t_relative(x,y);
plot_absolute(x1,y1);
for(i=0;i<(ydim/ysstep); ++i)

{

PIM lineto(ssh,0);

=-ssh;

ﬁﬂ -y1)/(ydim/yssiep);
plot_relative(x,y);

}
/*  select_pen(GREEN); */
plot_absolute(x1,y1);
plot_line(x1+(x2-x1)/4,y1-500,x1+(3*(x2-x1))/4,y1-500);
plot_line(x1+(x2-x1)/4,y1+10-500,x1-H3%(x2-x1))/4,y1 +10-500);
plot_line(x1+3*(x2-x1))/4,y1-500,x1-+3*(x2-x1))/4-200,y1-70-500);
plot_line(x1+(3*(x2-x1))/4,y1-500,x1+3*(x2-x1))/4-200,y1+70-500);
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plot_line(x1-700,y1+(y2-y1)/6,x1-700,y1+(5*(y2-y1))/6);
plot_line(x1-710,y1+(y2-y1)/6,x1-710,y1+(5*(y2-y1))6);
plot_line(x1-705,y1+(5*(y2-y1))/6,x1-705-70,y 1+(5°(y2-y1))/6-200);
plot_line(x1-705,y1+(5*(y2-y1))/6,x1-705+70,y 1-+(5%(y2-y1))/6-200);
r” s=l=ct t_pen(RED); */
whlle(ﬁ.{i] 1=1)
if(ampli] <1000 && ampl[i] >0)
x=x1+fre[i]*((x2-x1)/xdim);
y=yl+ampl[i]*((y2-y1)/ydim);
plot_line(x,y1,x,y);
plot_line(x+10,y1,x+10,y);
}
+H;

select_pen(PURPLE); */

plot_stri ¥2, "Frequency itude™);
plot_string(x2+500,y2-200," in Herz in db");

/*  select_pen(BLACK); */
while(fre[i] I=-1)

if(ampli] <1000 && ampli] >0)
{

X=X2+750;
y=Y2-i#250-500;
plot_intval(x,y,fre[i]);
X=X2+2000;

famp=amplil;
plot_intval(x,y,-(70-amp[i]));
}

+HH;

}

/*  select_pen(GREEN); */
edge_rect(x2+400,y2+200,x2+2700,2-500-1*250);
edge_rect(x2+400,y2+200,x2+2700,y2-350);

/*  select_pen(BLACK); ¥/

/*  select_pen(RED); */
edge_rect(x1-1200,y1-800,x2+300,y2+800);
edge_rect(x1-1215,y1-815,x2+310,y2+810);
plot_absolute(12000,9200);getch();getch();
relative_direction(0,1);

/*  select_pen(BLACK); */
plot_string(x1-800,y1+{(y2-y1 Y/6-+150,"Frequency Amplitude ");
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/*  select_pen(PURPLE): */
for(i=0:i<8;++i)

value=-(7-i)*10;

x=x1-520;

Y=y 1+i*((y2-y1)/(ydim/ydstep))-100;
plot_intval(x,y,value);

x=x1-200;

plot_string(x,y,"db");

}

for(i=0;i<(xdim/xdstep);++i)
plot_i mtvu](x|+|‘((x2~xl)/(xd|m/xdstep))yl 150,i*100);

/*  select_pen(BLACK); */
plot_string(x1+(x2-X1)/4+60,y1+80-500,"Spectral Frequency in Herz");
plot_string(x1+300,y1-1100,title);
return 1;

[wssansssnrsrnssersanarersenses Plot intiger value $4999 909000 aksntsssarartrre)

int plot_intval(int x,int y,int value)
{
inti;
char ter=2;
char bufi[10];
itoa(value,buff,10);

pen_uj
plot_ nbsolute(x,y),
'D");

write, uml(ter).
write_serial(’;');
write_serial('L');
write_serial('B');
i=0;
while(buff[i] 1=NULL) /* Print The String */
wrk'lg_serill(buﬂ'[i]):
i
write_serial(ter);
init_plotter();

return 1;

return 1;
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)

’

int plot_lineto(int x,int y)
{

pen_down();
select_velocity(DVELOCITY);
plot_relative(x,y);

pen_up();
select_velocity(DVELOCITY);
retumn 1;

)

l;
/ Plot the

[

int plot_rectangle(int x1,int yl,int x2,int y2)

plot_absolute(x1,y1);
plot_lineto(x2-x1,0);
plot_lineto(0,y2-y1);
plot_lineto(x1-x2,0);
plot_tineto(0,y1-y2);
retum I;

}

- e s e e

/ /

int plot_relative(int xint y)
{
inti;
char bufif10];
write_serial(P');
write_serial(R");
!ml(x.hllﬁ'.lﬂ);

i=0;
while(bufi[i] != NULL)
{
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i=0;
while(bufffi] '=N'ULL)

write_serial(buff[i]);
+H;
}
write_serial(;);
retumn 1;
}

!
[esssrensarsessnnaressssss Plot text string

int plot_string(int x, int y.char buff[})
{

inti;

char ter=2;
pen_up();
plot_absolute(x,y);
write_serial('D');
write_serial(T');
write_serial(ter);
write_serial(;);

write_serial(L');
wnu :_serial(B');

vdule(buﬂ{’] 1=NULL) /* Print The String */
{
write_serial(buff]i]);
+H;

}
write_serial(ter);
default_plotter();
7/ plot_ -bsolmqlolo). Move to origin */
return 1;
}



l;
Jstssnsssassssnanasssssnnssss PLOT LINE

/

int plot_line(int x7, int yl,int x2,int y2)

pen_up();
plot_absolute(x1,y1);
pen_down();
select_velocity(DVELOCITY);
plot_absolute(x2,y2);
pen_up();
select_velocity(DVELOCITY);
return 1;

)

[hssrurrnassarsnnnsssabansars SELECT VELOCITY *#++#sasassnssnsnsnssssnnsnn)

/

int select_velocity(ins v)

inti;
char buff[10};
write_serial('V');
write_serial('S');
itoa(v,buff,10);
i=0;
while(buff[i] I=NULL)

write_serial (bufffl);
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l; /
[sesssssssassassrssnnsssssnns PLOT ABSOLUTE *****#40ssseenssrresenssssasse)

int plot_sbsolute(int x, int y)
{

inti;

char buff10];

nm(x,lmﬂ‘1 10);
whlle(buﬂ[’] 1=NULL)

write_serial(buffi]);
iy
}
write_serial(');
noa(y.buﬂ 10);

whlle(buﬂ'[’] I=NULL)
write_serial(buffli]);

g

int plot_circle(int x,int y,int radious)
{

inti;

char buff[10];
pen_up();
plot_absolute(x,y);

x(o-(nrllmls.buﬂ‘ 10);
whlle(buﬂ[ﬂ I=NULL)
{
write_serial(buff[i]);
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write_serial(’;');
retum I
)

oot +eves SELECT PEN

int select_pen(int no)
(

inti;
char bufi10];

write_serial(S);

write_serial('P');

itoa(no,buff,10);

i=0;

while(buffTi] !=NULL)
wri.lc_urill(buﬂli]);
: 3

write_serial(’;');

retum I

)

intimit_plotter()
{
write_serial('T);
write_serial(N');
write_serial(';');
retum 1;

)
int default_plotter()

write_serial('D');
F);




l; /
[sessssnnssssanansassssnsases PEN UP and DOWN *#400ssesssstsssnsssesssncesse/

/.

int pea_up()
{

int pen_down()
{

write_serial('P');
write_serial(D",
write_serial(}");
return 1;

)

/

. R O A A
s

int init_serial()
{
union REGS regs;
regshah=0;
regshal=(128+0+32)H0+0)+(1)+{1+1);
o 3

gs.x.dx=0;
int86(0x14,&regs, &regs);
retum I;
}

int write_serial(char c)
{

union REGS regs;
regs.h.ah=0x01;
rogs.hal=c;
regs.x.dx=0;
int86(0x14,&regs,&regs);
retum I;
}
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/
[#swsssnsensnsncarsananssbsons Sot Relative Direction $*++*++sasrsssssnsnsstosnsns)
J

int relative_direction(int run,int rise)

inti;

char bufiT10J;
write_serial('D');
write_serial(R');
mu(nm buff,10);
wh.l«buﬁ[n} 1=NULL)

write_serial(bufffi]);
i

write_serial(',);
llna(nse buff, 10);

whxle{buﬂ[x] 1=NULL)

write_serial(buff[i]);
+H;

}
write_serial(;);

retum 1;

/
[#¥s9avsvsererns Dray an edged recangle in absolut rdi

int edge_rect_ab(int x,int y)
{

inti;

char buff[10];
write_serial('E');
write_serial('A');
noa(x,buﬂ 10);
whnle(buﬁ[x] 1=NULL)
write_serial(bufffi});
oy
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}
write_serial(’,);
mu(y buff,10);

whlln(buﬂ{'] 1=NULL)
write_serial(bufflil);
e

write_serial(3);

retumn 1;

}

/
[#enssesavesases Draw an edged recangle in relativ

int edge_rect(int x1,int yl,int x2,int y™)
{
inti;
char bufi[10];
plot_absolute(x1,y1);
wnle >_serial('E");
write_serial(R');
llol((x2-x|),bllﬂ 10);
whlle(b\lﬂ'[l] 1=NULL)
write_serial(buffli]);
+HHi;
)
write_serial(,);
itoa((y2-y1),buff,10);
i=0;
‘while(bufi[i] |=NULL)
{
write_serial(bufffi]);
+Hi;
}
write_serial(';');

return 1;

}
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