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Abstract
The development of a reliable multi-modal human-machine interface has many potential
applications. The interface with a personal computer has become very common yet many
disabled users have limited access due to the restrictiveness of the current interface. An
improved interface would improve the quality of life for disabled users and has
applications in controlling machinery in an industrial setting. Many different types of
gestures ranging from head gestures, headpointing, hand and arm gestures are being
investigated. A wide variety of classification techniques are available. These techniques
range from simple clustering routines to complex adaptive routines. This work compares
the recognition results of four pattern recognition techniques, the k-nearest neighbor, a
Mahalanobis distance classifier, a rule based classifier and hidden Markov models. The
techniques were tested on a set of six hand gestures captured using The Flock of Birds
data collection system. The best average recognition result was 97% obtained from the k-
nearest neighbor classifier, the Mahalanobis distance classifier had an average recognition
rate at 92%, the rule based classifier had an average recognition rate at 89% and the
hidden Markov models had the lowest average recognition resuits at 83%. The hidden
Markov models are the most complex of the four techniques studied. Although the
average recognition results were lower, they are rich in mathematical structure and can be

used to model very complex observations.
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CHAPTER 1

INTRODUCTION

1.0 Background

Researchers for a number of years have been searching for alternate improved means of
human-machine interaction. While a common human-machine interface today is the
interface with a personal computer, the communications link between the user and the
processor is still quite restrictive. It is argued that the full potential of using personal
computers has not been realized due in part to the restrictions associated with the
common interfaces such as keyboards and mice. Despite many advances in computing

power, the user’s main interface has not changed signi: since the early

Improvements in the interface with a computer can benefit both able-bodied and disabled
persons. The conventional keyboard and mouse computer interface can be very difficult
to operate if one has even a mild motor control disability. The development of an

improved interface would not only improve the access, but would reduce the handicap of

not having access to a and therefore signi improve p:



If we consider the possibility of controlling other machines through an improved human-
computer interface, the possible applications broaden significantly. The improved access
to conventional computer applications related to office work now extends to include the
control of robotic work cells which can enhance the quality of life for disabled persons,
and to the control of machinery in harsh or dangerous work places providing an obvious

improvement in work safety.

Researchers have been studying many different hardware and software arrangements.
The hardware include systems for tracking hand/finger gestures, head tracking, eye-gaze
tracking and head pointing. These hardware systems range from completely nonintrusive
tracking systems, which include video tape tracking similar to some gait analysis systems

to attaching sensors to the subject’s head or hand. Each of these systems is more or less

to different icati ing on the i of that particular
application. Generally, if tracking is required over a fairly large area, motion tracking
with attached sensors can be cumbersocme. However, if precise motion tracking over

small ranges is required, attaching sensors can provide large amounts of precise data.

The variation in the software systems being developed is even more diverse than the

hardware systems. There are several issues which must be addressed by software

when building a hi hine interface. Signal Processing techniques used
for gesture segmentation and data filtering must be addressed. The type of hardware used
largely dictates the approach; video tracking requires image processing techniques while
2



attached sensor tracking requires the analysis of streams of geometric and dynamic data.

The next problem is choosing an applicable pattern iti ique. There are
many options and the choice depends on the sophistication of the system. The common
approach is to build a system which can be easily transferred to a wide range of users.
‘This requirement involves designing adaptive software systems, making the system

complex.

Despite the amount of research over the past years, there are currently no commercial
systems capable of fulfilling the various demands for an improved human-machine
interface. Systems have been developed for specific users but these are generally

expensive and not easily transferred to others.

1.1 Scope of Research

The goal of this research is to outline some of the potential pattern recognition techniques
applicable to a sensor based gesture tracking system. Four techniques are described and
tested on a set of six hand gestures. Recognition results for these four techniques are
compared. A brief discussion of some of the implementation issues relating to these
pattern recognition techniques is included. All gestures were analyzed off-line and no

attempt was made to optimize any of the recognition systems.

1.2 Thesis Layout
The following section, chapter 2, includes a discussion of relevant publications in the area

3



of pattern recognition. Specifically, literature related to the areas of gesture, speech, word

and script recognition are included. Chapter3isan i ion to the major

of a gesture recognition system. Chapter 4 provides a detailed description of the four
pattern recognition techniques tested. The testing procedure and recognition results for
the six gestures studied are described in chapter 5, followed by concluding remarks in

chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.0 Introduction
Throughout the research community there is a growing number of projects exploring
gesture, speech, and character recognition. This chapter will provide an overview of

some of the research in the field of

research i to the pi ofahs hine interface.

2.1 Gesture Recognition
Much research has focused on recognizing gestures performed by different parts of the
human body. The gesture types studied have varied considerably, as have the techniques

used for iti at the University of Oxford, have investigated

recognizing arm gestures using accelerometers. The goal is to use natural arm gestures,
measured using accelerometers, to aid people with athetoid cerebral palsy who have

impaired speech and motor control (Harrington et al., 1995).

Six single axis accelerometers are attached to the subject’s forearm to record the gesture

5



movement. Accelerometers have been chosen for people with athetoid cerebral palsy

who have difficulty targeting i with limbs but have ient control to make

dynamic gestures that are recognizable. The computer recognition uses template
matching which measures the difference between the test gesture and the reference
templates. The class corresponding to the reference template which best matches the test
gesture is recognized. Initial results with able-bodied users familiar with the system had
recognition rates around 95% and approximately 80% for the able-bodied users
unfamiliar with the system. Results from users with athetoid cerebral palsy had lower

rates at i 60% (Harril etal., 1995).

Takakashi et al. at the Tsukuba Research Center, have proposed a spotting algorithm to
recognize the meaning of human gestures from motion images. Human gestures are
observed as a sequence of images through a camera, and a spatio-temporal vector field

(edge feature images) is derived. To make the features robust, a spatial-reduction,

temporal i ion, and i ion is adapted to each vector element
(Takahashi et al., 1994). The system consists of an algorithm which extracts spatial-
temporal vector fields (composed of three dimensional edges) from input image
sequences and makes standard sequence patterns that correspond to gestures. The
recognition process consists of spotting recognition by Continuous Dynamic
Programming. Some experiments have been performed to study the influence of clothing

and background variability. The initial results indicate the method is robust against

in clothing and



Birk and Moeslund at the Aalborg University in Denmark have investigated using
principal component analysis as a means of hand gesture recognition (Birk & Moeslund,
1996). A training set of low resolution images for 25 letters from the hand alphabet were
collected and analyzed. They report off-line recognition results at 99%. No recognition
rates were quoted for the online implementation. The gestures studied were static

gestures where the only object in the image was the users’ hand.

A standard form of human-human communication for people with hearing disabilities is
the use of the American Sign Language. This language contains approximately 6000

gestures representing common words and an option of finger spelling for other less

common words. Starner and Pentland at the Institute of T have
investigated using video capture for real-time recognition of a subset of gestures from the
American Sign Language (Stamner & Pentland, 1995). Gestures are recognized using a

set of Hidden Markov models which do not explicitly model the individual fingers.

‘Two experiments were performed using a test set of 500 sentences and a 40 gesture or
word lexicon. In the first experiment the user wore colored gloves, a yellow glove on the
right hand, and a red glove on the left hand. The video images were of the whole person
and not specifically the hands. Wearing the colored gloves made locating and

segmentation of the hands less i This i resulted ina

rate of 96%. The second experiment involved video capture of the same set of gestures

without the gloves. In this i the hue and i i i with

7



skin tone was used to locate and segment the hands. Recognition rates for this

experiment were somewhat lower at 83% (Starner & Pentland, 1995).

Kim at the IBM Research Center, has investigated the on-line recognition of hand
gestures using feature analysis (Kim, 1988). The goal of the research was to improve the

use of ications by providing a gestural means of command control. A

number of gestures are required for a single command. The gesture data is filtered in a
number of stages and finally directional features are used for recognition. Testing was
performed on 18 gestures collected from twenty subjects with a reported recognition rate

of about 80% (Kim, 1988).

Brown et al. have developed an eyegaze and headpointing system to aid persons with

physical and/or mental disabilities to icate in a learning envi The goal

of the project was to determine features, which are currently unavailable, in

assistive The project designed and developed eyegaze
and headtracking hardware and software based on proven educational and training theory
of people with mental retardation (Brown et al., 1991). Testing was performed on
subjects with varying degrees of mental retardation and physical disabilities. The results
with this new eygaze technique are much improved from earlier versions but is still

somewhat primitive (Brown et al., 1991).

Shein et al. at the Hugh MacMillan Medical Center, have developed a software

8



that displays an keyboard, WIVIK (Windows Visual Keyboard)
(Shein et al., 1991). The user can enter text using the WIVIK keyboard which is
displayed in a movable, re-sizeable window, with any pointing device that emulates a
Microsoft Mouse. The possibilities for the pointing device include touchscreens and
headpointing. All window’s options are available and the keyboard can be customized.
No testing was performed using the WIVIK. In-house technical evaluations have been

carried out to ensure the WIVIK does function as desired (Shein et al., 1991).

Tew and Gray, with the Rehabilitation Technology Research Group, University of York,
have used an electronic pointing device to emulate several mouse operations (Tew &
Gray, 1993). The pointing device replaces the mouse movements and the special gesture
movements of the pointer replace the manual operation of the mouse buttons. The special
gesture movements referred to are a left button click, a right button click, hold down

mouse button, cancel last gesture, pause and stationary pointer. The dynamic

gesture iti i utilizes a reference template. The incoming

signals are d to a set of Tests were on 10 normal subjects

with recognition rates ranging from 96-99% for the various gestures observed.

Harwin, at the University of Cambridge, has used The Polhemus 3Space Isotrack to
capture the head gestures of subjects with cerebral palsy. The subjects spelled words,
with the aid of a virtual head stick which conveyed their intention. Harwin then
recognized these gestures using Hidden Markov models. Testing indicated recognition

9



rates were around 90% (Harwin, 1991).

Perricos, also at the University of Cambridge, has also used the Polhemus 3Space
Isotrack to capture the head gestures of subjects with cerebral palsy (Perricos, 1995). The
subjects performed a series of eight gestures which could be used to emulate mouse
movements and mouse button clicking. Perricos used Dynamic Time Warping to

recognize these gestures. Testing indicated recognition rates between 85 and 90%.

Caimns, at the University of Dundee, compared the recognition rates of Dynamic
Programming techniques, Hidden Markov models, and Artificial Neural Networks for
hand and head gesture data collected using the Polhemus 3Space Isotrack (Cairns, 1993).
Able-bodied subjects performed five hand gestures and the disabled subjects performed
gestures they found easy to make. The recognition rates using the Artificial Neural
Networks on data collected from able bodied subjects were not encouraging and further
testing was not performed. The two dynamic recognition methods, Dynamic
Programming and hidden Markov models, performed fairly weil on data collected from

disabled users with 77% and 70% recognition rates respectively.

A wide variety of systems have been developed and tested with some success in
laboratory settings. There is however a gap in the research which links the many

techniques to a system which is applicable to a wide variety of people with varying needs.



2.2 Speech Recognition
Researchers have been searching for a fast and reliable means of speech recognition for a

number of years. One of the more obvious uses of a speech recognition interface is the

fast and easy access to computer word i icati Other uses could include
an improved means of access for many disabled people. Commercial speech recognition
systems are available and computer systems can now be purchased with speech
recognition capabilities. Many of these systems require excessive demands on processing
capabilities making practical use impossible. These systems are generally subject to
interference from background noise and have limited vocabularies. Much research is still

underway to improve these systems.

Companies producing popular software packages like Miscosoft® Windows are

speech it i as additions to their platform packages. Huang
et al. with the Microsoft® corporation have been refining and extending Sponx-II
technologies since 1993 in order to develop practical speech recognition at Microsoft®.
They have developed Whisper (Windows Highly Intelligent Speech Recognizer) which
offers speech input capabilities and can be scaled to meet different computer platform

configurations (Huang et al., 1995). Some features of the system include continuous

speech it peaker-i noise on-line ion, dynamic
vocabularies and grammars. Results based on testing of a 260 word Windows continuous

word

command-and-control task, produced an average speak
error rate of 1.4% on a 1160 utterance testing set (Huang et al., 1995). The system is

11



reported to run in real-time.

Other have i igated isti pattern iti i and their

application to speech recognition. Morgan and Bourlard, with the International Computer
Science Institute, Berkeley, CA, have studied the use of hybrid hidden Markov models

and Artificial Neural Networks to speech recognition problems (Morgan & Bourlard,

1995). The ion to more isti i is to have icability to more
complex systems that can incorporate deep acoustic and linguistic context. These hybrid
systems have been implemented on fairly simple systems only with error rates based on

1000 word vocabulary tests around 5.8%.

Other application areas for speech ition research is the impi ission and

recognition of vocal signals, specifically over telephone lines. deVeth and Boves, with

the University of

gen, are il igatil i which reduce the recognition

due to transfer istics of the mi and the transfer channel

(deVeth & Boves, 1997). This research involves the improvement of an existing method
of noise reduction which in turn leads to higher recognition rates. A data set of 911
utterances of a connected six digit utterance was tested using a hidden Markov model

classifier. The reported recognition rate was approximately 98%.

In addition to imp to the iti i are i
improved voice acquisition systems in an attempt to improve speech recognition rates.

12



Omologo et al. are investigating the use of different numbers of sensors and their
placements (Omologo et al., 1997). An array of directional microphones were arranged
and tested in quiet and noisy environments. A set of Continuous Density Hidden Markov
models were used. The results with the microphone array in the noisy environment
showed an improvement in recognition results relative to results obtained using a single
microphone. Testing using a test set of 2316 words characterized by a word dictionary of

343 words indicated recognition rates at 84%.

2.3 Character/Script Recognition

Areas which can benefit from the improvements in script recognition range from

of banking to an imp means of computer data
entry. Due to the large amount of variation in the character shapes and the overlapping

nature of itten words, i ition is a difficult problem. Many

of ion based word ition, and context based word recognition

are currently being explored. Mohamed and Gader, with the University of Missouri, have

ig using ion-free hidden Markov modeling and ion-based
dynamic programming techniques (Mohamed & Gader, 1996). The segmentation-free

technique is attractive and can improve ition results signi: when

words are not easily d. This ique uses i density Markov
character models to construct word models. The dynamic programming segmentation-
based technique is lexicon based. Each word is further segmented into primitives which
represent single characters. When both of these techniques were tested together, a

13



recognition rate of 97% was reported (Mohamed & Gader, 1396).

Cursive word recognition can also be quite useful when sorting mail by recognizing ZIP
codes. Gillies, at the Environmental Research Institute of Michigan, has researched
discrete hidden Markov models for recognizing handwritten address blocks from the US
Mail service (Gillies, 1992). The approach is to develop hidden Markov models for
individual letters and to combine these models to form a model for each word in the

lexicon. Through a process of feature detection and vector quantization the cursive word

images are into observation which are then analyzed by the hidden
Markov models. Testing was performed on a set of 296 cursive words with a recognition

rate of 73% (Gillies, 1992).

Another popular technique used in pattern recognition and script recognition is Artificial
Neural Networks. Wu et al., with the University of Sydney, are studying a special
network known as the self-organizing map (Wu et al., 1994). The self-organizing map is
a sheet-like network which builds representatives by analyzing input patterns and
determining the most appropriate model. Using classifier based self-organizing maps can
be viewed as a k-nearest neighbor classifier (Wu et al., 1994). The training set included a
set of 10,426 binary images of handwritten digits. This set contained the characters 0,
1,2,3,4,5,6,7,8and 9. Sixty-four features were extracted from these images which
were used in training the neural network. Specifically, Wu et al. proposed using two-
layer self-organizing maps. The first layer classifies the input patterns into subspaces,

14



similar input patterns are self-arranged to be near each other in the map. The second
layer then self-organizes the input patterns and are differentiated into specified classes
using the higher resolution maps located in the second layer. Testing was performed
using a further 10,426 handwritten digits. A recognition accuracy of 97% was reported

based on this test set (Wu et al., 1994).

Other pattern recognition techniques have more recently been applied to handwritten
script recognition including variations of fuzzy logic classifiers. Malaviya et al., at the

German National Research Center for i have i igated using

ic fuzzy rules for ition of itten script (M iyaetal.,
1996). The fuzzy rules used for recognition contain the feature information extracted

from the training data set. The approach is based on a multi-level fuzzy rule based

paradigm. The ion of the itten script is by the first layer or
the low-level layer of the recognition scheme. Malaviya et al. have developed a
dedicated fuzzy language FOHDEL (Fuzzy On-Line Handwriting Description Language)

to some i iguities involved with the fuzzy structural features.

The hybrid approach utilizes fuzzy statistical measures and neural networks in
combination with expert knowledge to enhance the final classification decision. Test set
used consisted of 1800 distinct symbols from ten different writers with a recognition

performance of 92% (Malaviya et al., 1996).

Past research has been extensive and much research is continuing, all pushing towards

15



of an imp hi hine interface. Some commercial systems are
available, specifically in the area of speech and script recognition. There is considerable
room for the improvement of existing systems and specifically the development of new

systems for new applications.



CHAPTER 3

PATTERN RECOGNITION SYSTEMS

3.0 Introduction
Most pattern recognition systems have a similar underlying structure regardless of the
application. The purpose of this chapter is to provide an overview of typical pattern

systems, i hand gesture ition systems. Section 3.1 provides

a iption of a ized gesture ition system, section 3.2 provides a brief

description of the different types of gestures, section 3.3 provides a description of
segmentation techniques, and section 3.4 provides a description of feature extraction and

segmentation through windowing.

3.1 Gesture Recognition Systems

The function of a gesture recognition system is to provide a means of taking the
transduced gestures from the user and of producing some meaningful input or action.
There are a number of common stages to any gesture recognition process as shown in

figure 3.1.



Position & Feature vector

ropesseatiag
— data stream _ mgmenicd
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Feature extraction/ Gestore
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head, arm or band ~ .
Robotic work station,
‘motion scasors

Figure 3.1 - Generalized Gesture Recognition System

The role of each of these stages is as follows:

3.1.1 Transducer

This stage converts movements into a representation useful for further computer
processing. In the work reported here, the gestures are tracked using a six degree-of-
freedom measuring device called the Flock of Birds (FOB) configured to track the
position and orientation of the receiver. Each receiver is capable of making from 10 to
144 measurements per second of each of the three positions, x, y and z, and the three
orientations, roll, pitch and yaw, when the receiver is within 3 feet of the transmitter

(Ascension, 1995).

The FOB ines position and orientation by itting a pulsed DC ic field

that is simultaneously measured by the sensors in the flock. Each receiver independently

18



computes it’s position and ori ion from the ic field ck istics

and this i ion to the host

3.1.2 Feature extraction/segmentation

This stage transforms the data stream representing the position and orientation of the

transduced gesture into data representing single gestures. The segmentation and feature

extraction process can be very difficult and can affect the overall performance of a

gesture recognition system. There are several options to consider in this stage:

3 Segment the transduced data stream into individual gestures by means of a tremor
filter (section 3.3) and extract appropriate features which represent the gesture.
This produces a single feature vector representing a single gesture.

ii. Extract features from the transduced data stream by means of windowing (section
3.4) and segment into individual gestures based on the features extracted or
segment the data stream using a tremor filter and extract features from the

segmented data stream by means of wi ing. This a of

feature vectors which represent a gesture.

The extraction of appropriate features can be challenging. Choosing the features which

best describe the gestures can involve the use of ional statistical feature
by Principal Comp Analysis or by ing features which intuitively represent the
gestures.



3.1.3 Gesture recognition
This stage takes the features ing an indivi gesture and classifiesitasa

particular gesture or as not recognized (spurious). This is usually performed by
comparing it to a predefined set of gestures determined off-line. There are many
techniques available and the choice depends on the system requirements. This stage of
the process is usually the most time intensive for any recognition system (Cairns, 1993).
Typically, the classifier will be restricted to run in real-time which can limit the number

of gestures it can recognize and the degree of complexity of each gesture.

3.1.4 Action

Once the gesture has been recognized, the user’s intention can be relayed to an
application which then performs some task. This stage of the process is application
dependent. For example, hand gestures can be used to control wheel chairs, robotic work

stations or machining equipment.

3.2 Types of Gestures - Static and Dynamic
There are two basic types of gestures: static and dynamic gestures. Static gestures are the
simplest form and represent gestures such as finger spelling languages, where each letter
is represented by a static position and orientation of the hand and fingers. Time varying
movements are not involved in static gestures. Each gesture is represented by a single

vector containing position and orientation data.
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Dynamic gestures are more complex and represent gestures such as the British Sign
Language where each word is formed by the movement of the hands over a time period.
Each gesture is represented by a sequence of vectors detailing the formation of the

gesture over time.

3.3 Tremor Filter
Gestures are a difficult form of data to represent visually especially when they consist of

both positi and angular Before gestures can be analyzed by most

they must be This involves ining the

and the end of each individual gesture.

The average level of movement

of the transduced hand position
readily equates with a measure of

tremor or movement which can

Tremor lovel
8 ; | g
| Sy e —
8
———
—_—
/I"

be used as a means of gesture ]/\l
segmentation. This approach T I
Time index
involves having the user — ~ Threshold
- - - Segment
intentionally provide periods of Figure 3.2 - Tremor Filter

little or no movement between gestures. The tremor filter then detects these periods of

reduced movements or “still” periods at the start or end of each gesture (figure 3.2).

21



The tremor filter consists of a fixed length FIFO (first in, first out) buffer. The tremor in
each axis is measured by taking the variance of the transducer position over the fixed
time span corresponding to the buffer length (Perricos, 1995). The tremor level is defined

as:
x
Y =% 31

where: N = buffer length
j = current dimension of the transduced data vector
x; = i® element of the buffer

X; = mean value of x over the buffer length

If the position does not change in a particular direction or dimension x;; = X, therefore

T; =0. The overall tremor level can be expressed as a Euclidean distance

A
T= : 32
=4

3.3.1 Optimizing a Tremor Filter
Two variables affect the performance of a tremor filter; the threshold value T which

hand from mere tremor and the buffer length N. The

simplest tremor filter is a single threshold filter. A fixed threshold is set and anything
above this threshold is considered movement while everything below this threshold is

22



considered still (figure 3.3). The optimum tremor level here is the level at which the still

probability density function (pdf) and the movement pdf intersects.

A disadvantage to this filter is the possibility that the tremor level may fall below this

threshold during a gesture. Assuming that both distributions are normal, the probability

Still pdf Movement pdf

/ /P\\ /\\

Tremor Threshold Tremor Level
Optimum Tremor Threshold

Figure 3.3 - Error Probability in Single Threshold Movement Detection

of being in the moving state and classifying the hand as still is an « type error (Devore,
1987) represented by the hatched portion in figure 3.3. The shaded region in figure 3.3
represents the probability of classifying the hand as moving while in the still state or 3
type error (Devore, 1987). It should be clear that in this instance it is not possible to
reduce the probability of a beta type error without increasing the probability of an alpha

type error.

From a probabilistic view, a single tremor threshold appears to present the optimum
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solution to the problem. In practice however, errors occurring in the segmentation task

that could lead to a recognition error will result from the tremor level briefly crossing the

threshold level when the hand is in a given state. There are two possibilities here:

i

the tremor in the still state briefly rises above the threshold into the moving state
as would occur in the case of jitter. In this case the jitter would be considered a
gesture.

the tremor in the moving state briefly falls below the threshold value in the middle

of a gesture. In this case the movement is prematurely segmented as a gesture.

‘What is required for a reliable tremor filter is the maximization of the probability of

remaining in a given state once the hand is in that state. In probability theory this

requires minimizing the beta type errors for each state. A practical solution is to have

two tremor thresholds as in figure 3.4. If the hand is in a still state, it is considered still

Still pdf Movement pdf
% 7S
/ N oA \
] X \
————  Moving Tremor Threshold Tremor Level

- - Still Tremor Threshold

Figure 3.4 - Error Probability in Dual Threshold Movement Detection

until the tremor level surpasses the still threshold. Ifthe hand is in a movement state, it is
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considered moving until the tremor level crosses the moving threshold. Gestures are now
required to be more distinct. The hand must be more still at the end of a gesture than
with the single threshold case and the beginning of the gesture will be detected at a larger

hand tremor than with the single threshold case.

The second variable which affects the performance of a tremor filter is the buffer
length. The appropriate buffer length can be determined experimentally. It should be
noted that for a given buffer length the two tremor thresholds are unique and must be

recalculated if the buffer length changes.

3.4 Wis ing - Feature E: ion and

Analyzing a portion or window of the data stream is widely used in signal and image

Transduced data stream

x y z roll Dpitch yaw

oo ow 6k Feature vectors

nonon & 6 6,

5o on & 6 4 3

7S 7 A 6, ¢ «X» Sequence ,,{u
wawa k0 % = = fon
e a o $e  window P gesture
P Y 5

nonon o m 6 X :

X v 5 @& 6 ¢ s

Ko Yo Ze %o ot

Figure 3.5 - Windowing/feature extraction
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The process of ing only a portion of the signal at a time has also been

used in automatic speech recognition systems. A portion of the signal from the sensor,

possibly a mi is generally into the domain for further

analysis. This process can also be applied to the area of gesture recognition. Portions (a

window) of the data stream from the can be (feature

prior to analysis by a recognition system (figure 3.5). This process can allow the
recognition of more complex gestures without having to use more complex features. It is
intuitive that describing a portion of a gesture requires fewer features than the description

of an entire complex gesture.

The window size is an important factor which can affect performance. It is clear that the
window size can not exceed the length of a single gesture. This will make recognizing

individual gestures impossible. The window size should be kept as small as possible

without adding computational expense by over izing a gesture. The
window size can be determined experimentally.

3.5 Feature Space Reduction

Feature selection can prove difficult for a number of reasons. Selecting the appropriate
features which will give the best classification will often lead to selecting a large number
of features. Although this may provide better classification results, with large numbers of

features, ions may become and i i As well, large

numbers of features (increasing the dimensionality of the feature space) will make the
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feature space increasingly sparse if the number of training vectors is not increased.

A number of solutions to this problem exist. Two common solutions are the use of
factor analysis or principal component analysis (Duda & Hart, 1973). Both the areas of
factor analysis and principal component analysis are extensive and will not be discussed
here. Components of each can be used to find a lower dimensional representation by
combining or removing features which are highly correlated and by combining or

removing features which have low inter-feature variance.

A hierarchical clustering procedure can be used to reduce the dimensionality using the
correlation between two features. The correlation between two features can be defined as

(Duda & Hart, 1973)

p,=—= 34

where g is the covariance of the features i and j; 0; and oj; are the variances of features i

and j ively. C features will have p;*=0 and completely

P

correlated features will have p;>=1. If the correlation between two features is above a
specified threshold, those features are combined, or both can be removed without
combining, if sufficient data representation is conserved. A hierarchical dimensional
reduction procedure can be followed (Gamage, 1993).

1. Set d or the dimensionality as the number of features in the data set.
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2. Calculate the correlation matrix of features (ac)).

3. Determine the most correlated pair (ac; and ac;).

4. Combine ac; and ac;, remove one; or remove one or both initially.

5. Adjust dimensionality d appropriately.

6. Gotostep 2.
This procedure can be followed until the desired dimensionality is reached or until the
largest correlation between any two features falls below a preset value. In this thesis, this

procedure was followed until the largest correlation between features fell below a desired

level and then further di i ion was by ing features with

low inter-feature variance.
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CHAPTER 4

TECHNIQUES USED IN GESTURE RECOGNITION

4.0 Introduction

The role of the gesture recognition algorithm is to classify the pre-processed gestures as
one of a set of previously defined gestures, or as a non gesture. There are many pattern
recognition techniques available, examples include heuristic methods, statistical
classification, clustering and template matching, and syntactical methods. Sections 4.1 to

4.5 describe the techniques considered in this research.

4.1 Hidden Markov Models

Hidden Markov models (HMM) have been used extensively in the area of speech
recognition. Recently, however, the use of hidden Markov models has become more
wide spread. The models are very rich in mathematical structure and hence can form the
theoretical basis for use in a wide range of applications (Rabiner, 1989). They have been

used recently in the area of head gesture recognition (Harwin, 1991 and Cairns, 1993).

There are different forms of HMM’s with varying architecture depending on the
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application. The simplest form of HMM and the most widely used is the discrete HMM.
In this instance we consider the process we wish to model to have emitted or produced a
set of discrete observations which can be modeled. The discrete HMM will be discussed

in more detail in following sections.

In certain applications, the limitations imposed by a discrete HMM may not be

acceptable. For these cases a continuous HMM can be used. The principal difference is

that continuous HMM’s have i ion density

4.1.1 A Description of Hidden Markov Models

Before i ing the i ion of a HMM, begin with a conceptual
representation of what a HMM represents. Perhaps the easiest way to illustrate a HMM
conceptually is through the use of Levinson’s genie (Levinson et al., 1983). Consider a
genie who has several urns at his disposal. Each umn holds a number of different colored
balls. The genie picks a ball from one of the urns and shows it to you (a single
observation symbol). He then replaces the ball and selects another ball from another um
(possibly from the same urn). He does this N times after which you have a discrete
observation sequence O, of N observations. The genie does have a preference in

choosing an urm which we do not know.

‘We now wish to determine, based on the set of observations shown to us by the genie, the
number of urns at his disposal and the proportion of colored balls in each un (model
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Once we have ined the rules the genie used to produce the

observation sequence, we can now ine the ility that another

sequence was produced by the same genie using the same number of urns containing the

same proportion of colored balls (recognition).

Consider next a simplified speech recognition example. If the word is broken into a set

of ph the of these can be ized as a parti word. A

different set of phonemes will represent a different word. A subset of these phonemes
taken as an observation sequence can be modeled and used for recognition. It should be
clear at this point that this approach can be applied to many temporal events. The only
requirement is that we have a set of observations which we know represents a word or
gesture (model estimation). We can then use this model to determine the probability that

a different set of observations (patter) was produced by that model.

4.1.2 A Mathematical Description of Hidden Markov Models

A hidden Markov model can be described mathematically by a set of matrices A, B and
w. The matrix A is the matrix of state transition probabilities, the matrix B is the matrix
of probabilities of observing a particular symbol while in that state, and the T matrix is
the matrix of probabilities of being in a particular state initially (Rabiner, 1989).

Determining these matrices is the problem of model estimation and training.
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Figure 4.1 - Generalized HMM Architecture (4 states)

Consider a system with 4 possible states (figure 4.1). In the most general model
architecture, it is possible to move from any given state to another at a given time
(ergodic model). It is also possible to remain in the current state. An arbitrary model for

this system will have a NxN matrix A given by:

all al: * aIN
o G
21 9 v
Y= 4.1
alll aln

where aj, is the probability of moving from state 1 to 2 given you are in state 1.
Assuming that while in each state it is possible to observe one of Q symbols (Oy, Oy,...,

Oy), the model will have an NxQ matrix B given by:
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5,0, 5,(0) -... ,(0)
e £,(0)) 6,(0)) ... b,0) -

5,(0)) 6,(0,) ... 5,(0))

where b,(0,) is the probability of observing symbol O, while in state 1. Finally , the

initial state distribution, can be given by:

= 2 43

where =, is the probability of being in state 1 initially.

It is now possible to completely define a particular HMM (A) using the characteristic
‘matrices:

A=(4,B,7) 44

Given an observation sequence O={O,, O,, ..., O}, model parameters A, B and = can be
estimated which define a new HMM, or O can be used with an existing HMM model to
determine the probability that the observation sequence was produced by that model,
P(O[M). This leads to the issue of how to compute these probabilities, P(O|M), and how
to use a given observation sequence to estimate, or re-estimate, A, B, and w.
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4.1.3 Recognition
Begin by defining the forward probability of the first  symbols occurring and the model
being in state { at time ¢, given the model M.

a'(n =P(0|01...0r,nan(1)=l|‘l) 45

A recursive method can then be used to calculate the probability of the sequences of
symbols up to £+1 occurring conditional on the state, the observation sequence O, and the

model M.

¥
mm(,-)=(z u'(i)au)bl(om) 1stsT-1; 15/ SN 4.6
=

or the ility of the first ion symbol is given by:

a@d=%5(0) lsisN 47

Once the ing forward ili ion has been and e has been

the ility of the ion sequence O being produced given the model
¥
POID=Y e, ® 438

4.1.4 Model re-estimation, training
Model re-estimation is performed using the Baum-Welch algorithm (Rabiner, 1989).
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Define the the

of the symbol sequence from zto T
occurring given the state, the observation sequence O and the model M.

¥
5,(0=Elﬂ,”,(°..‘)p.-.07 1sesT-1 49
i

By is initially set to a N X | matrix of I's.

C

4.6 and 4.9; the of being in state i at time ¢ given the observation
sequence O and the model M can be calculated as:

() B (i) = P(O| M)xP(state(t) =i|0,M)

o= @) B® __=o B &l
PO1M)
LICLO)
To follow a proper probability mass function
¥
Yvm=1 411
=
The of m, or the of state i at /=1 can be written as:
*=Y,®

4.12

Define now another variable £ as the probability of being in state S; at time ¢ and state S;at

time ¢+ given the observation sequence O and the model M:
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a(a b0, )B, ()

EiN =5 413
):;I a®a,b (0, )B,.,0)
The model A can now be it d as:
1
PRI
= 4.14
pIR70)
=
and B can be re-estimated as:
T
‘Z 70)
e
b,y =— 415
DIRT0}
=
Again to follow a proper probability mass function
¥
Ya,=1  1sisN
o 4.16

l;l(k)=l 1sjsN

™M

The probability of an observation sequence O being produced by the Model M car: now
be calculated based on the re-estimated model matrices A and B. For a more detailed
discussion of the theory of hidden Markov models and some implementation issues, refer
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to Rabiner, 1989.

4.2 The Nearest Neighbor Algorithm

One of the decision rules used in this thesis is called the k-nearest neighbor decision

rule. It is a decision rule based on ic estimation of the ity density

for a number of ies. The ic estimation pi is called the

Parzen estimation which provides an estimate of the class conditional densities. For a
set of N independent samples y', y?, ..., y¥, a volume V centered at § and k being the
number of neighbors in consideration, it can be shown that the density estimate can be

expressed as (Therrien, 1989)

5 3
LA 4.17

‘We can fix the number of samples, k, and let the volume V be determined so that the
region around § contain just k samples. We can then define V as that of an
m-dimensional "hypersphere” centered around §. V is the volume of a region in space
defined by

d@,y)sr 4.8

where the distance function d is the Euclidean distance and r is the radius of the hyper

sphere.

Let the radius of the hyper sphere for each class be determined so that the hypersphere
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encloses just k samples of the class, that is r be the distance to the k™ nearest neighbor
of 9. Let N; be the total number of samples of class i and represent the density

function using equation 4.17.

The decision rule for minimum probability of errors becomes (Therrien, 1989)

w
'
KNP, 5 NN, +N)

EINV, < N /(N +N,)
v,

4.19

%

Vl
or 2
v,

AV

A

This decision rule fixes the number of samples of each class and compares the volumes
of the two hyper spheres. This is the grouped form of the nearest neighbor decision

rule.

If V, is smaller than V,, this implies that there are more samples of w, in the vicinity of

§ than are samples of w,. The point § is therefore assigned to w.

Another form of the k-nearest neighbor rule, and probably the most common, is the
pooled form. The hyper sphere around § is determined to include k total samples
regardless of class. This procedure results in equal volumes for the two classes and a
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different number of samples k; for each class. The decision rule becomes

=z

|-
EAv

§ is assigned to the class that has the largest number of samples in the hyper sphere (k

should be taken to be an odd number to avoid ties).

There is the possibility here to have weighted decision rules. That is if there is loss

with choosing a parti class, the ithm can be weighted or biased to

only choose the class which may cause damages when the vector is clearly a member of

that group.

4.3 Mahalanobis Distance Classifier

The Mahalanobis distance classifier (Therrien, 1989) uses a discriminate function to
classify an unknown gesture. This parametric classifier uses the training data for
parameter estimation only and this data is not used during classification. The assumption
here is that the underlying data is normally distributed along each feature axes. This
leads to the assumption that the class clusters are hyper-ellipsoids. The discriminate

function is defined by:

dist =(F-m ) K (F-mi) 4.21
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where: X is the unknown gesture
; is the mean of class i

K is the inverse of class i covariance matrix

‘The Mahalanobis distance to the mean of each class is calculated, and the unknown

gesture is i as the class ing to the mini distance. The inclusion of
the class covariance matrix K; in the distance calculation provides a measure of the
variance in each feature axis and the correlation between features. Feature axes with high

variation will factor differently than those with low variation.

The training gestures are used only to determine the class means, m;, and the class

covariance matrices, K;. This classifier is much faster than the k-nearest neighbor

classifier.
4.4 Vector Quantization
Vector ization is an i ication related to ing which has been

widely used in the field of digital signal processing and communication. It is often used

asa to a Dynamic P ing or hidden Markov model classification

techniques used in many speech recognition systems. The range of possibilities which
describe a gesture can be divided into a number of levels. Given a sample gesture, it will
be denoted by a discrete value representing the particular level which best represents it.
Figure 4.2a illustrates how a continuous event can be transformed into a series of discrete
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values. Figure 4.2b illustrates how vector quantization can be used to map each discrete

value to a reproduction vector.
g Zoe  ®
o ~ .
~ \. = .
& i *
ot o on o o 1 2 3 s
Time —p Time index —p»

Figure 4.2a - Sampling and Quantization of a Signal (Therrien, 1989)

Consider an N level k-dimensional * cell
G KA, 4 7%

¥(te) L . \

=AY

I

quantizer as a mapping, q, that assigns

to each input vector, X=(X,, ..., Xi.,), @

reproduction vector, x = q(x), drawn <

from a finite reproduction alphabet,

A={y; i=1, .., N}. The reproduction
alphabet (or codebook) A, and the Figure 4.2b - Vector Quantization (Therrien,
1989)

partition, S={Si; i=l, ..., N} of the

input vector space into the sets Si={x: q(x)=y;} of input vectors mapping into the i*

vector (or ) describes the quantizer q (Linde et al.,

1980).

Assuming the distortion caused by the mapping of the input vectors is some non-negative
value denoted d(x,%), the goal is to minimize this distortion during mapping. There are
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many different distortion measures. The most common for mathematical convenience is

the squared-error distortion given by:

s
a9 =X k-5 42
=

The process of mapping an input vector follows four steps.
(1) Initialization: For an N level quantizer, with a distortion threshold €20, an

n-1}, set

initial N-level reproduction alphabet A,, and a training sequence {x;; j=0,

m=0 and D;=e.
-1}, find the minimum distortion partition P(A,)={S;;

(2) Given A, ={y;; i=
i=l, ..., N} of the training sequence: X;€S; if d(x;, y)<d(x;, ¥,) for all . Find the average

distortion

o
D_=D({A_.P(A)}) =%§ ,':;" d(x,) 423
Rred,

(3) Determine if minimum distortion is reached:
®,,-D YD, se 424

If the distortion is below the minimum threshold, halt with A, as the final reproduction
alphabet, otherwise continue to step 4.
(4) Find the optimal reproduction alphabet X(P(An))={X(S); i=1, ..., N} for P(A,).

Set A,,.; 2 x(P(A,)). Replace m by m+1 and goto 2.
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‘While designing the quantizer, only partitions of the input alphabet or training sequence
are considered. Once the final codebook A, is obtained, it is used on new data outside
the training sequence with the optimum nearest-neighbor rule or an optimum partition of

k-dimensional Euclidean space.

4.4.1 Choosing an Initial Reproduction Alphabet
There are several ways to choose the initial reproduction alphabet A,. One method is to
use a uniform quantizer over all or most of the source alphabet. A second technique,
“splitting”, is useful when a quantizer is to be designed of successively higher rates until
achieving an acceptable level of distortion. Consider a M-level quantizer with M=2%,
R=0, 1, ... until an initial guess for an appropriate N-level quantizer is achieved. A
simple algorithm using this technique (Linde et al., 1980) is:
(1) Initially set R=0 (M=1) and define A,(1)=x(A), the centroid of the entire
alphabet.

(2) Given the ion alphabet A (M) ining M vectors {y; i=1, ..., M},

“split” each vector y; into two close vectors y;+€ and y;-€, where € is a fixed
perturbation vector. The collection A of {y;+€, y;-€, i=1, ..., M} has 2M vectors.
Replace M by 2M.
(3) If M=N, set A,=A (M) and that is the initial reproduction alphabet. Ifnot, run
the same procedure for an M-level quantizer on A (M) to produce a good
reproduction alphabet A,(M) and return to step 2.

Using this splitting algorithm on a training sequence, the initial quantizer is a one-level
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quantizer consisting of the centroid of the training sequence. This vector is then “split”
into two vectors and a two-level quantizer algorithm is run on this pair to obtain a good
two-level quantizer. Each of these two vectors is then split and the algorithm is run to
produce a good four-level quantizer and so on resulting in fixed-point quantizers for 1, 2,

4,8, ..., Nlevels.

4.5 Rule-Based Gesture Recognition

This section describes the generation of rules which can be used to recognize gestures.
The statistical theory required to estimate the underlying probability density functions
(pdf) for each class is outlined initially. The process leading to the generation of rules is

then described. A short iption of the ication of these i as applied to

known underlying distributions (the Gaussian distribution) is included to illustrate the

effect of varying li and to the

4.5.1 Estimating the Underlying PDF

Consider a set of m features ac,, k=1,2,...,m. This set of features adequately describes a
single gesture, C;. There are n samples of this gesture; the feature vector representing this
gesture is m columns wide and n rows long; ac=(ac,, ag,, --., 8&,,). The rules for this
gesture will be centered around the high density regions of the R™ feature space. Itis
therefore necessary to estimate the density function. The procedure for estimating the

density function is described below (Gamage et al., 1996).



The probability P that a feature vector ac of group C; belonging to the region R is given
by

P~ pladC)dac 425
where p(ac|C,) is the multivariate conditional probability density function, given that the
class is C;, the probability density function of ac. With n samples of class C; drawn from
the density function p(ac|C;), the probability that k samples belong to the region R is

given by the binomial law

n .
P,’[ 1,)" ta-pyt 426

The expected value of k is given by E(k)=nP. The maximum likelihood estimate for P is

given as

o
P== 427
n
If the region is assumed to be small, P can be approximated as
P = placiC)dac=paciC)¥ 428
R s

where ac is the point within the region R and V is the volume of the hyper cube enclosed

by R. Combining 4.25, 4.27 and 4.28 p(ac|C;) can be estimated as
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sadc) = 5:,1 429

If the sample size is large, k/n will converge to P. For fixed volume V, p(ac|C)) is an

average of p(ac|C;)

p [ pladCpdac

T

BlaelC) = 430

With a finite sample, V can be expressed as a function of n. Generally, as n increases V
should decrease. For a univariate case the length h should decrease as n''* (Gamage et

al., 1996). Generalized for m-dimensions, the volume can be expressed as

4.31

The h in equation 4.31 is the size of each subrange. With all feature vectors normalized
over their respective ranges, h can be the same for each class. In m-dimensional space h
can also be considered as the length of each side of the hyper cube. Determining the size
of h is shown in an illustrative example of the reproduction of several Gaussian

distributions.
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Define the function ¢(u) as

1
@ ={1 |qu; k=1.2,...m 432
0 otherwise
This function ¢(u) defines a unit hyper cube in m-dimensional space centered at the
origin. The function
2] b ge,an e ax
is a unit hyper cube centered at ac and will be unity if ac; belongs to the hyper cube of

volume V,. The function will be zero otherwise. The number of samples k, in the hyper

cube can now be determined as

) where ac, ge. € C, 4.34

k”='2:‘:

The estimate of f(ac|C;) can now be written as

1y 1 ac
sacicy=13 Lo &
padc)=2 3 ,,‘0{ = ) 435
The window size defined by the sub-range height h is an important factor in determining
the estimate of p(ac|C;). The number of times this window is sampled over the feature
data is also important, known as the step size. The effect of the variation of these
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variables on the ability to reproduce a known distribution is discussed in section 4.5.3.

The high density regions will correspond to the local maxima of f,(ac|C;), which can be
determined by taking the partial derivatives of f,(ac|C;) with respect to each feature ac,
and equating to zero. The second partial derivatives with respect to all features, must be

negative for a maximum. This can be written as

%,adc) =0 k=12
o for k=12,..m

4.36
&p (aclC

C‘

4.5.2 Rule Generation

With an estimate of the underlying probability density function for each class, the next
step is to generate the rules used for recognition. Using Bayes theorem
P(Cjac)=p.(aciC)P(C;); where P(C) is the a priori probability of class C;. Consider a
single mode one dimensional case (a single feature). The estimate of p(ac|C;) is

illustrated in figure 4.3

The gray shaded region between ac, and ac, represents the rule for this class. The area of
the shaded region is set equal to the area under the curve from ac, to ac,. That is, the

window height w is given by



f p(aciC )P(C,)dac 437

o
(ac, ‘nc)

The single rule for this class will be IF ac, <ac < ac, then the class is C,. The

intersection between the curve and a predefined threshold determine the values of ac, and

2
§ P(aciC)P(C)
2 e
2 Aj
3
3 | id
£ w | Threshol
R
S — \\‘ o
LAl
3 = =

Figure 4.3 - Probability Density Function of Single-mode, Single Class and
Selection Window for Rule Generation (Gamage, 1993)

ac,. The threshold can be determined through an iterative process. A minimum

allowable error is selected and to the error iated with the set

level. The error is given by

"
error=1- [ p(aciC)P(C)) 4.38
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This is the probability that a given feature vector ac, will fall outside the rule window and

not get classified.

A slightly different approach to rule generation is outlined by Gamage (Gamage, 1993).
This technique uses the possible relationships among the features within each group to
generate rules. The process is illustrated in figure 4.4 by a connectivity diagram. The set

of m features are arranged in columns of ascending order. The data values of each feature

Feature 1 A relationship  peature 2 Feature m
(ac,) line segment (acy) (ac,)
\
AC, ————————— ACy AC
- = R .
ACw - A relationship A Ac.,
AC,, 5 AC,, wmmm m—— ic_,,
AC., A ACy AC,,
Overlapping
relationships
AC,, Acy, AC.,

Figure 4.4 - A Generalized Connectivity Diagram for Rule Generation (Gamage,
1993)
for a particular group are plotted in the corresponding column. The feature corresponding
to a particular gesture are joined by line segments. A relationship is formed by the m-1
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lines connecting a single gesture. The subranges for each column are determined by a
‘window and the number of relationships that fall within that subrange is maximized. The

subranges are denoted AC,; where k, i and j are the feature number, the subrange number

and the group number respectively. The rules for a parti group are ined by

the density of the relationships in that group.

4.5.3 An Illustrative Example
The variation of the sampling window si ined by h and the ling rate
determined by the step size will alter the of the estis d ility density

function. As an exercise in predicting appropriate window and step sizes based on the
sample size, data was collected from known distributions and the probability density
functions estimated. A set of 200 data points were sampled from the normal distribution,
normalized to force the data between 0 and 1 and the techniques detailed in section 4.5.1

applied. The resulting distribution estimate is shown in figure 4.5.

The window size h in this example is set to 0.3 and the step size is 10. This means that
the data were sampled step/h=33 times from the range from 0 to 1. At each step the
density of the window of length h=0.3 was estimated resulting in the curve shown. The
combination of this particular h and step size for a sample size of 200 reproduces the

normal curve reasonable well. Again this example will have a single rule for each class.

51



25

-
o

-

Probability Density

o
o

0
0 10 20 30 40

Figure 4.5 - Probability Density Reconstruction of Data Sampled
from the Normal Distribution

Next consider a 2-D case; 2 features with 2 modes. Figure 4.6 is a plot of two offset
normal distributions reconstructed from a data set 200x2 sampled from the normal

distribution.

Again the window height is set to h=0.3 and the step size is 10. Instead of simply moving
the sampling window along a single axis as in the 1-D case, now the window estimate of
the density is stepped along each axis in turn. The contour lines shown under the curve
now represent intersections of a threshold plane and the probability density estimate. The
error associated with each of the threshold values is now unity minus the volume under
the curve bounded by the contour corresponding to that threshold. For cases with more
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Figure 4.6 - Probability Density Function of a Two-mode, Single
Class, Two Feature Case

than two features required to describe the classes to be recognized, it is not possible to
visually represent the surfaces or the contours. The probability density estimates will be
hyper surfaces with the thresholds as hyper planes. Figure 4.7 details the contour plot for

a particular threshold value in the 2-D case shown in figure 4.6.

Again the contour lines correspond to the intersection of the surface to the threshold

plane. This class will have two rules (two mode distribution) defined by the

regions overlaying the contour lines in figure 4.5. The area of each rectangular region
equals that of the contour it represents. The rules for this example are:

Rule 1: IF ac,, <ac, <ac;; AND ac; <ac, <ac;,

Rule 2: IF ac,; < ac, < acy, AND acy; <ac, <acy
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Figure 4.7 - Contour Lines at Threshold Plane with Overlaying
Rule Windows

An unknown feature vector ac=[ac, ac,] must satisfy either Rule 1 OR Rule 2 to be
classified as class 1. Unclassified feature vectors can be classified as belonging to the

class with the highest a priori probability P(C;).

The error i with this ification can again be esti: as the ility that

ac lies outside the acceptance windows orwhere R; is the region bounded by the contour

error =1 -t fkp@c,)r(cl)dgg 439
Tl

traced by the intersecting threshold plane and p is the number of regions or the number of
high density points intersected by the threshold plane.

54



CHAPTER 5

APPLICATION TO HAND GESTURE RECOGNITION

5.0 Introduction

This chapter summarizes the results from the application of the four pattern recognition

techniques described in chapter 4. The four i are evaluated by
recognition results for six hand gestures. A set of four features were selected and used
with all four techniques. All the analysis and classification code is written in Matlab

version 4.2¢.1. The algorithms are included in Appendix B.

5.1 Data Collection

All gestures collected and analyzed during the development of the individual scripts were
collected from the author. A single transducer was held in the right hand and each set of
gestures was performed. The transmitter was placed on a wooden desk approximately
one foot from the user. The sensor was moved in a hemisphere above the plane of the

within a range of il one to two feet from the

transmitter at all times. During initial data i i it was ined that

at locations near the plane of origin of the vertical axis (z axis) of the transmitter, an
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CPU - Data collection
FOB - Flock of Birds

Figure 5.1 - Data collection setup (top view)
unusually high amount of noise was introduced. This noise was possibly due to field

asymmetry at the plane of origin. To avoid this problem, the sensor was operated in a

above the hori: plane i ing the origin of the z axis. Figure 5.1

the of the itter and the ing volume for the sensor.

Care must be taken at all times to minimize the amount of magnetic interference

into the i i of the sensor. Specifically ferrous material

placed between the transmitter and the sensor will cause significant “warping” of the

magnetic field by the itter and can i reduce tracking

accuracy.

Six hand gestures have been collected and analyzed. Two dimensional representations of
these gestures are illustrated in figure 5.2. A number of gestures have been studied by
several researchers in the past and the choice here is arbitrary. The six chosen could be
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Figure 5.2 - Gesture Types

used for mouse button clicking emulation or as instructions to an assistive device. A total
of one hundred samples for each gesture were collected. The selection of an appropriate
gesture type is dependent on the nature of the human-machine interface being designed.
Hand gestures similar to those studied here may be useful in systems controlling robotic
work cells. The six hand gestures chosen here illustrate how some pattern recognition
techniques can be applied to gesture recognition problems. All gestures were collected at
a sampling rate of 60 Hz, recording both the position and the orientation of the sensor.
The gestures generally covered a range of approximately two feet with a duration of

approximately 2-3 seconds.

5.1.1 FOB Calibration

The gesture data was collected using the Flock of Birds data collection unit. This
tracking system uses a pulsed DC magnetic field and is therefore influenced by
surrounding metallic interference. The actual influence on the motion recorded by the
unit will depend on the amount of interference. To estimate the amount of distortion in
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Dynamic Calibration Test

Zdirection (in)

3diredion (in)
Figure 5.3 - Dynamic Calibration Test
the collected data two calibration tests were performed. Both tests were performed in the
same workspace in which the gestures were collected. The first test performed was a
dynamic calibration test. This test was performed by allowing the receiver to swing on a
pendulum in the y-z plane relative to the transmitter. The data was collected at 60 Hz, the
same collection rate used for gesture tracking. The arc created is shown in figure 5.3.
The pendulum was allowed to make nine consecutive sweeps. At the bottom of the arc,
separation in the path of the sensor between each consecutive pass is evident. Figure 5.4
is a zoom image of the lowest point in the arc shown in figure 5.3. The actual amount of
variation in the recorded z position of the sensor is approximately 0.1 inches over a travel
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Figure 5.4 - Dynamic Calibration; zoom image

of approximately twenty inches in the y direction. This amount of error is relatively

small and can be considered quite acceptable for the purposes of gesture tracking.

A second calibration test was performed to estimate the static accuracy of the data
collection system. The sensor is moved a known distance and the difference between the
recorded distance traveled and the actual distance is compared. This test was performed
by mounting the sensor on a plastic vernier caliper. The caliper was then opened to 2
inches. The data was collected while the calipers were slowly closed from the 2 inch
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opening to the fully closed position (zero inches). This was repeated ten times for both

the 2 inch opening and a 4 inch opening. The difference between the beginning position

and the final positions for each test is calculated using equation 5.1 and compared to the

actual distance traveled.

5.1

where X, y;and z, are the final x, y and z positions respectively and x;, y; and z; are the

initial x, y and z positions respectively. Table 5.1 is a summary of the test results.

Table 5.1 - Calibration Results

2 inch travel (in) 4 inch travel (in)

1.92 392
1.99 3.93
2.01 3.95
1.96 3.88
197 3.89
1.93 397
2.00 391
1.94 3.89
1.97 3.89
191 3.88

mean: 1.96 mean: 3.91

max: 2.01 max: 3.97

min: 1.91 min: 3.88

standard deviation: 0.0341 | standard deviation: 0.0309
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The vernier calipers used have an error of +:1/128 (0.008) inches. Including user error, it
is reasonable to expect an error of +0.01 inches. The resuits indicate that the sensor in
both cases has underestimated the actual distance by approximately 2%. Since gesture
tracking involves monitoring positions over relatively large movements, this error level is

quite acceptable.

5.2 Gesture Segmentation

Each of the one hundred individual samples of all six of the gestures, are segmented using
a two threshold tremor filter. The success of a tremor filter is partially controlled by the
user during data collection. The user must intentionally hold the transducer still for
approximately a second at the end of each gesture. The upper and lower tremor
thresholds were optimized manually. Plotting the tremor level over several gestures will
provide initial threshold levels. Knowing the number of gestures in a particular gesture
set, the threshold levels were then adjusted until the desired segmentation was obtained.

The threshold levels used in the tremor filter are:

Tiower =0-1
The buffer length is largely determined by the sampling rate used during data collection.

Using a sampling rate of 60 Hz and a buffer length of 30 with the above thresholds

resulted in good gesture ion. Each of the indivi gestures were
then mapped into a set of feature vectors.
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5.3 Feature Extraction
The feature extraction and selection process begins with the extraction of a large feature
set. This feature set is then analyzed and redundant features are removed. The initial
feature set was:

1) maximum position in the x direction

2) maximum position in the y direction

3) maximum position in the z direction

4) minimum position in the x direction

5) minimum position in the y direction

6) minimum position in the z direction

7) maximum difference in the x rotation

8) maximum difference in the y rotation

9) maximum difference in the z rotation

10) mean curvature estimate
These features are simple to calculate and are spatial measures which can be used
intuitively to describe motions. These features are calculated relative to the axis of the
field emitter.
Features 1,2,6, and 8 were removed due to a high correlation between the feature sets.
Feature sets with a correlation greater than p=0.8 had one of the two highly correlated
features removed and the remaining feature set was rechecked. Again feature sets with a
correlation greater than p=0.8 had one of the two highly correlated features removed.
This procedure was continued until no two feature sets had a correlation coefficient above
p=0.8. The remaining six features were then compared in terms of their variance. The

two features with a lowest variance were removed leaving the final feature set:

1) maximum position in the z direction
2) minimum position in the x direction
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3) minimum position in the y direction

4) maximum difference in the z rotation
This feature set was used for the four pattern recognition techniques studied. The number
of features is somewhat restricted by the size of the training set. The size of the feature
set should be kept as small as possible to avoid making the training data in feature space
too sparse. Based on a training set of 100 for each gesture, a four dimensional feature

space maintain’s a sufficiently dense feature space.

Feature ion is a very i of gesture ition systems and

often involves an iterative process of choosing a number of features, feature space
reduction, and testing using the chosen pattern recognition technique. For the purposes of
comparing techniques this iterative process is unnecessary. The goal of this research is
not to obtain the highest possible recognition rates for this set of gestures, but rather to
evaluate the performance of each technique relative to the other for the same gesture set

using the same set of features.

The k-nearest neighbor classifier, Mahalanobis distance classifier, and the rule based
classifier all classify gestures based on features extracted from the entire gesture. This
results in a feature set representation for the average of the gesture data. Each gesture,
which contains approximately two hundred data points, is now represented by a set of
four features. The six hundred gestures (one hundred gesture 1, one hundred gesture 2
etc.) are described by a matrix of numbers 600x4; 600 rows for the gestures and four
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columns for the features.

The hidden Markov models use a different approach to pattern recognition which must be
considered at the feature extraction stage. The HMM method of pattern recognition
accepts a sequence of observations which represent a single gesture. The first stage in
transforming the transduced gesture data into sequences is to extract features at intervals
along the gesture. The segmented gesture data is windowed at intervals through the
duration of the gesture. At each interval, the gesture data over a certain range or window
size is used to extract the four features. The interval is increased and again the gesture
data in the windowed region is used to extract the four features. This process is
continued to the end of the gesture and results in a series of feature sets for each gesture.
It is obvious that a single window over an interval of the entire gesture will produce the
same result as the feature extraction process for the k-nearest neighbor classifier, the

Mahalanobis distance classifier and the rule based classifier.

The windowing interval will depend on a number of factors. A gesture which involves
many small detailed movements over relatively short distances or time spans will require
a very small window size. Gestures such as the six studied here contain no small detailed
movements, allowing a larger window size. The window size was chosen as a function of
the gesture length, specifically 1/8 times the gesture length resulting in a series of eight
feature sets. This series of features is then analyzed by a vector quantizer to produce the
observation sequences required by the hidden Markov models.
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5.4 K-Nearest Neighbor

The k-nearest neighbor is a non-parametric classifier which uses all the training data
when classifying an unknown gesture. This classifier is possibly the simplest to
understand and to implement. The results of a k-nearest neighbor test provide a good
indication of how well the classes cluster and how much separation between the class

clusters is present.

The feature data from the feature i ithm must be ized prior to testing

with the k-nearest neighbor algorithm. A simple method of normalizing the feature set is
to divide each of the four features by its maximum possible value. The same
rormalization factor is used for all gestures in the training set and for subsequent
unknown gestures. Normalizing will force all feature vectors in the range from O to 1 in

all dimensions.

The decision rule for the k-nearest neighbor rule is a distance comparison. The Euclidian
distance from an unknown gesture in feature space (feature vector) is compared to all
other known feature vectors. The unknown gesture is classified as the class containing
closest k feature vectors. To avoid ties, k is chosen to be an odd number. Testing of the
k-nearest neighbor algorithm was done setting k=1, k=3 and k=5. The recognition results
for k=1 are given in table 5.2 in a confusion matrix. The general form of a confusion

‘matrix can be written as:
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The diagonal elements (Cy 5, C52, 33, Ca4» Cs;5» Cs,6) Of the matrix are the number from each
class correctly classified. For example ¢, , is the number correctly classified as class 1,
¢, is the number correctly classified as class 2 and so on. The remaining elements
represent the numbers incorrectly classified as other classes. The element c,, is the
number of gestures from class 1 which are incorrectly classified as class 2, ¢, is the

number of gestures from class 2 incorrectly classified as class 1.

All recognition results for the k-nearest neighbor tests were obtained using the “leave-
one-out” technique. This technique allows the use of all training data for testing without
biasing the recognition results. Each gesture is removed from the training set and
classified using the remaining training set. It is then replaced and the next gesture is
removed and it is classified using the remaining training set. This process is continued

until all gestures have been removed and classified.

The results for the k-nearest neighbor test with, k=1 neighbor, given in table 5.2 are for
one hundred of each of the six gestures. Gestures 1 and 2 have the highest recognition
rates at 100% and 99% respectively. Gesture 3 has the lowest recognition rate at 88%.
The highest confusion rate is between gesture 3 and 4 at a rate of 8%.
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Table 5.2 - Confusion Matrix; KNN - k=1

100 0 0 ] 0 0
[ 9 0 1 0 0
[ 0 88 8 4 0
o 0 7 93 o 0
1 0 3 [ 96 1
[ 0 0 [ 3 97

The results of the k-nearest neighbor test with, k=3 neighbors, given in table 5.3 again are
for one hundred of each of the six gestures. Gestures 1 and 2 have the highest recognition
rates at 100% and 99% respectively. Gesture 5 has the lowest recognition rate at 93%.
Gestures 4 and 5 are confused with gesture 3 at a rate of 5%. The next highest confusion
rate is between gestures 3 and 5 which are confused with each other 3% of the time.

Table 5.3 - Confusion Matrix; KNN - k=3

100 0 0 0 0 0
[} 9 0 1 0 0
(] 0 9% 1 3 0
[} 0 5 95 [ 0
1 0 5 0 93 1
[ 0 0 [ 2 98

Gestures 1 and 2 are the simplest and most distinguishable of the six gestures which is
indicated by the perfect recognition rates for both. The confusion of gesture 4 as gesture

3, and of gestures 3 and 5 with each other, is somewhat expected as these gestures are
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similar differing only in the mid-point movement of the gesture.

The results for k=5 neighbors in table 5.4 are very similar to those obtained for k=3
neighbors. The recognition rate for gesture 5 increased slightly to 94%. The lowest
recognition rate is now for gesture 3 at 91%. The greatest confusion remains between
gestures 4 and 3 and has increased slightly to 7%. The highest recognition rate is 100%
for gesture 1.

Table 5.4 - Confusion Matrix; KNN - k=5

100 0 0 0 0 0
0 99 0 1 0 0
0 0 91 2 2 0
0 0 6 94 0 0
1 0 4 0 94 1
0 0 0 0 2 98

The results of both tests of the k-nearest neighbor classifier, with k=3 neighbors and k=5
neighbors, indicates that the data cluster reasonably well. Increasing the number of
neighbors, k, did not improve the recognition results. The recognition results for k=7 are
100%, 99%, 87%, 86%, 92% and 97% for gestures 1 to 6 respectively. The average

recognition rate is 94% which is a decrease in performance.
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5.5 Mahalanobis Distance Classifier

The Mahalanobis distance classifier is a parametric classifier. The training data is used
only for class parameter estimation. It is similar to the k-nearest neighbor classifier in
that it uses a distance measure to classify unknown gestures. With this classifier
however, the distance used is not the Euclidian distance and the distance to each of the
feature vectors in the training set is not calculated. Instead the Mahalanobis distance to
the mean of each of the class clusters is determined. The unknown gesture is classified as

the class with the minimum distance.

The parameters used are the class means and the class covariance matrices. As with the
k-nearest neighbor classifier, the features were first normalized. The class means were
estimated by simply taking the mean of each feature set for all six gestures. The class
covariance matrices were then estimated. The diagonal elements of the matrix are the
variances of each feature set (matrix column). The square root of the diagonal elements

is the standard deviation of each feature set. The ining elements are an indication of

the correlation between the features.

Although the features were normalized prior to the calculation of the class means and the
class covariance matrices, this method can compensate for some scale changes between
the features. However, if the scale differences are significant or the feature sets are
highly correlated, the inverse of the class covariance matrices can become unstable
resulting in unreliable recognition results. A check is to first calculate the condition of
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the covariance matrices before inverting and to remove or combine highly correlated

features.

The recognition results for the Mahalanobis distance classifier given in table 5.5
generally show a slight decrease relative to the results obtained from the k-nearest
neighbor classifier test. The highest recognition rate is 100% for gesture 1 and the lowest

recognition rate is for gesture 3 at 70%. The ion rate for i

ying
gesture 3 as gesture 4 at 29% is somewhat surprising. Although these gestures are
similar, the k-nearest neighbor classifier recorded a 1% confusion rate. This result is a

clear indication that the i ion for the cluster of data representing

gesture 3 data has lost valuable information. The use of the class mean and covariance
‘matrix assumes the data are distributed normally along each feature axis.

Table 5.5 - Confusion Matrix; Mahalanobis distance

100 0 0 o 0 0
0 99 0 1 0 ]
0 0 70 29 1 0
0 0 2 98 0 0
0 0 6 0 90 4
0 0 0 0 7 93

The variance along each axis can differ meaning the clusters are not assumed to be hyper

spheres. In fact, using these parameters to represent the class data assumes the class

clusters are hyper ellipsoids. A possible ion for the low ition results for
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gesture 3 is that the data may be skewed along one or more of the feature axis. Using the
normal assumption in this case will misrepresent the data and may cause an overlap in the
hyper ellipsoids representing gesture 3 and gesture 4, which would in tun lead to
classification errors. Figures 5.5 and 5.6 are normal probability plots for features 1 and 2
of gesture 3. Both plots indicate that the gesture data is not normal. The data would lie
along the line in each plot if the normal assumption were valid. Also at issue here is the
question of whether the classes are convex. The parametric representation of the class
clusters is possible following assumptions regarding the shape of these clusters. The
decision rule which ideally separates these clusters also assumes a shape. The low

recognition rates here may be caused by the actual shape of the class clusters not

ing the ions made ing their shape.

Normal Probability Plot
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Figure 5.5 - Normal Probability Plot, Gesture 3, Feature 1
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Figure 5.6 - Normal Probability Plot, Gesture 3, Feature 2

5.6 Rule Based Recognition

The rule based iti ique involves estimating the ility density

functions (pdf) of each class. The pdfis estimated for each feature pair. The plots of the
pdf estimates for each feature pair for all six gestures are given in Appendix A. Using

four features the feature pairs are: features 1 & 2, features 1 & 3, features 1 & 4, features
2 & 3, features 2 & 4, and features 3 & 4. Each gesture has six pdf estimate plots for all
possible feature pairs. An example of a pdf estimate for gesture 3, using features 2 & 3,

is given in figure 5.7.
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feature 2 C feature 3

Figure 5.7 - pdf estimate; gesture 3 (features 2 & 3)

The step size used was 10 with a window size h=0.3 as proposed in the illustrative
example in section 4.5.3. This combination adequately reproduced a known pdf shown in
figure 4.6 and produces relatively smooth pdf estimate plots for each of the feature sets

for the six gestures.

The pdf estimate shown in figure 5.7 is single mode and has its peak located in a corner
of the horizontal plane. It should be noted that the horizontal axis labels range from 0 to
40. Although all input feature vectors were normalized between the range from 0 to 1,
the combination of a step size of 10 and a window size h=0.3 means the window will step
10/0.3=33 times to cover the range from 0 to 1. The axis labels shown in the figure are
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step indices and not feature values.

The rules are generated from the pdf estimate plots by mapping the intersection contour
of a threshold plane parallel to the feature axis plane and the surface. The threshold level
is set at 0.6 times the peak value of the surface. The intersection of the threshold plane
and the surface for the pdf estimate in figure 5.7 is shown in figure 5.8.

Since the pdf estimates and the rules are generated automaticatly, there is no need to
approximate the intersecting area with a rectangle of the same area, as described in
section 4.5.3 and figure 4.7. The data used to generate the contour shown in figure 5.8 is
output from the rule generation algorithm in the form of a 33 x 33 matrix of zeros and
ones. At locations inside the contour region, the matrix entries are equal to one. All
other entries in the matrix are zeros. This provides a simple method for determining if an
unknown feature vector falls in the region bounded by the contour plot or outside. If the
matrix entry is one, the unknown feature vector will pass the rule. If the matrix entry is

zero, it will not.

The remaining rules are generated for all six gestures using this procedure. Each gesture
has six two dimensional rules, similar to that in figure 5.8, corresponding to all possible
combinations of feature pairs. It is possible that when a pdf estimate is multi-modal,
there will be more than one intersecting region. In such a case, figure 5.8 would have
several acceptance regions. Feature vectors inside either of the regions will pass that
rule. This method provides a means of generating rules that have no boundary shape
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Figure 5.8 - Threshold Intersection

restrictions or restrictions on the possible number of acceptance regions.

‘The unknown gestures are tested using all six rules for each of the possible six classes.
Classification is performed by assigning the unknown gesture to the class which has
passed the most rules. The recognition rates are given in table 5.6. The highest
recognition rate at 100% is for gesture 1. Gesture 3 has the lowest recognition rate at

65%. The highest confusion rate is 21%, gesture 3 incorrectly classified as gesture 5.
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Table 5.6 - Confusion Matrix; Rule based recognition

100 0 0 0 0 0
0 99 0 1 0 0
0 0 65 14 21 0
2 1 6 88 2 1
2 0 1 1 88 8
0 0 0 0 6 94

An investigation of the pdf estimate plots for gestures 1, 2 and 6 can explain the high
recognition rates. Figure 5.9 is a pdf estimate for gesture 1 using features 1 & 3, figure

5.10 is for gesture 2 using feature 1 & 2 and figure 5.11 is for gesture 6 using features 1

20

10
feature 1 oo feature 3

Figure 5.9 - pdf estimate; gesture 1 (features 1 & 3)
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Figure 5.10 - pdf estimate; gesture 2 (features 1 & 2)

feature 1 0o feature 3

Figure 5.11 - pdf estimate; gesture 6 (features 1 & 3)
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& 3. These plots generally show high narrow surfaces located at the corners or the edge
of the feature axis plane. The resulting rules will contain acceptance regions which are
small and lie at the corners or the edge of the feature axis plane. This arrangement makes
these gestures distinctive and other gestures are unlikely to pass all these rules leading to
classification errors. The pdf estimate plots for gesture 5 in comparison show two pdf
estimate surfaces which are wide and are generally located at or near the center of the
feature axis plane (figures 5.12 and 5.13). These pdf estimate plots will result in a set of
rules with large acceptance regions near the center of the feature axis plane. These
gestures are not distinctive and gestures from other classes easily satisfy these rules

causing classification errors.

feature 1 oo feature 3

Figure 5.12 - pdf estimate; gesture 5 (features 1 & 3)
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Figure 5.13 - pdf estimate; gesture 5 (features 2 & 3)

It is possible that the recognition results can be improved if a set of rules are chosen from
the six rules which minimizes the number large general rules which may cause
classification error. The other alterative is to select a new feature set which minimizes
the overlap in the pdf estimate plots. A more sophisticated solution is to analyze the pdf
plots in n dimensional space (n being the number of features, four in this case). Given the
relatively good recognition results from the k-nearest neighbor classifier, it is likely the
overlap in the feature space will be reduced with the addition of other dimensions. The
projection of clusters onto feature axis planes may result in overlap which can be avoided
if the pdf estimates are analyzed directly in four dimensional space. Conceptually this
approach is possible. The 3D surfaces shown in Appendix A will be hyper surfaces and
the rules are generated by an intersecting hyper plane. Practically however, the resulting
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multi dimensional matrices would be very difficult to manage using the Matlab version

4.2c.1 platform.

The purpose of this research is to compare the four pattern recognition techniques when
applied to a set of six hand gestures. Other than minor adjustments to the threshold level,
the results reported here have not been optimized. If the threshold is set too high, the
resulting acceptance regions may become small making passing a sufficient number of
rules to be correctly classified difficult. Conversely, if the threshold is too low, the
acceptance regions may become large and dominate the feature space. Many feature

vectors will mistakenly be classified into that class.

5.7 Hidden Markov Models

The HMM algorithm requires an additional feature preparation process. The feature set
for each of the gestures in the training set is represented by a set of features’ output from
the window feature extraction algorithm. This feature set must now be converted to a set

of observation sequences by a process of vector quantization.

The vector ization process a multi-di i string of feature vectors

into a single vector or observation sequence using a reproduction alphabet. The initial
reproduction alphabet is chosen and optimized using the first feature vector in the set.

This reproduction alphabet is then used the inis ization. The

result is a set of one hundred observation sequences for each of the six gestures in the
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training set. The number of possible observations output from the vector quantization

algorithm is set to Q=8. An example of a number of observation sequences is given

below.

Gesture(l: O=7 7 8 7 7 7 7 1
07 8 2 75 6

Gesture(2: O,=6 6 8 6 6 6 4 6
06 6 8 5 3 8 6 6 6

These examples illustrate the differences between the observation sequences for each
gesture after the vector quantization process. The number of observations in a sequence

can vary depending on the length of the gesture.

Training of the hidden Markov models is it inning with initial esti of

the model parameters A, B and . These matrices are initially estimated by a random
number generator. Each element of the matrices is randomly chosen from a uniform
distribution of numbers ranging from O to 1. The size of the matrices is determined by
the number of states in the hidden Markov models (N) and the number of possible
observations or state outputs (Q). With N=8 and Q=8 the matrix A is an 8x8 (NxN), B is
an 8x8 (NxQ), and T is an 8x1 (Nx1). The matrices are then normalized to form proper
probability mass function estimates. Each row in the state transition matrix A and each

row in the i ility matrix B are ized by dividing each element in a

row by the sum of all elements in that row. This ensures that:
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52

The column elements of the initial state probabilities matrix 7 are divided by the sum of

the column ensuring that:

X
Yom =t 53

Training of the model parameters corresponding to gesture 1 or 4,=(A,,B,, ;) begins by
using the initial estimates of A,, B,, and T, to determine the probability P,, that the first
observation sequence for gesture 1, O,, was produced by model A,. This probability and
the observation sequence are then used to update the model parameters A,, B;, and m,.
Using the second observation sequence, O, the process is repeated. A second set of
model parameters A,, B,, and T, are randomly chosen from a uniform distribution and the
probability that this sequence was produced by the latest randomly generated model
parameters is calculated P,. The observation sequence O, and P, are then used to produce
a second updated estimate of the model parameters A,, B,, and m,. This process
continues for all observation sequences used for training. At each iteration a set of model
parameters (A,, By, ,, Ay, B,, m,, etc.) and the corresponding probabilities Py, P,, etc. are
stored. These are then combined to produce the final estimate of the model parameters

for model ,=(A,,B,,T,) corresponding to gesture 1.
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This process is then repeated to obtain model parameters for the remaining five gesture
classes, ,(Ag,B,, o), A5~(A3,B3,63), A=(AyBoTy), As=(A5,Bs,Tis) and Ac=(AgBe,Te)-

Training involved using all 100 observation sequences for each of the six gestures to

obtain the final model i Testing was using much the same
process used to test the rule based algorithm. The first observation sequence for gesture 1

is used with each of the model estimates A,, A,, A5, A,, A5 and A to obtain six probability

estimates Py, P,, P, P,, Ps, and P respecti The ility P, is the ility that
the observation sequence was produced by model A, and so on. The observation
sequence is classified as the gesture class associated with the highest probability. This
process is continued for all 100 observation sequences for each gesture. The results of

this test are detailed in table 5.7.

Table 5.7 - Confusion Matrix; HMM - N=8, Q=8

87 5 0 4 0 4
16 84 0 0 0 0
0 0 65 29 0 6
1 0 26 K 0 2
0 0 1 0 99 0
3 0 8 0 0 89

The highest recognition rate was 99% for gesture 5 with the lowest recognition rate for
gesture 3 at 65%. The highest confusion rate was for gesture 3 incorrectly classified as
gesture 4 at 29%. These results strongly indicate that the observation sequences
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corresponding to gesture 3 and those corresponding to gesture 4 are very similar. Figure
5.14 is a plot of the first ten observation sequences from gestures 3 and 4. This plot

clearly shows the similarities between the observation sequences for gesture 3 and those
for gesture 4. Each start low, increasing to between 6 and 8 in the center and reduce to 1

or 2 at the end. These two gestures are very similar geometrically and this similarity is

evident in the observation p by the vector ization process.

Figure 5.14 - Observation Sequence Comparison; gestures 3 & 4

A similar result might be expected for gestures 5 & 6. These are geometrically similar to
each other, as are gestures 3 & 4. A look at the plot of ten of the observation sequences
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for these two gestures (figure 5.15) however, illustrates that in fact these sets of
observation sequences are quite dissimilar as indicated by the good recognition results.
Many of the observation sequences for gesture 5 are exactly the same and overlay each
other in the plot. This again is reflected in the near perfect recognition results for gesture

S

Figure 5.15 - Observation Sequence Comparison; gestures 5 & 6

Although all gestures were collected from the author it is possible that a difference exists
between the collection process of gestures 5 & 6 and during the collection process of
gestures 3 & 4. The movements for both gestures 3 & 4 are to the right while the
movements for gestures 5 & 6 are to the left. The left movement was more unnatural and
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required more concentration possibly leading to a more precise movement which resulted
in a set of more distinct gestures. Results may be improved if the number of possible
observation symbols were increased. This would allow a wider range of possible
outcomes and may produce more distinct observation sequence sets for each gesture.
There are many other variables to adjust throughout the process beginning with the
selection of other features through to adjusting the number of possible states in the hidden

Markov model estimations.

5.8 Discussion

The development and implementation of most pattern recognition systems to applications
involves issues other than the recognition rates alone. This applies to practically all
applications including development of assistive devices or the automation of an industrial
process. The scope of this thesis does not include an extensive study of implementation
issues but a comparison of recognition rates alone may be misleading without mention of

some practical implementation issues.

A signi issue in most icati i those iring real-time

is the issue of algorithm speed. The actual speed

Vision based i such as defect d ion in lumber and

lumber products generally involve incorporation into an existing system at existing
production speeds. This places serious limitations on the time available for image
processing. This will translate to a limitation on the number and complexity of features
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available for

Gesture recognition applications requiring real-time processing have similar limitations.
The hardware interface will largely dictate the actual pattern recognition algorithm
selection. The sensor based system used during data collection here requires the analysis
of both position and orientation data. The types of features are limited to the positional

and dynamic features discussed previously.

Table 5.8 summarizes the recognition results for the four classification techniques.
Recognition results are relatively high using all four classification techniques for gestures
1,2, 5,and 6. Gestures 3 and 4 have a decrease in recognition rates for the rule based

classifier and the hidden Markov mode classifier.

Table 5.8 - Recognition Results (per gesture)

Gesture 1 | Gesture 2 | Gesture 3 | Gesture 4 | Gesture 5 | Gesture 6
KNN;k=1 100 99 88 93 96 97
KNN;k=3 100 99 96 95 93 98
KNN;k=5 100 99 91 94 94 98
Mal. dist. 100 99 70 98 90 93
Rule 100 99 65 88 88 94
HMM 87 84 65 71 99 89

The best overall recognition rate for all gestures was obtained using the k-nearest
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neighbor classifier with k=3 (table 5.9). The recognition results obtained from the hidden

Markov model classifier was the lowest at 83% overall recognition accuracy for all six

gestures.
Table 5.9 - Average Recognition Results (all gestures)
KNN;k=1 KNN;k=3 KNN;k=5 Mal. dist. Rule HMM
96% 97% 96% 92% 895% 83%

The choice of a classification technique for these six gestures based on speed and

would be the is distance classifier. Although the k-nearest
neighbor classifier has a higher overall recognition rate, the fact that it is non-parametric

requires the use of the complete training set during classification. This means that each

gesture is in four dis i feature space to all other 600 known
gestures. The distance to each of the 600 known gestures is calculated and the minimum
k distances are used for classification. Even with this relatively small training set and
only four features this can be quite time consuming. With the addition of more gesture
types, bigger training sets, and higher dimensional feature space this process becomes
very slow. There are search methods such as k-d trees which speed up the performance
of k-nearest neighbor classifiers but the gain in speed is generally balanced by some loss

in recognition performance.

The Mahalanobis distance classifier is parametric and uses the training data only during

training. Classification is simply a matter of calculating a single Mahalanobis distance to
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each class mean and choosing the mini Both the Mahalanobis distance

and the k-nearest neighbor classifier are attractive in that they are simple to implement

and can provide good recognition results. One of the di: ges of these i is

the lack of tuning parameters. Complex practical problems rarely yield acceptable

recognition results with the first i of a classification algorithm. The rule

based classifier and the hidden Markov model classifier may be more appropriate for
these applications. With sufficient optimization, both are capable of recognizing more

complex gestures.

There are implementation issues other than algorithm speed and performance worth

mentioning. A large field of research is devoted to the development of adaptive pattern

recognition systems. An example is a speech ition system.
Initially, the system performs moderately well for a wide range of users. With sufficient
use, the system can adapt to a specific user with increased performance. The hidden
Markov model classifier has been used extensively in the area of speech recognition

largely because it can be taught to be adaptive.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.0 Conclusions

This research i igated four pattern iti i and their ication to the
area of hand gesture recognition. The four pattern techniques studied were the k-nearest
neighbor classifier, a Mahalanobis distance classifier, a rule based classifier, and hidden
Markov model classification. A set of six hand gestures were used to test each of the four
techniques. The six hand gestures were collected from the author using a sensor based
motion tracking system called “The Flock of Birds™. The gesture data contained both

three di i position i ion and three di

The hand gestures were general movements with a range of approximately one foot.

A test set of 100 of each of the gestures was collected. The gestures were then segmented
using a two threshold tremor filter. The segmented gestures were than mapped into a four
dimensional feature space. This set of four features were used during the testing of all

four pattern recognition techniques.
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The k-nearest neighbor classifier was tested using k=1, k=3 and k=5 neighbors. The best
recognition results observed were using k=3 neighbors. The average recognition rate for
all six gestures was 97%. The test with both k=1 and k=5 neighbors resulted in an
average recognition rate of 96% for all six gestures. The best recognition rate with both
k=1 and k=5 neighbors was gesture 1 at 100%. The lowest recognition rate for k=1
neighbor was for gesture 3 at 88%; the lowest recognition rate for k=3 neighbors was for
gesture 5 at 93% and the lowest recognition rate for k=5 neighbors was for gesture 3 at
91%. An immediate conclusion is that the classes in the four dimensional feature space
cluster fairly well. The high recognition rates for gesture 1 is not surprising. Both

gestures 1 and 2 are simple movements, vertically and horizontally respectively.

The k-nearest neighbor classifier is very simple and is perhaps the easiest to implement.

It is commonly used as a basis for ison of other i i i Thek-
nearest neighbor classifier can however be very slow in applications with large numbers

of training sets and a relatively high dimensional feature space. Perhaps more

due to the simplicity of the i there is little ity to optimize

the results other than to adjust the number of neighbors or to select different feature sets.

The Mahalanobis distance classifier produced an average recognition rate for all six
gestures of 92%. Again gesture 1 had the highest recognition rate at 100%. The lowest
recognition rate was for gesture 3 at 70%. This result may initially be a little surprising
considering the good recognition results from the k-nearest neighbor classifier for gesture
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3. However, the Mahalanobis distance classifier is a parametric classifier which makes

the underlying assumption that the data along each feature axis is normally distributed. It

is likely that this ion is in part ible for this low ition rate.

The Mahalanobis distance classifier has a speed advantage over the k-nearest neighbor
classifier. Its parametric nature excludes the need to use all training data during the
classification of each unknown gesture. The speed issue is very important when

classifier intended for i ion into real-time

The rule based classifier produced an average recognition rate of 89%. The highest
recognition rate was for gesture 1 at 100%. The lowest recognition rate observed was for
gesture 3 at 65%. The results of this test indicate a significant confusion rate of 21%
between gestures 3 and 5. These gestures are similar and have overlap in the cluster

projections onto the feature axis.

The rule based classifier uses statistical i ion about the distributi i of

the class data to automatically generate rules. The rules express this statistical
information. This approach does not make any assumptions regarding the class clusters.
A number of variables make the rule based classification technique tunable which can
prove important for more complex problems. The threshold level for rule generation can
be adjusted and the sets of rules during classification can be altered, both adjustments will
change recognition results.
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The hidden Markov model classifier has the lowest overall average recognition rate at
83%. The highest recognition rate was 99% for gesture 5. The lowest recognition rate
was for gesture 3 again at 65%. The highest confusion ratz was between gestures 3 and 4
at 29%. The observation sequences for gestures 3 and 4 are noticeably similar. The
hidden Markov model classifier uses only the observation sequence representation of the
gestures, making recognition difficult when observation sequences are similar for two or

more gestures.

The hidden Markov model classifier provides the most opportunity for optimization. The
vector quantization algorithm required to map the feature sets into observation sequences
can be adjusted. The number of possible observation outcomes and the reproduction
alphabet used can be changed, both of which will likely change the recognition rates. In
the hidden Markov models themselves, the number of states and the model architecture
can be adjusted. The hidden Markov models used during testing were ergodic models.
This generalized form allows state transitions in all directions. Other specific
architectures like the left-to-right models may improve recognition results for some

applications.

Each of the four i i i well on the six gestures

tested. The complexity of each technique varies widely from the k-nearest neighbor
classifier to the hidden Markov model classifier. Considering both recognition rates and
the speed issue, the Mahalanobis distance classifier is best suited to classifying the six
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gestures tested. With the addition of a larger more complex gesture set, a more
sophisticated approach like the rule based or the hidden Markov model classification may

be required.

6.1 Future Work
The rule based approach discussed in this thesis can be improved with the development of
a process of analyzing the feature data in multi-dimensional space. Currently each

feature pair is processed individually resulting in a number of two dimensional rules.

Analysis in multi dis i space would elimi the projections onto two
dimensional axis planes and utilize the full cluster separation found in the multi

dimensional space.

The hidden Markov Models studied in this thesis were discrete models. Segmentation of
the gesture data stream is necessary when using discrete hidden Markov Models. The
segmentation process can cause recognition errors if gestures are segmented prematurely.

The continuous form of the hidden Markov Models accept the continuous gesture data

stream iating the ion step. The pi of i hidden Markov

Models could potentially provide a sophisticated real time gesture recognition algorithm.
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APPENDIX A
PDF ESTIMATE PLOTS
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Figure Al - pdf estimate; gesture 1 (features 1 & 2)
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Figure A2 - pdf estimate; gesture 1 (features 1 & 3)
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Figure A3 - pdf estimate; gesture 1 (features 1 & 4)
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Figure A4 - pdf estimate; gesture 1 (features 2 & 3)
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Figure A6 - pdf estimate; gesture 1 (features 3 & 4)
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Figure A7 - pdf estimate; gesture 2 (features 1 & 2)
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Figure A8 - pdf estimate; gesture 2 (features 1 & 3)
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Figure A9 - pdf estimate; gesture 2 (features 1 & 4)
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Figure A10 - pdf estimate; gesture 2 (features 2 & 3)
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Figure Al1 - pdf estimate; gesture 2 (features 2 & 4)
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Figure A12 - pdf estimate; gesture 2 (features 3 & 4)
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feature 1 feature 2

Figure A13 - pdf estimate; gesture 3 (features 1 & 2)

20

feature 1 0 featre 3

Figure A14 - pdf estimate; gesture 3 (features 1 & 3)
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Figure A15 - pdf estimate; gesture 3 (features 1 & 4)
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Figure A16 - pdf estimate; gesture 3 (features 2 & 3)
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Figure A17 - pdf estimate; gesture 3 (features 2 & 4)
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Figure A18 - pdf estimate; gesture 3 (features 3 & 4)
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feature 1 L feature 2

Figure A19 - pdf estimate; gesture 4 (features 1 & 2)
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Figure A20 - pdf estimate; gesture 4 (features 1 & 3)
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feature 1 0o feature 4

Figure A21 - pdf estimate; gesture 4 (features 1 & 4)
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Figure A22 - pdf estimate; gesture 4 (features 2 & 3)
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Figure A23 - pdf estimate; gesture 4 (features 2 & 4)
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Figure A24 - pdf estimate; gesture 4 (features 3 & 4)
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Figure A26 - pdf estimate; gesture 5 (features 1 & 3)
111



20

feature 1 9 10 feature 4

Figure A27 - pdf estimate; gesture 5 (features 1 & 4)
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Figure A28 - pdf estimate; gesture 5 (features 2 & 3)
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Figure A29 - pdf estimate; gesture 5 (features 2 & 4)
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Figure A30 - pdf estimate; gesture 5 (features 3 & 4)
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Figure A32 - pdf estimate; gesture 6 (features 1 & 3)
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Figure A34 - pdf estimate; gesture 6 (features 2 & 3)
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Figure A36 - pdf estimate; gesture 6 (features 3 & 4)
116



APPENDIX B
MATLAB SCRIPT FILES
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RULEM

function [P,location]=rule(fvectors)

% Rule generation and rule based recognition; feature vectors for a number
% of training samples will be used to produce a number of rules which

% will be used for recognition

% R. Hale - March 1997

% determine the size of the input vector; this will determine the size
% of the matrix of possible window centers

%[ordered index]=sort(fvectors);

[n m]=size(fvectors);

% Initially set the height of the window
% Increment to step ac at each interval
step=10;

% The volume of the hypercube V_n
V_n=h"m;

% build ac vector step/h long and m columns
for i=1:step/h
for j=I:m
ac(i)=h*i;
end
end
ac=ac/step;

% build vector with all possible combinations for ac;

% begin with a general matrix which will be the proper size

% and have the first column with correct values

%

% the matrix ac_comb will contain all possible combinations for the

% ac vectors based on the number of dimensions (m), the window height (h)
% and the step size (step)

for i=1:fix(step/h)(m-1)
ac_comb=[ac_comb;ac];
end

% take the second column and sort the values to produce the

118



for i=1:fix(step/h)"2:fix(step/hy"m
ac_comb(i:i+fix(step/h)"2-1,2)=sort(ac_comb(i:i+fix(step/)'2-1,2));
end

cad

% remaining 3 to m columns can be sorted
ifm>2
forj=3:m
for i=1:fix(step/h)"j: fix(step/h)"m
ac_comb(i:i+fix(step/h)"j-1 j)=sort(ac_comb(i:i+fix(step/h)j-1,j));
end
end
end

% Determine the function phi for all elements of ac_comb compared to all
% vectors in input vector

[rows cols]=size(ac_comb);

for i=l:rows
% loop through for all vectors in input vector
for k=1
phi(k) :_comb(i,:) :))/h);
end

less=find(phi<=.5);
p_ac(i}=1/(n*V_n)*length(less);
end

% put probabilities in matrix where each column represents each range
% movements of the window

-fix(step/h)"m
P( county=p_ ac(i(i+fx(step/h)-1));
count=count+1;
end

% determine the appropriate rules
location=threspdf{(P);
% plot the regions of interest if dimensionally possibly
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Yefigure;

I’/«ﬂms([o step/h 0 step/h])
%hold;

Yeplot(Ly, k-)

THRESPDF.M

function out=threspdf{pdf)
[rows cols]=size(pdf);
threshold=max(max(pdf))*0.3;
fori=
for j=1:rows
if pdf(i jj>=threshold
out(ij)=1;
else
out(i,j)=0;
end
end
end

GAUSS1D.M

% create a vector R which is normally distributed
R=normmd(1.2,.3,200,1);
R=abs(R/max(R));

% Show the didtribution of R is normal
Yfigure(1)
%normplot(R)

% Run the rule generation script

[P,L]=rule(R);
figure(2)
plot(P);

GAUSS2D.M
% create a vector R which is normally distributed
R=normmd(1.5,.4,100,2);
B=normrmnd(3.5,.5,200,2);
R=[R;BJ;
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R=R/max(max(R));
% Run the rule generation script
[P,L]=rule(R);

% plot the surface
Y%figure
Y%mesh(P)

TREMOR.M

function seg=tremor(gesture)

echo off;

% Script which segments a 6 DOF data stream from The Flock

% of Birds using tremor filter (FIFO buffer)

% Rodney Hale July 1996

% Segmentation of data file gesture.dat stored in sgement matrix

% Runs dist.m which extracts overall distance feature & stores in matrix
% called distance

tic % set the timer
N=15; % (length of buffer)
% determine optimum threshold levels from plot of the threshold, T, value
upthres=4; % (upper threshold value)
lowthres=0.3; % (lower threshold value)
countm=0;
% load the file of gestures
Y%load gesture.dat;
[rows columns]=size(gesture);
% calculate variance of buffer for 3 DOF; x, y & z position
for j=1:rows-N
for i=1:columns-4 % use x y & z positional data
buffer=gesture(j:j+N,i+1);
Tj(i)=(var(buffer)/"2;
end
TE=(Ti()+TR)+Ti(3)V0.5; %+Ti(Ay+Ti(S)+Ti(6))0.5; % overall tremor
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if T(j) < lowthres
status()=1; % 1 =still

elseif T(j) > upthres
status(j=2; % 2 =movement
end
end

% determine the state, still state when status=1 and until status =2;
% movement state when status=2 and until status =1

move=find(status=2);
still=find(status==1);
inter=find(status==0);

% using the difference between successive status elements, the beginning
% and the end points of the gestures can be determined; 2 (or 1) in the

% difference matrix indicates the beginning of a gesture, -1 (or 1) indicates
% the end of a gesture

begin_end=diff(status);
Begins=find(begin_end=2);

seg=(];

for i=1:length(status)
if status(i)}=1

P
if length(tmp)~=0
diffl=diff{status(i:tmp(1)+i-1));
if diffl (1)=1 & diffl (length(diff1))=2
seg={seg; il;
end
end
end
end

% save the segmented gestures
Y%save features.dat distance -ascii
toc % elapsed time



SEG_FEAT.M

function features=seg_feat(file,segdata)

% This function calls the feature extraction function feat.m to return

% a feature set for a file, file, containing unsegmented gestures using the
% segmenting data, segdata, from the tremor.m function

for i=1:length(segdata)-1
features(i,:)=feat(file(segdata(i):segdata(i+1),:));

end
FEATM

function f=feat(file)
[n m]=size(file);
% find maximum position values for each direction
maximum=max(file);
% fl=maximum(2); % high corr.
% f2=maximum(3); % high corr.
f3=maximum(4);
% find minimum position values for each direction
minimum=min(file);
f4=minimum(2);
f5=minimum(3);
% f6=minimum(4); % high corr.
% find i i of i i ions for each

maxdiff=max(diff{file));
% f7=maxdiff(5); % removed July 28; low inter var.
%  f8=maxdiff(6); % high corr.
f9=maxdiff(7);
% use distance from point to line as indication of curvature
count=0;
for i=1:n-2
a=file(i+2,2:4)-file(i,2:4);
b=file(i+1,2:4)-file(i,2:4
if norm(a)~=0
count=count+1;
d(count, 1)=norm(cross(a,b))/norm(a);
end

end

% fl0=mean(d); % removed July July 28; low inter var.
% pass back matrix containing all feature vectors
=[f3 f4 f5 B];
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fabs(f);
PDFPLOT.M

figure(1)

[P1_2,L1_2]=rule([n_feats(1:100,1) n_feats2(1:100,2)]);
mesh(P1_2)

ylabel('feature 1)

xlabel(*feature 2")

Zzlabel('P)

figure(2)

[P1_3,L1_3]=rule([n_feats1(1:100,1) n_feats2(1:100,3)]);
mesh(P1_3)

ylabel('feature 1)

xlabel('feature 3')

zlabel('P")

figure(3)

[P1_4,L1_4]=rule([n_feats1(1:100,1) n_feats2(1:100,4)]);
mesh(P1_4)

ylabel('feature 1)

xlabel('feature 4')

zlabel('P")

figure(4)

[P2_3,L.2_3]=rule([n_feats1(1:100,2) n_feats2(1:100,3)]);
mesh(P2_3)

ylabel('feature 2)

xlabel('feature 3")

zlabel(P')

figure(5)

[P2_4,L2_4]=rule([n_feats1(1:100,2) n_feats2(1:100,4)]);
mesh(P2_4)

ylabel('feature 2')

xlabel('feature 4')

Zlabel(P)

figure(6)

[P3_4,L3_4]=rule([n_feats1(1:100,3) n_feats2(1:100,4)]);
mesh(P3_4)

ylabel('feature 3')

xlabel('feature 4')

zlabel('P")

124



PASSRULE.M

function check=passrule(f,L)
fround(f.*32)+1;
IfL(f(1),2))=1

check=1;
else

check=0;
end

RULECLSS.M
function C=ruleclass(f1,2,3,f4,5,f6);

% create all pdf estimates and rules

[P1_1_2,L1_1_2]=rule((fi(:,1) f1(:2)]);
[P1_1_4,L1_1_4)=rule([f1(:,1) f1(:4)]);
[P1_2_3,L1_2_3]=rule([f1(:.2) f1(:3)]);
[P1_2_4,L1_2_4]=rule([f1(:,2) f1(4)]);
[P1_3_4,L1_3_4]=rule([f1(:,3) f1(:4)]);

[P2_1_3,L2_1_3]=rule((£2(:
[P2_1_4,L2_1_4]=rule([£2(:
[P2_2_3,L2_2_3]=rule({:
[P2_2_4,L2_2_4]=rule({f2(:
{P2_3_4,L2_3_4]=rule([f2(:,3) 22¢::4)]);

[P3_1_2,L3_1_2]=rule([f3(:,1) 3(:2)]);
[P3_1_3,L3_1_3]=rule([3(:,1) B(:3)]);
[P3_1_4,L3_1_4]=rule([3(:,1) B(:4)]):

[P3_2_4,L3_2_4]=rule([
[P33_4,L3_3_4]=rule([3(:.3) BG.4)]);

[P4_1_2,L4 1_2]=rule([f4(:,1) f4(:,2)]);
[P4_1_3,L4_1_3]=rule([f4(:,1) f4(:,3)]);
[P4_1_4,L4_1_d4]=rule([f4(:,1) f4(:,4)]);
[P4_2_3,L4_2_3]=rule([f4(:,2) fA(:,3)]);
[P4_2_4,L4_2_4]=rule([f4(:,2) fA(:,4)]);
[P4_3_4,L4_3_4]=rule([f4(:,3) f4(:,4)]);
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[PS_1_2,L5_1_2]=rule([f5(:,1) £5(::2)]);
[PS_1_3,L5_1_3]=rule([f5(:1) £5(:3)]);
[P5_1_4,L5_1_4]=rule([f5(:,1) £5(;,4)]);
[P5_2_3,L5_2_3}=rule([f5(:.2) £5(:,3)]);
[P5_2_4,L5_2_4]=rule([5(:,2) £5¢:.4)]);
[P5_3_4,L5_3_a]-rule([f5(:,3) £5(:.4)]);

[P6_1_2,L6_1_2]=rule([f6(:,1) f6(::2)]);

[P6_1_3,L6_1_3]=rule([f5(:,1) f6(:,3)));

[P6_1_4,L6_1_4]=rule([f6(:,1) f6(:4)]);
2

% class 1

for i=1:100
s1_I=passrule({f1(i,1) f1(i,2)],L1_1_2);
s1_2=passrule([f1(i,1) f1(1,3)],L1_1_3);
s1_3=passrule([f1(i,1) f1(,4)),L1_1_4);
s1_4=passrule([f1(i,2) f1(,3)].L1_2_3);
s1_5=passrule([f1(i,2) f1(i4)].L1_2_4);
s1_6=passrule([f1(i,3) f1(i.4)].L1_3_4);

% sl_4=0;s1_5=0;

Si=sl_i+sl_2+sl_3+sl_d+sl_S+s1_6;

s2_I=passrule([f1(i,1) 1(i,2)],L2_1_2);
s2_2=passrule([f1(i,1) 1(..3).L2_1_3)
s2_3=passrule([f1(i,1) f1(.4)].L2_1_4);
s2_4=passrule([f1(i.2) f1(i,3)],L2_2_3);
s2_5=passrule([f1(i.2) f1(i,4)].L2_2_4);
s2_6=passrule([f1(i,3) f1(i,4)],L2_3_4);
% s2_4=0;s2_5=0;
S2=s2_l+s2_2+s2_3+s2_d+s2_5+s2_6;

s3_1=passrule([f1(i,1) f1(,2).L3_1_2);
s3_2=passrule([f1(i,1) f1(3,3)},L3_1_3);
s3_3=passrule([f1(i,1) f1(i,4).L3_1_4);
s3_4=passrule([f1(i,2) f1(i.3)].L3_2_3);
s3_5=passrule([f1(i,2) fl(,4)LL3_2_4);
s3_6=passrule([f1(i,3) f1(1,4)},L3_3_4);
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% s3_4=0;53_5=0;
$3=53_1+s3_2+s3_3+s3_4+s3_5+s3_6;

s4_1=passrule([f1(i,1) f1(i,2)],L4_1_2);
s4_2=passrule([f1(i,1) f1(i,3)],LA4_]
s4_3=passrule([f1(i,1) f1(i,4)],L4_|
s4_d=passrule([f1(i,2) f1(i,3)],L4
s4_5=passrule([f1(i,2) f1(i,4)],L4
s4_6=passrule([f1(i,3) f1(i,4)],L4_3 4)
% s4_4=0; s4_5=0;
S4~SA 1+s4_2+s4_3+s4_4+s4_S+s4_6;

s5_1=passrule([f1(i,1) f1(i,2),L5_1_2);
s5_2=passrule([f1(i,1) f1(i,3)LL5_1_3);
s5_3=passrule([f1(i,1) f1(i,4)],L5_1_4);
s5_4=passrule([f1(i,2) f1(i,3)],L5_
s5_S=passrule([f1(i,2) f1(i,4)l,L5_2_4);
s5_6=passrule([f1(i,3) f1(i,4).L5_3_4);
% $5_4=0;55_5=0;
§5=55_l+s5_2+55_3+s5_4+s5_5+s5_6;

s6_l=passrule([f1(i,1) f1(i,2).L6_1_2);
s6_2=passrule([f1(i,1) f1(i,3)],L6
s6_3=passrule([f1(i,1) f1(i,4)],L6.
s6_d4=passrule([f1(i,2) f1(i,3)],L6,
$6_5=passrule([f1(i,2) f1(i,4)],L6
$6_6=passrule([f1(i,3) f1(i,4).L6_3_4);
% s6_4=0; s6_5=0;
S6=s6_1+s6_2+s6_3+s6_4+s6_5+s6_6;

S=[S1;52;53;5455;S6];
[Y [J=sort(S);
if1(6)=1
C(L,1)=C(1,1)+1;
elseif [(6)=2
C(1,2)=C(1,2)+1;
elseif [(6)=3
C(1,3)=C(1,3)*+1;
elseif I(6)—4
C(LAC(14)+;
elseif [(6)=5
C(L,5)=C(1,5)+1;
elseif [(6)—=6
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C(L6)=C(1,6)+1;
end
end

% class 2

for i=1:100
s1_l=passrule([£2(i,1) 2(i,2),L1_1_2);
s1_2=passrule([£2(i,1) £2,3),.L1_1_3);
s1_3=passrule([£2(i,1) 2(,4)J,L1_1_4);
s1_4=passrule([£2(i,2) 2(i,3),L1_2_3);
s1_5=passrule([2(i,2) 2(i,4),L1_2_4);
s1_6=passrule([£2(i,3) £2(i,4).L1_3_4);

% s1_4=0;s1_5=0;
Sl=sl_l+s1_2+s1_3+sl_d+sl_S+sl_6;

s2_l=passrule([2(i,1) £2(,2)},L2_1_2);
s2_2=passrule([f2(i,1) £2(i,3)},.L2_1_3);
s2_3=passrule([f2(i,1) £2(i,4),L2_1_4);
s2_4=passrule([£2(i,2) £2(,3),L2_2_3);
s2_5=passrule([f2(i,2) £2(i,4)},L2_2 _4);
s2_6=passrule([f2(i,3) £2(i,4)},.L2_3_4);
% s2_4=0;s2_5=0;
$2=s2_1+s2_2+s2_3+s2_4+s2_5+s2_6;

s3_1=passrule([f2(i,1) 26,2)},L3_1_2);
3_2=passrule([£2(i, 1) 2.3)L.L3_1_3);
s3_3=passrule([£2(i,1) £2(i,4)],L3_1_4);
s3_4=passrule([£2(i,2) 22,3).L3_2_3);
s3_5=passrule([f2(i.2) 2(i.4)}L3_2_4);
§3_6=passrule([2(i,3) 2,4)].L3_3_4);
% s3_4=0; s3_5=0;
S3=53_I+s3_2+s3_3+s3_4+s3_5+s3_6;

s4_1=passrule((£2(,1) 2(i.2)},L4_1_2);
s4_2=passrule([f2(i,1) £2(i,3)],L4_1_3);
s4_3=passrule([£2(i,1) £2(1,4),L4_1_4);
s4_4=passrule([£2(i,2) £2(i,3)],L4_2_3);
s4_S=passrule([£2(i,2) £2(i,4)],L4_2_4);
s4_6=passrule([2(1,3) £2(i,4)},L4_3_4);
% s4_4=0;s4_5=0;
Sd=s4_l+s4_2+s4_3+s4_4+s4_S+s4_6;
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s5_1=passrule([f2(i,1) £2(i,2)L,L5_1_2);
s5_2=passrule([£2(i1) £2,3).Ls_1_3);
s5_3=passrule([£2(i,1) £2(i,4).L5_1_4);
s5_4=passrule([£2(i,2) £2(i,3)].L5_2_3);
s5_S=passrule([£2(i,2) £2(i,4)},L5_2_4);
s5_6=passrule([f2(i,3) £2(i,4)}.L5_3_4);
% s5_4=0;s5_5=0;
$5=55_1+55_2+s5_3+s5_4+s5_5+s5_6;

s6_1=passrule([£2(i,1) £2(i,2)},L6_1_2);
s6_2=passrule([f2(i,1) £2(i,3)],L6_1_3);
s6_3=passrule([f2(i,1) 2(i,4)],L6_1_4);
s6_4=passrule([£2(i,2) £2(i,3)},L6_2_3);
s6_S=passrule([£2(i,2) £2(i,4)},L6_2_4);
s6_6=passrule([£2(i,3) £2(i,4)],L6_3_4);
% s6_4=0; s6_5=0;
S6=56_1+56_2+56_3+s6_4+s6_5+s6_6;

S=[S1;52;53;54;55;S6];
[Y I=sort(S);
iF1(6)=1
C(2,1)=C(2,1)+1;
elseif [(6)=2
C(2.2)=C(22)+1;
elseif [(6)=3
C(2,3)=C(2,3)*1;
elseif [(6)—4
CR,4=C(2,4)+1;
elseif I(6)=5
C2,5)=C(2.5)+1;
elseif I(6)=6
C2,6=C(2,6)+1;
end
end

% class 3

for i=1:100
s1_l=passrule([3(i,1) 3G,2)LL1_1_2);
s1_2=passrule([£3(i,1) 5(i,3),L1_1_3);
s1_3=passrule([£3(i,1) B3(i,4)],L1_1_4);
s1_d=passrule([f3(i,2) £3(i,3)}.L1_2_3);
s1_5=passrule([f3(i,2) £3(i,4)],L1_2_4);
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s1_6=passrule([f3(i,3) f3(i,4)],L1_3_4);
% sl_4=0;s1_5=0;
Sli=sl_l+s1_2+s1_3+sl_4+sl_S+s1_6;

$2_l=passrule([£3(i,1) B(,2)LL2_1_2);
s2_2=passrule([£3(i,1) B(,3)1,L2_1_3);
$2_3=passrule([£3(i,1) B3(1,4)],L2_|
$2_4=passrule([£3(i,2) B3(1,3)],L2_2
s2_5=passrule([3(i,2) B(i,4)],L2_2
s2_6=passrule([£3(i,3) B(1,4),L2_3_4);

% s2_4=0;52_5=0;
S2=52_l+s2_2+s2_3+s2_4+s2_5+s2_6;

s3_1=passrule([f3(i,1) £3(,2)l,L3_1_2);
s3_2=passrule([f3(,1) £3(,3)L,L3_1_3);
s3_3=passrule([f3(i,1) 3(i,4)],L3_
$3_4=passrule([f3(i,2) B3(i,3)],L3_
s3_S=passrule([£3(i,2) 3(1,4)],L3_
s3_6=passrule([f3(i.3) f3(1,4),L3_3_4);
% s3_4=0;s3_5=0;
S3=53_1+s3_2+s3_3+s3_4+s3_5+s3_6;

s4_l=passrule((f3(i,1) B(i,2)L.L4_1_2);
s4_2=passrule([f3(i,1) £3(1,3)],L4_1_3);
s4_3=passrule([f3(i,1) £3(1,4),L4_1_4);
s4_4=passrule([f3(i,2) f3(i,3)l,L4_2_3);
s4_S=passrule([f3(i,2) f3(1,4)],L4_2_4);
s4_6=passrule([£3(i,3) f4(i,4)],L4_3_4);

% s4_4=0;54_5=0;
Sd=s4_l+s4_2+s4_3+sd_4+s4_S+sd 6;

s5_1=passrule([£3(i,1) B3(,2)L.L5_1_2);
s5_2=passrule([£3(i,1) £3(,3)1,.L5_1_3):
s5_3=passrule([3(i,1) B3(i,4)],L5_
s5_4=passrule([£3(i,2) 3(i,3)],L5_
s5_S=passrule([£3(i,2) B3(i,4)],L5_
$5_6-passrule([3(5,3) BGALS_3 4%
% $5_4=0;s5_5=0;
S5=55_1455_2:+s5_I+s5_4+55_5+55_6;

$6_1=passrule([f3(i,1) f3(i,2)],L6_1_2);
s6_2=passrule([3(i,1) £3(i,3),L6_1_3);
s6_3=passrule([£3(i,1) B3(i,4)],L6,
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s6_4=passrule((3(i,2) B3(i,3)},L6_2_3);
s6_5=passrule([£3(i.2) F3(1,4),L6_2_4);
s6_6=passrule([£3(i,3) 3(i.4)].L6_3_4);
% s6_4=0; s6_5=0;
86=s6_1+s6_2+s6_3+s6_4+s6_5+s6_6;

S=[S1;52;53;54;S5;S6];
[Y I=sort(S);
FI(6)=1
CE.1=CE,1+;
elseif [(6)=2
C(3,2=C(3,2)+1;
elseif [(6=3
C(3,3)=C(3.3)+1;
elseif [(6)—4
CG.4=CE.+1;
elseif [(6)=5
C(3.5=C@3.5r+1;
elseif [(6)—=6
C@3,6)=C3.6)+1;
end
end

% class 4

for i=1:100
s1_1=passrule([f4(i,1) f4(i,2)],L1_1_2);
s1_2=passrule([f4(i,1) f4(i,3),L1_1_3);
s1_3=passrule([f4(i,1) f4(i,4)],L1_1_4);
s1_4=passrule([f4(i,2) f4(i,3)},L1_2_3);
s1_S=passrule([f4(i,2) f4(i,4)l.L1_2_4);
s1_6=passrule([f4(i,3) f4(i,4)],L1_3_4);

% s1_4=0;s1_5=0;
Si=sl_l+sl_2+s1_3+sl_4+s1_5+s1_6;

s2_1=passrule([£4(i,1) £4G,2)LL2_1_2);
$2_2=passrule([f4(i,1) f4(i.3)}L2_1_3);
s2_3=passrule((f4(i, 1) f4(i,4)L,L2_1_4);
s2_d=passrule([£4(i,2) £4(i,3)],L2_2_3);
$2_S=passrule([£4(i,2) #4(i,4)]L2_2_4);
s2_6=passrule([f4(i,3) f4(i,4)],L2_3_4);
% s2_4=0;52_5=0;
S2=s2_1+s2_2+s2_3+s2_4+s2_5+s2_6;
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s3_1=passrule([f4(i,1) f4(,2),L3_1_2);
s3_2=passrule([f4(i,1) f4(i,3)],L3_1_3);
s3_3=passrule([f4(i,1) f4(i,4).L3_1_4);

s3_4=passrule([f4(i,2) f4(i,3)],L3_2 3)
s3_S=passrule([f4(i,2) f4(i,4)],.L3_2_4);
s3_6=passrule([f4(i,3) f4(i,4)].L3_3_4);

% s3_4=0;s3_5=0;

$3=53_I+s3_2+s3_3+s3_4+s3_5+s3_6;

_1=passrule([f4(i,1) f4(G.2)LLA_1_2);
2=passrule([f4(i,1) f4(i,3)}.L4_1_3);
H-smle([ﬂ(l.l) £G4, L4_1_4);

S pussmle[(2) B LA 2 3);
S=passrule([£4(i.2) F4(i.4)LA_2_4);
s4_6=pm\de([f«u) £4(,4)L4_3_4);

% s4_4=0;s4_5=0;

S4=s4_1+s4_2+s4 3+s4_4+s4_5+s4 6;

1-passrule([f4G, 1) F4G2)LLS 1 2);
s _2=passrule([f4(3,1) ©4(i3),LS
ss _3=passrule([f4(i,1) £4(i,4)],L5_1_
Hmmle([f«uz) £4(i3)LLS 2.
S=passrule([£4(i.2) f4(i.4)],L5_2_-
s5 _6=passrule([f4(i,3) f4(.4)L.LS_3_4);
% s5_4=0;s5_5=0;
SS5=s5_1+s5_2+s5_3+s5_4+s5_5+s5_6;

s6_1=passtule([f4(i,1) f4(i,2),L6_1_2);
s6_2=passrule([f4(i,1) f4(i,3),L6_1_3);
s6_3=passrule([£4(i, 1) 4(;,4)],L6_L_4);
s6_4=passrule([£4(i.2) 4(i.3)].L6_2_3);
s6_S=passrule([f4(i,2) f4(i,4)],L6_2
s6_6=passrule([f4(i,3) f4(i,4)],L6_3_¢
% $6_4=0; s6_5=0;
S6=56_1+s6_2+s6_3+s6_4+s6_5+s6_6;

S=[S1;52;53;84;S5:56];

[Y [=sort(S);

ifI(6)=1
C(4,1)=C(4,1)+1;

elseif 1(6)==2
C(42)=C(42)+1;
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elseif 1(6)=3
C(4,3y=C(43)+1;

elseif 1(6)—4
C(4,4y=C(44)+1;

elseif [(6)=5
C(4,5=C(4.5y+1;

elseif [(6)=6
C(4,6)=C(4,6)+1;

end

end

% class 5

for i=1:100
sl_1=passrule([5(,1) 5(,2)LL1_1_2);
s1_2=passrule([£5(i,1) £5(G,3),L1_1_3);
s1_3=passrule([f5(i,1) £5(i,4)},L1_]
s1_4=passrule([£5(i,2) £5(i,3)}.L1 1
s1_S=passrule([£5(i,2) £5(i,4)},L1_2
s1_6=passrule([£5(i,3) £5(i,4)}.L1_3_4);

% s1_d=0;s1_5=0;
Si=sl_l+s1_2+sl_3+sl_4+sl_S+s1_6;

s2_1=passrule([f5(i,1) £5(.2)}L2_1_2);
s2_2=passrule([f5(i,1) £5(i,3)].L2_1_3);
s2_3=passrule([f5(i,1) £5(i,4).L2_
s2_4=passrule([£5(i,2) £5(i,3)}.L2
s2_5=passrule([f5(i,2) £5(i,4)],L.2_:
s2_6=passrule([f5(i,3) £5(1,4)L.L2_3_4);

% s2_4=0;52_5=0;
S2=s2_1+52_2+s2_3+s2_4+s2_5+s2_6;

s3_1=passrule([£5(i,1) £5(,2)L,L3_1_2);
s3_2=passrule([f5(i,1) £5(i,3)1L3_1_3);
s3_3=passrule([f5(i,1) £5(i,4)},L3_
s3_4=passrule([£5(i,2) £5(i,3)},L3_
s3_S=passrule([f5(i,2) £5(i,4)),L3_
s3_6=passrule([f5(i,3) f5(i,4)1.L3_3_4);
% s3_4=0;s3_5=0;
§3=53_l+s3_2+s3_3+s3_4+s3_5+s3_6;

s4_l=passrule([£5(i,1) £5(3,2),L4_1_2);
s4_2=passrule([£5(i,1) £5(i,3)}L4_1_3);
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s4_3=passrule([£5(i,1) 5(i,4)],L4_1_4);
s4_d=passrule((f5(i,2) £5(i,3)].L4 3
s4_S5=passrule([f5(i,2) £5(i.4)],.L4. :
s4_6=passrule([5(i,3) £5(i,4)],L4_3_4);

% s4_4=0; s4_5=0;
Sd=s4_|+sd_2+s4_3+s4_4+s4_S+sd_6;

_1=passrule((f5(i,1) £5(1,2).L5_L 2).

s5_S=passrule([£5(i.2) £5(i.4)}.L5_2_4)

s5_6=passrule([f5(i,3) 5(i,4)},L5_3_4);
% s5_4=0;s5_5=0;

S§5=55_l+s5_2+55_3+s5_4+s5_5+s5_6;

s6_l=passrule((f5(i,1) £5(i.2)},L6_1_2);
s6_2=passrule([5(i,1) £5(i,3)},L6_1_3);
s6_3=passrule([f5(i,1) 5(i,4)],L6_

SG=&6H5624>563+s64+965+966

S=[S1;52;83;54;S5;56];

[Y O=sort(S);

if (6)=1
C(5,1)=C(5,1)1+1;

elseif I(6)—=2
C(5,2)=C(5.2)+1;

elseif 1(6)=3
C(5,3)=C(5.31+1;

elseif 1(6)=4
C(5,4)=C(5.4y+1;

elseif 1(6)=5
C(5,5)=C(5,51+1;

elseif [(6)=6
C(5,6)=C(5,6y+1;

end

end

% class 6



for i=1:100
s1_1=passrule([f6(i,1) f6(i,2),L1_1_2);
s1_2=passrule([f6(,1) f6(i,3)],L1_1_3);
s1_3=passrule([f6(i,1) f6(i,4),L1_1_4);
s1_4=passrule([f6(i,2) f6(i,3),L1_2_3);
s1_S5=passrule([f6(i,2) f6(i,4)],L1_: 5
s1_6=passrule([f6(i,3) f6(i,4)l,L1_3_4);

% sl_4=0;s1_5=0;
Sl=sl_l+s1_2+sl_3+sl_d+sl_S+s1_6;

s2_l=passrule([f6(i,1) f6(i,2)],L2_1_2);
s2_2=passrule([f6(i,1) £6(i,3)],L2_1_3);
s2_3=passrule([f6(i,1) f6(i,4)},L2_L_4);
s2_4=passrule([f6(i,2) 6(i,3)],L2

s2_S=passrule([6(i,2) £6(,4)],L2_2_4);
52 6-passrule((f6(i3) F6(.4).L2_3_4):

% s2_4=0;s2_5=0;
S2=s2_1+s2_2+s2_3+s2_4+s2_5+s2_6;

s3_I1=passrule([f6(i,1) f6(i,2)].L3_1_2);
s3_2=passrule([f6(i,1) £6(i,3)],L3_1_3);
s3_3=passrule([f6(i,1) f6(i,4),L3_1_4
s3_d=passrule([f6(i,2) £6(i,3)],L3_:
s3_S=passrule([f6(i,2) f6(i,4)],L3_2_4);
s3_6=passrule([f6(i,3) f6(i,4)],L3_3_4);
% s3_4=0;s3_5=0;
S3=53_L+s3_2+s3_3+s3_4+s3_5+s3_6;

s4_1=passrule([f6(i,1) f6(i,2)].L4_1_2);
s4_2=passrule([f6(i,1) f6(i.3).L4_1_3);
s4_3=passrule([f6(i,1) f6(i,4)1.L4_1_4);
s4_4=passrule([f6(i,2) f6(1,3).L4_2_3);
s4_5=passrule([f6(i,2) f6(i,4)],L4_2_4);
s4_6=passrule([f6(i,3) f6(i,4)],L4_3_4);
% s4_4=0;s4_5=0;
Sd=s_l+s4_2+s4_3+s4_d+s4_5+s4_6;

s5_1=passrule([f6(i,1) f6(i,2)],L5_1_2);
s5_2=passrule([f6(i,1) f6(i,3)],L5_1_3);
s5_3=passrule([f6(i,1) f6(i,4)l,L5_1_4);
s5_4=passrule([f6(i,2) f6(i,3),.L5_2_3);
s5_S=passrule([f6(i,2) f6(i,4)],L5_2_4);
s5_6=passrule([f6(i,3) f6(i,4)l,L5_3_4);
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% s5_4=0;s5_5=0;
S5=s5_1+s5_2+s5_3+s5_4+s5_5+s5_6;

s6_1=passrule([5(i,1) 6(i,2)],L6_1_2);

s6_6=passrule([f5(i,3) f6(i,4)],L6_3 ‘)‘
% s6_4=0;s6_5=0;
S6=s6_1+s6_2+s6_3+s6_4+s6_5+s6_6;

S=[S1;52;53;54;55;S6];
[Y [J=sort(S);

C(6,1)=C(6,1)+1;
elseif I(6)=2

C(6,2)=C(6.2)+1;
elseif 1(6)=3

C(6,3)=C(6,3)+1;
elseif [(6—4

C(6.4)=C(6,4)+1;
elseif [(6)—5

C(6,5=C(6.,5)+1;
elseif [(6)—6

C(6.6=C(6,6)+1;
end

end

% Display the confusion matrix

fprintf{("\n Confusion Matrix \n\n')
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n’,C(1,1),C(1,2),C(1,3),C(1,4),C(1,5),C(L.6));
fprintf{ d\t%d\t%d\n’,C(2,1),C(2.2).C(2,3),C(2,4).C(2,5).C(2.6));
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n',C(3,1),C(3,2),C(3,3),C(3,4),C(3,5).C(3.6));
fpnntﬁ‘“/od\l‘/nd\t%d\t‘M\t“/od\!‘/od\n ,C(4,1),C(4,2),C(4,3),C(4,4),C(4,5),C(4.,6));
fprintf d\t%d\t%d\n’,C(5,1),C(5,2),C(5,3),C(5,4),C(5,5).C(5.6));
Fpnntﬁ‘“/od\!%d\t"/od\l%d\t%d\!%d\n ,C(6,1),C(6,2),C(6,3),C(6,4),C(6,5),C(6,6));




NNEIGH.M

function C=nneigh(f1,£2,13,f4,£5,f6)

% Script which returns the min 3 distances from unknown to f1, £2, 3,
% f4, f5 and f6.

% R. Hale

C=zeros(6);

% set number of neighbours
N=I;

% For class 1

end
end
tmp=sort(distfl_f1);
distfl_fl1=tmp(1:N);

c=0;
for i=1:length(f2)
ifi—j
c=c+1;
distfl_f2(c)=norm(f1(j,:)-£2(i,"));
end
end
tmp=sort(distfl_{2);
distfl_Q2=tmp(1:N);

c=0;
for i=1:length(f3)
ifi~=j
c=ctl;
distfl_f3(c)=norm(f1(j,)-f3(i,:));
end
end
tmp=sort(distfl_f3);
distfl_f3=tmp(1:N);
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c=0;
for i=1:length(f4)
ifi—=j

c=c+l;
distfl_f4(c)=norm(f1(,:)-f4(i,?));
end

end
tmp=sort(distfl_f4);
distfl_fa=tmp(1:N);

c=0;
for i=1:length(f5)
ifi~=j
c=c+l1;
distfl_f5(c)=norm(f1(j,)-f5(i,:));
end
end
tmp=sort(distfl_f5);
distfl_f5=tmp(1:N);

c=0;
for i=1:length(f6)
ifi~=j
c=c+l;
distf1_f6(c)=norm(f1(j,:)-f6(i,:));
end
end
tmp=sort(distfl_f6);
distfl_f6=tmp(1:N);

D=[distfl_fl';distfl_f2';distfl_f3"distfl_4'distfl_f5';distfl_f6");
[M I}=sort(D);
ifN=1
if length(find(I(1:N)=1)) = 1
C(L1=C(1,1)+1;
elseif length(find(I(1:N)=2)) =1
C(1,2=C(1,2)+1;
elseif length(find(I(1:N)==3)) = 1
C(1,3)=C(1,3)+1;
elseif length(find(I(1:N)=4)) = 1
C(1,4)=C(1,4)+1;
elseif length(find(I(1:N)=5)) = 1
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C(1,5=C(1,5)+1;

elseif length(find(I(1:N)=6)) =
C(1,6)=C(1,6)+1;

end

elseif N=3

if length([find(I(1:N)=1) find(I(1:N)}==2) find(I(1:N}=3)]) >=2
C(1,1)=C(1,1)+1;

elseif length([find(I(1:N)==4) find(I(1:N)=>5) find(I(1:N)==6)]) >=2
C(1,2)=C(1,2)+1;

elseif length([find(I(1:N)==7) find(I(1:N)=8) find(I(1:N)=9)]) >=2
C(1,3)=C(1,3)+1;

elseif length([find(I(1:N)==10) find(I(1:N)=11) find(I(1:N)=12)}) >= 2
C(1,4)=C(L4)+1;

elseif length([find(I(1:N)=13) find(I(1:N)=14) find(I(1:N)==15)]) >= 2
C(L5)=C(L,5)y*+1;

elseif length([find(I(1:N)==16) find(I(1:N)}==17) find(I(1:N)=18)]) >=2
C(1,6)=C(L,6)+1;

end

elseif N=5
if length([find(I(1:N)y=T1) find(I(1:N}==2) find(I(1:N)=3) find(I(1:N)=4)
find(I(1:N)=>5)]) >= 3

C(1,1)=C(1,1)+1;

elseif length([find(I(1:N)==6) find(I(1:N)==7) find(I(1:N)==8) find(I(1:N)}==9)

find(@I(1:N)=10)]) >=3
C(1,2)=C(1,2)+1;

elseif length([find(I(1:N)=11) find(I(1:N)==12) find(I(1:N)=T13) find(I(1:N)=14)

find(I(1:N)=15)]) >=3
C(1,3)=C(1,3y+1;

elseif length([find(I(1:N)==16) find(I(1:N)==17) find(I(1:N)=T18) find(I(1:N)=19)

find(I(1:N)==20)]) >= 3
C(1,4)=C(1,4)+1;

elseif length([find(I(1:N)=21) find(I(1:N)=22) find(I(1:N)==23) find(I(1:N)==24)

find(I(1:N)=25)]) >= 3
C(1,5)=C(1,5)+1;

elseif length([find(I(1:N)==26) find(I(1:N)=27) find(I(1:N)==28) find(I(1:N)==29)

find(I(1:N)=30)]) >= 3
C(1,6)=C(1,6)+1;
end
end
end

% For class 2
for j=1:length(f2)
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c=0;
for i=1:length(fl)
ifi~=j
c=ctl;
distf2_fl(c)=nom(£2G,)-f1(i,"));
end

end
tmp=sort(distf2_f1);
distf2_fl=tmp(1:N);

c=0;
for i=1:length(f2)
ifi~=j

c=c+l;
distf2_f2(cy=norm(f2(j,:)-£2(i,"));
end

end
tmp=sort(distf2_f2);
distf2_f2=tmp(1:N);

c=0;
for i=1:length(f3)
ifi=j
c=ctl;
distf2_f3(c)=norm(£2(,:)-53(i,2));
end
end
tmp=sort(distf2_f3);
distf2_f3=tmp(1:N);

c=0;
for i=1:length(f4)
ifi~=j
c=ctl;

diste2, F(cy=nom(E2G,)-F4Gi);
end

end
tmp=sort(distf2_f4);
distf2_f4=tmp(1:N);

o=0;
for i=1:length(f5)
ifi=j
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c=c+l;
dist2_f5(c)=norm(f2(,:)>-5(i,"));
end

end
tmp=sort(distf2_f5);
distf2_f5=tmp(1:N);

1;
distf2_f6(c)=norm(f2(j,:)-f6(i.:));
end
end
tmp=sort(distf2_f6);
distf2_f6=tmp(1:N);

D={distf2_fl"dist2_2';distf2_f3"distf2_fa'dist2_f5';disti2_6'];
M I}=sort(D);
ifN=1
if length(find(I(1:N)=1)) = 1
C(2,1)=C(2,1)+1;
elseif length(find(I(1:N)=2)) =1
C(2.2=C(22)+1;

Clselflﬂlsﬂl(ﬁndﬂ(l Ny=4)) =1
C.4=CA4r+1;

elseif length(find(I(1:N)=5)) = 1
C2,5C2.5)+1;

elseif length(find(I(1:N)=6)) = 1
C(2,6-C(2.6y+1;

end

elseif N—=3

if length([find(I(1:N)==1) find(I(1:N}=2) find(I(1:N)==3)]) >=2
CR,1=C@,1)*+;

elseif length([find(I(1:N)==4) find(I(1:N)=5) find(I(1:N)=6)]) >=2
C(2,2)=C(2,2)+1;

elseif length([find(I(1:N)=7) find(I(1:N)=8) find(I(1:N)==9)]) >=2
C(2,3=C(2,3y+1;

elseif length([find(I(1:N)==10) find(I(1:N)=11) find(I(1:N)=12)]) >=2
C4=C24)+1;

elseif length([find(I(1:N)=13) find((1:N}=14) find(I(1:N)=15)]) >=2
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C(2,5=C(2,5+1;
elseif length([find(I(1:N}=16) find(I(1:N)=17) find(I(1:N)==18)]) >= 2
C(2,6)=C(2,6)+1;
end
elseif N=5
if length([find(I(1:N)==1) find(I(1:N)==2) find(I(1:N)==3) find(I(1:N)=4)
find(I(1:N}=5)]) >=3
C2,1=C2,1)+1;
elseif length([find(I(1:N)==6) find(I(1:N)=?7) find(I(1:N)=8) find(I(1:N)}=9)
find(I(1:N)==10)]) >=3
C(2,2)=C(2,2)+1;
elseif length([find(I(1:Ny=11) find(I(1:N}==12) find(I(1:N)=13) find(I(1:N)=14)
find(I(1:Ny=15)]) >=3
C(2,3=C(2,3)+1;
elseif length([find(I(1:N)==16) find(I(1:N)=17) find(I(1:N)==18) find(I(1:N)=19)
find(I(1:N)y==20)]) >=3
CR2.4=C2,4yt1;
elseif length([find(I(1:Ny==21) find(I(1:N}=22) find(I(1:N)==23) find(I(1:N)=24)
find(I(1:N)==25)]) >= 3
C(2,5-C(2,5)+1;
elseif length([find(I(1:N)==26) find(I(1:N)==27) find(I(1:N)==28) find(I(1:N)}==29)
find(I(1:N)==30)]) >=3
C(2,6)=C(2,6)+1;
end
end
end

% For class 3
for j=1:length(f3)

distf3_fl(c)=norm(f3(j,:)-f1(i,:));
end
end
tmp=sort(distf3_f1);
distf3_fl=tmp(1:N);
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distf3_f2(c)=norm(f3(j,:)-2(i,:));
end

end
tmp=sort(distf3_{2);
distf3_f2=tmp(1:N);

for i=1:length(f3)

ifi~=j

c=c+l;

distf3_f3(c)=norm(f3(,:)-53,2);

end
end
tmp=sort(distf3_f3);
distf3_f3=tmp(1:N);

end
tmp=sort(distf3_f4);
distf3_f4=tmp(1:N);

length(f5)
J

c=ctl;
distf3_f5(cy=norm(f3(,:)-£5(,2));
end
end
tmp=sort(distf3_f5);
distf3_f5=tmp(1:N);

c=0;
for i=1:length(f6)
ifi~=j
c=ctl;
distf3_f6(c)=norm(f3(j,:)-f6(i,:));
end

end
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tmp=sort(distf3_f6);
distf3_f6=tmp(1:N);

D={distf3_f1;distf3_£2;distf3_£3';distf3_4'distf3_f5';distf3_f6'];
[M I}=sort(D);
if N=1
if length(find(I(1:Ny=1)) = 1
C@3,1)=CG, 1)+
elseif length(find(I(1:N)==2)) =1
C(3,2)=C(3,2*+1;
elseif length(find(I(1:N)==3)) =1
C(B3,3=CG+;
elseif length(find(I(1:N)=4)) = 1
CEAH=CEA*HL;
elseif length(find(I(1:N)==S5)) = 1
C3,5)=CG.5+;
elseif length(find(I(1:N)==6)) = 1
C(3,6=CG,61+1;
end

elseif N—=3
if length([find(I(1:N)=1) find(I(1:N)=2) find(I(1:N)=3)]) >=2
CE3,1)=CG,1)+1;
elseif length([find(I(1:N)y==4) find(I(1:N)==5) find(I(1:N)==6)]) >=2
C(3,2=C(3,2)+1;
elseif length([find(I(1:N)=7) find(I(1:N)=8) find(I(1:N)}==9)]) >= 2
C(3,3=C(3.3)+1;
elseif length([find(I(1:N)==10) find(I(1:N)}==11) find(I(1:N)==12)]) >=2
C(3,4=CG4+1;
elseif length([find(I(1:N)==13) find(I(1:N)==14) find(I(1:N)=15)]) >=2
C@3,5=CG*;
elseif length([find(I(1:N)==16) find(I(1:N)=17) find(I(1:N)==18)]) >=2
CE.6=C@B.6)+1;
end
elseif N=5
if length([find(I(1:N)=1) find(I{1:N}=2) find(I(1:N)=3) find(I(1:N)=4)
find(I(1:N)==5)]) >= 3
C(3,1)=C@3,1)+1;
elseif length([find(I(1:N)==6) find(I(1:N)==7) find(I(1:N)==8) find(I(1:N)==9)
find(I(1:N)=10)]) >=3
C(3,2)=C(3,2)+1;
elseif length([find(I(1:N)==11) find(I(1:N)=12) find(I(1:N)=13) find(I(1:N)=14)
find(I(1:N)=15)]) >=3
C@3.3=C3.3)+1;



elseif length([find(I(1:N)=16) find(I(1:N)=17) find(I(1:N)=18) find(I(1:N)=19)
find(I(1:N)y=20)]) >=3
C(3.4=C(3.4r+1;
elseif length([find(I(1:N)=21) find(I(1:N)=22) find(I(1:Ny=23) find(I(1:N)}=24)
find((1:N)==25)]) >=3
C(3,5=C3.5)+1;
elseif length([find(I(1:N)=26) find(I(1:N)==27) find(I(1:N)==28) find(I(1:N)=29)
find(I(1:Ny=30)]) >=3
C(3,6=C(3.6)+1;
end

end
end

% For class 4
for j=1:length(f4)

distf4_fl(c)=norm(f4(j,:)-f1(i,’));
end
end
tmp=sort(distf4_f1);
distf4_fl=tmp(1:N);

c=ctl;
distf4_f2(cy=norm(f4(j,:)-£2(i,:));
end
end
tmp=sort(distf4_f2);
distf4_f2=tmp(1:N);

c=c+l;
distf4_f3(c)=norm(£4(,)-£3(i,2));
end

end
tmp=sort(distf4_f3);
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distf4_f3=tmp(1:N);

c=0;
for i=1:length(f4)
ifi~=j
c=c+l;
distf4_f4(c)=norm(f4G,:)-f4(i,1));
end

end
tmp=sort(distf4_4);
distf4_fa=tmp(1:N);

c=0;
for i=1:length(f5)
ifi~=j
c=c+l;
distf4_f5(cy=norm(f4(j,:)-£5(,"));
end

end
tmp=sort(distf4_f5);
distf4_f5=tmp(1:N);

c=0;
for i=1:length(f6)
ifi~=j
c=c+l;
distf4_f6(cy=norm(f4(j,:)-f6(i,));
end

end
tmp=sort(distf4_f6);
distf4_f6=tmp(1:N);

D=[distf4_f1';distf4_f2'distf4_3'distf4_f4"distf4_fS'distfd_f6'];
[M I}=sort(D);
iFN=1
if length(find(I(1:N)=1)) = 1
C(4,1)=C(4,1)+1;
elseif length(find(I(1:Ny=2)) = 1
C(42)=C(4.2)*+1;
elseif length(find(I(1:Ny=3)) = 1
C(43)=C@4.3)+1;
elseif length(find(I(1:Ny=4)) = 1
Ca4y=C4.4)+1;



elseif length(find(I(1:N)=5)) = 1
C(4,5=C(4,5)+1;

elseif N—=3

if length([find(I(1:Ny=1) find(I(1:N)=2) find(I(1:N}=3)]) >=2
C@,1=C(4,1)+1;

elseif length([find(I(1:N)=4) find(I(1:N}=>5) find(I(1:N)==6)]) >=2
C(4,2=C(4.2)+1;

elseif length([find(I(1:N)=7) find(I(1:N)}==8) find(I(1:N)==9)]) >=2
C(4,3=C(4.3)+1;

elseif length([find(I(1:N)=10) find(I(1:N)=11) find(I(1:N)=12)]) >=2
C(4,4-C(4,4)+1;

elseif length([find(I(1:N)=13) find(I(1:N)==14) find(I(1:N)=15)]) >=2
C(4,5)=C(4,5)+1;

elseif length([find(I(1:N)=16) find(I(1:N)==17) find(I(1:N)==18)]) >=2
C(4,6)=C(4,6)+1;

end

elseif N=5

if length([find(1(1:N)=1) find(I(1:N)=2) find(I(1:N)=3) find(I(1:N}==4)
find(I(1:N)=5)]) >= 3
C(4,1)=C(4,1)+1;

elseif length([find(I(1:N)==6) find(I(1:N)=?7) find(I(1:N)=8) find(I(1:N)}=9)

find((1:N)==10)]) >=3
C(4.2=C(4.2)+1;

elseif length([find(I(1:N)==11) find(I(1:N)==12) find(I(1:N)==13) find(I(1:N)==14)

find(I(1:N)=15)]) >= 3
C(4.3=C(4.3)+1;

elseif length([find(I(1:N)==16) find(I(1:N)==17) find(I(1:N)==18) find(I(1:N)}=19)

find(I(1:N)=20)]) >= 3
C(4,4)=C(4,4)+1;

elseif length([find(I(1:N)==21) find(I(1:N)==22) find(I(1:N)}==23) find(I(1:N)}=24)

find(I(1:N)==25))) >=3
C(4,5=C(4,5y+1;

elseif length([find(I(1:N)==26) find(I(1:N)==27) find(I(1:N)==28) find(I(1:N)==29)

find(I(1:N)==30)]) >= 3
C(4,6)=C(4.6)+1;
end

end
end

% For class 5
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for j=1:length(f5)
=0;

for i=1:length(fl)
ifi~=j
c=c+l;
distf5_fl(c)=norm(f5(j,:)-f1(i,));
end
end
tmp=sort(distf5_f1);
distf5_fl1=tmp(1:N);

c=0;
for i=1:length(2)

ifi~—=j

c=c+l;

istfS_f2(c)=norm(f5,:)-£2(i,:));

end
end
tmp=sort(distf5_{2);
distf5_f2=tmp(1:N);

1
istf5_f3(cy=norm(£5(j,:)-53(i,"));
end
end
tmp=sort(distf5_{3);
distf5_f3=tmp(1:N);

c=ctl;
distf5_fa(c)=norm(f5(j,:)-f4(i.:));
end
end
tmp=sort(distf5_f4);
distf5_fa=tmp(1:N);

c=0;
for i=1:length(f5)



ifi~=j
c=ctl;
distf5_5(c)=norm(f5(,)-£5(i,7));
end
end
tmp=sort(distf5_f5);
distf5_f5=tmp(1:N);

distfS_f6(c)nom(f5,-16(i):
end

end
tmp=sort(distf5_f6);
distf5_f6=tmp(1:N);

D=[distf5_f1";distf5_f2";distf5_3";distf5_f4";distf5_f5"distf5_f6'];
[M I}=sort(D);
ifN=1
if length(find(I(1:Ny=1)) = 1
C(5,1)=C(5,1)+1;
elseif length(find(I(1:N)=2)) =1
C(5,2=C(5.2)+1;
elseif length(find(I(1:N)=3)) = 1
C(G.3=C(53)+1;
elseif length(find(I(1:Ny=4)) = 1
C(5.4=C(5.4)+1;
elseif length(find(I(1:N)==5)) = 1
C(5,5)=C(5,5y+1;
elseif length(find(I(1:N)==6)) =1
C(5,6)=C(5.6)y+1;
end
elseif N=3
if length([find(I(1:N)=1) find(I(1:N)==2) find(I(1:N)}==3)]) >= 2
C(5,1)=C(5,1)+1;
elseif length([find(I(1:N)==4) find(I(1:N)==5) find(I(1:N}==6)]) >=2
C(5,2)=C(5.2)+1;
elseif length([find(I(1:N)=7) find(I(1:N)==8) find(I(1:N)}=9)]) >=2
C(5:3)=C(53)+1;
elseif length([find(I(1:N)=10) find(I(1:N)==11) find(I(1:N)==12)]) >= 2
C(5.4)=C(5,4)+1;
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elsut'lmg!h([ﬁnd(l(l N)=13) find(I(1:N)==14) find(I(1:N}=15)]) >= 2
C(5.5C(5,5)+

elsaflmgﬂs([ﬁnd(l(l N)=16) find(I(1:N)}=17) find(I(1:N}=18)]) >=2
C(5.6=C(5.6)+1;

end

elseif N=5
if length([find(I(1:N)=1) find(I(1:N)=2) find(I(1:N}=3) find(I(1:N}—4)
find(I(1:N)=5)]) >=3
C(5,D=C(,1)+1;
elseif length([find(I(1:N)=6) find(I(1:N)=7) find(I(1:N}=8) find(I(1:N)}=9)
find(I(1:N)==10)]) >=3
C(5.2-C(5.2)+1;
elseif length([find(I(1:N)=11) find(I(1:N)==12) find(I(1:N)==13) find(I(1:N)=14)
find(I(1:N)=15)])) >=3
C(S3=C(5.31+1;
elseif length([find(I(1:N)=16) find(I(1:N)=17) find(I(1:N)=18) find(I(1:N}=19)
find(I(1:N)=20)]) >=3
C(5.:4)=C(5.4)+1;
elseif length([find(I(1:Ny==21) find(I(1:N)=22) find(I(1:N)=23) find(I(1:N}—24)
find(I(1:N)=25)]) >=3
C(5.5=C(5.5)+1;
elseif length([find(I(1:N)==26) find(I(1:N)=27) find(I(1:N)=28) find(I(1:N}=29)
find(I(1:N}=30)]) >=3
C(5,6-C(5.6)+1;
end

end
end

% For class 6
for j=1:length(f6)
=0;
for i=1:lexgth(f1)
ifi~=j
c=c+l;
distf6_fl(c)=norm(f6(,:)-f1(i,:));
end
end

tmp=sort(distf6_f1);
distf6_f1=tmp(1:N);
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c=ctl;
distf6_f2(c)y=norm(f6(j,:)-£2(i,);
end

end
tmp=sort(distf6_{2);
distf6_f2=tmp(1:N);

c=0;
for i=1:length(f3)
ifi~=j
c=ctl;
distf6_f3(c)y=norm(f6(j,:)-3(,2));
end

end
tmp=sort(distf6_f3);
distf6_f3=tmp(1:N);

c=c+l;

distf6_fd(cy-norm(f6,:)-f4(i,");
end

end

tmp=sort(distf6_f4);

distf6_f4=tmp(1:N);

c=c+l;
distf6_f5(c)=norm(f6(j,:)-£5(i,"));
end
end
tmp=sort(distf6_f5);
distf6_fS=tmp(1:N);

c=ct+l;
distf6_f6(cy=norm(f6(,:)-f6(i.:));

end
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D={distf6_f1";distf5_2';distf6_f3';distf6_f4";distf6_5'distf6_f5;
[M I}=sort(D);
ifN=1
if length(find(I(1:N)=1)) =1
C(6,1=C(6,1)+1;
elseif length(find(I(1:N)=2)) = 1
C(62)=C(6.2)+1;
elseif length(find(I(1:N)=3)) = 1
C(6.3)=C(6.3)+1;
elseif length(find(I(1:N)=4)) = 1
C(6,4)=C(6,4)+1;
elseif length(find(I(1:N)=>5)) = 1
C(6,5)=C(6,5)+1;
elseif length(find(I(1:N)=6)) = 1
C(6.6=C(6.6)1;
end

elseif N—=3

if length([find(I(1:N)=1) find(I(1:N}=2) find(I(1:N)=3)]) >=2
C(6,1)=C(6,1)+1;

elseif length([find(I(1:N)==4) find(I(1:N)==5) find(I(1:N)=6)]) >=2
C(62)=C(6.2)+1;

elseif length([find(I(1:N)=7) find(I(1:N)=8) find(I(1:N)=9)]) >=2
C(6.3=C(6.3)+1;

elseif length([find(I(1:N)==10) find(I(1:N}=11) find(I(1:N}=12)]) >=2
C(6.4)=C(6,4)+1;

elseif length([find(I(1:N)=13) find(I(1:N}=14) find(I(1:N)=15)]) >=2
C(6.5=C(6,5)+1;

elseif length([find(I(1:N)=16) find(I(1:N}=17) find(I(1:N)=18)]) >=2
C(6.6)=C(6.6)+1;

end

elseif N=5
if length([find(I(1:N)==1) find(I(1:N)}=2) find(I(1:N)==3) find(I(1:N}=4)
find(I(1:N)=5)]) >=3
C(6,1)=C(6,1)+1;
elseif length([find(I(1:N)=6) find(I(1:N)==7) find(I(1:N)==8) find(I(1:N)==9)
find(I(1:N)=10)]) >=3
C(6,2)=C(6,2)+1;
elseif length([find(I(1:N)==11) find(I(1:N}==12) find(I(1:N)==13) find(I(1:N)=14)
find(I(1:N)=15)]) >=3
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C(6,3)=C(6,3)+1;
elseif length({find(I(1:N)=16) find(I(1:N)==17) find(I(1:N)==18) find(I(1:N)=19)
find(I(1:N)==20)]) >=3
C(6.4=C(6:4)+1;
elseif length([find(I(1:N)y=21) find(I(1:N}==22) find(I(1:Ny=23) find(I(1:N)=24)
find(I(1:N)=25)]) >=3
C(6,5)=C(6,5)*+1;
elseif length([find(I(1:N)y=26) find(I(1:N}=27) find(I(1:N)==28) find(I(1:N)=29)
find(I(1:N)==30)]) >= 3
C(6,6)=C(6,6)*1;
end
end
end

% Display the confusion matrix

fprintf("\n Confusion Matrix \n\n')
Forintf{%d\%d\%d\t%d\d\tadwn',C(1,1),C(1,2),C(1,3),C(1,4),C(1,5),C(1,6));
fprintl{(%d\%d\%d\t%d\%d\t%dn’,C(2,1),C(2,2),C(2,3),C(2,:4),C(2,5),C(2,6));
forint{%d\%d\%d\t%d\%d\%d\n',C(3,1),C(3,2),C(3,3),C(3:4).C(3,5),C(3.,6)):
fprintf('%d\t%d\t%d\t%d\t%d\t%d\n',C(4,1),C(4,2),C(4,3),C(4.4),C(4,5),C(4,6));
fprintf{"%d\t%d\t%d\t%d\t%d\t%d\n',C(5,1),C(5,2),C(5,3),C(5,4),C(5,5),C(5,6));
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n',C(6,1),C(6,2),C(6,3),C(6,4),C(6.5).C(6,6));

MAL_DIST.M

function C=mal_dist(f1,£2,£3,f4,f5,f6)

% Script which returns the min 3 distances from unknown to f1, 2, f3,
% f4, £5 and f6.

% R. Hale

% Calculate class covariance matrices
Kl=cov(fl);
K2=cov(f2);
K3=cov(f3);
Kd=cov(fd);
K5=cov(f5);
K6=cov(f6);

% Inverse covariance matrices
KI_inv=inv(K1);
K2_inv=inv(K2);
K3_inv=inv(K3);
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K4_inv=inv(K4);
K5_inv=inv(K5);
K6_inv=inv(K6);

% Calculate class means
ml=mean(fl);
m2=mean(2);
m3=mean(f3);
mé4=mean(f4);
mS5=mean(f5);
m6=mean(f6);

C=zeros(6);

% For class 1

% Find distance from all other classes

for j=1:length(fl)
distfl_f1=(f1(,:)-m1)*K1_inv*(f1(j,)-m1)’;

distfl_f2=(f1(j,:)}-m2)*K2_inv*(f1(j,:)-m2);
distfl_3=(f1(,")-m3)*K3_inv*(f1(,))-m3);
distfl_f4=(f1(j,:)-m4)*K4_inv*(£1(,:)-md);
distfl_f5=(f1(j,:)-mS)*KS_inv*(f1(j,:)-mS);
distfl_fo=(f1(j,:)-m6)*K6_inv*(f1(j,:)-m6);

D=[distf1_f1;distfl_f2;distfl_f3;distfl_f4;distfl_f5;distfl_f6];
[M IJ=sort(D);

% Classify as class with minimum distance
ifI(1)=1
C(1,1)=C(1,1)+1;
elseif [(1)=2
C(1,2)=C(1,2)+1;
elseif I(1)=3
C(1,3)=C(1,3)+1;
elseif I(1)=4
C(1,4)=C(L4)+1;
elseif I(1)=5
C(1,5y=C(1,5)+1;
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elseif [(1)=6
C(1,6=C(1,6)+1;
end
end

% For class 2

% Find distance from all other classes

for j=1:length(f2)
distf2_f1=(£2(j,:)-m1)*K1_inv*(£2(j,:)-ml);

dist2_f2=(£2(j,)-m2)*K2_inv*(£2(,:)-m2)’;
distf2_f3=(£2(j,:)-m3)*K3_inv*(£2(j,:)-m3)’;
distf2_f4=(f2(j,:)-m4)*K4_inv*(£2(j,:)-m4)’;
distf2_f5=(£2(j,:)-mS)*KS_inv*(£2(j,:)}-m5)’;
distf2_f6=(£2(j,:)-m6)*K6_inv*(£2(,:)-m6)’;

D=[distf2_f1;dist2_f2;dist2_3;distf2_f4;dist2_fS;distf2_f6];
M I}=sort(D);

% Classify as class with minimum distance
ifI(1)=1
C(2,1)=C(2,1)+1;
elseif I[(1)==2
C(2,2)=C(2,2)+1;
elseif I(1)=3
C(2,3=C2.3)+1;
elseif [(1)=4
C2,4=C2.4+1;
elseif I(1)=5
C(2,5)=C(2,5)+1;
elseif I(1)=6
C(2,6=C(2,6)+1;
end

end

% For class 3

% Find distance from all other classes

for j=1:length(f3)
distf3_fl=(£3,:)>-m1)*K1_inv*(£3G,)-m1);
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distf3_£2=(f3(j,")-m2)*K2_inv*(£3(,-)-m2);
distf3_f3=(f3(j,:)-m3)*K3_inv*(f3(,:)-m3);
distf3_f4=(£3(j,:)-m4)*K4_inv*(£3(j,:)-m4);
distf3_f5=(f3(j,:)-m5)*K5_inv*(£3(j,:)-m5)’;
distf3_f6=(f3(j,:)-m6)*K6_inv*(83(,:)}-m6);

D={distf3_f1;distf3_2;distf3_3;distf3_f4;distf3_f5;distf3_f6];
[M I}=sort(D);

% Classify as class with minimum distance
ifI(1)=1
CE.1=CG, 1)+
elseif [(1y=2
C(3.2=C(3.2)+1;
elseif I(1)=3
C(3,3=C(3,3)+1;
elseif [(1)=4
CEA=CE.4+;
elseif [(1)=5
C(3,5)=C(3,5)+1;
elseif I(1)=6
CB.6)=CB,6)+1;
end
end

% For class 4

% Find distance from all other classes

for j=1:length(f4)
distf4_f1=(£4(j,:)-m1)*K1_inv*(4(j,:)}-m1)’;
distf4_f2=(f4(j,:)-m2)*K2_inv*(£4(j,:)-m2)’;
distf4_f3=(FA(j,:)-m3)*K3_inv*(£4(j,:)-m3)’;
distf4_f4=(f4(j,:)-m4)*K4_inv*(F4(j,:)-m4)’;

distf4_f5=(f4(j,:)-mS)*KS_inv*(f4(j,:)-m5)’;
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distf4_f6=(f4(j,:)-m6)*K6_inv*(f4(j,:)-m6)';

D=[distf4_f1;distf4_f2;distf4_3;distf4_f4;distf4_fS;distf4_f6];
[M [J=sort(D);

% Classify as class with minimum distance
if (1=l
C(4,1)=C(4,1)+1;
elseif I(1)==2
C(4,2)=C(4,2)*1;
elseif I(1)=3
C(4,3)=C(4,3)+1;
elseif [(1y=4
C(4,4y=C(4,4)+1;
elseif I(1)=5
C(4,5)=C(4,5y+1;
elseif [(1y=6
C(4,6)=C(4,6)+1;
end
end

% For class 5

% Find distance from all other classes

for j=1:length(f5)
distf5_f1=(£5(j,:)-m1)*K1_inv*(f5(j,:)}-ml);
distf5_f2=(f5(j,:)-m2)*K2_inv*(£5(j,:)-m2)';
distf5_f3=(f5(j,:)-m3)*K3_inv*(£5(j,:)-m3)’;
distf5_f4=(f5(j,:)-m4)*K4_inv*(£5(j,:)-m4)";
distf5_f5=(f5(j,:)-mS5)*KS_inv*(£5(,:)-m5)';
distf5_f6=(£5(j,:)-m6)*K6_inv*(f5(j,:)-m6)';

D=[distf5_fl;distf5_f2;distf5_f3;distf5_f4;distf5_f5;distf5_f6];
[M [=sort(D);
% Classify as class with minimum distance
ifI(1)y=1
C(5,1)=C(5,1)+1;
elseif [(1)=2
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C(5,2)=C(5,2)*1;
elseif I(1)==3

C(5.3)=C(5.3)+1;
elseif I(1y=4

C(5.4)=C(5,4)+1;
elseif [(1)=5

C(5,5)=C(5,5)+1;
elseif I(1)=6

C(5,6)=C(5,6)*+1;
end

end

% For class 6

% Find distance from all other classes

for j=1:length(f6)
distf6_f1=(£6(j,:)-m1)*K1_inv*(f6(j,:)-m1);

distfs_2~(85(1,1)-m2)*K2_inv#(66(,)-m2)’;
distf_f3=(£6(j,1)-m3)*K3_inv*(f6(;,))-m3)’
distf_f4~(F6(j,7)-m4)*K4_inv*(f6(;,))-m4)’;
distf_f5=(£6(j,:)-m3)*K5_inv*(f6(;,)}-m5)’;
distf_f5~(£6(j,7)-m6)*K6 _inv*(f6(;,))-m6)’;

D={distf6_fl;distf6_2;distf6_f3;distf6_f4;distf6_f5;distf6_6];
[M IJ=sort(D);

% Classify as class with minimum distance
ifI(1)=1
C(6,1)=C(6,1)+1;
elseif [(1)=2
C(6,2)=C(6,2)*1;
elseif I(1)=3
C(6,3)=C(6,3)+1;
elseif [(1y=4
C(6,4)=C(6,4)+1;
elseif I(1)=5
C(6,55=C(6,5)*+1;
elseif I(1y—=6
C(6,6)=C(6,6)*+1;
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end
end

% Display the confusion matrix

fprintf{"\n Confusion Matrix \n\n')
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n',C(1,1),C(1,2),C(1,3),C(1,4),C(1,5),C(1,6));
fprintf'%d\t%d\t%d\t%d\t%d\t%d\n',C(2,1),C(2,2),C(2,3),C(2,4),C(2,5),C(2,6));
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n',C(3,1),C(3,2),C(3.3).C(3,4).C(3,5),.C(3.6));
fprintf{%d\t%d\t%d\t%d\%d\t%d\n',C(4,1),C(4,2),C(4,3),C(4,4),C(4,5),C(4,6));
fprintf{'%d\t%d\t%d\t%d\t%d\t%d\n',C(5,1),C(5.2),C(5,3),C(5,:4),C(5,5),C(5,6));
fprintf{"%d\t%d\t%d\t%d\t%d\t%d\n’,C(6,1),C(6,2),C(6,3),C(6,4),C(6.5).C(6.6));

SEG_WIN.M
% Script to take segmented data from and pass to window.m function

% for segl & gestl

load segl;load gestl;

for i=1:] Iength(segl)—
eval(['fAfl_' num2str(i) ‘wmdow(ges(l(seg 1(i):segl(i+1),));])
eval(['save f4f]_' num2str(i) ' f4f1_' num2str(i) ' -ascii;'])

end

% for seg2 & gest2
load seg2;load gest2;
for i=1:length(seg2)-1
eval(['f4f2_' num2str(i) '=window(gest2(seg2(i):seg2(i+1),));])
eval(['save f4£2_' num2str(i) ' f4f2_' num2str(i) ' -ascii;’
end

% for seg3 & gest3

load seg3;load gest3;

for i=1:length(seg3)-1
eval(['f4f3_' num2str(i) '=window(gest3(seg3(i):seg3(i+1),:));)
eval(['save f4f3_' num2str(i) ' f4f3_' num2str(i) ' -ascii;'])

end

% for seg4 & gestd

load seg4;load gest4;

for i=1:length(segd)-1
eval('4f4_ num2str(i) "=window(gestd(segd(i):segd(i+1),)))
eval(['save f4f4_' num2str(i) ' f4f4_' num2str(i) ' -ascii;'])

end
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% for seg5 & gest5
load seg5;load gest5;
for i=1:length(seg5)-1
eval(['fAf5_' num2str(i) '—wmdow(gcstS(segSO) seg5(i+1),)); 1)
eval(['save f4f5_' num2str(i) ' f4f5_' num2str(i) ' -ascii;"])
end

% for segb & gest6

load seg6;load gest6;

for i=1:length(seg6)-1
eval(['f4f6_' num2str(i) ‘=wi i):seg6(i+1),:));1)
eval(['save f4f6_' num2str(i) ' f4f6_' num2str(i) ' -ascii;"])

end

F_OM

% f4f1_1 -> f4f1_100
for w=1:100
eval(['load f4f1_' num2str(w) ;')
eval(['FS=[FS;#4f1_' num2str(w) 'J;'])
end
maxFS=max(FS);
for w=1:100
for k=1:4 % this matches the number of features
e'val(['fAﬂ num2str(w) '(:,’ num2str(k) )=f4f1_' num2str(w) ...
( num?2str(k) ')/maxFS(' num2str(k) );)

eval(['feaz*fAﬂ num2str(w) ;'T)

ifw=1
vector;
else
vector2;
end

eval(['O4f1_' num2str(w) '=seq(S1,52,53,54,55,56,57,58); 1)

eval(['save O4f1_' num2str(w) ' O4f1_' num2str(w) ' -ascii;'])

clear D D_tot M N S1 S2 S3 $4 S5 S6 S7 S8 d b d_tot ¢ epsilon error j k | m mindist n
numcols numrows pos temp x i
end
clear

% f4£2_1 -> f42_100



for w=1:100
eval(['load f4£2_* num2str(w) ;1)
eval(['FS=[FS;f4£2_' num2str(w) ;')
end
maxFS=max(FS);
for w=1:100
for k=1:4 % this matches the number of features
eval(['f4£2_" num2str(w) '(;,' num2str(k) }=f4f2_* num2str(w) ...
"f,' num2str(k) )/maxFS(' num2str(k) ');'])

en
eval(['feat=f4f2_' num2str(w) ;')

ifw=1

eval(['04£2_' num2str(w) '=seq(S1,52,53,54,55,56,57,58);T)

eval(['save O4f2_' num2str(w) ' O4£2_' num2str(w) ' -ascii;])

clear D D_tot M N S1 S2 S3 S4 S5 S6 S7 S8 d b d_tot e epsilon error j k | m mindist n
numcols numrows pos temp x i
end
clear

% f4£3_1 -> fAf3_100
for w=1:100
eval(['load f4f3_' num2str(w) ';])
eval((FS=[FS;f4f3_' num2str(w) J;'])
end
maxFS=max(FS);
for w=1:100
for k=1:4 % this matches the number of features
eval(['f4£3_' num2str(w) '(;,' num2str(k) ')=f4f3_’ num2ste(w) ...
(' num2str(k) ‘)/maxFS(' num2str(k) );'])

end
eval(['feat=f4f3_' num2str(w) ;')
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eval(['04f3_' num2str(w) '=seq(S1,52,53,54,85,56,57,S8);')

eval(['save O4f3_' num2str(w) ' O4f3_' num2str(w) ' -ascii;T)

clear D D_tot M N SI S2 S3 S4 S5 S6 S7 S8 d b d_tot e epsilon error j k | m mindist n
numcols numrows pos temp x i
end
clear

% faf4_1 -> fAf4_100
for w=1:100
eval(['load f4f4_' num2str(w) ;)
eval(['FS=[FS;f4f4_' num2str(w) ';;'])
end
maxFS=max(FS);
for w=1:100
for k=1:4 % this matches the number of features
eval([f4f4_' num2str(w) '(;,' num2str(k) "y=f4f4_' num2str(w) ...
(:,' num2str(k) ‘)/maxFS(' num2str(k) );'7)

end
eval(['feat=f4f4_' num2str(w) ;)

ifw=1
vector;
else
vector2;
end

eval(['04f4_' num2str(w) '=seq(S1,52,53,54,55,56,57,S8);])

eval(['save O4f4_' num2str(w) ' O4f4_' num2str(w) ' -ascii;])

clear D D_tot M N S1 S2 S3 S4 S5 S6 S7 S8 d b d_tot e epsilon error j k | m mindist n
numcols numrows pos temp X i
end
clear

% f4f5_1 -> f4f5_100

for w=1:100
eval(['load f4£5_' num2str(w) ;])
eval((FS=[FS;f4f5_' num2str(w) ;1)

for k=1:4 % this matches the number of features
eval(['f4f5_' num2str(w) '(;,' num2str(k) 'y=f4f5_' num2str(w) ...
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(:,' num2str(k) 'VmaxFS(' num2str(k) );T)
end
eval(feat=F4f5_* num2str(w) ;T)

ifw=1
vector;
else
vector2;
end

eval([O4f5_' num2str(w) '=seq(S1,52,53,54,85,56,57,58);7)

eval(['save O4f5_' num2str(w) ' O4f5_' num2str(w) ' -ascii;'])

clear D D_tot M N S1 S2 S3 S4 S5 S6 S7 S8 d b d_tot e epsilon error j k | m mindist n
numcols numrows pos temp X i
end

clear

% f4f6_1 -> fAf6_100
w=1:100
eval(['load f4f6_' num2str(w) ';'])
eval(['FS=[FS;f4f6_' num2str(w) 1;'T)
end

for k=1:4 % this matches the number of features
eval(['f4f6_' num2str(w) '(:,' num2str(k) y=f4f6_' num2str(w) ...
'( num2str(k) 'VmaxFS(' num2str(k) ;)

eval([‘fml—ﬂﬁ num2str(w) ';T)

ifw=1
vector;
else
vector2;
end

eval(['O4f6_' num2str(w) '=seq(S1,52,53,54,85,56,57,58);])

eval(['save O4f6_' num2str(w) ' O4f6_' num2str(w) ' -ascii;'])

clear D D_t tot MN S1 52 53 $4S5S6S7S8d bd. I_tot e epsilon error j k | m mindist n
numcols numrows pos temp X i
end
clear
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SEQ.M

function O=seq(S1,52,83,54,55,56,57,58)
% Function to convert S1, S2, S3 & $4 output from vector.m
% into output sequence O. Edit when other than 4 S's input.
for i=1:length(S1)
O(S1()=1;
end
for i=1:length(S2)
O(S2())=2;

end
for i=1:length(S3)
0(S3(|))—3

for i=1:length(S4)
0(54(1))—4‘

(or i=1:length(S5)

0(55(!))—5

for i=1:length(S6)
O(S6(0))=6;

end

for i=1:length(S7)
O(S7(M)=7;

end

for i=1:length(S8)
O(S8(i))=8;

end

VECTORM

echo off;

% Vector quantization based; number of levels must be updated in
% initialization code below; number of dimensions or features must
% updated in initialization code below.

% Rodney Hale July 1996

tic

% Initialization

N=8; % N classes; N levels

k=4; % k features; k dimensional



€=0.001; %
D(1)=9.99e62; % set distortion to infinity

% Define training vectors
%load feat dat;
x=feat;

[numrows numcols}=size(x);
n=numrows; % number of training vectors in training set x

% Initial reproduction alphabet by splitting
M=1:

for j=1:k % vector if length k; k features
A(1j)=mean(x(:)); % one-level quantizer; centroid of the training sequence
end

% "Split" using epsilon=10% of the initial centroid vector
epsilon=A/10; % fixed for the splitting process

temp=A;

A(1,:)=temp + epsilon;

A(2,:)=temp - epsilon;

M=2*M;

error = 9.99e62; % set error initially to large value

% continue until error less than e
while error > e
% Reset each iteration
d_tot=[];

% Calculate distortion matrix; minimum value in each row represents
% the partition, S, location of that vector
for j=1:n % loop through for n vectors
for I=1:M % loop through N levels of quantizer
d_tot(j,1)=abs(x(j,:)-A(L,:))*abs(x(j,:)-A(L,:))'; % squared error distortion
end
end

% Determine minimum distrotion for each vector and record the
% location of the minimum in pos(n)
for j=1:n % loop through for n vectors, find minimum distortion and
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% put in mindist matrix; find position of minimum distrotion
% and put in pos matrix
[mindist(j,1) pos(j, 1)]=min(d_tot(j,:));
end

% compute error

D_tot(m)=0;

D_tot(m)=sum(mindist)/n;

ifm>1 % do not have to calculate error on first iteration
error = (D_tot(m-1)-D_tot(m))/D_tot(m);

end

% find the optimal reproduction alphabet; update A

fori=1:M
eval(['S' num2str(i) d(p i), % i iti S's

if size(eval(['S', num2str(i)]),1)>1

eval(['A(i,:)=sum(x(S' num2str(i) ',:))/length(S" num2str(i) ');'T)
else

eval(['A(i,:)=x(S' num2str(i) ',:)/length(S' num2str(i) );'])
end

end

m=m-+1; % move to next interation

if m > 15 % end loop after 15 iterations; error does not converge
error=0;
echo on
%
% After 15 iterations error did not converge!!!
%
echo off

end

end

% Repeat splitting process until M=N

while M <N % halt when M=N
% Repeat algorithm to produce a good reproduction alphabet for
% M dimensional quantizer
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temp=A;

for b=1:M % Produces a M-dimensional reproduction alphabet
A(2*b-1,) = temp(b,:) + epsilon;

mdA(Z‘b,:) = temp(b,:) - epsilon;

M=2*M;
m=1; % initial step 1
error = 9.99e62; % set error initially to large value

% continue until error less than ¢
while error > ¢
d=[]; % Reset each iteration
d_tot=[];

% Calculate distortion matrix; minimum value in each row represents
% the partition, S, location of that vector
for j=1:n % loop through for n vectors
for I=1:M % loop through N levels of quantizer
d_tot(j,ly=abs(x(j,:)-A(l,:))*abs(x(j,:)-A(1,:))'; % squared error distortion
end

end

% Determine minimum distrotion for each vector and record the

% location of the minimum in pos(n)

for j=1:n % loop through for n vectors, find minimum distortion and
% put in mindist matrix; find position of minimum distrotion
% and put in pos matrix

mgmiﬂd-iﬂﬁ-l) pos(j,1)}=min(d_tot(j,"));

% compute error
D_tot(m)=0;
D_tot(m)=sum(mindist)/n;

ifm>1 % do not have to calculate error on first iteration
error = (D_tot(m-1)-D_tot(m))/D_tot(m);
end

% find the optimal reproduction alphabet; update A

fori=1:M
eval(['S' num2str(i) =find(pos==i);7]) % determine partitions; S's
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if size(eval(['S', num2str(i)]),1)>1
eval(['A(i,=sum(x(S' num2str(i) ',:))/length(S’ num2str(i) ');'7)
elseif length(eval(['S' num2str(i)]))=—0
. AG,)=AG:);
else

eval(['A(i,:)=x(S' num2str(i) ',:)/length{S' aum2str(i) ;1)
end

end

m=m+1; % move to next interation

if m > 15 % end loop after 15 iterations; error does not converge

error=0;
echo on
%
% After 15 iterations error did not converge!!!
%
echo off
end
end
end
toc
VECTOR2.M
echo off;

% Vector quantization based; number of levels must be updated in
% initialization code below; number of dimensions or features must
% updated in initialization code below.

% Rodney Hale July 1996

tic

% Initialization

N=8; % N classes; N levels

k=4; % k features; k dimensional
€=0.001; % error

D(1)=9.99¢62; % set distortion to infinity
% Define training vectors
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Yload feat.dat;
x=feat;

[numrows numcols]=size(x);
n=numrows; % number of training vectors in training set x

M=2;

m=1; % initial step 1
error = 9.99e62; % set error initially to large value

% continue until error less than e
while error > ¢
% Reset each iteration
d_tot=[];

% Calculate distortion matrix; minimum value in each row represents
% the partition, S, location of that vector
for j=1:n % loop through for n vectors
for I=1:M % loop through N levels of quantizer
d_tot(j,1)=abs(x(j,:)-A(l,:))*abs(x(,:)-A(1:))'; % squared error distortion
end

end

% Determine minimum distrotion for each vector and record the

% location of the minimum in pos(n)

forj=1:n % loop through for n vectors, find minimum distortion and
% put in mindist matrix; find position of minimum distrotion
% and put in pos matrix

=n[dmimﬁs‘(i.l) pos(,1)J=min(d_tot(j,:));

% compute error

D_tot(m)=0;

D_tot(m)=sum(mindist)/n;

ifm>1 % do not have to calculate error on first iteration
error = (D_tot(m-1)-D_tot(m))/D_tot(m);

end

% find the optimal reproduction alphabet; update A

fori=1:M
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eval(['S' num2str(i) '=find(pos==i);']) % determine partitions; S's
end

m=m+1; % move to next interation

if m > 15 % end loop after 15 iterations; error does not converge
error=0;
echo on
%
% After 15 iterations error did not converge!!!
%
echo off

end

end

% Repeat splitting process until M=N

while M <N % halt when M=N
% Repeat algorithm to produce a good reproduction alphabet for
% M dimensional quantizer

M=2*M;
m=1; % initial step 1
error = 9.99e62; % set error initially to large value

% continue until error less than e
while error > e
d=[]; % Reset each iteration
d_tot=(];

% Calculate distortion matrix; minimum value in each row represents
% the partition, S, location of that vector
for j=1:n % loop through for n vectors

for I=1:M % loop through N levels of quantizer
d_tot(j,1)=abs(x(j,:)-A(L,:))*abs(x(j,:)-A(L:))’; % squared error distortion
end
end

% Determine minimum distrotion for each vector and record the

% location of the minimum in pos(n)

for j=1:n % loop through for n vectors, find minimum distortion and
% put in mindist matrix; find position of minimum distrotion
% and put in pos matrix
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[mindist(j, 1) pos(i, 1)}=min(d_tot(j,:));
end

% compute error
D_tot(m)=0;
D_tot(m)=sum(mindist)/n;

ifm>1 % do not have to calculate error on first iteration
error = (D_tot(m-1)-D_tot(m))/D_tot(m);
end

fori=1:M
eval(['S' num2str(i) (p i) % i i S's
end

m=m-+1; % move to next interation

if m > 15 % end loop after 15 iterations; error does not converge
error=0;
echo on
%
% After 15 iterations error did not converge!!!
%
echo off’

end

end

end

toc

HMMREEST.M

function [A__ngxm,A_deu.B_nmn,B_dcn,pi_n]=hlnmreesl(0,N,Q)

% HMM training

%N=8; % Must match the number in trlhmm.m & recoghmm.m
%Q=8; % Must match the number of possible observations from vector.m
T=length(O); % Length of observation vector O

% Randomize A
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N
A(ij)-rand(1);

% ifj<i

% Af)0;

%  elseifi=j

% AG=L

% end

end
A(i)=A(,:Vsum(A(i);
end

% Randomize B

Q
B(i,j)=rand(1);
end

B(i,)=B(i,:)/sum(B(i,"));
end

% Randomize pi

%pi=[pil Probability of using un 1 initially
% pi2 Probability of using um 2 initially
% pi3]; Probability of using urn 3 initially

pi=pi/sum(pi); % normalize pi

% for a left-to-right model
%pi=zeros(N,1);
%pi(1)=1;

L —

for i=1:N
alphal(i,1)=pi(i)*BGL,O(1);

end

C1=1/sum(alphal);

alphal(:,1)=alphal(;,1).*C1;
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% Find alpha2 -> alphaT
for t=2:T
forj=1:N
Atrans=A(:,j)";
eval(["alpha’ num2str(t) '(j,1)=(Atrans*alpha’ num2str(t-1) )*B(j,0(1));)
clear Atrans,
end
eval(['C' num2str(t) '=1/sum(alpha’ num2str(t) ");'])
eval(['alpha’ num2str(t) '(;,1)=alpha’ num2str(t) '(:,1).*C' num2str(t) ;')
end

for t=1:T
eval(['CC(' num2str(t) }=C' num2str(t) ;)
end

fori=1:N
eval(['beta’ num2str(T) '(i,1)=0;)

end
eval(['beta’ num2str(T) ‘N, 1)=1;7)
eval(['beta’ num2str(T) '(;,1)=beta’ num2str(T) '(;,1).*C’ num2str(T) ;')

% find betaT-1 -> betal
for t=T-1:-1:1
for i=1:N
Btrans=B(:,0(t+1))';
beta_trans=eval(['beta’ num2str(t+1)])’;
eval([beta’ num2str(t) '(i,1)=sum(A(i,:).*Btrans.*beta_trans);])
clear Btrans beta_trans,
end
eval(['beta’ num?2str(t) ', 1)=beta’ num2str(t) '(:,1).*C’ num2str(t) ;1)
end

% calculate probability
P=inv(prod(CC));

for t=1:T
eval(CALPHA(:,' num2str(t) ")=alpha' num2str(t) ;'T)
end

for t=1:T
eval([BETA(:, num2str(t) "}=beta’ num2str(t) ;')
end
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A_num(i,j=A_num(i,j)+ALPHA(i,t)*A(ij)*B(,0(t+1))*BETA(,t+1);
A_den(ij)=A_den(ij)+ALPHA(LY*BETA(,Y);
end
A_num(ij)=A_num(ij)*inv(P);
A_den(i,j)=A_den(ij)*inv(P);
end
end

fori=1:N
for j=1:Q

if length(find(0=j)) >= 1
B_num(i,j)=sum(ALPHA(,find(O(1:T)=)).*BETA(, find(O(1:T)=)));

else
B_num(i,j) =.0001;

end

B_den(i,j)=sum(ALPHA(, 1:T).*BETA(;,1:T));
B_num(i,j)}=B_num(i,j)*inv(P);
B_den(i,j)=B_den(i,j)*inv(P);

for j=l:N

etal(i,j)=(ALPHA(i,1)*A(i)*B(,0(2))*BETA(,2))/tmp;
end

end

fori=I:N
pi_n(i)=sum(etal(i,));
end

174



pi_n=pi_n";
HMMTRAIN.M

function
[A1,B1,pil,A2,B2,pi2,A3,B3, p13,A4,B4 pi4,A5,B5,pi5,A6,B6,pi6]=hmmtrain(N,Q)
%N must match N in

% training for gesture 1
Al_N=zeros(N);
Al_D=zeros(N);
B1_N=zeros(N,Q);
B1_D=zeros(N,Q);
for i=1:100
fprintf('g1\t%d\n',i)
eval(['load 04f1_" num?2str(i) *;])
eval({'A_n A_d B_n B_d pi_n]=hmmreest(o4fl_' num2str(i) ,N,Q):])
Al_N=Al_N+A_n;
Al_D=Al_D+A d;

BI_N=BI1_N+B
BI_D=BI_D+B_d;
PLI(:,i)=pi_n;

T N
pil(i,1)=sum(PI1(L,:));
end

pil=pil/sum(pil);
% training for gesture 2
A2_N=zeros(N);
A2_D=zeros(N);
B2_N=zeros(N,Q);
B2_D=zeros(N,Q);
fori=1:100
fprintf(’'g2\t%d\n' i)
eval(['load 04f2_' num2str(i) ;')
eval(l[A_n A_d B_n B_d pi_n]=hmmreest(04f2_' num2str(i) " N,Q);)

B2_N=B2_N+B_n;
B2_D=B2_D+B_d;
PI2(:,i)=pi_n;
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end

for i=I:N
pi2@i,1)=sum(PI2(1,2));

end

pi2=pi2/sum(pi2);
A2=A2 NJA2 D;
B2=B2_N./B2_D;

% training for gesture 3
A3_N=zeros(N);
A3_D=zeros(N);
B3_N=zeros(N,Q);
B3_D=zeros(N,Q);
for i=1:100
fprintf('g3\t%d\n',i)
eval(['load 04f3_' num2str(i) ;')
eval(['{A_n A_d B_n B_d pi_n]=hmmreest(04{3_' num2str(i) ',N,Q);)
A3_N=A3_N+A_n;
A3_D=A3_D+A_d;
B3_N=B3_N+B_n;
B3_D=B3_D+B_d;
PI3(.,i)=pi_n;
end
for i=1:N
pi3(i,1)=sum(PI3(1,:);
end

pi3=pi3/sum(pi3);
A3=A3_NJ/A3_D;
B3=B3_N./B3_D;

% training for gesture 4
A4_N=zeros(N);
A4_D=zeros(N);
B4_N=zeros(N,Q);
B4_D=zeros(N,Q);
for i=1:100
fprintf(’g4\t%d\n',i)
eval(["load 04f4_' num2str(i) ])
eval(([A_n A_d B_n B_d pi_n]=hmmreest(04f4_' num2str(i) 'N,Q);T)
A4_N=A4 N+A_n;
A4_D=A4_D+A_d;
B4_N=B4_N+B_n;
B4_D=B4_D+B_d;
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PIA(:,i)=pi_n;
end

fori=I:N
pid(i, | y=sum(PI4(1,:));
end

pi4=pid/sum(pi4);
A4=A4 NJA4_D;
B4=B4_N./B4_D;

% training for gesture 5
AS5_N=zeros(N);
AS_D=zeros(N);
B5_N=zeros(N,Q);
B5_D=zeros(N,Q);
for i=1:100
fprintf('g5\t%d\n',i)
eval(['load 04f5_' num2str(i) ';'])
eval(([A_n A_d B_n B_d pi_n]=hmmreest(04f5_' num2str(i) 'N,Q);'])
AS_N=A5_N+A_n;
A5_D=A5_D+A_d;

B5_N=] BS _N+B_n;

pis(i, 1)=smn(PIS(l )
end
pi5=pi5/sum(pi5);
A5=A5_NJAS5_D;
B5=B5_N./B5_D;

% training for gesture6
A6_N=zeros(N);
A6_D=zeros(N);
B6_N=zeros(N,Q);
B6_D=zeros(N,Q);
for i=1:100
fprintfg6\Wed\n',i)
eval(['load 04f6_' num2str(i) ';T)
eval(([A_n A_d B_nB_d pi_n]=hmmreest(04f6_' num2str(i) ,N,Q); 1)
A6_N=A6_N+A_n;
A6_D=A6_D+A_d;
B6_N=B6_N+B_n;
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B6_D=B6_D+B_d;
PI6(:,i)=pi_n;
end

for i=L:N
pi6(i,1)=sum(PI6(1,);
pi6=pi6/sum(pi6);
A6=A6_N/A6_D;
B6=B6_N./B6_D;

HMMRECOG.M

function
C=hmmrecog(A1,B1,pil, A2,B2,pi2,A3,B3,pi3,A4,B4,pi4,AS5,B5,pi5,A6,B6,pi6)

C=zeros(6);

% Recognition for gestl

for i=1:100
eval(["load 04f1_' num2str(i) *;])
eval(['P1=hmmrec(04fl_' num2str(i) ", A1, B1, pil);])
eval(['P2=hmmrec(04fl_' num2str(i) A2, B2, pi2);])
eval(['P3=hmmrec(o4fl_' num2str(i) A3, B3, pi3);])
eval(['P4=hmmrec(04{l_' num2str(i) ',A4, B4, pi4);])
eval(['PS=hmmrec(04fl_' num2str(i) ",AS, BS, pi5);)
eval(['P6=hmmrec(04fl_' num2str(i) ',A6, B6, pi6);])

S=[P1;P2;P3;P4;P5;P6};

[Y I}=sort(S);

if I(6)=1
C(1,1)=C(L,1)+1;

elseif (6)—=2
C(1,2)=C(1,2)+1;

elseif 1(6)=3
C(1,3)=C(1,3)+1;

elseif [(6)—4
C(1,4)=C(1,4)+1;

elseif I(6)=—=5
C(1,5=C(1,5)+1;

elseif (=6
C(1,6y=C(L,6)+1;

end

end
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% Recognition for gest2

for i=1:100
eval(['load 04£2_' num2str(i) )
eval(['P1=hmmrec(o4f2_' num2str(i) A1, B1, pil);'))
eval(['P2=hmmrec(042_' num2str(i) ',A2, B2, pi2);1)
eval(['P3=hmmrec(o4£2_' num2str(i) A3, B3, pi3);])
eval(['P4=hmmrec(o4f2_' num2str(i) ", A4, B4, pid);)
eval(['PS=hmmrec(o4f2_' num2str(i) A5, BS, piS);])
eval(['P6=hmmrec(04f2_' num2str(i) ',A6, B6, pi6);')

S=[P1;P2;P3;P4;P5;P6];
[Y Il=sort(S);
ifI(6)=1
C@,1)=C2,1)+1;
elseif I(6)=2
C(2,2y=C(2,2)*+1;
elseif [(6)=3
C(2,3)=C(2,3)+1;
elseif [(6)—4
C2,4=C(2,4y+1;
elseif [(6)=5
C(2,5)=C(2,5)+1;
elseif [(6)=6
C(2,6)=C(2,6)+1;
end
end

% Recognition for gest3

for i=1:100
eval(['load 04f3_' num2str(i) ';])
eval(['P1=hmmrec(o4f3_' num2str(i) ', A1, B1, pil);'])
eval(['P2=hmmrec(04f3_' num2str(i) ,A2, B2, pi2);])
eval(['P3=hmmrec(o4f3_' num2str(i) ,A3, B3, pi3);])
eval(['P4=hmmrec(o4f3_' num2str(i) ,A4, B4, pid);])
eval(['P5=hmmrec(o4f3_' num2str(i) ,AS, BS, piS);])

eval(['P6=hmmrec(04f3_' num2str(i) ', A6, B6, pi6);'])

S=[P1;P2;P3;P4;P5;P6];

[Y IJ=sort(S);

FI6)y=1
C@3,1)=C3,1)+1;

elseif [(6)=2
C(3,2)=C3,2)+1;
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elseif [(6)=3
C(3.3)=CG.3+;

elseif [(6)=4
C(3.4)=CG.4+1;

elseif [(6)=5
C(3,5)=C3.5)*1;

elseif 1(6)=6
CG3,6=CG.6)+1;

end

end

% Recognition for gest4

for i=1:100
eval(['load 04f4_' num2str(i) ';])
eval(['P1=hmmrec(o4f4_' num2str(i) A1, BL, pil);])
eval(['P2=hmmrec(o4f4_' num2str(i) A2, B2, pi2);])
eval(['P3=hmmrec(o4f4_' num2str(i) ',A3, B3, pi3);"])
eval(['P4=hmmrec(04f4_' num2str(i) ',A4, B4, pid);'])
eval([P5=hmmrec(o4f4_' num2str(i) A5, BS, pi5);T)
eval(['P6=hmmrec(o4f4_' num2str(i) ',A6, B6, pi6);'])

S=[P1;P2;P3;P4;P5;P6];
[Y IJ=sort(S);
if (6y=1
C(4,1)=C(4,1)+1;
elseif I(6)=2
C(4,2)=C(4,2)+1;
elseif [(6)=3
C(4,3)=C(4,3)+1;
elseif [(6)=4
C(4.4=C4.4)+1;
elseif I(6)=5
C(4,5)=C(4,5)+1;
elseif I(6)=6
C(4,6)=C(4,6)+1;
end

end

% Recognition for gestS

for i=1:100
eval(['load 04f5_' num2str(i) ;])
eval(['P1=hmmrec(04f5_' num2str(i) A1, B1, pil);])
eval(['P2=hmmrec(o4f5_' num2str(i) ,A2, B2, pi2);])
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eval(['P3=hmmrec(04f5_' num2str(i) ,A3, B3, pi3);])
eval(['P4=hmmrec(04f5_' num2str(i) ',A4, B4, pid);'])
eval(['P5=hmmrec(o4f5_' num2str(i) ,A5, B5, pi5);])
eval([P6=hmmrec(04f5_' num2str(i) ',A6, B6, pi6);'])

S=[P1;P2;P3;P4;P5;P6];
[Y I}=sort(S);
ifI(6)=1
C(5,1)=C(5,1)+1;
elseif [(6)=2
C(5.2=C(5.2)+1;
elseif [(6)=3
C(5.3=C(5.3)+1;
elseif [(6)=4
CGA=CA+1;
elseif [(6)=—=5
C(5,5)=C(5,5y+1;
elseif (6)=6
C(5,6)=C(5,6)+1;
end
end

% Recognition for gest6

for i=1:100
eval(['load 04f6_' num2str(i) ;)
eval(['P1=hmmrec(04f6_' num2str(i) ,A1, B1, pi
eval(['P2=hmmrec(o4f6_ num2str(i) ,A2,
eval(['P3=hmmrec(04f6_' num2stx(i) ',A3, B3,
eval(['P4=hmmrec(o4f6_' num2str(i) A4, B4,
eval(['P5=hmmrec(o4f6_' num2str(i) A5, BS,
eval(['P6=hmmrec(04f6_' num2str(i) ',A6, B6, pi6);'])

S=[P1;P2;P3;P4;P5;P6];
[Y IJ=sort(S);
if1(6)=1
C(6,1)=C(6,1)+1;
elseif 1(6)=2
C(6,2)=C(6,2)*1;
elseif [(6)=3
C(6,3)=C(6,3)+1;
elseif I(6y—4
C(6,4)=C(6,4)+1;
elseif [(6)=5
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C(6,5=C(6,5)+1;
elseif [(6)—6

C(6.6)=C(6.6)+1;
end

end

% Display the confusion matrix

fpnnﬂ(‘\n Confusion Matrix \n\n")

fprintf 1,C(1,1),C(1,2),C(1,3),C(1,4),C(1,5),C(1,6));
fprintf%d\t%d\t%d\t%d\t%d\%d\n',C(2,1),C(2,2),C(2,3),C(2,4),C(2,5),C(2,6));
fprintf{"%d\t%d\t%d\t%d\t%d\t%d\n',C(3,1),C(3,2),C(3,3),C(3,4),C(3.5),C(3,6));
fprintf{%d\t%d\t%d\t%d\t%d\t%d\n',C(4,1),C(4,2),C(4,3),C(4,4),C(4,5),C(4,6));

fprintf d\t%d\n’,C(5,1),C(5,2),C(5,3),C(5,4),C(5,5).C(5,6));
fprintf( d\t%d\t%d\t%d\n’,C(6,1),C(6.2),C(6,3),C(6,4),C(6,5),C(6,6));
HMMREC.M

function [P}=hmmrec(O, A, B, pi)

[N QJsize(B);
T=length(O); % Length of observation vector O

% Based on the Model M1 find P(OM1)

for i=I:N
alphal (i,1)=pi())*B(L.O(1))
end

Cl1=1/sum(alphal);
alphal(;,1)=alphal(;,1).*Cl;

% Find alpha2 -> alphaT
for =2:T
for j=1:N
Atrans=A(.)';
eval(['alpha' num2str(t) '(j,1)=(Atrans*alpha’ num2str(t-1) )*B(,0(t));'])
clear Atrans,
end
eval(['C' num2str(t) '=1/sum(alpha’ num2str(t) ');')
eval(['alpha’ num2str(t) '(;,1 )=alpha' num2str(t) '(:,1).*C' num2str(t) ;'])
end



for t=1:T
eval(['CC(' num2str(t) )=C' num2str(t) ;')
end

% calculate probability
P=inv(prod(CC));

WINDOW.M

function pass=window(file)
% Function which extracts features from a file by windowing;
% data is not necessarily segmented. The resulting file
% contains a stream of features which can then be segmented or
% processed by a vector quantizer. This function calls the feature
% extraction function feat.m.

[rows,columns]=size(file);
N=fix(rows/8); % Window size
% N=rows; % For feature extraction of whole gestures

count1=0; % count the number of windows

for i=1: N: rows-N % loop through for all data N at a time
countl=countl+1;
pass(countl,:)=feat(file(i:i+N.,:));

end
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