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Abstract

The formulation and implementation of an equal-order colocated control volume
finite element-multigrid (CVEFE-MG) method for steady, two-dimensional, viscous

incompressible flows is presented in this the

In the proposed CVFEMG, the

calcula*ion domain is diseretized using three-node triangular elements. Ea

ment is further divided in such a way that control volumes are formed around

node in the caleulation domain. The proposed method is formulated using the ve-

locity components and pressure as dependent variables, and interpolation funetions
for these dependent variables are all based on an elemental level, The pressure and

the diffused scalars are interpolated linearly: the conveeted sealars

re interpolated

using mass weighted interpolation which gnarantees positive contributions to the

coefficients in the algebraic discretization equation: and the transporting veloci

ties are interpolated using a linear interpolation of pseudo-velacitios and pressure

coefficients, in which the pressure gradients appear explicitly. This feature allow

the formulation of an equal-order colocated method valid for incompressible flows.

Using these interpolation functions, the discretized forms of the governing equa-

tions are obtained by deriving

lgebrai

approximations to integral conservation
equations for each control valume. These nonlinear. coupled. algebraic cquations
are then solved by a segregated solution algorithin. This solution method is ini-

plemented in the context of FMV-

and V-cyele: multigrid algorithms in an attenpt

to improve its convergence behaviour.

The proposed CVFE-MG method was found to generate solutions that conld



1 heliavionr of the finid flows nsed as test problems. The multi-

capture the physi

sried methods were fonnd 1o aceelerate the convergenee rate 2,18 to 743 times
for the outflow and recireulating flow test problems presented. The effectiveness

. due to the

of the maltigrid algorithm was reduced for higher Revnolds numbe:

interpolation sehemes used in the control volume finite element method {CVFEM).

Tl suecessful implementation of multigrid algorithms in the context of a prini-
itivee variables, viscons flow CVFEM is very encouraging. Further rescarch will be

performed 1o improve the effectiveness of CVFE-MG implementations.
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Chapter 1

Introduction

1.1 Aims and Motivation of the Thesis

Prediction of heat transfer and fuid flow processes can be obtained by two main
methods: experimental investigation and theoretical calev” stion. “This thesis con-
centrates on the latter. The main goal of this thesis is to develop, implement, and

test a control volume finite element-multigrid (CVFE-MG) method for the simula-

n o e

viscons incompress fhid flow problems. Sueh

iion of steady, two.
flows are frequently encountered in the acronautical, power generation and envi-
ronmental fields. Specific examples include internal combustion engines, nuclear
reactors. heat exchangers, and effluent discharge into the environment.

The formulation of the proposed CVFE-MG is an extension of that used in
earlier CVFE's [3, 4, 5, 7, 18, 19, 20. 30. 31, 32] for incompressible flnid flows. In
the proposed control volume finite clement method (CVFEM), friangular elements
are used to discretize the calculation domain. and polygonal control volumnes are
constructed around each node in the domain. The mathematical model of the fnid
flow is based on the so-called primitive variables, the velocity components, uand
v, and the pressure p. Element-based interpolation functions for these dependent

variables, and the method of weighted residuals (MWR) [15], are then used to de-



algebraic approximations to the goveming equitions. In this MWR. for each

node in the calenlation domain, the weighting function is set equal toone over the
control volume associated with the node, and zero elsewhere, Thus. the proposed
CVFEM for fluid flow and heat transfer involves the imposition of physical con-
servation prineiples on finite control volumes in the caleulation domain.and hence
its solutions satisfy global conservation rquirements, even for course grids. In
addition, this control volume based formulation facilitates physically meaningful
interpretation of the various terms in the algebraic discrerization equations,

The proposed CVFEMis an equal-ordered colocated methad. in which pressure
and veloeity are evaluated at all grid points. Momentum and continuity equations
are diseretized using the same set of control velumes, and the pressure equation is
solved by the same equation solver used for the other dependent variables, With
this method, oscillatory solution fields are prevented by using so-called “mass con-
serving” veloeity interpolation functions, in which the pressure gradient rerms
appear explicitl. When these functions are used to discretize the continuity equa-
tion, they lead to a set of strongly velocity-pressure-coupled algebnic equations
lrom which the vscillatory solution fields could. not appear.

The proposed CVFEM is limited to steady two-dimensionalsituations, however,
its basic formulation can be easily extended to unsteady and three-dimensional
problems using the procedures described in [29, 24, 23).

Thus far, CVFEM rescarch has concentrated on the development of methods

to simulate problems, without great concern for their efficiency. In this thesis,

greater priority is given toalgorithm and implementation efficiencies, and hence the
multigrid techniques are employed. By introducing several grids and exchanging

information between themin a sophisticated way, multigrid methods can solvelarge



sparse matrix elliptic problems in & dramatically more efficient way compared 1o

conventional iterative algorithms on a single grid. In the proposed CVFE-M

a

multigrid method. along with asegregated iterati

olution algorithn. is employed

to solve the system of discretized governing equations.

1.2 Outline of the Thesis

This thesis consists of six chapters. In this chapter the aims and motivations of
the thesis were presented. The remainder of this thesis deseribes the development,
implementation, and testing of the proposed CVFE-NMG.

Chapter 2 presents a synopsis of available CVFENI's for the solution of incom-
pressible fluid low problems. The formulation of the proposed two-dimensional
CVFEM is presented in detail in Chapter 3. In Chapter 4, the fundamental prinei-

ples of multigrid methods are briefly diseussed, then details of the implens

utation

of the multigrid algorithm into the CVFE-MG method are presented. Results gen-
erated by the proposed CVFE-MG method in the solution of several test problems

are presented in Chapter 5. These results are compared with those of henchmark

numerical studies available in the literature. and with results generated wy ive pro-
posed CVFEM using one solution mesh. Finally, in Chapter 6, the contribitions

ed.

of this thesis are summarized, and suggestions for further work are prese



Chapter 2

A Review of Available Solution
Methods

2.1 Introduction

\ Tany solution mothods have heen developed for ucompressible fiuid Aow problems.
T hie choice of a particnlar solution procedure isstrongly dependent upon the shape
of the problem domain (regular. irregular). the nature of the fluid (viscid, inviscid),
and the type of flow (steady, insteady). Due to space restrictions, and the vast
number of available methods, only some Hasic solution algorithms are discussed in
this chapter. A briefl overview of avilable numerical methods is given in section

2.2 In sectims 23 and 2.4, the availible CVFEM's for convection-diffusion and

Huid flow problems are discussed. Finally, in section 2.3, a briefsurvey of multigrid

solution methods in the contest of CVFEM's is presented.

2.2 A Synopsis of Available Solution Methods

The goal of a computational method is to obtain values of the dependent variables,
such as temperature, veloceity, and pressure at discrete locations within a physical

domain. What differentiates one numerical method from another is the manner in

4



which the algebraic discretization equations are obtained. Two of the most pop-
ular classes of methods for obtaining these equations are Finite Element Methods
(FEM's) [2.12]. and Control Volume Finite Difference Methods (CVFDM'S) or
Finite V'olume Methods (F\’

s) [29]. Both of these methods are subsets of the

Method of Weighted Resicluals (\MWR) [3-4]. The formulation of a NIWR-

involtes the followingsteps [37]:
1. Discretization of a caleulation domain into elements of a specilic shape.
2. Prescription of appropriate element based interpolation functions.
3. Derivation of discretized cquations nsing a suitable form of the NIWR.
4, Element by element assembly of the coefficients in the discretized equations.

5. Solution of the resulting discretized equations.

Conventional FET's for finid flow and heat transfer [2, 12] employ the Galerkin
MWR [23] to derive the algebraic discretization equations, where the weighting
function is the same as the interpolation function.

CVFDM's can be described as subdomain-type methods of MWR [20, 34].

Their formulations are as follows:

1. Discretization of a caleulation domain into control volumes, and nodes asso-

ciated with these control volizmes.

2. Prescription of appropriate functions for the estimation of gradients and

values of the dependent variables.

3. Derivation of discretization ecpuations, which are algebraic approximations to
the governing differential equations. Here, the MWR as it applies to contral
volume, or subdomain, formulations is used.

5



4. A node by node assembly of the discretization equations.
5. Preseription of a procedure to solve the resulting discretization equations.

For each node, the weighting function is set to unity over the associated control

volume, and zro elsewhere [20]. The most outstanding feature of CVFDM's is

that they satisfy the exact numerical conservation of mass, momentum and energy

and hence over the entire caleulation domain [29]

over each control volun
The CVFDM:
Orthogonal Grid (NOG) formulations [34]. However, CVFD\I's are found to be

can be further subdivided into Orthogonal Grid (OG) and Non-

most snitable for mildly complex domains for which fairly orthogonal, and smooth
gridsean be generated [34]. Thisis becanse in NOG's, the grid lines are not normal
to the control volume faces. and hence the accuracy of the algebraicapproximations
to the flux integrals across the control volume faces suffers. It should be noted that

FEM'sdo notsuffer from this limitation. Indeed, the strength of FEM's liesin their

abilityto discretize complex caleulationdomai lly in irregular-shaped and
threedimensional geometries.

Control Volume Finite Element \lethods (CVFEM's) combine the attractive
features of both FEM's and CVFDI's. They allow solution on irregular shaped
domains, similar to FENM's. and they use the subdomain NWR to apply conser-
vation principles to control volumes constructed around nodes in the calculation

domain, similar to CVFDM's, Therefore, CVFEM's also satisfy global conserva-

tion requirements for mass , momentum and energy.

CVFDAI's and CVFEM's both use subdomain-type MR, but they are dif-
ferent in a fow aspects. One ditference between, them is in the way the dependent
variables are interpolated. In CVFDAI's. the dependent variables are usually in-

terpolated by locally one-cimensional functions defined either along grid lines, or

6



flow-oriented lines. On the other hand. in CVFEM'S. the dependent variables
are usually interpolated by multi-dimensional functions defined over the finite el
ements. Another difference between the two methods. is the choiee of the co-
ordinate system used to define the velocity components. For co-ordinate systems
other than the Cartesian system, eurvature related terms arise in the governing
differential equations. In both OG and NOG fornulations, the curvature terms

can be complicated, and may lead to a loss

in the numerical sohation of

the governing equations [34]. Most CVFEM's are formulated in the Cartes

e
ordinate system, and hence curvature related terms are not involved, It is hecause
of these fundamental differences, that CVFEM's can provide accurate solutions to

the governing equations in complex domains. A detailed discussion of (e differ-

ences and similarities between CVFDNI's and CVFEM's is

able in Prakash

and Baliga [34].
In the following two sections, some recent advances in CVFEM's for both

convection-diffusion and fluid flow problems will be reviewed.

2.3 CVFEM’s for Convection-Diffusion Prob-
lems

Convection-diffusion problems involve the solution for a dependent variable in the

presence of a known flow field. The dependent variable of interest is convected with

the flow, while its gradients cause a dliffusion transport. A sati

tory solution

lure for ion-diffusi blemsis a prerequisite for the formmlation of

methods to solve fuicd flows.

A CVFEM for convection-diffusion problems was originally introduced by Baliga



and Patankar [3, 4.

They diseretized the domain using three-node triangular

elements. Within each element. the transported sealar (in hoth convection and

diffusion tenns) was interpolated using a flow-oriented function that considers the

relative: strengths of convection and diffusion in the mean flow direction, as well as,

difusion normal to that direction. Thi

interpolation function was derived from a
simplified version of the appropriate governing equation. written with respect to

an element-based flow-oriented coordinate system. The aligning of one of the axes

in the local element-based coordinate svstem with the mean flow direction in the
element helps to reduce false diffusion [33]. Prakash (32] later modified this inter-
polation function to include sonree relatec! variations of the dependent variable in
the flow direction, Hookey and Baliga [18. 19] introduced a source related term
that aecomted for influences both parallel and normal to the mean flow direction.
The interpolation function proposed by Prakash [32]is a special case of the func-
tion proposed by Hookey and Baliga. For the problems tested in [18, 19, 32], an
improvement in acenracy over resilts obtained with other CYFEM’s was reported.

Ramadhyani and Patankar [36]. and later, Schueider and Raw [38, 39, -40] in-
troduced CVFEM's for quadrilateral finite clements. In [38], Schneider and Raw
introduced a paositive-coefficient upwinding procedure, in which the coefficients
arising due to the algebraic approximation of the convection fluxes are assured
to be positive at an clemental level, and hence at control volume level. In (39],
an upwinding formulation was presented that was similar in form to the positive
coefficient scheme, however, the dircetionality of the flow was more closely approx-
imated., reducing false diffusion, but allowing for the appearance of some negative
coeflicients. For the problems they tested [39], it was found that the magnitude of

the negative coefficients were small enough that they did not pose any difficulties.



The effects of diffusion, both parallel and normal to the mean tow direction, and
source terms were also explicitly accounted for in the interpolation function for
the convected scalar [39]. In this method, the pressure gradients were included in

the interpolation functions for velocities

an clemental level, this interpolation
scheme allowed for the development of an equal-urder rolocated formulation of
incompressible fluid flow problems.

In the context of CVFEN's with triangular clements, Pra

I introcuced the

donor-cell scheme as a means of ensuring positive coeficients [33]. This approachy
stated that the value of a dependent variable convected out of a control volune

must be the value of the dependent variableat the node within the control vohime.

This approach guarantees positi

cocfficients, bt takes litthe acconnt, of the di-
rectionality of the flow, and takes no account of the effeets of ditfusion and source
terms on the interpolation of the convected scalar. The positive coeflicient scheme

proposed by Schneider and Raw [38] is a more attractive approach to eliminate

negative coefficients. even though it involves more computations.

2.4 CVFEM'’s for Fluid Flow Problems

In the original CVFEM, Baliga and Patankar [3, 3] proposed an unequal-order

incompressible CVFEM in whicli the domain is first di

ized by six-node trian-

gular elements, and these “macroclements” are then divided into four three-node
“subelements” by joining the midpoints of each side. Pressure is stored at the
vertices of the macroelements, and velocity is stored at the vertices of all subele-
ments, which results in an unequal-order scheme that avoids solution harmonies.

This formulation also employs a mixed interpolation scheme: pressure is interpo-



lated linearly in the macroelements. and the veloeity components are interpolated
by flow-oriented upwind type functions within the subelements. Polygonal con-
trol volumes used in the discretization of the continuity equation are constructed
aronnd the vertices of the macroelements, while those used in the discretization
of the momentnm equations are constructed around the vertices of the subele-
ments. This method has been used in conjunction with SIMPLE. SIMPLER, and
SIMPLEC [3, 5, 18, 20, 6] solution algorithms. However, this scheme has several

limitations related to the nse of two types of elements and control volumes. Since

the momentum and continuity equations are discretized using two different control

volumes, miss conservation is not strictly satisfied over the momentum control

volnmes. Also, the diseretization equation for pressure is quite different from the

diseret ables and a separate equation

zation equation for the other dependent va

solver is needed, Finally, since the unequal-order method uses a much coarser

prid for pressure, it may not be very acenrate for problems in which the pressure

aradients are large.

The first equal-order CVFEM with three-node triangular elements was pro-
posed by Prakash and Pantankar {30, 31]. In this method. pressure and velocity
are computed at all grid points, and the discretization of the continuity and mo-
mentum cquations uses the same control volumes. The velocities used in the
momentum equations are interpolated by the flow-oriented upwinding type func-

tions proposed in 3, 3], pressure is interpolated linearly, and the mass flow field

in cach element is obtained from linear interpolation of a pseudo-velocity field and
pressure. The use of the pseudo-velocity and pressure in the discretization of the
continuity equation provides the necessary coupling between velocity and pressure,

which effectively prevents the appearance of pressure harmonics. This method was

10



formulated in the coutext of the SINPLER solution algorithm [20], and it has been
extended to three-dimensions by LeDain-Muir and Baliga [24, 23]

In an attempt to refine his previous eqnal-order methad, Praka

sl (32] proposed

a second method. In this method. the interpolation funetions for the s de-

pendent variables include sonrce-related terms, in order to provide for a souree

influence on the distribution of the dependent v ble within an element. The
appropriate pressure gradients are included in the source related terms used in
the velocity interpolation functions, and it is this explicit inclusion of the pres-
sure gradients that prevents the appearance of spurions oscillations of velocity and
pressure. A solution algorithm similar to SIMPLER is used to solve the diseretized

momentum and continuity equations [32].

Hookey and Baliga (18, 20] modified the interpolation functions and solution

algorithms of the cqual-order CVFEN in [32), They employed an improved in-
terpolation function which included sonrce term effects in directions both parallel

and normal to the mean flow within each element. Furthermore, a SIMPLEC type

solution algorithm was used. and the velocity-correction formulation more

completely specified than in [32]. However, the resulting prossre-correction equa-

tion involved up to twenty-five neig} ing nodes in two-di

I problems,

l. Re-

and this would make extensions to thredimensional problems impracti

cently, Hookey [21] successfully reduced the number of neighbouring nodes in the

discretized equations. For two-dimens 1 probl the i igghibonring

nodes was eight for both pressure and velocity equations. This method was, there-

fore, better suited for three-dimensional fornmlations. The discretized momentum

and continuity equations were solved in a coupled manner using a Coupled Equa-

tion Line Solver (CELS). The CELS solves the conpled equations simultancously



along a grid line in the calenlation domain. and iteratively improves the overall

solution by successively sweeping the domain line by linc. in alternating directions,
wntil a desired level of convergence is obtained [21].

Schneider and Raw [39] have also extended their convection-diffusion CVFEM

to flow problems. The key feature of their method is that the interpolation func-
tions used for convection terms in the momentum cquations explicitly include the
pressure gradients, therefore, the velocity and pressure fields are coupled. In their
method, the calenlation domain is discretized using quadrilateral elements instead
of triangular elements. The use of triangles is believed to be more efficient for irreg-
nlar shaped domains and adaptive grid methods, because triangular elements allow
more freedom in the placement of nodes within the calculation domain. Schneider
and Raw used a direct banded solver for the solution of the algebraic discretiza-

the cost of such

tion equations of two-di ional problems. In th
asolution method is prohibitive.
Recently, Saabas [37) lias developed an equal-order CVFEM for the simulation

of three-di ional turbulent inc fluid flow. To overcome problems

with outflow houndaries inherent with the method developed by Hookey [21], he
has used “mass conserving” velocitics, derived from the discretized momentum
equations, to discretize the continuity equation. For example, the r-component of
the “mass conserving” velocity at a node i, ul", can be expressed as:

o= n,+.1,“§i% (2.1)

where the pseudo-velocity, i, is the summation of all terms on the right hand side

of the discretized r-momentum equation, except for the pressure gradient term,

divided by the coefficient multiplying ;. The pressure coefficient term, d¥, is the

area of the control volume, divided by the coefficient multiplying u;. A similar

12



can be d ped for the y-component. ¢}, The nodal values of i, &,
d* and d® are interpolated linearly within an element in order to provide algebraic
approximations to the mass flux at the control volume faces. Also. the J* and d*
terms are used in conjunction with the elemental pressure gradients to prevent the
possibility of pressure harmonics. This methad forms the basis for the CVFEM to

be implemented in this thesis.

2.5 Multigrid Solution Methods

Multigrid methods have been developed only recently, Tn what probably was the
first multigrid publication, Fedorenko [13] formulated a multigrid algorithm for the
standard five-point finite difference discretization of the Poisson equation. This
work was then generalized to the central difference diseretization of the general

linear elliptic partial differential equations by Bachvalov [1]. The first prac
results were reported by Brandt [9, 10], in which he ontlined the main principles
and the practical utility of multigrid methods. The multigrid method was also dis-

covered independently by Hackbusch [17], who laid firm mathematical foundations

and provided reliable methods. The common property of these multigrid methods

is their abi

to obtain optimal convergence rates, in terms of computing effort,

which are linearly dependent on the number of grid points.

Much work has been done in the 1980's on extending these methods to the Euler
and Navier Stokes equations. Studies related to luninar flow in simple rectilinear
geometries by Lonsdale [26], Vanka [41] and Becker et al. [8] reported that favorable
convergence rates were reached by using multigrid techniques. In these papers, the

speed-up factors were of the order 10100, d

nding on grid density, type of flow

13



and the precise manner of multigrid implementation. Althongh rigorous proofs of
the rates of convergence of multigrid methods are complicated. there is no doubt
about the efficiency of these methods when compared to iterative solutions on one
grid. A more detailed multigrid bibliography can be found in [11].

Of particular interest to researchers in the field of CVFEM's is the work of Me-
Cormick [27). McCormick [27) independently developed a CVFEM as he thought
it would be the ideal method for MG and muitilevel adaptive techniques. In [27]
MeCormick describes the implementation of a CVFEM for diffusion problems in a
MG algorithm. Also described is initial work on the implementation of a CVFEM

for viscous flows hased on a stream function-vorticity formulation of the governing

equations. This work has been the inspiration for the work in this thesis. The suc-

ssful application of MG to CVFE's in [27] as led to the attempt to implement
M

the viscous fluid flow problem. Hookey (22] has implemented a CVFE-MG method

in the context of a CVFEM based on the primitive variable formulation of

for primitive variable formulation of viscous flows using the CVFEM in [21] with
the CELS. In this thesis, the CVFEM of Saabas [37) will be implemented in the

context of a multigrid algorithm.

2.6 Summary

This chapter has presented a brief overview of some of the numerical methods
available for the solution of incompressible flows. Emphasis has been placed on
the CVFEM's that have been developed for the simulation of viscous fluid flows.
In the next chapter, the formulation of the proposed CVEFEM for steady, viscous,

incompressible. two-dimensional fluid flow will be discussed.
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Chapter 3

Formulation of the Proposed
Two-Dimensional CVFEM

3.1 Introduction

The formulation of a CVFEM for steady, viscous, two-dimensional, incompress-
ible fluid flows is presented in this chapter. The proposed CVFEM is an equal-
order colocated method and it was originally presented by Saabas [37] for three-
dimensional turbulent flows. The presentation is divided into seetions on the fol-
lowing topics: (1) definition of the governing equations; (2) domain discretization
details; (3) derivation of control volume integral conservation equations; (4) spec-
ification of element-based interpolation functions for the dependent variables; (5)
derivation of the discretized forms of the conservation equations and boundary

conditions: and (6) algorithms used to solve the discretized equations.

3.2 Governing Equations

The partial differential equations governing steady, two-dimensional, viscous, in-

compressible fluid flow are the following [43]:
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where w and » are the velocity components in the r and y directions, respec-
tively, p the pressure, g the dynamic viscosity, T the absolute temperature, k the
thermal conduetivity, ¢, the specific heat at constant pressure, @ the viscous dis-
sipation term, ¢ a scalar dependent variable, T its associated diffusion coefficient.
and 8%, 8. ST, and §? are the volumetric source, or generation, terms for the
appropriate equation.

These partial differential equations may he cast in the following conservative

forms [20]:

S.i=5 (3.6)



Ti=0 3.7)

Where , J is the combined convection-diffusion flux vector. S is the

puree term,
and 7 is the mass flux vector pi. Equation 3.6 represents the r-momentum equation

when:

J = pin - pNu (3.8)
o
= 2 A

s =s-3 (3.9)

the y-momentum equation when:

T = piv=p (3.10)
p
= §- 3
s S’ B (311
the energy equation when:
» k= ”
J = piT - =¥T (3.12)
Cp
ST 1(dp o
- St P 3.3,
2 oy i p ("01 * ‘Dy & E18)
and the governing equation for the scalar dependent variable » when:
J = piv - T¥e (3.14)
§ =9 (3.13)

Integrating the governing Eqs. 3.6 and 3.7 over a control volume V', which is fixed

in space, gives:

[ ¥ Tav = /VSJV (3.16)

/6-rdv = (3.17)
a



Applying Gauss’ Divergence Theorem to Eqgs. 3.16 and 3.17. the integral forms of

the governing equations can he obtained:

Joids = dv s
[, T Asz (3.18)
[ q-iids = 0 (3.19)

where 9V is the surface of the control volume, and i is a unit outward vector

normal to the differential arca ds.

3.3 Domain Discretization

In the proposed CVFEMI, the calculation domain is discretized by a line-by-line
struetured grid. Triangular elements are constructed by drawing one of the two
possible diagonals in each quadrilateral formed by the intersection of the grid lines
resulting from the domain discretization. All the dependent variables are stored at
all the nodes in the domain, giving rise to the so-called colocated scheme. The dis-

ecretization of a representative irregularly shaped caleulation domain is illustrated

in Fig, 3.1a. An advantage of using triangular elements is that they do not require
isoparametric transformations [44]. which are needed by general quadrilateral ele-
ments.

Onee the caleulation domain is diseretized with the triangular elements, polyg-
onal control volumes are constructed around each node in the calculation domain,
by joining the midpoint of the longest side of the element with the midpoints on the
two remaining sides. This results in two control volume faces within each element.
The polygonal control volumes « istructed in an irregularly shaped calculation

domain diseretized by triangular elements are shown by dashed lines in Fig. 3.1b.
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These polygonal control volume faces have the following characteristies: (1) they

do not overlap: (2) collectively they fill the entire ealeulation domain: (3) their

boundaries do not involve interelement edges: and (4) they can be used with any

triangulation. These characteristics facilitate the formulation of a CVFEM that

possesses the conservative property [3. 29, -H4].
As stated previously, the discretization scheme employed arranges the nodes
in a line-by-line pattern. Such an arrangement of the nodes greatly facilitates the

in the discretiz ations, and permits solution of

assembly of the
these equations with iterative line-hy-line solvers. Further, a structured mesh of

this kind is perfectly suited to the nse of multigrid techniques.

3.4 Integral Conservation Equations for a Con-
trol Volume

Using the control volumes defined in the previous section, the integral conservation
equations. Egs. 3.18 and 3.19. can be specified for a control volume as follows. With
reference to the polygonal control volume associated with a typical node 3 within

the calculation domain. Fig. 3.2, Eqs. 3.18 and 3.19 can be east in the following

+ [similar contributions from other clements associated with node 3

+ [boundary contributions. if applicable] = 0 (3.20)



+ [similar contributions from other elements associated with node3]

+ [boundary contributions. ifapplicable] = 0 (3.21)

where Mj is the midpoint of the corresponding side of the triangular element, see
Fig. 3.2. The first bracketed terms in Eqs. 3.20 and 3.21 represent the contributions
of element 123 to the control volume conservation equations for the control volume
surrounding node 3. The control volumes in this two-dimensional formulation are
assnmed to be of unit depth, therefore, the surface and volume integrals in Eqs. 3.20

and 3.21 reduce to line and area integrals, respectively.

3.5 Interpolation Functions

Interpolation functions are required for all dependent variables, source terms,
and fuid properties that appear in the integral conservation equations, Egs. 3.20
and 3.21. It should be noted that all the interpolation functions are defined at the

element level. Each interpolation function is discussed in this section.

3.5.1 Interpolation of Thermophysical Properties

All thermopliysical properties, such as viscosity p, density p, and all other diffusion
coefficients T are supplied at the three nodes of each element, and an arithmetic

mean of these nodal values is assumed to prevail over the corresponding element.



3.5.2 Interpolation of Source Terms

The source terms, 5. §*. S7. and §* in the conservation equations are linearized

using Taylor's expansion [20]. if required, aud expressed as fllows:

5= (S + (), m

s o= (S0, + (8)), (3.23)
sT = (S_T)‘ + (S;,’).T. (3.24)
s = (89), + (s2), (3.25)

where S, represents terms independent of the superscripted variable, and S, pro-

vides for a linear d 4 of S on the cor ling variable. The values of S,

and S, are supplied at the three nodes of cach element, and these nodal values are
assumed to prevail over the corresponding subcontrol volumes. The appropriate
dependent variable, used in the linearized source term, is also assumed to be the

nodal value associated with the corresponding subeontrol volume.

3.5.3 Interpolation of Pressure
Within an element. the pressure is interpolated linearly:

P = mr+hy+te, (3.26)

The coefficients a,, by, and ¢, in Eq. 3.26 are defined by the nodal values of pressure,
and the geometry of the corresponding triamgular element. The pressure gradients

can be expressed as follows:

9 1 P
9—: =a = m;ymul,p. (8.27)
o o ;

== -'—’”?::Izmul,]‘. (3.28)
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A complete derivation of the coefficients in the above equations is given in Ap-
pendix A. It should be noted that the pressure gradients within cach element are

constant.

3.5.4 Interpolation of Velocity
Introduction

In the proposed CVFEM, three different interpolation functions for velocities are
used: (1) mass weighted interpolation (MAW) is used when velocity is treated

as a couvected scalar; (2) linear interpolation is used when velocity is treated as

a diffused s 1 and (3) linear interpolation of a pseudo-velocity is used when

velocity appears in the mass flux terms (pif + i) in the continuity and momentum
cquations. The first two interpolation functions are discussed in this subsection

and the third will be described in section 3.6.2.

Mass Weighted Interpolation for the Convected Scalar

The MAW scheme is an adaption of a positive coefficient scheme, introduced by
Schneider and Raw [38] for quadrilateral elements, to the case of triangular ele-
ments with control volumes as described in section 3.3. The essence of this scheme

is to ensure positive contributions, at an element level, to the coefficients in the

algebraic discretization equations. This will ensure that the coefficients in the

completely assembled algebraic discretization equation for a control volume will

be positive. This will help to overcome difficulties with negative coefficients in
some of the previous CVFEA's.

Consider the element shown in Fig. 3.3a. The midpoint of a control volume
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face. or integration surface is called the integration point [38], and is represented

by the subseript ip. The value of the conveeted s at the integration point is
assumed to prevail over the surface.

The mass flux across a particular subeontrol volume surface within an clement
is taken as positive when the velocity vector at the integration point is in the same
direction as the assumed normal to the surface. With reference to Fig. 3.3a, the

mass flux across face 1 is given by:
Wy o= pitt it (3.20)
A similar expiession can be written for the mass flux across the other subeontrol
volume face within an element.
Given the assumed flow direction shown in Fig. 3.3b, the MAW sclieme ap-

proximates the values of a convected scalar, o, at the integration points on control

volume faces 1 and 2 as follows [37]:

Oipy = foip + (1= )by (3.30)

Oipy

by (3.31)
where

f = min [m:u (3.32)

and @ refers to the nodal values, and ¢ indicates a value at an integration point.
Considering the subcontrol volume surrounding node 3 in Fig. 3.3h, the integral

of the convective flux out of the subcontrol volume can be written as follows:
M

M, . . —
M“pao-a'ds—/m pio - s = my [fbg+ (L~ f)by] —niniby (3.33)



which ean be rewritten as:

i

T this case both iy and iy are positive, because they are in the same direction as

1y M,
ity i ds — /V *pip-ittds = iy (1= f) by —(mg —ni f) B (3.34)
ny

the assumed unit normals 70 and 7%, respectively. Therefore, negative coefficients

due to the algebraic approximation of the convection terms cannot occur at a
subeontrol volume level, or at the control volume level. Tlhe more general case
where either or both mass fluxes are negative will be studied later. The “price” that
positi

is paid to h ocfficients is a less faithful accounting of the directionality

of the flow, and the distribution of the scalar over the element. This may result in

increased false diffusion in the numerically predicted solutions.

‘The integration point value of the convected scalar at ip;, which is assumed
to prevail over surface 1, can depend on the value of the convected scalar at ipa,
as well as the nodal values of o, In turn, the integration point value of ¢, can
depend on the value of o at ip. and at the nodes. Coasequently, a 2x2 system
of simultancous linear algebraic equations, within each element, must be solved
in order to express the integration point values in terms of nodal values. For the

element and associated nomenclature shown in Fig. 3.4b, the following rules can

be used to determine the integration point value of, where & is the index for the

control volume face, and the superscript ¢ indicates a convected scalar.

For control yolume face 1:
Wi >0 of = [os+(l-fi)ds (335)
M <0 o] = & (3.36)

where
1 =it [nuu' (%0)1] (3.37)
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For control volume face 2:

If rin>0 o5 = by (3.38)
If ria <0 0y = fro] + (1= fo)dy (3.39)

where

3 1y
=min |mar {—
i

u) ; 1] (3.40)

Solving these equations, the integration point values can be expressed as follows:
3

of = Y CMF@; (3.01)
=

The derivation of the C' M terms is given in Appendix A.

It should be noted that if there are only two control volume faces within eacli

clement, which is the case of the proposed CVFEM, the CMF terms in 1. 3.1

can be obtained directly from Eqs. 3.35 and 3.36 or Eqs. 3.38 and 3.30.

Linear Interpolation of a Diffused Scalar

In the proposed CVFEM, the dilfusive flux is approximated using a linear inter-
polation of the diffused scalar % within an element. The interpolation funetion

has the following form:

o' = dbe byl (3.42)

where the coefficients a, b, and ¢} are determined as presented in Appendix A,
These coefficients are only functions of the clement geometry and the nodal values

of ¢.



3.6 Derivation of the Discretized Equations

To obtain algebraic approsimations of the integral conservation equations for a

control volune, Eqs. 3.18 and 2.19. approximations of the element contributions

o Exgs. 3.20 and 3.21 are derived and assembled in an appropriate manner. Alge-

hraie approximations of the houndary conditions are then derived. if applicable.
and added 1o the element contributions. These approximations and assembly pro-

codures are disenssed in this section.

3.6.1 Momentum Equations

Integration of the Convection-Diffusion Flux across a Control Volume
Face

To determine the element  eontributions to the integral conservation equation,
. 3.20, it is necessary to integrate the Hux of momentum across the two control

valume faces in each element.
[ Integrated fux across control volume face k | =/ Jeoakds (343)
facek

Within each element, the combined convection-diffusion flux of z-momentum,

ed into its component parts in the r and

L. 3.8, across face k can be sep

y direetions:

To= T JE (3.44)
where

JE = pun - “% (3.45)

I = pru 4,,‘;—:; (3.46)




The unit normal to the control volune face k is defined by

A= (T by (3.47)
where
no= = e (318)
no= ry, - (3.19)
O (V£ P YRS e 7 W 3 (3.50)

In the proposed CVFEM. the integral of the combined conveetion-ciffusion tlux,
Eq. 3.43, is approximated using Simpson’s Rule [7]. Thus,

k

Foikgs = M
0 =
I
n
*%

(L + 4 (L + (y, | (3.50)

[
[

()5 + 4 (L) + ("u‘u\]

where the subscripts B and A indicate that the subscripted quantity i
at the positions shown in Fig. 3.4. for face k.

Usingg the definitions of the interpalation function cocllicients given in Appendix
A, the integrated flux across a control volume face k can be written in the following

compact form:

// JTeitds = R+ Chun + Gy (3.33)

where the subscripted numbers refer to the node numbering scheme in Fig

The integral of the source term in Eq. 3.20 is approximated as:

S gis " i | ¢ -
/‘3‘5 P [(Sc b (S8),m = 7 3 ,..] (3.54)

where $* indicates the z-momentnm sonrce term and the pressure gradient dp/dr.

For a complete derivation of Eqs. 3.33 and 3.54. the reader is referred to Appendix

27



B. 4 result from the geometry of the element.

e det and g, s in Eq.

A

and are deseribed in Appendis

Final Form of the Discretized Momentum Equations

53 can be derived for the integrated convection-

Expressions similar to Eq.
diffusion flux across the two control volume faces in each clement. When these
expressions are added appropriately with similar expressions from other elements
which make a contribution to the control volume surrounding a node i. along with
the applicable boundary contributions and integrated source terms, Eq. 3,34, the
algehraic approximation of the integral conservation equation for a control volume,
Eqq. 320, is obtained. The resulting discretized r-momentum equation can he cast

in the following form:
alwo= Y abu, +oef (3.33)

where the summation is taken over all the nodes neighbouring node i. Appendix C

and Fig. 3.4 demonstrate the complete assembly of Eq. 3.33, and the neighbouring
nodes that are involved in the equation.

A

the gmomentum equation. The f

imilar procedure can be followed to derive the algebraic approximation of

al form of the discretized y-momentum can he

written as:

= Yahv,+el (3.56)
0

The assembly of Eq. 3.36 is performed in the same manner as that of Eq. 3.



3.6.2 Continuity Equation
Introduction

As mientioned previously, a “mass conserving” velocity

is used in the mass flux

terms (pf - i) in the continuity and momentum equations, The approach taken

here is to use a particular form of the discretized momentum equations to define
four new nodal fields, which will be used in the preseription of snitable interpola-
tion functions for the “mass conserving™ velocities. To derive these fnetions the

discretized z-momentum Eq.

5 can be written in the following form:
alu, = 3 atu, — (p/Or)n AV + b (347)
O

In this expression. the e term of Eq. 3.5 has been separated into two terms. The

first of these terms is related to the volume integral of an average pressure gradient

(0p/0x)ay which

assumed to prevail over a control volume, Eqgunation 3

be rearranged as follows:

ayu, b (Dp/n)

R e (138)
Defining #; and d}t as follows:
& = M (3.59)
PR
d = A: (3.60)
u
Eq. 3.38 can be written as:
W= i, _.I;‘(Z—Z)w (3.61)

where u* is a mass conserving velocity component, and i is apsendo-velocity.

The pseudo-velocity field. &, and the pressure cocfficient field, & can be defined
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nsing Eq. and 3.60. It should be noted that the pseudo-velocity and pressure

ould he evalnated before the discretized momentum equations

coefficiont fields

are under-relaxed. Furthermore, the Dirichlet boundary conditions on the velocity

components (if any) are implementd as follows: at the points where the velocity

» and the

s set equal to the specified velocil

is specified, the appropriate i, or i,

corresponding d or df term is set to zero.

Interpolation of Mass Conserving Velocity
Within an element, each “mass conserving” velocity component is interpolated by
assnming a linear variation of the corresponding pseudo-velocities and pressure

coetficients used in conjunction with the local elemental pressure gradient. Conse-

quently, one can write the following expression for the “mass conserving” velocities

(in the ¢ dircetion) at cacli node within an clement:
i u (0
W= iy =l (E) (3.62)

where the i, and d terms result from the discretized momentum equation for the
appropriate node. The subscript, ¢, on the pressure gradient indicates that the
elemental pressure gradient. and not the average pressure gradient over the control
volume surrounding node ¢ is being used. This is done, even thongh the pressure
coetlicients ¥ are defined based on the momentum discretization equation for the
control volume surrounding node i, Eq. 3.61. If the average pressure gradient act-
ing on the control volume surrounding the node were used in the interpolation

of “mass conserving” velocity, it would have two disadvantages: (1) physically

nurealistic checkerboard type pressure fields could result; and (2) the resulting

diseretization equatio for pressure would contain a large number of neighbours,
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that could lead to an unwicldy and non-robust CVFEM [37]. The proposed in-

terpolation appears inconsistent. but it does not suffer from the above-mentioned

disadvantages. Moreover, in the limit. as the grid becomes very fine, the

Tage
pressure gradient acting on the control volume and the elemental pressure gradient
approach the same value [37].

The pseudo-velocitics, it;. and the pressure coetficients d, are known at the
nodal points. Inorder to determine the values of these quantities at the integration
points on the control volume faces within the elements, a linear interpolation of

the nodal values is used:

o= anr Fhy e (3.63)

A = apr by + o (3.64)

The a, through ¢, coefficients are functions of the element geometry, and the nodal

pseudo-velocit

. whereas the @z through e coefficients depend on geometey

and the nodal pressure coefficients. A complete de jon of these

and similar expressions for “mass conserving” velocities in y direc

s given in

Appendix A.

Integration of the Mass Flux across a Control Volume Face

The integral of the mass flnx across a control volume face k may be expressed as:
[Integrated mass flux across control volume face k| = / Feitds o (3.63)
facek

where

P = p (3.66)



Substituting Eqs. 3.47 and 3.62 into Eq. 3.65 gives:
Lk
ikds =
B

1 op\ 1* p\ 1*
’—k// A [ﬂ—r[“ (ﬂ)] n§+[ﬁ-m (a—’/)] nk bds (3.67)

Substituting Eqs. 3.27 and 3.28 for the clement pressure gradients into Eq. 3.67,
and using Simpson’s Rule to approximate the integral, one can obtain the following

compact form of the integrated mass flux in terms of nodal pressures:

/, #-itds = Efp + Efps + Efpy + B (3.68)

acek”

A complete derivation of the EX and B terms is given in Appendix B.

Final Form of the Discretized Continuity Equation

Expressions similar to Eq. 3.68 can be derived for the mass flow across the two
control volume faces in an element. When these expressions are added appropri-
ately with similar expressions from othier elements which make a contribution to
the control volume surrounding a node i. along with the applicable boundary con-
tributions, the algebraic approximation of the integral mass conservation equation
for a control volume is formed. The resulting equation can be cast in the following

form:
alp = Y ahp,tel (3.69)

where the summation is taken over all the nodes neighbouring node i. Appendix C,
and Fig. 3.4, demonstrate the complete assembly of Eq. 3.69, and the neighbouring

nodes that are involved in the equation.



3.6.3 Boundary Conditions
Introduction

If the node under consideration is located in the calculation domain. no boundary
conditions are present. and the specification of the diseretized equations disenssed
previously is complete. For nodes located on boundaries, however. the discretized
equations are incomplete until the flux across the side of element 123, from M, t0 3,
in Fig. 3.2b. is specified to complete the contribution of element 123 to the control
volume surrounding node 3. The transport of the sealar dependent variable, o,
out of the control volume from M) to node 3 can be specified as:

B ¥ LY
Intc;,rnluiﬂuxol'ooulnf] = [ Finita (.70
sy

control volumeside M to3

where 7 is the outward nnit normal vector to the element side ds. The equations in
this subsection are written for the general scalar dependent variable, o, however,

they may be interpreted as equations for the other dependent variables, n, », T

and p. where indicated. The derivation of the algebraic approximations of the
three types of boundary conditions. which are: (1) specified value boundary; (2)

specified flux boundary: and (3) outflow boundary, and the incorporation of these

boundary contributions into the discretized equations are described in the following

subsections.

Specified Value Boundary

The specified value boundary conditions is the sinp to apply; when the value

of @ is to be given a specific value, o, the diseretized equation for node i is
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written in the following form:
= e @)

It is implemented by setting all the calenlated coefficients in the applicable dis-

cretized squation equal 1o zero, and defining:
a? =1 & = D (3.72)

where ¢ can be replaced by u, v, T, or p. as required.
It shonld be noted that for the specified velocity boundary, both velocity
and psendo-velocity boundary conditions are implemented. The specified velocity

houneary coaditions for pseudo-velocities have been discussed in section 3.6.2.

Specified Flux Boundary

This boundary condition is used when the flux. of the quantity of interest, across
aboundary is specified. If the specified flux out of the control volume is denoted

by g, equation 3.70 can be written as:

a 4
[ Toids = [ ads (3.73)

where, g may be a constant or a function that can be integrated in closed form
over the houndary surface. When ¢ is available only at the nodes, then linear

interpolation is used between the nodes, and the integral of Eq. 3.73 is written as:

- 3
/Ml.l-rul.v = ["quv = AsyalBas+m) /4 (8.74)

where Asyy, —y is the length of the side of the element from position M; to node 3,

in Fig. 3.2b.
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Outflow Boundary

At outflow boundaries. if the

ndent variable is not specitied, the diffusion
transport is macle equal to zero by setting the dot product of the gradient of o and

the outward unit normal vector to the boundary. i, equal to zero:
Vol =10 (3.75)

Thisboundary condition is used to disconnect the calenlation domavin from external

influences across outflow boundaries. Thiere will, lowever, be a conveetive flux

across outflow boundaries, This fux

ntegrated as follows:

Integral of conveetive flux ontof Y o i
[ control volumesside M, to3 ] = /«-\I. Pit 0T ds (3.76)

In the proposed CVFEML, an algebraic approximation of this integr

is obtained
by assuming that ¢; prevails over the control voliume for node i. The mass flowing

out of the control volume :

(337)

Integrated mass flux out of _ /“ s fdn
control volumeside Af; to3 = ’ )

is approximated by assuming linear interpolation of p, u. and v between two nodes

on the boundary, such as nodes 1 and 3 in Fig. 3 It should be noted that in
Egs. 3.7G and 3.77. 7 is a “mass conserving” velocity.

To complete the speci ion of the continuity, and general

convection-diffusion equations at outflow houndaries the integrated convecive

flux across the boundary has to be incorporated into the forms of the diserefized

equations that have been obtained from element contributions alone, This is done
by adding the integrated mass flux, Eq. 3.77, to the appropriate cocfficient for ¢, ,

where & is replaced by u, v, or T for the appropriate equation.



3.7 Solution of the Discretized Equations
3.7.1 Solution Algorithm

In the proposed CVFEM, a coupled set of nonlinear algebraic equations for veloc-
ity, pressure, and other transported sealars are obtained as approximations of the
correspanding integral conservation equations. The nonlinearities in the equations
are solved by an iterative snccessive substitution procedure. in which the coeffi-
cients in these equations are evaluated using the most updated available values.

A

rgregated solution method with multigrid techniques is used to solve these al-

gebraic equations in this thesis. The overall solution procedure proceeds in the

following ste

I. Guess the pressure field. velocity fields, and any other dependent variables.

Evaluate allthe coclficients in the discretized momentum equations, Eqs. 3.55
and 3.56, excluding those resulting from the integral of the element pressure

gradient over the control volume.

5

. Evaluate the pseudo-velocity and pressure coefficient fields using Eqs. 3.59
and 3.60. Apply the boundary conditions, if the specified value boundaries

exist.

. Evalnate the coefficients in the discretized continuity equation, Eq. 3.69. Ap-
ply the appropriate houndary conditions, and solve the algebraic equations
to obtain the pressure field using a line-by-line tridiagonal matrix algorithm

(TDMA) [29]

Evaluate the contribution of the volumetric integral of the appropriate pres-

e

sure gradient to the control volume discretization equations for momentum,
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. Under-relax the discretized momentum equations

and add it to the constant term e, of

355 or 3

Apply any boundary

conditions, if needed.

il solve them to abtain

the velocity fields using a TDMA.

7. Evaluate the coefficients for the other dependent variables that are coupled

to the flow field. Apply the appropriate boundary conditions, underrelas the

equations, and solve.

. Repeat steps (2) - (7). wntil a suitably converged sotion is obtained.

. Solve for other dependent variables of interest that do not influence the flow

field.

It should be noted that the above algorithms <o not include the multigrid tech-

niques, which are discussed in the next chapter.

3.7.2 Under-relaxation of the Discretized Equations

The discretization equations are nonlinear and conpled algebraic equations. The
nonlinearities are resolved by iteration. If the change in the solution field from
one iteration to another is too large, the solution may hegin to oscillate, and
eventually may diverge. This problem is controlled by using the wnder-relaxation
techniques of Pantankar [20]. The discretized £-momentum equation, Eq. 3.3, is

underrelaxed as follows:

= Sau, 4 (1= a-.)%u" (3.78)
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where i) is the value of u, from a previons iteration. and a* is the under-relaxation

parameter (0 < o™ < 1). A comparison of Eq. 3.78 with Eq.3.33. shows that the

covflicient multiplying u, has been modified, and a new term has been added to

e sight side. When convergence is reached, n, = u}, and Eq. 3.78 reduces to

Eq. 8.55.
A similar method is used to underrelax the y-momentum equation, using the
parameter o, The continuity equation is not relaxed, as this would imply mass

sonree or sink terms in the discretized equation.

3.7.3 Solver used for the Linear Algebraic Equations

In the proposed CVFEM, a line-by-line Tridiagonal Matrix Algorithm (TDMA)
[29] is nsed to solve the algebraic discretization equations. The TDMA solver used
in this thesis allowed for sweeps in alternative directions. i.e. in both z and y
directions. which strongly enliances the convergence rate of the solution to the

algebraie equations.

3.8 Summary

The CVFEA described in this chapter may be used to simulate steady-state viscous
incompressible fiunid flows. Some sample solutions are included in Chapter 5. The
woal of this thesis, however, is to improve the convergence rate of this CVFEM
using multigrid techniques. The multigrid methods used, and details regarding
their implementation in the context of CVFEM's ate discussed in the following

chapter,
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Chapter 4
The Multigrid Methods

4.1 Introduction

Multigrid methods can lead to significant inereases in convergenee rates for iterative

solution technigues. I this thesis. a multigrid method is used in the contest of the
segregated solution algorithm for the CVFEM deseribed in the previous chapter.
Since the development of the mnltigrid technique is not original to this thesis, only
a very limited description of the concepts of multigrid is included in this chapter;
emphasis will be placed on the implementation of a multigrid algorithm in the
context of the CVFEM. For a detailed introductory text on multigrid, the reader
is referred ta Briggs (11).

In this chapter, the concepts of the residual equation, coarse grid correction.
prolongation, injection and V- and FMV-eyeles will be introduced. Then the
details of the multigrid implementation in the context of the CVFEM will e

discussed.
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4.2 The Residual Equation

Consider a system of linear cquations:
Ad = f (41)

where 1 is the exaet solution of this system. and f is the constant term of the

svstem. This set of equations can represent any of the discretized equations dis-
cussed in the previous chapter. Clearly the exact solution to the problem At = f
is unknown, while an approximation ¥, which can be caleulated by some iterative

method. is known. There are two important measures of ¥ as an approximation

to . One is the algebraic error whiel is given hy:
§=ii-v (42)

Unfertunately, the algebraic error is also unknown, since the exact solution i is

However, a computable measure of how well ¥ approximates d is

the residual, which can be expressed as follows:

f-av (4.3)

e

The residual is simply the amount by which the approximation ¥ fails to satisfy
the original problem A = . Its size may be measured by any of the standard
veetor norms. The two most commonly nsed norms for multigrid purposes are

defined by:

v\t
Er*,) (44)

where N is the total number of nodes in the discretized domain.

| and (€] =(

Rearranging Eq. 4.3 as:



and subtracting the above equation from Eq. L1 gives:
A = F (-1.6)

This is the so-called residual equation. which says that the error satisties the same

set of equations as the unknown @ when f is replaced by £ The residual equation,

and its form, play

a significant role in multigrid algorithms.

The residual equation. along with Eq. 1.2, can be used effectively to obtain a

better solution. The procedure is as follows:

ssuming that an approximation ¥

has heen evaluated by some iterative method. it is possible to evaluate the residual

T using Eq. 4.3. To improve the approximation V. the residual equation, Eq. 1.6,
is solved for € and then a new approximation can be obtained using the definition
of the algebraic error:

i =vV+é (1.7

This is the essence of the residual correction method, which pl 'y iportant

role in the formulation of multigrid algorithms.

4.3 Coarse Grid Correction

It is well established [13] that many of the standard iterative solution methods, for

example, Gauss-Seidel and Jacobi methods, possess a smoothing property. These

methods are very effective in eliminating high frequency components of the error,

while leaving the low frequency components relatively nuchanged. Therefore, these

methods illustrate a high convergence rate duiing the first few iterations, but the

are elimi 1, and one

rate quickly as the high freq

is left with only low frequency components of the error.
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One way to improve the convergence of an iterative method is to use a good

initial gess. A simple technique for obtaining an improved initial guess is to

perfornt some preliminary iterations o a coarse grid and then use these results a

an initial guess on the original fine grid. [eration on a coarser grid is less expensive

fower unknowns to be evaluated. However. it is the following fact

sinee there a

that makes coarse grid iteration more attractive: the smooth modes of the error on

afine grid are less smooth on a coarse grid. This conclusion can be easily seen from

figre .1, which shows that a smooth wave on a grid with N = 12 is projected

G (for more rigoraus verification, see [42]). This fact

directly to a grid with ¥
sugggests that when iteration begins to stall, meaning the predominance of the

smooth error modes, it is then advisable to move to a coarser grid, on which those

smooth error modes appear more oscillatory and iteration on that grid should be
more effective.

At thi

s point, the idea of using a coarse grid and the residual equation. Eq. 4.6,

can be incorporated to farm a powerful iteration scheme — the coarse grid correc-

tion schente, which is expressed as follows:
1. Tterate on Adi = f on a fine grid Q" 1o obtain an approximation ¥*.
2. Evaluate the residual £ = f — A",

3. Iterate on the residual equation A& = ¥ on a coarse grid Q2! to obtain an

approximation to the error &%,
AL, Correet the solution approximation obtained on Q* with the error approxi-
o

mation obtained on Q%; ¥4 — Fh + &%,

“The superscripts h and 2h in the above expressions indicate the grid on which the

superseripted variable is evaluated. In this procedure one would iterate on the -
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fine grid until the convergence deteriorates. Then iterations would be performed
on the residual equation using a coarser grid to obtain an approximation to the
error itself. This error would be used to correct the approximation to ¥ initially

obtained on the fine grid.

4.4 The Multigrid V- and FMV-Cycles

Using the residual equation and the coarse grid correction scheme, many forms

of multigrid cycling schemes can be developed, such as the V-eyele scheme, the

W-cycle scheme, and the full multigrid V-cyele (FMV) scheme. In the proposed

CVFEM, the FM\V" and V schiemes are employed.

The following notation is used to facilitate the description of the FNV and V
schemes: the right-hand side vector of the residual equation, ¥, is represented by
f, since it is just another right-hand side vector: and the solution of the residual
equation, &, is expressed by ¥, since it is just a solution vector. With these changes,

the pure V-cyele scheme is expressed in the following compact form by Briggs [11}:
o v (v )

This implies the following algorithm:

1. Iterate n; times on A*¥* = f* with a given initial guess ¥*.

2. If Q% = coarsest grid, then go to 3. else,
[ (fn - Ah“,h)
¥2ho

PR AV (‘-"m ; fzn)»



3. Correct V¢ — ¥k + [}y,

A4, Tterate ny times on AR = F* with initial guess ¥,

‘The algorithm steps down from the finest grid to the coarsest grid, and then works
its way hack to the finest grid. Figure 4.2a shows the schedule for the grids in the
order in which they are visited. The variable being solved on each grid level is
indicated in Fig. 4.2a by u for the actual equation variable and e for the error. In
the above algorithm, T2 and I}, are grid transfer operators which transfer data
from fine to coarse, and coarse to fine grids, respectively.

Implied by this algorithm is that one would iuitially solve the given problem
on the fine grid, then the residual is evaluated and transferred to a coarse grid.
On the coarse grid one would solve the residual equation for the error € on that
grid. Oue would then determine the residual on this grid level and transfer it
to the next coarse mesh, and again solve the residual equation. This descent is

continied until the coarsest grid level is reached. Then one ascends to the fine grid

level by correcting the error at each grid level, providing a better approximation,
then iterating and correcting on the next finest grid level. This is repeated until
the finest grid level is reached. Then one would iterate on this level with the new
corrected initial value.

To take full advantage of the capabilities of multigrid, one would like to have
the best possible initial guess at the beginning of the V-cycle. To do this one would
use the FMV-cycle, as shown in Fig. 4.2b. In this algorithm one would actually
start on the coarsest grid level, obtain a solution, transfer this solution to the next
finest grid level, then solve as in a V-cycle. but at the end of every V-cycle, one
would interpolate the solution to an initial guess on the next finest grid level. This

is ropeated until the finest grid level is reached.
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Briggs (1] describes the FMV-cycle in the following mauner:

o~ Fant (v

. If Q% = coarsest grid. then go to step 3, clse.
2 b (f&. = Akv‘l)
-0
VA FAIVH (7 ).

2, Correct V¢« v* + 1B, ¥,

3. ¥ — vk (\7",(") n3 times.

Figure 4.2b shows the scheduling of grids for FNMV with ny = 1. Each V-cyele is

preceded by a smaller V-cycle designed to provide the best initial guess possible.
The variable being solved on each grid level is indicated in Fig. 1.2a by u for the
actual equation variable and e for the error.

To provide the best possible ncceleration of a solution with wltigrid wsing

these two algorithms one would first perform an FMV-evele and then continue

with V-cycles. This is what is done in the algorithm in this thesis.

4.5 Multigrid Algorithm

In the CVFE-MG method presented in this thesis, the segregated solution algo-
rithm, which has been discussed in the previous chapter, is used in the context
of an FMV-V-cycle algorithm. The results generated by this CVFE-MG are then
compared with the results obtained by the CVFEM presented in the previons

chapter, when it is implemented on one grid.
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4.5.1 Solution Algorithm

The coeflicients in the discretized equations representing the actual problem, and
the residual equations are the same, i.e. A. The only differences hetween the two
sets of equations are the right hand sides. and the dependent variables. There-
fore, the cocfficients in both sets of equations are evaluated using the techniques
deseribed in Chapter 3. At each level in the multigrid algorithm. the segregated

solution procedure is used to solve for u, v, p, or the errors in u, v, p. i.e. e", e”, and

e, The following is a brief description of the steps followed in the FMV-V-cycle
algorithm nsed in this thesis.

The FMV-V-cycle algorithm starts from the coarsest grid level. and on this
level, the actual dependent variables (u. v, p) are evaluated with an initial guess,
P, (refer to Fig. .2b). The newly obtained u, v, p-field is interpolated into
the next finest level, %, New values of u, v, p on Q' are evaluated using the

interpolated values as an initial guess. Then the residual of the dependent vari-

ables, P, is calenlated and injected into the coarsest level, 2%, where the residual
eqnations (A" = ) are solved to obtain the error, e, e’. and e? of the actual
dependent variables, with an initial guess of zero. The error is then interpolated
into the next finest level, 2%, and used to correct the actual dependent variables
§

there (¥ — + &™), With this better solution as an initial guess, the actual

dependent variables, «, v and p are evaluated and interpolated into the next finest

level, 2%, New values of u, v, p on 20 are evaluated using the interpolated val-

ues as an initial guess. Then. the residual at level % is calculated and injected

to level 2. On level ™, residual equations are solved with an initial guess of
210 to ubtain errors of the dependent variables, e, ¥, and eP. The residual of

these errors is injected to level Q% where the residual equations are solved for
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the “errors™ of the errors of the actual dependent variables with an initial guess of
zero. These “errors™ are interpolated to level ', and nsed to correet the errors

h

and the corrected values

of the dependent variables, are use

better ini
guess to solve the residual equations at level ', Then the newly obtained &% is

interpolated to level %, and used to correct the actual dependent v

bles 1, 1,
pon level @, Tlhe corrected dependent variables are used as a much better initial
ghess to solve the actual dependent variable equations on that level (), and the
newly obtained value, @2*, is interpolated to the finest level 2, where it is nsed
as an initial guess to evaluate u, ¢ and p on the fnest mesh, AU s point, one
obtains the actual dependent variable fields on the desired fine grid lovel, Aftor
that, a few V-cycles can be used as may be required. It should be noted that,

Lis

at cach grid level, the segregated solntion algorithm described in section
used to solve for u, v, p and the errors in these variables. This requires cocflicient

evaluations, as described in Chapter 3 at cach grid level,

4.5.2 Intergrid Transfer

As mentioned above, the FMV-V-cycle algorithm requires data transfer hetween
coarse and fine grids. Transferring vectors from a coarse grid to a fine grid is ealled

prolongation or interpolation. Ma

nterpolation methods can be nsed, however,

for most multigrid purposes, the simplest linear interpolation is quite effective [11].

Therefore, a linear interpolation is used in this thes

The linear interpolation operator is denoted by If. It takes co rid veetors

and produces fine grid vectors according to the rule ¥ = I, ¥4, where, for two-

i 1 problems, the of ¥* are given as follows:




f— &

) i
"-'_-y.:uu =3
e (4.8)

The subscripts on the right hand sides of Eq. 4.8 refer to the numbering scheme
on the conrse mesh. The second elass of intergrid transfer functions involves moving
veerors from a fine grid to a coarse grid, which is called restriction or injection.
Like interpolation methods, many restriction methods can be used in the multigrid

algorithms. In e proposed CVFENL. a full weighting injection operator [11], which

is denoted by I2%, is used. Tts function can be defined by #20 = It 7, where,

2 " y
ny = gy (g, e

2ye1 + i i+ Uhiay1)/2

(it o+ o,

o1+ i)/ (49)

The subscript on the left hand side of Eq. 4.9 refers to the numbering scheme on

the coarse mesh.

4.5.3 Some Details about the Programs

As discussed in section 4.5.1, at the end of the FMV and the beginning of every
V-eyele, the latest actnal dependent variables u, v and p are obtained. To take
full advantage of this up to date solution, the coefficients of the momentum and
continuity equations are evaluated using these newly obtained values to calculate

the residual. This method has been proven to be very cffective in increasing the

ency of the proposed CYFE-MG.



Although under-relaxation parameters, a, and o, have been used for momen-
tum equations. the results may oscillate or even diverge when a very coarse grid

is used. In this case, performing a few iterations of the solution algorithm at the

end of every V-cycle, before caleulating and injecting residuals to the coarser grid,
was found to be an cffective means of promoting convergence. This treatment was
more efficient than using too much under-relaxation or inereasing the lovel of the
coarsest grid, as both led to slower convergence for the proposed C\'FE-MG.

only evalnated

In every V-cycle, the actial dependent variables, . v and p a

at the finest grid level. At other levels, u, v and p, which are needed to caleulate

the coefficients of momentum and continuity equations, are injected from the finest

grid. The “mass conserving” veloci are injected in the same manner, This
injecting schieme is more stable than injecting the “mass conserving” velocities
from every next finest grid and interpolating them from every next coarsest prid.

It is obvious that two sets of boundary conditions are needed in the FNV-V-

cycle algorithm. One is for the actual dependent variables. w, v and p, which has
been discussed in the previous chapter, the other is for the residual equations, If a

ables at the

specified value boundary is used. the errors of the actual dependent vz

fied

bonndary are zero, therefore, it is also a speci e boundary for errors. For

specified flux and outflow boundaries, the errors on the hounda are imknown,

tions

therefore, when injecting residuals from fine to coarse grids. residual inje

both inside and along the boundaries are needed.



4.6 Conclusion

This chapter has presented a brief review of the concepts of multigrid. and details
of the implementation of FMV- and V-cyele multigrid algorithms in the context

of the segregated CVFEM have been diseussed,  In the following chapter, the
efficiency of this CVFE-MG will be compared with that of the CVFEM applied to

one grid, when both methods are used to solve two test problems.



Figure 41: A wave on 2 (N=12) is projected onto (22 (N=6) [11].



Fignre £.2: Sehedule of grids for (2) Veeyele and (b) FAV scheme [11].



Chapter 5

Testing of the Proposed CVFEM

5.1 Introduction

The two-dimensional CVFEM presented in Chapter 3 and the multigrid solution
algorithm proposed in Chapter 4 have been subjected to intensive testing and

evaluation. The results of two test problems are presented and discussed in (his

chapter. These test problems are: (1) steady, laminar recirenlation of an ineom-
pressible Newtonian fluid contained in a square enclosure with a sliding lid (i.e.

square driven cavity

and (2) laminar flow over a rearward facing step, Al compn-
tations were performed on the DEC 4000/610 computerat the Conter for Computer

Aided Engineering of Memorial University of Newfoundland.

The remainder of this chapter is divided into three sections. In section

the square driven cavity test problem is presented, in section 5.3, the rearward

facing step problem is discussed. and in section 3.4, the results are summarized.

The proposed CVFE-MG results are compared with numerieal d ailable in
the literature, and. in particnlar. the efficiency of the CVEE-MG is compared with
that of the CVFEM deseribed in Chapter 3 when it is implemented on one grid

(CVFE-0G).
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5.2 Square Driven Cavity

5.2.1 Problem Statement

In this problem. the steady., i ional. laminar reci ion of an incom-

pressible Newtonian fluid contained in a square enclosure is considered. The mo-

tion of the fluiel is driven by a sliding lid. A schematic of this problem is siven

+ enclosure of side L has its Tower left comer located at the

in Fig. 5.0 A square

origin of the Cartesian co-ordinate system. All walls are fixed. except for the lid,

whieh 1mioves i the positive rdireetion with a constant velocity U,
The equations whieh govern this fluid Aow problem are the - and y-momentum,

and continuity equations. Using the following non-dimensional parameters:

(3.1)

wr

mensional forms

the governing equations may be expressed in the following non:

{18

remomentum:

yrmomentum:
o Lo "
wite e 2 = (53)
continity:
ot D o (54)



with the boundary conditions:

0 onall wal

w o= larpy=sL<csr<;
T 0 elsewhere

Po= 0 atet =g =05

The singularities at the corers of the lid are handled by setting the velocity to

zero there. The only free parameter in this problem is the Revnolds nnmber, Re,,.

This problem is often used in the testing of mnerical methods for recirenlating
flows [18. 31. 39]. Ghia et al. [L6] used a stream function-vorticity finit e-dilference
formulation and a multigrid method with a 120 x 129 node grid to solve this
problem. They published velocity profiles along the domain ceuterlines, amd stream

function values for the different vortices contained within the e

for Revuolds

numbers ranging from 100 to 10. 000,

5.2.2 Numerical Details

For this problem. a uniform fine grid of 33 x 33 was used to diseretize the cal-
culation domain. Five uniform grid levels were used in the nmltigrid algorithng
the finest mesh was 33 x 33 and each prid level donbled the mesh size until the
coarsest mesh (3 x 3) was reached. All urids used the diagonal configuration shown

in Fig. 5.1b. The results produced for Reviobls numbers of 100 and 400 will be

presented in this disenssion. For the grids nsed. and at these Reynolds numbers,
the optimum values of the under-relaxation parametors o, and o, wore 05, The
most efficient CVFE-MG implementation employed 5 iterations of the segreggate]

solution algorithm at the end of eversy Veevele for Re,, = 100 and Re,, = 400.




Iterations in the TDMA solver were halted when the ratio between the enrrent
residual and the initial residnal, at the commencement of iterations. was less than
0.5 for the momentum equations. and 0.7 for the continuity equations. The overall

iterations in the segregated multigrid solution algorithm were terminated when

the maximum error in w, ¢ and p.in the whole ealeulation domain, was less than
10=% . Here, the maximum error is the maxinum absolute value of the difference
between the current solution and the “converged” solutions. which were obtained

hy continuing iteration until the change in any u, v or p in the calculation domain.

hetween siecessive iterations, was less than 1077,
“The initial conditions for this problem were treated s follows: velocities at the
houndaries were set equal to the exact values, and velocities inside the domain

were set equal to zero. Pressure was set equal to zero everywhere in the domain.

5.2.3 Results
u*- and - velocity Profiles

Plots of u*-velocity along the vertical centerline and ¢*-velocity along the horizon-

tal centerline of the

avity for Reynolds mumbers of 100 are given in Figs. 5.2a

{

. respectively. Similar plots for Reynolds number of 400 are presented

and 5

100, the results are in good

in Fig. 3.3. As can be seen from Fig. 5.2, at Re,
agreement with the numerical results of Ghia et al. [16]. At Re,, = 400, Fig. 5.3,

: the proposed CVFE-MG does

however, the two methods provide different results

mum values of these velocities. In the CVFEM used in this

not capture the m
thesis, convection terme are interpolated using an upwinding function, and dif-

v. for all grid Reynolds numbers. Therefore,

fusion terms are interpolated linearl
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at higher Reynolds numbers, where conveetion dominates, the intluence of the

diffusion term will be overestimated and tend to reduce predicled maxima, The

upwinding scheme is also first-order aceurate and will not

apture maxima as well

as the second-order scheme used in Ghia et al. [16]. Also, the upwind scheme

used does not take into acconnt the directionality of the flow vory well, and this
can lead to false diffusion, or smearing of the solution. This effect would be more
obvious at higher Reynolds mimbers. Finally, the grid used here is 33 x 33, which

is much coarser than the grid used in [16] which is 120 x 1

Streamlines

Plots of streamlines generated by the proposed CVFE-MG method are presented in

Figs. 5.4a and 3.4 for Reynolds numbers of 100 and 400, respectively. e plof for

Re,, = 100, Fig. 5-la, illustrates that the center of the vortex is displaced towards

the upper right cormer. due to the domination of viseons foree

at this Reynolds
number. At Re,, =400, Fig. 5.th, however, inertia forees become dominant, and
the vortex center approaches the central region of the enclosure. Both streamline
plots show the characteristic secondary recirenlation zones at the hottom corners

of the enclosure.

Execution Time

Plots of the maximum errors in u* -MG and CVFE-OG

*, and g for the CV
solutions versus exceution time for Re,, = 100 are preseated in Figs. .50, 550

and 3.5¢, respectively. As can be seen from these figures, solutions converge much

faster using multigrid than one grid. For convenience of comparison, semi-log plots
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Sare givenin Fig. 5.6. For this square driven cavity problemn., the solutions

ptablelevel of convergence when the masimum error is lessthan 1072,
By this eriterion, the CVFE-MG requires 8.60s and the CVFE-OG requires 64.32s
of CPU time, which makes the multigrid method 7.43 times faster. see Table 3.1.

Plosts of resicluals versus execution time for Re,, = 100 are presented in Fig. 5.7:

and 5.7b show the average residual of z- and y- nomentum equations,

fignres

respectively, and Fig. 5.7c shows the average residual of the continuity equation.

From Figs. 5.7a and 5.7b, it is obvious that the residuals for both z- and y- mo-
mentum equations decreases more quickly using multigrid than one grid. For the
rosidual of continuity equation in Fig. 5.7c, however, there is not much difference
between multigrid and one grid methods. This is expected, as for this square
driven cavity problem, pressure gradients are very small except around the upper
left and right corners of the cavity, thus the capabilities of multigrid method are
not fully demonstrated in the solution of the continuity equation.

Plots of the maximum errors of 1, ©*, aud p* versus execution time are pre-
sented in Figs. 3.8a, 5.8b and 5.8¢, respectively, and semi-log plots of Fig. 5.8 are
piven in Fig, 5.9 for Re,, = 400. Plots of average residuals of z-, y- momentum and
continuity equations are presented in Figs. 5.10a. 5.10h and 3.10¢, respectively. It
can be seen from these figures, that the CVFE-MG again provides accelerated con-
vergence, however, the magnitude of the increase in convergence rate is reduced.
By the same convergence eriterion as for Re, = 100, the multigrid method is 3.80
times muore efficient than the corresponding one grid method, requiring 17.90s as
apposed 10 68.03s, see Table 3.1.

As shown in Table 5.1, the CVFE-MG does not produce as large a recluction

in execution time at Re,, =400 as at Re,, = 100. As Reynolds number increases
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the discretized equations become strongly non-linear.and *7 - mass conserving”

velocity field will have a significant effect on the coellicients. It is speenlated
that the method used to transfer the "mass conserving” velocities between tine

and coarse grids, as described in Section 4.

may be improved. This would be
an area for further research. One possible means of improving this part of the
algorithm would be to provide continwons correction of the a, v, p solution on the
fine mesh. througghont the V-eyele. This would provide more np to date fields to

be used in the coefficients at all grid levels.

5.3 Rearward Facing Step
5.3.1 Problem Statement

In this problem, the steady, two-dimensional, laminar incompressible Newtonian
fluid flow over a rearward facing step is considered. The domainis rectangular and
extends 3H in the z-direction and is H high. The top haii of the left boundary
is an inflow boundary, with a specified inlet velocity of Vi, The top boundary
is a symmetry plane, and the right boundary is an outhlow houndary. The lower
half of the left boundary, and the bottom surface of the domain are no flow | no

slip boundaries. The geometry and velocity vectors for this problemn are shown in

Fig. 5.11a. The inlet velocity, Vi,., is uniform.

The equations which govern this problem ate the z-, y-momentum and conti-

nuity equations. Using the non-dimensional parameters:

e = i: 0 =
H ‘ H
i v 1 r
v o= = —=; Re
L7 7 A n
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the governing equations can he written in the forms given by Egs. 5.2, 33and 5.4,

with the boundary conditions:

1 05<y<l. 0:
0 0<y' <05, 1 =0: andon the bottom boundary:
o
—=0y=1
x !
o
L= (5.7)

o

onthe leftand bottom boundaries:

p' = 0 atthe middle point of the right boundary.

“This problem is used to test the capabilities of the CVFE-MG to solve problems
involving inflow, outflow and symumetry boundary conditions, in the presence of
a recireulating flow. The only free parameter in this problem is the Reynolds

mumber.

5.32 Numerical Details

For this problem. a uniform fine grid of 33 x 33 was used to discretize the domain.
Five uniform grid levels viere used in the CVFE-MG, with the coarsest mesh con-
sisting of 3 x 3 nodes. and each grid refinement doubled the number of nodes
until the finest mesh, 33 x 33 nodes, was reached. All meshes used the diagonal
configuration as shown in Fig 5.1b. Results produced for a Reynolds number of
100 are presented here.  For the grids nsed, and at this Reynolds number, the
optimum values of the under-relaxation parameters, a, and a,, were 0.3, for the
CVFE-MG and 0.4 for the CYFE-OG. The most efficient CVFE-MG implementa-
tion employed 3 iterations of the segregated solution algorithmat the end of every

V-

vele. The stopping criteria in the TDN A solver, and overall convergence cri-
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teria were the same as those used in the square driven ¢

¥ problom, see stion

32.2,

The initial conditions were as follows: velocitiesat the left and bottom hound-
aries were set equal to the exact values: and velocities inside the domain were set

equal to zero. Pressure was set equal to zero everywhere.

5.3.3 Results
Velocity Vectors

Plots of velocity vectors generated by the proposed CV

MG are presented in

Fig. 3.11afor Reynoldsnumberof L00. The arrows in the fignre illustrate both the

directionand relative magnitudeof the velocity vertor at each node, The expected

~ecirculation zone is shown at the bottom left corner. An enlirged picture of the

recirculation zone is presented in Fig. 5.11h.

Execution Time

Plots of the maximum errors in «'. ¢* and p* between the solutions obtained by
the proposed CVFE-MG and CVFE-OG and their respective “converged™ solutions
versus execution time for Re = 100 are presented in Figs. 5.12a, 5.12b and 5.12¢,
respectively. It can bescen that similar resilts to the square driven cavity problem
were obtained, demonstrating that the proposed CVFE-MG is more efficient than
the CVFE-OG for thisoutflow problem. For the convenience of comparison, semi-

log plots of Fig, 5.12 are given in Figg

5.13. For this rearward facing step problemn,

the solutions reach an acceptable | ¢ when the maximumn error in

el of convergere

Ylsand

and p* isless than 102, By this criterion. the CVFE-MG requir
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the CVFE-OG requires 119.90s of CPU time. which makes the multigrid method

218 times fast shown in Table 5.2, Plots of average residuals of the r- and

y- momentim and eontinnity equations versus exeention time for Re = 100 are
presented in Figs. 5.04a, 5. 14b and 3.1, respectively.

The multigrid method was effective in aceelerating the solution to this problem.
Towever, the outflow and symmetry houndary conditions have made it less effective

than i the square driven cavity problens. The CVFE-MG was also applied to

twosdimensional Poiseuille and Couette flow problems and it was again fonnd to

be twice as fast as the CVFE-OG for these simpler flow problems.

5.4 Summary

The two problems presented in this chapter have demonstrated that the proposed

(& ical behaviour of

MG

an generate solutions that correctly predict the phy

cution time of CVFE-MG is significantly less than

laminar lows, and that the e
that of the CVFE-OG method. Variations in the behaviour of the CVFE-MG with

Reynolds number are to be investigated in further rescarch.
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Figure 5.1: Square driven cavity: (a) problem schematic; and (b) uniform 11 x 11
node grid showing the diagonal configuration.
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Figure 5.3: Square driven cavity: Velocity profiles for Re,, = 100 (a) u'-velocity
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69



A\

(b)

o
AN

-: Square driven cavity: Streamline plots obtained with the proposed
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multigrid [ one grid | ratio
100 100
8.66 6432 | T3
veles 5 249
Reynolds number 100 100
Exeention Time (s) 17.90 68.03 | 3.80
Iterations or V-cyeles 10 249

Table 5.1: Square driven cavity: comparison of execution time and iterations
between CVFE-MG and CVFE-OG for convergence (maximum error u®. ¢* and

innliigrid | one grid | ratio
Reyolds mumiber 100 100
Execution Time (s) | 5494 | 110.00 | 218

Tterations or V-cyeles | 4 354

Table 5.2: Rearward facing step: comparison of execution time and iterations
between CVFE-MG and CVFE-OG for convergence (maximum error u*, v* and
p< 1073,
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Chapter 6

Conclusion

6.1 Review of the Thesis and its Contributions

The formulation and implementation of an equal-order colocated control volume

finite element-multigrid (CVFE-MG) method for steady, two-dimensional, vi

ons

incompressible flows has been presented in this thesis, The proposed method was
formulated using the velocity components and pressure as the dependent variables.
The pressure and the diffused scalars were interpolated linearly: the conveeted

scalars were interpolated using mass weighted interpolation which guaranteed pos-

itive contributions to the coefficients in the algebra retization equation; and

the transporting velocities were interpolated using a linear interpolation of pseudo-
velocities and pressure coefficients, in which the pressure gradients appeared ex-
plicitly. It was this explicit inclusion of the pressure gradients that prevented the

appearance of spurious oscillations of velocity and pressure,

In the proposed CVFE-MG, the noulinear, coupled algebraic equations, which
were obtained from the discretization of the - and y-momentum and continnity
equations, were solved by a segremated solution algorithm with multigrid teck-

niques. Both FMV- and V-eyele multigrid algorithins were employed. ‘The pro-

posed CVFE-MG was applied to two test problems: square driven cavity; and
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terward Tacing step. For the square driven cavity problem. at Reynolds mimber

of 1000 the CVFE-MG resnlts were in good agreement with the results in [16].

At Reynolds mmmber of 400, however. the CVFE-MG underpredicted the maxima

cansed by the interpolation

This wnder prediction wa

in the velority prof

schemes nsed in the CVFEM. The upwinding scheme nsed could induce false diffu-
sion, andd the Jinear interpolation of ditfused scalars at all grid Reynolds numbers
woulil overestimate the influence of diffusion at high Reynolds numbers. Both of

n a solution. The CVFE-

these factors wonld tend to smear maxima and minima

MG provided realistic prediction of the flnid flow over the rearward facing step.

This problem demonstrated the ability of the method to solve outflow problems

with symmetry houndary conditions, in the presence of recirculating flow.

The CVFE-MG was found to be more efficient than solution with the same

CVFEM using one grid (CVFE-OG). It was found that the CVFE-MG could

obtain solutions 2,18 to 7.43 times faster than the CVFE-OG for the problems
presented in this thesis, The acceleration of the convergence rate was reduced as
Revnolds mimber inereased, and thus the nonlinearity of the coupled equations

increased. Also, the presence of symmetry and outflow houndaries reduced the

effectiveness of the multigrid algorithm.

6.2 Proposed Extensions of this Work

As mentioned above, the effectiveness of the multigrid algorithm was reduced as

cles. the actual dependent variables u,

Reynolds number increased. In the 1=
eand p were only evaluated at the finest level. At other levels, u. v and p,

which were needed to caleulate the coefficients of the momentum and continuity
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equations. were injected from the finest grid. At high Reynolds numbers, velocity

gradients are large, and the intergrid transfer nsed here o

as not very eflicient, sinee
the most updated values were not immediately used. One suggested way to solve

this problem is that after obtaining the errors of the actus

dependent variables u,
rand p at the sceond finest level, one would interpolate the errors into the finest
level immediately and correct these dependent variables at the finest level, and
then inject the “corrected™ values to other coarse levels for the nse of coeflicient
calculatic:.

The successful implementation of multigrid algorithms in the context of a prim-
itive variables, viscous low CVFEM will lead to continued research into the opti-

mization of these metlods. Areas of re

arch to be considered are improvements
to the interpolation schemes. and extensions to three-dimensions, and unsteady

problems.
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Appendix A

Interpolation Functions for the
Proposed Two-Dimensional
CVFEM

A.1 Interpolation of Pressure

In the proposed two-dimensional CVFEM. pressure is interpolated linearly within
an element:
po= agrtbyte, (A1)
Substitution of the nodal conditions:
p=p at r=r and y=g
p=p at r=ury and y=y (. 2)
p=py at r=1xy and y=p
into Eq. A.1 produces the following set of simnltancous, linear algebraic equations:
mo= aprthuyte,
pro= oy eadbya o, (A.3)
o= aprzthystoe,
Using Cramer’s Rule to solve these equations results in the following expressions
for the cocfficients a,. by, and ¢,
1

(1,
@ = et

[(y2 =) v + 3 = )2 + (= ) | (AA)
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|
by = == [(ra = r3)pr + (g = ryipe + 001 = a) ] (A.3)
1
o= m[“’z!/t — st pr =+ Cragy = ) pr+ (g = ey p ] (AG)

where

det = ryip ey Ly = e = ey = g (A7)

Defining the ollowing varial

oy = vy — . ymnly = g = yge 2y

ralf3 — Iy

sy = 2y = ry ymuly = gz = 1. rymude = ey = i (A.8)

amuly = oy = rac ymuly =y = . rymuly = i = oy

allows the expressions for the coefficients to he rewritten more compactly as:

L&
= o= 3 gl (A.9)
il =1
Lo
by = = 3 rmulp, (A.10)
T
=
3
G o= g X sy, (A1)
de
i=

Then the pressure gradients may e expressed as follows:

o 1
.- gl pi (A.12)
o =

3
? = b= 3 wmulipi (A13)
I

A.2 Interpolation of a Diffused Scalar

In the proposed two-dimensional CVFEM. linear interpolation is used to obtain
approximations to the diffusion flux across the control volume faces con-

algebraic
tained within an clement.
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The interpolation funetion for the diffused sealar,

o = alr+bly+el CALLD

The coefficients o, b2, and ¢! are determined in the same manner as the coetlicients
i the interpolation function for pressure. Hence,

L
7 3 o N
K = > amul, o, A
-1
i 4
A= g 3 i, T

where ymul,, emul, rymaul,. and det have been defined in Egs. AT and ALS.
Then the gradients of of may be exprossed as:

] d 3
5”_ = =g Y o, (A18)
=
dot !
—(_;T/ = == o S rmulyo, (A19)
! fa

A.3 Interpolation of a Convected Scalar

In the proposed CVFEM. the conveeted sealar, o, which appears i the pit (e,
is interpolated with mass weighted (MAW) funetions. The mass flux across o
particular subcontrol volume surface within an element is taken as positive when
the velocity vector at the integration point is in the same direction s Che assurmed
normal to the surface. With respect to Fig. 3.3a, the mass flux across face 1 is

given by:
o= it (A.20)

jon can be written for the mass fux across the other snbeontrol

A similar expr
volume face within an element. On each of the two coitrol volume faces (denoted
by the index k). a value of the convected sealar. that is assumed to prevail over
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that face, can be defined. This is the integration point value, and it is given the
syibal @, whereas the nodal values are represented by @)s. The following rules
can b nsed to determine .

For quad 1, type 1 element and quad 2, type 2 clement (Figs.3.40 & e)

For control volume face 1

Iy >0 o] = fios+(1—fi)ds (A21)
g <0 of = & (A.22)
where
fi =min [mtu' ( d (4.23)
For control volume face 2
Mg >0 o = b (A.24)
If oy <0 0f = faof+ (1= f) @3 (A.25)
where
Fimanin [nmf ;’—o ] (A.26)

For quad 1, type 2 element and quad 2, type 1 clement (Figs.3.4c & d)

For control volume face 1:

oy >0 of = b (A.27)
I <0 of = fios+(1=fi)ds (A.28)
where
o (i 129
T = min [z (5 (4.29)
For control volume face 2:
Moy >0 0 = foof+(1-fo)ds (A.30)
Ifoin<0 o = @& (A31).
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where

B [nmr (“".l)).l] (A32)

Ty

Using Egs. A.21 (0 A.26 or Egs. A27 to .32, the following oquations ean e
obtained for the appropriate element:

- oy
an @ | foj | _ [ b b by ' A
an ap || oy [T [ b 5 ] g, L
4

Solving these cquations, the integration point values can be determined as:

i 1
o= F[(nubn — ayaby )Py + (ambra — ayabes) o + (aabig = cyabag)y](A34)
1
0y = W[(ﬂnbzx — by )Py + (ag by = anbya) P + (b — anl)ba)(A35)
where

dety, = wiy - aynn (A.36)

Defining the following variables:

1
CM = — by, — by AST
bV T (1t2aby, = agaba,) (A.87)
= (b - ) (A.38)
det,

allows the integration point value, of. to be rewritten more compactly as:

CMED, k=1,2 (A.39)

I
M-

i

i
It should be noted that of can be vasily abtained direetly from Fes. A21 to A.26
or Eqgs. A.27 to A.32 without solving Eq. A.33, if there are only two control volume
faces within each element.



A.4 Interpolation of Mass Conserving Velocity

As discussed in Chapter 3. the “mass conserving” velocities at each node within
an element e be determined by:

ur = =l (gg) (A40)

m o= n_pfP
o= i - (91/)0 (A1)

In the proposed CVFEM. each “mass conserving” velocity component is in-

terpolated within an element by assuming a linear variation of the corresponding

psedo-velacitios, it, and ;. and pressure coefficients, d¥ and d¢?. The interpolation

funetions are as follows:

W= aurtbyte, (A42)
A = amrtbpyton (A.43)
W= artboyte (A44)
& = apr+bpy+en (A.43)

I'he cooflicients in Eqs. A.42 to A.43 can be obtained in the same manner as the

corflicients in the pressure interpolation function. Hence,

[ .
t, F E ymul, o (A.46)
I3 z -
b, = s ; rmud; i (A47)
&
w= o ; rymul; i (A.48)
1 3
w o= o Z‘ ymul; d? (A.49)
1 " .
b = - ; rmul; d! (A.30)
1 & .
w o= o ; rymul; d! (A31)
1 2 " %
a = o= ; ymul; ; (A.52)
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o (A3
ap = .I% Y ymul dy (Aaa)
by = —% i' rmul, dy (AOG)
i 12 % Syl d; (A7)

Tand A8,

where ymul;. xmul;. rymul, and det have been defined in E



Appendix B

Integration of Fluxes in the
Proposed Two-Dimensional

CVFEM

B.1 Introduction

In chapter 3, the governing i for steacly, twe

pressible flows were written in the following conservative forms:

¥.i=8
V=0

1, viscous, incom-

(B.1)
(B.2)

where ./ is the combined convection-diffusion flux vector, S is the source term,

and § is the mass flux veetor. Equation B.1 represents the r-momentum equation

when:
J = piu —;K""u
op
S = §'—=
orx
the y-momentum equation when:
o= pie—pSe

_
5= s-3

and other conservation equations when:
I = pio-T¥
S = &
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Applying Gauss’ Divergence Theorem to a control volumie 1. which i tixed in
space. the integral forms of Eqs. B.1 and B2 ean be obtained:

[ s = [ sav ()
/",i-ml.w _— (.10

where V" is the surface of the control volume. and i is a wnit outward veetor

normal to the differential area ds.

With reference to the palygonal contral volune associated with a typical node
3 within the caleulation demain, vither an internal node as in Fig. 3.2, or a
boundary node as in Fig. 3.2b . Egs. B.9 and B.10

forms:
o
Al e o | &
“‘b Teitds : Ab:ll]

+ [similarcontributions from otherelements associated with node 3

1 be east in the following

+ [boundary contributions, if applicable] = 0 (B.11)

M A,
/ Fot m«-/ _v7~ﬁ'ds]
s s

+ [similar contributions from otherelemments assoc

ted with node 3]
+ [boundary contributions. if applirable] = 0 (B.12)
To detive the element contribution to the control volune integral conserva-
tion equations, B.I1 and B.L2. it is necessary to integrate (he appropriate i
across the two control volume faces in an element. The procecures sed in the

proposed method to perform these integrations are described in this All

apendi

nomenclature used in this appendix is defined in Fig

B.2 Momentum Equations

B.2.1 r-Momentum Equation

The integrated flux of z-momentum across a control volume face & is expressel in
the following manner:

[Integrated finx across control volume face k] = // Foitds o (B13)
-
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where
T = pin-pVu (B.14)

The combined conveetion-diffision flux vector, 7%, can be separated into its com-

ponent parts in the r and ydirections:

T = JERIET (B.15)
where

I = ,,,L,,_,Lg;-‘ (.16)

T = puen gt (B17)

Substituting the MAW interpolation function, Eq. A.39. for the convected scalar
u, and the linear interpolation function, Eqs. A.18 and A.19, for the gradients of
the diffused sealar u, into Eqs. B.16 and B.17 allows J* and J§ to be written in
the following forms:

3 3
= g (Z ik u,) - [’7‘1 (Z ymul; u‘) (B.18)
i=1 4

o
3 3
IEo= (‘; et ..,)+ﬁ ();;Imul; u') (B.19)

It should be noted that #% and v* are the componentsof “mass conserving” velocity.
The unit normal i in Eq. BA3 can be defined as:

e nd 7+vx'y‘f)/l" (B.20)
where
nk o= (- ) (B21)
nk o= ey - oY) (B22)
* = [(J-:,-x.\,,)"#(.u:.—y.u,)’]* (B23)
Therefore, Eq. B.13 can be expressed as follows:
o = [ (gt ) s (B24)
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Substituting Eqgs. B.18 to B.20 into Eq. B.24. and using Simpson's Rule to approx-
imate the integration gives:

. A
/j AR % (s + Ak + pyrenan) (Z M u,)
e =l
Mk b gk S
* (/’.\1 vy A e+ pany "Jl‘) PR ety
=1

PRV i
2 (3 gt + 5 (3 ) 0
i=1 "

=
The subscripts H and M indicate that the subscripted quantity is evaluated at
the positions shown in Fig. 3.4, for face k. This expression may be simplified by

defining the following “average" variables for control volume face k:

(OF, = (ks +405dy + payuss,) /6 (13.26)
vk, = (p§1"§1+’lpll(l"fl+/’.\I.\".\h) /6

Using these variables, Eq, B.25 can be written as:
7%k po k oy [k
‘/;wk»l dttds = [nf (U, 40k ]():cu u)
3
M [ (L el u‘) —nk (Z ymul, u,)] (B.28)

The above cquation can be simplified, and rewritten in terms of nodal veloeities:
/ Jeiitds = Clug+Clus+Chuy (3.20)
facek

where

ch o= [nkb (U, 4k ()} ]C\I"+— (b wmuds = 0% ymnd,) (1.30)

po
For incompressible flow. an element source term S* can be expressed as:
& )
&b o §9ill (B.31)
o

The integration of §* over a subcontrol volume V, is given by the following ex-
pression:

3
A.s"dv = i, [(S;‘),—r(S;‘)Ju,—-d[ gl i (B.32)
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where

A, = AL or A,/2. depending on the domain discretization, and,

the area of the element.

A= | it ragy oy = a2 — e — |

B.2.2 y-Momentum Equation

The integrated flux of y-momentum across a control volume face & is exprated in

the following mauner:

[Integrated flux acros ntrol volume facek]

[ Pt (B3)
Jacek
which can be simplified to

/1 i = Ol 4Gt Gl (B.34)

Sinee the convection- ion fluxes for the # and y momentum equations are quite
similar, the derivations of the integrated fluxes of the r and y momentum are
nearly identical. The only differences result from the different pressure gradients

and source terms used in the two momentum equations. The C* terms, Eq. B.30,

will therefore remain the same. However, the volume integration of the appropriate

source terms, 8" should be reevaluated:

— . y 1 s
Ao o= 4, [15 L+ (S), 0+ g 2 el (B.35)

B.3 Continuity Equation

The integrated mass s across a contral volume face k is expressed in the following

mauner:

[Integrated mass fux

ossmmnv]\-nlum(-fncck]=/ G iitds (B36)
face

where

7 o= pe (B.37)
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Substituting Eq. B20 into Eq. B.36 give

/Imf.r.nl, = ll*/p..,u"k("h W+ ) ds (B38)

where «* and +* are the components of “mass conserving™ veloeity, Using Simp-

son’s Rule to approximate the integration gives:
&
P e (% & gk
citdy = o= g+ Ay + paiag,
/Imkﬂ G (f’\r At Apyity + Py ,\l‘)

&
n
S F' (Sarks + Sk + pa) (13.39)
The subscripts H and M indicate that the subscripted quantity is evaluated at
the positions shown in Fig. 3.4, for face k. This cxpression may be simplified hy
defining the following “average™ variables for control volume face A:

(©)%, = [heids+ kil + paie] /6 (13.10)
(D95, = [PhulYs +4ob (0N + parfin] /6 (B.41)
(V)% = [k + 4ot + pauian] /6 (Ba12)
(D%, = [PaVr + )y + pandiy] /6 (43

Thus. Eq. B.39 can be written as:
7ot = ot | () = 1/
/Img itds = ok [(L — (D", (a;

+ ok [( e, = (0%, (g:;)] (B41)

Using linear interpolation for pressure. the elemental pressure gradi

itss in the

above cquation can be written in terms of f s indicated in

Eus. A.12and A.13. Consequently. Eq. B.44 ean be written as follows:
jeoatds = o) - d
/Jmky s nt [( 7 Z ymul, p, ]

% ,.;[(1'/)“ -z znuul,,’,] (1343)

The above equation can he simplified and rewritten in terms of nodal pressures:

nadal pressures.

/] Bty = Efpt Efpot Ef it B (B.46)
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where

E*

Bt

1
det

n"

v

a7 L5 (D0, emul, — nf (D*)%, ymud, |

(©)5,+n (),
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Appendix C

Assembly of the Discretized
Equations in the Proposed
Two-Dimensional CVFEM

C.1 Introduction

The integrated fluxes of momentum and mass across a confrol volume face & in
an clement and the integrated source terms, which were disenssed in Appendix

B. are used to compile the complete discretized forms of the integral conse:

equations for a control volume. The assembly of the final forms of the dis
equations are described in this appendix.

In the assembly of these discretized equations, reference is made to the nomen-
clature in Fig. 3.4. The polygonal control volime constructed aronnd an internal
node (i,

) in a calenlation domain, and all of the clements that may he associated

with this control volume are shown in Fig. 3.4a. It should be noted that the max-

imum number of connections a node may have with its neighbours are shown in

this figure. Figures 3.4b to 34, show the four types of elements that are wsed in
Fig. 3.4a, with their corresponding node numbering schernes. These four elements
result from the two possible orientations of the diagonal.
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C.2 Assembly of the Momentum Equations

C.2.1  s-Momentum Equation

For the z-momentum equation, the integral of the flux across a control volume face

k within an elernent is written as follows in Appendix B:

// L eitds = Clu+ CfutChu (cay

and the elemental contribution to the volume integration of the source term for

the control volume around node i is given by:

[ s =

which ean be rewritten more compactly as:

~ 1 3
[(5:),+ (5,‘:)) = > ymuhp.] (c2)
=

/v, sV = 4, (5), w+D) (c3)
where
LA
DY = 4, [13:),— i S ymul; p; (C)
=

The assembly of the final forn of the discretized z-momentum equation is done
in an element-by-clement manner. When each element is considered separately,
the appropriate C"“ terms are derived for each node i and each control veiume face
k, and this gives six C* terms per element. With reference to the nomenclature in
I
of the control volume integral conservation equation. The algebraic discretized

3.4, new coefficients can be defined in each element that simplify the assembly

equations can finally be written such that only the center-point contributions will
remain on the left hand sideof the equations, the other related node contributions
will be kept on the nght. hand sice of the equations.

For the quacl 1, type 1 element in Fig. 3.4b, the following coefficients can be
evaluated when node L is node (4. j), node 2is node (i4+ 1.j+1) , and node 3 is
node (i + 1.j)

With respeet to node (7 +1.j) :

Ay = Ay + G = G- A4S, (C3)
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Bt = A - CH+ CE (.6
M= 0
Ay = AN+ DY (%)

The coefficients appear on both sides of these equations, heeanse cont ributions

will also be made from other element contributions must be main-

tained. The contributions to the center-point coellicient A7,y are the portion
of the net transport of r-momentum ont of the subeontrol volume surromding
node (i + 1. j). associated with uy in Fig. 3-4h. The contributions to the other co-
rol

D the portion associated with

efficients are the portion of the net transport of r-momentum into the subeon

volume due to the corresponding nocles. In Fig.

wy s added to A]

and the portion associated with uy is added to

WL i
The source-related terms, E¢j. C.3, are then added to the appropriate coetlivients to
conplete the assembly for node (i4 1. j)in the quad Lotype T element of Fig, 3.0,

Similar procedures are used to asserble the coclicients at the other nodes in the

element.
With respect to node (i.j) :

A = Ay — €} = AS, (€.9)
Ay = Mg+ 4 (.10)
ALy = A+ G (c.1n)
Al = (©.12)
With respect to node (i+ 1,j+1):
Airrgen = 3 - LSE (C.13)
Alisrg = (.11
-’l=(x+|4¢n = (C.15)
Aty = Al o+ Dy (€.16)

For the quad 1, type 2 element in Fig. 3.4e, the following codlficients ean be
evaluated when node 1is node (i, j) . node 2 is node (i+ 1, j +1), and node 3 is
node (i.j + 1):
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With respect to node (i, j):

Ay = Ay OV =488
Ay = Ay - €
Ay = iy = G
Aty = A, + DY
With respect to node (i + 1./ + 1)

Arrgrn = Algrrgeny = €2 = b8,

Aergen =
Alaran = Alpien + CF

gen = Al + D2

With respeet 1o node (i j +1):
Byeny = = Ch+ CF = A5},
Ay = Aoy 0 - CF
Ay = Ay +C - GG

Aoy = Ale + D3

For the quad 2, type 1 element in Fig. 3.4d, the following coefficicnts can be

evaluated when node 1 is node (i + 1. ), node 2 is node (i.j + 1), and node 3 is

node (i,j):
With respeet to node (i + 1. j):

A = Ay + 0= A8,

Al = Aoy - €
Aivin = Al = G

L = Ay, + DY

With respect to node (i, + 1)
A

- A4Sy,

u(rg+1)

2
g+ + G
= Al + CF
+ Dy

(C.29)
(C.30)
(c.31)
(€.32)

(C.33)
(C34)
(C.33)
(C.36)



With respect to node (i. j):

Ap = Ay = Ch+ G = 8, (can
Ay = A+ = 6} (a8
o = A+ = (C.39)
w = Ly + Df (C.A0)

For the quad 2, type 2 clement in Fig. 3.4e, the following coelficients can be
evaluated when node 1 is node (i + 1. . node 2 is node (i j 4+ 1), and node 3 is
node (i+1.j+1):

With respect to node (i + 1. j):
Aisry =

Aty = By + G

L = € = A8,

Aty =

con
At =

With respeet to node (i +1.j+1):

Arrgany = Ay + G = CF = Sy, (C.5)

Alisrgen = Aagen = G+ CF (€.16)

Apisrgen = Al = €L+ CF (C.7)

Adisioen = Al + D3 (C.18)

With respect to node (i, j +1):

Aigan = Mg + 0 = Sy, (C49)

An = (C30)

Ay = o festy

Allan = Al + Dy (C.52)

When these fhici have been luated and bled for every element

in the calculation domain, the final form of the dis

tized c-momentium equation

for cach node is obtained as follows:
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Ay P Mgy = Ay * Mg+ AN * tasyen + Al * W4

+ A g Ay * )+ A R

Ay * Wig=ny ) -0 + A, (C.33)

C.2.2 y-Momentum Equation

For the y-momentum equation, the integral of the flux across a control volume face
k within an element is written as follows in Appendix B:

/, JPeitas = Chnt G+ Chn (C.34)

and the elemental contribution to the velume integration of the source for the

control volume around node j is given by:

1 3
SV = 4, [(s:: ), + (55'), v o 3 el (C.35)
=

which can be rewritten more compactly as:

StV o= 4, (5;): v+ D} (C.56)

where

o 1& -
1, {m‘. Lt T ; .L'mul.[r,] (C.57)

As discussed in Appendix B. the CF terms in the expression for the integrated
flux across a control volume face k. Eq. C.54, are identical for both the z- and
y-momentum equations. Therefore, the coefficients involving only C¥ terms are
identical for both 2- and y-momentum equations and these coefficients do not need
aluated, These coefficients include Af. 4me, A7, A, A¥, A, A

0

to be re

and A}, The ining coefficients must be 1. because they include either

pre

re gradient or source teris which are unique to the y-momentum equation.
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These coefficients are specified nsing the same procedures as for the r-momentum
equation.

For the quad 1. type 1 element in Fig. 3.4b. the following coeflicients can be
evaluated when node 1 is node (i.j) . node 2 is node (i + L j + 1) and node 3 is
node (i +1.j):

With respect to node (i.j):

ey = - A8y, (C.8)
A (C.59)

With respect to node (i + 1)) :

A = (.60

Al = Ay + D3 (€61
With respect to node (i + 1.j + 1):

A = Arrgen + € = S, (C.62)

Aoy = Ay + D (C.63)

For the quad 1, type 2 clement in Fig. 3.4e, the following coeflicients can be

evaluated when node 1 is node (i.j). node 2 is node (i + 1,j+ 1) and uod
node (4. +1):
With respect to node (i. j):

Ay i+ O =4S, (C.61)
AT = AT DY (€.63)
With respect to node (i 41,/ + 1)
Aisrgeny = Aren = G = A28, (C.66)
Al = Al + D3 (C.67)
With respect to node (i.j +1):
Aigsy = Al — €3 + CF = A4Sy, (C.68)
Ay = Al + D3 (€.69)
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For the quad 2, type 1 lement in Fig. 3.4d, the following coefficients can be
evaluated when node 1is node (i + 1.j). node 2 is node (4. j + 1), and node 3 is
node (4, j):

With respeet to node (i 4+ 1, j) ¢

Ay = Ky + € = A8y, (€C.70)

Aty = - (c.71)
With respect to node (4, j + 1) :

Ay = A — (c.72)

Alen = Al + D3 (C.73)
With respect 1o node (i.j):

Ay = Ay = G+ CF — 438 (C.74)

Ay = Ay + Dy (€.73)

For the quad 2, type 2 element in Fig. 3-le, the following coefficients can be
ovaluated when node 1 is nade (i + 1.j) . node 2 is node (i. j + 1), and node 3 is
node (i 4+ 1 j+1):

With respeet to node (i + 1. j):

Airrgy = By = €L = AiS), (C.76)
At = A, + DY (c.77)
With respeet to node (i +1.j+1):
Airrgry = Aeryen + €3 = GG = 48, (c.i8)
Adigay = A, o+ Dy (C.79)

With tespect to node (i.j +1):

v, (C.80)
Al = A0 + D (€81

Aty = Ay + CF = A S},
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When these coeffici have been evaluated and assembled for ov

clement

in the calculation domain. the final form of the diseretized y-momentum equation
for each node is obtained as follows:

Al * o = Ay * it + A ¥ s+ Al F e

i

i w
ARG * tumrgen AT ¥ e + IRRATENE]

+ Ay * g0 F A A - +

C.3 Assembly of the Continuity Equations

In Appendix B. the integral of the mass flux across a control volume face k within
an clement is written as follows:

// dids = Efp+ Eipet B+ B (C.83)

Equation C.83 for the continuity equation is similar in form to equation C.1 for the
a-momentum equation, therefore, the discretized form of the continuity equation
may be assembled in the same manner as the discretized momentum equations.

am be

For the quad 1, type 1 element in Fig. 3.4h, the following cocfficients

evaluated when node 1 is node (i. j) . node 2 is node (i + 1j+ 1), and node 3 is
node (i +1.j):
With respect to node (i. j) :

Ay = Ay — B (C.84)
A = o + B (C.85)
Ay = Ay + B (C.86)
Aty = A, + B (€.87)
With respect to node (i + 1, j):
Aira) = Novry + B3 - Ef (C.88)
Aperyy = My — B+ B3 (C.89)
Apivigy = Yo - B+ B (c.on)
A,y = Aty - B' + B? (c.on)
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With respect to node (i +1,/ +1):

Apisrgan = Apergen + B3
Airgen = By — B
Appsrgan = Apuargen = B3
Atgen = Ly - B

(C.92)
(C.93)
(C.94)
(C.95)

For the quad 1, type 2 element in Fig. 3.de. the following coefficients can be

evaluated when node 1 is node (i, j) . node 2 is node (i + 1.j + 1), and node 3 is

node (ij +1):
With reapect to node (i. j):

A = g + E}
ne o gne 1
Aoy = A - B
n o 1
Ain A — E3

eon con 1
Aty = Gy - B

With respeet to node (i +1,j 4+ 1)
Brrgen = Ay = B
Airrgan = Asryan + B
Aty = Aoy + B

2
Alergen = Llhgen + B

With respect to node (i.j +1):

Ausen = Lijony - B3 + B
g = Lugen + B ~ E}
Biswny = Loy + B3 - B
Aty = At + B - B

(C.96)
(C.97)
(C.98)
(C.99)

(C.100)
(C.101)
(C.102)
(C.103)

(C.104)
(C.103)
(C.106)
(C.107)

For the quad 2, type 1 element in Fig. 3.4d. the following coefficients can be

evaluated when node 1 is node (i + 1. j) . node 2 is node (i.j + 1), and node 3 is

node (i)
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With respect to node (i + 1. j):

Lungy = S + E (C.108)
Aoy = Ay — B (C.109)
Ay = By~ B (C.110)
g = A, - B (€11
With respect to node (i.j+1):
Aoy = Ay = B (€112)
A = By + B (s
A = Ll + B (e
Aen = Al + B (C.115)
With respect to node (. ):
Ay = Ay = B+ Ef (€.116)
Ay = My + B - B (€1
A = Aoy + B - B (C.118)
Ay = Ay, + B - B (C.119)

For the quad 2, type 2 element in

Fig. 3.-le, the following coelficients can be

evaluated when node 1 is node (i + 1. j). node 2 is node (i, + 1), and node 3 is

node (i +1,j+1):
With respect to node (i + 1, j):

A = (c.120)
s = By + B (€.121)
A = Ao, + B (C.122)
Ay = Ay + B (C.123)

With respect to node (i+1.j+1):
A
1

Ui+l

A,

= Mo + B - B

w [ 1 2
Asrgen = Yinyey - B2 + B3

(€.124)
(C.125)

A,

Pt =

plik 141

Asigen = B+ E}
= At - B+ B

|38

(C.126)
(C.127)



With respect to node (i.j+1):

Ao = Agigen + Ef (C.128)
Aigan = sy = B (C.129)
Aigeny = Agigen = EF (C.130)
Ay = Aoy = B (C.131)
When these coefficients have been evaluated and assembled for every element

in the ealenlation domain, the final form of the discretized continuity equation for
each node is obtained as follows:

A *Pay = Ay * Py + Ay * Pasrien + Ay * Pigsn
F A * Pamren Ay * Py + A * Ps1a-n
oA 6 Psrjoty AT (C.132)

* Pig-n + A5

i)
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