CENTRE FOR NEWF: DLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

* I National Library Bibliothéque nationale
= f Canada du Canada

of

Acguisitions and

Direction des acquisitions et

Bibliographic Services Branch des senvices bibliographiques

285 Wellngion Sieet
Otaws, Ona Olnw1(Ma

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canadi

S s ingion

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualit¢ d'impressior de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

SIMULATION AND IMPLEMENTATION
OF PULSED ANALOG NEURAL
CIRCUITS

By

@Tapas Banerjee, B.E. (Hons.)

A thesis
submitted to the School of Graduate Studies
in partial fulfillment of the requirements for

the degree of Master of Engineering

Faculty of Engineering and Applied Sciences
Memorial University of Newfoundland
$t. John's. Newfoundland, Canada A1B 3X5

August, 1993

I*l National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and

Direction des acquisitions et

Bibliographic Services Branch des senvices bibliographiques

395 Welington Street
Otawa, Oniano

The author has granted an
irrevocable non-exclusive licence
ailowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any forin or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellinglon
Qtiwa Oniarc)

TT—

o~

L'auteur a accordé une licence
irré ble et non
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-91635-4

Canadi

Abstract

Conventional simulation of nenral networks implemented nsing our pulsed

cirenit sinmlator HSPICE takes

analog topology is slow. The comm

about hall a day to simulate even a medinm seale network, which is frustra

ing at the design stage. A new sinmlator, PULSE, has been developed Lo
relieve the designer from this problem. PULSE provides about two orders ol
speed improvement over HSPICE while predicting the civemt performanc

5

with comparable accuracy. I uses a macromodeling approach in cont

to the transistor level simmlation approach in HSPICE. Special features of

pulsed analog networks are oxploited constantly to reduee the simulation

time. The analysis algorithms used are Waveform Ganss-Seidel and Fune-

tional Iteration. Circuit equations formulated being very sparse, correet or-
dering of the equations leals to convergence Lo the solution in only wne

Gauss-Seidel iteration. Using PULSE as the sinmlation tool, a Matrix Asso-

ciative Memory has also becn designed which is in the pro

A cknowledgement

sor Prol. Bruce-Lockhart for

I sineerely acknowledge and thank my superv
all his involvement, patience, criticisms and constant encouragement for my
work for the whole duration of my program here. 1 thank The School of
Graduate Studies of Memorial University, the Faculty of Engineering, the

Associate Dean of Engincering (Graduate Studies) and his office for the fi-

nancial support, provided. ©also thank Lloyd Little for his constant technical

support and thank all of my fellow graduate students in the Faculty of Engi-

neering for many sweet memories. Finally, I deeply acknowledge the constant

support of my family from overse

Contents

-

o

Abstract ii
Acknowledgement il
Contents iv
List of Figures viii
List of Tables xii
List of Symbols xiii
Introduction 1
Literature Review 6

2.1

e

ES

it Analysis in Conventional Simulators 22

224 Third Generation Simulators 27
23 Concluding Remarks 31
Pulsed Neural Networks and Our Approach 32
3.0 Introduetion . ..o SRR A SRR 32
U TRGEIIN o st v mcen o it 0, 5 % (RSN T 3] (B0 G) 8RR 36
B SYBAPSOS o oo e 37
e NG 00 £ 1 B) A 0 B S 3 deant 38
323 Programmability and Learning 39
33 Our topology i 10
B Conlisilil v vaws w9 e e P eneen e s I E T A
Simulator Design 46
4.1 Introduction 46

4.2 The Simulation process in PULSE 438
43 Development of the Netlistero 50
A4 Modeling . . 52
AAL EKORRLORY SYDRPES v o000 o 5w o) st & @ 5 5 ovs 53
442 Inhibitory Synapse 58
WA NOWBOD:o ¢ o = o simmes o ie o o 0 s A s 59
Non-Inverting Input Neuron . o . o ..o ovvn ... 61

A5 Toverting Ioput Newron . . oo v v n e 62

o

@

4.5 Analysisand Algorithins o oL, [}

451 Equation Formulation, 61
45.2 Tmplicit Integration . ..o T
Wavelorm Ganss-Seidel Teration .67

454 PULSE Analysis Block - Reviewed i}

48 Discussion: oo & 5 v éaaeiin ¥ 8 5 Fesiek s Saame e e T
47 Conclmions 6 o ¢ vowvaE sy v wamas sy Ewiah s 73

Simulation using PULSE

5.1 Simulation of a Simple Network

52 Simtlalion ol XOR G805 2 w55 ssma % 5 & emema s @ 78
53 Similation oFCAM o ccvns e s v waenise s s saEa b S1
54 Matrix Associative Memory ... bl

Sall lmplementation S € s s 0

5.4.2 Simulation 96
5.5 Discussion 09
BB Conelebon:d. & 3 duamad 8 S 880 5 s e 5 99 1z
Results 103
6.1 Costof PULSE simulationo covveveevneneen 103

6.1.1 Evaluation of Newron Input Voltages 106

6.1.2 Number of Functional Iterations . .

6.1.3 Number of Ganss-Seidel Iterations . .

<

>

=

=)

[}

6.2 Speed Improvement in PULSEo 12

6.3 Coneluding Remarks ... o0 o oo 113
Conclusions 116
References 118
Minimum Time-Step for Predictor-Corrector Method 124
Source Code of the Simulator 126
B Data Flow Diagram ol PULSE . .00 oo 126
B2 PULSE Source Code: ¢ v vmg o 5 4 v s ws 5 5 @ v 128

B3 The Macromod

Bt The Wavelorms Used in PULSE « ..o v oo v e 159
PULSE Input Files - An Example 161
1 netlist . 161

PUBSCIID et et e e 162
Cat pulsesitn . 162
< control 162

Output File Generated iy PULSE 163

The Netlister 167

E.l S/SLG File to provide Formatting Instructions to FNL .

E2 S$/SLG Filo to Define Netlist Output of Symbols 168

List of Figures

2.1 (&) The cirenit and (h) the input file ol (a) .

22, The dmmlatiowoalpil < ocovavb ¢ ¢ s omds v v §avmm

23 (a) Model of or gate, (b) Principle of event scheduling and
AAEPARBACE oo 0 0 5 srsvooss oo o puemdim e 5 5 6

2.4 Steps involved in a transient analysis

20 A nenron aned the comnected SYRapses . ..o e

32 (a) The excitatory and (b) the inhibitory synapse cirenit . . .

Block diagram of the propused nenral network

4.1 PULSEsimulationsteps
42 HowFNLworks...:.cociivvcnianensvnovsas

4.5 Plot of exsynapse eurrent [(in pA) against Vi, (in Volls) (a)
HSPICE level I, (b) ISPICE level 3 EE e

viii

L1

.

ik}

The model generated characteristics and the HSPICE charac-

teristic (Fig. 1.5(h)) plotted on top of cach other. They totally

overlap as the geaph shows. .. .ot 57
The inhibitory synapse R B 58
The standard genwron 2 gl | Bl 26 e 39
The non-inverting input nenrono 61
The inverting input nearon 58t T S 62
PULSR anslydls Bloek: 5 on oop ammn n v e e ¢ o oo 505 65 63

A typieal conneetion at nenron inpnt node 6

Wi

eflorm Ganss-Seidel Algorithm as in PULSE 68

and one neuron 6

A simple network nsing 3 synay
Simulating a cirenit with two excitatory and one inhibitory

First three waveforms are input pulses and the

last one is the waveform at the summing node of the nen-

rou. PULSE and HSPICE both outputs are shown for the last

WIS R0 3 ¢ 2 IR e P S R B e 7T
Implementation of XOR using onr topology .« « .« s
Outputs of the XOR eircuit as predicted by PULSE and HSPICE

for inputs of (a) 01and (b 1L .. oo oo s AT 30

Schematic diagram of the CAM. The synapses are shown as

¢ the trapezoids at the center. . 82

coin-shapes whereas neurons

5.6

5.9

1

HSPICE s

imulation of CAM showing the activation and ont-
puts of newron NI N6 and N7 respectively.

PULS

simulation of the CAM cirenit showing the activation
and outputs of the same nenrons, . ..o L. L

HSPICE simulation of CAM for input 10101 showing the ac-

tivation and autputs of newren Vd and V6 respectively.
PULSE simulation of the CAM cirenit showing the activation
and ontputs of the same nenrons, ..o L L
Ontput of CAM chip in response Lo input 10101 (a) Nearon
No (b)Y Newron N2 oo
Cireuit nsed to implement {a) Positive weights and (b) Nega-
Uiveeweights:s & & oam 5 6 5 S 688 5850 58 ¥ maes

Schematic diagram of the Matrix Associative Memory .

Layont, of the associative memory obained by anto place and
ronte routines (only Metall layers are shown).
PULSE and HSPICE simulation of the Matrix Associative
Memory for input. 10001111 showing the outputs of the cir-

enit. For all three nenrons, the first ontput is predicted by

PULSE and the second one is predieted by HSPIC

PULSE and HSPICE simmlation of the Ma wive

rix Assor
Memory for distorted inpnt 10011111 showing the outputs of

thecitenibin s dous s v g v avn B S sF BB Ru T 0 ¥

N

"l

a3

7

08

516 HSPICE predicted outpnt for XOR circuit with input 01 (a)

ion with lus time step. (b) Prediction with 2ns time

Predic

time step with NMOS con-

step and (¢) Prediction with

ductance 1%, reduced. SR ST 100
6.0 Care generated by PULSE . . . oo v v vevevnnnnns 104
imulation time on the number of synapses
present it CAM GENL L L o0 e e 107
64 Dependonee of PULSE simulation time o the
eriterion of the funetional iteration loop . « « .+« oo\ 108

tional iterations on circnit activity 109

G Dependence of number of fun

xi

List of Tables

4.1 Newron ontput and discharge pulse details

4.2 Worstecase time step o oo v oo i e e e
5.0 Input-Output patterns for matrix associative memory
5.2 Weight voltages used in the associative memory
6.1 Time required to evaluate synapse macromodels

6.2 Comparing PULSE and HSPICE speed (on a DECStation

e T LT T

List of Symbols

Symbol Description
(i - capacitance connected to a given node
At - timestep in transient analysis

T - time-period of transient analysis

- discharge pulse input to the excitatory synapse

- pulsed input to the excitatory synapse

Viu - pulsed input to the inhibitory synapse
Vi - leakage input to the excitatory synapse
Vi - membrane voltage of the neuron

Vi - threshold voltage of the neuron

Ve - weight voltage input to the synapses

xiii

Chapter 1

Introduction

The foundation of rescarch concerning Artificial Nenral Networks e e
traced back to the 1940% when McCalloch and Pitts (1943) came np with a

Xisted no

v of nearal computation. At that time thy

mathematical theo
mechanism to explain the larning in nenrons. Only in the 1960 did Frank
Rosenblatt, a Cornell University psychologist, introduce the pereeptron which
had a clear learning rule defined.

Perceptrons were essentially single-layer networks of lincar threshold units

The most appealing feature abont. them was

connected withont feedba
that given a problem, there was a convergence procedure that assured their
learning, provided a learning solution existed. But in 1967, Minsky and Pa-
pert clearly exposed the deficiencies in perceptrons by showing their inability
to solve even simple class of problems such as the XOR problem. It rendered
a severe blow to the ficld of Nenral Nework Research and literally no interest

existed among the researchers during the 1970,

“The perceptrons could however solve these class of problems using a hid-
den layer hetween the inputs and the output layer in contrast to using only

a single output laer as proposed by Rosenblat, These Kind of networks

already existed [Nilsson, 1965, but there was no algorithm present for their
learning. [n 1986, the generalized delta rule introduced by the PDP research
group at MIT provided the much required learning algorithm for multilay-
ered networks nsing nenrons with contimious, nonlinear activation functions.
It triggered an explosion of interest among researchers and as a result, neural
networks experienced a phenomenal growth over the last few yoars.

in neural networks is now directed towards

Most. of the research activit

theoretical studies and simulation. Computer simulation is slow and the real

power of neural networks can only be exploited by implementation of them

using spocial purpose hardware that maps the specific network directly into

the architecture using models of neurons and synapses. Nenral networks

generically draw their computational power not from their processors bt

from the massive number of interconnections among them. VLSI tends to

be a natural choice for implementation of them in this respect owing to
its inherent ability to implement large number of interconnections and in

favoring repetitive structures as present in the nenral networks.

VLI implementation of neural networks can be carried ont using the

digital or analog approach. The digital approach is traditional and allows

advantages such as precise arithmetic, robustness against noise and readily

available implementation processes. This approach however has its disadvan-

tages. The major operations involved

add. Dj

\ neural networks are nultiply and

tal multipliers occupy large space in silicon. The precision required

in implementing nenral network is low which again doesn’t necessitate the

These considerations b

use of area-hungry i

al implementati

tracted neural rescarchers toward building nenral networks in analog V1.

Analog VLSI implementations are compact compared to their digital conn-

terpart, but have their own drawhacks of susceplibility 1o noise and proc

variations.

The drawbacks associated with hoth digital and analog proce

ages one Lo Lake a hybrid approach. Tn this scheme, called the puls

approach, the neural states are represented as pulses, which provides the

il built

rons are

system with noise immunity. The synapses and ne

analog circuits for compactness. In short, this approach combines the hest

of both the digital and analog worlds. As a matter of fact, the biolog

neurous are also known to commun

ate throngh pul:

Pnta

Our approach Lo imple on of Neural Networks is pulsed analog.

However it differs from other adberents of this approach in several aspects.

Firstly, our synap: on-androgyno . they are cither excitatory or in-

s are

hibitory and don’t switch between these modes, The synapses are non-lincar

the input-ontput relationship for synapses is not linear. “The proposed

of synapses to be

Lopology is also auto-sealing, which enables any numl

connected Lo a given neuron.

Our proposed pulsed analog topology has already been verified by build-

DLM, a 3 micron CMOS process. The first chip

ingg b chips using CMO!
implemented the standard cells while the second one implemented a CAM

(Content Addressable Memory) and a Maxnet. The testing of them have

shown favorable results,

The simulation of these networks, when built in silicon, however causes

a problem. A small network consisting of only 10 nenron and 100 synapses

consists of 500 transistors. Conventional cirenit simulators like SPICE take

long time to simulate this kind of networks. Simulations running over days

during the design phase is inaceeptable and that inspired us to build a fast

vireuit. simulator which will permit exploration of complex networks.

In this thesis, a fast simulator is built Lo address this issne. The design

considderations and the methodologies employed are described. The simnla-
or ontputs have been hench-marked against HSPICE, a commercial version
of SPICE, The speed improvemment achieved is at least two orders of magni-
an associative

tude. With ext simulator (as was its purpose

nsive nse of this

memory has been built. whicl is currently in Uhe process of fabrication,

The thesis has heen organized as follows. After this briel introduction,

the second chapter deals with the literature review. Different approaches

in simulator dosign have heen discussed. In the third chapter, implemen

tation aspeets of neural networks have been reviewed with stress on pulsed

implementations. The fourth chapter diseusses the simulator design. The

fifth chapter looks into the simulation of known networks and also deals with

am and the

the implementation aspects. It also includes the schematic di

layout of the associative memory which is in the process of fabrication. The

sixth chapter presents the results obtained and also compares the specd of

simulator HSP1CE,

the developed sinmlator against the conventional cire

are puinted

Finally. in the last chapter the th is concluded and some a

ont for future investigation.

Chapter 2 .

Literature Review

2.1 Introduction

Cireuit simmlators are indispensable verification tools for a VLSI designer.

itics present in an integrated cirenit (IC) cannot be modeled accu-

The par
rately with the traditional breadboarding technique, rendering this method
fnappropriate for verifying a chip’s performance. A simulator solves that

problem by using a mathematical model of the circuit elements and the

parasitics. 1t also provides the designer with the advantage of extensively

probing the IC, which is otherwize impossible owing to size constraints.

Frank Brannin is often eredited as the developer of the first effective cir-

m, TAP. written in the 1960's. TAP was never released

in the public donain, bt it’s development formed the basis of two more sim-
ulators that came from 1BM - ECAPI and PREDICT. All these programs
reportedly had several problems; they were hatd to use, were unfriendly and

had severe nonconvergence problems [Pederson, 1984].

ibed

The simulator programs de: above are Iy referred to as the

first-generalion programs in the literature. SPICE and ASTAP arc typi-
¥

cal les of second ion simul ASTAP [Weeks et al,, 1974]

was developed at IBM in 1973 for statistical simulation and eventually found
widespread use ithin the IBM corporation. During the same period, SPICE
[Nagel, 1975] w developed by Nagel at University of Berkoley and is ar-
guably the best xnown simelator in the world. Both SPICE and ASTAP arc
accurate and reliable, but designed to simulate circuits with only a couple of
hundred transistors. Hence simulation using SPICE2 and ASTAP is slow for
VLSI circuits and led to the development of a new breed of simulators.

Introduction of MOTIS [Chawla et al., 1975] marked the cra of so called

third tion simul These simul use various algorithms such
9t B

as rel i b node d. table look-up models cte. to

achieve more than an order of spced improverment over sccond gencration sim-
ulators while providing outputs with considerable accuracy. SPLICE [New-
ton, 1979] (developed at Berkeley) and DIANA are typical examples of this
generation of simulators. The review section covers these simulators al a
greater depth. Recent simulators c.g. RELAX2 [Newton and Sangiovanni,
1984), SPLAX [Saleh and White, 1990] using waveform relaxation lechniques
reportedly perform up to 50 times faster simulation with accuracy compara-
ble to SPICE2.

All these simulators described above are general-purposc. However, custom-

made simulators are widely used in industry. The main reason is their ability

Lo exploit efficiently the peculiaritios of the topology for which they are built
in order to zpeed up the transient analysis further. Our pulsed analog topol-
agy is 1o exception. The simulator for our pulsed cireuits can be reduced to
a timing simulator (refer to subsection 2.2.2) by using the peculiarities that
are particular to onr topology (refer to subsection 6.1.3). The timing simu-
lators can provide over two orders of magnitude speed improvement against
SPICE thus being computationally more efficient than the general purpose
ihird generation simulators [Newton and Sangiovanui, 1984].

Also onee macromodels are developed, our experience is that the designer
effort, required to install them in a general purpose simulator is commensurate

or from scratch. Since the actual code required

with building a enstom simula
for the custom simmlator is small in our case and we could be reasonably

ster than, a general purpose one, it was decided

certain that it wonld run fi

to build onr own,

or is built for fast transient analysis and uses

Since the proposed simula
second and third generation simulator concepts, the review material is orga-
nized accordingly. The first section presents the eircuit simulation process.

Simul etc. are

Different types of simulators e.g. Timing Simulators, Logic
introduced next to illustrate the different approaches taken by the design-
ers over the years 1o solve the problem of circuit simulation. The classic

L ion simul in perfc a transient

algorithms wsed by sec

tion. ation si

analysis are discussed in the following ally, third g

eod up the transient an:

ulators and the algorithms used by them to

are presented.

2.2 Review

2.2.1 The Circuit Simulation Process

rstood with the b

The cirenit simulation process can be hest I of an

istor cirenit

example. The example presented here is tiat of sinulating a tra

to find the DC enrvent flowing throngh one of its transistors. An indey

ss the range 0-5V, whicl

voltage variable is swept a
current. This simulation provides the desiguer with a fransfer characleristie.

This cirenit is simnlated nsing HSPICE, a commereial version of SPICT.

AL the start of the simmlation, an input file is presented to the simmlator by

ilable to the nser in

considerable help s s

the user. In many simulators

it o be simmlitesl.

ol Lhe e

building this file. Fig 2.1 shows the inpnt Gl

The input file is divided into many paragraphs. first parageaph

paragraph (it's really one line), asks

defines the cirenit inpnts. '

the simulator to do a DC analysis at cach point as the variable Vi is swept

xt paragraph is the ription of L

over the range 0-5V. The i

commonly known as the netlist. I component connection is defined here

istor is presented

and the parameters of a complex model of the NMOS trar

that will be used ‘or analysis.

Viu

Vdd 1 0 dc Sv
VVex 3 0 5v
VV1lk 6 0 1.5v
Vm 2 0 1v
VVut 4 0

VWde 7 0 2v

.de VWwt 0.0 5.0 0.1

€3 2 0 poly 0.1pf

.MODEL Model4 nmos level=3 vto=.7 kp=4.e-05 gamma=1.1 phi=.6
+lambda=.01 pb=.7 cgso=3.e-10 cgdo=3.e-10 cgbo=5.e-10 rsh=25
+cj=.00044 mj=.5 cjsw=4.e-10 mjsw=.3 js=1.e-05 tox=5.e-08
.7e+16 nss=0 nfs=0 tpg=1 xj=6.e-07 1d=3.5e-07 uo=775
vmax=1.e+05 xqc=.5 theta=.13 eta=.05 kappa=1

M5 25 0 0 Modeld 1=2.06e-05 u=5.4e-06

M6 27 0 0 Modeld 1=3.e-06 w=5.4e-06

M7 6 4 2 0 Modeld 1=3.e-06 w=5.4e-06

M8 1 3 6 0 Modeld 1=3.e-06 w=5.4e-06

.print dc I(M7)
.end

(b)
Figure 2.1: (a) 1w cirenit and (b) the input file for the simulation of (a)

10

The last paragraph asks the simulator to present the DC current through
the transistor M7 (which is the second transistor from the lefi, comparing

the figure to the netlist) as the output and ends the file.

How this anal-

“The simulator reads this file and performs & DC analy

ysis is done will be discnssed in depth in the next few sections. |ere w

henee we will

only concerned ahont. the simulation proce ip through that

part. Once the simulation is complete, the simulator presents the

fput in

the format shown below.

volt current
n7
0. 5.694c-12
0.10000 5.695e-12
0.20000 5.695e-12
5.00000 1.016e-04
Fignre Jation ontpnt

The left column of the ontput shows the variable ¥, and the right column
shows the current through transistor M7 and that concludes this simmlation

run. The user can also request a plot of the output using a plot

rment

in place of the print statement. and is allowed to do other Kinds of analysi

too, e.g. AC or transient analysis.

A simulation rn is «

wssed i this seetion to familiarize Ve er with

the simulation process. The next section will disenss different types of si

methods. The discussion starts with conventional

ulators and their analy

and then describes other simul pitting their performans

simulators
against the conventional ones. This will familiarize one with the breadth of
the simulation methods used nowadays to simulate an entire [C, and also

will introduce one 1o the evolution of the simulation techniques as the circuit

complexity contimed to grow.

2.2.2 Different Types of Simulators

Circuit Simulators

SPICE2 unple of this group of simulators. These simulators

perform very acenrate DC, AC, frequency domain. noise and sensitivity anal-

based on well-known nonlinear bipolar and MOS circuit models. Con-

we will take a look at the transient analysis algorithms

ng onr inter

side

of these simulators.

In transient analysis, the node voltages are to be caleulated for a time

period of 016 7" (at time intervals of At). The voltages at time 0 (the initial

condition), are calenlated using a DC analysis. From then on, the voltage
valnes are caleulated sequentially, i.e. the voltages at time point (£ + At),
are calenlated using the voltages at time point . The circuit elements are

models to yield a set of circuit equations of the

replaced by mathemat

conventional stmulator and crreut sinulator will be used interchangeably
it simulation literature.

The term
as in the cired

form

v

f(vou.t)

where, v = [uy,....0,]" are the dependent node voltages and u

are the independent node voltages. This typical form of Equ. :

to the presence of energy storage elements such as inductors a
An implicit integration scheme is requived Lo convert this set of differential

equations Lo a set of nonlinear equations of the form

jv)=0

in order to solve them.

The nonlinearity arises from the nonlinearity inherent in the deviee model.
The well-known Newton-Raphson (NR) iterative method is commonly nsed
to linearize this sct of equations. A typical NR iteration is of the form

S (A = oty = —j(nY) (23)

where. v! is the voltage at timepoint tand J(v') is the Jacobian matrix of

fon step produc lgorithim

a linear equation, this

J(0"). Since each NR it

1. of nonlinear equations at,

jons from the s

set. of linear e

generates a

each timestep. These equations have to be solved to find the new iter
value and hence to decide whether convergence has been reached (in the
solution) or not. The LU factorization method solves these equations. At

convergence, the iterated values provide the set of node voltages at time

(t + At). Implicit integration. Newton-Raphson and LU factorization will

13

be ssed at greater length in the next section since the purpose of this

discussion is only to introduce the reader to the transient analysis process in
conventional simulators.

As discussed in the introduction of this chapter, the circuit simulators
were developed for the simulation of a couple of hundred transistors. Exper-
imental as well as theoretical evidence shows that the computational cost of

conventional simmlation is
Computational cost = O(n) (1.1 < y < 1.5) (2.4)

« 1 is the number of eirenit nodes [Newton and Sangiovanni, 1984]. This

whe

super-lincarity in time cost is important for circuits with several thousand

k point the super-linearity starts d

nodes since at that &

the time cost. This problem worsens for circuits of larger scale.

Circuit sinmlators suffer from another major problem. In a given cirenit,
the time constants of varions nodes vary over a large degree. One such case
arises when lumped capacitors are present at some nodes of the circuits and
small parasitics are present at other nodes. For nodes with smaller time

the rate of change in node voltage is much higher which requires

constan!
smaller timesteps in transient analysis. Although nodes with much larger
time constants could be simnlated using much higher timesteps, thus reducing
the simulation time, this is rendered impossible due to the presence of nodes

with much smaller time constants. Hence more timesteps are needed which

means more compntation in a given time interval T and more simulation

14

cost.

The above two prohlems are serions drawbacks for conventional simulators
when used at VLST scale and suggests a need to explore other approaches to
simulate these (VLST scale) circuits cconomically. The following paragraphs

elaborate on that.

Logic Simulators

Logic simulators simulate at least at the gate level in the time domain as
compared to the transistor level simulation in eircuit simulators. That dras-
tically reduces the number of nodes to e handled in a given simulation. Also,
they operate on logic states rather than working with the voltage and cur-

rent waveforms. The gates are modeled as logic blocks with a delay clement.

added as shown in Figure 2.3(a).

1—0
EVENT

i
(@) (b)

: (a) Model of or gate, (b) Principle of event scheduling and sclee-

Figure

tive trace

The delay can be zero for simple logic verification, or assignable by the

user (for example, all OR gates can be assigned a delay of Sns for a sy

15

implementation process) or precise i.e. the minimum and maximum possible

delay in an element can be specified, which can also provide some timing
information [Szygenda and Thompson, 1974]. The signal states recognized
are 1,0, /] and ». Ifanode is floating, it assumes the *H” state and undefined

nodes assume the ' state.

Logic simulators are typically 10? times faster than the cireuit simulators.
Along with the nse of simple models and the fact that they only deal with

s, the improvement, in their speed can also be attributed to two

the logie sta

characteristic algorithms, known as cvent scheduling and selective trace.

Selective trac

e methods do not. follow the output of an element if its
output did not change when it was evaluated at this timepoint. Assume

one of these elements to he A whose output has changed at this point of

time and let the delay in all gate models be A. Thus only the fan-onts of A

te alter time A, and hence are scheduled to happen at that

can change s

time. This is the principle of eoent scheduling, Fig. 2.3(b) illustrates these

principles. lere, only node b changes state when node a switches from 1 to

0, and henee only bis scheduled to happen after time A, Since most parts of
a large digital 1C remain inactive at a given point of time, these techniques

provide cousiderable speed-up,

The gap between logic

However, logic simulation has many limitation

simulation models and physical systems is considerable. Logic simulators

hardly provide any timing information. . Also, interconnection noise, clock

feedthrough cte. cannot. he modeled with this type of simulator, Conven-
tionally, these problems are best tackled by civenit simulators, but their lack

of speed led Lo the development of another kind of simulator that trics to

enhance circuit simulation speed by relaxation of some constraints, The

are

called timing simulators and are described next.

Timing Simulators

hieve

Timing simulators deliberately introdue imations Lo a

A\ppro

tors cha

improved simulation speed [Chawla ot al., 1975]. These simuls

stically use cquation decoupling and single NR itcration techniques in pl

" as i the cirenit simulators, and piecowise-

of “iteration until convergence”

r model

linear or Lable look up models in place of complex algebraic nonlin

stigate Lheir effe

ibe these methods and inve

In this discussion, we des

of the simulator.

the performanc

h can be deseribed as follows, Consider

The equation deconpling approa

a circuit with N nodes. Assume that we are evaluating v, al Lime (L4 Al)

and the voltages vy, vy,...,vi-y at time (L 4+ Ab) are already known. At this

dy known valug

point of time, if we solve Equation 2.2 for v,, nsing the alre

of vy, 2y .0y Viey b time (L4 AL) and that of vy, vz, ..o oy b time £ the

equation becomes

ORBY, ey BN oo 16 i (2.5)

Jilm
The above equation assumes all node voltages other than v, to be con-

17

ant. Hence in contrast to citcuit simulators, after the NR step. we do not

et a system of N linear equations in N independent variables, but N decou-

pled equations, cach with one variable. Hence the name equation decoupling.

This renders the LU factorization step of circuit simulators nnnecessary, and
enhances the simulation speed at the cost of losing some accuracy at the

equation decoupling step.

Timing simulators characteristically use only a single NR iteration at each

timestep, This is in diveet contrast to the “NR iteration until convergence”

appioae ofilic jonal simul,

This (one NR iteration) approach

produces correct results only when these node voltages calculated by a single

NI iteration are iterated (nsing Ganss-Seidel type algorithms) until conver-

genee al a given time point (this iterative process is commonly known as the

velaration ¥ iteration and s a very common algorithm in third-generation

simmlato: teration at

. But timing simulators perform only one relaxation
i given Lime point which can lead to considerable error for circuits with tight
feedback Toops.

While looking at Eqn. 2.5, also notice an inherent limitation of the timing
simmlators., Assume a node equation of the form

A 5
ik

An implicit integration step (say, backward culer), generically produces the

UIhe term releration comes from relaxing the exactness of the solution. Here this
relaxation originates from the equation decoupling step.

13

following equation

tep = anger + b

which in our case becomes

ak
vt = F"‘“‘ +b

kvt = Cogey + 00 =0

ed by implicit integrati

This characteristic equation gene
be written as
yloen) =0 (2.15)

Application of k-th NR iteration will then yield a lincar cquation of form

&
; e ulo
vt = ok = g(ve*) (211

o

& Lion.

where v * refers to the vy valuo at A-th NR it

Halueg ¥,
To assure the 24440 e to be non-zero, one has Lo assure the presence

ring the numeri

of the term vy in Eqn. 2.9. That can only be done by i

nee of a G2 term,

integration step, i.e. by the p

solve an equ

m

After the equation decoupling step, timing simulators
equivalent to Eqn. 2.10. So, they have to assure Lhe presence of the % term
too, which is done by assuming the connection of a capacitance (assuring

the presence of the €' term in Eqn. 26) between every node Lo ground or to

19

. In most cases parasitic capacitances serve

another node [Refer to Equ.
this purpose.

Use of tale look-up models is another specialty of timing simulators. A
bigg advantage of Lhis technique is its ability to use complex models with no

ionlinear element updating is reported to take

speed sacrifice. Also, sin
80% of CPU time in standard circuit. sinmlation [De Man, 1979, this also

provides improvement of specd with negligible loss of accuracy.

Application of these approximation techniques provide timing simulators

with a 100 = 200 times speed iy nt over ¢ ional simulators [De
Man, 1979]. But by using the cquation decoupling technique, the timing sim-
ulators negleet the feedbick hetween clements. Hence they are ineffective for
cireits with strong hilateral conpling. Also convergence in solution cannot

iteration as stated before. Owing

be gnaranteed with only one relaxati

iming simulators are known to provide incorrect results in

Lo these reasons,

some sitnations.

As noted by Newton and Sangiovanni [Newton and Sangiovanni, 1984),
“A circuit designer will use a program that gives the correct simulation resull
and occasionally gives no resull. A cireuit designer soon loses confidence in a

ives an incorrect answer.” Even recognizing these

program that eccasionally g

shorteomings. it has to be admitted that the timing sinmlators introduced
us to some revolutionary concepts that led to the development of the VLSI

age (third generation) simulators.

Mixed-mode Simulators

Independent use of any one of the above simmlators does not prove enongh

for the simulation of a typical LSI IC. Cirenit waveforms are essential at

elfective

some parts of the cirenit. but full cireuit simulation is not ¢

discussed before. Timing analysis is not possible at some parts of the cireni

since some bilateral components may be present. AL somie parts of the cirenit,

only logic analysis could he sufficient. To solve this problem, mised-mode

Kinds of sinmlators,

simulators combine the capabilities of the other th

of simulator.

al

SPLICE [Newton. 197] ix a typical example of this ¢l

It is a hybrid simulation program, which divides a LSI cirenit into se

J timing or logic

parts and according Lo the need, performs cither cire

iit. The cirenit, logie and Liming simulators

ulation for that part of the cire

communicate with cach other by

interface from the Cirenit and

« Threshold eleme: ts - Work as a
Timing simulators to the Logic simulators. They provide a ‘17 to the

Logic simnlator when the input voltage to it is above a predefined

threshold, & 0" when the input voltage is helow another predefined

threshold and a ‘X', when the input voltage is in hetween.

o Logic-to-Voltage (LT V) converters - Work as iun interface from the

Logic sinmlators to the Cirenit and Timing simulators. They provide

Tand 107 state in the steady state and

voltages corresponding Lo L

provide a ramp during the change of state with slope corresponding to

the rise (fall) time of the LTV, when the state change is from *0°(*1’)

o1 ().

| ion simulation inan

nses thi

This class of si
effort Lo combine the advantages of circuit, logic and timing simulators. It

the right

s their disadvantages too, but its power is its ability to use

simulator according to the need of the simulation problem. which makes

imnlation in VLSI possible .

The evolution of different kinds of simulators and the methods used by

them to solve the cirenit analysis programs have been discussed in this sec-

tion. In the next section, following the reasoning of the introduction, we will

it anal in conventional simulators.

coneenbrale on tra

2.2.3 Transient Analysis in Conventional Simulators

Transient analysis in conventional simulators has already been introduced to

the reader in the seetion on cirenit simulators, Fig. 2.4 (in the next page)
shows the major steps in a transient analysis. The following paragraphs deal
with these steps separately, The algorithms used at each step are briefly

described and the relative efliciency of one algorithm over another, whenever

present, is pointed ont.

Equation ~]| Numerical N Linearization —N Linear Eqn
Formulation Integration g V| Solving

gure ps involved in a transient analysi

Equation Formula

n

Equation formulation is the very livst step in any cirenit analysis. Cirenit,

approaches - Modified Nodal Analysis (SP1C12)

simulators use two major

cirenit with N nodes and

and sparse-tablean formulation (ASTAP). For

m voltage-defined (for example. containing only a vollage souree) branehe

ons with the

modified nodal analysis (MNA) formulates V — 4 1 equad

~defined branch enrrents

(N = 1) nondatum node voltages and the i vol

se-tablean formnlation assembles

as variables, In contrast to that, the spa
an exhaustive list of equations that can arise from branch relations, from

KCL and from KVL.

The best algorithm s determined by the computational effort required to

solve those cquations and also the mmerical conditioning of the e

formed. When we compare the two methods, the number of equations in

sparse-tablean is greater, thongh the equation formulation time is less, sinee

an exhaustive list of equatious is preparec. Obviously, solution of sparse.
tableau by conventional means will require considerable effort, and we will

anisms. Also, if the set of formmlated equations

need complex reordering meed

23

I

is found to be ill-conditioned, the reordering that we have to nse

to make the st well-conditioned is more complex for sparse-tableau. For all

these reasons, MNA is considered to be the better of the two.

Numerical Integration

The dilferential equations formed in the equation formulation step are then

R the fact that in

passsed throngh o nnmerical i routine.

dysis we want Lo predict V(¢ + At) using the already known

ansient. a

values of V(1) and A (the timestep), integration methods can be divided into

two clas: L crplivit integration methods, V(¢ + At) is predicted in terms

of V(r) where 7 < 1. Tn implicit integration, V(£ + Af) is predicted in terms
of V(r) where 7 € 1+ AL Though explicit integration is straightforward,

it is wnstable e, the error generated at each step of numerical integration

tends to acenmulate. Tenee, implicit integration methods are preferred and
are used in all cirenit simnlators,
T all implicit, integration algorithms other than the trapezoidal integra-

tion in its original form [MeCalla and Pederson,1971), V(2 + At) is defined

in terms of V(f + A/). Since we cannot, use large timesteps with the trape-
idal method, (more ahout it in the later chapters) the other algorithms are
commuonly used.

Ass

me cirenit equations are in the normal form ie.

=/(r.t)

2

Hence, V(t4At) is a function of V((+A1) ie. S(V(1+21). Now f(V(14+
At)) contains device models, which are nonlinear in most cases. Hence the

equation after the integration step is (in most of the cases) nonlinear. So,

now we need a lincarization step to solve Hhose equations.

Linearization

Newton-Raphson(NR) funetional iteration is the most commonly used methe

i linearization [Kreyszig, 1988]. Heve it is intradnecd by considering a single

nonlinear equavion.

o) =0

Expansion of y(r) about a point u, in Taylor series and subsequent e

tention of enly first order terms gives,

4lr)

o=y - (214

4'(m)

This suggests the sequence of iterations to be

e 200 (215)

(e’

The generalization of Equation 2,15 to a system of n equations is
vz vt — (V)T (v (2.16)

where J(v!)=" is the inverse of the Jacobian of g computed at v'.
(V) o e (Vo

Jivty = ; ; (217)
Ag(v) oy e gl)i,

25

Equation 2.16 defines the £-th iteration of the Newton-Raphson scheme.

These iterations are carried out at each timepoint of transient analysis and

the resultant lincar equations solved to predict the value at timepoint (1+At).

Linear Equation Solving

This set. of linear equations (Equation 2.16) can now be solved by Gaussian

Elimination or LU dec sition. Gaussian being a well known

process [Kreyszig. 1988], we deseribe the other one.

iven a sob of linear equation Az = b, suppose we have a way of factoring

the coeflicient matrix A into the product of two matrices, L and {7, which are
Jower and upper triangular respectively. Then we have Ax = LUz = b. Now
by setting (7 = . we can solve the triangular system Ly = b by forward
substitution and then can solve the triangular system Uz = y by hackward
substitution. There conld be many ways the matrices L and U are chosen, a
unigue choice can be made by making the diagonal elements of L and U 1.

Any one of the two methods mentioned above can be used for solution
of the Tinear cquations. The system of equations being inherently sparse,
sparse-matvir methods ave almost always used to accelerate the execution
times.

“This concludes the disenssion of the algorithms nsed in transient analysis
in SPICE2 type simulators. The next and the final section discusses the

algorithms nsed by the state-of-the-art simulators that provide remarkable

26

speed improvement in nonlinear transient analysis ig novel algorithms in

contrast to the conventional algorithms presented above.
2.2.4 Third Generation Simulators

The third generation simulators came up with the solutions of the two se-

vere drawbacks present in circuit simulators. First the iterati

algorithms nsed in them brings down the computational cost of nonlinear

transient analysis [rom O(N(1= as in cirenit sinmlators to O(N), where

Nis the number of cirenit nodes,

Secondly using cquation decoupling (first introduced in the timing sin-

1 nse

ulators), these simulators trea of the cirenit nodes separately a

sinm

different timesteps at different nodes to speed np the entire e pro-

irate

cess. These two advantages make them superior to the reliable and

second generation simmlators.

The review of this class of simulators can be done

be more relevant here, algorithms being more important than the simulator

itsell. Hence this section concentrates on the characteristic algorithins nsed

L analysis.

by the third gencration simulators to speed up the trans

Iterative Timing Analysis

In iterative timing analysis (I'TA), as in circuit analysis, a numerical integra-

tion scheme converts the differential i to nonlinear i but the

method used to solve these nonlinear equations are different; these are noalin-

car Ganss-Jacobi and nonlinear Gauss-Seidel. These nonlinear counterparts
of the two well known iterative methods (Gauss-Jacobi and Ganss-Seidel)
[Kreyszig, 1988] operate on the nonlinear equation level, i.e. the nonlinear
cquations formed after the uonlinear integration step are solved by the NR
miethod and the solved values are iterated till convergence.

The Ganss-Seidel algorithm can be more readily discussed from onr pre-

vious discussion of timing simmlators. As described before, in a timing

simmlation, only one relaxation iteration is done after the equation decou-

pling step. In the nonlinear Ganss-Seidel approach however this relaxation
iteration is carried wntil convergence after the equation decoupling step.
Nonlincar Gauss-Jacobi differs from nonlinear Canss-Seidel only in one as-
pect. Referring to the Equation 2.5, n; is caleulated using node voltages

(t+A1) pleean,

.yextin contrast to the use of v (-1

(TR
By’ eo vyt as in Ganss-Seidel.

These iteration methods acconnt for the reduced computational cost of

third g jon simul The ional cost of both these methods
are

Computational cost ~ O(n) (2.18)

where n is the number of nodes.
Since they are iteration methods, their convergence properties are impor-
tant to us. These nonlinear methods use NR iteration as discussed in the

last paragraph. Say, the set of linear equations formed after the NR iteration

is of form Av = b. Then the presence of diagonal dominance in the matrix

A gives a sufficient condition for the convergence of both of these methods.

Also their rate of convergence is at least linear [Newton and Sangiovanni,
1984).
Let's note a salient point about these algorithms, ‘Tl methods belong,

to a class of relaration techmiques, i.e. they relax the accuracy of solution to

the

speed up the simulation process. Looking back, timing simulation w

first in using the relaxation technique, with the nse of equation decoupling,

Waveform Relaxation Techniques

Both timing analysis and ITA are hased on the application of relaxition tech-

niques at the nonlinear equation level. Waveform Relaxation (WR) applies

1 this

relaxation

s at the differential equation level, As we can se

and the relaxation is at.

level we are dealing with waveforms e.g. oy(1), ea(1)

form relaxation.

the waveform level, henee the name wa
The procedure can he explained in a simple fashion by considering, two

equations

gy = [iley, e l), a1(0) = 19
gy = faln, e), #(0) = g

(2.19)

29

The first equation is solved assuming z; to be constant, hence reducing it to
a differential cquation in y(£). The calculated value is used in the second
equation and the process is repeated. These disjointed (now single vari-
able) differential equations are then solved using implicit integration and NR

iteration as in ional simul As in all relaxation methods, the

convergence of this method near [Lelarasmee et al., 1982].

Event Scheduling and Selective Trace

“The principle lias heen already discussed in context o the logic simulators.
In the third generation simulators, this method is applied at all types of

simulators, even cirenit simulators.

‘Table look-up models

The device models are stored as look-up models rendering algebraic compu-
tation nnneeessary at every step of the simulation process. We have discussed
this approach already in the context of timing simulators.

Before summing up this section, let ns note one point - these third gen-

eration simulators carry on one limitation that was inherent in timing simn-
lators. They still assume a capacitor connected between every node and the

Thix property is generic in simulators nsing equa-

ground or another node,
tion deconpling techniques, But MOS circuits, for which these simulators

are mainly intended, provide that by virtue of having parasitic capacitances,

Hence the assumption is justified and the decoupling method that evolves

from this assumption provides fast enough simulation 10 prove the worth of
the assumption.

This concludes the review of the third g tion simulation algorithms

and also effectively concludes the review section of this chapter. The devel-
opment of the review section had been serial. The more refined simnlation
techniques have heen presented after the presentation of the background ma-

eh more understandable to

terial, This offort is aimed at making the o

the reader,

2.3 Concluding Remarks

The simmlation technigues were already matured in the 1970° with the de-

velopment of reliable and acenrate simulators like SPICE2 and ASTA. Re-

search afterwards sought to speed up the tion process as the cirenit

complexity continuerd to grow. The review followed U ans develop-

ni

ment of simulation techniques from TAP developed in 1960°s to SPLAX in

1990's, pointing out the salient features of each development. After familiar-

izing the reader to the subject of VLSI cirenit simmlation in this chapter, this
thesis will now concentrate on the pulsed analog nenral networks for which

the propused simulator is built.

Chapter 3

Pulsed Neural Networks and
Our Approach

3.1 Introduction

ystem,

Artificial nenral networks are biologically inspired. In a nervous s
newrons act as the processors and the synapses work as the connecting units.
When excited above a predetermined threshold, biological nenrons fire a

ily simple, when

pulse and though this processing power seems extraordina
colloctively considered. gives rise Lo a computing power far beyond the reach
of even the most modern computers. Artificial neural networks imitate these
Divlogical networks in search of that enormous computing power.

In an artificial nenral network (from now on referred to as a neural net-

re the weighted connec-

o simple processors and synapses

work), neurons

tions by which the nenrons control each other’s activity. The synapses can

be cither ercitatory, used by one nenron to excite another, or inhibitory,

used by one neuron to inhibit another excited neuron. Fig. 3.1 shows the

32

conventional modeling of this topology.
Here, the synapses are modeled as simple multiplication factors to the

inputs of a neuron. Excitatory synapses are represented by positive ml-

tiplication factors. whereas inhibitory synapses are represented hy neg

multiplication factors. Functionally, the neuron is divided into two parts, a

summer and an activation nnit,

0.
[$51
O;
Oj
o:
adder nenral
function

Figure 3.0: A nenron and the conected synapses

Assuming the inputs to be [, (i = 1,2,...,n), which conld be ontputs of

other neurons, and the synapses to he multiplication factors of value S, to the

inputs, neuron j adds the product terms to produce a sumof 5, = JiL £

The activation unit can e maodeled by a threshold function or a sigmoidal

function of the form

1

0 (8.1)

4 T om0,/

though other kinds of finetions are also nsed. Note that the nenrons us-

33

ing threshold functions will produce digital outputs, whereas neurons using
sigmoidal function will provide continuons, analog output for a range of S
values.

Au interesting property of these networks is their learning ability. The
wultiplication factors (by which the synapses are modeled) are traditionally

called the weights of the synapses and learning takes place by changing these

weights. Through the learning process, the nenrons learn to produce desired

ontpiits in response Lo an arbitrary input, which gives these networks their
power.

Neural networks can be broadly classified into three categories - su-

anl associative

pervised learning networks, unsupervised learning networl

e learning network, the network is presented with a

memories. In a superyi

of inputs (called leurning samples) and also the desired outputs in

chosen

sponse to those inputs. Following a learuing rule, the network continues to

learn 4l the stage at which it does not make any more mistakes in predicting
the outputs. Backpropagalion Nets are one example of this kind of network.
After the learning is over, the network is put into production i.e. random
inputs are now presented and the network guesses the outpnt with the help
of already learned weights.

The unsupervised leaming process differs from the supervised learning

s characteristically by not presenting any desired ontput (to the net-

work) along with the learning samples. The aim of the network here is to

34

group the inputs into meaningful clusters. In search of this goal, it uses mu-

tual inhibition. ic. the most activated neuron tries to suppress the others to

networks

identify the input to be one of its own cluster. The reprosents

are maznel, ART and the Kohonen's network.

Associative memories traditionally can he separated from the other two

ghts i.e. they hardly learn. These memories

es by the nse of fixed w

can be antoassociative or heteroassociative in nature, ie. when an input

w produce r,

presented is closer o i than any other stored patterns, it ¢

output (autoassociative) or g; as ontput (heteroassociative), where y, is the

associated response to . The examples are hopficld nets, matviz associative

memories ele,

Later, while dis ing the implementation of specilic neural networks us-

ing the proposed topology, some of these networks are diseussed al a greater
length. Here, however the concentration is on implementations of nearal net-

-

works in hardwar

using a pulsed analog approach rather than the cha

earcl

I nenral

y VI

istics of a specific network. The Edinburgh univers

gronp has made the most significant. breakthronghs in this arca and henee

cquaint, the reader with the developments

their approach is reviewed first to
i this field over the years, Next. onr proposed topology of pulsed analog,

salient

implementation of nenral networks is presented at lengtl and the

of it will be highlighted. The simulator described in the next

characteristic

characteristics extensively.

chapter exploits the

35

3.2 Review

In a biological neural network, the neurons communicate with each other

throngh action potentials, which are pulses. A biological neuron consists of

fonr major parts - cell body, axon, dendrites and presynaptic terminals. The
action potential is generated by the cell body and is transmitted through the

wron that in v divides into presynaptic terminals and transmits this pulse

through synapses to the pustsynaptic terminals (dendrites) of other nenrons.

“The pulsed nearal networks nse this idea to represent nenral outputs as

pulses in contrast to the conventional analog or digital nenral outputs. The

s of this

advantage:

pproach have heen discussed before,

In the last fow years, nnder the leadership of Dr. A, F. Murray, the Ed-

inburgh University gronp has looked into several neuron and synapse cireuit

models for eflicient implementation of nenral networks in pulsed analog form

s of the nen

and also at the loarning aspec networks built using this ap-

proach. In this section the progress made by them in these areas over the

past few years will be summarized

Implementation of nenral networks in hardware aims to achieve a few

goals. Minimization of synaptic area is one of them. Another goal is to

implement. the multiplication and the addition proces

s (Refer to Fig 3.1) in

an eflicient manner, i.e. reducing the nenron standard cell are:

The following

diseussion continualy refers to these issues Lo evaluate the effectiveness of the

design decisions made by the Edinburgh gronp.

36

3.2.1 Synapses

Synapses form one of the two basic building blocks in any newral network

implementation. Since cach newron in o network uses several synapses (o
connect to the other neurons, the synapses dominate by mmbers in any
neural network. Hence, an efficient and compact implementation of them is

an absolute necessi e lesign changes e by this group over

Uhe years reflects L ieving tiis goal.

The initial design of their synapses used registers to store the

napl

weights digitally [Murray and Smith, 1987). The first hit of the weight defined

the nature of the synapse. i.c. whether it is exeitatory or inhibitory. The

purpose of the other bits can be explained as follows. Say, for
synapse the other bits of the weight are 1105 then i that, synapse recoives

L Bt

input pulses at a frequency of [, it was designed 1o pass (1
)

digital registers that nsed up a large amount of area thus preventing one to

0

5% of those pulses. The drawback of this design was the nse of

s subsequently had

implement more than 100 synapses per chip and the

to be rejected.

1 th [Mur-

used a time-modulation techuig

The synapses that repl

ray and Smith, 1988]. The technique can be explained as follows. Lot the

inputs to the synapses be pulses of fixed width dt and of frequency f. In this

implementation, the pulse width dt gets lincarly multiplicd by the synapse

< 1. Hence the pulses that appear at the postsy-

weights S,,, where) < S,
LS 7)

naptic terminal of the neuron are of variable width S,,.dt and of frequency f.
These synapses are clegant compared to the clumsy controlling mechanism
of the previous design, and also allow one to use an efficient current sum-
ming techniques (described later) on their outputs, but each of them used 11
transistors so they were still nneconomical considering the enormous number

of synapses present in a nelworl

nonses i four transistor synapse that implements the

Their newest desi

product lerm 8,1, nsing the MOSFET equation in the triode region. The
squared term in the MOSFET equation is eliminated by proper choice of

ios and the drain and gate voltages. These synapses also

iran:
allow the use of a current summing technique and 15,000 of them can be

implemented in a single chip [Murray, 1991].

All these designs share some common characteristics. They are androg-

ynons, i.e. they are aimed to implement both excitatory and inhibitory

r in nature and also auto-scaling, i.e. they allow

synapses. They are li

any number of synapses to he connected to a particnlar nenron.

3.2.2 Neurons

The nenron design changed continnonsly to accommodate the changes in the
synapse design. Nearons are relatively fewer in number in a neural network
and hence are allowed to he larger to use more efficient multiplication and

summation techuiques.

synapses and it worked

The first design of their nenron was for the di

38

by integrating the pulses coming from the gated synapses and then using an

freque

odd number of inverter delays to produce output pulses wh

represented the nenral]. Their nl design

was for lime modulating synapses. A simple voltage controlled oseillator was

used as the nexron in this case. The voltage accumulated at the postsynaptic

nsed to control

node, by enrrent summing of the time modulated prlse

the firing rate of the nenron [Mur Al 1988L I the most recent design,

an op-amp cirenit is used as the nenron for the fonr e

TosvIaApses

described before. Summation of mull verl iy the

plicd terms is casily a

op-amp circuit, which incidentally also provides the sigmoidal nonlinearity

[Murray, 1991).

3.2.3 Programmability and Learning

aruup were always programmable in t

5 seheme conld be used o train them. Fhe first Lype

) olf-chip leary

of synapse used registers whereas the second and third design had capacitors

present at the weight terminal so that the weights could he dumped and

petiodically refreshed for-wse in Warsiing.

Murray [Murray, 1992] deseribes a suceessful learning schemwe for th

networks, Though

jon is U most popular algorithim for |

propagi

ing, it requires a complex weight updating scheme and henee is ot s

ckpropagi-

for hardware on-chip learning. Consequently, a variation of ba

as Lhe e

tion, with a simple weight updating e, haas been cho: rning

algorithm,

The pulsed approneh nses analog cirenits that inherently suffer from noise

prablems. Contrary to popular belief, dusing the learning phase this noise
is reported o enhanee the learning [Murray, 1991). In backpropagation type
algorithms the weights are taken to the global minima of the error space by

the weights

guiding them with the use of . learning rle. During this proce

ek at the local minimas. Injection of noise reportedly helped

tend Lo g

in the error space thus cffectively

the wei

iglits to survive the loeal minimas

g the leaening.

Cont to this onventional approach of using linear synapses (to stick

in Pig. 3.1). our approach is Lo use nonlinear synapses.

to the model as
lenee, the relationship of the contribution of our synapses to the weight

mapses have been

noulinear. Also our excitatory and inhibitory s

voltage i

parately. ie. they are Irogynous. The synapse and the

designe

nenron eireuits and onr proposed topology is the focus of the next section.
3.3 Our topology

Figure 3.2 shows the transistor level design of our synapses. The excitatory

the inhibitory synapses nse two, The

use four n-trausistor;

Apse

fnput Vi (Vi) for excitatory(inhibitory) synapses is a series of pulses, whose

[requency represents the input excitation. The weight voltage V,,, determines

the effectiveness of the synapses. The other inputs to the synapses can be

40

best understood in context to the topology that is presented in Fig.

itatory and (b) t

all excitatory in this diagram,

yapses. which a
ot or the

connected to the Vi node of the nenvon. The voltage at the

s the voltage of the biological nenral

node

This voltage arises in a hiological neuron | the: separation of charges

of o

across the membrane that acts as a barrier to the dilf:

The nenron is modeled as a threshold nnit; when the membrane voltage

Vi = Vi crosses the threshold voltage Vi, it fires a pulse (0. In our
[),

+also fires o discharge

Lopology, the nenron along with firig the output pul

pulse of longer duration (than the wutput pulse) to bring hack the membrane
voltage to zcro.

The membrane effectively integrates the charge dumped by the synapses

This eaparitanee could be implemented as

with its membrane capaci
a lumped component in front of the nenron. Onee implemented like this, tie
number of synapses conneeted Lo i nenron s limited becanse of the problem

of saturation.

pramt

Wjn_] Sjn {LL" discharge pulse
7

Figure 3.3: Block diagram of the proposed neural network

This problem is taken care of in the propused architecture by distributing

mapses. lence this network is auto-

the membrane capacitance over the

scaling, i.e. any number of s can be conneeted Lo & specific neuron.

g

The Vi terminal of an excitatory s connected to the discharge

napse i

n achieved

alability

pulse output of the nenron Lo which it is feedi

5. ag

by distributing the discharge transistors over the synapses. The discharge
transistor is also designed to be wider along with a wider discharge pulse from
the nenron to guarantee almost instantancons discharge of the membrane

voltage.

Ina biological neuron, the ontput O, is fired when the membrane volt-
age rises enongh to open the voltage-gated channels to rush in positive ions.

ated

Along with the gated channels. the membrane also has somwe han-

nels that constantly leak charge. This phenomenon has been modeled in the

nbedd as the Lran-

istance Lhat. is imple

excitatory synapse hy a l

sistor with the gate voltage of Vig.

we also use two ki

Along with the type of neuron used in Fig.

nentation requires pulsed inputs

of input neurons. The pulsed analog imple

digital or analog voltage inputs.

whereas conventional neural networks ns

Lo

The input neurons are used to provide us with pulsed inputs in response
user-defined voltage inputs. The non-inverting input nenrons fire al a higher
rate with increase in voltage in contrast to the inverting input nearons firing
newron cirenit designs and

rate with increase in voltage. The

at a lowe

their ontput specifications can be found in the thesis work of D. Bhattacharya

[Bhattacharya, 1991].

From the above discussion it is apparent that our design is cell-based;
standard cells have been designed to implement the synapses and neurons
present. in a given nenral network. The inpnt neurons are designed to be
used in the input layers, whereas the standard neurons are to be used in the
hidden and output layers. The leakage voltage of the excitatory synapses

and also the threshold voltages of the neurons are provided globally.

. have been si

Several cirenits, e.g. Marnct, associative n Y

using this topology and two chips have been built to date in CMOS3DLM (a3
micron CMOS technology) to confirm our designs. The first chip implements
the five standard cells - exeitatory and inhibitory synapse, standard neuron
and the inverting and non-inverting neuron. The second chip implements a

of these chips have shown

able memory (CAM). The testir

content address
favorable results.
In this section our proposed pulsed analog topology is outlined and the

salient characteristics of it have been discussed. Our proposed synapses are

nonlinear and we helieve that the learning, being essentially a tuning process.
will take care of any nonlinearity present in the system. The synapses used
are non-androgynous and have heen optimized for their particular fanction.
The proposed network is auto-scaling, hence the number of synapses that

can be connected to a newron is not limited by any constraint. Lastly, the

approach is cell-based to allow nsers to implement a nenral network using

these cells without bothering about the transistor level details.

3.4 Conclusion

This section introduces the reader to the pulsed analog approach of imple:

mentation of nenral networks. A brief rev

w of neural network theory

been followed by a conventional prlsed analog approach used for implemen-

tation of them. Finally our approach has bheen presented and the differences
have been emphasized. After reviewing the simulator design and the pulsed

analog approach in the last two chapters, the next chapter will present the

of the

reader with the design level d ilator that has heen designed

for onr proposed pulsed analog tupology.

Chapter 4

Simulator Design

4.1 Introduction

Our motivation for the development of this simulator is fast behavioral sim-
ulation of our pulsed analog topology. Commercial circuit simulators like

HSPICE takes aronnd 40 minutes for a single simulation run of even a small

newral net implementation of only 48 synapses and 3 neurons, which is frus-
trating at the design stage. Agaiust this backdrop, our aim is to provide a
reasonably accurate prediction of the network behavior along with a radically
improved simulation time. The simulator PULSE that emerged as a resnlt of
purstiing this goal performed the simulation of the above cireuit in 6 seconds.

The guidelines followed in any simulator design are ease of use, efficiency
and simplicity [Nagel, 1975]. These guidelines are also followed in the design

of PULSE and are claborated below :

o [Fase of use refers to the user interface. User input to the simulator

has Lo be in simple form and the output has to be casily comprehen-

46

sible. Keeping this in mind, PULSE requires user to submit inputs

in SPICE format and generates a cirenit connect deseription by
its own neflister from nser-drawn Cadence schematics. The output is

provided in hoth textual and graphical forms.

Efficiency refers to the dollar cost of the simulation. Typically 50 times

zed cirenits

speed improvement is provided by PULSE in medinm s

ing design

which reduees the design eyele time considerably, thus in
efficiency.

an be readily

Simplicity refers to the clarity of the design so that it
modified, enhanced and supported. In this respeet, modularity had

rw elements

n of

always been a prime design goal in PULSE. Additi

and enhaucement of exi ple algo-

models is casy in PULS

rithms have been chosen when the required complexity did not pay off

in commensurate improvement of accuracy or speed.

of PULSE. The

imulation pro-

This chapter presents the design details

cess in PULSE is first diseussed and the varions steps are ontli

netlister development, for the generation of a conn y description from

a user drawn sch ie, s then des ed. Modeling of the synapses and the

neurons is described next. Finally, the algorithms nsed in the simulator are

discussed and their choice is justified.

4.2 The Simulation process in PULSE

PULSE performs a transicnl analysis i.e. voltage values are calculated for
a user-defined time interval (0,7) at timesteps of At, which is again user-

la lefiniti

r also requirs

defined. Other than these the si

of input stimuli and specification of the outputs to be provided as simulation

results, Clireuit connectivity deseription is also an essential input.

Figure J1.1: PULSE simulation steps

‘The simulator contains a custom-built flat netlister ' 2. This netlister

VA metlist is a textual description of the connectivity of a given circui

#A flat netlister works as follows. If an op-amp appears thrice in a circuit and the op-
awmp contains 50 transistors, the connectivity of all those 50 transistors will be provided
every time the op-amp is encountered by the netlister.

438

allows a user to draw the nenral net schema 1 Cadence using custom-

built symbols of synapses and neurons, which it then converts to a netlist

(conforming to SPICE format). This improves the user-friendliness of the

simulator since a schematic is easier to provide for a user than a textua

description of the connectivity of the circuit.

Once the netlist is generated, the simulator reads a nser w

pulse.inp to find the stimuli provided by the us Another nser-written

file pulse.sim specifies the time-interval T and the timestep Af of the tran-

Lastly, the nser dictates the ontputs that are needed from

sient analy:

the simulator by writing a file called control. The formats of these files are

shown in the appendix.

In this

These input files are read by the lator Lo enter i setup phise

ol

phase, it formmlates equations for all the nodes present in the cireni

writes a C program defining these equatior: . and the algorithm to be nsed to

solve them. In the analysis phasc, this generated file is finally compiled along
with the simulator-defined models to produce the final output according to

the user requirements.

Among the steps shown in Fig. 4.1 the first step requires the develop,

er which is described next.

of a custom-built netlis

49

4.3 Development of the Netlister

While designing a circuit simulator, a designer has to always think abou the
interface to be provided 1o a user. Here, at Memorial University of New-

foundland, Cadenee is used for the complete development of an IC starling

from its cirenit design phase. Cadence, a proven VLS package, offers various

touls that can be used Lo improve the simmlator interface, The Flat Netlister

one of them.

(I°NL) i

WEAD DESIGN e UTPUT NETLIST
neny AccorpiNG
TIE DESIGN.
FHOM SCHEMA ITo vsTRUCTIO

How FNL works

it
PROVIDED

Figure 4

I'NL provides a generie flal netlist that can be formatted according to
the needs of a simulator. This custom-made netlister s built by exploiting

that feature of FNL. The above diagram illustrates the process.

n was written in the Symbol/Simulation Library Generator

A progr:
(S/5LG) Tanguage specific to Cadence [Cadence 0SS Manual] for the for-
matting of FNL according to PULSE specific format ' The next step was
the creation of the symbol library. The symbol for each of the nenrons and
synapses were ereated using Cadence symbol editor. Lastly, an $/SLG file
was written for defining the netlisted output for all five library elements %

e program appears in Appendix E.1
#The progeam appears in Appendix E.2

50

#

jra—

o—
p—

// Netlist Generated by PULSE Netlister //
*net0=/DC
*neti=/Vexi
*net2=/Vex2
*net3=/Vinl
*netd=/Vut
*net5=/V1lk
*net6=/V-
*net7=/Vb
*net8=/0UT
*net9=/10.Va
*neuron(0)=/14;
SN0 96708 ;
*insynapse(1)=/I3;
I1IS1349 ;
*exsynapse(2)=/I1;
ES220459 ;
*exsynapse(3)=/10;
ES310459 ;

Figure 4.3: Sample output of the netlister

51

These three steps constituted the netlister development process. The

netlister is implemented in such a way that it can be run inside Cadence.

i, 1.3 shows a sample output of the netlister. A simple circuit of two
excitatory synapses and one inhibitory synapse connected to a neuron has

chosen for this exampl

bees

for PULSE is outlinerd in this section.

The netlister development proce:

will involve details of the Cadence

More detailed diseussion of this topic

simulation process. which are unimportant here. The details can he found

in [Banerjee, 1993]. AL this point, we are done with the first step of Iig. 4.1.

Before proceeding with the next steps, we will digress for a while to discuss

, U two synapses and three neurons, are modeled

the way the building block

in this sinmlator to enhanee the simnlation speed.

4.4 Modeling

Maodeling of the components present, in the inteaded circuits is a major part
of any simulator development. Here the components present are five - exci-
Latory synapse, inhibitory synapse, standard neuron, inverting input neuron
and non-inverting input neuron. Our approach is not to perform a transis-
tor level simulation of them but to build a fast and simple macromodel for
cach. The transistor level simulation details obtained from HSPICE level 3
stinmlation details ave then incorporated in these macromodels to keep them

faily accurate, The modeling of each of these components is now separately

discussed.

4.4.1 Excitatory Synapse

Figure 4.4: The excitatory synapse

The modeling of the excitatory synapse will provide us the amount of current
dumped by the synapse in response to a given set of voltages Ver, Vir, Vitey
ik and V,,. The input-output characteristics for this building block can be
derived as follows.

According to Fig. 4.4 and our topology
o Current flowing through M1 and M2 is the same at any point of time.
o Leakage through transistor M4 is a function of V.
o Vi insfankly drops:thigers i Vi o light
Also I, the current dumped by the synapse, is given by

I=1h—le— I (1.1)
where, Iy is the current flowing through M1 or M2 when Ve, is high.

53

V,, is always connected to a nenron input. With the neuron threshold

being = 1.5V, Vi, hardly goes over 2.5V before a discharge pulse brings it
downt Lo zero, Hence, when V. the pulsed input goes high, V., — Vi > V.
where Vi, is the threshold voltage of the Netransistors and V; is the source

in saturation.

s, whenever V. is high, M1 i

isistor M 1. Th

voltage of L
However, M2 can be in the linear or saturation region, depending on
voltage Vy for a given V.

¥y > Vi = Vth : M2 in saturation
Vi< V= Vih in linear region

Henee solving for eurrent fy in Eqn. 4.1 will involve first determining the
condition of M2 according to Equ. 4.2 and then equating the appropriate

current equation for 12 with current throngh M1 in satnration region. V;

can bee solved from the resulting equation by iteration (the equation being

involved) and hence 7, can be determined.

Following the above procedure, a transfer characteristics can be obtained

by varying Vi from 0-5Y and finding eurrent 1 for different values of ¥,

fassuming 13.=0). The Shichman-llodges SPICE level | model [Geiger et

L 1990] is nsedd for transistors (o provide a reasonably accura e simulation.

The transfer characteristics thus obtained are shown in Fig. 4.5(a). The
parameters for this SPICE level | model are taken from the ¢MOS3DLM

databook '

ADLM is a 3 CMOS process used by us for our chip fabrication,

180 T T

120 |-

(b)

Figure 4.5: Plot of exsynapse current I(in jtA) against V,(in Volts) (a)
HSPICE level 1, (b) HSPICE level 3

55

Wihen the same cirenit was simulated in HSPICE using level 3 MOS

5(b). The

istic obtained was as in Fig

models for vel tion, the charact
value of currents obtained were almost halfl of that in Fig. 4.5(a) at a given

the sophistication of the HSPICE level

(Vs Vi) pusinit. Obviously it refl
3 model as compared Lo the Shichman-Hodges model.

The characteristic in Fig. 4.5(h) has been incorporated in our excitatory
synapse macromodel in the following way. Fig. 4.5(b) has been curve-fitted

with & I-th degree polynomial in Vi, Hence.

I= a4+ Vol + .o 4wV + @iy (1.3)

These coellicionts a, were caleulated for different Vs, The resultant
valies were again eurve-fitted with a 13-th degree polynomial in V.. Hence
vty ele wore again expressed in a series of form

a = bl 0V L b+ by (14)

3 and Equ. b constitute the major part of the

These equations Equ. |

macromudel for excitatory synapses. The dogree of the pulynomials had been
chosen by visual inspection of the matching present in the model generated

s and the HSPICE level 3 characteristics. Fig. 4.6 shows both

of these characteristics plotted on the same graph.

Note that the current thus obtained only accounted for the first and the

third term in Equ. 4.1, During the time the discharge pulse gets high, L

5V), lor that

e voltage 1 being constant (

also appears into the pictore,

56

period of time, current 1, hias abso been modeled as a 13-t order polynowial

in Vin in the same way.

0 LN PALL T S R LA (1.5)

Figure 4.6: The model geuwrated characteristics and the HSPICE character-
istic (Fig. 4.5(1)) plotted vn top of each other. They totally overlap as the
graph shows.

Hence, Equ. 4.3, L1 and L5, when combined together, constitntes the

final macromodel of excitatory synapse. The model being wly the combi-
nation of & maximum of three power series, the evaluation is fast. Also,
the accuracy i inherently incorporated in this macromodel by assuring its

conformance with the HSPICE level 3 simulation results,

4.4.2 Inhibitory Synapse

Vm

Vin
Vwt

Figure 4.7: The inhibitory synapse

The inhibitory synapse can be modeled using the same approach. In contrast
to the excitatory synapse dumping current, the inhibitory counterpart sinks
current. Looking at Eqn. 4.1, we can note that the same equation can be
used for modeling of inhibitory synapse and only the last two terms in that
equation wi' be absent in this case. Following that observation, the current
sinked had been modeled using the same equations 4.3 and 4.4. HSPICE
level 3 simulation was once again used for calculating the proper coefficients

a;’s and b;’s for this macromodel.

4.4.3 Neuron

lll

|
)

L
155
T

Figure 4.8: The standard neuron

Fig. 4.8 shows the circuit schematic of the neuron. The first part of the

circuit ini i MI-MT is the block whereas the

rest of the circuit provides the delays required Lo produce the nenron ontput
and discharge pulse.

The neuron is modeled as a comparator. When the input voltage V4,
which is really the V,, node of connecting synapses, crosses V—, it fires two
pulses. The discharge pulse goes back to the excitatory synapses to discharge
V,,, and the output pulse models neuron excitation.

In this simulator, the pulses have been modeled as trapezoids. Their rise
and fall time, delay and on times have been noted from their HSPICE level

3 simulation and are provided in this model. Table 4.1 shows these values in

39

nanoseconds,

[Pulses | Delay _Rise On__Fall |
Outpnt | 9.8 65 T
Discharge | 102 13 148 12

bl 415 Nenron vutput and discharge pulse details

Though ideally this nenron should fire when the input is just above the

threshold. it doesn’t necessarily behave this way (ie. it doesn’t always fire

when the input is just above tie threshold) in our topology. The compara-

tor cirenit responsible for the firing of this neuron is however known for its

acenrate Lrip voltages [Allen and Holberg, 1987]. This behavior (of neuron

sted Lo arise from operating this circuit in our topology

not liring) is sug
at a very high speed. In many cases the neuron inputs stay high over the

duration is 1-2 ns, and

thresholid voltage for only a few nanoseconds. I U

at Vi, the nenron doesn’t fire,

the iuput is ju
This phenomenon can be modeled in PULSE simulation by using a higher
thresholid voltage input (in most cases, 0.2V more) than that is intended to

be used in the physical cireuit. An acenrate modeling of this phenomenon is

not essential as the exacet timing of the pulses doesn™t seem te be meaningful

).

(refer to seetion

60

4.4.4 Non-Inverting Input Neuron

P

Figure 4.9: The non-inverting input ncuron

The non-inverting input neuron circuit consists of the following stages. Tran-
sistors M1-M3 builds a ramp generator stage which charges the capacitor Cy.
The ramp generator stage is sllowed by a comparator stage as in the stan-
dard nevron. When the voltage on the capacitor crosses the comparator

threshold voltage, the comparator changes state. The delay stages following

the a pulse corresponding Lo this change.

This circuit fires pulses of increasing frequency as the input excitation

increases. Hence the model is simply a single input, single output block with

the details of its output pulses recorded from its HISPICE simulation.

4.4.5 Inverting Input Neuron

Figure 4.10; The inverting input nenron

Other than the presence of an additional current mirror at the input, the
rest of this circuit remains the same as in the non-inverting input neuron.
The resultant circuit fires pulses of decreasing frequency as the input voltage
rises. Hence the model remains the same i.e. a single input, single output
block as in its non-inverting counterpart.

This completcs the modeling of the building blocks of PULSE. The next

section takes a look at the core of PULSE, the algorithms used.

62

4.5 Analysis and Algorithms

Form equations at each node;
At each time-point
{ repeat Waveform Gauss-Seidel
{ perform implicit integration for neuron inputs;
use plug-in models for neuron outputs;

until convergence;

}

Figure L11: PULSE

vsis block

5 can he simumarized as

The operation of the analysis block in PULS

b, goes Lo Lhe equation formm

Fig. £.11. PULSE, after the netlistir

tions. Dilferential cquistions

stage. In this stage it forms two kinds of equ

are formed for the neuron input nodes that goes *hrough a mimerical integra-

tion stage ntilizing predictor-corrector based implicit integration (commonly

are formed at

Known as functional iteration). The other gronp of equations

nenron output nodes that are solved using plag-in models,

“The implicit integration is performed for the fiest gronp of cquations by

and this pro-

treating these equations as single variable differential cquation

cess is repeated using Ganss-Seidel iteration (the whole process is commonly

section disensses these

known as the Wavcform Canss-Seidel method). '
algorithms in the light of their application to our topology and their imple-
mentation in our simulator. This section coneludes with an example of the

operation of this analysis block,

63

4.5.1 Equation Formulation

PULSE forims an equation for every node present (except for the inpnt nodes)

in the eircuit at each time-point. The equations thus formulated can be di-
vided into two subgroups - equations for nenron output nodes and equations
for nenron input nodes. The synapses can only be connected [rom the out-
put of one nenron Lo the input of another neuron or from the input. (stimuli)
nodes to the input of one nenron. henee these are the only two types of
equations possible.

Ont of these two subgroups, the equations for the neuron output nodes

are straightforward. These equations define neuron ontputs in terms of neu-

rou inputs. The standard neuron is a comparator and the input nenrons are

modeled as simple VCOs, Henee these cquations do not require any sophis-

ticated methods for solving them and from now on we will not hother about

them.

L o }

Viers

A typical connection at nenron input node

Fignre 4.1

64

The second group of equations are formed at the nearon input nodes.

a. 112 shows two excitatory

These set of equations require more attention. Fig,

synapses and one inhibitory synapse connected to the input node of a nearon.

itatory synapses amd [y he

Let Iy and 1 be the current dumped by the ex

napse. Then the oq

the cnrrent sinked by the inhibitor jon at the input

node of this nenron can be written as

It b= 1

Vi,
pails G
(i (.6

Equations like -L6 & embled by the simulator for input g

a

every nenron. These gronps of equations resemble the equations formed
by the modified nodal cquation formlation technique extensively used by

tion simulators, and hence the method and the

the second and third gener

algorithms for solving these cquations are well known (refer to the subsection

3). The way these proven algorithus apply to our specific topology and

o forms the topie of the

a comparison of their efficiency in this applica

of this

chapter.
4.5.2 Implicit Integration

Differential equations of the form of Eqi. 4.6 have o be solved at every time

point for finding the voltages at the nenron input nodes, Tiplicit integration

is the first step in this process. As stated in the introduction of this seetion,

PULS s the funetional iteration method in this stage. This algorithm

as applied 1o onr topology s deseribed holow.

5]

Recall that 1y, Iy, Iy of Sqn. 4.6 are inherently functions of V,, (from the

wodeling approach of the synapses). According to the method of wavrform

can he treated as a single va differential

ikee .

relasation, v

the section).

asmee et al., 1952] (more abont thi

equation in V,, [Le

ially of the form

Henee the group of ions like Eqn. 4.6 are

=J(Vu(t) (1.7)

Lets keep in mind that we are performing transient, analysis. Henee, while
solving the voltage at Limepoint (f 4 A2), we already know the voltages at

timepoint £ and before, Tn this algorithm, an accurate predictor is first used

to predict the value of 1, at time (£ 4+ A1), V,,"(¢ + At), using the value

V(1) andd V(1 = Af), which is already known.

G+ = m+#[=i/(v;.un-/("nu-mn] (1.8)

This predictor is known as Adams-Bashforth predictor [Chua and Lin,

e Vull). V(8 = A1) are already known and f(V,, (). f(Vu(t— A2))

g them, 1, (2 4+ A2) can he calenlated from this equa-

can be fonnd ont
tion. This predicted value is corrected by averaging the slope at points
and (24 A1), Let the corrected value be V! (1 + A1), calenlated nsing the

fllowing eauation
o I -
Ve (1 M) = V(1 + LV (04 20) + V(1] (4.9)

66

Oun the right-hand side of this equation. V(1) and M are known and

1) can be found out from Equ. 1.7, Hence Vi '(£4) can be calenlated.

This correction process is then repeated nntil conve

I'he p-th

iteration involves the step

Vi (1 4+ A1) =

YA V)] TR

At con

genee, e valine of V(4 M) provides the seuron inpuf node

voltage at that timepoint.

4.5.3 Waveform Gauss-Scidel Iteration

Waveform Relazation and CGauss-Seudel iferation lave heen previously de-

seribed in the literatare veview section. The waveform Ganss-Seidel is a

aid is des

combination of these two algorithms hed in the nest page in the
form that was implemented in onr simlator.

In this special case of the Waveform Ganss-Seidel method (e, when ap

plied in onr pulsed analog topology), only the node voltage that is to he

solved appears s the differential term as can be seen i 16 and all

other node voltages appear inside the f; term.

Application of this algorithm requires u o be a piccewise linear contin

uons input. lu onr uis the input pulses. Also €7 is ine dent of V,

in this case. Under these conditions. Wavelorm Ganss-Seidel iteration pro

mteed Lo converge [White and Sangiovauni, 1956] and the o

s g

UThe convergen Dty detatledd i Appendix A

67

of convergenee is at least liv [Newton. 1984].

avform Gauss-Seidel Algorithm for sn]vmg Eqns. of form Eqn. 4.6

The supersevipt k devoles the ileration count. the subscript i denotes
the wode wumber, and ¢ is @ small positive number.

k=0
Assume in
repeat |

al condition V, = 0;/ € {1,....n}

P Wt i e
for ll,‘(/) 1o, I}i

)
}ountil @l VA =R s g)

Fignre L13: Wi

Seidel Algorithm as in PULSE

orm G

Henee applying this algorithm, equations of the form of Equ. 4.6 can he

treated as single variable equations in U, (refer to the subsection 2.2.4) and

henee the elaim made in the subse i Eqn. L6 is of the form of

Eqn. 1.7 is justificd.

4.5.4 PULSE Analysis Block - Reviewed

The foens of this section is to explain to the reader the flow of the PULSE

is block. For this discussion we will assume a circuit consisting of

analy
nodes and g standard nenvons (there can be any number of inpnt nenrons

prosent in this cirenit)

68

Out of thes

n standard nenron input nodes and # standard nenron output nodes, The

other (¥ — 2n) nodes are cirenit input nodes or input neion output

mlns values

and hence are already known from user pro nel plug-in
models.

From the netlist. the conneetivity of the

ontput) nodes (that we are interested in) is available in an ol ry order.

¢ order in U S

Henee the equations ave also Tormed incan arbitr i3

the first of these 2 equations evaluate the inpnt node of enron | (hy using

tion cvalnates the

functional iteration). Also assume that the seeond eqp

output node of nenron 3 (by wsing phag-in models). Now if neuron 1 input

node depended on nenron 3 ontput voltage amd nenron 3 ontput ¢

at this point of time. the input node voltage of Nenron [will be

e of nenron

incorrectly being unable to take into accomt the changed voltag,

3 output.

This problem is circumvented in PULSE by passing these 2 equations

ridel iterative foop. W ng Lhrongh these loop, (in

throvgh a Can

connt the

inite i

this case) the second iteration of the

trect nenron

changed value of nevron 3 ontput correctly thus evaluating the

1 input voltage. Extending this logic, when this Ganss-Seidel loop reaches

v this

convergence, all the nodey irenit are correetly evaliated independent

were forn

of thie order in which the cquations - This explain, the presenee

69

of the onter Causs-Seidel loop in Fig. 4.11.

The flow of the U nalysis block and the function of the algorithms

explained in this section. The next seetion

used in this block has been

ice of the algorithms used in this block in comparison to the

plains the ¢

other algorit]

4.6 Discussion

Two algorithms are used in PULSE = the predictor-corrector based implicit
cidel iteration. Another crucial part

mple in PULSE,

oform G

jon and the w

integ

in inlitor design, the squation formulation sta

and provides equations in the same form as required in standard eirenit

ars. e algorithm is required at that stage.

compl

are formulated, the second step in the PULSE anal-

Onee the v

ysis is predictor-conector based implicit integration. In conventional cirenit

simmlation. other implicit integration algorithms (such as backward e uler) fol-

Newton-Raphson iteration algorithm serve the same purpose. The

fonwel |

not used (in conventional

reason the predictor-correetor based algorithm

inherent limitation on timestep ' (1o assnre its conver-

it

simnlators) is

genee) that ean be nsed in transient ana In Appendix A, this limitation

aleulated for onr topology. The worst-case Limestep

of timestep has heen

limit s tabulated helow which has heen found to be dependent on the ratio

. the tern fmestep refers to the algorithmic

ated expli
Gimestep and not e wsor-defined tines

of excitatory and inhibitory sy conneeted to a nenvon input node. In

Ratio of o Worst case Gmestep |
andd inhibitory syn (in ns)
T6ns
b2 0.T3ns
1/3 0.52u5

e time step

nenral network implementations, we nsually come across civenits that have

m or close to 1 lenee

Lio of excitatory to inhibitory

a synapses g

2ns.

it that case the worst-case timestep size by which we ave linited is 1

Also, our input and output pulse widths being 6.50s, timesteps of more than
the pulse width (26us) will never he used by the user in transient. analysis
of pulsed analog uetworks hiilt using our topology.

To begin with. the commonly used methads of hackward culer followed

by Newton-Raphson allows ome o use this lager user-defined timesiop value

of 6ns. Let’s take a look at the computational complexity that will be re

rent. In this method, after the nsial nu

quired for this timestep improv

merical inte ion step, the local truneation ervor of the inplicit integration

algorithm has to be compnted atevery timepoint and the titestep has o

be decrcased accordingly (a simulator rinning at timestep of Gis from wser

all the

at 0505 insid e andd printing values

point of view conld be i

at Gns intervals) to keep the trneation ervor of integration algorithimn sinall

at each timepoint. At all these timepoints one his to run Newton-Raphson

7l

erations. Additional complexity is required Lo assure the convergence of

ation run may fail. Since these in-

Newton- without which

values and at time (=0 there are

require old timepo

tegration algorithm

will also require some starting mechanism. The Runga-

none present, U

mplemented to take care of that.

Kutta algorithm has to b

'S, one is not even assured

After considering these additional comples

efined timestep will pay off by

that running at (6/1.2)=5 times larger usc

5 the additional

that amonnt of speed improvement. One reason for th

graph) at cach

compntation that is required (as described in the last p

timepoint. Another and more important reason is that whenever just one

it will el guificantly (our circuit topol-

node voltage in the entire ¢ g

more than 75% of the time during a

omy being pulsed, that will happe

wre the con-

n). the timestep has to be reduced significantly to

il

. Hence though the

of the Raphson iterations [Nagel, 19

Wi

verge

* it is running at a Gns timestep to the user, internally

simulator will look

it will runat nuel redieed timesteps for most of the time, which will bring

mnlation drastically.

peed of

ation, after all these compntational compli-

ar appli

n this partie

ons, the conventional methad of implicit integration followed by Newton-

ations does not provide us with commensnrate improvement. in

Raphson ite
spead. T contrast to that, the predictor-corrector method is much simpler to

ich complex measures

es the same aceuracy and needs no s

implement, pr

i
2

as required by the other method for a suceessiul sinmlation . Henee it

was chosen as the implicit integration algorithm for PULSI

The

ise of the Ganss-Seidel method is common in third gener:

ulators. The other iterative method monly nsed is the Ganss-J

method. However. Gauss-Seidel converges faster than (

error possible in Ganss-Seidel is always loss than or equal t that i

ton. 193], Also Ganss-Seidel allows one to run the sinmlation

Jacobi [Ne

with only one copy of the ontput variable (this redueing menwor

ments) as compared Lo o copies required in CanseJacobi, Owing to these

nt than Wavelorm

advantages, Waveform (idel is more efficic

Jacobi and hence was chosen as the iterative

slution algorithm in PULS

This section explained the reasoning involved in the el

rithms in PULS

. The motivation in develoy of this si

a fast, behavioral s of onr pulsed analog opology t

one to run

many simulations as necessary Lo eonfirm the hardwi

plementation during a tightly scheduled design eyele. The cliice of simple,

effi

ient algorithms in PULSE allowed us to reach that goal.

4.7 Conclusions

This

oncentrated on the dilferent design and implemen

apler on avipecls
of PULSE. The dilferent steps involved in a PULSE simulation run hive heen

has been

described. The building of a enstom-made netlister for U1

ontlined. The modeling of the diife

nt building blocks have been presented.

y, the algorithms used in PULSE have been disenssed and their choice

has been justified. After lool

5 at the design details of the simulator in

this chapter, we will now

t as a tool Lo explore the implementations of

different ne

I networks using onr topology.

I}

Chapter 5
Simulation using PULSE

PULSE was developed for fast and reasonably aceurate simulation of meral
networks implemented using our topology, The aceuracy aspect of PULSE
simulation will be the topic of our disewssion in this chapter. To elaborate

and HSPICE will he used to simmlate some common

ou this, both PULS

We will start with simple cireuits (with

neural networks Lo show its acenra
only three synapses and one nenron) and progressively grow in complesity.
PULSE will e nsed for simulation of a tested ehip and we will implement

and simulate a Malriz Associative Memory.

5.1 Simulation of a Simple Network

A simple neural network refleeting the characteristies of our pulsed anilog

cirenits can be built by connecting bwo excitatory and one inlibitory synipses

to the summing inpnt of a newron as in L The weight voltage for all

the synapses are 34V and the nenron threshold voliage is 1.3V,

]
v, o-r‘?— Van

12 A simple network using 3 synaps

Figure 5, s and one neuron

mulation result of this cirenit. The

5.2 (in the next page) shows

input pulses 1o the excitatory and the inhibitory synapses and the

nput
voltage at the nenron snmming node are shown in this figure.

o waveform at the summing node of the neuron can be explained as

follows. Whenever an input. pulse (Ve or Vzp) arrives at an excitatory

charge is dumped on to the capacitor at th

neur

input (from

s

now on the input voltage of neurons is referred to as V,,, corresponding

to the membrane oltage of the biological nearal cell), which explains the

stdden ris

(V). e

i V. When an input pulse appears at the inhibitory synapse

e s sinked and henee the voltage drops.

The membrane voltage never reaches the threshold voltage for the nenron

wodel (whichi is L7V for a input threshold voltage of 1.5V, as explained in

e lastchapter about newron madefing), hence the rearon never fires and

the eyele contines.

O— Ninl o volls

| T volls

T

PAUSE
HEPICE

0 300 60n

90n

120n

150n

Figure 5.2: Simulating a circuit with wo excitatory and one inhibitory

synapses. Tirst three waveforms are input pulses and the last one

s the

waveform at the summing node of the nenron. PULSE and 1ISPICE both

outputs are shown for the last waveform.

77

Note that this circuit does not do anything, but the simulation of this
circuit introduces the reader to the general behavior of the circuits built using
our topology. In this simmlation, the PULSE and HSPICE prediction of V,,
can be seen Lo be quite close. The waveform only differs at voltages close to
zero which can be explained as follows.

After removal of the input pulse to the inhibitory synapse, PULSE pre-
dicts the drop in V,, to be owing to the leakage present in the excitatory
synapses whereas HSPICE predicts the inhibitory synapse to be acti‘e for
some Lime even after the removal of the input pulse, hence the difference.
Otherwise for most of the time, the two waveforms overlap. The difference
present (in the waveforms) though is unimportant, the interest being the

accurate prediction of voltages closer to the threshold voltage.

5.2 Simulation of XOR Gate

mplementation of XOR using our topology

We will now simulate another circuit that is a common benchmark for the

implementation topologics of neural networks, the XOR circuit. The im-

78

plementation of XOR in our topology is shown in Fig. 5.3 [Bhattacharya,

1991). “The synapses used are all excitatory (represented by cireles) and the

figure shows their weight voltages. The weight voltages for S1.... S4 have

been adjusted such that the neurons N1 and N2 can only fire when both its

inputs are active. whe and S6 weight voltages are such that nenron

N3 will fire whenever any one of its inputs is active. The input nenrons

{711 — IN ave wsed i the input layer. the small cireles showing inverting

input newrons. The standavd nearons N1 N2 and Vi are used in the second

(commonly referred 1o as the hidden fage) and the ontput layer,

Fig. 5.4 shows the simmnlation of t it for 500ns with inputs ol 01

and 11. Forinputs of L1, both the outputs can be seen to be zero. For inpnts

S and HSPICE

of 01 however. the output is 1 and the comparison of PULS

outputs show that they a pt for a slight difference in timing

in case of the first ontpnt pulse.

+ Lo a spike thal

This difference in timing (for the firs

prars

I3

at the ontput of the input nenrons when they t firing. PULSE neglects

that spike whereas HSPICE takes that inte acconnt. Otherwise, PULSE is

as accurate as HSPICE he

The first chip that was built by us consisted of the nearon and the synapse

standard cells. The socond ehip implemented a pattern classifier followe by

& MAXNET to build a content-addressable memory [Bhattacharya, 1991,

In the next section we will siwulate that. civenit nsing PULSE,

il

5V [T T oy T
av { PULSH —

100n 200n 300n 400n 500n

4V 9
v 9l
2V 1

(a)

1
1000 200n 3000 400n. 5000

HSPICE —

ov

1000 2000 3000 4000 5000
(b)

Figure 5.4: Outputs of the XOR circuit as predicted by PULSE and HSPICE
for inputs of 01 and 11.

80

5.3 Simulation of CAM

it is shown in I¥

The content-addressable memory (CAM) cir

assitier. The other half of the

upper half of the cirenit is a pattern ¢l

is a bank of inhibitory that implement the NAANNET.

The MAXNET part can be switched in and out of the cirenit by making

the CNT hit 1 or 0 which allows the nenron outputs to pass throngl the AND

s the AND gate (CNT=1), t

inhibi

gates. Il the neuron ontput pa

SYnapses res nputs. In that case, using those Ty SYIapse

active nenron can drain charges from the summing, nodes of other nenrons

-all or MAX

thus implementing the winner-

Thi

irenit processes live bit patterns. Inpul newron (inverting and non

inverting) autpnts are inpnts to this chip. Patter a landwired

pse connections i

fashion g excitatory sy

g on the Hamming Distance (11D.) of the presented pattern

Deper

from the stored patterns, a number of excitatory synapses are ated s
dumping charge at the summing input of the nenron (as the BLD. inereases,

1 in that

of excitatory synapses gel acti

ller numb

a smaller and s

1 nenron crosses Lhe

particular colmnn). If the membrane voltage ¥,

lose Lo the st

threshold voltage, it fires and

pattern in its column. When CNT=1, as the nenron fires. it also dy

charge from snmming node of other nerons U inhibiting ten,

@M@ﬂﬁ

“M&Nw

==t

S FE BT | B

Alalararararane

BIEBRIEB]E] L

===

Wb b o o 1

F%

Figure 5.5: Schematic diagram of the CAM. The synapses are shown as

coin-shapes whereas neurons are the trapezoids at the center.

T weconda

p— /o1 ity

D— 105¥m T volly

1
¥
o
0.
8.
0.
= /05! XTI
4
3
2|
1
o
P— MeVE R ey
1.2
)
0.8
o]
04
0.2

ol
po— /07 iwvels
@ 604

~204| \

) T66r 50 7085, 50n

Figure 5.6: HSPICE simulation of CAM showing the activation and outputs
of neuron N1, N6 and N7 respectively.

83

L
0 100n 200n 300n

L
0 1000 200n 300n

0 1000 2000 3000

Figure 5.7: PULSE simulation of the CAM circuit showing the activation
and outputs of the same neurons.

84

Fig. 5.6 shows the [ISPICE simulation results of this winner-take-all cir-
cuit. with a presented pattern of 01100, which s closest to the stored pat-
tern 00100, Fig. 5.7 shows the simulation results for the same circuit, nsing
PULSE. Comparing the PULSE and HSPICE outputs for the giver. input

pattern one can only see minute differences in their performances.

The patterns stored in this chip are 00000, (1111, 11110, 10101, 01010,

00100 and 11011, Heaee the other close patterns Lo the presented pattern

(O1100) are 00000 (N1), LTTID and 01010(N5) which ave all 1LD. of 2

apart from 01100, All other patterns are further apart (H.D.>2).

The simnlation vesults show membrane voltages and outputs of three
neurons N1, N6 and N7. The pattern corresponding to neuron N6 being
the closest, it fires and does not allow any other neuron to fire although one

the membrane voltage of neuron N1 rising close to the threshold

can

voltage (which is LGV input corresponding to 1.8V in our nenron model)

suggesting that it is the next closest pattern.

Fi 8 and 5.9 shows the simulation of the same network with an input of

10101 whicl is a stored pattern. Again the PULSE and HSPICE simulation
results can be seen to he close, The outputs 02, 04 and 06 are predicted by
PULSE as acenrately as by HSPICE. Some differences in the prediction of the
membrane voltage can he seen that arises owing to minor timing differences

present in the two simulators, The next paragraph will elaborate on thal.

gl vy

s

i

i

L A |

g

o

+

3

3

H 1
P -

.

;

:

:

:
b

:

:

!

:

;

4

:

i
b o e

y

;

2

t

‘
.

!

.

.

.

:

-

:
b oo

y

¥

;

!
:
i

Figure 5.8: HSPICE simulation of CAM for input 10101 showing the activa-
tion and outputs of neuron N2, N4 and N6 respectively.

200n

2000

0 100n

L
2000

3000

T

v
0.5V
0 ' n

Vm

0 1000

200n

0 100n

Figure 5.9: PULSE simulation of the CAM circuit showing the activation

and outputs of the same neurons.

87

200n

3000

(b)

Figure 5.10: Output of CAM chip in response to input 10101 (a) Neuron N4,
(b) Neuron N2

Looking at the membrane voltage, one can see some differences in the
PULSE and HSPICE predicted waveforms just after the neuron firing. This
oceurs owing to a minor timing difference in the PULSE and HSPICE pre-
dicted output pulses, PULSE predicts ihe output pulse one or two nanosec-
onds before, hence the discharge pulse corresponding to the neuron output
pulse also ends a few nanoseconds before the HSPICE predicted discharge
pulse. Hence, HEPICE predicted V,, goes down again to zero after a small
rise dne to the presence of the discharge pulse, the rise in V. being due to the
input pulses at the excitatory synapses whereas PULSE predicted waveform
goes down only lincarly due to the leakage (since the discharge pulse has
already gone down) alter the rise.

Other than this small difference, which does not affect the output pulse
prediction as can be seen comparing Fig. 5.8 and 5.9, PULSE predicted wave-
forins can be seen to Le as accurate as the HSPICE predicted waveforms. The
CAM chip has been tested and the results obtained are shown in Fig. 5.10.
The relative rate of firing of the two neurons N4 and N2 in the CAM chip can

e compared (o Fig. 5.8 and Fig. 5.9 o justify the validity of the simulations.

5.4 Matrix Associative Memory

Tiven an associated pair of pattern (x,y), where x is a M bit input pattern
and y is a NV bit output pattern, one can form an associative memory by

connecting the N neurons 1o the M inputs by synapses whose weights are

89

given by matrix 7 = yx* [Pao Y. ., 1988]. The memory thus built is
commonly known as the Malriz Associative Memory.

5.4.1 Implementation

Our aim is to build this memory for eight 8-bit input patterns, vach Ham-
ming Distance of 4 away from each other. Three nenrons will be used

to encode the ontput patterns. Table 5.1 shows the input outpit pairs.

INPUTS OUTPUTS
-l [Y B T B | T
EL I (B | EL |
I S O I | |
[Y Y N L A | B
B S Y Y DT TS B B [|
L I e T | [.
-1 L I N N S | [
I T S N S T I | | |

Table 5.1: Input-Output pa ative memory

For these given input-output pai matrix 7' can he calenlated as

!
ERN

-2 6

S

When an input pattern X is prosented to this memory, contribution from
the second input bit of X to neuron § by Ty ean be caleulated as Xy
Hence,

o0

1. If the 2nd bit of X is +1. the contribution is (41)x(

If the 2nd bit of X is -1, the contribution is (-1)x(-

Now, in our pubsed analog implementation the +1 inputs are 5V, whereas

re 0V, These inputs are passed through the input neurons to

the -1 input:

generate the input pulses that drive the corresponding synapses thus dumping

at (from) nenron input. Now the above algorithm sug

(sinking) ¢
addition of charge to the nenron input when the input is +1 and removal of
charge from the nenron input when the input is -1,

suggests a requirement of an androgynous synapse that will switch

"This

s depending on the input presented to

hetween exeitatory and inhibitory

it. In contrast to that, our synapses are strictly non-androgynouns. Remem-

et that this algorithn is originally designed for a software implementation,

where this switehing process is simply a multiplication. Also there is no
evidence of a biological analogue of an androgynous synapse.

o implement this cireuit. one can get aronnd this problem by using the

modules shown below to build the weights in matrix 7'

w oy I our

(a) (b)

Figure 5.11: Circuit used to implement (a) Positive weights and (b) Negative

weight

91

In Fig. 5.11(a), the triangles show the input newrons wherens the circles

show the synapses. When au input of 1 ie. 5V aceurs, the upper neuron

of Fig. 5.11(a) is active thus adding charge to the neuron input. When the

input s -1 ie. OV, the lower neuron is active, thus activating the inhibitory

iy

synapse to drain charge. Tence a positive weight in matris 7" is effectiv

(D) can be explained in the same fash-

implemented by this eivenit. I

ion.

“To save areaon

shown in Fig, 5.1

The implementation of this network i

w5 corresponding Lo the

the chip, the input nenrons ave shaved hy the

The weight voltages nsed for the exeitatory and inhibitory

same input bits

synapses to implement the weights of 2 and 6 are tabnlated helow.

Weight | By wl | Tisyn l
woltage | voltage

Tablo 5.2 Vive memory

ool 1o caleulate the weight voltages is as follows. The max-

The criterion

i current. (say /) is delivered by the excitatory synapse with a weight

axinmm weight

voltage of 5V. Hence that has been used to implement, the

with a weight voli-

i.e. 6, for the excitatory synapsos. Excitatory synaps

at, the threshold voltage of

age of 3.6V delivers enrrent of magnitude 1/:
1.0V. Hence that was used to implement an weight of 2 (1/3rd of 6) for the
excilatory synapses.

92

|
iml
i

n]

W&ﬁ LT

| | I
{

7 I

ﬁ
Tﬁq

L TET: LT
; ! !
bi Eﬁ l"lj‘@‘lj 'a’ﬁ [3‘-.

|

el ol

|
|
I

Figure 5.12: Schematic diagram of the Matrix Associative Memory

93

. PAGINATION ERROR. ERREUR DE FAGINATION.

TEXT COMPLETE. LE TEXTE EST COMPLET.

NATIONAL LIBRARY OF CANADA. i BIBLIOTHEQUE NATIUNALE LU CANADA.

CANADIAN THESES SERVICE. SERVICE DES THESES CANADIENNES.

TTrCCCCCrer T

w

-
RREAR

UL

TTTPTrrrrrrr
adal

k¥

[l =
E_
L5
R_=
E__

- I
E_
E_

to place

ned by au

emory obtair

5.13: Layout of the associative m

).

shown

routines (only Metall layers are

Figure
rou

95

5.4.2 Simulation

The simulation results for this network using PULSE and HSPICE are shown
in Fig. 5.14 and 5.15. ‘The first simulation (Fig. 3.14) shows the three nenron
outputs for a stored input of 10001111 (here -1s are represented as 0's for

convenience) whose corresponding output is 011. Both PULSE and HSPICE

s circuit.

simulations reflect correct operation of U

The second simulation (Fig. 5.15) shows the three nenron ontputs for a

distorted input pattern of 10011 (elosest to the stored pattern of T00011T).
The coutent-addressability ! property of this memory is reflected in the out-
puts which is again 01 1. i.e. the memory responded correetly even when given
a distorted pattern.

Dilferences in performance of PULSE and HSPICE is noticeable here

thongh they both prediet the same outputs. This difference will he recognized

and discussed in the next seelion.

VThis property of memories refers tu their ability to respond correetly while given 4
partial cue.

96

o1 —

100n 200n 300n
T T

5V
e -

L
0 1000 200n 300n
T

A A
0 100n 2000 3000
Figure 5.14: PULSE and HSPICE simulation of the Matrix Associative Mem-
ory for input 10001111 showing the outputs of the circuit. For all three neu-
rons, the first output is predicted by PULSE and the second one is predicted

by HSPICE..

97

0 100n

o1 — A

0 100n

03 11 4

200n

300n.

L

03 —

0 100n

200n

300n

Figure 5.15: PULSE and HSPICE simulation of the Matrix Associative Mem-
ory for distorted input 10011111 showing the outputs of the circuit.

98

5.5 Discussion

PULSE is built for simulation of pulsed analog neural networks. Ience to
judge the performance of this simulator, one has to take into account the

peculiarities of the intended network and the user expectations. The infor-

mation in a pulsed network is in the form of pulses, both at the input or
antput of the network, The user is interested in knowing whether the circnit

ontpub s firing or not and if two outputs are firing then at what relative rate.

bility of standard,

Considering these facls. one might suggest the poss
inherently faster logie simulation for these networks since the inputs and out-

But a mixed-mode simulation becomes necessary

puts are both digital s
because, though the inpnt-outpat informations are digital pulses in pulsed
analog circuits, the internal processing is analog. Hence circuit simulation
becomes necessary for some parts of the circuit, whereas digital simulation

is sufficient for other parts.

precision present in HSPICE to simulate a given circuit contributes to
the generality property of that simulator. In contrast, the accuracy constraint

case of PULSE since it only analyzes pulsed networks. The

is more relaxed

user is satislied in knowing whether the output is firing or not rather than
knowing exactly at what time point the pulse occurs.
Also, exact prediction of the pulse timings seem to be impossible from

s fact is illustrated in Fig. 5.16 that shows HSPICE

our expericiice.

simulation outputs of the XOR circuit with an input of 01.

99

sV
v
v
v

T T T T T
L L . | s
0 50n 100n 150n 200n 250n 300n
T T T T T
n L . '
0 50n 1000 150n 200n 250n 3000
T T T | ©
= - s " n
[} 500 100n 150n 200n 250n 300n

Figure 5.16: HSPICE predicted output for XOR circuit with input 01 (a)
Prediction with Ins time step, (b) Prediction with 2ns time step and (c)
Prediction with 2ns time step with NMOS conductance 1% reduced.

100

Fig. 5.16 shows thal varying the timestep from Ins to 2us completely
changes the pulse timings, and with 2ns timestep HSPICE only predicts 2
oulput pulses in 300ns of time period as compared to 3 pulses predicted with

5.16(c), the NMOS transistor conductance is reduced

Ins timestep. In Fig.

by only 1%. The pulse timings vary again even with such a small change in
y only I

the transistor parameters which can happen during chip fabrication. This is

specific cirenit but is general to all the circuits

not a problem related o thi
built using our topology.
This anomaly in IISP1CE outputs can be explained as follows. Assuming
that the inpat voltage to a neuron is close to its threshold voltage, the firing
of that nenron depends on whether the next input pulse to the excitatory
synapse comected to the nenron will be able to carry the newron’s input
voltage 1o above its threshold or not. If the input voltage is carried to a
point really close (but still less than) its threshold, the neuron wonid not

fire.

mparing outputs of two simulators simulating the same pulsed circuit,

due to a small roundofl error present in one of these simulators, say a neuron

iven time point didn't fire. From that time-

which is supposed o fire at a

point onwards the two simmlator outputs are bound to behave differently.
‘This difference in behavior is present in HSPICE even when the simulation

is done nnder different conditions.

Thus one can see that predicting the exact timing of the pulses seems to

101

be impossible in this class of networks. One should really aim to predict the
relative rate of firing of the outputs. or whether the output is liring or not,

e The

than bothering about the exact timing of the pulses which is impossi

simplifications in PULSE models allows it to predict that information for our

topology in considerably reduced time as compared 1o the

and time-consnming analysis of HSPICE. Hence PULSE is more ofl

the simulation of this class of cirenits from user’s point of view.

5.6 Conclusion

This chapter has established PULSE as a reliable and officient simulator for

inst 11SP1C

il recoguizing its

pulsed analog networks by benehing it

l networks Lo enha

ability to exploit the pec of the pi speail.

nd

The next chapter will focns on this speed improvement aspect of PULS

will separate out the contributions of different factors responsible for it.

102

Chapter 6
Results

The theme of this thesis is the development of PULSE and implementation
of new nenral networks using PULSE as the tool for verification. Develop-
ment of PULSE and its reliability and effectiveness in simulation of pulsed

neural networks had been the foens of discussion in the previois two chap-

seiative memory has also been deseribed, In

ters. Implementation of an

that way a part of the results have already been presented. To sum up

the resnlts, in this chapter, we will discuss the speed improvement achieved

al circuit simulators like HSPICE and the various

in PULSE over comme

factors responsible for the cost of PULSE simnlation.

6.1 Cost of PULSE simulation

As deseribed in the Simulator Design chapter, PULSE simulation nses two

iteration loops. One of them is the outer Gauss-Seidel iteration loop. All the

lels and the node-equations are

node voltages found by using the

103

iterated until convergence in this loop.

The other loop is nested inside this outer G cidel loop. This loop

implements the functional iteration algorithm used for the evaluation of the

nenron input node voltages. A typical code generated by PULSE illustrates
this point.
do
{ t+=delt;
V[0]=stddcpulse(10.2,0,13,0,2);
V[1]=stddcpulse(10.2,0,13,0,0);
do
€ s
temp=V1ast2[12]+0.5*(store1[2]+((exsynapse(V[15],v(8],V([1],

v[7],V[12])+exsynapse(V[14],V(8],V[1],V[7],V[12]))+delt+
1e-09)/(2#0.15e~12));

¥

while((fabs(temp-V[12]))>0.0001);

v[12]=temp;

if (flag2!=20) for (i=0;i<20;i++) if ((fabs(V[il-Vlast[il))
<0.0001) flag2++;

}
while ((flag2<20) || (flagl!=1));
Fignre 6.0: Code generated by PULSE

Here the outer do loop is the Ganss-Seidel loop whereas the inner do loop
is the Functional [teration loop (For one of the neurons present in the circuit).
In this way every neuron contributes one functional iteration loop within the

onter Gauss-Seidel loop.

104

i agiven lime-

the total number of Gauss-Seidel iterations

Hence if m i
point and p is the average unmber of functional iterations required in every
Gauss-Seidel iteration, the simulation of a circuit containing N nenrons has
a total time cost of

T = mTy + mpNTy (6.1)

aliate a

for every Limepoint. Here Ty is the average time required to ¢
newron input nade during a single functional iteration step and Ty is the

alnate all other nodes in the eirenit other than the newron

Lo vequired Lo«

-Seidel iteration.

fnput nodes during a Can
7, only invelves the time required to perform the logie evaluations to

to that, T; involves

culate the neuron ontpit node voltages. [n contr:

evaluation of all the synapse marron. “dels connected to the newron. Since

PNTy 3 Ty (synapses heing the dominating component in any nenral o

ct equation 6.1 can be approximated as

work), the ey
T mp(NTy) (6.2)
Since PULSE uses lixed timestep, (the timeperiod being an integral mul-

tiple of the timestep), PULSE simulation time as a first order approximation

can be seen to be the producet of three factors. Any change in one of these

Uhe simulation time proportionally. Keeping this in mind,

tors will afle

vims and Cheir dependence on the network parameters will be dis-

these

cussed next.

6.1.1 Evaluation of Neuron Input Voltages

This refers to the (VT3) term in Eqn. 6.2. Remember that 73 was defined
to be the average time required to evaluate a neuron input node. This term

(NT,) can be more exactly represented as
N
NTy = 3 tex Nexi + iy Nini (6.3)
=

where tgx (¢7v) is the time taken to evaluate the excitatory (inhibitory)
synapse macromodel and Ngx, (V) is the number of excitatory (inhibitory)
synapses connected to the i-th neuron. Equ. 6.3 reflects the scale of the net-
work and hence the order of the computation cost to simulate a given network
can be found by studying this term.

The magnitude of time factor tgy (L1y) present in Eqn. 6.3 varies at
different time points depending on whether a particular synapse is receiving
pulsed input at that given paint or not. At the time point when the synapse
is not receiving any activation, the time required to evaluate thal synapse

macromodel is much less, as Table 6.1 shows.

Time | Input__Pulse
Taken [ON [OFF
Tgx | 272 s | 158 ps
L | 272 ps | 16 s

Table 6.1: Time required to evaluate synapse macromodels

Since it is complex to find aut the proportion of synapses that are active

at a given point of time, one can see that it is difficult to predict the order of

106

the total simulation time taken by PULSE (while simulating a given neural
network). The simulation time from Eqn. 6.3 depends strongly on the activity
of the circuit and the connectivity of the circuit (the number of neurons
present and how the synapses ate connected to it). However from Eqn. 6.3,
one can intuitively predict that the time taken for regular networks ! under
stroug activation ({gxoy and lnoy dominating over tgyorr and tnorr)
will have a close to linear dependence on S, where S is the total number of

synapses (eacitatory -+ inhibilory) present in a circuit,

200 — T
180 I §
160 | 1
140 | b
120 | 1

) ' L 1 1 L L n

0 100 200 300 400 500 600 700 800 900

Figure 8.2: Dependence of PULSE simulation time on the number of synapses
present in a CAM circuit

To verify this intuition, a netlist generator program was written to gener-
ate the netlist (circuit connectivity) of a MAXNET, a regular network with
N number of stored patterns each Hamming Distance of N/2 away from the
" TRegular networks refer to those type of networks where the number of excitatory and

inhibitory synapses connected to different neurons remain the same. Many artificial neural
networks fall under this category.

107

other. A stored pattern was put as input and the run time of PULSE was

measured. This experiment was repeaied for N= 2, 4, 8, 12, 16 and 20.
Figure 6.2 shows the results obtained which ratified our intuition.

Hence though the ezact order of simulation time of PULSE involves eval-

uating Eqn. 6.3, a first order imation of PULSE simulation time for
regular networks under strong activation can be estimated as O(S), where S

is the number of synapses present in the network.
6.1.2 Number of Functional Iterations

This refers to the term p in Eqn. 6.2, The number of iierations required in
the functional iteration loop depends strongly on the convergence criterion
and hence on the accuracy required by the user. As the accuracy requiremient

increases, the simulation time increases nonlinearly, as Fig. 6.3 shows.

508 T T T T T T

40s ° B

30s B

208 4

10s - 1
°

0 ¢ ¢ o 0 "

1007 100 10 107 100 1077
Convergence criterion

Figure 6.3: D d of PULSE simulation time on the c ce cri-
terion of the functional iteration loop

108

In PULSE, the convergence criterion is 0.000! i.e. the loop is exited when
the last calculated voltage and the present voltage differs only by 0.0001V
and this criterion has been set to conform to HSFICE results.

Once the convergence criterion is set, the number of functional iterations
required to find the input voltage of neuron X depends on the input acti-
vation and firing rate of neuron X. This variation is shown for the output

neuron of XOR circuit in Fig. 6.4.

T T u T T T T —

 §

8

7

]

st) 4
4

3

2

1

50 100n 150n 200n 250n 300n 350n 400n 450n 500n
Figure 6.4: Dependence of number of functional iterations on circuit activity

Wiien the discharge pulse arrives, a greater number of iterations are re-
quired to calculate the neuron input voltage owing to the sudden drop in
membrane voltage. This corresponds to the period right after the neuron
firing and corresponds to the large spikes in Fig. 6.4. The small spikes corre-
spond to the sharp rises in neuron input voltages and occur due to the arrival

of input pulses to the input synapses connected to the neuron.

109

One has to recognize the fact that Fig. 6.4 corresponds to one neuron in
the given network and there are many others that are not firing at the given

point of time. Since p is averaged over all nenrons. p never reaches the peak

value of 9 as shown above. A typical value of p appears to be 2 for highly

activated networks of medinm scale.
6.1.3 Number of Gauss-Seidel Iterations

The Ganss-$

This refers to the term m in Equ. idel iteration proe

can be explained with reference Lo the following cquations

(6.4)

In this algorithm, starting with an assumption of &y=w=0, ry is evalu-
ated from the first equation assuming =3 to be constant and nsing this new
value of ry, £ is calenlated from the second equation. This iterative process

is then repeated until convergence.

Now considering circuil node voltages 10 be the variables, if 5 is de-

independent of 2, then only one evalwation will be

pendent on £y and r; i
required to solve the abiove set of equations. This will ocenr when the system

the first equation is zero.

of equations is sparse e.g. the coclficient of ;

In circui lation, the set of i | are inherently sparse.

That suggests that the sequence in which the equations are generated in a

simulator is important.. If the second equation was enconntered first, and was

solved for za, another iteration would have been required for solving this

110

of equations. Hence from Eqn. 6.2, the simulator time would be doubled.
Extending this logic, for a circuit with n nodes, incorrect ordering can lead
10 a n-fold increase in simulation time in the worst case.

Keeping this in mind and taking advantage of the fact that the system
of equations generated is very sparse, PULSE reduces the number of Gauss-
Seidel iterations drastically. While ordering the set of equations, PULSE
puts the input. (independent) node equations hefore the other nodes. Among

the two ¢ s of dependent node equations, the neuron input node volt-

ages depend on other nenron ontputs. Hence, neuron output node equations
are also evaluated hefore nenron input node equations in PULSE to ensure
correct ordering of the equations.

T

ng the above measures, PULSE brings down m to a value of 1. An-

ion is performed after the first iteration just to guarantee the

other it

convergence of the Ganss-Seidel loop and also to update the status of the
neurons for which its input has crossed the threshold at this point of time.

As stated in the last paragraph, neuron inputs are evaluated after the neu-

s impossible

ron outputs in PULSE and henee during the first iteration ii

tus.

1o know this change in

This concludes the analytic study of the cost of PULSE simulation. The
three major factors responsible have been described and their effects have
been evaluated. Exploiting the network properties, the effect of one of those

factors has been diminished to speed np the simulator. The following section

11

will present the statistics of PULSE and HSPICE simulations for some com-
mon networks to show the speed improvement that has been achieved over

HSPICE.

6.2 Speed Improvement in PULSE

PULSE has be: already proven to be a reliable simulator for pulsed ana-
log networks buslt using our topology. This section discusses on the spead
improvement that has been achieved in PULSE.

Here, the speed improvement of PULSE is presented by comparing it with
HSPICE as is the standard in the circuit simulation literature. The rationale
behind this is simple. SPICE is the most widely available simulator and
thus is good benchmark. Although it would have been nice to compare

PULSE with some of the third ion simul the impl ation of

our macromodels in a third generation simulator is so time-consuming that
it was actually one of our motivations behind building PULSE.

The speed improvement in PULSE is difficult to present in an analytical
framework owing to the constraint that though PULSE simulation time can
be found to be close to Eqn. 6.1, there is no way to predict the HSPICE sim-
ulation time. This problem is common and hence simulator speed improve-
ments are always repcrted by citing the improvements achicved in typical
circuits. Following the same track, Table 6.2 shows the statistics of PULSE

and HSPICE simulation for common neural networks simulated in Chap. 5

112

As reflected in the Lable, HSPICE gets slower as the number of neurons
(input and standard) increases in a circuit. For example in the two circuits
where the number of newrons dominate, i.e. the XOR and the associative
memory cirenit, HSPICE is much slower than PULSE. In the other two cases,
since the cirenit contains fewer number of neurons, HSPICE speed improves
(the cirenits simulated heing devoid of input neurons). But still a two order
of speed difference can be seen in the performance of the two simulators.

The above: observation can be readily explained. The neurons in PULSE
are modeled as logic blocks. In contrast to that HSPICE petforms circuit
simulation for the whole neuron circuit to predict its output. The neuron
cireuit. being bulky, considerable time is wasted by HSPICT in simulating
that eircuit and hence it gets slower with increasing number of neurons.

Also referring to the literature review section, HSPICE simulation time
is a nonlincar function of n, where n = no. of nodes present in the circuit.
This stems from HSPICE using sparse matrix solution methods for solving
the equations generated from Newton-Raphson steps. To avoid this, PULSE
uses Gauss-Seidel ileration methods (as in Third Generation Sinmlators)
which takes O(n) time to solve a sev of n linear equations. Though the
individual contribution of this algorithm can not be separated out in the
speed improvement achieved in this simulator, its effectiveness in keeping
the PULSE simulation time down while simulating large networks can be

acknowledged theoretically.

13

PULSE STATISTICS FOR THE CIRCUITS
SIMULATED IN CHAPTER §

o Simple Seural N
Simulated for 150m
Standard Neuron - 1
Synapses - 3 (2 Ex, 1 In)

work

HSPICE PULSE
CPU Time (in seconds) 17 0.4
Speed Improvement - 117 times
o XOR Network
Simulated for
Standurd

Synapscs + 6 (i
Input Newrons - 1 (2 S, 2 uv)

HSPICE PULSE
CPU Time (in seconds) 600 1.56

Speed Improvement - 384 times

Content Addressable Memory

Simulated for 300us
Standard Newron - 7
Synapses - 77 (35 Ex, 42 In)

HSPICE PULSE
CPU Time (in seconds) 734 6.56

Speed Improvement - 112 times

Associative Memory
Shnulated for 300ns

Standard Newron - 3

Synapses - 48 (24 Ex, 21 In)
Input Neurons - 16 (8 $1d, § Inv)

.

HSPICE PULSE
CPU Time (in seconds) 2572 6.77

Speed Improvement - 428 times

Table 6.2: Comparing PULSE and HSPICE speed (on a DECStation
5000/200)

114

From Table 6.2, the speed improvement achieved can be seen o vary from
100 to 400 times which shows PULSE to be at least two orders faster than

HSPICE while simulating pulsed networks built using our topology. This

order of improvement in simulation time was a major goal in building this
simulator and the results presented in this section and the previous chapter

shows that this goal has been achieved.

6.3 Concluding Remarks

This chapter pre vides an analytical study of PULSE simulation time. The
speed of the two simulators HSPICE and PULSE has been compared. PULSE
is seen Lo he at least two orders faster than HSPICE while providing the same

accuracy as in HSPICE. This increases designer efficiency and makes exhaus-

mlation of a network possible.

115

Chapter 7

Conclusions

This thesis describes the development of a simulator that. provides a two
order of maguitude speed improverent over HSPICE for our pulsed analog
topology. This speed-up achieved reduces the simulation time from days to
minutes which makes exhaustive simulation of large neral networks p ssible.

While building this simnlator, both second and third generation simnla-

tion techniques have been used. Waveform Causs-Seidel, a third generation

technique has heen nsed Lo deconple the circuit equations formed (by the sim-
ulator) whereas functional ileration has been used to solve those decoupled
mulatio

equations. Functional iteration, an old technique in circuit s 5 is not

commonly used in present day circuit simulators since it imposes timestep

As argued in this thesis, this is not

limit in transient analys srions

constraint in our topology and hence this simple and aceurate algorithm
has been nsed to replace two 1iajor steps in conventional cirenit simnlation,

numerical integration and NR iteration.

16

By proper ordering of the circuit equations and exploitation of the pe-

culiarities of pulsed analog topology, the number of Gaus iterations

mulator. Also accurate macromodels have

has been reduced to one in thi

been used for the synapses thus reducing the computation time significantly

as pared to the i level simulation performed in any circuit sim-
ulator.
The aim of building PULSE was fast and accurate simulation of large

built using our topology and exploration of new nenral networks.

networl
Thongh most of the research period was spent in hnilding and validating the
simulator, the advantage of having this tool is already evident in implemen-

tation of a matrix associative memory. Extensive simulation of this network

was only possible because we had this simulator. Doing the same number of
simulations with HSPICE would have taken months; they were done in one
day using PULSE.

Also in case of analog neural nets the circuit output information is present
in the ranning average of the pulses in contrast to the presence or absence of
pulses at the output as in digital networks. To calculate the running average,
one has Lo simulate the network for significant duration (say, 2000us) which

mulation with HSPICE for even small networks. Hence

amounts to a day

for simulation of analog networks, HSPICE is too expensive.
Some interesting points have been observed during the whole work. As

bed in Chapter 5, the prediction of the exact timing of the output

nu7

pulses in this kind of networks seem to be impossible, i.e. this phenomenon

looks inherently chaotic. Since this phenomenon seems he an inherent, char-

ic of onr pulsed topology, it is required to be formally investigated to
make our understanding of the topology clearer.

Also, though this simulator has been experimentally scen to be able to

simulate larger circuits than it is possible to build using our standard cells

and CMOS3DLM process, the size of the code generated by the simulator

increases as the circuit size increases which is not desired. That snggests

we will think of building lacger and

more and more memory requirement a

Jarger circuits spanning say a set of chips. AL that point of time, one has

to really take a hard look at the circuit representation in this simulator. A
linked list representation of the cirenit connectivity seems to be one of the

simulator though the

choices to decrease the memory requirement of this

best solution seems to he unclear at this moment.

However at this point of time, PULSE provides the circuit. designer with

a significant edge. Armed with a simulator that is two orders

the circuit simulators availanle, a designer now has the power to explore new

network topologies i.e. he is now able to examine the implications of our
circuit design approach on large scale networks that was impossible nsing
HSPICE. In that way, development of this simlator opened a new door in

implementation of pulsed analog networks using onr topology.

18

References

Allen P. E. and Holberg D. R. (1987), CMOS Anslog Circuit Design, Holl,

Rinehart and Winston, New York.

Banerjee T. (1993), *Building a Cadence Flat Netlister for Onc's Own Sim-
nlator,” Canadian Microelectronics Corporation (CMC) Application

Report.

Bhattacharya D. (1991), “Design and Analysis of Auto Scaling Pulsed Ana-
log Neural Circuits,” M. Eng. thesis, Memorial University of Newlonnd-

land, St. John's, Newfoundland, Canada, 1991.
Cadence Open Simulation System (0SS) Reference Manual

Chawla B. R., Gummel H. K. and Kozak P. (1975). “MOTIS - An MOS
Timing Simulator ," IEEE Transactions on Circuits and Systems, Vol. 22,

No. 12, pp. 901-910.

119

Chua L. O. aud Lin P. M. (1975), Compuler-Aided Analysis of Electronic
Clircuils : Algorithms and Computational Technigues, Prentice-1all,

Inc, Englewood Clifls, N. J.

CMOS3DLM Cell Library, Canadian Microelectronies Corporation Report.

1989.

De Man H. J. (1979). *Compter-Aided Design for Integrated Cirenits: Trying

to Bridge the Gap," IEEE Journal of Solid-State Civewils, Vol. 1,

No. 3, pp. 613-621.

Geiger R. L., Allen P. E. and Strader N. R. (1990), VLS Design Techniques
Jor Analog and Digital Circuits, McGraw-Hill, Inc, N. Y.

Kreyszig E. (1988), Advanced Engincering Mathematics, fth n, John

Wiley and Sons, N. Y.

Lelarasmee E., Ruheli A. E., Sangiovanni-Vincentelli (1982), “The Wave-
form Relaxation Method for Time Domain Analysis of Large Scale In-
tegrated Circnits,” [EEE Transactions on Compuler-Aided Design of
Integrated Circuits and Systems, Vol. 1, Nu. 3, pp. 131-145.

McCalla W. J. and Pederson D. O. (1971). “Elements of Computer-aided

ransactions on Circuit Theory, Vol. 18, No, 1,

Circuit Analysis,” 1L
pp. 14-26.

Murray A. F. (1991), “Analogue Noise-cnhanced Learning in Neural Net-

work Circuits,” Electronics Letlers, Vol. 27, No. 17, pp. 1546-1548.

Murray A. F. (1992), “Multilayer Perceptron Learning Optimized for On-
Chip Implementation - A Noise-Robust System,” Neural Computation,

Vol. 4, No. 3, pp. 366-381.

Murray A, F. (1991), on Implementation of Neural Networks,” [EE

Proceedings-F, Vol. 138, No. 1, pp. 3-12.

Murray A. F.and Smith A, V. W, (1987), “Asynchronous Arithmetic for
VLSI Neural Systems,” Electronics Letters, Vol. 23, No. 12, pp. 642-

643,

Murray A. F. and Smith A. V. W. (1988), “Asynchronous VLSI Neural
Networks using Pulse-stream Arithmetic,” IEEE Journal of Solid-State

Cireuits, Vol, 23, No. 3, pp. 688-697.

Nagel L. W. (1975), “SPICE2 A Compnter Program to Simulate Semicon-

ductor Circuits,” Memorandum No. UCB/ERL M520, 9 May 1975,

Newton A. R. (1979). *Techniques for the Simulation of Large-Scale Inte-
grated Circuits,” IEEE Transactions on Cireuits and Systems, Vol, 26,

No. 0, pp. T41-749

121

Newton A. R. and Sangiovanni-Vincentelli A. L. (1984). *Relaxation-Based

Electrical Simulation,” IEEE Transactions on Computer-Aided De

Vol. 3, No. 4, pp. 308-330.

Nilsson N. J. (1965), Learning Machines, MeGraw-Hill, New York. NY.

Pao Y. H. (1988), Adaptive Pattern Recognition and Newral Networks, Addison-

Wesley Publishing Company, Inc., Massachusetts.

Pederson D, 0. (1984). “A Historical Review of Civeuit Simulation,” 1EEE

Transactions on Circuits and Systems, Vol. 31, No. 1 pp. 103111,

Saleh R. A. and White 1. K. (1990). “Ac ting Relaxation Algorithins

for Circuit Simulation using Waveform-Newton and Step-size Reline-

ment," [EEE Transactions on Computer-Aided Design, Vol. 9, No. 9,

pp. 951-958.

Szygenda S. A. and Thompson E. W. (1975).

et Computer. Mareh 1975,

“Digital Logie Sinmlation

in a Time-based Table-driven Environ:

pp. 24-36.

Weeks W. T., Jimenez A. J., Mahoney G. W. , Mehta D., Qassemzacdeh
H. and Scott T. R. (1973). *Algorithins for ASTAP - A Network-
Analysis Program,” [EEE Transaclions on Civenit Theory, Vol. 20,

No. 6, pp. (28-6:34.

122

White J. K. and Sangiovanni-Vincentelli A. (1987), Relazation Techniques
Jor the Simulation of VLSI Circuils, Kluwer Academic Publishers, Nor-

well, Massachussettes.

123

Appendix A

Minimum Time-Step for
Predictor-Corrector Method

This appendix refers to our discussion in Chapter 4 about the worst-case
time-step that can be used in PULSE while using the predictor-corrector
algorithm. The maximum timestep that can be used with our predictor-

corrector algorithm is [Chua and Lin, 1975]

2
h<W (A1)

Hence, the worst-case time-step will occur at the maximum absolute value
of |8f/8z]. To explain the method of finding this worst case value, we will
refer to Fig. 4.8.

Let the sum of the currents al the neuron input node of Fig. 4.8 be I,
hence I = + I — I5. A comparison of Equ. 4.6 and Equ. 4.7 reveals that
in our case, 8f/9z is (1/2C)0I [3Vin.

Hence, the worst case tii tep will d to the i value of

124

101/8V;n|. From definition of 7, one can write Eqn. A.1 as

2mC

K
|mz — ny|

(A2

where, m and n are respectively the number of excitatory and inhibitory
synapses connected to the neuron input node and z and y are such values of
91/@V,, for excitatory and inhibitory synapses that [mz — ny| is maximum
at a given V.

Equation A.2 can also be written as
20
Iz = pyl

h< (A.3)

where, p=2. from equation A.3 the worst-case time values were calcu-

lated which are tabulated below (this table is repeated in Chapter 4).

Ratio of excitatory | Worst case timestep
and inhibitory syn (in ns)
1.6ns
2 1.6ns
1 1.2ns
1/2 0.73ns
1/3 05208

Table A.1: Worst-case time step

125

Appendix B

Source Code of the Simulator

B.1 Data Flow Diagram of PULSE

defsinonts

L

EXIT

—
anin.in
P
pulse.sis

) iR

(Continued in the next page . . .)

126

e

Linked and Run

do_display

Textual Output

Graphical Output

127

B.2 PULSE Source Code

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>

/%

ol.

THIS IS THE SOURCE CODE FOR SIMULATOR PULSE. TO RUN THIS
SIMULATOR, USER FIRST PROVIDES FOUR INPUT FILES -

i) THE CIRCUIT CONNECTIVITY DESCRIPTION, CALLED netlist.

ii) A FILE DEFINING THE INPUTS TO THE CIRCUIT, CALLED pulse.inp.
iii) A FILE DEFINING THE TIME-PERIOD AND TIMESTEP OF TRANSIENT
ANALYSIS, CALLED pulse.sim

w) A FILE DEFINING THE DUTPUTS THAT THE USER WANTS, CALLED contr

AFTER READING THESE FILES, THIS PROGRAM GOES THROUGH SOME INTERMED

IATE

STEPS BEFORE WRITING THE FINAL CUSTOMIZED FILE SIMULATE.C FOR THE

CIRCUIT. THIS FILE SIMULATE.C IS » C PROGRAM DEFINING THE NODE EQU

ATIONS

TH TI

OF THE CIRCUIT AND THE ALGORITHMS REQUIRED TO SOLVE THOSE EQUATION

THIS FILE (simulate.c) IS FINALLY COMPILED BY THIS PROGRAM ALONGWI

MORE FILES -
i) MODEL2.C (the file defining the table lookup synapse models an

d the

HE

EN

neuron models)
ii) EXTRY1.C (the file defining the waveforms required by the simu

lator, till now only PULSE waveform is defined)
TO RUN THE SIMULATION.

AT THE END OF THE SIMULATION RUN, GRAPHIC OUTPUT IS PRODUCED FOR T

USER-REQUESTED NODE VOLTAGES USING GNUPLOT. TEXTUAL OUTPUT IS ALSO
PRODUCED AND SAVED IN THE FILE pulse.out. FINALLY THE CPU TIME TAK

128

IN THE SIMULATION RUN AND THE BREAKDOWN OF THAT TIME IN SIMULATOR

P
TIME AND SIMULATOR RUN TIME IS DISPLAYED IN THE OUTPUT. */

int net=0,stdno=0,min=1000;
float timeperiod=0.;

/* net = THE TOTAL NuIBER OF NODES PRESENT IN THE CIRCUIT
stdno = TOTAL NUMBER OF STANDARD NEURONS PRESENT
min = IN THE NETLIST, Std Neuron’s ARE FOLLOWED BY ARBITRARY NO.

’s.
*/

void check_netlist();

void get_labeled_names();
void define_fan_ins();

int *def_sim_outs();

void gen_inter_code(int *);
void gen_final_code();
void do_display();

THIS
VARIABLE STORES THE LOWEST OF THOSE NUMBERS.

main()
{ char response;
clock.t start,start2,end;

start=clock(); /* Mark the starting time point */

check_netlist();

get_labeled_names(); /* Go through the intermediate steps befor
e *

define_fan_ins(); /* writing the final file simulate.c

*

gen_inter_code(def_sim_outs());
gen_final_code();

printf("Do you want to run it (y/n) ? *);scant("fc" kresponse);

if (response==’y’)

/* Compile the file simulate.c alongwith two other files, remove the
7 intermediate files and the output file of the last simulation r
un *

129

{ system("gcc -o extry waveform.o model2.o simulate.c -lm ");/*rm la
bel.int;
m fanin.int;rm inter.c;rm pulse.outs/

start2=clock(); /* Mark the end of simulator setup tim
*

system("extry > pulse.out");

end=clock() ; /% Mark the end of simulator run time
*/

printf("\nCPU time taken is %gs\n",(end-start)*ie-06);
printf("\nSetup time is Ygs\n", (start2-start)+1e-06);
printf("Simulator run time is /gs\n",(end-start2)*1e-06);

do_display(); /* Display the outputs using gnup
lot */
}

¥
P
/% if_file_err

*/
/%

*/

/% If the input file is not present in the current directory, this fun
ction */
/* detects that, prints an error message and exits the program. All th
e *
/* modules in this program uses this function before opening any file
for *,
/* reading.

*/

TkrkRnk]

void if_file_err(FILE *flptr,char filename[100])

if (!flptr)
{ printf(" #+ ERROR : Can’t open file %s **\n\n", filename);
exit(0);

130

}
}

/
P
syntax_check (used by function check_netlist)

This function checks the syntax of the conmnectivity description of a
given
element. The inputs to this function are as follows
+s5 = the connectivity description of an element,
no_of_arg = the numbar of nodes present in the element
line_no = The line number of "netlist" file where s occurs

This function first checks whether the string entirely consists of A
1pha-

numeric characters and a single ; or not. Presence of two continuous
blanks

is an error. Also if no_of_arg doesn’t tally with the no. of nodes p
resent
in the element description, an error is raised. In all cases, the 1i
ne

no. of the netlist where the error occurs is indicated in the error
nessage.

*wn/

void syntax_check(char *s, int no_of_arg, int line_no)
{ int i=0,j=0,flag=1; /% flag is set to 0 in case of an error */

;i¢=(strlen(s)-3);i++) /¥The first two characters define the

for (i=
element*/
{ if (!isspace(s(i])) {if (!isdigit(s[il)) {flag=0;}}

if ((isspace(s[i])) && (!isspace(s[i+1]))) {j++;} /*j=no of blanks
in linex/
N if ((isspace(s[il])) & (isspace(s[i+1]))){flag=0;}

if (s(i]!=’;’) {flag=0;}
if (j!=(no_of_arg+1)) flag=0;

if (!flag) {printf("\n\n *x ERROR : Element format at line %i of net
;isc file is wrong **\n\n", line_no); exit(0);

131

/

[y

/* check_netlist
*/

/%

*/
/* This function checks the validity of the input netlist. The netlist
file */
/% is assumed to be of the following form

// Netlist Generated by PULSE Netlister // <--- The first line is
assumed
to be a comment a
nd is
ignored (this line cannot start with string
*net) .
*net0=/I1
*net<no>=/netname <--- Followed by a lis
of
........ node names and nu
mb

ers.
*net19=/16

and a list of element connectivity descriptions. This description i
different for each elements and is described below. The first line
the

of
description is a comment in each case as is evident from the leadin
d

g * an
can be left out.

(a) *neuron(<index>)=/I<instance no.>
SN<index> <nl1> <n2> <n3> <n4> <n5> ;

This description refers to a neuron with <nl1> and <n2> as its in
t ane
threshold nodes. <n3> refers to its bias voltage. <n4> and <nS> ref
ers to
its discharge and output pulse nodes respectively.
(b) *inNeuroni(<index>)=/I<instance no.>
SI<index> <n1> <n2> <n3> <n4> ;

132

This description refers to a standard input neuron with <ni1> and
<n2> as
its input and threshold nodes. <n3> refers to its bias voltage. <né
> refers
to its output node.

(c) *inNeuronO(<index>)=/I<iastance no.>
II<index> <n1> <n2> <n3> <n4> ;

This description refers to a inverting input neuron with <ni> an
d 2> as
its input and threshold nodes. <n3> refers to its bias voltage. <n4
> refers
to its output node.

(d) *synapsei(<index>)=/I<instance no.>
ES<index> <n1> <n2> <n3> <n4> <n5> ;

This description refers to an excitatory synapse with <nl> and <
n2> as
its 1nput and discharge nodes. <n3> refers to its weignt voltage.
<n4> and
<n5> refers to its leakage and output node respectively.

(e) *synapsein(<index>)=/I<instance no.>
IS<index> <n1> <n2> <n3> ;

This description refers to an inhibitory synapse with <ni> and <
n2> as
its input and weight nodes. <n3> refers to its output node.

/+ The checks performed are now described in sequence. First this func
tion */
/* checks whether a list of nets exist in the netlist or not. Then it
checks*/
/* vhether the elements present in the netlist are known to the simula
tor ¥/
/* or not. If the element is known, then the correctness of the syntax
is
/% checked with the help of function syntax_check. Finally,it checks w
hetherx/
/* a net appearing in the list of nets appears also in the connectivit
y ‘/

133

/* description or not and vice versa.
*/
/%
*/
/* In case of the first two errors, the errors are fatal and this func
tion
/* prints an error message and exits the program. In the last case,it

issues*,
/* an warning and continues execution
*

/* DEFINE EXACT NET LIST

.

void check_netlist()
{ FILE xflptr,
int *buf,
char 5[100] s:opy[iOO] s1[8];

flptr=fopen('netlist","r");
if_tile_err(flptr,"netlist");

while (fgets(s,100,flptr)) /% Calculates no. of nets pr
esent *
{ if (!(strncmp(s,"*net",4))) net++;}; /* in the given netlist
*
rewind(f1ptr);

if (tnet) { printf("\n\n *#*x ERROR - A list of the nets not presen
t in netlist #x*x\n\n",s1[2]); exit(0);} /* If no nets are present,
it’s an error */

buf=(int *) malloc(net*sizeof(int));
for (i=0;i<net;i++) *(buf+i)=0;

fgets(s,100,flptr);i=1;
while (fgets(s,100,flptr))
{ iv4;

strepy(scopy,s) ;

if (strncmp(s,"*",1))

{ strcpy(si, striok(s," "

if ((!(strncmp(si,"sN", 2))) Il (!(strncmp(st,"s1",2))) ||

(!(strnemp(s1,"II",2))) || (!(strncmp(st,"ES",2))) ||

134

(!(strncmp(s1,"IS",2)))) /* checks whether the element i
s knoun */
{ if ((!(strncmp(st, "sw' 2))) Il (!(strncmp(st,"“ES",2))))
syntax_check(scopy.§
if ((!(strnemp(st,"II", z))) I (! (strncmp(st,"sI",2))))
syntax_check(scopy, 4,1
if (!(strncmp(sl,“IS“,?)))
syntax_check(scopy,3,1);

strepy(s1,strtok(0," "));
while(strnemp(st,";", 1))
{ if (w=net) printf("\n\n *+ WARNING - Net No. %i does not ap
pear in the list of nets ##\n\n",i);
n = atoi(s1);

*(buf+n)=1;

strepy(s1,strtok(0,"));
}

}
else { printf("\n\n *+** ERROR - Unknown Element %s present in
netlist #x+x\n\n",s1); exit(0);}
}
}

for (i=0;i<net;i++) {if (!(+(buf+i))) printf(“\n\n *+ WARNING - Net
No. %i does not appear in the connectivity description #f\n\n",i);}

oerran/

/s get_labeled_names
*

I

*/
/% Assuning a valid netlist, this function finds out the user-labeled
termi-+/
/* nals from the netlist and maps their names to corresponding node nu
mbers. */
1% Thls/mapping is written down in a file label.1nt

*

/%

*/
/* The node-naues are of three types -

(i) Vdd! and gnd!
(ii) User labeled node names (doesn’t contain a . or a ! and are ve
Ty few
in number in a big circuit)
(iii)Other names (may be automatically generated and is of the form

<substringl>.<substring2>)
The user-labeled node names are found from the netlist by detectin
& t::sem:e of . or ! in the nodename. The output file label.int define
° agxe labeled nodes in the network using tuples of the form
Al * 2=IN4;

*
/+ vhere 2 is the node number of the input and IN4 is its name.
*/

¥
Frrenk]

void get_labeled_names()
{

char oneline[80];
FILE *£lptr,*flptr2;

flptr=fopen("netlist","r"); /+ READS THE NETLIST FILE «/
if_file_err(flptr,'netlist");
flptr2=fopen("label.int"

; /% WRITES I/P MAPPING FILE «/

while (fgets(oneline,80,flptr))
{ if (!(strncmp(oneline,"*net",4))) /* checks starting of node=tn
et */
{ /* if no . or ! present in the node entry then it is I/P or othe
r user */
/* named node
*/

if ((!strchr(oneline,’.’)) && (!strchr(oneline,’!’)))
{ strtok(oneline,"t");

fputs(strtok(0,"/"),flptr2); /* si gets the node number
as 5=4/
fputs(strtok(0,"\n"),flptr2); /* s2 gets say IN4

*/

136

fprintf(flptr2,";\n"); /* hence the entry is 5=IN4
*/

}
}

free(oneline);
fclose(flptr
fclose(£1ptr2) ;

printf('\n OUTPUT FILE label.int GENERATED SUCCESSFULLY !!\n\n"
¥

carnnn/
/* define_fan_ins
*/
/*
*/

/* Here we are trying to write down the fan-ins present at every node
of thex/
/* network in file fanin.int. In simulation, the fan-in of a node is t

e *
/% set of all inputs that drive that node, therefore defining its volt
age. *
/* The nodes present in the circuit are only of three types.
*/
/*
*/
/* They are i) inputs to the circuit (including weights, thresholds, a
nd */
/* bias voltages, ii) neuron input nodes and iii) neuron output nodes.
*/
/%
*/
/* In case of neuron input nodes, we will get several entries in our o
utput */
/s file (fanin.int) due to the presence of several synapses. For neuro
=/
/‘ o/p nodes, we will get single entries which is either NPULSE or DCP
ULSE */

/* output of a given neuron
*/

I+
*/

/% This function raises a warning if a node is present in pulse.inp an
d not */
/% present in label.int.

*/

/*
The entries in the file pulse.inp are only of two forms

Vnodenane node-voltage;
or Vnodename pulse(delay,rise,on,fall);
*/

/+ Agorithm
*/

*/
/* 1) Read the value or type (currently only pulse) of all inputs from
*/
/* pulse.inp.
*/
/x
*/
/* ii) Open the netlist file. If Vdd' and gnd! nodes are present in th

e net */
/* list, then map Vdd! and gnd! to 5v and Ov respectively.
T

+/
/* ii) Sweep through the netlist, ignoring comment lines. (Everything
else */
/* is an element connectivity description.) During the sweep

*/

/%
*
/* (a) Count the number of neurons since they have to be identified to

keep *
/* track of their firing sequence.
*/

/*
*/
/* (b) Call function elmnt_descr for each element entry which writes i
n the */
/% file fanin.int -
*/
/%

138

*
/% For neuron entries: 2 entries, of the form
<no> stdnpulse(V[<n1>],V[<n2>],delay,rise,on,fall,<num

<nd> stddcpulse(delay,rise,on,fall, <nun>);
where <no> and <nd> are the node numbers of the neuron output

::::harga output respectively, <ni> and <n2> are the neuron in
Fhreshold nods nos. respectively, delay,rise,on,and fall are t
c:rresponding times for the pulse being defined, and <num> is
Shaber 8 the Aeuran. ML otheHEHiTacters are exactly as type

For i/p neuron entries: 1 entry of the form
<ns> stdinnrn(V[<n1>],V[<n2>]); (for standard i/p neur

o) or <ni> invinnrn(V[<n1>],V[<n2>]); (for inverting i/p neu
o) where <ns> and <ni> are the output node numbers of the standar
@ ond inverting input neurons respectively. <n1> and <n2> are the ne
ren input and threshold node nos. respectively.
For excitatory synapse entries: 1 entry
<no> exsynapse(V[<n1>],V[<n2>], V[<n3)] v[<n4>] V[<no>]
% vhere <no> is the node number of the excitatory synapse output
« ML a0 G35 ars The nolleminbezs:of Hie-eicibation il weight inp
e e the excitatory synapse, whereas <n3> and <n4> are the node num
P the discharge and leakage input to the excitatory synapse.
For inkibitory synapse entries: 1 entry of the form
<ao> insynapse(V[<n1>],V[<n2>],V[<no>1);
Can where <no> is the node number of the inhibitory synapse output

and <n2> are the node numbers of the inhibition and weight inp

139

ut;

s to
the inhibitory synapse.
/

/+ The format of the entries in the output file fanin.int (as describ
7§ ab;ve) follows the model defined in model2.c.
Al Y
*/
[Reeeey]

vo!
la

vo
{

fp;

id elmnt_descr(char +,FILE +); /+ A declaration, definition follows
ter */

id define_fan_1ns()
int i,m,flag

char s(100], pmp[mo] ss[20],52[100] , *nodeno;;
FILE *flptr,*flptr2,«flptr3,*flptrd;

flptr=fopen(“label.int","
if_file_err(flptr,”label.int");
flptr2=fopen("fanin.int","w");
flptr3=fopen("pulse.inp”,"r");
if_file_err(flptr3,"pulse.inp");
flptrd=fopen("netlist","r")
if_file_err(flptr4,"netlist");

while (fgets(pinp,100,flptr3))
{ strcpy(s2,pinp);
while (fgets(s 100,flptr))
{ nodeno=strtok(s,
strcat(scrcpy(ss "V"),strtok(0,";"));

flag=
1f('strcmp(strtok(p!np," "),ss)) break;
flag=1
if (1flag) { strtok(s2," ");
rintf(flptr2, %s:\n" ,nodeno,strtok(0,";"));

else printf("\n\n #+*+ WARNING - Input %s does not appear in the ne

140

tlist #*x\n\n",strtok(s2," "));
rewind(flptr);
}

fclose(flptr) ;
fclose(flptrd);

for (i=0;i<net;i++) /* IF NETLIST CONTAINS Vdd or GND
*

{ fgets(s,100,f1lptrd); /* NET DECLRN TAKE CARE OF THAT

*

if (strchr(s,’!"))
if (strehr(s,’g’)) /* IF 'g’ DOES NOT OCCUR IN THE N

*/
{ strtok(s,"t"); /+ THEN STRCHR RETURNS NULL
*/
fputs(strtok(0,"="), flptr2)
fprintf(flptr2," 0; \n ");

if (strchr(s,’v’)!=0)

{ strtok(s,"t");
fputs(strtok(0,
fprintf(flptr2,

}
}

while (fgets(s,100,flptr4)) /* The SN’s can have any number aft
er them«/
{ if (!strncmp(s,"sN",2)) /% Idea is to find the minimum of t

he no.s*
/* so that, that can be subtracted

from %/
/* all those numbers, to make their
no.
str?.uk(s N /* start from zero. Since array for
them *,
m=atoi(strtok(0," ")); /* is going to start from zero.
*/

if (n<min) minsnm;

}
rewind(flptra);

while (fgets(s,100,f1ptrd))
T WITH */

{
ELEME */
if (strnemp(s,"*",1))
RE OF. =/
elmnt_descr(s,flptr2);
Y,THAT =/

ON.ABOVE */

free(s); free(pinp); free(ss);

fclose(flptr2);
fclose(flptrd) ;

/* IN NETLIST FILE,IF IT DOESN’T STAR
/* A %, THEN CAN BE VDD,GND OR ACTIVE
/* NT INFO, FIRST IS ALREADY TAKEN CA
/* TAKE CARE OF THE SECOND POSSIBILIT

/* IS-ACTIVE ELEM USING COMMON FUNCTI

printf(“\n OUTPUT FILE fanin.int GENERATED SUCCESSFULLY !!\n\n");
}

A RRAAK

elmnt_descr (used by function define_fan_ins)

It creates element description for each element connectivity descript

ion that

is input to it. The -onnectivity description appears in the netlist f

Prse—‘

void elmnt_descr(char *s,FILE *flptr)
/* TAKE A STRING, PARSE IT AND PUT REQUIRED STRING IN FANIN.INT '/
/* FOR ALL VALID ACTIVE ELEMENTS, NOW ONLY SY AND NEURONS

char *s1,%s2,%s3,%s4,#s5;
int n;

2{ (!strncmp(s,"SN",2))

stdno++;
scrtak(s "N");

"));

142

s2=strtok(0," ");
s3=strtok(0,"
fprintf(flptr %s stdnpulse(V(%s],

=strtok(0," ")
1,9.8,0.8,5,1.

J4i)i\n", 54,8

1,52,n-min)
fpru\tf(flptt,"'/s stddcpulse(10.2,0,13,0,%i);\n",s3,n-nin);

if (!strncmp(s,"ES",2))

strcak(s,"

€0," "); s2=strtok(0,"” ");

s3=strtok(0," "); sd=strtok(0,

fprintf(flptr,"ls exsynapse(V[%s], V[I.SJ V[/.s} VIisl, V[/s]) \n",s5,
s1,s3,s2,54,55);

if (!strncmp(s,”IS",2))
{

strtok(s," ");
si=strtok(0," ; s2=strtok(0,"
fprintf(£f1ptr,"%s insynapse(V(!

"); s3=strtok(0," ");
1,VIs],VI%s]) i\n", 53, 51,52,83);

}
Ef (!strnemp(s,"sI",2))

strtok(s," ");
si=strtok(0,

; s2=strtok(0," ").

s3=strtok(0," "); s3=strtok(0,” ");

fprintf(flptr,"is smmnm(v[Vs] Vi4s1)5\n",83,51,52) ;
if (!strnemp(s,"II",2))
{

strtok(s," ");

si=strtok(0," "); s2=strtok(0," ");

s3=strtok(0," "); s3=strtok(0," ");

fprintf (flptr,"%s mvmnm(v[/.s] V%s);\n",s3,s1,52);
}
frrr—

def_sim_outs

Reads the user-requested outputs from the file control. The format
of the
control file is like this

*9; <-- User request for voltage at node 9
*10;
/NL; <-- User request for voltage at node named Ni

143

i.e. the user can define the requested o/p’s by node number or name

s.
This function then builds a table of these node numbers. Finally it
uts
the number of o/ps requested by the user on top of the table and pa
sses
the pointer of the top of the table to the next function.

Consider the example that user requests o/p at node 23,45 and 64 i
e. 3 o/ps.

Table built -- > | 3 | --> Pointer to this entry is o/p of this fu
nction
1231 and is passed to the function gen_inter

xxrkex/

int *def_sim_outs() /* Reads user request for o
utput */
{ char 5[100],news(100],*s1,*s2;

FILE *flptr,*flptr2;

int *ptr,*buf,i=0;

flptr=fopen("control","r");
if_file_err(flptr,“control");
f1ptr2=fopen("netlist","r")

if_file_err(flptr2,“netlist

while (fgets(s,100,flptr)) i++; /* counts no. of lines in con
trol */
ptr= (int *) malloc((++i)*sizeof(int));/* keep one more space to sto
re count#/
buf=ptr; /* keep top of array in buf
*/

*ptr=i;
revind(flptr);

144

while (fgets(s,100,£lptr))
{ if (!strncmp(s,"*",1)) /* two types of nodes, by nod
e no. %
*(++ptr)=atoi
if (strncmp(s,"
/

rtok(strtok(s,"+"),";"));
11)==0) /%

or by name

*
{ si=strtok(s,";");
for (i=0;i<=net;i++)
{ fgets(news, 100, £1ptr2) ;
if (strncmp(news,"s",1)==0)
{ s2= strtok(news,"t"
s2= strtok(0,"
if (strcmp(sl strtok(0,"\n"))==0) *(++ptr)=atoi(s2);

}

}
rewind(f1lptr2);
}

rewind(flptr);
free(s) ;free(news);
fclose(flptr2);
fclose(flptr);
ptr=buf;

return(buf);

7/
Chkkonkhk
gen_inter_code

This function generates an intermediate C program inter.c which defi
ne:o;:eaquacians for the circuit to be simulated and implements the Ga
" Seidel Relaxation algorithm used to solve those circuit equations. T
hgegzgilons are built by extensively using the fanin connections defin
Eduﬁ: file fanin.int. The file inter.c also contains the data structur
¢ required to simulate a given circuit. It’s best to take a look at th

e
heavily commented sample file inter_sample.c (a copy of a sample int

145

er.c)
present in this directory before peeping in this function.

The pseudo-code for the generated file is given below :-

do
{ increment time by a timestep;
store the node voltages calculated from last timepoint;
do
{ store the node voltages calculated in the last iteration;
calculate all neuron outputs from plug-in logic equations;
for all neuron inputs
do
{ if first iteration, use predictor to guess the node voltage;
store last iterated value;
calculate new iterated value;

while the two values do not converge;
}
vhile all the nodes haven’t converged;

while (time <= timeperiod);

R Rk

[roneeey]

void gen_inter_code(int *intptr)
{

FILE *flptr, #flptr2, +flpted, wflptrd;
char 5[80],+s3;

int i,],n,*count,count2,countex, *buf;
float p,q;

flptr=fopen("fanin.int","r");
if_file_err(flptr,"fanin.int");
flptr2=fopen("inter.c","w");

flptr3=fopen("pulse.sin","r'
if_file_err(£lptr3, pulse.sin

fgets(s,80,f1ptr3); /* READS IN .SIM FILE PARAMETERS +/
if ('strcmp(stztok(s." "),".tran"))
{ tof(strtok(0," "));

q=atof(strtok(0,";"));

146

timeperiod=q;
else {printf(" « ERROR : Format of .sim file is not correct!! ss\n\
pnntf(" Example format for PULSE.SIM file : .tran .5 200;\n\n
exit(0);

tprint;(tlptr!,"'include <stdio.h>\n\n") ; /* WRITES INTER.
C F]
fprintf(f1ptr2,"#include <math.h>\n\n");
fprintf(£1ptr2,"double t=0,delt=42.3f,tmark[4i];\n\nint flag(%il;\n\
n,p,stdno, stdno) ;

fprintf(flptr2, extern double pulse(double ondly,double riset,double
ontime,double fallt,double offtime);\n\n");

fprintf(flptr2,"extern double exsynapse(double aVex,double aVwt,doub
le aVdc,double aVlk,double Vm);\n\n");

fprintf(flptr2,"extern double insynapse(double aVin,double aVwt,doub
le Vm);\n\n");

fprintf(f1ptr2,"extern double stdnpulse(double aVin,double aVth,doub
le ondly,double riset,double ontime,double fallt,int n);\n\n");

fprintf(f1ptr2,"“extern double stddcp\ll:e(doubla ondly,double riset,d
ouble ontime,double fallt,int n);\n\n");

fpnncf(flptrz "extern double scd:nnrn(doublc aVc,double aVth);\n\n"

"tprintf (f1ptr2,"extern double invinnrn(double aVc,double aVth);\n\n"

fprintf(£1ptr2,"main()\n{\n");

fprintf(flptr2," int i,j,flagl,flag2;\n"

fprintf(flptr2,” double stezet[xﬂ.stonz[h] temp,VI%il,Vlast[%i],
Vlast2[%i],sum=0.0;\n",stdno,stdno,net,net,net.

fprintf(flptr2," for (=0;i<li;i++) { tmark
]=0;store2[i]=0;}\n",stdno) ;

fprintf(flptr2," for (i=0
iN\n",net);

fprintf (flptr2," fflush(stdout):\n");

fprintf(f1ptr2,” do\n {\n t+=delt;j=0;\

=0;£1ag[i]=0;store1[i

i<hizi++) { V[il=0;Vlast[i]=0;Vlast2[i]=0

fprintf(flptr2," for(i=0;i<)i;i++) vlnstZ[x]uv[xl \n",net) ;

fprintf (flptr2, £1ag2=0; flag1=0;\n") ;

fprintf(flptr2,” do\n { j++;\n if (flag2!=4i) flag2=0;\n"
,net);

fprintf (flptr2," for(i=0;i<%i;i++) Vlast[il=V[il;\n “,net);

fprintf (flptr2," ");
count=(int *) malloc(net*sizeof(int));

47

for (i=0;i<net;i++) /% COUNTS HOW MANY TIMES A PARTICULAR NODE
*/

*(count+i)=0; /% OCCURS IN FANIN.INT
*/

while (fgets(s,80,flptr))
{ n=atoi(strtok(s," "));
*(count+n)= *(count+n)+1 ;

rewvind(flptr);

for (i=0;i<net;it++)

{ if (!(count+i)) /+ COUNT=0 MEANS NEITHER IT W
As

*
{ flptr4=fopen("label.int","r"); /* MENTIONED IN PULSE.INP NOR AS
*/

if_file_err(flptr4,"label.int");/* OUTPUT NET IN NETLIST. SO, IT

5%/

while (fgets(s,80,flptrd)) /% AN INPUT FOR SURE AND NOT
DEFI-*/

{ if (atoi(strtok(s,"="))==1) /+ NED IN PULSE.INP

*

{ printf(" ** ERROR : Input %s not defined in file pulse.inp *
*\n\n",strtok(0,";"));
printf(" Example format for PULSE.INP file : VINI 5;\n\n");
exit(0);

}
fclose(flptrd);
}

if (*(count+i)==1) /* IF ONE OCCURRENCE THEN JUST TAKE THE STRING
AND PUT */

{ while (fgets(s,80,flptr)) /* IN INTER.C

*/

{ n=atoi(strtok(s,
if(n==i) { fprintf(flptr2

v
fputs(strcat(strtok(0,";")," "),flptr2);

}
rewind(flptr);
}
+
for (i=0;i<net;i++)

{ if (*(count+i)>1) /+ IF COUNT>1, FOR NOW WE ASSUME

148

NODE #/
{ count2=0; countex=0; /* IS ONLY MADE UP OF EX AND IN
SYN *
while (fgets(s,80,flptr))
{ n=atoi(strtok(s," "));
if (n==i) { count2++;
s3=strtok(0,";");
if (count2==1) fprintf(flptr2,"V[%il=Vliast2[%il+((
4,1
if ('strncmp(sS Uex",2)) /* IF NODE HAS EX SYN THE
N NEEDS +*/
{ if (count2==1) fputs(s3,flptr2);/* SINCE ADDS CU
RRENT, ALSO %/
else { fputs("+",flptr2);/* KEEP COUNT SINCE CAP
INCREASES */
fputs(s3,flptr2); /* WITH IT PROPORTIONAL
Ly */

countex++;

if (!strncmp(s3,"in",2)) /* SAME AS ABOVE,PUT- FO
R CURRENT */
{ fputs("-",flptr2); /* TAKEN OUT, BUT NO C
AP INCREASE %/
fputs(s3,flptr2);

if (!strncmp(s3,"stdn",4)) /+ SAME AS ABOVE,PUT+FO
R STDNPULS*/
{ fputs("+",flptr2);
strcat(s3,"*78e- 06“);
fputs(s3,flptr2);

if (count2==+(count+i))
fprintf (f1ptr2,")*delt*1e-09)/(%i*0.15e~12);\n
“,countex);

}
rewind (f1ptr) ;
9 }
fprintf (flptr2,"if (flag) fur (i=0;i<%i;i++) if ((fabs(V[il-Vla

st[1]))<0.00i) flag2++;\n", net,net)
fprintf (flptr2," Hn while ((flag2<71) I (flag1!=1));\n",net)

149

fprintf(flptr2," printf(\"");
fprintf (flptr2,"Wig ");
for (i=1;i<*intptr;i++) fprintf(flptr2,"%%g ");
/*for (i=0;i<*intptr;i++) fprintf(flptr2 th s
fprintf(flptr2, "\\n\", (t*1e-09)") ;buf =
for (i=1;i<+*buf ;oo) fprlntf(flptt2.".V[Ll]" ~(~'xncpzrr
fprintf (f1ptr2
fprintf(flptr2, }\n "Shile(t<’s.3f); \nH\n",q);
free(s);
fclose(flptr);
fclose(flptr2);
fclose(flptr3d);
printf("\n INTER.C GENERATED SUCCESSFULLY !(\n\n");
¥

void gen_final code()
{ FILE *flptr,*flptr2
char oneline(5000], twolme[souo] *buf;
int nodeno,i;
flptr-topen(":nt-r ¥ Meh)s /*Reads the intermediate C file ¢/
if_file_err(flptr,"inter.c"
flptr2=fopen("simulate.c"

H /% Writes final file #/

vhile(fgets(oneline,5000,flptr))
{ if (strstr(oneline,"]+("

{ strtok(oneline,
nodeno=atoi (strtok(0,"1"));
strtok(0,"+"
free(oneline);
strepy(tuoline, strtok(0,"
fprintf(flptr2," if (§

) VI%il=Viast2([%i]+0.5+#(3+storei(%i

J-store2[%il);\n" ,nodeno,nodeno, 1,1) ;

fprintf(flptr2,” i=0;\n if (flag2<%i){ do\n [T
\n if (it=1) V[%i]-:enp \n",net,nodeno) ;

fprintf(flptr2," temp=V1ast2[%i]+0.5«(store1(%i}+",nodeno,

buf=twoline;

while (+bufi='\0") fputc(‘buf0¢ flptr2);

fprintf (flptr2,"

fprintf (flptr2," if (i>10000) {fprintf(stderr,\"\\n\\n #+++s

No convergence - try with smaller timestep #+#+*\\u\\n\");\n
exit (0); }{n"):
fprintf(flptr?," N while((fabs(temp-V[%i]))>0.001);\n

150

",nodeno) ;

fprintf(flptr2," V[%il=temp; }\n",nodeno) ;

fprintf (flptr2," if (flag2==4i) {store2[%il=storeil[%il;\n",n
ok, 4);

fprintf(flptr2," storel[4i]=(",1);

buf=twoline;

while (*buf!='\0’) fputc(sbuf++,flptr2);
fprintf(flptr2,");\n flagl=1;\n");
i+

¥
else fputs(onelize,flptr2);
}

free(oneline) ;free(tuoline);

fclose(flptr);

fclose(flptr2);

)prlntf("\n FINAL.C GENERATED SUCCESSFULLY !!\n\n");

void do_display() /*does the display*/
{ FILE *flptri, *flptr?.

int counter=

char one11ne[aa] twoline[80];

flptri=fopen(“control","r"); /+ READS THE CONTROL FILE TO KNOW
N

if_file_err(flptri,"“control"); /+ WHICH OUTPUTS ARE TO BE DISPLAYED
.

flptr2=fopen("pulsedis.input","w");

fprintf(flptr2," set terminal X11\n set format xy \"A%g\"\n set xlab
el \"t(in s)\"\n set ylabel \"V\\\\\(in Volts\)\" \n plot [t=0:45.3fe-
09] ", timeperiod);

uh11e (fgets(oneline,80,flptri))
if (('(strncmp\nnel)ne "/",1))) 11 (!(strncmp(oneline,"*",1))))
{ strcpy(twoline,strtok(oneline,";"));
if (counter==1) fprintf(flptr2," \"pulse.out\" using 1:%i title
\"/s\" with lines",++counter,ktwoline[1]);
else fprintf(flptr2,", \"pulse.out\" using 1:%i title \"4s\" wit
h lines",++counter,&twoline(11);

fprintf(flptr2,"\n pause -1 \" Hit return to continue ...\"\n");
free(oneline); free(twoline);

fclose(flptri);
fclose(flptr2);

B.3 The Macromodels

#include <math.h>

extern double t,delt,tmark(]; /* Supposed to be defined in netlist4.c
*/

extern int flag(];

extern double pulse(double ondly,double riset,double ontime,double fal
1t,double offtime);

extern double exsynapse(double aVex,double aVut,double aVdc,double aVl
k,double Vm) /+OUTPUT in A/
{

int i,j;
double I1,Idc,sum,a[14],Vmarray[14],Vwtarray(14];

static double leakcoeff[14]={ -6. 603051934256143e 07 1.0271713577150
63e-05,-6.96316831 ,2.6867392381 4,-6.4 7583!
e-04,9.800099067403378e-04,-9. 0164636351057362 04,4. 056735443102641e 0
4,3.509327673376104e-05,-1.282451851932237e-04,5. 516554485257316e 05,
1.615123504007881&-05,B,452632453713466e-06,*2,327727950646864@-10}

static double discoeff[14]= { -1.601284486756084e-06,2.4165241379361
21e-05,-1.611046416958130e-04,6.257991711893582e-04,-1.573562772290460
e-03,2.692477056166958e-03, -3.209451404119135€-03,2.682522438299104e-0
3,-1.557765884323081e-03,6.068197617998657e~-04,-1.307471339332492e-04,
-7.523948155120020e-05,2.606179952161005¢-04,4.966812190786698e~10} ;

stat)c double coeff[14][14]= {
{ = 1e-09

~08 = 350 452e-08,4.960705759973295e-07
»=3. 694837598086475e -06,1. 4772157574193248 05,-3.576816459453455e-05,5
.431890342467863e-05,-5. -05,2.7960317 -05,-7.6

42238810641949e-06,6.842197749382061e-07,-2.773217400575023e-08,2.5667
06403239300e-08,~3.791300627928867e-09},
{ 44440046418678589e—08,5.489448925647399e<07,>1,4879678494320848-05

,1.153355207426963e-04,-4.696274337992896e-04,1.150246738257972e-03,-1
.762141521235776e-03,1.670135713973943e-03,-9.208501289095139e-04,2.53
5196227673102e-04,-2.266843493367775e-05,7.923082251947870e-07,-8.4033
61467601280e-07,1.251202622269522e-07},

{ -8.105462818409834e-07,-5. 081068492335639@ 06 1. 943957174250033e~04
,~1.584079975106061e-03,6.59047936647
.530458994552041e-02,-2.419139165686240e-02, 1 345148424944125e 02,-3. 7
34997502061011e-03, 3.337254543516843e-04,~9.542836462338302e~06,1.2191
20141951981e 05,-1. 8277602493816302 06},

,=1.446709362374472e-03,
1. 2580522 164627295—02 ~5. 3709701502155576—07 1.353351675328465e-01,-2.
l 175776332163072-01 2.044363222770373e-01, -1 147799814889808e-01,3.219

-02,-2.8798108231 4e-03,6. 74650e-05,-1.03149
33934009549 04,1.557496878175554e-05},

{ -5.514837606026973e-05,7 . 043725583151204e-05,6.718447365060018e-03,
-6.383901006951882e-02,2.813261471779898e-01,-7.216925365912068e-01,1.
143977149471640e+00,-1.1 26 19900e-01,-1.79
9698343577352e-01,1.6160123191 2,~2.054747 ,5.63474
4402603770e-04,-8.591909235406857e-05},

{ 2.421682935146632e-04,-9 . 198947462370994e-04,-1.994752843782460e-02
,2.157884050222244e-01,-9.898667963442510e-01,2.594506304034621e+00, -4
.175434535163080e+00,4 . 1297 10473597894e+00, -2.375002697115931e+00,6.83
7285302111370e~01,-6.184583920359052e-02,1.729447671487126e-04,-2.0766
180697260 12e-03,3.220435793519317e-04},

0162e-04,4.237 1e-03,3.671236148085379e-02,
-4, 910375904!597113 01,2, 374693957049423E+00 -6.390758375570652e+00, 1.
047149745426328e+01,-1.051482566798235e+01,6.139101227823355¢+00,-1.79
7824596394723e+00,1.646680679910993e-01,1.421124399101191e-03,5.233224
234016207e-03,-8.375412758341282e-04},

{ 1.492253942574126e-03,-1.121599475951268e-02,-3.599961510538718e-02
,7.418338204423325e-01,-3.861134260533769e+00,1.074446183328351e+01,-1
.799260534089419¢+01,1.839395064955905e+01,-1.093285246173577e+01,3.26
8942750307334e+00,-3.0554941221244 1,-6.55397! 3,-8.928
784715200866e-03, 1.514804487373199e-03},

{ -2.064318579137274e-03,1.845860021479958e-02,3.586891551410636e-03,
~7.129076824972758e-01,4.145410444790667e+00,-1.205626808511887e+01,2.
074257701586726e+01,-2.166812891376764e+01,1.315715991828990e+01,-4.03
6092209479749e+00,3.895775750639108e-01,1.361828232602385e-02,9.948054
633577699e-03,-1.874343620840948e-03},

{ 1.854440501264744e-03,-1.886147175670775e-02,3.265819341486776e-02
,3.9653377304037762-01,-2.790358034921483e+00,8.632616566586590e+00, -1
.537748897332012e+01,1.649579766918335e+01,-1.027942035014721e+01,3.25
5639305582785e+00,~3.303817071015601e-01,~1,558642185827251e-02,-6.705
393913531543e-03,1.517519092082872e-03},

153

{ -1.012800101997430e-03,1.1391667575040396-02,-3.505633885438296e-0
2,-9.907662543557520e-02,1.072277245917127e+00,-3.646158308783695e+00,
6.807026183122772e+00,-7.551087326942140e+00,4.857666038455164e+00,-1.
601395475698781e+00,1.753190645273069¢-01,9.436884620712642e-03,2.3493
0113 ,=7.2695357 -04},

{ 2.9899169 15412595e-04 -3.648702134898104e-03,1.488075324075222e-02,
-1.831337618716480e-03, -1 963146556392899e-01,7.897707860686255e-01,~1
.578673483628524e+00,1.830042427652221e+00,-1.224699768577713e+00,4.24
3184999203852e-01,-5.171736162141719e-02,-2.486939606658406e-03,-3.389
234070612998e-04,1.789515265103695e-04},

{ -3.781 198e-05,4 31e-04,-2.398941344520955e-03
,3.800521002841823e~-03,1.090351858435061e-02,-6.6319136026680450-02,1.
484477001324116e-01,-1.830032633818878e-01,1.286518450902641e-01,-4.72
3314746818176e-02,6.514737067812121e-03,2.095309722803457e-04,9.969171
851780565e-06,-1.788340084439765e-05},

{ 1.109328092375133e-06,-1.535261972412140e-05,8.423859077776905e-05
,-2.079586735152370e-04,6.021594850196061e~-05,1.017531908397153e-03,~2
.913570801845314e-03,3.968436909398971e-03, -2.980948357478795e-03,1.17
0387999465542e-03,-1.829345410952289e-04,-2.316157248589741e-06,2.9182
52678441764e-07,3.931288593614648¢-07},

Vmarray [0]=1;
for (i=1;i<14;i++) Vmarray[i]=Vmarray[i-1]*Vm;

if (aVex==5)
{ Vwtarray[0]
for (i=1;i<14;i++) Vwtarray[il=Vwtarray[i i]+aVwt;

for (i=0;i<14;i++)

{ sum=
for (j=0;3j<14;j++)

sum+= cueff{xltjhv:nanay[ts is

ali]=sum;

}
sum=0;
for (1 0;1<14;14+)
sum+-a[x]t‘lv.rtarray[13—l) B
I1=sum;
R if (I11<0) I1=0;

else
{ sum=0;
for (i=0;i<14;i++)

sum+= leakcoeff[i]*Vmarray[13-i];
I1= ~sum;

if (aVdc==5)

for (i=0;i<14;i++)
sum+= discoeff[i]#Vnarray[13-il;
Idc= sum;

else Idc = 0;

return(I1-Idc);
}

extern double insynapse(double aVir,double aVwt,double Vm)

int i,
douhleJI sum,a(14],Vnarray[14] ,Vwtarray[14];
static double coeff[14] [14]=

{ 2.177421397682281e-08,-4.099037523459378e~07 ,3.362195883198151e-06

,-1.582157038389652e-05,4 .726426749602979e-05, -9 . 356127455272212e-05, 1

.242283518534696e-04 ,-1.094853416647668e-04,6 . 200051579657870e-05,-2. 1
320276842162766-05, 4 152594302645939e-06 , ~4. 68053483987 4958e-07 ,3 . 7965
95226996644e-08, -3. 178326304227981e-12},

{ -6.796058118414131e-07 , 1. 2887164499997046-05 , -1, 0636604049047 1 1e-04

,5.032897840006304e-04,-1.511011487319583e-03,3.004936756274800e-03, -4

|0071048157183312-03,3. 1e-03,-2.0145362002408; ,6.9
0630118174520e-04, - 1.349784546379309e-04, 1.514396271179674e-05 ,-1.2484
39243622917e-06, 1.040438308199698e-10},

{ 9.328905586795263e-06, -1 .784370225202192¢-04, 1 .483527825172087e-03,
-7.064368715389898e-03,2. 133072197940125e-02, -4 . 264369564776774e-02,5 .
71440873920507e-02, -5 . 078928846935329e-02,2 . 896743756243009¢-02,-1.00
0180147377283e-02,1.941598155939491e-03,-2.165707029021997e-04, 1.81822
2939255472e-05,-1.508404815896006e-09} ,

{ -7.403273377467977e-05,1.430899516504552¢-03,-1.199979320213371e-02

,5.756816525203354e-02,-1.749793 1,3.519291340154487e-01,-4

.742368 -01,4 772e-01,-2.426856718109301e-01,8.40
0561302634316-02, -1 6272797220378048-02, 1.8015483647102346-03, -1.5438
30510362061e-04,1.275295914645522e-08 },

{ 3.755032075643166e-04, -7 . 361518423735087e-)3, 6 . 229678676833955e-02,
-3.015110062165590e-01,9. 235645783380702e-01,-1.870557758535991e+00,2.
536906456079810e+00, -2 . 2797459377 176136400, 1 .312498215078681e+00,-4.55
6760898117591e-01,8.804841809880300e-02,, -9 . 652843315469 180e-03 , 8.46372
7242341413e-04,-6 .967847849580855¢-08 },

{ -1.270395829563339e~03,2.527788991064903e-02,-2.169647468559937 e-01
,1.061295957174184e+00,-3.280818142413291e+00,6.699501030562952e+00, -9
.154334681399092e+00,8.282928275113015e+00,~4.796854370909696e+00, 1 .67
1370484793371e+00,-3.220149079776888e-01,3.484724049140217e-02,-3.1335
05873071273e-03,2.576168530977180e-07},

{ 2.903439724051806e-03,-5.900403814017672e-02,5. 146744549838416-01,
-2.550578940038298e+00,7.972179387414515e+00,-1.643834915833805e+01,2.
266045258468414e+01,-2.066912921650463e+01,1.205402368168606e+01,-4.21
8614756108000e+00,8.101120521197160e-01,-8.614213595059243e-02,7. 95679
1014982633e-03,-6.559935574866137e-07 },

{ -4.440927695783746e~03,9 . 287493500154487e-02,-8.272819858822575e~01
,4.167527015546636e+00,-1.320375505639862e+01,2.7654642873049280e+01 ,-3
.837395304848845e+01,3.533856501973460e+01,-2.078322459744306e+01,7 ,31
4455112042512e+00,-1.399652647125268e+00, 1.452843557073401e-01,-1.3778
41046135225e-02, 1.148592442094132e-06},

{4 402554530280746e 03,-9.596645066192971e-02,8.794812100712543e-01,
-4.525814 e+00,1.4585087. 426e+01,-3. 584012e+01,4.
355248061121107e+01,-4.057307218371277e+01,2.410827022541753e+01,-8.54
6718467826050e+00,1.629917791162814e+00,-1.636116099472059e-01,1.58378
1645682025e-02, -1.356844552314438e-06},

{ -2.654965914687481e-03,6.17636897 ,-5.89 -01

,3.123535849413030e+00,-1.029093393719300e+01,2.217799432823669e+01 ,-3

. 178407142439369e+01,3.003065669596910e+01,~1.807312887821575e+01,6.47
0041962827985e+00,-1.231132026145507e+00,1.179991395857574e-01,-1. 1437
29929393002e-02, 1.039839463139946e-06},

40915e~-04,-2. 759e-02,2.296244711498549e-01,

v 267991742519216&*‘00 4.304663782860188e+00,-9.497186051680638e+00, 1.

388160658337729e+01,-1.334780738645695e+01,8.163077490316200e+00, -2.96

1804066460231e+00,5.642658263843501e-01,-5.094272731374962e-02,4.70929
7260546332e-03, -4 .827354950876515e-07},

-1.1087.

,3.90 463e-03,~4.
1e-01,-9.372202371689592e-01,2.134581776969955e+00,+3
3321e+00,3. 14651 19e+00,~1.963939437961037e+00,7 . 2569
486872571945e-01,-1.395542450808271e-01, 1. 186572844235746e-02,-9. 71625

2172497211e-04,1.203669640447359e-07},
{-5.636241407918107e-07,-2.085030779649814e-04,3.246102723209916e-03,
~-2.168923472020330e-02,8.245219501086713e~02,-1.966876130901464e-01,3.
052954676550778e 01,-3.088129326923654e-01,1.977680673494919e-01,-7 .49
2,1.467992327 2,-1.197249791288621e-03,8. 02040

1812943790e-os -1.273874375791981e-08},
{3.599225218101810e-07,-7.481117709879855e-07 ,~3.594148073022414e-05,
3.441221313974942e-04,-1. ,3.8936927 3,-6.
3704814505019856-03, 6. 705983831501377¢-03, -4 ..442443958801378e-03, 1.737
108737727755e-03, -3, 505778912754730e-04 2. 816079454029621 e-05,-1. 43162

136

4691582681e-06,3.0805602986392922-10},

if (aVin==5)

{ Vmarray[0]=1;
Vwtarray[0]
for (i=1;i<14;i++) Vmarray[il=Vmarray[i-1]sVm;
for (i=1;i<14;i++) Vwtarray[i]=Vwtarray[i-1]*aVut;
for (i=0;i<14;i++)

{ sum=
for (j=0;j<14;
sum*=c .ft[zi[JJ'Vnazray[1a»J].
a[il=sum;

sum=0;
for (i=0;i<14;i++)
sum*=a[i]'Vucuray[13-i] H
I=sum;
if (I>0) I=0.;
else I = 0;
return(-1);
extern double insynapcap(double aVin,double aVwt,double Vm)
{ insynapse(aVin,aVwt,Vm); } /* Since it just adds more cap, otherw
ise */
/* same as insynapse */

extern double stdnpulse(double aVin,double aVth,double ondly,double r
iset,double ontime,double fallt,int n)
:

/* COUNT THE NO. OF STDNEURON FROM .NETLIST FILE AND */

/* GENERATE ARRAYS WITH REQD. NO. OF ELEMENTS */
/* IN MAIN TO STORE TMARK AND FLAG */
if (aVth==0) aVth=5; /* TO TAKE AWAY INITIAL ASSIGNMENT PRO

BLEM *
if ((aVin<aVth)&&(flag[n]==0))
return(0);

else

if (flagln]==0) {tmark[n]=t;flaglnl=1;} ;

if ((t-tmark[n])<=ondly)

return(0);

[tmark[n]))ondly)d&((t tmark[n])< (Ohd1y+rlsst)))
return((5.0/riset)*(t-tmark[n]-ondly)

(- tmark[n])>(andly+nset))&&((t cmark[n])<=(ond1yonsenonume

T
oo

pD)]
return(5.0) ;
if (((t-tmark[n])>(ondly+riset+ontime))&&((t-tmark[n])<=(ondly+riset
+ontime+fallt)))
return(5.0-((5.0/fallt)*(t-tmark[n]-ondly-riset-ontime)));
if ((t-tmark(n])>(ondly+riset+ontime+fallt))
{ flagln]=0;
return(0);

}
}

extern double stddcpulse(double ondly,double riset,double ontime,doubl
e fallt,int n)

if (tmark[n]>0)

1f ((t-tmark([n])<=ondly) return(0);
if (((t-tmark[n])>ondly)&&((t-tmark([n])<=(ondly+riset)))
return((5.0/riset)*(t-tmark[n]-ondly));
if (((t- rmark[n])>(ond1y+uset))u((t tmark[n])((ondly+riset+onti
me))) return(5.0)
if (((e- tmark[n])>(ond1y+nset+onnme))na((t -tmark([n])<=(ondly+ris
et+ontime+fallt)))
return(5.0-((5.0/fallt)*(t-tmark[n]-ondly-riset-ontime)));
else {tmark[n]=0;return(0);

else return(0);

extern double stdinnrn(double aVc,double aVth)
{ aVe*=2;
if ((ceil(aVc)-aVc)>(aVe-floor(aVc))) aVe=0.5+floor(aVe);

else aVc=0.5xceil(avVc);

if(aVe== 5.0) return(pulse(77.3,1.5,4.2,1.3,24.2));
if(aVc== 4.5) return(pulse(76.5,1.6,3.3,2.3,22.7));
if (aVe== 4.0) return(pulse(76.4,1.7,4.1,1.3,24.5));

158

3.5) re 1rn(pulse(65.2
3.0) return(pulse(65.2
2.5) return(pulse(53.4
2.0) return(pulse(64.3
1.5) return(pulse(62.,2. ,344, ¥
1.0) return(pulse(323.6,1.5,4.
if(aVe <1.0) return(0);

extern double invinnrn(double aVc,double aVth)

aVe=2;

if ((ceil(aVc)-aVc)>(aVe-floor(aVc))) aVe=0.5*floor(avVe);

else aVc=0.5+ceil(avc);

i .0) return(pulse(53.1
return(pulse(55.6
return(pulse(60.4
return(pulse(60.7
return(pulse(69.8
return(pulse(90.8
return(pulse(74.9
return(pulse(63.5
if(aVe==4.0) return(pulse(143.
if(aVe »4.0) return(0);

B.4 The Waveforms Used in PULSE

#include <stdio.h>
#include <math.h>

extern double t;

extern double pulse(double ondly,double riset,double ontime,double fal
1t,double offtime)

doutle reqdi,reqd2;
reqd2=ontime+of ftine+riset+fallt;
if (+<ondly) return(0);
else
{
reqdi=t-ondly-floor((t-ondly)/reqd2)*reqd2;
if ((reqdi>(riset+ontime+fallt))|[(reqdi<0.0)) return(0);

159

else

if ((reqd1>=0) && (reqdi<riset)) return((5.0/riset)+reqdl);

if ((reqdi>(riset+ontime)) && (reqdi<=(riset+ontime+fallt)))
return(5.0-((5.0/fallt)*(reqd1i-(riset+ontime))));

else return(S);

160

Appendix C

PULSE Input Files - An
Example

These were the input files used to simulate the XOR circuit in Chapter 5.

C.1 netlist

// Netlist Generated by PULSE Netlister //
*net0=/110.DCPULSE
118.DCPULSE

*net10=/16.Vm
*net11=/I8.Vm
*net12=/116.Vm
*net13=/I11.DCPULSE
*net14=/110.NPULSE
*net15=/I111.NPULSE
*net16=/10.IN10UT
*net17=/I1, INOOUT
*net18=/I2. IN1OUT
*net19=/13.INOOUT

161

*neuron(0)=/118;
SN0 125719 ;
*neuron(1)=/I11;
SN1 1156 13 15 ;
#neuron(2)=/110;
SN2 1056 0 14 ;
tsynapsel((!)l/lﬂ
ES3 15187 12 ;
*synapsel (4)=/116;
ES¢ 14187 12 ;
*synapse1(5)=/19;
ES5 19 13 4 7 11 ;
tsynapsel(S)’/Iai
6 18 13 4 7 11 ;
+synapse1 (7)=/17;
ES7T 1704 7 1
«synapsel(ﬁ)'/lﬁ‘
ESB 16 0 4 7 10 ;
*inNeuron0(9)=/13;
119 2 56 1
tmlleurono(lo)-lli.
II10 3 5 6 17
tm)leurnnl(ll)‘llz
SI11 356 18
tmnanranl(u)'/lo
SI12 256 16 ;

C.2 pulse.inp

Wik 1.5;

V- 1.65;
Wb 2;

C.3 pulse.sim

.tran 1.0 300;
C.4 control
*9;

162

Appendix D

Output File Generated by
PULSE

From the input files provided (as in Appendix C). pulse builds an ontput
file which gets compiled_alongwith the macromodels and the waveform file
o rin the simulation. The il shown below was generated while simlating
the XOR cireuit, and henee it corresponds to the input files presented in
Appendix (.

#include <stdio.h>
#include <math.h>

double t=0,delt=1.000,tmark[3];
int flag[3l;

extern double pulse(double ondly,double riset,double ontime,double
fallt,double offtime);

extern double exsynapse(double aVex,double aVwt,double aVdc,double
aVlk,double Vm);

extern double insynapse(double aVin,double aVwt,double Vm);

extern double stdnpulse(double aVin,double aVth,double ondly,double
riset,double ontime,double fallt,int n);

extern double stddcpulse(double ondly,double riset,double ontime,

163

double fallt,int n);
extern double stdinnrn(double aVc,double aVth);
extern double invinnrn(double aVc,double aVth);
main()
£
int i,j,flagl,flag2;
double storei[3], storez[S] temp,V[20],Vlast[20],V1ast2[20],sum:
1fi

51<3; 144} { tmark[i]=0; flag[i]=0; =0; store2(i]
;1<20;1++) { V[il=0; Vlast[x] 0; 1ast2[\] 0;}

Lo

printf ("
for(i=0;i<20;i++) Vlast2[i]=V[i];
flag2=0;flag1=0;
do
)
1f (flag2' =20) flag2=0;
for(i=0;i<20;i++) Viast[i]=V(il;
0]=stddcpulse(10.2,0,13,0,2);
tddepulse(10.2,0,13,0,0)

v
v
v
v
v
v tdnpulse(V[12],V[51,9.8,0.8,5,1.4,0);
V[13]=stddcpulse(10.2,0,13,0,1);
V[14]=stdnpulse(V(10],V(5],9.8
V[15]=stdnpulse(V[11],V[5],9.8,
V[16]=stdinnrn(V[2],V[5]);
V[17)=invinnrn(V[3],V(51);
V[18]=stdinnrn(V[3], v[s]).
v[19]=invinnrn(v(2],V

1f (3:-1) v[10]= Vlast‘Zl:lO]*O 5*(3+store1[0]-store2[0]);

,0.8,5,1.4,2);
0.8,5,1.4,1);

}f X (ﬂag2<20)(do

v+
if (it=1) V[10]=temp;

164

temp=V1ast2[10]+0.5%(storei [0]+((exsynapse(V[17],V[4],V[0]
,V[71,V[10]) +exsynapse(V[16],v[4],v[0],V[7], V[10]))*delt+1e-09) /(2
40.150-12))
if (i>10000) {print£("\n\n No convergence - try with smaller
timestep\n\n");
exit(0);}

}
while((fabs(temp-V([10]))>0.0001);
V[10]=temp;}
:f (flag2 =20) {store2[0]=storel[0]
re1[0]=(((exsynapse(V[17],V[4], VEO] V[7],V[10])+exsynapse(
v[i6], v[4] v[o] V[7],V[10])) *delt*1e-093/(2+0. 152-12)) ;
flag

zf (J 1) V[11])=Vlast2[11]+0.5+(3xstore1 [1]-store2[1]);

lf (£1ag2¢20){ do
i+4;
if (i1=1) V[11]=temp;
temp=V1ast2[11]+0.5*(store1[1]+((exsynapse(V[19],V[4],V[13]
,VI71,v[11]) +exsynapse(V[18],V[4],V[13],V([7], V[11]))*delt*1e-09)/(2
x0.15e-12)) ;
if (1>10000) {printf("\n\n No convergence - try with smaller
timestep\n\n");
exit(0);}

¥
while((fabs(temp-V[11]1))>0.0001);
v[11]=temp;
if (flag2==20) {store2[1]=score1[1];
store1[1)=(((exsynapse(V{19],V[4], vi131,v(7] ,V[11])+exsynapse(
v(iel, VE4] vcw] V(7] ,V[11]))*deltsie-08)/ (2+0. 15212)) ;
1=1;}

lag
1f (_] =1) V[12]=Vlast2(12]+0.5%(3*store1[2]-store2[2]);

it (flag7<2\)){ do
{ i+4;

1) V[12]=tem
temp=Vlast2[12]+0. Sg(storei[?]‘((exsynapse(V[lS] vis],v[1],v
[71,V[12))+exsynapse(V([14],V(8],V[1],V[7],V[12]))*delt*1e- 09) /(24015
e-12));

if (i>10000) {printf("\n\n No convergence - try with smaller
timestep\n\n");

Jf (€3

exit(0);}

+
while((fabs(temp-V[12]))>0.0001);

165

V[12]=temp;}
it (flagr=0) {store2(2)-storeila);
ret[2]=(((exsynapse(V[15],V(8], vi1,v7], V[12])+exsynapse(V
[14], v[s] V[l] v(7, V[!2]))’dalt'la-09)/(2'0 15e- 12))

lf (flagZ"Zﬂ) for (i=0;i<20;i++) 1f ((fabs(V[1]-Vlast[i]))<0.00
01) flagzn

whila ((f1ag2<20) || (flagi!=1));
printf("%g %f \n",(t*1e-09),V[91);

. while(t<300.000);

166

Appendix E
The Netlister

E.1 S/SLG File to provide Formatting In-
structions to FINL

; Making the netlist representation properties editable
replaceRepProp=t
; nlpglobals/pulse gets replaced by the design, which then gets netlisted.
; These lines below defines properties for nlpglobals/pulse i.e. of the
; netlist
defRepFrnp(nlpblohals pulse
; If length of a line in netlist is > 70, start another line with prefix +
NLPLineLength=70
NLPLinePrefix="+"
; While encountering each instance in the schematic, generate a comment
; like *neuron(1)=/I5
NLPsingleLineCommentString="+"
NLPElementComment=nlpExpr ("* [@BlockName] ([@ElementNumber])=[@InstPathName] ;")
; generate a comment for each net as *net2=/0U
NLPcreatelletString=nlpExpr (" *net [ONodeNunber]=[@NetPathNane] \\n")

; generate netlist for each instance by replacing the value of the property
; le from Ap E.2 an error if the element
; format is not defined in the file in Appendix E.2
NLPcompleteElementString=nlpExpr(" [mNLPElementPescamble %:%4No element format
property found for element [Q@InstPathName]]\\n")
))»ILPnetl)stHsader“n]pExpr("// Netlist Generated by P'LSE Netlister //\\n")

167

E.2 S/SLG File to Define Netlist Output of
Symbols
simRep(stdneuron symbol pulse

NLPElementPostamble=nlpExpr (" [QNLPEL % \nISN[eE1]
[1v+] CIv-] [Ivb] [IDCPULSE] [INPULSE] ;")
)

sinRep(exsynapse symbol pulse
NLPElementPostamble=nlpExpr (" [ONLPElementC
[IVex 1 [Ivdc] [IVwt] [IVik] [lvm] ;")

)

:%\n]ES [QE1 i

simRep(iusynapse symbol pulse
NLPElenentPostamble=n1pExpr (" [GNLPElementConment
)(IVm] Clvet] (Ivm] ")

\n]1S [0ElementNumber]

sinRep(sineuron symbol pulse
NLPElementPostamble=nLpExp:

("' [ONLPElementComment : %\n]SI [0ElementNumber]
[ivel Civ-1 [Ive] [IIN10UT]

simRep(iineuron symbol pulsi
NLPElementFostamble-nlpExpr(" [ONLPElementComment : %\n]II [0ElenentNumber]
Clvel Civ-] [lvb]l [1INOOUT]

For each of the three symbols in the symbol library, the value of the

variable NLPElementPostamble is the format which is to be used for their
netlist. The formats for each of these symbols are defined in this file.
The value of the variable NLPElementComment is assigned in Appendix E.1.

168

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Notice
	006_Title Page
	007_Copyright Information
	008_Abstract
	009_Acknowledgements
	010_Table of Contents
	011_Table of Contents v
	012_Table of Contents vi
	013_Table of Contents vii
	014_List of Figures
	015_List of Figures ix
	016_List of Figures x
	017_List of Figures xi
	018_List of Tables
	019_List of Symbols
	020_Chapter 1 - Page 1
	021_Page 2
	022_Page 3
	023_Page 4
	024_Page 5
	025_Chapter 2 - Page 6
	026_Page 7
	027_Page 8
	028_Page 9
	029_Page 10
	030_Page 11
	031_Page 12
	032_Page 13
	033_Page 14
	034_Page 15
	035_Page 16
	036_Page 17
	037_Page 18
	038_Page 19
	039_Page 20
	040_Page 21
	041_Page 22
	042_Page 23
	043_Page 24
	044_Page 25
	045_Page 26
	046_Page 27
	047_Page 28
	048_Page 29
	049_Page 30
	050_Page 31
	051_Chapter 3 - Page 32
	052_Page 33
	053_Page 34
	054_Page 35
	055_Page 36
	056_Page 37
	057_Page 38
	058_Page 39
	059_Page 40
	060_Page 41
	061_Page 42
	062_Page 43
	063_Page 44
	064_Page 45
	065_Chapter 4 - Page 46
	066_Page 47
	067_Page 48
	068_Page 49
	069_Page 50
	070_Page 51
	071_Page 52
	072_Page 53
	073_Page 54
	074_Page 55
	075_Page 56
	076_Page 57
	077_Page 58
	078_Page 59
	079_Page 60
	080_Page 61
	081_Page 62
	082_Page 63
	083_Page 64
	084_Page 65
	085_Page 66
	086_Page 67
	087_Page 68
	088_Page 69
	089_Page 70
	090_Page 71
	091_Page 72
	092_Page 73
	093_Page 74
	094_Chapter 5 - Page 75
	095_Page 76
	096_Page 77
	097_Page 78
	098_Page 79
	099_Page 80
	100_Page 81
	101_Page 82
	102_Page 83
	103_Page 84
	104_Page 85
	105_Page 86
	106_Page 87
	107_Page 88
	108_Page 89
	109_Page 90
	110_Page 91
	111_Page 92
	112_Page 93
	113_Page 94
	114_Page 95
	115_Page 96
	116_Page 97
	117_Page 98
	118_Page 99
	119_Page 100
	120_Page 101
	121_Page 102
	122_Chapter 6 - Page 103
	123_Page 104
	124_Page 105
	125_Page 106
	126_Page 107
	127_Page 108
	128_Page 109
	129_Page 110
	130_Page 111
	131_Page 112
	132_Page 113
	133_Page 114
	134_Page 115
	135_Chapter 7 - Page 116
	136_Page 117
	137_Page 118
	138_References
	139_Page 120
	140_Page 121
	141_Page 122
	142_Page 123
	143_Appendix A
	144_Page 125
	145_Appendix B
	146_Page 127
	147_Page 128
	148_Page 129
	149_Page 130
	150_Page 131
	151_Page 132
	152_Page 133
	153_Page 134
	154_Page 135
	155_Page 136
	156_Page 137
	157_Page 138
	158_Page 139
	159_Page 140
	160_Page 141
	161_Page 142
	162_Page 143
	163_Page 144
	164_Page 145
	165_Page 146
	166_Page 147
	167_Page 148
	168_Page 149
	169_Page 150
	170_Page 151
	171_Page 152
	172_Page 153
	173_Page 154
	174_Page 155
	175_Page 156
	176_Page 157
	177_Page 158
	178_Page 159
	179_Page 160
	180_Appendix C
	181_Page 162
	182_Appendix D
	183_Page 164
	184_Page 165
	185_Page 166
	186_Appendix E
	187_Page 168
	188_Blank Page
	189_Blank Page
	190_Inside Back Cover
	191_Back Cover

