CENTRE FOR NEWF DLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)













HIGH PERFORMANCE DUAL SHAPED REFLECTOR
ANTENNAS FOR EARTH STATIONS

By

© Kaijun Gu

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Engincering

Faculty of Engineering and Applied Science

ial University of N

March, 1995

St. John’s Newfoundland Canada



Natonal Lib
| L4 el

il

Biblialhégue nationale
duCanada

Direction des acquisitions et

Acﬁgig ions and
Bibliographic Services Branch  des services bibliographiques

385 Wellnglon Street

Ottawa, Ontario

KIAONA KIAON:
THE AUTHOR HAS GRANTED AN

TRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06123-X

Canadi

395, rue Wellinglon
Otaws (Oniaro)

Yol Voira rotrance

Ourtio Not albrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES CCPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTWLAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



Abstract

In satellite communications, the earth station antenna plays a major role in the
vital link between the satellitc and the earth station electronic equipment. In this
thesis, dual shaped reflector antennas for earth stations which can provide a pencil
beam toward a geostationary satellite are introduced. The design and analysis of
both Cassegrain and Gregorian antennas are presented as follows.

(i) The high performance antenna feeds are studied in detail. Various specific

char: istics required in Ci in and Gregorian antennas are discussed and it
is shown that the corrugated conical horn is the best choice.

(ii) The computer aided synthesis of subreflector and main reflector are de-
veloped by using the geometric optics (GO) approach. Given the feed radiation
pattern and the desired main reflector aperture power illumination, the sub and
main reflectors can he shaped to obtain optimal reflector profiles.

(iii) After having the sub and main reflector profiles, the physical optics (PQ)
are used to calculate the scattered pattern of the subreflector, the radiation patterns
as well as the whole antenna specifications.

(iv) A number of power distributions on the main reflector aperture are investi-
gated to maximize the boresight gain and at the same time, minimize the sidelobe
levels. A pattern control method is also developed.

(v) Perf ison between C in antenna and Gregorian an-

tenna is also made.
The major contribution of this thesis is the complete computer aided design

tool for a very high performance antenna.
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Chapter 1

Introduction

1.1 Statement of the Problem

Pencil-beam antennas are most widely used in point-to-point and point-to-

poi i ication systems. In terrestrial microwave relay sys-
tems, the beam of one antenna is fixed and directed to another antenna. for cach
hop along the path at the time of installation, while in satellite communication
systems, the beam of the earth station antenna is pointed directly to the satellite.
With high gain and creating no noise, the antenna plays an important role in the
vital link between two repeaters or two earth stations. One can conclude that there
would be no satellite communications if there were no antenna.

It has become a common practice to focus microwave energy into a desired
beam by the use of metallic reflecting surface (or surfaces) excited by radiation
from a small, relatively non-directional microwave source. These kinds of antennas
are called reflector antennas. In the family of reflector antennas, one distinguished
member is the dual reflector antenna, especially the axisymmetrical dual- reflector

antenna. The axi ical dual-reflector antenna has hanical and

electrical ges over the jonal focal-point fed large paraboloidal an-




tennas. The Cassegrain antenna is one kind of dual-reflector antennas derived from

the telescope design of William C: in. It has a hyperboloidal subrefl and

a paraboloidal main reflector. This kind of antenna had a long history and still is
the most commonly used earth station antenna today.

Because of the i and wide applications of the C in antenna, the

antenna design is always an interesting topic in satellite communications. Owing
to the high cost, these earth station antennas are normally designed and optimized

such that the very stringent i of CCITT (I ional Tel h and

Telephone Consultative Committee) is met and yet the high gain and the low
sidelobe levels are still achieved. In addition, the close-in sidelobe requirement is
even more critical when the geostationary orbit is getting more and more congested
every day.

The dual-reflector antenna consists of the feed, subreflector and main reflector.
‘To achieve the desired specifications, such as the boresight gain, sidelobe levels, an-
tenna cfficiency, cross-polarization levels, etc., the feed must be designed to provide
a suilable radiation pattern as well, the two reflectors should be shaped in such a
way that the desired aperture power illumination is obtained. For these reasons,
the computer-aided-design (CAD) and the computer-aided-analysis (CAA) of the
dual reflector antennas have been the popular topic in recent years. The CAD and
CAA tools are normally needed for the satellite communication engineering.

One of the variations of the C in antenna is the G ian antenna in

which the hyperboloidal subreflector is replaced by the ellipsoidal subreflector. Rev-
olutionary symmetrical Grogorian antennas have been designed and used for many

years by Andrew Antenna Corporation. But until now, there are neither CAD



nor CAA programs appeared in the open literature. Therclore, it is also useful
to develop the CAD and CAA programs to design the shaped reflector Gregorian

antenna for specific i as well as for

In this thesis, the design and analyses of Cassegrain and Gregorian antennas are
carried out in detail. Corrugated conical horn is studied and shown the best. choice
for the dual reflector antenna feeds. The propagation and radiation characteristics
are discussed in detail. On the assumption that the dimensions of reflectors arce
much larger than the wavelength, the geometrical optics (GO) approach is used
throughout in the reflector design. The analysis programs are developed based on
physical optics (PO) technique. Various performance trade-offs and comparison

between Cassegrain and Gregorian antennas are carried out.
1.2 Literature Review

Reflector antennas have been used since the radio pioneering era of Lodge,
Hertz, and Marconi, but it took the exigent demands of radio communications
in World War II to stimulate a real development in the reflector art. Subsequent,
mterest in the science of radio astronomy and the inception of terrestrial microwave
links were responsible for a fast growth in the ficld, so that in the 1940 and
1950’s the design principles and requirements for prime focus fed system were well
established. With the advent of satellite tracking and telecommunication networks,

Cassegrain, or secondary focus system, and horn reflectors came into prominence

in the early 1960s. The desire to maximize the gain, or the gain-t ture ratio,
has led to the development of sophisticated computer analysis techniques. For

properly imposing the power illumination over the aperture of the main reflector



and by shaping of both reflectors, one can minimize spillover and in turn maximize

fliciency. In the application of radic and space

many kinds of reflector antennas have been proposed and studied based on the
theoretical and experimental research. One of the commonly used reflector antennas

is the revolutionary sy ical Ci in antenna which was considered only for

those applications requiring the 3db beamwidth of less than about one degree.
Today, this antenna shows even more important due to the rapid development of

space ications and other appli

The first reflector antenna was born in the year 1888 in the laboratory of Hein-

rich Hertz. He used it to experis lly d d the exist ‘of the elec-

tromagnetic waves that had been predicted theoretically by James Clerk Maxwell
some fifteen years carlier. He launched decimeter-wave radiation from a parabolic
mirror antenna fed by a dipole. The directive antennas played a major part in
Ilertz’s system, providing him with a laboratory microwave link [1]. His work stim-
ulated a lot of scientists toward further investigation. A. Righi did a pioneer work
on microwave optics [1]. Inspired by Righi’s work, Marconi conceived the idea of
modulating the gencrator so that the intelligence could be transmitted on the radio
froquericy aptical link ‘anid he proved to the Biitish Post Offce that his idea came
true by using two Hertz-type parabolic reflectors separated by a range of four miles
in 1897. It is known that the optical properties of the parabololic reflectors were
always used at that time. Marconi got his first patent on the sharp beam cylin-
drical parabola antenna in 1896 [1). The first hollow pipe or "waveguide” radiator
were developed by Lodge in 1894 [1] and in 1897, Bose first used the pyramidal

electromagnetic horn as the receiving antenna which was then called "collecting



funnel” [1]. Actually, his antenna was the first flare waveguide which he would like
to use to collect more energy by increasing the cross section. It should be noted
that the major practical advances tended to arise from the microwave optics and
these researches pointed the direction in which the new microwave radio technology
must go.

In 1931, the first discovery of extra-terrestrial radio emissien made the genesis
of the science of radio astronomy and then in 1937, the first large paraboloidal
reflector was constructed and used as a radio telescope antenna by Reber [2]. The
reflector was 9.6m in diameter and the wavelength was 1.9m. In World War 11, a

vast and intensive devel

effort, was the mi physics founded on the
solid base of physical optics and electromagnetic theory. This stimulated the de-
velopment of the unified theory of microwave antennas which was well covered in
the now classic text by Silver [3]. With the rebirth of the radio astronomy imme-
diately after the war, many former wartime radio scientists turned their interests
to develop radio telescopes and many really large reflector antennas came on. But
the commonly used feed was the dipole and the limited beam steering could be
achieved by displacing the feed from the focal point. The gain was only about 31db
[4].

1t was Cutler who first published the paper dealing with the polarization char-
acteristics of reflector antennas (5] in 1947. He showed qualitatively that the idcal

feed should radiate a spherical wave with the linear polarization and also examined

the polarization ch istics of the then-popular dipole feed and stated that it

would give rise to cross-polarization components in the reflected ficld. In his paper

in 1954 [6], Jones first showed how an electric dipole and a magnetic dipole may



be combined to produce a unidirectional Huygens source having ideal polarization
characteristics for feeding a paraboloid. Later, Koffman also did some research on
feed polarization for parallel currents in reflectors generated by conic sections [7]
and drew the same conclusion as Jones.

No discussion of two reflector antennas would bé complete without a reference
to that family which is derived from the 17th century optical telescope devised by
the Cassegrain, include variants due to Gregory and Newton. Cassegrain antennas
were being experimentally developed at least as early as the mid 1950s, and the
whole family has been well described by Hannan in 1961 [8]. Two reflector a.ntem;a
systems have been analyzed from the point of view of geometrical optics by Kinber
in 1962 [9]. Morgan gave some examples of generalized Cassegrain and Gregorian

antennas [10]. They showed that the Cassegrain antenna can produce a very sharp

beam and an ly high gain for

Since 1960’s, with the devel of satellite icati the large an-

tennas are no longer the exclusive province of radio astronomers. Many reflector

antennas were used in the ial satellite ications earth stations and

such antennas were costly. In Potter’s paper [11], it was estimated that the cost
of a single large reflector antenna was proportional to its diameter raised to the
power 2.78. Thus it became imperative to increase the aperture efficiency and to
reduce feed spillover so as to maximize the gain. In 1963, Galindo first showed
that with a two-reflector system it is possible to achieve arbitrary phase and am-
plitude distributions over the main aperture using geometric optics [12]. In 1965,
Williams described a modified Cassegrain system to which an approach was ele-

gantly applied, leading to a improvement about 25% in aperture efficiency [13].



Its operation can be explained quite simply in terms of ray optics. Starting with
a conventional Cassegrain system with prescribed feed pattern, the hyperboloidal
subreflector’s surface is deformed in such a way as to increase the ray density radi-
ally outward from the axis. When properly done a good approximation to a uniform
amplitude distribution across the main aperture is realized, but only at the expense
of a nonuniform phase distribution. However, the phase error can be corrected by
a relative minor change in the main reflector surface without significantly affecting
the amplitude taper.

A milestone in the development of reflector antennas was that the dipole feeds
had been replaced mostly by the microwave horns in 1960’s. Nevertheless the
do:ninant mode horn’s characteristics are far from ideal for this purpose, chiefly
because its principal E and H plane radiation patterns arc quite different. In 1963,
Potter devised a clever solution to this problem in the case of the 7'Ey; mode excited
conical horn [14]. He noted that a step discontinuity in diameter ncar the throat
of the horn would cause some of the dominant. mode to be converted Lo the higher-
order TMj; mode. He further showed that the correct combination of these two
modes at the horn aperture would lead to a radiation pattern have almost identical
patterns in the E and H planes, and that the normally high E planc sidelobes
would be suppressed to a very low level. Then Potter and Ludwig [15] extended the
concept to include additional higher modes (7" Eiy, TEy3 and T'M);) in the conical
horn for purposes of beam shaping and showed how to obtain a feed pattern that

more nearly i a uniform i

over a reflector aperture. These
multimode horns are not broadband devices because the various modes propagate

with different velocities. This difficulty was ovescome in the corrugated horn which



seems to have been conceived in the USA and in Australia almost at the same
time, about. 1964. In USA, .Kay used grooved walls in a wide flare angle horn
and called it the scalar feed because its properties were largely independent of
polarization [16). In Australia, an analytical description of the synthesis of the
hybrid H Ey; mode was given in an early paper by Minnett and Thomas [17] and

they also studied the fields in the image space of symmetrical focusing reflectors and

proposed the guideline on how to synthesize the high-efficiency low-noise feeds using
hybrid-waves in corrugated waveguides [18]. Because the corrugated horn radiates
a pattern with the polarization properties of a Huygens source, it results in a very
low level of cross-polarization radiation in reflector antennas. The striking success
of thishorn as afeed has been an important factor leading to improved performance
in reflector systems and has inspired a great deal of investigation of some scientists
(19][20][21}[22][23].

In the design of pencil-beam antennas for various applications, the most im-

portant parameters are; a) high efficiency, b) low larization, c) sati y
sidelobe envelope. Many scientists have put a tromendous effort in improving these
requirements. In order to achieve high efficiency, both of the two reflectors will be
shaped based on the classical Cassegrain antenna to obtain the uniform aperture
illumination in both phase and amplitude. Galindo first used the geometric op-
tics technique (GO) te design the reflectors to achieve high efficiency [12]. If the
antenna is large, a successful design may be undertaken using GO to satisfy in-
creasingly stringent requirements on efficiency and radiation pattern. Indeed, these
techniques are in widespread used and now form a part of the important body of an-

tennatheory. When near maximum gain is required, the symmetrical dual reflectors
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such as C in and Gregorian ions are shaped to provide an optimal
solution. This technique has been extended to offset dual-reflector configurations
[24)(25][26]. In recent years, the GO is also widely used in the satellite antenna de-
sign [27][28] and larger earth station antenna design [29](30]. The computer aided
design of the reflector antennas with the GO is a very popular topic in antenna
theory and technology today. However, it must be remembered that, the GO is only
valid when the wavelength is much smaller compared with the dimensions of the
reflectors. If significant efficiency enhancement is hoped to be obtained in all but

the largest system, diffraction techniques must be used. Daveau [31] first applied

theory to ing by the sub reflector in order to design for an
optimum illumination pattem. The phase may then be equalized by small changes
in the main reflector profile, This approach was a. direct extension of GO analysis
of Green [32]. P.D. Potter used a phase-matching crilerion Lo obtain the sub re-
flector shape based on the application of spherical wave theory to Cassgrainian-fod
paraboloids [33]. A significant advance, enabling direct optimization of efficiency
to be undertaken, was made by Wood [34](35][36]. In his approach, using a method
based on reciprocity, a concise expression for cfficiency is obtained which only in-

volves an integration over the sub reflector surface. Several other authors [37)(38]

[39] also lly used the GTD techni: to modify GO to design the reflector
antennas.
The most signi cause of th larization is the fact that feed 2—plane

and H—plane patterns are not identical. In addition to the feed, the scattering
from the struts used to keep the feed or subreflector in position is another reason

for cross-polarization. For two-reflector case the dielectric cone feed suggested by
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Bartlett and Mosely [40] and later developed by Clarricoats and Salema [41] was a
eflcctive way to reduce the cross-polarization. And the offset reflector antennas fed
by carefully designed feed have become widespread to eliminate the struts scattering
[42).

According to the current CCITT recommendations for earth station antennas,
the close-in and the far-angle sidelobes should meet the specification to minimize
possible interferences with other communication systems, especially in areas of pop-
ulation concentration. The overall pattern control becomes one of the major an-
tenna design issues. The near-in sidelobes depend mainly on the amplitude taper
al the edge of the main reflector and the central blockage. In 1960, Taylor first
proposed the Taylor aperture distribution and used it to investigate the beamwidth
and the sidelobes [43]. Later, Hansen [44], Ludwig [45] also published their papers
on how to reduce the reflector antenna sidelobes based on the studies on the aper-
ture amplitude distributions. Recently, the Gaussian distribution and a generalized
three- parameter aperture distribution were used by Galindo [30] and Duan [46] to
improve the radiation characteristics. The far-angle sidelobes of the two-reflector
antennas mainly come from the feed spillover past the subreflector and the sub-
reflector rim diffraction, main reflector spillover and diffraction, energy scattered
from the feed after reflection. The subreflector and main reflector spillovers may
be reduced by increasing the edge tapers, but the antenna efficiency will be de-
creased. Properly selecting the edge tapers and shaping the reflector profiles are
very important in the antenna design, as stated by Clarricoats and Poulton [47).

On the evaluation of the performance of the reflector antennas, the radiation

patterns are normally considered by using the methods known as asymptotic so-
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lutions of Maxwell’s equations explained by Kouyoumjian [48]. These studies may
be divided into three classes. The first is the geometrical optics (GO), in which
the propafation of lectromagnetic cnergy takes placo along the ray. Laws of optics
such as epergy conservation, Fermat's principle, Fresnel laws etc. are used [19].
The seco. d is the geometrical optics theory of diffraction (GTD), which is an ex-
tension of the GO by the introduction of diffracted rays because GO is not. valid at.
the edges or in the shadow of a reflector. Keller [50] was the first who introduced
this theory, later improved by Kouyoumjian [51]. The third is physical optics (PO)
approximation, which has been used by a great number of scientists such as Kinber
[52], Rusch [53], and Shogen [28). The radiation propertics of any reflector can be
calculated directly from the electric currents which are physically responsible for
initiating the radiation. It is shown that PO is valid in calculating the radiation
patterns even if the diameter of the reflector is only several wavelengths [54). The
PO is almost always recommended for use in calculating the radiation patterns of
the dual reflector antennas used in satellitc communications. The work has heen
done by Rusch and Potter [55], but there is still limitation in their analysis. Never-
theless, both the scattering pattrens of the subreflector and the radiation patterns

can be obtained with PO and then the entire antenna performance can be predicted.

1.3 Scope of the Work

In this thesis, two kinds of revolutionary symmetric reflecter antennas, Cassegrain
and Gregorian antennas which are mostly used in satellite communication carth
stations will be studied in detail. The research is concentrated on the following

topics:
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(1) The antenna feeds will be analyzed and designed to produce high-efficiency

pencil-beam. The i of feeds used in C: in and Gregorian antennas

will be descussed and the feed selection will be given.

(2) The comp ided synthesis of subrefl and main reflector will be car-
ricd out based on the geometric optics (GO) approach. Using the calculated or
measured feed radiation patterns and the desired main reflector aperture power il-
lumination, GO can be employed to obtain a set of differential equations related to
the surface profiles of subreflector and main reflector, then these differential equa-
tions can in Lurn be solved by numerical methods to obtain the reflector profiles.

(3) Once the profiles of subreflector and main reflector are known, the physical
optics (PO) will be used to evaluate the scattered patterns of the subreflector and
the radiation patterns of the main reflector. The whole antenna performance, such
as aperture efficiency, boresight gain, sidelobes and beamwidth are predicted.

(4) Various power distributions will be imposed on the main reflector aperture to
investigate the trade-offs between antenna gain and sidelobes. Comparison between

Cassegrain antenna and Gregorian antenna will be made.
1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 presents high performance antenna feeds.

Chapter 3 briefly introduces the dual reflector antenna configrations and in
detail the reflector profile synthesis method with GO.

Chapter 4 reports on the implementation of PO to calculate the subreflector

scattered patterns and the main reflector radiation patterns of Cassegrain antennas



and Gregorian antennas.
Chapter 5 contains a brief discussion of trade-offs between the aperture illumi-

nation and the The of the C: in antennas and the

Gregorian antennas are compared.

Chapter 6 gives the conclusion and the dations for future work.



Chapter 2

High-Performance Antenna Feeds

In pencil beam antenna designs, major efforts have been concentrated on the
design of feeds which can efficiently illuminate the reflectors so that the antenna
performance can be greatly increased. For example, the antenna efficiency is closely
related to the feed characteristics factors; such as the unsymmetric feed radiation
patterns introduce the undefined phase centers, cause cross-polarization fields and
may create the non-uniform aperture illuminations and spillover losses. Hence, a
proper feed design plays a very important role in the antenna design.

The selection of feeds that are most suitable for reflector antennas was always
a major research topic. H.C. Minnet and B.M. Thomas were the first ones who
investigated the field distribution in the focal plane of the paraboloidal reflector
based on the Maxwell’s equations [17][18]. Using only the induced primary surface
current due to an incident plane wave field, they showed that the fields in the focal
plane can be represented by a spectrum of hybrid waves that are simply linear
combination of TE and TM modes and, when satisfying some special waveguide
boundary conditions, these hybrid modes can exist in the waveguide. This research

was the th ical foundation of the develop; of d ides and
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corrugated conical horns.

2.1 Corrugated waveguide feeds

The corrugated waveguide structure is shown in Figures 2.1a, b, c. The analyses

given in this section will be extended to the corrugated conical horns.

2.1.1 Propagation Characteristics

(a) Field Components:
Based on the Maxwell's equations, it can be shown that the longitudinal compo-

nents, i.e. E; and H, of transverse electric and magnetic fields in the homogencous

de satisfy the

P y:

V2 4+ (K - B = 0
[V + (8 = ). =0

where 8 = 27 /), the propagation constant in the lossless medium, A is wavelength.
i? = w?pgeg, k is the free space wave number, w is angular frequency, g and ¢q are
free space permeability and permittivity. When both E. and /I, are known, then

the transverse fields in cylindrical coordinates (r, 1,2) are given by

___ 3 9B  wpdH, g
E'"‘kz‘ﬂ,(ﬁ ot o) (21)
j 9E, o,
Ey= ﬁ(—g e +wpop: ) (2.2)

(23)

(2B, BOI ;
Hy= =l st + L5 (@4)
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Figure 2.1: Corrugated waveguide feed. (a) Structure. (b) Region 1. (c) Region 2.



In region 1 (r < ), E: and H, are given by:

E. = apJp(z)emvemi (2.5)
=y jYoD T ()™ e 39 (2.6)
where ¢ = Kr, K2 = R = .Yy = 1/Z) = \/“ =~z In order to satisty

the boundary condition that the fields at = 0 are finite, the Bessel function of
the 1st kind is used for in E, and H.. Using eqs.(2.1)-(2.6). the transverse field

components can be obtained:

E = —n,,.j;“'—,""‘(x) (27)
Ey= a,,.I. K I (I) [mB + DF(a)]e™" (2.8)
H = —nm—.h (I) [BLF,(2) + m)e™* (2.9)
H, = —ﬂm]I—yn @) 1\3D 4 Fip(e)]em (2.10)

where § = £, F,(z) = o922 ,mml In egs.(2.7)-(2.10), the factor e#t=#2) is understood
throughout.

In region 2 (ry < r < 1), as shown in Figure 2.1(c), if the waveguide wall
is perfectly conducting, we consider that only TM modes in this region exist, i.c.
H. =0, then E, must exist and 2 = 0 and 2& = 0 because - = 0 at the
perfectly conducting wall. In addition, if the slot is relatively short with respect
to the wavelength, the T'M modes are assumed to be z-independent. That means
7 tends to 0. These modes are not the propagation modes. Hence, E, can be

expressed as:

E: = g2l (2) Yo (20) = Yin(2')Jun ()]

l'm (%)
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which satisfies the boundary condition at the waveguide wall, r = rg. E. = 0. where
#' = kz. Eqs.(2.1)-(2.4) arc used to obtain other field components in this region.

Dut what we are really interested in is Hy which will be used in the following

admittance matching i Hy can be as:
Hy = = j¥ogZers () n 25) = Vole' ()i
(b) Radial Field Admi Matching T i at r =1

First, because the transverse electric (TE) modes in the slots do not exit. it is
reasonable to assume Ey, = 0 at r = ry, so that the TE modes can not be supported

in the slots. Then from the fields in region 1, we liave
mf = —=TFn(z)) (2.11)

At r = ry, the admittance in the radial direction Hy/E. should he same in hoth
regions. Using the field expressions above, we can get

:
Fute) = 00 = (i e ) 212)

where

I ()Y ()

= 2.13
T ) Im V(@) L)
The eq.(2.12) is called the characteristic equation of 3. It treats the boundary at

r =1 asif it is a continuous impedance surface.

(c) Bal d-Hybrid Conditi

For a given mode, the pass-band for propagation has lower and upper frequency
limits given by
B=0 Fu(z)) = Sn(z).2p)

B=00 - Sp(z),zp) =0
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When 3 = o for cutoff modes, 2 satisfics the condition S, (). ) = 0. but the

other propagation modes exuibits special characteristic from eq.(2.12). that is

Fo(z)) = £md

Refer to eq.(2.11), we have
r=s1 (2.14)
This is called the balanced-hybrid condition, where + sign refer to the HE mode
and — sign refer to EH mode.
(d) HE); modes:
Let m = 1, from egs.(2.5)-(2.10) we can express the HE),, mode fields in the

linearly polarized form as:

E. = a\J)(z) costh (2.15)

H. = Vol (z) sin (2.16)

B = —jug] [ﬂJ|[z)+I‘J‘(I)]ccsv/' (2.17)
E, =ju|% Jilz) L2 4 T ()] sing: (2.18)
H = —ja.Yn—.[ﬁrJ;(z) e ’i’)]sinw (2.19)
Hy= —;n.h—[ﬂrj"z) +7)(2)] cos v (2.20)

For E fields, use

E, | _[cosy —siny][E.
E, |~ |siny cosy || E,

we can obtain:

—Jﬂl"[(ﬂ+ T)Jo(z) + (T = ) Ja(z) cos 2¢] (2.21)
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By= —%jm%(l‘ — B)Jaz)sin 20 (2.02)
In the balanced-hybrid condition for HEy; mode, I' = +1. If the radius ry is large
cnongh so that kr 3> 1, then 8 = 1 and E, = 0. This is the HE; mode’s lin-
early polarization situation. On the other hand. since the longitudinal components
of electric and magnetic fields of HE), mode are in the ratio of free space wave
impedance, it can be predict that the radiation pattern of the waveguide exhibits
symmetry and zero cross-polarization.
In the waveguide structure, when r; /) is large, S) (). zp) = ) cot(zy —z}), on

the balanced-hybrid condition S) = 0, so the slot depth is nearly rp —ry = A/4.
2.1.2 Radiation Characteristics

For the HE); mode, to obtain the radiation pattern of an open-ended corru-

gated ide, the Kirchhoff-Huygen i ion[3] over the aperture ficld in the
region » < ry, assuming all fields to vanish for r > 1y, is used. Refer to Figure 2.2,

the electric radiation field can be expressed as:

ket
4R’

. /nw‘m(f,, x By = Zaig x (in x H)}e*w dS
(2.23)

Using the field expression in HE;; mode, it can be shown that the fields HE;,

E,(R.0,¢) =

are given as follows:

Enl(0',¢) = F(a‘)w’l'?,e-:m’ cos g’ (2.24)
B0, &) = —F(0) 211 -ttt i (2.25)

2KR'
where

F(8') = L(6')(1 + Bcosb') + Q(6')(cos 6' + ) (2.26)
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P(R'.0'.¢)

Y

Figure 2.2: Co-ordinate system used for evaluating the Kirchhoff-Huygen integra-
tion.
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1(g) = 2ledhiz) (2.27)
e
Q) = IIJI(II)J;(";%i::ll(“!”:(ﬁ) (2.25)

where u; = z) sind’,zy = K7y, # can be calculated from § = Fy(z;).

In E-plane (¢ = %), By = F(6)) e,
in Heplane (&' = 0), By = F(6') Sire=*% | the E-plane and H-plane pattern are
identical.

Since

E,=Ey(f',¢') cos¢’ — E4(6',¢')sin¢’
E, = E5(0',¢')sing’ + Ey(6,0') cos¢’

it follows that there are no crosspolarized components in the radiation field if the

field in the aperture is linearly polarized.

2.2 Corrugated Conical Horn Feeds

Clarricoats [23] [47] shows that HE; mode corrugated waveguide feeds are
notgenerally suitable for the Cassegrain antennas because their heamwidths are
too broad. If we want to use a narrow beamwidth circularly symmetric radiation
pattern to illuminate the subreflector, the corrugated conical horn is a favorable
choice. Although corrugated waveguides have found rather limited application as
feeds for large reflector antennas, the method of analysis provides substantial insight

into the design of corrugated conical horns.



(h)

Figure 2.3: Corrugated conical horn. (a) Structure. (b) Region 1. (¢) Region 2.



2.2.1 Propagation Characteristics

The structure of the corrugated conical horn is shown in Figure 2.3(a). If

of the

the half flare angle does not exceed about 3°, the cylindrical mode analys
corrugated wavegnide feed presented above may be applied directly to these Lorns.
For the large angle, it is usually more convenient to analyze this kind of horn based
on spherical liybrid modes and we also use the impedance matching technique on
the houndary between region 1 and region 2, as shown in Figure 2.3b and Figure
2.3c respectively.

(a) Fields Expressions:

The modes in the conical horn can be derived from the vector potentials A and

F, given by

where @, is the unit vector in r direction. The fields expressed by A and F' are

given hy

B=—VxFt+1vxvxi (2.20)
Jweo

B=Vxit—vxvxF (2.30)
Jwlio

A, and F, satisfy Helmholtz equation:

V24, + k24, (2.31)

V2F, +K°F. =0 (2.32)

In a spherical coordinate system (r, 0, ¢), we define the fields corresponding to

A are called TM modes and that corresponding to F are called TE modes. So for
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TM modes. the field expressions are:

]j_m(% HRA 2.33)

2
L jh)%ovlgrg; (2.34)
= n:_fnﬁg%; (2:35)
Hyi=0 (2.36)
= ?ﬁw%’ (27)
= _éaf;; (2.38)

For TE modes, the field expressions are:

B=0 (2:39)
By _ﬁ?‘; (240)
o= }0;; (2:41)
H,:ﬁ(al’_:z“um (2.12)

2
*= ﬁ%grg;l (2.43)

"

By }Wlmﬁgr_gb (2.44)

For the hybrid mode, the fields are the combination of TM and TE modes.
In spherical coordinate system, the solutions for the Helmholtz eq(31)-(32) can

be obtained by the method of separation of variables.
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In region 1 (= < # < 8g), the hybrid mode exists. If kr > 1. the radiation

condition should be satisfied, we have:

A, = Akrk® (kr) P (cos §)e’™® (2.43)
F, = Bkrh® (kr) PI* (cos §)e™™ (2.46)

The coefficients A and B are defined by the relation B/A = —jZT", Zo = \/F“: In
eq.(2.45) and (2.46) Q™ (cos ) is omitted because 8 = 0 is included. In the above
two equations, k() (kr) is a spherical Hankel function of the 2nd kind. P}"(cos6)
and Q™ (cos0) are the associated Legendre function of the first kind and the second
kind, respectively.

The field components can be obtained from eqs.(2.33)-(2.44). For convenience.

let. H, = krh? (kr). P (cosf) = P2 and '™ is understood.
IR — -
B, = AZonp B (2.47)
H, —Al"n H PP (2.48)
Ey= —Z(,A( H P + ddﬂ (2.49)
i 15 de m - -
Ey = ZoA( o 011 P (2.50)
_ ]mH i !{_dP 2
e T (251}
__ Ha.dPr I‘mH,, - ;
Ho=—AC g +irsme o) (232

In region 2, the grooves in the feed are perpendicular to the wall of the liorn, as
shown in Figure 2.3(a). the computation of the fields is very difficult because the

boundaries do not coincide with the spherical coordinate. Therefore. for a groove
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not too close to the apex of the horn, it is assumed to be the one shown in Figure
2.3(c). It is also assumed that only TM modes can cxist in the groove. So only A,

is used to give the field expressions. We have:

Ay = kr{andu(kr)+0, Y (k7)] X [cam P (c05 8)+d Gy 108 0)] X [c0 COS M-+ fi sitt met]
2.53)
From the boundary conditions: E, =0 at r = r) and r = ry, we have:
Tu(key) + ki Ty (ke) - Ya(key) + ke Y (k) = (251)

Ju(kra) + krod, (kra)  Ya(kra) + kro¥), (kra) |~
If this equation has solutions, then TM modes exist. Using the boundary condi-

tions: Ey =0 and E, = 0 at § = 6, we can get A, in the form of:
A, = kr[Ya(kry) + kY, (kr)) o (kr) = [Ta(kry + kg, (ke )]V (Rrr)

X[Qm (cos bg) P (cos8) — Py (cos 02) Qi (cos )]

X (em cosme + fo sinme)

Now let’s consider eq.(2.54) to derive the condition for TA mode existance, We

use

F2@) = 2£a(2) — fasr(@) = faor(2) — 22 fu(2)
Falz+h) = fulz) + hfy(z) +° (h?)

where f,(z) stands for J,(z) and Y (z). we also assume kb = k(ry —1y) < | and

kry > 1, then from eq.(2.54), we can obtain [56]:

n=—f [+ (k)0 ek
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Sa the TM modes do exist even if the groove width is very small.
(b) Field I d; Matchis ique at 8 = fo:

In region 2, suppose there are many grooves in one A and we formulate the

boundary conditions at @ = 6y in terms of two impedance Z, and Z, defined by:
Ey=Z.H,, E.=ZH,
From the TM field expressions in this region, under the conditions kr > 1. kb <« 1.
i.c., the grooves are far away from apex and the groove width is much smaller than
A, then we have
Z;=0 (2.56)
Z, = ~jZgtan(ks) (2.57)
s is defined in Figure 2.3(c). When s — A/4,Z, = co.
In region 1, in order to support only the TAf modes in the grooves, the houndary

impedances at 8 = fy must be the same as those in region 2. From eqs.(2.47)-(2.52).

we liave
Es_ _ikZo | . Jmha s
Z=gz= amr PO+ gl {258}
Ll: _ jkrYo . jTmh, »”
Z= E, n(n+ 1)b @+ sinf il (2:59)
where
P ““‘”/P“(mp) (2.60)
_ Hi(kr)
=0 (2.61)

If the fields we are interested in are far away from the apex, i.e., kr 3> 1, then
hy = —j. Imposing the impedance matching technique, we have

—m

= st 2e2)
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T= -} (6) +¥ (2.63)
where
o —jnm+1) .
e (2.64)

(c) Balanced-Hybrid Condition:

If in eq.(2.57), we chioose s = /4, then T = 0. From cq.(2 62) and cq.(2.63).
we obtain:

=41 (2.65)

This is called balanced-hybrid condition. The + sign refers to HE modes and -
sign refers to the EH modes. Under this condition, the field components E, and
H, are then in the ratio of free space impedance.

(d) HE,,, mode:

If m = 1 under balanced-hybrid condition with T' = +1, from ¢q.(2.62), in-
troducing a function f), we can get the characteristic cquation of HE),, modes

as:
_ dP!(cosfy) | Pl(cosfy) _
T sinby

In €q.(2.66), n can be determined and the first root corresponds to HE; mode.

£ 0 (2.66)

In the meantime, using egs.(2.49)-(2.52), we have the field expressions for HE\,,

modes as:
AH, P!  dP)
By =~ 2= (S + ) coso (2.67)
5 Al BY 4P o 3
Bo= 20— (gpg+ ) ine (2.68)
Hy = -Y,E, (2.69)

Hy =YoEs (2.70)
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2.2.2 Radiation Characteristics

For HE\,, modes, the field expressions as stated in eqs {2.67)-(2.70) at the
surface, 1 = Ry shown in Figure 2.3(a) are known. According to Figure 2.2, the
radiation field E, can be determined by Kircihoff-Huygen integration over the
aperture bounded by » = Ro,—6; <8 < 6,0 < ¢ < 2m:

- jke_‘lk",f

Ey(R\0.¢) = Ll x /Mm(?" x By = Zoig x (i x H)}e'"wdS
(2.71)

where iy, i, are unit vectors, and Hy, B, are tangential fields to the surface of

Ry, as shown in Figure 2.3(a). The final radiation fields of HE),, mode can be

T

obtained as:

Eu(t',¢') = [F(6) + jF(6)] cos o' (2.72)
Epo(0',6) = —[F.(6') + jFi(8)]sing’ (2.73)
where
o e .
F, () =D"% [" 100G, 0.6)d0 (2.74)
i i

G, =[(1+cost)(1+cos6')sing ;": (acos 8) Jo(bsin 6)]
i
ccs

—[(1 = cos8)(1 — cosf') sin 8 sin (@c0s0)To(bsing)]

F[2sin6'sin? 6 i‘n'; Ji(bsin6)]
where a = kRocos#'.b = krgsin’, D is a constant independent of R',6',¢'.

It can be seen that the E-plane and H-plane pattern are identical and there
is no crosspolarized components in the radiation field when the aperture field is

linearly polarized.
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2.2.3 Radiation Pattern

Obviously, the expressions for the radiated field.in eqs.(2.72)-(2.74) are so
complicated that they are not quite suitable for the computer analyses. Using
the separation of variables, B.\.Rao [57] has simplified the Helmholtz equation in
spherical coordinate system and the results are given here:

1
©sing 26

(smﬂ )+n(n+l)—

sin
This equation can be further approximated by replacing sin@ by 0 for 0 < 30°,
resulting in:
90 180 m?
_— —— - 0= 2,71
e +1l(/ll +(1 ,2)0 0 (2.76)
which has the solution of © = Dy Jn(v). v = y/n(n +1) 0.
Then follow the same procedure described above and express the tangential

electric field on the circular aperture on the lorn for HE;; mode:

2.405

By EyJo(=—=p)e™"" (i + j4) (2.77)

where 7,4 are the unit vectors at a point P(p,1) on the circular aperture of the
Liorn expressed in cylindrical coordinate system, u = Lx/Ay , L is the axial length
of the horn, Ey is a constant. Using the vector diffraction formula (3], the radiation

electric field can be obtained:

E,(P) = C(1 +cos8)(d + j@) Me?* (2.78)
where
1 3
M= /ﬂ Jo(2.405r) Jo(ar)e™ " rdr (2.79)

and a = 2masin0/M.r = pfa.v = ma?/(ApL),a is the aperture radius, IF the

aperture field is linearly polarized, then
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o (P) = C(1 + cos 6) M cos 66
Euy(P) = =C(1 + cos) M sin g6

The radiated fields are linearly polarized. This far field expression is only valid for

Oy < 30°. It can meet the i of engineering design of Cassegrain antennas.

2.3 Numerical Results

Based on the analyses above, especially the approximated radiation patterns
given in Sec.2.2.9, a computer analysis program has heen written. The computed
results are shown in Figure 2.4 - Figure 2.6. The E-plane and H-plane patterns are
identical. Several cases are given by varying the flare angle (fixed aperture radius
in Figure 2.4 and fixed axial length in Figure 2.6) or changing the aperture radius
(fixed flare angle in Figure 2.3). It can be seen from Figure 2.6 that. when the flare
angle is very small, i.e., the lorn can be taken as the corrugated waveguide. the
beamwidth is very wide and the corrugated waveguide can not be of practical use
in super gain antennas. Proper choice of the dimensions of the corrugated conical

Lorn will lead to the desired horn radiation patterns.
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Figure 2.4: Radiation patterns of the corrugated conical horn.  Frequency:
14.25GHz, Aperture radius: 8.0in. (a) Flare angle: 20°, (b) Flare angle: 12,
(c) Flare angle: 7°
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Figure 2.5: Radiation patterns of the corrugated conical horn. Frequency:
14.25GHz, Flare angle: 12°. (a) Aperture radius: 4.0in, (b) Aperture radius:
8.0in, (c) Aperture radius: 16.0in.
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Figure 2.6: Radiation patterns of the corrugated conical horn.  Frequency:
14.25GHz. Axial length: 37.0in. (a) Flare Angle: 1°, (b) Flare Angle: 27,
Flare Angle: 20°, (d) Flare Angle: 12°




Chapter 3

Dual Shaped Reflector Antenna
Design

The rotationally symmetrical dual shaped reflector antennas used in earth sta-

tions are described. The classical Cassegrain and Gregorian antennas have a low

efficiency due to the fact that the aperture illumination can not be pre-specified.
Hence the antenna gain , sidelobe levels can not be synthesized. Although Silver (3]
lias proposed the method of shaping the reflector surfaces by specifying the aper-
ture illumination since 1049, This problem has been unsolved until the computer
power was available in 1970's. Generally, the problem can be tackled in two ways:
(a) The feed radiation pattern and the main reflector aperture illumination are
given. The profiles of main and subreflectors are to be optimized. This scenario is
commonly encountered in the design of a new antenna.

(b) The feed radiation pattern and the main reflector profile are given. The subre-
flector profile is to be found by using phase uniform aperture illuminations. This
s the most useful approach for upgrading those existing antenna sysiams designed
by using the closed form solutions.

Pioneering works as to (a) and (b) have been carried out by Galindo [12] and
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Potter [33], etc. In this chapter, Galindo's method of calculating the shaped reflec-
tor surfaces is presented and the resultsare used to design Cassegrin and Gregorian

antennas for the large earth stations.

3.1 Axisymmetric Dual Reflector Antennas

For the dual reflector antenna, the main reflector is formed by rotating a
parabola about its own axis and the subreflector is made similarly by rotating
either an ellipse or liyperbola. The subreflector has two focal points. One foeal
point is also the phase center of the feed, and the second focal point. is made to
coiicide with the focal point of the paraboloidal main reflector.

Asshown in Figure 3.1, the Cassegrain antenna has a liyperboloidal subreflector.

Hence, the second focal point is a virtual one. The Gregorian antenna, on the ¢

hand, has a ellipsoidal subreflector with a real focal point, as shown in Fignre 3.2,



Paraboloid

Hyperboloid

">, Virtual focal point
2y

O] Feed Phase Center \

Figure 3.1: Cassegrain antenna configuration.

z
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Paraboloid

Real focal point
Ellpsoid

Feed Phase Center

. S
i 4

Figure 3.2: Gregorian antenna configuration.
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3.2 Geometrical Optics (GO) Principles

In the ballistic theory of light, the propagation of electromagnetic energy is

Jained in terms of the kinematics of photo particles. Whether or not this liy-
pothesis is nearer to physical reality than that of wave propagation, it does lead
to a particularly useful concept, i.e. an optical ray as the trajectory of a photonics
particle. The tangent to a ray at any point represents equally the local direction
of propagation, or the normal to the wavefront. Also associated with the ray at
any point is its intensity. Proportional to the latter are the ray field vector E
and H in magnitude. Geometrical optics has a theoretical foundation based on
Maxwell's equations and results from an asymptotic solution to these equations as
the frequency w tends to infinity [55].

In the non-closed form antenna designs, as long as the dimensions of the reflec-
tors are very large compared with the wavelength, the method is successful. The
basic principles of GO are:

(1) Snell's Law: At a point on the reflector surface, the incident and reflected
rays as well as the surface normal vector are coplanar, then the angle of incidence
equals to the angle of reflection.

(2) Conservation of energy law: Energy along each different tube of ray remains
constant, even when the tube undergoes reflection.

(3) Malus law: The surfaces of the constant phase are normal to ‘e ray
trajectories even after a number of reflections. The ray length between two equal-

phase surfaces keeps constant.
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3.3 Cassegrain Antenna
3.3.1 Design Techniques

(i) Design of both main reflector and subreflector given the main reflector

aperture illumination and the feed radiation pattern

The main reflector and subreflector of the Cassegrain antenna with revolution-
ally symmetric structure are shown in Figure 3.3. The profile of main reflector is
described in rectangular coordinate (x, =) and that of subreflector is deseribed in
both rectangular coordinate (z', =) and polar coordinates (,6). The origin poini

of (z',2") is the feed phase center F. a is the distance between the two rectangular

linate systems. The relationship among the three systems are:
.‘L“ =
2 = psind
z = pcosf
:’*: = «

If the subreflector surface is expressed as:
p=f(0)
or
5(6) =p—£(6) =0,
then the unit vector normal to the subreflector surface is
i, = VS8(0)/|VS(6)|
= i[—l—(—% cosf + fsin )] + 5[%(% sin + f cos 0)]



Figure 3.3: G

1 optics for C:

antenna

shaping.
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where

IR TL ATy

A= (R + £
The incident vector is:

i, =j=a&sinf+ cosd

and the reflection vector is:

7y = &siny + Zcosy

From Snell’s law, i.e., 7t - # = —i - i, the following expression can be obtained:

@ _dr
g~ df

= peot (2 3.1
1f the profile of main reflector surface is expressed as:

=g(x)

or
M(z)=z-g(z)=0

The unit vector normal to the main reflector surface is:

. UM@z) _1dg. .
"= T M@)] T plagt 4

where
—1%9y +
D=((Ep+ 1}t

The incident vector is:



i=isiny+ icosy

and the reflection vector is:

From Snell’s law, the differential equation about the main reflector can be described

as:

% = cot(%) (3.2)

If the feed pattern is known, the total radiated power within the increment df

of the pattern F(6) will be
F(6)2nsin6d
The total radiated power from 6 = 0 to angle 0,4, will then be
2 /’”" F(8)sin6df

7 sin
Similarly, if the desired illumination I(z) is known, the power within the increment
da of the main reflector aperture is

I(z)2rzdz

Again, the total power within the region (0, Xynaz) is

Xosar
/u I(z)2nzdz

From the conservation of energy law, the following equation can be derived:

dx F(6)sin 8

i I(z)z (33)



where

J&mes F(8) sin 0d0

So the three differential equations. i.c., eq.(3.1). eq.(3.2) and cq.(3.3) are obtained
with three unknowns, p.z and z. They are sufficient to determine the reflector
profiles with the initial values of puur+Omar: Xz The Hunge-Kutta method is

ployed to solve these di ions. This approach is commonly used to

design a new antenna.

(if) Design of the only subreflector when the main reflector profile and

feed radiation pattern are given

There exist a number of existing earth stations which do not meet the CCITT
specification, especially the close-in and the far-angle sidelobe levels. The antenna

need to be modified to upgrade its performances at the least cost. The redesign of

the feed or/and the main reflector is normally more costly than the modifieation
of the subreflector only. It is worthwhile to present the mumerical approach for
this particular design. The feed pattern is commonly assumed to be revolutionally
symmetric and can be represented as F(6). This assumption is often valid hased

on the fact that the subtented angle of the subreflector is usually small. The main

reflector profile is given and can be expressed as
z=g(z)

Assume the power illumination on the main reflector aperture, I(x), is phase

uniform, this implies that the path length from the feed phase center to the aperture
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must be constant based on Malus law, using the same coordinate system shown in
Figure 3.3, one has

p+p +p" =C
The constant length C can be obtained from the condition at the edges
C = Prmas + gz (When p" =0)

According to Figure 3.3,

Is—2Tp

tan ) +2m 84

ws=a+
The following expression Lolds

_IM—Tsp g2 .
ny P=zs+la+om+

Then the 25 can be derived.
"M+ 2z (BLts — m..p S+ (C a)(C + a +2zy)

(3.3)
2(zy + $E3 - G

Because the main reflector profile is given, apply Snell’s law on the main reflector,

it is easily to obtain the following expression from eq.(3.2)
d:
Pp=2 arctan(d—f

The subreflector profile can be uniquely defined by eq.(3.4) and eq.(3.5).



3.3.2 Numerical Results

Based on above equations, the Cassegrain antenna reflectors design program
is developed. The non-closed form solutions are obtained by using computer anal-
vses. These shaped reflectors are the quasi-hyperboloidal subreflector and quasi-

paraboloidal main reflector. Technique (i) is mostly employed and will be used later

in this thesis. Technique (ii) is used only in the subreflector modification whenever

an existing antenna is required to upgrade its performance.

(a) Design examples using technique (i)

Example 1:

Assume the feed radiation pattern is given and shown in Figure 3.4 which
is obtained by using the corrugated conical horn analysis program (Chapler 2).
The main reflector radius is 98.5" and the subreflector radius is 14.0". The feed
phase center is located at & = —27.0" (Refer to Figure 3.3). The subreflector
subtended angle related to the feed radiation pattern is 12.7°. This means that the
feed radiation pattern is approximately taped 18dB down at the subreflector edge.

Then the initial values are:

Xper = 985
e = 12.7°

X 140"
Pmes = i (Omas)  SIN(12.7%)

Taking the subreflector blockage and main reflector edge effect into consideration,
the main reflector aperture illumination is assumed as shown in Figure 3.5, The

calculated main and subreflector profiles are plotted in Figure 3.5. The surfaces
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are no longer the closed form paraboloidal and hyperboloidal reflectors but they

are modified and become g land quasi-hyperboloidal ones.

Example 2:

Assume the feed radiation pattern is given and shown in Figure 3.4 which is
sume as that in Example 1. The main reflector radius is 157.0" and the subreflector
radius is 24.0”. The feed phase center is located at a = —27.0" (Refer to Figure
3.3). The subreflector subtended angle related to the feed radiation pattern is also

12.7%. Then the initial values are:

Xmae = 157.0"
[
Pmaz Xnes

Sin(0maz)  5In(12.7°)

king the subreflector blockage and main reflector edge effect into consideration.
the main reflector aperture illumination is assumed and shown in Figure 3.6. The
calculated main and subreflector profiles are plotted in Figure 3.6. The surfaces

are no longer paraboloidal and hyperboloidal veflectors but they are modified and

I reflectors.

become q I and q

(b) Design example using technique (ii)

If the feed radiation pattern and the main reflector surface are given, using

technique (ii), the surface profile of the subreflector can be obtained. A specific

program is d As an example, taking the main
reflector profile found in Example 1 as a known one and using technique (ii), the

profile can be and shown in Figure 3.7.
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radiation pattern (dB)
& a A &
3 8 3 8

4
3

0 10 20 30 60 70 80 90

40_ 50
Theta(deg)

Figure 3.4: Radiation pattern of the corrugated conical horn.  Frequency:
14.25GHz, Aperture radius: 8.0in, Flare angle: 12°
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Figure 3.5: Shaped Cassegrain main and subreflector profiles (Example 1). Solid
line: reflector profiles (Unit: inches), Dotted line: main reflector aperture illumina-
tion (Unit: dB)
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Figure 3.6: Shaped Cassegrain main and subreflector profiles (Example 2). Solid
line: reflector profiles (Unit: inches), Dotted line: main reflector aperture illumina-
tion (Unit: dB)
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3.4 Gregorian Antenna

3.4.1 Design Techniques

The main and subreflectors of the Gregorian antenna with revolutionally syni-
metric structure are shown in Figure 3.8. The profile of main reflector is described
in rectangular coordinate (x, z) and that of subrefiector is described in hoth rectan-
gular coordinate (z', =) and polar coordinates (p,#). The origin point. of (+'.2') is
the feed phase center F. a is the distance between the two rectangular coordinate

systems. The relationships between these three systems are:

=iz
= psinf
2 = peosd

f-z = a

If the subreflector surface is expressed as:
o= f(0)
or
5(0)=p—fl0)=0,
then the unit vector normal to the subreflector surface is
n = —VS(6)/|VS(®)|
4

(= cos0 + fsind)] - %{%sinﬁ-&- Feost))

where

a=(@yesp



o

Figure 3.8: Geomet:” al optics for Gregorian antenna reflectors shaping.

&



The incident vector is:

= &sinf + 2 cosf

3

and the reflection vector is expressed using ¥

= —dsing - Zcosy
From Snell's law, i.e., 7+ # = —i - f, the following expression can be obtained:
o _dp_ -0

= t(——)

A TR
If the profile of main reflector surface is expressed as:
z=yg(x)
or
M) =z—g{x)=0
The unit vector normal to the main reflector surface is:

. __VM(z) _1.dg
™" "|VM(z)]  D'dr

where
g dg., ? 3
D=[(Ghr+ 1k
The incident vector is:

i = —Esint — £ cosy

and the reflection vector is:
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as:
dz
dz

3.7

If the feed radiation pattern is known, the total radiated power within the

increment d of the pattern F(6) will be
F(8)2rsin6d6
The total radiated power from § = 0 to angle 6,4, will then be
2n [ F(0)singds
Rl g A (6) sin

Similarly, if the desired illumination I(z) is known. the power within the increment

dx of the main reflector aperture is
I(z)2rzdz
Again, the total power within the region (0, X;az) is
Xmaz
/n I(z)2rady

From the conservation of energy law, the following equation can be derived:

dr _  F(6)sin6
Fr iRy (P (8)

where

P Jg¥mes I(z)zdz
T
Jom=* F(6) sin 6df
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So the three differential equations, i.e.. q.(3.6). eq.(3.7) and eq.(3.8) arc obtained
with three unknowns p,z, and z. They are sufficient to determine the reflector
profiles with the initial values of ppins Omers Xomare The Runge-Kulla method is

employed to solve these differential equations.
3.4.2 Numerical Results

Based on above technique, the Gregorian antenna reflectors design progr:

developed. Both the main and the subreflector can be designed if the feed radiation
pattern is known and the main aperture illumination is specified.

Example 3:

In this example. the feed radiation pattern is the same as shown in Figure 3.1
and the desired main aperture illumination is shown in Figure 3.9. The foed phase
center is located at a = 27.0" (Refer to Figure 3.8). The radius of main reflector
i598.5" and the radius of subreflector is 14.0". Tlhe subtented angle of subreflector
related to the feed radiation pattern is 12.7°. This means that the feed radiation

pattern is approximately 18dB down at the subreflector edge. Then the initial

values are:
Xper = 985"
Omar = 12.7°
X, 140"

Pmin = (Bmas)  SIN(12.72)
The calculated main reflector profile and subreflector profile are plotted in Figure

boloidal and ellinsoidal

3.9. Thesurfacesare no longer the closed form

and quasi idal ones.

but they are modified to become g

Example 4:
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Assume the feed radiation pattern is given and shown in Figure 3.4 which is the
sameas that in Example 3. The main reflector radius is 157.0" and the subreflector
radius is 24.0". The feed pliase center is located at o = 27.0" (Refer to Figure 3.8).
The subreficctor subtended angle related to the feed radiation pattern is also 12.7°.

Then the initial values are:

Npaw = I570"

Oper = 12.7°

Pmar = i(Bnas)  Sn(12.77)

Taking the subreflector blockage and main reflector edge effect into consideration,
the main reflector aperture illumination is assumed and shown in Figure 3.10. The
calenlated main and subreflector profiles are plotted in Figure 3.10. The surfaces

are o longger paraboloidal and ellipsoidal reflectors but they are modified to hecome

quasi-paraboloidal and quasi-ellipsoidal reflectors.
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Figure 3.9: Shaped Gregorian main and subreflector profiles (Example 3). Solid
line: reflector profiles (Unit: inches), Dotted line: main reflector aperture illumina-
tion (Unit: dB)
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Figure 3.10: Shaped Gregorian main and subreflector profiles (Example 4). Solid
line: reflector profiles (Unit: inches), Dotted line: main reflector aperture illumina-
tion (Unit: dB)



Chapter 4

Dual Shaped Reflector Antenna
Analysis

The objective of this chapter is to provide various detailed performances of the
dual reflector antenna. The corrugated conical horn described in Chapler 2 is used
as the only antenna feed. The circularly symmetrical reflector profiles generated in

Chapter 3 are 1 for investigating the 1 patterns of the subrellectors

and the radiation patterns of the main reflectors with the physical optics (PO)

technique. Having knowledge the radiation patterns, the antenna performances

such as horesight gain , sidelobe levels, spillovers and ete., can be obtained. Thus,

the antenna characteristics as well as its performance trade-offs can be fully carried

out.

4.1 Theory of Physical Optics (PO)

The radiation fields of any given reflector can be obtained by integrating directly
over the induced surface currents which are physically responsible for initiating
the radiation. Alternatively, they can be calculated from the fields incident on

the reflector. Although there are various applicable integrals, all of them arise
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essentially from the application of Green's vector identities to Maxwell’s equations.
In this thesis, the vector Kirchhoff diffraction integrals will be employed.
In free space, the fields scattered by a induced surface current can be approxi-

mated as [3]:

A i 27— iwend, et
E = o / /‘[(.l VIV + KT juweon x VI—dS

—~kr
= j = 27 L. w e
B o= - // V)V 4K J x v]&—ds
[ o [(Jn - V)V + k2T + juopto 1=
where J and J, are the electric and magnetic current distributions on the surface.
k = wy/Jigeg. V takes effect on S only, i.e., V acts on the coordinates of source

clement.

If the reflector surface is perfect conductor, then J, = 0. The scattered fields

can be written as:

N

= //[(J V)V + K

47rwc
= fux V)—;—ds

As shown in Figure 4.1, 7is the vector from the origin to the source element point,

=
I

R is the vector from origin to the far field point P, 7 is the vector from source
element. to the far field point P, and 4, R and # are unit vectors, respectively. The

following identitics hold.

v = G

kr
P+ i

[=R(T - 7

3. 1, =
+ 20k + T A —

o Lk
Uk + (T x 7)



s Surface Current

>
=3

Y

Figure 4.1: Co-ordinate system used for evaluating the vector Kirchhoff diffraction
integration.
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For the far fields, the observation point P is very far from the current sources,
#and R arc almost parallel, then 7 in the phase term such as e~*" where r should
be approximated as:

re¥R-§R
and in the magnitude term, one should have:
71 =~ R

Using the above identities and neglecting the 1/72 and 1/7% terms, the far fields

can be approximated

= —LBoein [ [~ (. )il Rds @1
g o 90 i [ [ B0 7 e
B=—122 //[ (BT o Ras (42)

From eq.(4.1) and eq.(4.2), it can be observed that in the far field zone

Box By - ()5,
El‘n

~ Fx B — (L)

(M) »

== /(Jw(une,,) [F % (Fx #) = J + (7 - #)i]}e*#Rds
=0
in which the following identity is used:
P x(J %)= (7R = (7 )i = T = (T )
It is obvious that the scattered waves become plane wave in the far field zone, then

E, 1? and R are mutually perpendicular to each other.
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The induced surface current due to the incident wave can be expres

ast
I =% B (1.3)
where 1, is the unit normal vector, }7, is the incident magnetic field and Juis the
induced surface electric current.
The physical optics (PO) will be used to evaluate the scattered patierns of

the subreflector and the radiation patterns of the main reflector in the following

sections.

4.2 Subreflector Scattered Patterns

In order to derive the radiation patterns of the main reflector, the seattered
pattern of the subreflector must be calculated to provide the incident fields at the

main reflector.

4.2.1 Coordinate System Definition

The coordinate systems used to analyze the seattered patterns of the subreflec-

tor are shown in Figure 4.2. Three coordinate systems are required in the following

calculation:
() (X, ¥p,Zg) and (pg,67,67):
the and spherical i systems for the feed.
(@) (X5,Y,,2,) and (s, 6y1):
the lar and spherical coordinate systems for the subreflector,

(3): (XY Zom) and (o, Oy Om):

the lar and spherical

systemns for the main reflector.



Muain Reflector

=
FbZ,é/Obsz /og;

Y

Figure 4.2: Co-ordinate system used in the analysis of the scattered patterns of the
subreflector.
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The Z axis is used as the rotationally symmetric axis for both Cassgrain and

Grogorian types. Then the profile of the subrefiector is generally defined by

= f(6,)

The surface profiles can be obtained by the design procedure described in Chapter

3.

The observation point M (g, 6, ém) is assumed to he on the surface of the

‘main reflector.

4.2.2 Feed Radiation Pattern

The corrugated conical horn is used as the carth station dual shaped reflector

antenna feed. F or Oy is the feed phase center. Z axis is the revolutional axis of

the horn. The feed radiated fields can be expressed in different. forms according to

the specified polarization.

In general, the E and H fields can be written as:
. "
E; = [Eo,(61,00)0;+ Eo,(ﬁr.w)du]—’,l—
H o= (2 x5
Ho
e . emitn
= (E)’[Eﬂ, (0,87)01 — By, (ﬂ/‘flu)”,r]’_—]

For vertical or X-polarization, the E field can be expressed ns:

Ej = (g0, (6) cos 6,0, — s, (07) sin ¢61]

omikny
ry

For horizontal ¥-polarization, the E field can be expressed as:

emikes
7

Ej = (90, (6)sin 010 + g4, (6) cos 6] F

(4.44)

(4.5)
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In order to make use of the physical optics, the feed radiation patterns need to be
expressed in the coordinate system (p,.0,,¢,). Based on Figure 4.2, the following
transformation relationships between the two coordinate systems (p.6;.o7) and
(pg. By, ) can be found:

6 = &
oy = s
pesing, = pysiné;

pyeosy = 6Z;+ p,cos,

pr = P+ (82))7 +2p,62, cost, (4.6)

6Z,+p,cus€.) )
s

6, = cos(6, —6,)0, +sin(d, - 67)4 (4.8)

f; = arccos(

Eq.(+1.8) is proved in Appendiz A.
Using above relations, the magnetic field given in eq.(4.5) can be expressed
according to the coordinates (p,. 6y, ¢,):

X

N ke,
Hi = ;—:)7(517,(9.-%)%—E}»,(ﬂ,y¢:)[C°5(3=—9/)9,+sin(5:—9/)/5-])% (4.9)

where #y and py can be substituted by eq.(4.6) and eq.(4.7). Here we still use p;

and 0 for simplicity.

4.2.3 Current Distribution On the Subreflector Surface

The current on the surface can be calculated using eq.(4.3). For a

given surface of p = f(#.¢). its normal unit vector is given by

W= £,(fasine — fosin6cosf cos g + f sin? f cos ¢) /A



i
+ di(—fscos0 — fysinBcosfsino + fsin?fsino)/A
+ 5(fsinfcosf + fysin®6)/A
where
A= (f3+ fising +fsin)
fo= %- fo= g—i

Due to the rotationally symmetric about the Z axis, fs = 0, then

Z4(—fosinfcosfcos + fsin’ 6 cosp) /A

+ ts(—fasin@cosfsing + fsin® fsin ) /A
+ Z,(fsinfcos8+ fysin?8)/A
where
A= (fi+f)isin0
or
= —7,(focosf — fsin0) coso/A'
— fis(focos — fsinf)sing/A’
+ Z(fcosf+ fysinf)/A
where

A= (ff+

Since the Cassegrain antenna uses the hyperholoidal subreficctor, i, must. be

an outward normal unit vector, then i, = 7.
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In Gregorian antenna configuration, the subreflector is an ellipsoid. 7, is the
inward normal unit vector, then #, = —#. In the following derivation, the Gregorian
antenna subreflector is used.

By using the following transformation relationships:
£, = pysinb,cos g, + 0, cosl, cos 6, — §,5in b,

Ys = fssinb,sind, + 0, cosf, sin g, + ¢, cos b,

fs cosf, — B,sin6,

the inward normal unit vector to the ellipsoidal subreflector can be proved to he
given as:

iy = —fp /A + fufl, ) (4.10)
Substituting eq.(4.9) and eq.(4.10) into eq.(4.3), neglecting the current distribution

on the back surface of the subreflector, we have

I‘, = Zﬁ,xﬁv

= 2Lt L0 (s (0110406, = Fay (0. 00) costt, = 6,1
ki
—E4, (6, ,) sin(d, _gj)ﬁ’](f_n);r ~skos
ko A
= Q(ﬂ“ e [—Eo,b’, f,Eo, C““-*WW.—F%E,/,;‘
+§E‘¢, sin(ﬂ, —6,)é,) B

4.2.4 Scattered Field Patterns

The far scattered H field due to he subrefl surface current can be
by:
B = —JL//(J, x r)—-iS (4.12)
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Because the scattered fields from the subreflector are the incident ficlds to the
main reflector, in order to derive the induced current on the main reflector which
is responsible for the radiation patterns of the antenna, the scattered fields need to
be expressed in the main reflector coordinate system.
In Figure 4.2, if Oy, is close to subreflector and M(pp,. 0y, ) is far away from
subreflector, then
T R pm — P Sin,sin by, cos(Bs — ) — py c08 8, coslyy + 82, cosly,
oIk 1

[e")lrpm N eikp, sinf, sin Om cos(¢y=ém) ‘.J'A'm 080, cosly,
T Pm

]
Using the proof given in Appendiz B, the differential subreflector sutface clement
can be expressed as:

S = fUf3 + fisin® A, + f2sin® 0,)d0,do,

= f(f2 + )} sinb,do,dg,

= fA'sind,do,dg, (413)
Then eq.(4.12) becomes
g, = s T nconn
27 o Pm

ikpy cosd, cosOm | ,~ikny L i
/D‘/‘a e (W)smﬂ,
{[fEo,0, + fEy, cos(0, — 07) + foEo, s + fo By, sin(0, = 0;)eb,)
xp-m_e;k,.-inn..ina,,.mw.-vﬁm)d%)d& (4.14)
Applying the identities given in Appendiz C, the components of H, can be

written as:

eikom
3.8 "

.PEZ,..m!D,../ / (ko €030, contn ,,,—;kp,(ilﬂi",,‘
Pm o5 Jo. s



{fEs, cos b, sin(¢y — ém)
Hf By, cos(0, ~ 07) + foEs, sin(8, — 07)] cos(0, — 6rm)

+foBy, Sin 0, Sin(y — gn)} - et 5% sntm cosl81=em) g3 g,

(4.15)
g gk ey e s, ikosoonty caatm., o=iho1 (LN o
i = INf0yy T 6Zmcostm 086, coslm AL
Bodn = ST Lhe e sind,
{=fE,[cosy, cos 6, cos(@, — $m) + sin0, sin 6]
+[fEq, cos(0, - 6;) + foEs, sin(6, — 6y)] cos by, sin(ds — ém)
+foEg, |~ sin0, sin b, cos(, — dm) + cos b, sin b}
Likpasinds sinfm ms(w.—@-n)d¢ad9‘
For the vertical or X-polarization, we have
Eo, = gs,(6;)cosdy
Eyy = —g4,(0y)sin 6y
Using the i tr ion, the above i can be written as:

Ey, = go(0,)cos

By, = —gs(0))sing,

Putting these equations into H, and using the integration identities given in Ap-
pendiz D, the scattered H field can be expressed as:

§ ke
Byl = ha@u)singn - —— ()}

=

ik oy € ot / ihoscontycost  utbog (L y
= =(=)i —— et imging,, | elttecosticosln . g=iker(—)sing,
Zﬂ(ll») Pm ¢ (8 (PJ) 2

{—(fgocos b, + fogesinb,)[Jo(z,) + Ja(z)]



~1f g0 cos(0, — 07) + fogosin(6, — 67)] - [Jolzs) = ot} (4.16)
ekom gy
Pin (/-to)

E Fois
. eSZmcostn i) Om/ edkncosdcontn _ w=skng Ly
o, p/

=

bn = hs(Om) cOS P -

Ik <oy Bl
2 o Pm
{—(fgo cosb, cos by, + fogosinb, sinb,)[Jo(zs) — Jala,)]
~2j(fgosin6, sinb,, — fogs cos B, sinb,,)J) (2,)
—[fgscos(B, — By) cos O + fogs sin(6, — 0y) cos 0,
[Jo(,) = Ja(zs)]}db, (4.17)
where 2, = kp, sinf,sind,,.

The E field can be obtained by
B=—(Big, < 8,

€0

These are the incident fields on the main reflector.

4.3 Main Reflector Field Patterns
4.3.1 Coordinate System Definition

The coordinate system used to analyze the field patterns of the main reflector

is shown in Figure 4.3. The rectangular and spherical coordinate

systems for the
main reflector are (X, Ymy Zm) and (pm,0m, ¢m). The far field observation point
is PRy, 0,0y).

Using the rotationally symmetry, the profile of the main reficctor can generally

be defined as:

Pm = F(br)



a1
o

Main Reflector

Figure 4.3: Co-ordinate system used in the analysis of the radiation pattern of the
main reflector.

The surface profile can be obtained by using the design procedure described in
Chapler 3.
4.3.2 Current Distribution on the Main Reflector

We can express the scattered pattern of the subreflector in a concise form :
e~ikom ¢

Pm Mo

H, = [Ho(Om:6u)0m + Ho(Oms bm)bm] )

= [Hob + Hobm]
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The H, field can induce the electric current on the main reflector. The coordinate
svstem for the radiation pattern calculation is shown in Figure -1.3. The induced

current at the point M(pp. 8y, 6,,) on the main reflector is given by:
Ty = 20 x H,(M)
Assume the main reflector surface profile is
P = F(0)

Following the steps given in Section 4.2.3. the inward normal unit vector of the

main reflector can be obtained by:

= —pny +é ”

dS = FAsin 6,,,1[0da>

where
=(FF + P}
Then
. F. e
I = 2A=%hm —Hm Hob + Hyton
= 2= YHoll + Hodn) —— (21}
Fo R oy
= -5 Hoom ——H(I Hypim g
(=gt o +A e}

4.3.3 Radiated Field Patterns

In the far field, the radiated field of the main reflector can be caleulated hy:

L jum . PP il
Bp) =522 [ (1o~ (G- R 5



Since the observation point P is very far away from the main reflector (see Figure
4.3) and using the analysis given in Appendiz B, the following approximations are

valid:

* & Ry pn5in0ysind,cos(¢m — ¢y) — pm c0sOncosf,  (4.18)

2% 1 pmikRy . ikom sino By coS{m2p) , pkom co8 O coSEy
T N (eIt ehomsintmsin, coslém=tp) , pikomcostmessty] (4 19)

-
In the far field, the 12, component vanishes. Using eq.(4.17) , eq.(4.18) , and the

identitics given in Appendiz C, we can get

B -6, = ]L e""""// (b=t . gmikom(l 2
[FHa €080, sin(¢m — ¢,) + F Hy 0s O, cos by cos(ém — &)

+FHy 5in 0, 5in 0, + FgHy 5in 6 cos 8, cos(0m — &)

—FyH, sin 6, €08 0,0 8in 6, @0, d

E@p)-é, = _i_k . "’I:’R’ /eikp.:inl.liliyude-.-t,) . ¢~ ikom(1-costm costy)
23 s
[=FHy cos(¢m — 65) + FHy c0s 0, sin(¢n — 65)

+F4Hy 5in 0 $in(0m — 6;)] 5in 0 db,nddrm
As shown before, for a vertical or X-polarization, the scattered patterns of the
subreflector can be written as:
Hy = ho(0)sindpm

Hy = hy(6m)cosdy

Putting these into E(p) expressions and also use the integration identities described

in Appendiz D, the final E(p) field will be given as:

E(p)-6,



=1
@

ik e~3*Rp .
_J?, T ms%,/ mikoml1=costmcosty) i 0
by Om

{Fhq cos0,[Jo(zm) + J2(2m)]

+(Fhy cosfy, cosb, + Fohgsin b, cos6,)[Jo() — Jalw)]

+2j(Fhysin g, sin by, — Fohy sin 6, cos 0,)J1 ()l (4.20)
E(I’) N 4;)-
= % »%sin @y Lm emikomli=costn o)) gin g,
{FholJo(2m) = Jo(zm)]
+(Flig 0030 + Fohs sin ) o () + ol )]} 0 (.21

where z,, = kpp sinf,, sinf,.
4.4 Dual Shaped Reflector Antenna Performance

4.4.1 Gain
For a vertically polarized source, the radiation pattern of the main reflector can

be expressed as:
= jk e~

jkRp 3 -
Bp) = = - g \Mal6) cos dyf, = Ma(6y)sin dui]

The electric field from the feed and subreflector is expressed as:

5, = &2 i — EI0 sin bod

By = SUBL 0) costl, — BL(0) sindh)
'

The total radiated electric field is given by:

Br = B(p)+E,
(1B£°(6,) - 2200 cos 40,
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: 5 ~jkR,
(B8, = M0, sin 06,} -
2 R,
s . emikR
= [50(6,) 05050, — 56(6,)5in 5]
3
where
Js ik
Si(8,) = Ep’(6,) — ?A/lﬂ(ep)
Sulty) = EL(G) =5 My(6)
The co-polarized component can be obtained hy:
ikl
B = [S3(0,) cos? g, + Sy(0,) sin® ] - p—
3
The cross-polarized can be as:
X e—ikRy
By =[S0(6,) = S5(6,)}sin ¢y cos - - (4.22)
=
The power gain of the antenna is defined by
_P@.4)
= Fufan

where Py is the total power radiated from feed. P(8,8) is the power radiated per
unit solid angle in the direction (6, ¢) and can be calculated by

1
P09 = SDIRIES

Then

_ 2n(22)3150(6,) cos® g, + Sy(8y) sin’ 6, °
- Pr

The on-axis or boresight gain is obtained by set 6, = 0,6, = 0 in eq.(4.22)

G

(4.23)

2e(2)}155(0)°

Clonearis = =82S
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The total power transmitted by feed Py is derived in Appendir E and is expressed
by
Pr= =[98 +1go P sin oo
22y Jo "
where Zp is the free space characteristic impedance.
4.4.2 Efficiency
For an aperture antenna, the boresight gain is given by [3], [53]
4rA 7D,
G =Gz = [T] n

where A is the aperture area. D is the diameter of the circular aperture, and 1 is

the antenna efficiency which can generally be partitioned as:

N = NsaTlsm M7 A

In the above fon, (1 = 7,,)100 the of the power loss

due to the energy from the feed past the subreflector. (1 = 11,,)100 represents the

percentage of the power loss due to the energy scattered from the subreflector past
the main reflector. (1 ~ n,)100 represents the percentage of the power loss caused
by the feed, the subreflector blockage and the supporting struts. (1—1,)100 is the
aperture efficiency, which rej resents the percentage of the power loss due Lo the
remaining reasons which will be discussed later.

(a) Subreflector spillover efficiency (7,,)

The subreflector spillover efficiency (7,,) is the power ratio between power sub-
tended by subreflector to the total power radiated by the feed. The power loss

due to the power from the feed past the subreflector, will usually contribute to the
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antenna sky noise. By this definition, the subreflector spillover efficiency can be
calculated as:

es = Tl go E+ LgofF) 5 60

where 0y is the subreflector subtended angle. gp and gy are the components of the
feed radiation pattern described before.

(b) Main reflector spillover i (1m)

The main reflector spillover efficiency (7,m) is the power ratio between power
subtended by main reflector to the power scattered by the subreflector. If the
subreflector surface has no loss, the scattered power is equal to the power subtentecd
by the subretlector. If the main reflector subtanded angle is 8, then the main
reflector spillover efficiency is given by

e Jo™ (Ihol? + | ho[?) sin 06
I3 196l + |go1?) sin 00
where hp and hy are defined in eq.(4.15) and eq.(4.16).

(© block iency (1)

If the supporting strut blockage is ignored, then the main blockage effect comes

only from the subreflector. Hence, the subreflector blockage efficiency can be calcu-
lated by the gain ratio between the on-axis gain with subreflector blockage to the
on-axis gain without blockage, i.e.,

w= _Gloncazisuithbocksse_
Glon-azisuithoutblockage

(d) Aperture efficiency (14)

After having ubtained 1)y, ;m and n, then by definition, the aperture efficiency



is given by:

i
AT S S
1 Gonaalesllenlls Tl

where G is the antenna boresight gain.
In the above evaluation, the aperture efficiency can further be subdivided as

follows [58]:
T4 = Mt

where (1 — 7,)100 represents the percentage of the power loss which arises if the
field over the aperture is not everywhere in phase. (1 — #;)100 represents the

percentage of the power loss due to the non-uniformity of the amplitude of the

aperture illuminati (1 — 1:)100 rep the of the power loss
caused if there are cross-polarized fields present in the antenna aperture. (1=,)100
represents the percentage of the power loss duc to the random error over the reflector

surfaces caused by mechanical defects.

4.5 Numerical Pesults and Comparison

Based on the PO theory, a computer-aided analysis program is developed. Then

the scattered patterns of subreflector and the radiation patterns of main reflector

can be calculated. Thus, any parameter of the antenna specifications can he studied

and optimized. However, the validity of the PO method should be verified.

4.5.1 Comparison with Experiniental results

An experiment called Scatlering from hyperboloidal reflector was carried out. by

W.V.T.Rusch (53] in 1963. In this experiment, he used a feed horn to illuminate a
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hyperboloidal reflector, and then measured the scattered pattern from the hyper-
boloid reflector. Refer to Figure 4.4(a). the hyperboloidal reflector profile can e

written as:

ep
e < 7
f 1+ecosf’ st
where

-

e=-

a

1
p=c(l— v—?)'

The measured feed pattern given by W.V.T.Rusch [53] is shown in Figure -1.5.
The measured H-Plane scattered pattern and our caleulated pattern are shown

in Figure 4.6. The agreement is good except in the center region hecause the

experimental pattern is distorted by the feect horn blockage which was not. included

in the calculation.
4.5.2 Subreflector Scattered Patterns

The scattered patterns of the subreflector related to the profiles and structures

shown in Figure 3.4, Figure 3.5, Figure 3.7, and Figure 3.8 arc given in Figure 4.7,
Figure 4.8, Figure 4.9, and Figure 4.10. The feed radiation pattern is plotted and

shown in Figure 3.4. The operation trequency is 14.25GH=.
4.5.3 Antenna Radiation Patterns

The close-in( # < 2° ) and far-angle radiation patterns of the antenna related to
the profiles and structures shown in Figure 3.4, Figure 3.5, Figure 3.7, and Figure
3.8 are given in Figure 4.11,Figure 4.12, Figure 4.13, Figure 4.14, Fignre 4.15,Figure
4.16, Figure 4.17, and Figure 4.18. The operation frequency is 14.25GHz. The
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Figure 4.4: The geometry of the experimental set-up. (a) the hyperboloidal reflector
and the coordinate system  (b) the geometry of the experimental set-up (f =
9.6GH:)



Power (dBi)

Figure 4.5:

80 100 120 140 160
Theta(deg)

The measured feed horn pattern in [53]
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Figure 4.6: The | and the cal 1 H-Plane S 1 patterns. Solid
line: Caleulated  Dotted line: Envelop of the measured data
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L the E-

CCITT specifications are also included. By using the 3-dimensional vi
Plane pattern illustrated in Figure 4.12 is also redrawn ar:d shown in Figure .19,
We can see that the main beam of dual shaped reflector antenna radiation pattern

is very sharp and the boresight gain is very high.
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Figure 4.7: S 1 pattern of subrefi for Cassegrain antenna (the feed ra-

diation pattern shown in Figure 3.4, the main and subreflector profiles shown in

Figure 3.5.)
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Figure 4.8: d pattern of sub for Casscgrain antenna (the feed ra-
diation pattern shown in Figure 3.4, the main and subreficctor profiles shown in
Figure 3.6.)
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Figure 4.9: Scattered pattern of subreflector for Gregorian antenna (the feed ra-
on pattern shown in Figure 3.4, the main and subreflector profiles shown in

Figure 3.9.)
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Figure 4.10: Scattered pattern of subreflector for Gregorian antenna (the feed ra-
diation pattern shown in Figure 3.4, the main and subreflector profiles shown in

Figure 3.10.)
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Figure 4.11: Close-in radiation pattern of main reflector for Cassegrain antenna
(the scattered pattern of subreflector shown in Figure 4.7, the main and subreflector
profiles shown in Figure 3.5.)
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Figure 4.12: Far-angle radiation pattern of main reflector for Cassegrain antenna
(the scattered pattern of subreflector shown in Figure 4.7, the main and subreflector
profiles shown in Figure 3.5.)
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Figure 4.13: Close-in radiation pattern of main reflector for Cassegrain antenna

(the scattered pattern of subreflector shown in Figure 4.8, the main and subreflector
profiles shown in Figure 3.6.)
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Figure 4.14: Far-angle radiation pattern of main reflector for Cassegrain antenna

(the scattered pattern of subreflector shown in Figure 4.8, the main and subreflector

profiles shown in Figure 3.6.)
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Figure .15: Close-in radiation pattern of main reflector for Gregorian antenna (the
scattered pattern of subreflector shown in Figure 4.9, the main and subreflector
profiles shown in Figure 3.9.)
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Figure 4.16: Far-angle radiation pattern of main reflector for Gregorian antenna

(the scattered pattern of subreflector shown in Figure 4.9, the main and subreflector

profiles shown in Figure 3.9.)
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Figure 4.17: Close-in radiation pattern of main reflector for Gregorian antenna (the
scattered pattern of subreflector shown in Figure 4.10, the main and subreflector
profiles shown in Figure 3.10.)
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Figure 4.18: Far-angle radiation pattern of main reflector for Gregorian antenna
(the scattered pattern of subreflector is shown Figure 4.10, the main and subreflector
profiles shown in Figure 3.10.)
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Figure 4.19: 3-Dimensional radiation pattern (The E-Plane radiation pattern plot-
ted in Figure 4.12).




Chapter 5

Dual Shaped Reflector Antenna
Performance Trade-offs and
Comparison

Based on the theories presented in the previous chapters, the dual shaped
refiector antennas can be designed and analyzed. However, with the continuing ex-
pansion in microwave communication systems, particularly in areas of population
concentration, the sidelobe level must strictly be controlled to prevent the proba-
bility of interferences. In addition, a high sidelobe level also means an increase in
noise temperature, especially for low noise antennas used in carth stations, The
power loss passed the main reflector will contribute to the ground noise. This noise
is normally much greater than the sky noise. Thereforc, the final designed antenna

is required to meet the CCITT i i ially to prevent interferences

with other systems. Thus, the power pattern control is a very important issuc in
earth-station antenna designs. In this chapter, the trade-offs hetween antenna per-
formances and the main reflector aperture power distributions are investigated and
a power pattern control method is presented. The performances of Cassegran and

Gregorian antennas are also compared.
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5.1 Dual Shaped Reflecicr Antenna Performance
Trade-Offs

The principal advantage of dual reflector antennas is to improve the gain or
sidelobes by shaping the reflectors with different kinds of reflector aperture power
distributions[25] [26] [30] [43] [44] [45] [46]. Because of the simplicity and the

realizability, Gaussian distribution is used in this thesis.
5.1.1 Gaussian Distribution on the Antenna Aperture

It is well known that the maximum boresight gain can be achieved with uniform
aperture power distribution. However, the sidelobe levels are often to high to meet
the CCITT specification, and the high power density at the main reflector edge will

produce high spillover. Thus, the power distribution on the main reflector aperture

should be varied from uniform distribution to a kind of ifc distribution
[43] [44] [45] [46] in which the power density on the edge is gradually tupered to
within —10dB to —15dB. Due to the sub-refiector blockage, there will be no power
at the central arca of main reflector aperture, but we also assume that the power
distribution at the edges of the subreflector is gradually tapered.

Making use of the revolutional axis. the power density, Py, can be expressed as

the function of positions on the main reflector aperture, p:

Py=1 (Pmy S 9 < Pmy)

Pi = expl-by (L= (s S 9 S )
maz ~ Pma

Py = expl=b- (""' ”)2) (6<PS pmi)

where ppq, is the radius of main reflector aperture. p,, and p, are the lower
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Figure 5.1: Power distribution on the main reflector aperture
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and upper limited positions of uniform power distribution area. as shown in Figure
5.1. by is the aperture power density at center of the main reflector aperture. by is
the aperture power density at the edge of the main refiector. For the main reflector
with radius 98.5", using by = —20dB, by = —10dB and py, = 14.0", the power
distributions on the main reflector aperture with different p,,, are shown in Figure

5.1.
5.1.2 Gain and Sidelobe Versus Aperture Distributions

With Gaussian aperture power distributions, the dual shaped reflector antenna

is designed and analyzed. The trade-offs between gain. sidelobes, aperture efficien-

cies and different aperture power il can be i i 1. For a Cassgrain

antenna with the main reflector radius of 98.5", and the subreflector radius of 9.0",
the feed radiation pattern shown in Figure 3.4 and the phase center is located on
the = axis at 27" belind the main reflector aperture (refer to Figure 3.3), the near-
in (within 1.0°) radiation patterns related to different aperture power distributions
are shown in Figure 5.2.

It can be seen from Figure 5.2 that shaping for a given aperture power distribu-
tion other than a uniform one helps to achieve two goals. First, the spillover past
the main reflector can be substantially reduced and this in turn reduces the noise
temperature of the antenna system. Secondly, the non-uniform aperture distribu-
tion can reduce the sidelobe levels as expected. On the other hand, the non-uniform
aperture distribution results in the loss of gain and the broader beamwidth. The
smaller the uniform distribution area, the less the gain, the lower the sidelobe levels

and the broader the beamwidth. However, the gain loss due to the non-uniform
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Figure 5.2: Radiation patterns. pme: = 98.5", pm, = 100", p, = 94.0", 74.0",
54.0", 34.0",14.0", by = —20dB, b, = —10dB
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aperture power distribution is not distingui: d to the d ing of
sidelobe levels. Thus, the non-uniform aperture power distribution provides us a
means to control the sidelobes of the dual shaped reflector antennas.

As demonstrated in Figure 5.3 and Figure 5.4, the sidelobes of the antenna
designed based on tie aperture power distribution of Case I shown in Figure 3.2

does not. meet the CCITT specification, which is
32— 25log(f) (6 in degrees)
By using the aperture power distribution of Case 4 shown in Figure 5.2, the side:

lohes of the designed antenna are reduced, consequently they meet the CCITT

specification.

5.2 Comparison of Cassegrain and Gregorian An-
tennas

The main difference between Cassgrain and Gregorian antennas is the shape of

One has a hy I subreflector and the other has a ellipsoidal
subreflector. In reality, most symmétrica] dual reflector antennas are of Cassgrain
type. However, in some special cases, for example, in the heavy snowing environ-
ment, the Gregorian types are used to prevent snow from covering the reflecting

surface of the subreflector. In order to provide other reasons. the performances of

these two kinds of antennas will be compared.

The radiation patterns of C in and G ian antennas are
by using two different cases. In the first case, both Cassegrain and Gregorian
antennas have the same feed pattern, phase center location, main and subreflector

radii, subreflector subtended angle and the same main reflector power distribution,
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Figure 5.3: Antenna profile and radiation pattern. pme: = 98.5",pm, = 100",
Pmy = 94.0"(Casel), by = —20dB, b, = ~10dB
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as shown in Figure 3.5. The close-in and far-angle radiation patterns of Cassegrain
and Gregorian antennas are shown in Figure 5.6 and 5.7 respectively. In the second
case, both Cassegrain and Gregorian antennas have the same feed pattern, main and

radii, fl btend

1 angle and the same main reflector power
distribution, but different phase center locations, as shown in Figure 5.8. The close-
in and far-angle radiation patterns of Cassegrain and Gregorian antennas are shown

in Figure 5.9 and 5.10 respectively.

It can be seen that in both cases, the close-in radiation patterns and the far-

angle radiation patterns of Cassegrain and Gregorian antennas are almost the same,
Because of the same main reflector power distribution, the antenna aperture effi-
ciencies for both Cassegrain and Gregorian antenna are the same. But there are
still some differences stated as follows:

(a) The close-in sidelobes of the Gregorian antennas are smaller than those of
Cassegrain antennas.

(b) The back radiations (near 180°) of Gregorian antennas are ligher than that

of Cassegrain antennas.
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Figure 5.5: Cassegrain and Gregorian antennas with the same feed pattern (Fig-
ure 3.4), phase center location(—27"), main reflector radius (98.5"), subreflector
radins(9.0"). subreflector subtended angle (12.7°)and the same main reflector power

distribution. (a)Cassegrain antenna

(b) Gregorian antenna
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Far-angle radiation patterns of (a) Cassegrain antenna and (b) Grego-
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antenna for the configurations shown in Figure 5.8
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Chapter 6

Conclusion and Future Work

In satellite communications, the pencil beam antenna plays an important role

in the vital link between the earth station and the satellite repeater due to its

high horesight gains. And as the inui ion of satellite

has led to more earth stations and more satellite repeaters, the possibility of in-
terference between one and another increases. most of all the possible interference
between channels due to the frequency reuse. The control of sidelobe levels and the
cross-polarization discrimination are, of course, the major concerns of the antenna
designers and also are the essential problems to be solved in this thesis.

The thesis began with the basic theory behind the hybrid mode feed horns in
chapter 2 to show that only the corrugated horn can, in practice, approaches the
ideal conditions, which are identical electric and magnetic field patterns, extremely
low cross- polarization and well defined phase center.

In the past. the dual reflectors of an axial-rotationally symmetric system have
been constrained by either the hyperboloid-paraboloid (Cassegrain antenna) or the
ellipsoid-paraboloid (Gregorian antenna) combination. In order to obtain a uniform

illumination on the antenna aperture for the maximum gain the designer has only
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the feed to optimize. When the feed has achieved an optimal design. no fusther im-

p of the antenna could be realized. Now, as the advances of
computer analyses . ave enabled the main and subreflectors, which had previously
been considered as constraints, to be modified. Chapter 3 has clearly demonstrated
that after having designed the feed, one can impose a desired illumination distribu-
tion on the antenna aperture and shape the reflectors such that the maximum gain
or the sidelobe levels are achieved. The geometric optics approach has been used
to set up 3 differential equations related to the surface profiles of main and subre-
flectors. The computer aided synthesis programs have developed to compute the
non-closed form reflector profiles for both Cassegrainian and Gregorian antennas.

After generating the reflector profiles and by using the physical optics tech-
niques, chapter 4 has sliown step by step how to calculate the scattered patterns
of the combined feed and subreflector, then the radiation patterns of the whole
antenna as well as the entire antenna specifications. The combination of the de-
veloped softwares in both chapters 3 and 4 has manifested itsell in two essential
applications. One is to upgrade the performance of the existing earth stations
where both closed form profiles were used. In these systems, the antenna cfficiency
is about 50 to 60 percent. To upgrade the performance up to 75 to 80 percent,
the feed and subreflector can be redesigned while the main reflector is retained due
to the fact that it is quite costly to replace. The other is to design a brand new
antenna in which both reflectors and feed are fully optimized. In addition, the
validity of the physical optics was also verified in chapter 4. Chapter 5 devoted to

the development of the pattern control method. This made th

oftware packige:

extremely useful in the design of pencil beam antennas for all large earth stations.
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For a given specification, this software package can be used to design the feed horn.
reflector profiles and the whole antenna structure with the optimal performance in
both mechanical and electrical specifications. It is important to note that normally
a design house such as SPAR Aerospace Limited is in favor of Cassegrain anten-
nas, while ANDREW Antenna Company Limited is in favor of Gregorian antennas.
There is no one who has both Cassegrain and Gregorian designs. Here, this design
software package provides designers with both Cassegrain and Gregorian choices.

The comparison hetween Cassegrain and Gregorian antennas have been given in

chapter 5 to that d upon the i one can be better
used than the other.
Finally the main contribution of this research can be summarized as follows:
Although the Gregorian antennas have existed in many applications, the sophis-

ticated computer aided design and analysis have not been reported. Furthermore

there has not been a complete computer aided design and synthesis softwares of
this nature for both Cassegrainian and Gregorian antennas. This package provides
the designers vital tools to design and analyse both the existing and future large
earth stations.

In this thesis, the complete computer aided design and analysis software of the
«ual shaped reflector antenna for earth stations have been developed based on the
geometric optics and physical optics, which are valid for large earth stations. For
small carth stations, the dimension of the antenna is becoming compatible with

the length

these hes are no longer valid. The Geometrical
Theory of Diffraction (GTD) must be used. The reflector edge diffraction will be

added into the scattered patterns and radiation patterns to improve the accuracy
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of the calculations. GTD will also be used to modify GO in the design of the
reflectors. In addition, the effects of supporting struts of the subreflector should be
taken into account with respect to the gain reduction ;\vml the sidelobe levels. Last
but not least, the noise performance will be added in the analysis software, It is
hoped that our computer aided software will provide an efficient tool in the design

as well as the analysis of dual shaped reflector antennas.
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Appendix A

Expressing d; in Subreflector
Coordinate System

Refer to Figure 4.2, 6; can be expressed using &/, §; and Z:
6 = cosB; cos g2 +cos B sin dyj; — sin iy
Because & = ,, #iy = §a, and ¢; = s,

éj = cosfy cos ,(p, sin b, cos @, + 6, cos8, cos ¢, — phi, sin ¢,)
+cos B sin ¢ (ps sin b, sin ¢, + §, cos §, sin b, + phi, cos b,)
—sinfy(p, cosb, — é, sind,)

= sin(8, — 8;)p, + cos(d, ~ 8;)6,
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Appendix B

Expressing ¢— % in Main reflector
Coordinate System

Refer to Figure 4.2,

F = o

ro= = ppn T = pamfam T
If O,y is close to subreflector and Af(p. 0y, $rm) is far away from subrefiector, then

and p,, =7,

P
TR o= PamPam T

= P = Pom[SiN Oy 5i11 O COS(Pym — Gin) + €OS Oy, COS B ]

Because
bom = G5
sinly, = £ sinfy
Pam
coslyn = P2 cost,Zm
Psm Psm

,-n,

in the phase item of . T can be written as
TR pp = pssinb, sinby, cos(ds ~ ¢m) — ps 058, 08O + 62,y cO8 Oy,
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in the amplitude item,

-ikr
[ 740880025 s o8l —bm) by s conln (i Con O]
3 Pm



Appendix C

Calculation of js x pm, 6s x pm and

<2’s X pm

Refer to Figure 4.2,

fr = sinb,cos @i, + sinb, sin ¢, + cosb, 3,
= 5in0, 08 By (i 5i O COS By + By COS By, COS Py — Gy SN D)
+ 5010, 5itl b,y (B S By SID P + By €OS By SN Oy + Bry €OS O )
+ €080, (fim €050, — O 5N 0,)
= fim[5in 6, sin O cOS(5 — Orm) + cosb, c0s 0]
+0,usin 8, cos b, cos(¢, — é) — cosb, sin by,
+0n[sin b, sin(é, — ém)]

O, = cosf,cosd,i, + cosb, sin by, — sinb,3,

im0 6,y cOS 8, cOS(9y — bpm) — sin b, €05 ;]
+61n[c088,, cO8 8, cOS($, — G,) + sin b, sin O]
+6m[c0s 8, sin(@, — 6u)]

6, = —sind,d, +cosd,j,
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Then

= fim|~sinf,, sin(o, — 0)]

+[— c086,, sin(9, — 6a)]

+0m[cos(6, — &m)]

Pa X pm

~[sin 6, sin B, cos(y — b ) — 05 0, 5in 0}
+[sin 0, sin(@, — om)lfn

By X pm

—[c088, 08 B cOS(d, = Bym) + 5 B, it Oy}
+[cos 8, sin(6, — 6)}fm

6 X fim

(€08 B S10(@4 — G )|y + OS24 — By )l
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Appendix D
Integration Formulae
7 torsntntmcoter=om cos(6, — 8 sinoudo,
= wsinémldolz,) — Ja(z.)]

/ 2 ikpysind, sin b cos(6,—m) cos(d, — 6) 05 0,dd,
0

= wcosdm[Jo(z,) = J2(2,)]

21 . .
/ 7 ¢ 3ko45in 6, 5in I cos(64—6m) sin(¢, — 6m) €08 6,d¢,
0

= —7sin@mlJo(z,) + Ja(2,)]

2
A eikessint sinOr coslds—ém) sin (g, — G,) sin 6,dd,

= meos ¢ulJo(zs) + Ja(z)]

2
A ¥ ko win0,sin O cos(és—bm) cosd,dd, = 2§ c08 G 1 ()
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o .
/‘; ko sinb sinbe coslés=¢m) in g, do, = 2jmsin o Ji (4 (D.6)

2n g
A ko sin by sindm cos(6,=6m) 45 = 07 Jo (2, (D.7)

where J, is first kind Bessel function of order n and z, = kp, sind, sinf,,.



Appendix E
Power Transmitted by Feed Pp

The feed radiated magnetic field is

emikes
/]

H = (:-“:)*[En,(’?hél)&/-Eo,(ﬂlmj)dl] s

a 4 . . e~ikey
= (;) [ga(e.)cos'#/él+ao,(0/)sm¢/(’llp—,
Then
e[/ %nz(é,xﬁ,). Fsin? 666

1 2w N N

=5 A /n (1B [* cos® ¢ +| By, [*sin® ¢y)sin® 6;d6;do
w o .

= 35 Jy 0By [+ 1B, P)sin do,

T [ .
3y (o? + L) sinoas

where 1) is the free space impedance.
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