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Abstract

Two field programs were carried out on the Hobson's Choice Ice Island ill April.
\989 and May, 1990 using different sizes of spherical and 11M indenters. Several
cores of multiyear field ice were recovered from the icc island and transpor ted to
Memorial University to conduct compressive tests in the laboratory. Both constant
st rain-rate tests and constant stress tests were performed with uniaxial st ress (0

investigate the deformation of mult iyear ice and calibrate the material const ant'!
for theoretical modelling.

The spherical indentatio n tests are modelled using an axisymmetrical finite
element model. T he ice damage process is related to the growing network of micro­
cracks and the ice creep process is also enhanced by the existence of cracks. The
damage model is developed in FORTRA N code and implemented as a user subrou­
tine in the ABAQUS finite element analysis program. The analysis results show
that most Cof t he ice damage is close to the contact surface. ami that the maximum
damage occurs at the edge of the interface where shear stress is concent rated. This
is in agreement with the test results. The model also provides good results on the
total load versus time history.
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Chapter 1

Introduction a n d Scope

Since ear ly 19805, increased exploration for ccnvenricnalcncrgy sources in the arct ic

and near-arctic offshore areas , has focused atte ntion on the engineer ing problems

of designing and building large st ructu res in ice-covered waters. The interac tion

of ice with marine structures has been recognized as a major design cons idera tion.

T here has been a great deal of effort in recent years, both experim entally and

theoretically, to dete rmine a relia ble approach for the estim atio n of both global

and local ice loads all offshore structures. T hese ice forces exerted on a stru cture

may take ma ny different mod es, such as, crushing, fracturing, spalling, buckling , or

t he combinatio ns of them. These ar e complex processes and involve several possible

factors, such as, loading rat e, ice ty pe , tem pe ratu re a nd the shape of int erface.

Medium scale ice indentation tests were conducte d on the Hobson 's Choice Ice

Island in Apr il, 1989 (Frederking et al., 1990a, b) and in May, 1990, and also earlier

in 1984, at Pond Inlet by Mobil Oil Canada [Ccctech, 1985). In 1989 eleven test s

were performed with three types of indenters, rigid sphe rical, flexible flat and rigid

flat. The re were six spherical indent.ation tests with a speed range from 0.3 mm /s

to 90 rom/so In all tests, ice crush ing was observed in front of the indenter and



the rh.ct-ness of the crushed layer was irregular. There was usually less cracking

in the center area due to high confinement and more damage at the edge of the

int erface (in the present work. damage is related to the density of microcracks).

Maximum pressures measured at the center were ill the range of 10 to 20 ~IPa.

P ressure melting has also been reported (Gagnon and Sinha, 1991).

Uniaxial tests have been performed on multiyear field ice which was recovered

from the ice island. The comparison of the test results on both intact and predam­

aged ice show clear evidence of an enhancement of the creep strain due to crack

and damage. The elastic modulus of the ice was calculated from the test results.

An isotropic damage model, which ouhaes a power-law relation between crack nu­

cle ation ra te and stress, is used in the present work. This relationship is based

on rate theory. Additionally, dilatation of ice under compression is modelled as a

func tion of the ratio of volumetric str ess to the equivalent von Mises stress. To

verify this model. direct comparisons to the uniaxial tests have been performed .

Finite element analysis programs have been developed.to simulate the spherical

indentat ion tests at lower rat es, with the ice damage model calibrated from uni­

axial tests . The model predictions show good agreement wit h the test result s on

to tal load versus t ime histories and pressure distributions and progressions. The

modelled damage distribution and progression can be utilized, to a certa in degree,

to characterize the layer of crushed ice. The calculatio n of ice viscosity is a simple

approach , which is proposed to include the influenceof confining pressure in furthe r

st udies.

Finite element analysis with damage mechanics is a newand unique approach , in

modelling ice behaviour under both uniaxia l loading and medium scale indenta tion



tes ting cond itions.

As outlined above, the scope of t his wc rk md Y be categorized as follows:

1. Litera ture reviewof recent theories on ice mechanics. includin g ice m echanical

and damage models, as we11 as experimental obs~r\'ation, on ice cracking

behaviour.

2. Conducting uniaxial tests in th e laboratory on t he multiyear icc to calibrate

the mater ial constants (or theoret ical mo delling; descript ion of ice indenta­

tion tests carried out on Hobson 's Choice lee Island (1989 ) and some major

observations.

3. Constitu tive modelling of ice da mage process, including creep enhan cement

due to the existen ce of cracks and damage ; finite element implement ation and

model verification.

4. Finite element modelling of sphe rical indentation test s a nd compa rison with

the experimental results.

5. Conclusions and reccmrnendatic ns for Iurthc r studies.



Chapter 2

Literature Review

Ice in nat ure is a pclycrysralline mate rial composed of a large number of single

crysta ls usua lly in different orientat ions. Michel (1979) provided a deta il descript ion

cf the structure an d classification of ice (see also Cam maert and Muggeridge (1988)

on sea ice). Typically, there arc two main kinds of polycrystalline ice found in

L. Gra nular ice , which is random ly orie nted poiycrystalline ice, ca n be found

in ice features; such as. glaciers. icebergs, lake ice and sea ice. The grain size is

classified as fine to medium. ln the laborat ory, this type of ice can be obta ined by

freez ing wat er seeded with full mould of ran domly oriented fine ice cryst als, and it

can be tre ate d as a stat istically isotr opic ma terial.

2. Columnar ice is formed with the grains growing parallel to the hea t flow and

wit h c-axis perpendicular to the column length. Th is type of ice is referred to as $2

icc which can be found in lake, river and arctic sea ice. The mechanical properties

of columna r ice are ort hot ropic, or more usually, transverse isot ropic.

Icc is chara cterized as a viscoelastic material with its deformation response

dependent upon the loading rate; it is also very brittle under high loadi ng rate. A



spring -dashpot model , called Burger's model. is often usee! for polycrystalllne icc.

This model is a combina tion of it Kelvinunit and a ~Iax\\'cll 'mit, as shown in Fig.

2.1.

The mechan ical properties of ice can be divided into two part s \5all(lcrson , IU88):

L Continuum behav iour. This includes elast ic aut! ductile rrccp deformation.

which ca n be extended to include thc uniformly Jislrihulc(l mir rocrncking ami

da mage processes.

2. Fracture behav iour. This incl udes crack propagation and brittle failure .

Th e cont inuu m behav iour of granu lar ice is markedly simila r 10 tha t of cclum ner

ice, but wit h som e differences due to orthotropy or anisotro py (Sinha, 1989a),

2.1 Elasticit y of Ice

In engineering app licati ons, the elasticity of granular icc is typical ly treated as

isotropic and ca n be characterized by two consta nts. the elas tic mod ulus, E, and

Poisson 's ratio, /I. When a const ant load or stress o is applied at time to and

rele ased at time! .. a strai n versus ti me curv e as shown schematicall y in Fig. 2.2

is produ ced . Following Hooke's law, the elastic strain of ice is given as

(2. 1)

where the elastic modulus of ice is the st iffness of the main spring in the Maxwell

uni t and hence the elast ic stra in corr esponds to the ddorm at ion of the main sprin g

(see Fig . 2,1).

The elastic modulus and Poisson's ratio ar e depe ndent on the ice tem perature

and porosity. T he variations of £ and 10'on temperature were given by Sinha (1989a)



for both granular and columnar icc. This work shows that temperat ure does not

havea st rong effect on theseconsranrs. The value of Echanges from 9 CPa to 10.16

GPa and IJ from o.aoa to 0.3605 in the temp eratu re range ··jO°C to 0 ·C.Ther e are

two met hods for determin ing the elastic modulus of ice: static and dynamic. The

couvontional static tests include uniaxial compression, uniaxial tension and beam

bending . The two most common tests are uniaxial compression tests under either

constant load (or stress) or constant displacement ra te (or strain rat e). The former

test gives a strain versus time curve as shown in Fig. 2.2, and the elastic modulus

E = u/e., for t= O; the latte r test gives a st ress versus strain curve as shown in

Fig. 2.3, and the elastic modulus E = ~, when e=O. So the calculated value

of clast ic modulus is st rongly dependent on the accuracy of the test. However,

ice is not purely elastic, it creeps at all str esses with a time-dependent rate, so

readings of the ini tial t angent modulus from a stress-stra in curve will not be very

accurat e. Dynamic test ing techniques are considered to be more accurate since they

minimize the tim e-dependent effects. For polycrystalline ice of low porosity, the

clastic modulus given by high frequency dynamic measurements is approximately

!J to 9.5 CPa in the tem peratu re range -5 DCto · 10 DC(Mellor, 1983). T his is

a standard range of values of elastic modulus for low porosity polycrystalline ice.

The commonly accepted range for Poisson's ratio is 0.3 to 0.33.

The elastic modulus of sea ice has been investigated by Mellor (1983) based

on previous research, which shows that elastic modulus of sea ice varies from 10

CPa (p ure ice) to I CPa in the porosity range 0 to 0.3. Theoretical models which

calculate the elast ic modulus as a function of brine volume were also proposed by

Weeksand Assu r (1967), Schwarz and Weeks (1977).



2.2 C reep of Ice

A constant st ress creep tes t 011 polycrys rallin e ice gives iI cc nv..ntionat e re'c P cu rv e

as shown in Fig. 2.4. The idealized creep curve cnn be divided luto t h ree phas es:

prim ary, secondary and tert iary creep. The Tole of eachindividua l phnse in creep

deform ation has net been fully understo od. In general. t he deform ation of icc

includ es several kinds of processes or mechanism s, and the influence of each ind i­

vidual process or phase might be maximized or mi nimizeddepending on the type of

ice, temperat ure and loading condition. Each of th ese three phases eou td dominat e

the creep st rain under certain circumst ances. Sin ha (19i8) d e veloped a viscoelast ic

const itu tive equatio n (or columnar ice under uniaxial compressi on. The tola l st ra ln

e is considered as the sum of th ree comp onents as shown in Fig. 2.2, i.e.

(1.:q

where t ' is t b... instantaneous elastic component ; (J is the d elayed elas tic comp o-

nent, or recoverable primary creep. and (~ is the pe rmanent viscous com ponent , or

secondary creep strai n. Sinha' s model is limited to the firs t two phase s of cre e p

and does not addr ess the tertia ry creep phase.

Sinha (19i8) gives an expression for delayed elastic stra in under cons tant stress

4 ~~ (' )'I 'ilt: (t ) = 7 E l-exp{ - (aTl) , 12.3)

where C1, 5 , b and aT are all constants depending on the tem p erature and the gra in

size , d; where E =9.5 CPa; CI =9, is a constan t correspon d ing to th e unit gra in

size d, (d l =0.001);" = I; b =0.34: aT = 2.5 x IO-~ 3 -1 (T = 263(j . The delayed

elast ic st rain corresponds to th e deforma tion of t he Kelvin u nit in Fig. 2.1.



;\ nonlinea r deshpct based Kelvin unit was proposed hy Jorclaan and ~l cKenna

(198Sb) to mode l delayed elast ic strai n, in which the viscosity Pk is a function of

stress (J~ in the das hpot. Th e strain in the Kelvin unit is then

(2.4)

where Ek is the elast ic modulus of the spring, and Pk is t he viscosity of the dashpot

in the Kelvin unit . It was assumed that the dashpol follows a power-law relat ion

with stress

(2.5)

where h'~ is t he viscosity param eter: n is a constant, Using the equa tion of equi-

Jibrium for the dement of the Kelvin unit, i.e.

then it is found

Ij ~ = (n -lj E"I+/lIrll' (2.6)

Substituting Eq. (2,6) into Eq. (2..1), t he delayed elast ic st rain is then given by

(2.7)

where, w = EIJ1J~O . PItO is the viscosity at t ime 1 = O.

The seconda ry creep st ra in describes t he effect of the viscous flow and dido-

cation movement within the grains, and appears to be independent of the grain

size (Cole. 1986), This creep strain corresponds to t he creep deformation in the



dashpot of the ~I axwell unit (sec Fig. 2.1). For polycrystalline ice under uniaxial

compression or tension, a.power-law relation of str ain rate andstress wassuggested

by Glen (1955) of the form

i e = Au"

where n is a consta nt and A is a.function of temperature in rho form

(2.8)

where R =$.3H J mol- l K -l. is the universal gas constant: T is the temperat ure

in degrees Kelvin: Q is the activation energy and B is a mater ial constant, both Q

and B are dependent of the ice type .

In Sinha's expression for columnar ice, the creep stra in rate was given by a

similar relationship:

(2.9)

where 11 :::: 3, and f~ = l.iB x IO - ~.s - ' (1' = 2631\) , is t he viscous strain rate for

unit stress uo, (0-0 =I MPa),

The tertia ry creep was considered due to the effect of microcracking (Gold,

1970), but it was Iaund tha t cracking is not essential for the occurrence of tert iary

creep in polycrysta lline ice. even dur ing the rreusluon from primary to tertiary

creep (Mellor and Cole, 1982). The real precess is not well understood. In this

study, secondary creep includes enhancement associated with the current level of

crack density. This crack-enhanced creep is used to model the permanent creep

st rain.
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The viscosity of sea ice is difTerent from tha t of pure ice, since sea ice contai ns

many air bubbles. br ine POCkt'lS iW J impuritlcs which causes local stress discontinu­

it !l!s and concent rations: hence. sea ice is softened and has lower viscosity (Pounder,

J!J6.5) , (Wang , I!}T9a, b, 1981), {wee ks and Assur , (967 ). A rat ionali zed creep rate

expression of sea ice was given by Sand erson ( 1988) as

where

(2.10)

and IIi is brine volume or porosity of the ice and Vo is a normalizing const ant.

Subst ituti ng Eq. (2.8) into Eq. (2.10), it is found that

;1'=.4__1_ _ .

(1 - ;;;:;;;o?
For mul tiaxial stress stat es . the elas tic response of ice can be written as

(2.11)

(2.12)

where C ;Jkl is the fourth order compliance tensor: U, j is th e second order stress

tense r.

The delayed elastic st rain ra te. or recoverable creep strain rate was generalized

by Ohno et ul. (1985) to mult iaxial st ress sta tes in the form

(2.13)

where a. 1\ and b ate ma terial constants. which are possibly functions of st rain and

st ress; s is t he von Mises equivalent stress and S;j is the deviato ric stress, If b:::: 1,

the dashpot in the Kelvi n unit is linear and the above eq uat ion becomes



II

This equatio n was adopted by [\ <\H and Choi ( 19S9).

Th e generalization o f the secondary creep strain Tate for iurompr essib!r- be-

havio ur of icc was give n by Ashby and Duval (1!l8!i ) as

(:.!.15)

where K' is a viscosity const ant. So the total stra in rate o f icc is then

(2.16)

where f ij is the second ord er str ain tenso r.

2.3 C racking of I ce

Crack nucleat ion in ice is a complex process associat ed with the transi tion from

ductile to brittle behav io r. T he mechanism of nucleat ion depends on the load level

and loading rate. Gold (19i 2) first described the failure of columnar-grained ice

in terms of mlc rocrackiug du ring com pressive creep tests, with special attent ion

to the crack initia tion t ime, st rain and crack density development. Based on sta­

tistica l analysis . lIVO types of crack dist ributions were foun d. Strain-dependent

crack distribu tions were proposed to be the result of a di slocation pileup mecha­

nism. Strain -independe nt crack distributi ons appeared to be related to the elastic

anisot ropy which causes st ress concentrati ons at grain boundaries.

For fracture of ice in t ension. the applied load must be sufficient to nucleate

microcracks, and the load must be increased until the crack begins to propagate.

Crack nucleatio n is likely to be associated with cri tical ten sile str ain {Seng-Kicng
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and Shyam Sunder. 19M} or crit ical delayed elasti c st rain as proposed by Sinha.

(1982).

For ice of grain size 1\'5$ th an I mm. nucleat ion of cracks ma y occur at a st ress

or about I to I.:! :\IPa And the propa&ation st ress is about 1.2 to 2 :\IP;L from test

data. oht a incd at st rain retes 10-",, - 1 to 1O- 3J - 1 by Schulson et .1.1. (1984. 1989),

Schulson (1987. 1989), and Cu rrier cl al. (l 9S2l. tensile crack nucleation occurs at

a critica l st ress which can be exp ressed as

(2.17)

where I1D is 0.6 i\.lP a and k is 0.02 ~ I Pa m Ill and d is the grain size. T he cr iter ion

for tensile crack pro pagat ion is given by

(2.18)

where Ktc is the erilinl st ress intensity factor for mode I load ing, a is haJf of the

craclt length and )' is a g~melrica l parameter. Tensile cracks and frac t ure surfaces

are a.Iways perpendicular to th e tensile st ress axis.

In comp ression, th e crack nucleatio n proc ess is more:compl icated and h.ighly

rate sensit ive. Seng-Kiong and Shyam Sunder (19M ), Halla m (1986) proposed

t hat crack nucleat ion occurs when the associated lateral tensile st rain induced by

t he Poisson expansion reeches a cri lical value. T he requ ired compr essive nucleat ion

srrese should be about 3 times higher than thAt for tens ion.

Sinha (1984) used the test results of Co ld (1972) to rela te crack nucleat ion

to IL crit ical delayed elast ic st rain associated with grain bounda ry sliding, Le., t he

delayed ela.stic st rain ( ~ given in Eq. (2.3) is equal to t he st rain induced by the grain
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boundary sliding {gb .. and when f 1b' reaches a critical value t~b• • crack nucleation

occurs. T he critical value of grain boundary sliding t ~b' is related to the critical

st ress needed to produce do crack at the end of a sliding interface.

The dislocation pileup mechanism was adopte d by Schulson ct 11.1. (198·1) • Cole

( 1986) and Kama et al. ( J9S9). This mechanism is based on the concept lha t

dislocation pileup at grain boundaries may provide a high stress cnncent ratjon

which can induce crack nucleat ion when the stress reaches a. critical level.

More tests were carried out recently by Sinha (1988) on columnar icc, Hallam

et al. (1987) on granula r ice at constant !oad, and by Cole (1986) on granular ice at

constant st rain rates. Kalifa et a!' ( 1989) performed a series of t riaxial compression

tests with st rain rates varying between 2.5 x IO-s.'l- I and 10- 35 - 1 and confining

pressure ranging from 0 MPa ro 10 MPa.

From th eir work some conclusions can be summarized:

{lJ Cracks usually st art from the grain boundaries where high st ress concen-

t retions exist and are ar rested at grain boundaries. Crack nucleat ion occurs at t he

larger grains first . The plane of cracks has a strong tendenc y to be parallel to the

axis of compressive stress.

(2) For the constant st ress tests (Cole. 1986), the crack dens ity increases with

gra in size and stress, and the cracking rate decreasesas the crack density approaches

one crack per grain.

(3) The number of intergranular (between the grains) and int ragranular (wit hin

the grains) cracks are about the same. but cracks are preferentially intergranula r

at high st rain rates.

(4) The average crack size is about 0.65 times the avera ge grain size, and the
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maximum crack size is typically 2 to 3 times the average grain size. The crack

size is not affected by the stress. The grain size was calculated , accord ing to Cole

(D86 ), u.~ing (1= (6{1ftV)l/ l, where N is the number of gains per unit area. It was

found that the peak stress decreases with increasing grain size.

(.S) Alt hough the final crack densi ty is very high, the micr ocracks do not appear

to interact ; that is, the nucleat ion of one crack does not t rigger t he oth er cra ck

near by.

(6) No "wing cracks" were obse rved by Cole (1986) and Kalifa et al (1989).

On the oth er hand, a few wing cracks were observed by Hallam et al. (1987) and

Schulson (198i ). but dama ge in ice is mainly due to the nu cleatio n of new grain-

sized cracks. rather tha n the propagation of those which have already nucleate d.

(7) According to Kalifa et al. (1989), the st ress and str ain levels for crack

nucleation Increased with the confining pressure, and so did the standard deviation

or the dist ribution of crack orientation. The size of cracks did not change with

pressure and the strain rate has no significant effect on crack nucleation. An

equat ion of the critical str ess at the first cracks was given as

(2.19)

where crl is axial str ess and crJ is confining st ress. Both crt and cr3are negative in

compress ion.

There are four st ages in the failure process of ice during compression experi-

merus of st rain rate at 1O-3 J - l (Cole, 1989):

( I) In the first stage, st ress-stra in relatio n is basically elastic but with slightly

nonlinear behavior and no visible microcracking observed.
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(2) Micr ocrack s begin to nucleat e in the second sta ge wit h st ress between 3.29

MPa to 3.95 MPa . The crack density increased very quickly wit h increasing stress es

up to 5,65 ~I Pa.

(3) Crack nucleation stopped . the increasing stress causes 110 more visible mi­

crostructural dam age and the existing cracks appear stable.

(4) The final stage is th e specimen completely damage d with possibly sudden

brit tle failure.

In fact , only when t he stra in rat e is relat ively high, about IO-J s- ". does the ice

become br itt le and complete fracture failure occu rs. In this case cracks extend to

the free surface or cracks int eract to form a larger crack Of shear fract ure surface.

If the loadi ng rete is low, the stress-strain curve eventually reaches a plateau and

ice creeps without sudden fa ilure.

The elastic anisotropy mechanism has also been applied to ice by Cole (1988)

and Shyam Sunder and Wu (1990). Thei r recent work showed th at clast ic anisotropy

of the ice la ttice is an effecti ve source of stress concentration and can be ta ken as

an alternative for crack nucleation when deformation rete is too high to allow

dis locat ions to pileup. T hese models gave good agreement with test results.

Microcracking and fractu re of ice is very common in ice indent at ion and there

is much work on ice interacting with Bat. cylindr ical and sphe rical indenters. As

add ressed in the work of Jordaan and Timco (1988). Timcc (1986), Tomin et al.

(1986) and Jordaan and McKenna (1988,1.), when an ice sheet inte racts with a

fiat indenter, a layer of crushed ice is formed in front of the indent er and the

microcracks are developed along the maximum shear stress, as shown in Fig. 2.5a.

Th e ice is idealized into three zones, as shown in Fig. 2.5b, undamaged virgin ice;
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pa rtly damag ed ice with relatively high density of cracks and reduced stiffness; and

crushed ice which eventu ally willhe extruded (,ut but t his lee can carry compressive

loads duc to its frictional prop ertie s, i.e. the compressi ve strengt h of crushed ice is

not zero.

Several different failure modes of an ice sheet were observed (Timeo 1986) de­

pend ing on th e loading rate and t he rat io of the indente r widt h to ice thickness.

Generally, allow speed . there is ma inly crushing and mic rocracking in the ice wit h

some short cracks less than a few cent imeters in length (Fig. 2.5). At high speed,

t here is crus hing and spallin g right in front of the indenter, but t he failu re of ice is

mainly due to the occurrence of the rad ial and circumferen tial cracks and maybe

buckling (Fig. 2.6a). ln some cases t here are mainly 450
- 600 radial cracks ex­

ten ding from the corners and the cracks would be a couple of meters long (Fig.

2.6b ). More tests have been car ried out recent ly in the ice tank in the Institute

for Marine Dynamics, Canada , which provides similar evidence of ice cracki ng in

intera ct ion (Fin n, 1991). In th e case of the cylindrical indent ion, crushing, microc­

racking, radial and circumferen tial cracks can also be observed simila rly to the flat

indention ( Halla m, 1986). A possible crushing and damage mode of the spherical

indenta t ion test s, as discussed in t he work of Jordaan and McKenna (198811.), is

illustrated in Fig. 2.7. A laye r of crushed ice is under the indenter and the ice

beyond the crushed zone is partl y cracked . The density of the crushed ice is less

t han the intact ice. Rad ial cracks could also form and reach the surface. so large

flakes would spa ll away. More details of t his kind of tests willbe discussed later.



2.4 Damage Mecha n ics and Damage of Ice

Th e deformat ion process of eng ineering materials under loading often results in

changing the structure of the material. This change. to a large degree, will de-

[lend on the combined effects of geometry , loading, and the most important, the

growt h of micro-defects in the structure. The accumulation of micro-defects is of­

ten ter med "th e process of damage" which is always associated with the change

of t he mechanical behavior of the mate rial and the dissipation of st rain energy.

Most of the early work of dam age mechanics was based on the or iginal idea that

the damage of a structure can be measu red by a scalar factor [Kachanov , 1958),

which is equal to the ratio of the area of voids and the whole cross sect ion, or the

density of microcracks and voids which would permanently affect eith er the elastic

modulus , E or shear modulus. G. This was the guideline for most of t he early work.

The importance of th is kind of damage models is the esta blishment of a rational

damage law which defines the rate of damage accumulation in terms of t he curre nt

values of state variables and interna l variables.

Based on Kechancv's model (1986), a body with an overall sect ion area 110 and

fract ured (damaged) area A, is shown in Fig. 2.8. In the case of uniaxial loading

P without damage, stress in the body is given as

(2.20)

Wit h isot ropic damage , the damage variable 0 can be defined as

D = ~; 0 5 D s 1

and the effective st ress d. is int roduced as

(2.21)
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(2.22)

It is assumed that the st rain response of the body is modified by damage only

th rough the effect ive stress, so the stress-strain relation of the dam aged mat erial is

e:=~= --"-=:!-
Eo £0(1- Dj E

(2.23)

where Eo is the elast ic modulus of virgin ma terial and £ = Ea(1- DJcan be called

the "effective" modulus. So the behaviour of damaged materi al can be considered

to be equivalent to the behaviour of undamaged material, provided t hat the or igina l

elast ic modulus Eo is replaced by

E = E,(I- D). (2.24)

The evoluti on of damage gener ally re la tes th e present strain, str ess and damage.

The kinetic or evolutlo nal equat ion can be introduced in the general form

D = !(e ,e,d,q,D,... .b,

where e. a and D are strai n, st ress and damage respective ly.

(2.25)

A continuum damage model was proposed by Resende and Marti n (1983, 1984)

for rock-like mater ials which defines the elastic strain -stress relation of the material

and

e= e · +~p

(2.26)

(2.27)



where s is the st ress invariant: (,'0 is the initial shear modulus: 0 is the damage

measurement ; e is the total shear st rain invarian"., and e" ana eP are the elast ic and

damage part of c, respectively. So the rate form of Eq. (2.2·1)was given as

.s =Go(l - OW-o.eo.for loading (D> 0), and

.s= Go(l- DW ; for unloading ( 0 =0).

The damage evolution law was defined as

(2.28)

(2,29)

(2.30)

where A and 8 are material constants and dependent on loading situation , T he

invariant volumetr ic strain rate E. was also assumed as

(2.31)

where i:and i~ are the elastic component and inelastic damage component rcspcc­

tively. They are also functions of strain . stress and damage. See the references

[or details , Othe r references on damage mechanics include Krnjcinovic ( 1983);

Krajcinnovic and F'onseka (l 981)i Leckie (19iS ); Schapery (l9 81, 19801 and 1988).

Damage mechanics has been introduced to ice by Cormeau cr al.(1986), McKenna

et al. (1989), Jordaan and McKenna (1988), Karr (1985), Karr and Choi (1989),

Sjclind (1987), etc, An isotropic damage model with a single scalar damage mea­

sure has been developed in some papers. Some of the recent work has focused on

the relatio n of the extent of damage and the growing network of microcracks which

is often assumed to be uniformly (isot ropically) dist ributed and randomly oriented,
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As describ ed in the pre vious section, Sinha's model predicts crack nucleat ion

when (,60 :=: (~~., and thE" format ion of subseq uent cracks was given in the form

(Sinha, 198,1, 1988, 19891»

N = Nc[¢ex p(i - xc) - I] (2.32)

where N c is the crack density for the first cra cks; I/J is a const ant; .f is the average

grain bo undary sliding (gbs) displaceme nt; :to is cri tical (gbs) displacement.

Creep str ain rete was also found to be influenced by the forma tion of cracks.

Following Weert man (1969), the enhancement of cracks on creep was given as

(Sinha, 198B,1989b)

(2.33)

where N is the number of cracks per unit area and a is half of the crack lengt h.

t\ rate express ion of crack form ation was also proposed by McKenna et el.

(1989. 1990), J ordaan and McKCl'\Oa (1989) based on rate theory in the form

i"= IVc[exp (u :Ouc) - I),

and also

(2.34)

(2.35)

where N = 0, if U ~ Uc, d, is the crit ical st ress, Uo is a const ant(unib of stress)

and flc is a referen ce rat e. T he isotropic dam age parameter DN • after Budiansky

and O' Connell (1976), was defined as

(2.36)



where a is the same as above and ,V is the density of cracks /I1 -J,

When the crack density is high. the ctlcct of (r acks 0 1\ t he creep rate was

esti mated, based on the work of Weert man l [!)o!)l. by introduci ng an exponential

form

i:::: toexp (J N)

where ais a constan t.

(:1.:17)

Some specially designed uniaxial test s were conduc ted on bot h intact and predam­

aged ice to investigate the influence of the presence of cracks on the deformatio n of

ice, Stone ct ill. (1989), Jcrdaan and ~lc Kell n a. ( 1989) and Jc rdean et ...1. (1990a.,

b). These test s were also used to verify the theore tical dama ge model and will be

discussed in more det ail later,
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I<elvin unit Maxwell unit

Figure 2.1: Burgers Body; E and IJ are elast ic modu lus and viscosity coefficient ,
respectively.

Figure 2.2: Applied stress history and st rain response of CODstant st ress test.
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Figure 2.3: Stress-strai n curve of constant strain rate test .

Tillie

Figure 2.4: The t bree phesee of creep te!lt: (I) pr im&rJ i (II) aeeondary j (lit) terti &rJ .
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Figure 2.5: Idealization of ice sheet ; plan view of (a) photographic representa tion
showing progress of damage . and (b) idealizatio n into three t ones (Jordaan and
T imco, (988).

(a) (b)

Figure 2.6: The failure modes observed in the ice sheet indentat ion tests: (a.)
Crushi ng with radial and circumferen tial cracking; (b) Crushing with radial crack­
ing (Timco, 1986).
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Figure 2.7: Possible mode of pulverization ahead of spherical indenter (.Iorda.a.n
and McKenna, 1988&).
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Figure 2.8: A body with an overall section area of Ao and & dam aged area of A.



Chapter 3

Experiment ation

III April. 1989 a nd May, 1990. t wo field program s were car ried out on Hobson 's

Choice Icc Island Research Station by Memoria l University, the Nat ional Resea rch

Coun cil of Canada ( ~RC ) . Canad ian Coast Guard (e eG) and Sand well Swan

Wooster (55 \V). A hydrauli c indentat ion syst em was utilized with different sizes

of spherical and Hat indente rs. T he ice island is a 2.5 kilomet er wide, 8 kilometer

long, ·I,'} meter thick float ing block of ice that broke away from the Ward Hunt Ice

Shelf. Ellesmere Isla nd , in 1982. It is prim ari ly compos ed of freshwater shelf ice,

with a large amount of thick , up to 10 meters, multiyear ice surroundi ng the shelf

ice core. The test site was in the area of multi year ice (Kennedy, 1990; Frede rking

ct al., 1990a, b). These programs were designed to determine an accu rate and

reliable methodology for t he pred iction or ice Icrces on offshore str uctures .

Several cores of mul t iyea r field ice were recovered (rom t he ice island and trans ­

porte d to Memoria l University for compr ession testing in t he laboratory. T hese

tests were designed to invest igate t he deformation of mul tiyear ice, and to obtain

the relevant material const ants for t heoretical mode lling. T he influence of cracks

and damage on the creep response was investigat ed. As previously men tioned, sim-

26



:?i

ila r tests on fres hwa ter ice were carried out 'by Slone et ill. (1989) , J ordaan and

McKenna. (1989) and Jc rdaan ct al. (I !)90a , b].

3 .1 Uniaxial Tests

3 .1. 1 Sp ecimem Preparation

The block of lee-island ice was cut with a band sa w in to th e shape of recrangu lnr

pr ism on t he o rde r of i5 x i ,5 x 200 mm J • Cylind rical samples of desi red diameter

were m achined from th e rec tangu lar samples on a lat he . Then the cylindrical

samples were held on a precision V·b lock ji g with its axis parallel to t he longit ud inal

axis of th e lathe and per pendicular to the cross head 5 1) that t he sam ple coul d he

cu t to t he desir ed size with two end s pa rallel and per pe ndi cular to ti le axis of the

cylinder . T he fina l s pecime ns were 54±O.05 mm in d iame te r a nd 135±0.:l5 rom in

leng th. T he sizes of the specimens were determined by t he setup of the test system.

The speci mens were stored in a free zer at a tempe rature of _30°C unt il t he teat.

As rep o rted by Frederklng et a I., (1990a) and S inha (1990), the structu re of

t he ice was basically frazil with a small po rtion of colum nar icc, and comprised a

significan t number of a ir bub bles and br ine pocke ts. T he percentage of ai r poc ket

vol ume was aveuud 2 to 5%. T he grain s ize was about 2 to 7 mm . T he salinity

of the ice varie d from 0 to 0.4% depend ing on the loca tion , ami the density wa.'\

about 0.875 to 0.886 g/cm 3 . Some photographs of the s pecimens , before ant! a fte r

t he test.ing , Me shown in Fig. 3.1. It was found tha t the re wer e abo ut 4 - 8 big

b ubbl es , on the orde r oC2.5 to !; mm in each specimen, plus groups of bubbles wit h

the size of I to 2 m m and randomly dist ributed small bubbles with th e size of O.:l

to 0.7 m m.
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3 .1.2 Test Setup

A ~ITS Systems Corporatio n Mede l 905 Structure Testing System was used for

all tests. Two LVDT 's were mounted directly on the specimen as shown in Fig.

:1.2, over a gauge length of approximately 8·) mm. The two LVDT outputs were

averaged to provide the in-sit u measure of axial st rain as welt as a closed-loop

feedback cont rol signal to the MTS servo-valve. Lateral strain was also meas ured

0 11 the first two tests to t ry to find evidences of dilatation duri ng t he deforma tion.

For t his purpose, t wo LVDT' s were mounted on the two sides of the specimen

and ap proximately on a line as shown in Fig. 3.3, but the results were not very

sat isfactory clue to t he irregular deformation of the specimen in the la teral d irection,

which is evide nt in Fig. 3. 1.

Several hours before each test, the specimen was placed in the cold room to

a llow temperatu re equa lization. During th e tes t, the temperat ures a t the top and

bottom of the specimen were measured . The tem perature at the botto m was usually

sligluly higher than that at the top. This was attributed to the hydraulic fluid being

su pplied from outs ide the cold room. A maximum bottom temp er ature of ·9.6·C

was measured for -IO'C tests.

A1\the test data including load, stro ke, displa cement an d time, were recorded

01\ a microcomput er via a multifunction data acquisition board. Accord ing to

Stone et al. ( 1989), an acqu isition rale of is sample/sec/channel was found to be

adeq uate for loading and unloadi ng phases of t he tes ts at strain ra tes oC10-·s - 1

to 10-'\'.'1 - 1 . fo r the higher strai n rate of 1O- 3s- 1 , an acquisition rate of 175 sam­

ples/ sec/ channel was recommen ded. Between each unload ing and loading, i.e.,

dur ing the period of relaxat ion, where t he deformation rate is very low, the ecqui-
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sition rate is set to 10- 100 times lower tha n that on loading, so thal more storage

space in the compute r can be saved. The data acquisition rnte for the creep tl'st~

was 245 samples/se c/channel during tile loading. The acquisition board provides a

measurement accuracy and resolution of ±O.02% in the range of ±I OV.Load and

st roke were also plotted by an X-Y plotter during the tests.

3 .1.3 Result s and Di scu ssion

As listed in Table 4.1. three uniaxial const ant strain rate tests and five constnut

load tests were carried out on the multiyear icc described in section 3. 1.1. At the

temper ature of _lOoe, test Xo. I was a constant strain -rate lest subjected to a

loading rate of 5 x 10- 5s - I to a max imum strain of 2% as shown in Fig. :lAo Test

No. 2 was similar but had two loadings with different rates . The specimen was

first loaded at a str ain rate of ·')< 10- 53 - 1 to a st rain of 2%, followedby unloadlug

and about 100seconds of relaxati on, followedagain by reloading al a strain rate of

2.5 x 10- 5 05- 1 to a total st rain of 4%, as shown ill Fig. 3.';. Test No.3, eondueted

on an intact ice specimen, was a constant stress creep test , which. was a. series

of creep tests . Each creep test consisted of a 20 second load pulse followed by

a t o minute relaxation period, rollowed again by reloading, and so on (see Fig.

3.6). The reason for loading only 20 seconds is that these tests were designed to

investigate the short-time responses or ice, such as, elast ic and delayed elastic strai n

components . Test No. 4 was a creep test conducted on a predamaged specimen.

T he specimen was predamaged by subjecting to a constant strain rate loading of

10- 4$- 1 to a strain or 2% as shown in Fig. 3.7. At the temperature of ·20°C, a

creep test , No. .j, on an intact specimen was carried out with the same loadings
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Table 3.1: List of t he Test Series

tes t st rai n rate ice temp .
No. ty pe or stress type 'C rem arks
I const ant st rai n 5 x 10- s - intact .io-c

rete (C.S.R.) (see Fig. 3..1) ice
2 constant s t rain 5x 10- $ - &. intact · IOOC sam ple was reloaded

rat e 2.5 :oc IO- i .s- I ice at " ~ rai n oC2%
( see Fig. :1.5)

3 const ant st ress 0.25 ~IPa - int act · ' O·C
(C.S.) 1.5 MPa ice

(see fi . 3.6), constant stress 0,25 ~ I Pa - p.d . .re-c predamaged;
2.0 :vlPa ice sample was predamaged
(sec Fig . 3.7) unde r C.S.R . to 2% strain

5 const ant st ress 0.25 ~IPa- inta ct <woe
:.0 MPa ice

(see Fig. 3.8)
6 constant stress 0.25 ~ I Pa p.d . ·20·C sample was pred amaged

2.0 MPa. ice unde r C.S.R. to 2% strain
(see Fig. 3.9)

7 const ant sl rleU 0.25 MPa- p.d . ·200C sam ple was pred am aged
2.0 MPa ice unde r C.S.R. to 2% strain
(see Fig. 3.10)

s cons tan t strain 5 x 10- s- & intact ·20·C sam ple was reload ed
ral e 10- 3 ,, - 1 ice ll.l sl rll.inof 2% stnin

(see Fig. 3.11)

as t hat of test No. 3 (Fig. 3.8). Tes t No. 6 and No. 1 were t wo creep tests on

predam aged specimens, i.e.• the ice was loaded to a to tal st rain of 2% at const ant

"t rain rate of 10- 4,, - 1. AI shown in F ig. 3.9 a nd Fig. 3.10. respect ively, Test No.

S was a constant st rain rate tes t, as shown in Fig. 3.11, to a strain of 2% with a

st ra in rate of 5 x 10- 4,,-1, and reloaded again to a strain of ,,% with a st ra in ret e

of lO- Jj-l .

Fig. 3.12 shows th e stress-st rai n curves of some constant st rain-ra te tests on
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both freshwater and multiyear ice. Based on t he unloadings of the tests on both

types of ice, it was found that the recoverable st rain. i.e. elastic strain plus delayed

elastic strain. was less than 10% of till' total strain. Wlwn the tot al stra in is more

than 2%, the stress reaches a plateau . The recoverable stealn " + t J from the

test of freshwate r ice is only 2.05 x 10- 3 , 1.82 X 10- 3 and 2.84 x 10-3 upon first.

second and t hird unloading, respective ly. Notice that the first value is larger than

the second, because the st ress is higher at first unloading. The icc specimen was

not totally relaxed dur ing the first two unloadings: the relaxat ion periods were

both about 10 minutes. The specimen relaxed for abo ut one hour after t he third

unloading . therefo re the third value of recoverable strai n is the largest. But the

seconda ry or permanent creep st rain is still the predominant st rain component.

The ratios of recoverable strai n to total strain are 10.5%, .).2% a nd S.5% for the

three unl oedings . This was also found in the tests of multiyear field ice.

Comparing the constant strain rate tests of mult iyear ice to freshwater ice (Fig.

3.12) shows that the peak stresses of t he multiyear icc arc much lower. One reason

for the lower strength must be the defects. such as the air pockets, in t he multiyear

ice. These defects can be considered as damage, which would significantly soften

the ice. Anoth er reason is that the struct ure of the multiyear icc is a combin ation

of frazil and columnar ice with the grain size ranging from 2 mm to 7 mm . The

laborat o ry. made freshwater ice is granu lar icc with a grain size of :I 10m. It is

expect ed that the t wo kinds of ice would have different responses under t he same

loading. The multiyear ice, as addressed in the previous chapt er, must have a

lower viscosity due to defect s and crystal st ructu re. As shown in Fig. 3.12, the

str esses sta rt to build up almost linearly with strains and all the curves arc close,
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which means that t he elastic modulus of the two types of ice have similar values,

since most of the lo lal str ain is elastic strain al the beginning of loa ding (Sinha

1981). In the stra in range of 0.190 to 0.5%, the re is it. significant difference in the

stres ses. The peak stress of the Ireshwater ice is almost double that of the multiyear

ice. Assum ing that t he stress increases linearly to the peak stress, it is possible to

est imate the port ion of each str ain component at the peak stress . i.e.

(" =(//£

Here a is assu med tc be

(J =~t
I,

where u, is the peak stress at time l , . So it is found that

where n = 3 is assumed. Here the peak st ress" are 5.1 MPa and 3 MPa (or

freshwater and multi year ice. respectively, and t, is 27.9 seconds. Assumi ng the

two types of ice have the same elastic modulus, the viscosity parameter of freshwater

ice is 1,; 6 x IO-T(Sinha, 1981), and the estimat ion of porosity of the multiyear ice

is about 5%. With Eq. (2.1t ), the viscosity paramet er is calculated to be about

2.05 x 10-6
• The st rain components at peak stress ate listed in Table 4.2. So,

for freshwater ice at peak stress, more tha n hai r or the tota l strain is elastic, but

for multiyear ice, the delayed elastic strain is the largest component , an d both (II
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Table :1.2: List of Strain Components

(xlO-3 (t X 10-3 (J. x 10- 3 « x 10-:1 !..~% ~% C%I~reshwater
1.395 O.iSS 0.3S:] .')6.5%tee O.:!:!-l :!i ..5% 16%

1~ultiyear
1.395 o.u: 0..591 0.:3$7 :10%ice -I:!..I% 27.6%

and c are larger than tha t of freshwater ice. So it is concluded that the multiyear

ice must have less sti ffness and lower viscosity in the Kelvin unit (see Fig. 3.1),

due to the defects and crystal structure. Both delayed clastic st rain and secondary

creep st rain are enhanced by the defects (t his will be discussed late r). After a total

strain of about 1.5% to :!%. the strain-stress curves begin to converge again, and

as ment ioned previously, the recoverable strain is less than 10% of the total strain

when the stress reaches a plateau , most of the strain is secondary creep st rain. i.c.

( " ::::: f i furthermore, the stress (J' is almost constant, so. i! ::::: i ,1 ::::: 0, this yields

(3.1)

(3.2)

where superscri pt prime means damaged mater ial properties and the subscripts

f and i stand for freshwater ice and multiyea r ice, respectively. The equation

shows tha t the two types of ;··e have simila r viscosities. Th is suggests that in the

strain range of 0.1% to 0.5%, as mentioned above, the freshwater ice suffers more

damage than that of the mult iyear icc due to the much higher stress. Therefore

the freshwater icc has been given a grea t deal of strain softening and viscosity

reduction . So the viscosity of ice, which was measured from the consta nt strain

rate test after t he plateau, is actually that of damaged ice, not intact ice,



34

Th e creep tests provided addi tiona l information on the elast icity and viscosity

of the ice. Fig. 3.13 shows the strain responses of intact and predamage d ice at

a st ress of O.i5 :vt Pa (~. and (,. are the elastic strains; fd + « and l td + l'C are

delayed elastic strains plus secondary creep strai ns for intact and predamaged ice,

respectively. 3y focussing on the strai n versus time curves d ose to time = 0, the

instantaneous elast ic strai ns can be est ima ted). Th e ela stic st rains and tot al creep

strains at 20 seconds are plotted in Fig . 3.14. The sta tic elastic modulus of intact

multiyea r ice is estimated as 8000 ~IPa at ·20 "C, and the modulus of predam aged

icc is abou t 6000 MPa at -20 'C . These values arc taken from the slopes of the

stress-st rain curves in fig. 3. t-\a, and these elastic responses of the intact mult iyear

icc show that the small repeat ed loadings have not added significan t dam age in the

ice. Comparing the creep responses (delayed elastic st rain plus secondary creep

strain) of the tests of intact to predamaged ice in Fig. 3.14b (see also Fig. 3.13),

shows that t he presence of cracks and damage significantly influence creep str ain.

The creep st rain of predamaged ice is about 1) to to times that of intact ice. As

shown in fi g. 3.13, the stra in response of the intact ice has mostly recovered,

and the permanent viscous st rain is close to zero. This suggests that the elastic

and delayed elastic components of strain dominate for short load times. Th e st rain

response of predamaged ice has a significant percentage of secondary creep, and the

delayed elastic strain rate (the slope of the st rain versus time curve in Fig. 3.13)

is much higher than th at of intact ice. This implies that cracking and damage can

significantly enhance the creep response of ice (see also Stone et aI., 1989; Jordaan

et aI., 1990a, b).



3.2 Spherical Indention Exper im ents

3.2.1 Experim en t Setup

ln April , 1989, a lolal of eleven test s were preformed on the Hobson's Choice Ice

Island. Six of them were spherical indentation tests with speed ranging from 0.:1

mm/s to 90 mm/s. T he insitu ice temperatu re was about ·1.\ °C. The lests were

carried out in an area of 8 m thick multiyear ice which was attached to the edge

of the ice island. A trench 3 m wide. -t m deep and 100 m long was excavated to

conduct the tests. T he walls of the t rench were roughly smoothed with a chain

saw and the test areas were specially machined with a verti cally mounted circula r

saw. The wall opposite the test face was also machined and maul" parallel to the

test face .

Th e ice indentat ion system consisted of a hydraulic actuato r mounted upon

a large mobile skid of beam and strut construction (rig. 3.15). The actuat or

was powered by a bank of pressure accumulators and controlled by a servo-cont rol

system which provided a constant displacement rate (with exception of 110 se rvo­

control syste m being used for the first test, NRCl) . The indentation speeds could

be assumed constant over the whole test period. Seven 100 mm diameter pressure

cells for measuring local pressures were mounted to rhe front of the indente r. The

location of pressure cells is shown in rig. 3.16. A flat back plate was at tached to

the rear end of the actuator to support the system. This back plate had a larger

contact area than the indenter to force crush ing failure on the indentation face

only.



36

3.2 .2 Results and Di scussion

As discussed in the work of Frederking et al. (1990a, b), both large scale and

local crushing under the indenter face typically accompanied the indentation tests.

l ow speed tests allowed sufficient time for creep deformation and microcracks to

exte nd into t he ice, and the total load versus time curves were relat ively smooth,

while high speed tests appeared to produce localized failure near the indenter and

dynamic ice forces on the indenter were recorded. Analysis of crus hed layer profiles

during spherical indenta tion tests showed that the layer thickness was irregular.

The thickness of the crushed layer was about 20 mm to 50 mm for test No.7, and

the maximum thickness observed was about 320 mm at the center oCthe contact

area during test NRC5. There was a clear boundary between the parent ice and

crushed ice. For the low speed tests, the ice under the inde nter was partly damaged

with short cracks. In the present work,a ttention is focussed on two oC the spherical

indentation tests, these are denoted as NRCt and NRC2, respect ively. The load­

t ime results of the two tests are shown in Fig. 3.17a, b. The loading rate Cor test

NRCI was 0.3 mm/s . The indenter came in contact with the ice at point A and the

system stopped at point C. It was observed that a very large piece of ice spalled

off during the test , when large cracks extended 6·9 m on either side oCt he indenter

towards the top ice su rface. [t is believed that the spall occurred at point B. and so

the test results after point B have not been used Cor modelling purposes. A similar

situation existed Cor test NRC2 conducted at 2.5 mm/s, in which two big spalls

probably occurred. Here again the portion of the test aCter point B was neglected.

From the pressure measurements, the maximum pressures were recorded at the

center of the indenter and the average pressures were in the range of.5 MPa to 20
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MPa. Due to high confining pressure and lower shear st ress in t he centr al area, the

ice is less damaged {the critica l stress required for crack nucleatio n increases with

confining pressure (K alifa et al., 19S9)) . Near the edge of the int erface. there is less

confining pressure and higher shear stres s, so the ice has become more dama ged

and the cru shed layer is th icker. Recrystallization d ue to possib le pressure melt ing

has also been repo rt ed dur ing indentation tests (Gagnon and Sinha, 19!)I). which

means tha t friction between the indent er and the ice may be w ry small.
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Figure 3,2: 'It-sf set up for measuring the axial str ain.

39

FiguH' :l.:~: 'Ii,,.1 set up for measu ring bot h axie ! and leterel str ein.



lJ

1.1

~•i IJ
~

OJ

'. . 01 0.015 00'
S...

Figur~ 3.4: StrC!l!· strain curve for uciaxiel test No. 1.

1.1

~
IJ1
,.,

'. ..1 • O! ...
s....

Figure3.5: StresNtrain curve (or uniu:iaJ. te!lt No, 2.

' 0



9

""'"

b
'000

~ , LL~(J
1500 2000 2S00 3000 3500

Time (sc",)

·'1

Figure 3.6: Applied str ess his tory and strai n response of creep te st No. 3.

:,["'"j

°0 sos 1500 2000 1500 3000 "00 4000 .500 5000

Time ("'''-)

Figure 3.7: Applied stre ss hist ory and strain response of creep test No. ..



g 1.5 I.S MPa 2.0MP.

i I • r.7SMPa t OMPa jl
::: 0 $ .pMPa I
.., - n25 MPa l (U .5MPa 0.25 MPa l

°0 500 1000 1$00 2000 2500 3000 3.500 4OO(l 4500 5000

Time (sec.)

:==J
2000 2500 3000 )SOl) 4000 4500 .5000

Timc (Jcc.)

F igure 3.8: Applied st ress history and strain response of creep test No.5,

'2

't
~ I.'

j I

¥, a·.5 25 MP•

00

ijo.s Mr.
SOIl 1000

f..
SIlO

::I ... I
LJ .

1.500 2000 2500 3000

Time (sec.)

~ I
1.500 2000 2500 :JOOO

TllDc (scc.)

Figure 3.9: Applied stress history and strain response of creep tes t No. 6.



1:1

2S00
eJ" I

1500 '---.2000=----.."'-~lOOO
Time (sec.)

'[~ I .S

j ' :2SMP. fSMPo
00 SOO 1000

I­
'00
:F I

IS00 zeoo ) 0l1O

TlIlle(sec.)

Figure 3.10: Applied stress history and stra in response of creep test No.7.

us

Strain

Figure 3.11: Stress-strain curve for uniaxial test No.8.



fr~sh .....aier ice

/

Figure 3.12: Stress-strain curves of constant strain rate tests on both freshwater
and multiyear ice at strai n rate of 10-4,5- 1 .

40 60 80 100

Time (sec.)

Figure 3.13: Strain responses of intact and predamaged ice for st ress at 0.75 MPa..



i "la~

z,

I.'

0.'

,r' ~

£j~~:::~~~:: tee j

Inlact lce

Hi

ElaJlic Slrain

(a)

d O"' CreepS trBin

(b)

Figure 3.14: Creep tests: (a) st ress versus elast ic stra in for intact and prcdamagcd
ice; (b) stress versus tota l creep st rain at 20 seconds after t he applicat ion of the
load for intact and predamaged ice.

/
lACK "A~~

//
/
/ /

/~~~fU

Figure 3.15: Schemat ic of t he actua tor indenter system (Frederk ing et al., 1990a).



,.

DIMENSIONSIN...
M"IE~IA\; CASUtuMINUlol

Figure :).16: Schematic of the spherical indenter and the locations of local pressure
cells (Frederking et al., 1990a).

NRC TEST NO. I [I]! [
] ]

00 50 '50 is 20 2.S 30 3$

Time (st c.) Time (sec.)

(al (b)

Figure 3.17: The total load versus time records of test: (a) NRC1; (b) NRC2
(Frederking et al.• 1990a).



Chapter 4

Constitutive Modelling

4.1 Ice Mod e l

As discussed in the previous chapters. the deforma tion of icc is a complex pro­

cess, especially when cracking activ ity occurs. T he properties of ice are strongly

influenced by the presence of cracks and damage. The idealized mechanical model,

called Burgers' model (see Fig. 2.1). consists of combination of a Maxwell and a

Kelvin units, with a nonlinear dashpot in each unit (see also Jonlaan and McKenna,

1988b) .

Much work has been done to model th e primary and secondary creep ill icc and

other materials. A Kelvin unit with a power-law st ress-dependent creep compliance,

as proposed by Jordaan and McKenna (198gb, 1989), Jordaan et al., (1990a, b j, has

been shown to be appropriate (or describing t he initia l primary creep unde r rapid

loading. T his also provides an expedient ccrnputaticnal solution for the primar y

creep stra in. With this model. at t he beginn ing of each time increment, the program

only needs to read the stresses, strains and other model parameters which are stored

as state variables from the previous stat e, instead of requ iring access to the whole

storage of past history. All of t he state va riables will be updated at the end of each
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Inerement,

In the Ca5C' of uniaxial st ress, to tal axial strain is given in terms of three com-

pcn ents.Le.

(' .1)

where the elastic component is given by

(' .2)

where Ul is the axiel stress and E is the elastic modulus. From the laborato ry resul ts

of creep tests , Young's modu lus of mu lti-year ice for t he static case is approx imately

8000 MPa at ·20 ·C. Since the primary creep properti es of ice were est ima ted based

on these results. for consistency, this value is used in the modelling.

T he delayed elasti c and seconda ry creep st rain re tes arc de fined as

t.~ = lTl/~u . And (4.3)

(4.4)

where Il t l and iJ...1 Me the viscosity coefficients of the Kelvin unit and Maxwell

unit. respect ively. Assuming that t he strains of the dashpots in both units follow

the power-law relat ion with stress, as given in Eq. (2.5). the delayed elastic str ain

rate is given as

(1 .5)

where i; is a creep reference rate; 0'0 =1 MPa, is a constant with unit stress; an d

ut is the st ress in th e dashpot in Kelvin unit, which is calculated by
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(U)

where E~ is elas tic stiffness in the Kelvin unit and following Sinh a (1981). it is

de fined as a function of the grain size

(.I.il

where CI = 9 is a materia l consta nt, d l = 0.001ln and d is the grain size.

Th e accumulated delayed elast ic strai n tf is given by

(408)

Comparing Eq. (·1.3) with Eq. (4.5), it is found that

(.\.9)

Similarly, the seconda ry creep st rain rate is also assumed to follow the power-law

with stress, i.e.

(U O)

where i~ is a creep paramete r. So the viscosity coefficient of Maxwell unit is defined

(' . ll)

From the creep tests on intact ice (see discussions in Chapt er 3 " it is found

th at, under rapid loading, delayed elastic stra in rat e is much higher than tha t of

secondary creep strain . In light of Eq. (4.6), the stress in the dashpot orKelvin

unit at is small er t han t he overall stress Ul. In order to fit th e measured dat a, t he
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viscosity of the Kelvin unit must be much lower than that of the mai n dashpot .

Hence, the viscosity parameter ig ls assumed simply to be proportional to that of

main dashpot ig, i.e.

i~ = c' l~

where d is a material constant.

('. 12)

In the case of multi-axial stress stat e, the deformati on of ice is then written in

the form of

(4.131

as given in Eq. (2. 16). If t he elastic properties of ice a re assumed to be isotropic,

t he stress-st r-ainrelat ionship can be expressed by

(4.1'1

where l\ ' is bulk modulus: G is shear modulus and OiJ is the delta function,

Both delayed elastic st rain and secondary creep str ain can be expressed in terms

of a strain deviator component e;J and a volumetric strain component t il ' i.e.

(4.15)

(4.16)

Note tha t t he volumetric strains here are not the resul ts of elastic deformation

(compaction or dila tation); if the ice creep behaviour is assumed to be incompreas-

ible, they are the nonlinear dilata tion probably due to the cracking and some other

mechanisms which will be discussed in the next sectio n. As addressed in Chapter



3. elastic str ain plus delayed elast ic st rain is abo ut or less than 10% of the total

strain during constant strai n-rate tests. Since there is no clear evidence showing

that a port ion of the nonlinear dilatat ion is di rec tly rela ted to the delayed elast ic

st rain. the volumetric s tra in compo nent ,~ is assu med to be negligible and the tot al

nonlinear dilatation fIt is equal to ,~ .

Based on the discussions in the case of uniaxial loading . the de vlatcrie strain

rates of delayed elast ic and secondary creep compo nent s ar e assume d to be propor­

tional to t he deviatoric stresses and are defined ill the forms simil iLrto Eq. (·1.3)

and Eq. (4.4 )

(-1.11)

(-\.18)

where S il =aij - !ai; is the overall stress deviator. The se definit ions assume that

ice creep behaviour is isotropic, and the viscosi ty coefficient of shear deformat ion

follows the same law as that in the prin cipal direct ions.

T he viscosity coe fficients, /-Ik\ and $1",\ defined in Eq. (4.3) and Eq. (4.·Q are

functions of axial stress . In the case of multi-axialloading. the coefficients , 11k and

/-I", are defined as functions of von ~"i 5es st ress in t he similar ways , by subst ituting

the axial stres s component with von Mises stress , i.c.

(4.19)

(4.20)

Th e definition of von Mises st ress is given as
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(4.2 1)

If incompressible behaviour is assumed for creep strain and (~ = 0, the interna l

st ress s ~ (the von Miscs stress ill the dashpct in the Kelvin unit ], is calculated by

(4.22)

where cd is the equivalent (or effect ive) delayed elastic str ain which is calculated

hy

le.ddt

l t~{sd/uo)"dt .

The definition of equivalent st rain is given by

2 1{1

e =(3 C;1 C'J) .

(4 .23)

(4.24)

Reference can be made to Appendix A for more details on the definition of equiv­

alent str ain and its relationship with von Mlses stress.

Subst ituting Eq. (4.19), Eq. (4.22) into Eq. (4.li ), an d Eq. (4.20) into Eq.

(.tiS), it is found that

(4.25)

(4.26)

In the case of uniexia l lceding, deviato ric stresses 311 = ~O'h 512 =533 =-u ./3

and 3 ,} = O,( i i- i) , so von Mises st ress 3 =O't; therefore. 3
d = ut: similarly,
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th e deviatoric delayed elasti c st rains etl = ttl - {~ "" ttl (assumi ng f~ = 0),

e~2 = e~ = f~2 = - ttd2. thus cd = ffl =<'t. The refore. the above two eq uat ions

becom e

(·1.2i l

1-\.081

Th ese t wo equations are equ ivalent to Eq. (.1.5) and Eq . (-1.10). So it is consistent

and conven ient to assu me t hat tile viscosity coefficients, ! l ~ and I l'n are relaled to

the von Mises st ress and equivalent strain, since the constants of icc properties are

calibra teo from the uniaxial test results.

When rapid loading is applied , the dashpot in the Kelvin unit carries most of

the load at the beginning for a very short time. i.e. sd :::::s. Since sJ IX ed, and the

stress in the spring is proportional to the str ain cd, the influence of the clastic effect

on it
1

is reduced , and t he delayed elastic st rain can t hen be modelled as a viscous

element in the same way as iiI' but with significantl y softer viscous behaviour.

4.2 Dilatation of Ice

Only in recent years, more atte nt ion has been paid to th e dilata tion of ice on

loading, especia lly when cracking and dam age is induced. As addressed in the

discussion of th e previous chapter, t he density of ice in the crushed layer adjacent

to the indenter (Frederking et el., 1990a, b) was less than th at of paren t ice,

indicating the presence of dilatatio n due to the cracking and pulverizing of the

ice du ring the inter action process. Dilatation was also measu red in sma ll scale



compressive experiments at constant strain rates by Wang (1981), Dorris (1989)

and at constant stress by Sinha (1989).

Sinha (1989) observed dilatat ion due to crack formation for 5·2 ice subject to

constant uniaxial compressive loads ranging from 1.2 MPa to 3 ~ I Pa . Some tria xial

compressive tests on multi-year sea ice were conducted by Dorris (1989) at ·soC

for constant str ain rates of 10-3$ - 1 and 10-2,, - 1. The constant confining pressures

.....ere 2,62 MPa and 10MPa. The structure of the icc samples was basically granular

or mixed granular and columnar ice with an average salinity of 0.26 ± 0.19 °/00

and the average density of 0,902 ± 0.14 g/cm 3
• The tests were loaded to a total

axial strain of 10%, which is a relatively large strain , Two techniques were used to

obtain volumetric stra in; measuring the diametral expansion of the sample in two

orth'lj!,onal directions at its midpoint, or measuring the fluid volume change with in

the confining cell. The stress-st rain curves of four tests were presented in Dorris

(1989) and shown in Fig. 4,1. The corresponding volumetric strains measured from

changes in fluid volume and in diameter are shown in Fig. 4,2, which are found

to increase with increased loading rate and decreased confining pressure, and have

about the same order as the axial deformation. In the paper , compaction was

defined as being positive while dilatati on was negative. Digitizing the volumetr ic

st rain curves and stress-strain curves at the axial st rain of 2%, 3% and 4%, it is

found that the ratio of volumetric strain to axial strai n are almost const ant when

the axial st rain is larger than 2%, So ignoring the elastic stra ins , volumet ric strain

rate is modelled as a function of the confining stress and axial st ress. The ratio of

volumetric strain rate to equivalent stra in rate (nonlinear part) was plott ed as a

function of the ratio of confining st ress to axial stress for axial strains of 4% (see
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Fig. 4.3). An exponential function was proposed to fit t he data (~Id\enna et al.,

1990)

p .2!J)

where c , is the volum et ric stress. Note that the volume tric strain rate is assumed to

be pcsitive fcr dilaretion. T his equation is only valid for comp ression since the tes t

data were ob tained from compr essive tests wit h relat ively high confining pressure .

Notice that t he measured volume tric stra in is not only du e tc crack ing. The high

confining pressure may close some or most of the cracks . Acconl illg to Horii and

Ne mat -Nasser (1983), when the confining str ess. or the norma l st ress of the crack

surface, is larger than the shear st ress tra nsmitted across the crack surface, t he

crack will he dosed . ln th e case of rriaxial lc adlng, t he max imum shear stress is a

half of the axial stress D"11-17:l:l , and the normal st ress is equal to (1711+1733 )/2, when

the crack surface is at 45· to the axial direction . For the tests shown in f ig. 4.1,

the normal stress was always larger than the shear stress , hence the cracks should

be dosed . In this case cracks may not dominate the dilalation of ice. Dilatat ion

could be the result of the combined influence of grain boundary sliding and creep

aroun d the crack tips (Jo rdaan et al.,1990b). Th ere is not much information abou t

th e dilatation of ice in tension , and in the present wnrk most states of stress are

compressive, so when t7v i s pos i ~i ve { in tensicnl.volurnet tic st rain rate is assumed

to be zero. Conversely, t he influence of randomly orient ed open microcracks on the

elast ic prope rti es of a m aterial has been discussed by Budiansky and O' CAmn ell

(1976). A general method based on a sell-consiste nt approach was developed to

est im ate the overall mod uli which are the funct ions of the crack density . Hence the



56

volumetric strain in tension due to cracking can be calculated , this will be discussed

ill detail later.

Finally, the str ain tale tensor is expressed by

(4.30)

where ifJ,if
J

and i~J are elastic. delayed elastic and secondary creep strain tensor ,

respectiv ely; lu is th e volumetric strain (nonlinear pa rt) .

4 .3 D ama ge Evolu t ion Law

Damage mechanics has only recently been applied to ice. Damage evolution de­

r ends on stress, strain. loading rate , as well as cracks and damage stat e. Budi-

ansky and O'Connell (1976) discussed the reduct ion of elastic moduli due to the

presence of microcracks of a given shape for a t hree dimens ional case. Thei r solu­

lion calculat es t he change of elastic proper ties from the strain energy loss during

the nucleat ion of individual cracks ill an elastic hrittle body. The ir results include

interact ion between cracks but do not account fer traction across crack surfaces; all

cracks remain open. Assuming an isotrop ic array of similarly shaped flat circular

cracks. the isotropic damage paramete r is simply related to the crack density by

(4.31)

where a is the radius of crack surface and N is the crack density. Accord ing to Cole

(1986), t he average crack size is about 0.65 t imes t he average ice grain size, but for

simplicity, the crack size is assumed to equal rc the grain size and by altering t he

constant . then
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(.l.J:!)

where d is the average grain size, For cracks of cortnln shapes. the relat ion between

crack densit y and the elastic moduli. and Poisson's ratio arc given detail ill Iludi .

ansky and O 'Connell (19i6). For flat circula r cracks. which is assumed to be the

case in ice, the function s are given as

H' /J< = 2 - [i6{1 _l'fl )I/[9 (1 - 21")JDs

aod

with

G'IG = 1- [32(1 - , ' )I.; - , ')1/[45(2- vIIdo<

£' /£ = I - [16(1 _1" 1)( 10 - .]1" )1/[·15(2 - 1"11 D.II

(01.3.1)

('1.35)

D.v= [45(v -I" )(2-I"l l/[16{l- Io.'l HIOI' -I"/l + 3I'J}), CI.:Wj

where the pr ime denotes t hat the property includes the effect of cracks, Some

resu lt s were given in the paper and ar e plotted ill Fig. ·1.-1. which shows thal the

Poisson 's ra tio, shear and Young's modu li dec rease almost linearly with dama ge;

the two modu li are not strongly dependent on v. so the last three equatio ns can be

simp lified as

v' /I':::::: 1 - (l6 /9)D N; D." < 9/16.

G'IG" 1 - (16/9 )0 " DO< < 9/16 .

E' IE" 1 - ( 16/ 9) ON; ON c 9/16 .

/,I.:.Ii)

(4.38)

(1.:19)
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The bu lk modu lus is also a linear function of damage when II is very sma ll. That

(H O)

When II increases, the bulk modul us will initially decrease rapid ly and the rate of

decrease slows with increasin g D,,,. Recall that these soluti ons are on ly valid for

randomly oriented oren cracks where there are no t raction or friction on the crack

surfaces .

Under compression, the effect of traction across cracks can not be ignored and

the above approach needs La be modified. It is compreh ensible t hat the influence

of cracks on the elast ic properties will be reduced in compression due to the cr ack

closure and difficulty in crack nucleat ion. The closed cracks can still t ransform

t ract ion and shear stress, so in compression , the existence of cracks will not reduce

the st rength of the solid body as much as in tension, Horii and Nemet -Nasse r

(1983) developed a genera l solution for the case of two dimensional. plane strain .

compressiv e state of stress. Some results were presented in the paper and shown in

Fig. ·1.5. From their calculat ion, the reduction of all elastic properties is smalle r in

compression (cracks closure) than in tension (cracks open). Their solutions must

be solved numerically. So in present work. for an approximation, simple relat ions

were proposed as

C' /G= 1 - ,.." ON. and

f{ ' /I< = 1 - ,.."O N

(4.41)

(4.4')

where w = 16/ 9 in tension , t he above exp ressions approximate those given by

Budiansky and O'Connell (19; 6). For compressive stress states, W =1. This is an



approximation of the work of Hoti i and Nem er-Nasser (19Sal . As discussed in the

previous ch apters, with increasing dam age, t ill' clast ic st rain becomes small rela tive

to th e to lal str ain. For a high degree of da ma ge. ll lL'tot al str ain is domina ted hy

creep st ra in and t he elastic strain is not sign ificant. The spccifirn tiou of G' and IC

is t herefore not cri tical. Additionally, for sma ll deg rees of dama gl', Eq. (·1.·11) and

Eq. (4.42 ) were found to produce good ap proximatio ns <Iftill' ruoduti .

4. 4 C rack Nucleati on

Exten sive expe rimental work has been performe d to investigate crac k nuclea tion

and crack density developme nt in ice (Gold , 1972, Cole, 19S6, Hallam cl al., 1987,

Sinha , 1984, 1989b ). Much of t his work has been conduc ted wit h small scale

com pressive tests in labo ratory se ttin gs. Unfortuna tely this work docs not ex­

actl y represent large scale ice-stru c tur e intera ction, but no add itional informa t ion

is available at th is time. Theoretic al mode lling of crack deve lopmen t has bee n

ca rried out recent ly by Jord aan and Mclvenna ( HIS!}), Jord aan ct al., (1990a , b],

McKen na et al., (1989, 1990) and Sinha (1989). Following ),IcKenlla c t al. (t !J!}O),

the rate ex pression of crack format ion;

is used in the present model.

As discussed in Schulson (1987, 1989) and Hallam ( HI86), the crit ical str ess for

crack nucleation is a funct ion of gra in size
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where a l and Q, are constants calculated from crit ica l tensile str ain (c =5.i x W- 5+

:1,:33;.< 10-6 J- I/2, i.e. q cl = E f. for tens ion and CT« :::::E f./II for compression. From

Kalifa et al. ( 1989) the critical stress is also depend ent on the confining st ress

U . :: '13 + u ~ 113 , (u] is t he confining stress)

It see ms reasonabl e to assume rhur the cri tical st ress u. in compression is dependent

on grain size a nd confini ng st ress. and can be expressed as

(4.44)

since t he clast ic modulus of m ult i-year ice E =8000 llPa and Poisson 's rat io /I =
O.J , a\ is 1.52 :>'1Pe and 1.11is 0.0888 ~ I Pa m - J , ln th e case of triaxial com pression,

von Mtses stress is

oS = 0'\- 0"3

where "'\ is the s tress in t he directi on of loading axis and I1J is the confining stress .

T he mean st res s is

0"3 == CI.. - s{3, (aJ and a~::; 0)

In Kalife (1990), parameter QJ ;s given as ·0.4, t hus

a. = 1.52 + O,OS88d- l/1 - 0..l(0'.. - 8/3) ; 0',,::;O. (4.45)
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It is also found from th e uniaxial tests a nd the thec reticnl mode lling pract ice that

the criti cal stress should also be influenced by the cxist ing cracks ami damage.

Therefore it is proposed t hat

(.IAli )

where We is a constant and (j c is given in Eq . (-\.-45).

Th ere is not much information about the Influence of conlining pressu re on

crack nucle at ion in tension , and th is case is rare. so following Schulscn and Can non

( 1984) , it is prop osed t hat in te ns ion the critical st ress is

O'~ =(0.456 +0.0266d- 1(1
)( I - We D.v): q~ > o.

4 .5 Cree p Enha n cement

(<.47)

The effect of crac ks on the stea dy-state creep r-ate for the two dimensional CiL~C was

examined by weeruneu (1969) using dislocatio n theory. Apprcximetc solnti cns

were given for mat erials obeying the power law creep equation. His result for low

crack density was used by Sinha (1938) as given in Eq. (2.:13) where the creep

strain is enhanced by a factor of 2tr'va 1n l / 1 . for high crack density (a1 N :::> I ),

Weertm an noted that the creep rates must be on the order of

(.1..18 )

where a is half of the crack size and N is the crack density, which means that

the creep enhancement is on the order of (a1N )"+I . Jcrdaan and ~lcKenna (1989)

proposed a solution for the th ree dimensional case, as given in Eq. /2.37). The

exponent ial form models the creep enhancemen t on inelastic strain , which was
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redefined as cx.p(i3DN) in ~[d\cnna et al. ( 1!J90j. This term is act ually equal

to the ser ies r:r",o b./)~ , where bk are const ants . so it will approximate the linear

solution for small Os (D,'I =N a3 ) and covers all or ders of n for (NaJ)n+l at la rge

ON. Th erefore, it is a more general form of th e creep enhancement factor. So the

creep strain rates of dama ged ice are described as

14.49)

(4.50)

where the prim es refer to the parame ters for the cracked ice; Pd, d< arc const ant

enhancement parameters, and e1i and ef, are given in Eq. (4.25) and Eq. (4.26),

respectively.

4.6 Finite Element Implementation and Model
Verification

T he numer ical solution of damage equations is performed using an explicit incre­

mental scheme . For th e stress tensor given by

(4.51)

where

(4.52)

the increment of str ess tensor is calcul ated by

(4.53)
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where th e stiffness ma tr ix is given by

I
K +4G f3 i; -'Gf3

1\' + IGJ:1

f{, jkl""

SL \t .\t .

1":-'2Gt J 0 0
K -'2G/3 0 0
1\ + ·IG/:J 0 0

:!G 0
'2G

o ]
o
o" .

~G

t ·\..').I )

The incremen ta l change in the clastic sti ffness ten so r M \·'Jk l is obta ined by first

calculat ing the inc rement in damage wit h Eq. (·1.31) awl Eq. (·\.U):

SDN aJ 6N

(IJ·";··C:oU")"' IiL (.1.55)

where 6t is t he li me increme nt specified by the user . Sum ming th is Lo t he accumu­

lated to t al damage a nd calculating the difference betwee n th e elastic parameters

for the curr ent and previous states with Eq. (·1.·11) a nd Eq. p .·I:!), i.c.

-I\wODN.

similarly,

6G "" - Gw6D.v ,

t hus

(-1.561

(4.51)

61":- ?cG/3 6/":- 26Gj3 {J 0 0
61": + ~6G13 6l1. - 260/:1 0 0 0

61{+ 46Gj3 0 0 0
26G' 0 0

SY JI,'v/ . 'l6G 0
26G

.(4 .58)



The increm ent or elutic st rAin components 6t ~J is calcula ted by

(·1..59)

....here th e total st ra in increment .h 'J is defined in t ho: boundary condit ion. l.e.•

the indent at ion speed or str ain rete i and the t ime increme nt cl : c'J is the delt a

Iuncvicn. The delayed e1a.s tic stra in increment of unda maged ice. 6etJ. is calculat ed

from Eq . (·1.25) as

(4.60)

Substi tut ing this equation int o Eq. (-L.J91. the delaye d elas tic st rain increment or

(4.61)

Similarly. t he secon da ry creep strai n increm ent 6e~; can be obtained from Eq. (4.26)

and f.q. (-&.50), i.e.

ce~ = i~(*) " eltp{J .O ,v) 761.

The volumet ric st rain increment 6l . is give n by Eq. (-1 .29).

Ct. =0.25 Cltp(I.S O'.f.,)e61: 0.:5 o.

The d agtic stra in compone nts <Ja re defined in Eq. (2.12) as

(4.62)

(4.63)

where Cil l 1 is the compliance mat rix which is the inverse of st iffness mat rix.

In th e above equations. the stress es s, S;J ' (J ., st ra in ed and d am age DN are

stored as stale variable s from previous slates , and a.t t he end of eac h increme nt,

th ese va riables will be up dated as
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\ <.65)

The damage equatio ns have been implemented for lIuml'r ic.l l compurarion in

several different forms. A simple version of the model for the uniaxial case has been

implemented using ~IATLAIl , II. mat hematic al processing, ar ray manipulation ilolill

graph ics environmen t wh ich allows for rapid confirma tion of results . The complete

mult iaxial mode l has bee n developed in FORT RA:-Jcode and implemented as a user

mate rial specificat ion in the AIlAQt.:S finite clement struct ural analysis program.

T he paramete rs of t he damage model are all ca librated from t he uniaxial lest

results. By fitti ng the t ime-st rain rec ord of creep test on intad ice (see f ig. " .61,

the primary and secondary creep reference retes. i~ and [~can be estimated. The n,

by filtin g creep tes t on predamagcd ice (see f ig. 4.6). the damage constant, ';/0 , and

the creep enhancement parameters. J~ and J. can be obta ined. Finally the stress'

strai n rela tion predicte d by the model is compare d with the result of constant

strain rate test, as shown ill Fig. ·1.;. Once the model preJ ictions can fit the

results of t hese th ree ty pes of tcst , the model \'erilication has been accomplished.

All pa rameters used in t he model are listed in Table .1.1.



Table 4.1: Parame ters Used in the Damage Model

66

Descript ion
Bulk :\foJulu~

Shear ).!odulus
Primary Creep Reference Rate
Creep Expo nent
Poisson's Rario
Secondary Creep Ref. Ra te
Damage Constant
Reference Stress
Damage Exponent
Creep Enhancement Par ameter
Creep Enhanceme nt Para meter

Paramet er Value
6667 MP a
3017 M Pa

8.8 )(10- 45 - 1 at -20~C

3
0.3

3.52x1O- T9 - 1 at ·20~C

20000
lMPa

3
8
L8

Table 4.2: Test Conditions for each Ice Sample (Dorris, 1989)

i~ .OOl/sec .utzsee
0"

2.62MPa T494 T48 1

10 M Pa T485 T4 66

0'33 is the confining pressure; in is the st rai n rate.
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Figure 4.1: Stress versus st ra in curves (or the (our test s listed in Table 4.2 (Dorris,
1989).
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Figure -4.2: Stressversus strain curvesfor the Iour tests listedin Table4.2 (Donis,
1989).
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Figure 4.3: Ratio of bulk strain rate to equivalent strain rate versus ratio of bulk
stress to von Mises stress. Data points werederived from Dorris (1989) Fig. ~ .2

anda. best fit tine is shown (McKenna et aI. 1990).
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Figure 4.4: Effect ive modul i: dry circular cracks: G is the shear modu lus; E is the
Young's modul us: 11.' is the bulk modulus and II is the Poisson', rati o (Budiansky
and O·Connell. 1976).
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f il'lure 4.5: Effective moduli venu s the cre ek-density paremet er for ind icated values
of st ress ratio . /I = 0.3. where IJ is the friction coefficient ; P is the normal st ress
to t he crack surfa.ce and T is the shear stress across the crack surface (Hori i and
Nemat -Nasser, 1983).
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Figur ll! 4.7: Comparison of constant etr ain rate test results with model results.



Chapter 5

Finite Element Modelling of
Spherical Indentation Tests

T he sp heri cal indent at ion tes ts on the mul ti year ice descr ibed in the previo us chap-

le ts , are mod elled using a symmet rical finite eleme nt model , which aid to t he inter-

pre rar ion of t he test dat a. In t he present work th e modell ing results are comp ared

to t he experime ntal resu lts of sp her ical indenta t ion tests , NRCI and NRC2 .

5.1 The Elas ti c S olutions of Spherical Indenta­
tion

T he the ore tic a l elas t ic solut ions of spheric al rigid .ndenratlon problem /Lr C comp lex

MId req uire nu meric al methods to p roduce computational resu lts. But t he so lutio n

<lrtota l load on the indenter is much sim ple r. which was given by Snedd on (1964)

in the form

and

H=!.r log~
2 R-r

72

(5.1)

(5.2)



where P is the total load 011 the iudcnter: 1I is the indentation tll'pth: r is the

radius ol the area contacted with theindenter: fl is the redius ol tbe irull'l1ter and

/I is the Poisson's ratio. This clastic solution is used til I't'rify the finite element

model.

5.2 Fini te Element Mod el

The finite element geometry is shown in Fig. .j .! The structure (indentation

system) is assumed to be a rigid body and moving at a roustant. SpL't'O into the

Rat surface of an ice mass. The radius of the spherical surface is I. ~ S m. :\n

exisymmeukal condition has been assumed with edge a-b as the axis uf symmetry

(rotation). In this case half of the computation time can be s,wed. Allthe degrees

of freedom of the nodes on the edges. b-cend cod. ha-...: been constrained, since

these degreesof freedom are theoretically assumed to bc zero atinflniry. Thc elasric

solution of the total load on the indenter calculated from the finite clemcnr model

has been comparedwith t he theoretical elastil. solution, given hy Eq. ( ~. l ) and 1~1 .

(5.2), and is illustrated in ri g. 5.2. The reason for the numerical solution being

higher than lhe dosed Iormsolution is the resmc ted boundariesint hc fluitc clemcnt

model, whichare actuallysupposed to be free: i.e., some relatlvedeformaticn should

occur under the indentation load. So the differenceor these twosolutions increases

as the total load increases. Forthis reason, finite element modelling of the contact

problem has a sizeelfect, l.e.. beforesetting up the model. flrst one has to ccnsirlcr

the size of the model compared with the contacl l, ngth or area. Based on the

author's experience,for a twodimensional problem as shownin Fig..i l , the mesh

size in both X an Y direction should be at least five times the maximumcontact



lengthor more. If less, loweraccuracy is expected Additionally, if the mesh is too

large, more elements maybe needed and much more CPC time will be consumed.

Therefore, SOUle ditferent sizes of Ihe model have been tested to findout the size

d fL'Cts, set' Fig. .'5.l The prcsentmodel Fig, .~i..1a (~L'C also Fig. .').1) lIasa size of

:1.8 III ;0: :1.8m, the maximum contact lertglh is about 0.:\ m for test ;'; 0 , I, so the

mesh size is more than 12 times the maximum contact length. As shown in fig.

05.2. the modelgivesreasonable results. Theminimumstress near the boundaries is

verysmall (il is supposedto bt' zero at infinity), only 0.1%of the maximumstress

near the centact surface, whilein f ig, .j.1 ,J thp minimumstress is about 4.4% or

the maximumstress.

Eighl·noded axisyrnrnetrical clements have been used. There are 16interface

clementsbetween the rigid indenter and the ice elements. The smallest elements

ncar the interface have a size of 0.02.5 m xO,OSQ m, and the maximum contact

lellgth i,1 about 0.:] m for tt':S t :'{RC1; therefore. there <lore about 12 elements in

contact with theindentera l the end of the run. so the interface element size is

reasonable compared with tilt' total contact length. In the ABAQUS prcfrem.

multi-paint constraints can be imposedsuch tha t small elements can be adjacent

(linked) to larger (double-sized] elements, thereby reducing the total number of

clements.

5.3 Modelling the Spherical Ind entation Tests

The total load vers'- ~ time records of lest NRCI and NRC2are shownin Fig. 3.17.

Following the discussions in Chapter 3, it appears that a fracture spell occurred

during test NRCl at point B. so that only section A-Bof the test has been used
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for modelling . A similar situation ..-xisred fur test ~RC'!.

The sam e damage mood Jcscribed ;1\Challh'r .1. .1\I.l tl... rd l'l'ant par"ml"ll'U

calib rated from th e uniaxial tl'Sls. were implcnwut,...1 as a uw-r sllbrOlltiu.! an,1

applied to this finite element indent ation model. T Ilt' mOt.ldlill~ rt">i uhs of tIlt'

load time history are compared to t he result s of tl'llt ~RC I and ~R("!. in Fi~.

5.b . b, and show good agreement . T he periodi c fluct uation in load of the mode l

result is associated with the discretization of till' finit e clemcurs ill the Ctll1tar t

problem. It is worth ':ol11pari ng thl' res ults sho wn ill Fi~ . 5.·1a with rhose in Fig.

·5.2. T hese load-ti me history curves were all o htaill...d from th ...saUle finite de ment

model unde r same loading and boundary cond itions (i.c. , the same indentat ion

spe ed, penetra t ion and bounda ry constr aints), except t hat ill Fig. .) .2, the ice was

assumed to be a purely elastic mate ria l with same You ng's modulus as the mult iyear

icc (8000 MPa ), and in Fig..5Aa, ice damag!"model has "e-cn implemented. It ca n

be seen from Fig. ,) .2 that t he totAllo.ad on th e indeurcr is abo ut 30 M:-i, ;l.5 umch

as 10 times higher th an that in Fill. .5Aa. T his means t hat dam alle and creepins

in the ice ha ve signi ficantly reduced its st rength . and the icc is no lunger behaving

i\lI a purely elas tic mate rial.

f ollowing t he discussions in Chapter 3. the crushed layer thickness of the spher­

ical indentat ion test is usually smaller in t he cente r or high pressure zones and

increases wit h dista nce away from these zones . The da mage distri butions of t he

two tests arc plotted in fig , 5.5. At th e end of each simulat ion, da mage contour

levels 8 to 10 (DN = 0.4 to 0.5) cover most of th e area adja cent to the contact face.

Th e figures also show th at t here is less damage in the center area due to high con­

fining pressure and more damag e at t he edge or the in te rface where concentra ted



shear stresses are high and confinement is low. T his area can be characterized, to

11 cer tain degree , as the crushed layer.

Tensile zones with st resses between I to 2 :-'IPa have also been found in the

simulat ions, as shown in Fig. .5.6. These ten sile zones can be related to macro crack

development and spalling, i.e., a macrocrac k could be t rigge red due to the linkage

of t he microcracks or the developmen t of a small flaw in these tensile zones. T hese

may become a macrocreck and possibly grow towa rds t he ice surface, developing

a fract ure spa ll. Based on the work of Schulson (1987, 1999), t he ten sile st rengt h

or cr itica l ten sile stre ss for crack nucleation of gran ular freshwater ice is about

0.5 to 2 MPa . depend ing on the grain size and the load ing rate. The data were

obtained from relat ive ly bubble- free ice at strain rates of 10-; 5- l and 10- 3 5 - 1 •

This suggests that the developme nt of a tensile crack is not necessar ily due to the

existence or a mtcrocreck or lIaw. It could be t he result of grain boundary sliding

or t he st ress co ncent ra t ion at gr ain boundaries due to t he elastic anisotropy of ice.

In an y CMe, the existence of dama ge or flaws in the ice will reduce its st re ngth,

which in return will mak e it easier for the growth of mecro crecks .

Friction be t ween ice and indenter has been ign ored. T his would be reasonab le

ir pressure melting occurs. It might not be an accur ate assumption in all cases .

Calc ulated interface pressures for test NRCI are or th e same order as measu red

local pr essures (see f ig. 5.7). The initial contact pressu res are IL5 h igh as 20 MPa,

which is very close to the test results. and then red uced as da mage progressed into

the ice, bu t t he pressure is always higher in the center area and its d istribution is

approx ima tely parabo lic.



5.4 Equivalent Visco sity of Damaged Ice

As discussed in Cha pte r ..L the creep str ains of intac t in ' ill lhllh lIlI" Kelvin uni t

and the Maxwellunit are defined to fellow power-la w rl·latiullNwit h sl r.·s~ . •«id t he

viscosi ty coe fficients arc expr essed ill Eq. (.I. l9) and Eq. (·I.:!OI. i .•~ .

}.1m = (s/i~H O'o/$)".

T he creep enh ar.cemeut factors due to damage arc givl' ll ill Eq. (-1..19) and Eq.

{4 .o0) as exp(JdD,,,) and exp (J cJ)s ). respect ively. So the viscosity r ocllicicnts of

dama ged ice can be expressed as

(.\.:11

The equivalent viscosity coefficient of damaged icc is t hen defined as a function of

von ~[ ises stress and damage in the for m

(' ·'1

Fig. 5.8 shows the relat ion of viscosity with stress an d damage. Ti le viscosity of

water and the equi .alent viscosity of intact ice arc also included for comparison ,

since the viscosity of damaged ice should fall within t his range for pressures greater

than 1 MPa.

As discussed in Jord aan and Tim co (1988) and Fiun el al. (1989), the viscosity

of t he crushed ice is calculated.abou t 0.0009 to 1.0 MPa.s in the speed range of 160
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mm/s to 2.5 m m/ s. In general. highe r speed gives lower viscosity. T he progression

and dist ribution of calc ula ted equivalen t viscosity adjac ent to th e interfac e are

shown in f ig. .'5.9 and f ig. ·5.10, respectively. It can be seen that the modelled

viscosities are higher than the range mentioned abo ve. It is necessa ry to have

mere experime nts and good measurements on th e actual viscosities , so th at better

understandi ng and modelling of the crushed ice can be achieved.
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Figure ·j. 1: Finite element mesh for spherical inden tation lests.
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Figure 5.2: Comparison of theoretica l elastic solut ion of spherical indentat ion with
finite element solut ion. .
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Figure 5.3: Four different mesh sizes have been tested for comparisons.
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Figure 5.4: The total load VI . time histories: model results and test results: (a)
test NRCl ; (b) test NRC2.
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Figure ,'}.S: Distributions of damage , DN. in the ice adjacent to the indenter (area
A. see Fig. s. n. ON "" 0 for contour level f DN = 0.5 for contou r level 10, the
increment of DN fer each contou r level is 0.05. (a ) test NRCl ; (b) test NRC2.
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Figure 5.6: Distributions or maximum principal st ress between 1 MPa and 2 MPa
near the contact race: (a) test NRCl i (b) test NRC2.
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Figu re 5.8: Mode lled equivalent viscosity of ice a8 a.funct ion of applied shear st ress
and dam age sta te.
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Figure ,'j.9: Progression of equivalent viscosity adjacent to the contact face: (a) test
NRCl; (b) test NRC2.
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Figure 5.10: Dist ribut ions of equivalent viscosity between 20 MPa .s (contour level
1) and 1000 MP a.s (contou r tevel l O)adjacent to t he contact face: (a) tes t NRC l i
(b) test NRC2.



Chapter 6

Conclusions

Uniaxial labora tory tests on the multiyear ice, as well as medium-scale ice in­

dentat ion experiments on Hobson's Choice Ice Island (1989) have been described,

together with the development and implementation of an ice damage model. The

st udy is a comprehensive exam inat ion of the role of the damage process in icc, as

well as t he influence of damage on mechanical proper ties of ice. Investigations on

the creep tests on both intact and predamaged ice have shown clear evidence of an

enhancement of the creep st rain due to cracks and damage.

Tilt! model p redict ions of the st rain-st ress relatio ns (or uniax ial tests, as well as

the total load versus t ime histori es for the inden tation test s show good agreement

with the measured results . Bot h the magni tude a nd distribution of the contac t

pressure calcula ted from t he model are realisti c. The tensile fracture or spal ling is

not included in the present work. but it may be ab le to predic t , to a certain degree,

when and where a epall migM have occurred in the light of the calculation of the

maximum principa l st ress. Furt her study on mod elling of fractu res and spel ls is

recommended . In ~ separate work , fracture and damage analyses of production of

discrete ice pieces have been carried out by int roducing a small Raw, and pred icting
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the Raw growth time and direct ion (see Xiao and Jordaan. 1991).

Bas ed on the analy sis of the experiment al results and the finite d ement s simu­

lations detailed in t his work, some general conclus ions ca n he made as follows:

L Th e recoverable str ain, i.e., elastic st rain plus delayed clast ic strain. is about

10% of t he total st rain or less, for t he cons ta nt s train rate tests , after the

st ress reaches a plateau.

2. T he presence of crac ks and damage significantly en hances th e creep responses

(delayed elasuc att-ain plus secondary strain ). The creep str ain of prcdamagcd

ice is as much as 5 to 10 times larger than that of intact icc.

3. T he idealized ice damage model, consisting of combination of a Maxwell unit

and a Kelv in unit with a nonlinear dashpot in each unit, has been shown to be

a ppropriat e for describing t he ice behaviour under cer tain loadi ng condit ions,

such as prop ortio nal comp ressive loading.

4. Due to the dominat ion of creep st ra in for a high degree of da mage, the clast ic

st rain is rel atively small, so the specificatio ns of elas tic modu li in t he model

are not crltlcai, while the determi nation of viscosities becomes significant .

T his is influenced by th e existence of damage, con fining pressure (pressure

melting) and load ing rate (internal friction). Mor e accurate experi mental

results of ice viscosities a re needed.

5. T his finite elemen t model can provide rea listic results on load-ti me histo­

ries ; damage distri bution and progression; contact pressure distr ibu tion and

pro gression and viscosity progression. The estimat ion of crushed ice layer
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thickness can be made possible when more measuremen ts on the distribution

or damage arc obtain ed.
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The Relationship between von
Mises Stress and Equivalent
Strain
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In elast icity, Hooke's taw can be expressed as

(J' jJ = 3A, .o,/ + 2Cf"

wheec A is Lame' s constant:

vE
..\ = ( I + /1)( 1 -2/1)'

When t he t hree st ress components, (1;;, arc equal to t he principal values, i.e.

0' 11 = 0'\

"'21 = 17,

0'33 = 0'3 ,

97

(A. I)

(A.2)

(A.3)

th en the t hree st rain components are also in t he principal d irections a nd U;j =0,
fij = 0 (i ¥ j). So t he above Eq. (A.l ) can be written as

(AA)

where Ui and ' j are principal stresses and st rains, respectively. Then it is found
that

So

2G(ft - f , )

2G{l,- fJ)
2G{f3 - f d· (A.5)

\(0'\- U2) '+(Ul -d3)' +(U3- u!l2j1n =2G[(l \-ll l' + (ll- ld + (lJ- ld'jl/ l. (A.6)

The definit ion of von Mises stress is given by

( ~S jjSjj) l/ l

~(((J' I - ud + (0",- 0"3)' + (0"3 - l1d 11'/ 2. (A.7)

Th us

~((fl _ (2)' + (t l - (3)' + ({3- (a)211/2

./2(~- 11 )1((\ - (1)2+ (£1 - (3)' + ( ~3 - ( a)'jl/'.

T he st rain intensity or effective st rain e, is defined as (Bezukhov, 1953)

(A.B)

(A.9)
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{or compressible as well u incompressible materials in the" elastic range . So

.1 = Etc

Th e equivalenl strai n e is definedas

<it.,:jCii )' /1

:: ~(((l - ( 2)1 + ( (1 - (3)2 + ( t3 - ( 1)21'/1 ,

Comparing e La c•• it is found that

So, when II = 0.5, for incompressible material s, c. = e, and

~e
2{1+ II)
3Ge.

Since

J;j = 2Gei j .

(A.10)

(A. II )

(A.121

(A.13)

(A. l.\ )

So the rela t ionship between von Mises stress and equ ivalent st rain is expressed all

(A .15)
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