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Abstract

Two field programs were carried out on the Hobson's Choice lce Island in April,
1989 and May, 1990 using different sizes of spherical and flat indenters. Several
cores of multiyear field ice were recovered from the ice island and transported to
Memorial University to conduct compressive tests in the laboratory. Both constant
strain-rate tests and constant stress Lests were performed with unjaxial stress to

of rear ice and calibrate the material constants

for theoretical modelling.

The spherical indentation tests are modelled using an axisymmetrical finite
element model. The ice damage process is related to the growing network of micro-
cracks and the ice creep process is also enhanced by the existence of cracks. The
damage model is developed in FORTRAN code and ‘implemented as a user subrou-
tine in the ABAQUS finite element analysis program. The analysis results show
that most of the ice damage is close to the contact surface, and that the maximum
damage occurs at the edge of the interface where shear stress is concentrated. This
is in agreement with the test results. The model also provides good results on the
total load versus time history.
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Chapter 1

Introduction and Scope

Since early 1980, increased exploration for conventional energy sources in the arctic
and near-arctic offshore areas, has focused attention on the engineering problems
of designing and building large structures in ice-covered waters. The interaction
of ice with marine structures has been recognized as a major design consideration.
There has been a great deal of effort in recent years, both experimentally and
theoretically, to determine a reliable approach for the estimation of both global
and local ice loads on offshore structures. These ice forces exerted on a structure
may take many different modes, such as, crushing, [racturing, spalling, buckling, or
the combinations of them. These are complex processes and involve several possible
factors, such as, loading rate, ice type, temperature and the shape of interface.
Medium scale ice indentation tests were conducted on the Hobson's Choice Ice
Island in April, 1989 (Frederking et al., 1990a, b) and in May, 1990, and also earlier
in 1984, at Pond Inlet by Mobil Oil Canada (Geotech, 1985). In 1989 eleven tests
were performed with three types of indenters, rigid spherical, flexible flat and rigid
flat. There were six spherical indentation tests with a speed range from 0.3 mm/s

to 90 mm/s. In all tests, ice crushing was observed in front of the indenter and
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the thicUness of the crushed layer was irregular. There was usually less cracking
in the center arca due to high confinement and more damage at the edge of the
interface (in the present work, damage is related to the density of microcracks).
Maximum pressures measured at the center were in the range of 10 to 20 MPa.
Pressure melting has also been reported (Gagnon and Sinha, 1991).

Uniaxial tests have been performed on multiyear field ice which was recovered
from the ice island. The comparison of the test results on both intact and predam-
aged ice show clear evidence of an enhancement of the creep strain due to crack
and damage. The elastic modulus of the ice was calculated from the test results.
An isotropic damage model, which utilizes a power-law relation between crack nu-
cleation rate and stress, is used in the present work. This relationship is based
on rate theory. Additionally, dilatation of ice under compression is modelled as a
function of the ratio of volumetric stress to the equivalent von Mises stress. To
verify this model, direct comparisons to the uniaxial tests have been performed.

Finite element analysis programs have been developed to simulate the spherical
indentation tests at lower rates, with the ice damage model calibrated from uni-
axial tests. The model predictions show good agreement with the test results on
total load versus time histories and pressure distributions and progressions. The
modelled damage distribution and progression can be utilized, to a certain degree,
to characterize the layer of crushed ice. The calculation of ice viscosity is a simple
approach, which is proposed to include the influence of confining pressure in further
studies.

Finite element analysis with damage mechanics is a new and unique approach, in

modelling ice behaviour under both uniaxial loading and medium scale indentation



testing conditions.

As outlined above, the scope of this work may be categorized as follows:

©
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. Literature review of recent theories on ice mechanics, including ice mechanical

and damage models, as well as experimental observations on ice cracking

behaviour.

. Conducting uniaxial tests in the laboratory on the multiyear ice to calibrate

the material constants for theoretical modelling; description of ice indenta-
tion tests carried out on Hobson's Choice Ice Island (1989) and some major

observations.

. Constitutive modelling of ice damage process, including creep enhancement

due to the existence of cracks and damage; finite element implementation and

model verification.

. Finite element modelling of spherical indentation tests and comparison with

the experimental results.

. Conclusions and recommendations for further studies.



Chapter 2

Literature Review

Ice in nature is a polycrystalline material composed of a large number of single
crystals usually in different orientations. Michel (1979) provided a detail description

of the structure and classification of ice (see also C: t and M idge (1988)

on sea ice). Typically, there are two main kinds of polycrystalline ice found in
nature:

1. Granular ice, which is randomly oriented polycrystalline ice, can be found
in ice features; such as, glaciers, icebergs, lake ice and sea ice. The grain size is
classified as fine to medium. In the laboratory, this type of ice can be obtained by
freezing water seeded with full mould of randomly oriented fine ice crystals, and it
can be treated as a statistically isotropic material.

2. Columnar ice is formed with the grains growing parallel to the heat flow and
with c-axis perpendicular to the column length. This type of ice is referred to as S2
ice which can be found in lake, river and arctic sea ice. The mechanical properties
of columnar ice are orthotropic, or more usually, transverse isotropic.

Ice is characterized as a viscoelastic material with its deformation response

dependent upon the loading rate; it is also very brittle under high loading rate. A
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spring-dashpot model, called Burger's model. is often used for polycrystalline ice.
This model is a combination of a Kelvin unit and a Maxwell unit, as shown in Fig.

2.1,

The mechanical properties of ice can be divided into two parts (Sanderson,1988):
1. Continuum behaviour. This includes elastic and ductile creep deformation,
which can be extended to include the uniformly distributed microcracking and
damage processes.
2. Fracture behaviour. This includes crack propagation and brittle failure.

The continuum behaviour of granular ice is markedly similar to that of columnar

ice, but with some differences due to orthotropy or anisotropy (Sinha, 1989).
2.1 Elasticity of Ice

In engineering applications, the elasticity of granular ice is typically treated as
isotropic and can be characterized by two constants, the elastic modulus, E, and
Poisson’s ratio, v. When a constant load or stress o is applied at time o and
released at time {;, a strain versus time curve as shown schematically in Fig. 2.2

is produced. Following Hooke's law, the elastic strain of ice is given as
a
=2 2.1
=7 2

where the elastic modulus of ice is the stiffness of the main spring in the Maxwell
unit and hence the elastic strain corresponds to the deformation of the main spring
(see Fig. 2.1).

The elastic modulus and Poisson’s ratio are dependent on the ice temperature

and porosity. The variations of £ and v on temperature were given by Sinha (1989a)



for both granular and columnar ice. This work shows that temperature does not
have a strong effect on these constants. The value of E changes from 9 GPa to 10.16
GPa and v from 0.308 to 0.3605 in the temperature range -30 °C to 0 °C. There are
two methods for determining the elastic modulus of ice: static and dynamic. The
conventional static tests include uniaxial compression, uniaxial tension and beam
bending. The two most common tests are uniaxial compression tests under either
constant load (or stress) o constant displacement rate (or strain rate). The former
test gives a strair. versus time curve as shown in Fig. 2.2, and the elastic modulus
E = o/e., lor t=0; the latter test gives a stress versus strain curve as shown in
Fig. 2.3, and the elastic modulus £ = :—‘:, when €=0. So the calculated value
of elastic modulus is strongly dependent on the accuracy of the test. However,
ice is not purely elastic, it creeps at all stresses with a time-dependent rate, so
readings of the initial tangent modulus from a stress-strain curve will not be very
accurate. Dynamic testing techniques are considered to be more accurate since they
minimize the time-dependent effects. For polycrystalline ice of low porosity, the
elastic modulus given by high frequency dynamic measurements is approximately
910 9.5 GPa in the temperature range -5 °C to -10 °C (Mellor, 1983). This is
a standard range of values of elastic modulus for low porosity polycrystalline ice.
The commonly accepted range for Poisson’s ratio is 0.3 to 0.33.

The elastic modulus of sea ice has been investigated by Mellor (1983) based
on previous research, which shows that elastic modulus of sea ice varies from 10
GPa (pure ice) to 1 GPa in the porosity range 0 to 0.3. Theoretical models which
calculate the elastic modulus as a function of brine volume were also proposed by

Weeks and Assur (1967), Schwarz and Weeks (1977).

ih




2.2 Creep of Ice

A constant stress creep test on polycrystalline ice gives a conventional creep curve
as shown in Fig. 2.4. The idealized creep curve can be divided into three phases:
primary, secondary and tertiary creep. The role of each individual phase in creep
deformation has not been fully understood. In general, the deformation of ice
includes several kinds of processes or mechanisms, and the influence of each indi-
vidual process or phase might be maximized or minimized depending on the type of
ice, temperature and loading condition. Each of these three phases could dominate
the creep strain under certain circumstances. Sinha (1978) developed a viscoelastic
constitutive equation for columnar ice under uniaxial compression. The total strain

¢ is considered as the sum of three components as shown in Fig. 2.2, i.c.

e=¢ el

where ¢ is the instantaneous elastic component; ¢ is the delayed elastic compo-
nent, or recoverable primary creep, and ¢ is the permanent viscous component, or
secondary creep strain. Sinha's model is limited to the first two phases of creep
and does not address the tertiary creep phase.

Sinha (1978) gives an expression for delayed elastic strain under constant stress

Ay = QBTN ot ant)t :
=2 (E) [1 = exp{~(art)*}], (2.3)
where ¢y, s, b and a7 are all d ding on the and the grain

size, d; where E = 9.5 GPa; ¢; = 9, is a constant corresponding to the unit grain
size dy (dy = 0.001); s = I; b= 0.34: ap = 2.5 % 1075~ (T = 263K). The delayed

elastic strain corresponds to the deformation of the Kelvin unit in Fig. 2.1.



A nonlinear dashpot based Kelvin unit was proposed by Jordaan and McKenna
(1988b) to model delayed elastic strain, in which the viscosity i is a function of

stress gg in the dashpot. The strain in the Kelvin unit is then

)= —[1 —exp{— dt}] (2.4)

a t

£, o ploq)
where Ey is the elastic modulus of the spring, and py is the viscosity of the dashpot
in the Kelvin unit, It was assumed that the dashpot follows a power-law relation

with stress

1
prlod) = —[?kT:-T (2.5)

where I is the viscosity parameter: n is a constant. Using the equation of equi-
librium for the element of the Kelvin unit. i.e.

6 o
By 1x(oq)

then it is found
e = (= 1) Ext + pyo. (2.6)
Substituting Eq. (2.6) into Eq. (2.4), the delayed elastic strain is then given by
) = g (1= fln= Dt + 117077) @7

where, w = Ex/po, o is the viscosity at time ¢ = 0.
The secondary creep strain describes the effect of the viscous flow and dislo-

cation movement within the grains, and appears to be independent of the grain

size (Cole, 1986). This creep strain ds to the creep d ion in the




dashpot of the Maxwell unit (see Fig. 2.1). For polycrystalline ice under uniaxial
compression or tension, a power-law relation of strain rate and stress was suggested

by Glen (1955 of the form
&= Ao

where n is a constant and A s a function of temperature in the form
. ﬁ) 2
a=8ew (2). (2.9)

where R = 8.314 J mol~' K™, is the universal gas constant; T is the temperature
in degrees Kelvin: () is the activation energy and B is a material constant, both Q

and B are dependent of the ice type.
In Sinha's expression for columnar ice, the creep strain rate was given by a

similar relationship:

&= ef,(—)". (2.9)

where n = 3, and €§ = 1.76 x 107

' (T = 263K), is the viscous strain rate for
unit stress oo, (0o = 1 MPa).

The tertiary creep was considered due to the effect of microcracking (Gold,
1970), but it was {ound that cracking is not essential for the occurrence of tertiary
creep in polycrystalline ice. even during the transition from primary to tertiary
creep (Mellor and Cole, 1982). The real process is not well understood. In this
study, secondary creep includes enhancement associated with the current level of
crack density. This crack-enhanced creep is used to model the permanent creep

strain.
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The viscosity of sea ice is different from that of pure ice, since sea ice contains
many air bubbles. brine pockets and impurities which causes local stress discontinu-
ities and concentrations; hence, sea ice is softened and has lower viscosity (Pounder,
1963), (Wang, 1979a, b, 1981), (Weeks and Assur, 1967). A rationalized creep rate

expression of sea ice was given by Sanderson (1988) as

Ald®,

where

~Q 1
A= uexp(—) — (2.10)
RT/ (1 = \Ju/wo)®
and vy is brine volume or porosity of the ice and v is & normalizing constant.

Substituting Eq. (2.8) into Eq. (2.10), it is found that

1
(1= m/m0)®

For multiaxial stress states. the elastic response of ice can be written as

(2.11)

A=

€, = Cuyrt 0,y (2.12)

where Ci is the fourth order compliance tensor; oy; is the second order stress
tensor.
The delayed elastic strain rate, or recoverable creep strain rate was generalized

by Ohno et al. (1985) to multiaxial stress states in the form

af(3/2) K "' 55 — €], (2.13)

where a, K and b are material constants, which are possibly functions of strain and
stress; s is the von Mises equivalent stress and s;; is the deviatoric stress. Ifb=1,

the dashpot in the Kelvin unit is linear and the above equation becomes
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3
caBk et
& =alSks, - ).

(2.14)
This equation was adopted by Karr and Choi (1989).

The generalization of the secondary creep strain rate for incompressible be-
haviour of ice was given by Ashby and Duval (1985) as

s
= sy (215)

where " is a viscosity constant. So the total strain rate of ice is then
IR T 5
&y =&, + &+ € (2.16)

where ¢, is the second order strain tensor.
2.3 Cracking of Ice

Crack nucleation in ice is a complex process associated with the transition from
ductile to brittle behavior. The mechanism of nuclcation depends on the load level
and loading rate. Gold (1972) first described the failure of columnar-grained ice
in terms of microcracking during compressive creep tests, with special attention
to the crack initiation time, strain and crack density development. Based on sta-
tistical analysis, two types of crack distributions were found. Strain-dependent
crack distributions were proposed to be the result of a dislocation pileup mecha-
nism. Strain-independent crack distributions appeared to be related to the elastic
anisotropy which causes stress concentrations at grain boundaries.

For fracture of ice in tension, the applied load must be sufficient to nucleate
microcracks, and the load must be increased until the crack begins to propagate.

Crack nucleation is likely to be associated with critical tensile strain (Seng-Kiong
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and Shyam Sunder, 1985) or critical delayed elastic strain as proposed by Sinha
(1982).

For ice of grain size less than | mm. nucleation of cracks may occur at a stress
of about 1 to 1.2 MPa and the propagation stress is about 1.2 to 2 MPa. From test
data obtained at strain rates 107%s™" to 10~%s" by Schulson et al. (1984, 1989),
Schulson (1987, 1989), and Currier et al. (1982), tensile crack nucleation occurs at

a critical stress which can be expressed as
on =0+ kd™V? (2.17)

where oo is 0.6 MPa and k is 0.02 MPa m'/? and d is the grain size. The criterion
for tensile crack propagation is given by

_YKic

o = (o (2.18)

where K¢ is the critical stress intensity factor for mode I loading, a is half of the
crack length and Y is a geometrical parameter. Tensile cracks and fracture surfaces
are always perpendicular to the tensile stress axis.

In compression, the crack nucleation process is more complicated and highly
rate sensitive. Seng-Kiong and Shyam Sunder (1985), Hallam (1986) proposed
that crack nucleation occurs when the associated lateral tensile strain induced by
the Poisson expansion reaches a critical value. The required compressive nucleation
stress should be about 3 times higher than that for tension.

Sinha (1984) used the test results of Gold (1972) to relate crack nucleation
to a critical delayed elastic strain associated with grain boundary sliding, i.e., the

delayed elastic strain ¢ given in Eq. (2.3) is equal to the strain induced by the grain
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boundary sliding egs,, and when €,p, reaches a critical value €yy,. crack nucleation
occurs. The critical value of grain boundary sliding ¢y, is related to the critical
stress needed to produce a crack at the end of a sliding interface.

The dislocation pileup mechanism was adopted by Schulson et al. (1981) , Cole
(1986) and Kalifa et al. (1989). This mechanism is based on the concept. that
dislocation pileup at grain boundaries may provide a high stress concentration
which can induce crack nucleation when the stress reaches a critical level.

More tests were carried out recently by Sinha (1988) on columnar ice, Hallam
et al. (1987) on granular ice at constant load, and by Cole (1986) on granular ice at
constant strain rates. Kalifa et al. (1989) performed a series of triaxial compression
tests with strain rates varying between 2.5 x 107%s~" and 10~®s~" and confining
pressure ranging from 0 MPa to 10 MPa.

From their work some conclusions can be summarized:

(1) Cracks usually start from the grain boundaries where high stress concen-
trations exist and are arrested at grain boundaries. Crack nucleation occurs at the
larger grains first. The plane of cracks has a strong tendency to be parallel to the
axis of compressive stress.

(2) For the constant stress tests (Cole, 1986), the crack density increases with
grain size and stress, and the cracking rate decreases as the crack density approaches
one crack per grain.

(3) The number of intergranular (between the grains) and intragranular (within
the grains) cracks are about the same, but cracks are preferentially intergranular
at high strain rates.

(4) The average crack size is about 0.65 times the average grain size, and the
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maximum crack size is typically 2 to 3 times the average grain size. The crack
size is not aflected by the stress. The grain size was calculated, according to Cole
(1286), using d = (6/7N)"/?, where N is the number of gains per unit area. It was
found that the peak stress decreases with increasing grain size.

(5) Although the final crack density is very high, the microcracks do not appear
to interact; that is, the nucleation of one crack does not trigger the other crack
nearby.

(6) No “wing cracks” were observed by Cole (1986) and Kalifa et al (1989).
On the other hand, a few wing cracks were observed by Hallam et al. (1987) and
Schulson (1987), but damage in ice is mainly due to the nucleation of new grain-
sized cracks, rather than the propagation of those which have already nucleated.

(7) According to Kalifa et al. (1989), the stress and strain levels for crack
nucleation increased with the confining pressure, and so did the standard deviation
of the distribution of crack orientation. The size of cracks did not change with
pressure and the strain rate has no significant effect on crack nucleation. An

equation of the critical stress at the first cracks was given as
0y —03= =247+ 0403 (2.19)

where o, is axial stress and o3 is confining stress. Both ¢y and o3 are negative in
compression.

There are four stages in the failure process of ice during compression experi-
ments of strain rate at 10=%s~! (Cole, 1989):

(1) In the first stage, stress-strain relation is basically elastic but with slightly

nonlinear behavior and no visible microcracking observed.
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(2) Microcracks begin to nucleate in the second stage with stress between 3.29
MPa to 3.95 MPa. The crack density increased very quickly with increasing stresses
up to 5.65 MPa.

(3) Crack nucleation stopped, the increasing stress causes no more visible mi-
crostructural damage and the existing cracks appear stable.

(4) The final stage is the specimen completely damaged with possibly sudden
brittle failure.

In fact, only when the strain rate is relatively high, about 10=2s~", does the ice
become brittle and complete fracture failure occurs. In this case cracks extend to
the free surface or cracks interact to form a larger crack or shear fracture surface.
If the loading rate is low, the stress-strain curve eventually reaches a plateau and
ice crueps without sudden failure.

The elastic anisotropy mechanism has also been applied to ice by Cole (1988)
and Shyam Sunder and Wu (1990). Their recent work showed that elastic anisotropy
of the ice lattice is an effective source of stress concentration and can be taken as
an alternative for crack nucleation when deformation rate is too high to allow
dislocations to pileup. These models gave good agreement with test results.

Microcracking and fracture of ice is very common in ice indentation and there
is much work on ice interacting with flat, cylindrical and spherical indenters. As
addressed in the work of Jordaan and Timco (1988), Timco (1986), Tomin et al.
(1986) and Jordaan and McKenna (1988a), when an ice sheet interacts with a

flat indenter, a layer of crushed ice is formed in front of the indenter and the

3, divel;

are ped along the maximum shear stress, as shown in Fig. 2.5a.

The ice is idealized into three zones, as shown in Fig. 2.5b, undamaged virgin ice;
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partly damaged ice with relatively high density of cracks and reduced stiffness; and
crushed ice which eventually will be extruded cut but this ice can carry compressive
loads due to its frictional properties, i.e. the compressive strength of crushed ice is
not zero.

Several different failure modes of an ice sheet were observed (Timco 1986) de-
pending on the loading rate and the ratio of the indenter width to ice thickness.
Generally, at low speed, there is mainly crushing and microcracking in the ice with
some short cracks less than a few centimeters in length (Fig. 2.5). At high speed,
there is crushing and spalling right in front of the indenter, but the failure of ice is
mainly due to the occurrence of the radial and circumferential cracks and maybe
buckling (Fig. 2.6a). In some cases there are mainly 45° - 60° radial cracks ex-
tending from the corners and the cracks would be a couple of meters long (Fig.
2.6b). More tests have been carried out recently in the ice tank in the Institute
for Marine Dynamics, Canada, which provides similar evidence of ice cracking in
interaction (Finn, 1991). In the case of the cylindrical indention, crushing, microc-
racking, radial and circumferential cracks can also be observed similarly to the flat
indention (Hallam, 1986). A possible crushing and damage mode of the spherical
indentation tests, as discussed in the work of Jordaan and McKenna (1988a), is
illustrated in Fig. 2.7. A layer of crushed ice is under ‘he indenter and the ice
beyond the crushed zone is partly cracked. The density of the crushed ice is less
than the intact ice. Radial cracks could also form and reach the surface, so large

flakes would spall away. More details of this kind of tests will be discussed later.



2.4 Damage Mechanics and Damage of Ice

The deformation process of engineering materials under loading often results in
changing the structure of the material. This change, to a large degree, will de-
pend on the combined effects of geometry, loading, and the most important, the
growth of micro-defects in the structure. The accumulation of micro-defects is of-
ten termed “the process of damage” which is always associated with the change
of the mechanical behavior of the material and the dissipation of strain energy.
Most of the early work of damage mechanics was based on the original idea that
the damage of a structure can be measured by a scalar factor (Iachanov, 1958),
which is equal to the ratio of the area of voids and the whole cross section, or the
density of microcracks and voids which would permanently affect either the elastic
modulus, £ or shear modulus, G. This was the guidelirie for most of the early work.
The importance of this kind of damage models is the establishment of a rational
damage law which defines the rate of damage accumulation in terms of the current
values of state variables and internal variables.

Based on Kachanov's model (1986), a body with an overall section area Ag and
fractured (damaged) area 4, is shown in Fig. 2.8. In the case of uniaxial loading

P without damage, stress in the body is given as

=— 2.2
Ao (220)
With isotropic damage, the damage variable D can be defined as
A
D==;0<D<1 (2.21)
Ao

and the effective stress o, is introduced as



P
Ga =

2.22
Ag— A =2

It is assumed that the strain response of the body is modified by damage only

through the effective stress, so the stress-strain relation of the damaged material is
(2.23)

where Eg is the elastic modulus of virgin material and E = Eo(1 — D) can be called

the “effective” modulus. So the behaviour of damaged material can be considered

to be equivalent to the behaviour of und. d material, provided that the original

elastic modulus £y is replaced by
E = Ey(1 - D). (2.24)

The evolution of damage generally relates the present strain, stress and damage.

The kinetic or evolutional equation can be introduced in the general form
D = f(e,é,0,6,D,-++,D) (2.25)

where €, o and D are strain, stress and damage respectively.
A continuum damage model was proposed by Resende and Martin (1983, 1984)
for rock-like materials which defines the elastic strain-stress relation of the material

as
s = Go(1 - D)e* (2.26)
and

= e i (2.27)
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where s is the stress invariant: Gy is the initial shear modulus; D is the damage
measurement; e is the total shear strain invariant, and e and € are the elastic and

damage part of e, respectively. So the rate form of Eq. (2.24) was given as
§ = Go(1 = D)é* — Goe* D; for loading (D > 0), and (2.28)
§ = Go(l — D)é; for unloading (D = 0). (2.29)
The damage evolution law was defined as
D = D(é,e,0m,éu,6,) = Ale.om)é + Bleu)éy (2.30)

where A and B are material and d dent on loading situation. The

invariant volumetric strain rate ¢, was also assumed as
L=E 4 (2.31)

where é¢ and ¢ are the elastic component and inelastic damage component respec-
tively. They are also functions of strain, stress and damage. See the references
for details. Other references on damage mechanics include Krajcinovic (1983);
Krajcinnovic and Fonseka (1981); Leckie (1978); Schapery (1981, 1984 and 1988).
Damage mechanics has been introduced to ice by Cormeau et al.(1986), McKenna
et al. (1989), Jordaan and McKenna (1988), Karr (1985), Karr and Choi (1989),
Sjélind (1987), etc. An isotropic damage model with a single scalar damage mea-
sure has been developed in some papers. Some of the recent work has focused on
the relation of the extent of damage and the growing network of microcracks which

is often assumed to be uniformly (isotropically) distributed and randomly oriented.
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As described in the previous section, Sinha's model predicts crack nucleation
when €5, 2 €4, and the formation of subsequent cracks was given in the form

(Sinha, 1981, 1988, 19895)
N = Nfpexp(z - z.) - 1] (2.32)

where IV, is the crack density for the first cracks; ¥ is a constant; Z is the average

grain boundary sliding (gbs) displacement; z. is critical (gbs) displacement.
Creep strain rate was also found to be influenced by the formation of cracks.

Following Weertman (1969), the enhancement of cracks on creep was given as

(Sinha, 1988,1989b)
€ = e5(1 + 27N a*n'?)(a/a0)"; a®N < 1 (2.33)

where N is the number of cracks per unit area and a is half of the crack length.
A rate expression of crack formation was also proposed by McKenna et al.

(1989, 1990), Jordaan and McKenna (1989) based on rate theory in the form

N = Nifexp (" ;u") A (2.34)
and also
N= (2.35)

where N =0, if o < 0., o, is the critical stress, oo is a constant(units of stress)
and N, is a reference rate. The isotropic damage parameter Dy, after Budiansky

and O'Connell (1976), was defined as

Dy =a*N (2.36)



where a is the same as above and .V is the density of cracks m=.
When the crack density is high. the effect of cracks on the creep rate was
estimated, based on the work of Weertman (1969), by introducing an exponential

form
& = éexp(AN) (2.37)

where g is a constant.

Some specially designed uniaxial tests were conducted on both intact and predam-
aged ice to investigate the influence of the presence of cracks on the deformation of
ice, Stone et al. (1989), Jordaan and McKenna (1989) and Jordaan et al. (1990a,
b). These tests were also used to verify the theoretical damage model and will be

discussed in more detail later,
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Figure 2.1: Burgers Body; E and y are elastic modulus and viscosity coefficient,
respectively.
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Figure 2.2: Applied stress history and strain response of constant stress test.
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Figure 2.3: Stress-strain curve of constant strain rate test.
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Figure 2.4: The three phases of creep test: (I) primary; (II) secondary; (IIf) testiary.




Figure 2.5: Idealization of ice sheet; plan view of (a) photographic representation
showing progress of damage, and (b) idealization into three zones (Jordaan and
Timco, 1988).

(a) (b)

Figure 2.6: The failure modes observed in the ice sheet indentation tests: (a)
Crushing with radial and circumferential cracking; (b) Crushing with radial crack-
ing (Timco, 1986).
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Figure 2.7: Possible mode of pulverization ahead of spherical indenter (Jordaan
and McKenna, 1988a).

Figure 2.8: A body with an overall section area of Ao and a damaged area of A.



Chapter 3

Experimentation

In April, 1989 and May, 1990. two field programs were carried out on Hobson's
Choice Ice Island Research Station by Memorial University, the National Research
Council of Canada (NRC), Canadian Coast Guard (CCG) and Sandwell Swan
Wooster (SSW). A hydraulic indentation system was utilized with different sizes
of spherical and flat indenters. The ice island is a 2.5 kilometer wide, 8 kilometer
long, 45 meter thick floating block of ice that broke away from the Ward Hunt Ice
Shell, Ellesmere Island, in 1982. [t is primarily composed of freshwater shelf ice,
with a large amount of thick, up to 10 meters, multiyear ice surrounding the shelf
ice core. The test site was in the area of multiyear ice (Kennedy, 1990; Frederking
ct al., 1990a, b). These programs were designed to determine an accurate and
reliable methodology for the prediction of ice forces on offshore structures.
Several cores of multiyear field ice were recovered from the ice island and trans-

ported to ial University for compression testing in the laboratory. These

tests were designed to investigate the deformation of multiyear ice, and to obtain

the relevant material constants for theoretical modelling. The influence of cracks

and damage on the creep response was i igated. As previously joned, sim-



ilar tests on freshwater ice were carricd out by Stone et al. (1989), Jordaan and

McKenna (1989) and Jordaan ct al. (1990a, b).

3.1 Uniaxial Tests
3.1.1 Specimem Preparation

The block of ice-island ice was cul with a band saw into the shape of rectangular
prism on the order of 75 x 75 x 200 mm®. Cylindrical samples of desired diameter
were machined from the rectangular samples on a lathe. Then the cylindrical
samples were held on a precision V-block jig with its axis parallel to the longitudinal
axis of the lathe and perpendicular to the cross head so that the sample could be
cut to the desired size with two ends parallel and perpendicular to the axis of the
cylinder. The final specimens were 54+0.05 mm in diameter and 135::0.25 mm in
length. The sizes of the specimens were determined by the setup of the test system.
‘The specimens were stored in a freezer at a temperature of -30°C until the test.
As reported by Frederking et al., (1990a) and Sinha (1990), the structure of
the ice was basically frazil with a small portion of columnar ice, and comprised a
significant number of air bubbles and brine pockets. The percentage of air pocket
volume was avound 2 to 5%. The grain size was about 2 to 7 mm. The salinity
of the ice varied from 0 to 0.4% depending on the location, and the density was
about 0.875 to 0.886 g/cm®. Some photographs of the specimens, before and after
the testing, are shown in Fig. 3.1, It was found that there were about 4 - 8 big
bubbles, on the order of 2.5 to 3 mm in each specimen, plus groups of bubbles with
the size of 1 to 2 mm and randomly distributed small bubbles with the size of 0.3

to 0.7 mm.



3.1.2 Test Setup

A MTS Systems Corporation Model 905 Structure Testing System was used for
all tests. Two LVDT's were mounted directly on the specimen as shown in Fig.
3.2, over a gauge length of approximately 85 mm. The two LVDT outputs were
averaged to provide the in-situ measure of axial strain as well as a closed-loop

feedback control signal to the MTS servo-valve. Lateral strain was also measured

on the first two tests to try to find cvid: of dilatation during the deft

For this purpose, two LVDT’s were mounted on the two sides of the specimen
and approximately on a line as shown in Fig. 3.3, but the results were not very
satisfactory due to the irregular deformation of the specimen in the lateral direction,
which is evident in Fig. 3.1.

Several hours before each test, the specimen was placed in the cold room to
allow tlemperature equalization. During the test, the temperatures at the top and
bottom of the specimen were measured. The temperature at the bottom was usually
slightly higher than that at the top. This was attributed to the hydraulic fluid being
supplied from ouiside the cold room. A maximum bottom temperature of -9.6°C
was measured for -10°C tests.

All the test data including load, stroke, displacement and time, were recorded
on a microcomputer via a multifunction data acquisition board. According to
Stone et al. (1989), an acquisition rate of 75 sample/sec/channel was found to be

loadi

d for loading and phases of the tests at strain rates of 10451

to 107%s", For the higher strain rate of 10~%s~", an acquisition rate of 175 sam-
ples/sec/channel was recommended. Between each unloading and loading, i.e.,

during the period of relaxation, where the deformation rate is very low, the acqui-
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sition rate is set to 10 - 100 times lower than that on loading, so that more storage

space in the computer can be saved. The data acquisition rate for the creep tests
was 245 samples/sec/channel during the loading. The acquisition board provides a
measurement accuracy and resolution of 0.02% in the range of £10V. Load and

stroke were also plotted by an X-Y plotter during the tests.
3.1.3 Results and Discussion

As listed in Table 4.1, three uniaxial constant strain rate tests and five constant
load tests were carried out on the multiyear ice described in section 3.1.1. At the
temperature of -10°C, test No. 1 was a constant strain-rate test subjected to a
loading rate of 5 x 107%s~! to a maximum strain of 2% as shown in Fig. 3.4. Test
No. 2 was similar but had two loadings with different rates. The specimen was
first loaded at a strain rate of 3 x 1073s7" 1o a strain of 2%. followed by unloading
and about 100 seconds of relaxation, followed again by reloading at a strain rate of
2.5 x 10=%s7! to a total strain of 4%, as shown in Fig. 3.5. Test No. 3, conducted
on an intact ice specimen, was a constant stress creep test, which was a series
of creep tests. Each creep test consisted of a 20 second load pulse followed by
a 10 minute relaxation period, followed again by reloading, and so on (see Fig.
3.6). The reason for loading only 20 seconds is that these tests were designed to
investigate the short-time responses of ice, such as, elastic and delayed elastic strain
components. Test No. 4 was a creep test conducted on a predamaged specimen.
The specimen was predamaged by subjecting to a constant strain rate loading of
10~*s~! to a strain of 2% as shown in Fig. 3.7. At the temperature of -20°C, a

creep test, No. 5, on an intact specimen was carried out with the same loadings



Table 3.1: List of the Test Series
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test strain rate ice temp.
No. | type or stress type | °C remarks
1 constant strain | 5 x 105" intact | -10°C
rate (CS.R.) | (sce Fig. 3.4) |ice
2 | constant strain [ 5 x 107°s~'& [ intact [ -10°C | sample was reloaded
rate 2.5 % 1075s™" | ice at strain of 2%
( see Fig. 3.5)
3 | constant stress [ 0.25 MPa — [ intact | -10°C
(CS) 1.5 MPa ice
(see Fig. 3.6)
4 | constant stress | 0.25 MPa — | p.d.T [-10°C | T predamaged;
2.0 MPa ice sample was predamaged
(see Fig. 3.7) under C.S.R. to 2% strain
5 constant stress | 0.25 MPa — intact | -20°C
.0 MPa ice
(see Fig. 3.8)
6 constant stress | 0.25 MPa — p.d. |[-20°C | sample was predamaged
2.0 MPa ice under C.S.R. to 2% strain
(see Fig. 3.9)
7 constant stress | 0.25 MPa — p.d. -20°C | sample was predamaged
2.0 MPa ice under C.S.R. to 2% strain
(see Fig. 3.10)
8 | constant strain [ 5 x 107*s™'& [intact | -20°C | sample was reloaded
rate 10-3s~! ice at strain of 2% strain
( see Fig. 3.11)

as that of test No. 3 (Fig. 3.8). Test No. 6 and No. 7 were two creep tests on

predamaged specimens, i.e., the ice was loaded to a total strain of 2% at constant

strain rate of 107*s™", as shown in Fig. 3.9 and Fig. 3.10, respectively. Test No.

8 was a constant strain rate test, as shown in Fig. 3.11, to a strain of 2% with a

strain rate of 5 x 10~*s~!, and reloaded again to a strain of 4% with a strain rate

of 10=3s-1,

Fig. 3.12 shows the stress-strain curves of some constant strain-rate tests on
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both freshwater and multiyear ice. Based on the unloadings of the tests on both
types of ice, it was found that the recoverable strain. i.e. elastic strain plus delayed
elastic strain, was less than 10% of the total strain. When the total strain is more
than 2%, the stress reaches a platcau. The recoverable strain €® + ¢! from the

test of freshwater ice is only 2.05 x 10~

1.82 x 107 and 2.84 x 1072 upon first,
second and third unloading, respectively. Notice that the first value is larger than
the second, because the stress is higher at first unloading. The ice specimen was
not totally relaxed during the first two unloadings; the relaxation periods were
both about 10 minutes. The specimen relaxed for about one hour after the third
unloading, therefore the third value of recoverable strain is the largest. But the
secondary or permanent creep strain is still the predominant strain component.
The ratios of recoverable strain to total strain are 10.5%, 5.2% and 5.5% for the
three unloadings. This was also found in the tests of multiyear field ice.
Comparing the constant strain rate tests of multiyear ice to freshwater ice (Fig.
3.12) shows that the peak stresses of the multiyear ice are much lower. One reason
for the lower strength must be the defects, such as the air pockets, in the multiyear
ice. These defects can be considered as damage, which would significantly soften
the ice. Another reason is that the structure of the multiyear ice is a combination
of frazil and columnar ice with the grain size ranging from 2 mm to 7 mm. The
laboratory-made freshwater ice is granular ice with a grain size of 3 mm. It is
expected that the two kinds of ice would have different responses under the same
loading. The multiyear ice, as addressed in the previous chapter, must have a
lower viscosity due to defects and crystal structure. As shown in Fig. 3.12, the

stresses start to build up almost linearly with strains and all the curves are close,
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which means that the elastic modulus of the two types of ice have similar values,
since most of the total strain is elastic strain at the beginning of loading (Sinha
1981). In the strain range of 0.1% to 0.5%, there is a significant difference in the
stresses. The peak stress of the freshwater ice is almost double that of the multiyear
ice. Assuming that the stress increases linearly to the peak stress, it is possible to

estimate the portion of each strain component at the peak stress. i.e.

e=0o/E

.
€= /o’é;a"dl

Here o is assumed to be

g,
a=-2t
Ly

where o, is the peak stress at time Z,. So it is found that
€ = (1/4)go3t,

where n = 3 is assumed. Here the peak stresses are 5.7 MPa and 3 MPa for

fresh Iti 1

and multiyear ice. respectively, and f, is 27.9 seconds. Assuming the

two types of ice have the same elastic modulus, the viscosity parameter of freshwater
ice is 1.76 x 10~7(Sinha, 1981), and the estimation of porosity of the multiyear ice
is about 5%. With Eq. (2.11), the viscosity parameter is calculated to be about
2.05 x 107, The strain components at peak stress are listed in Table 4.2, So,
for freshwater ice at peak stress, more than half of the total strain is elastic, but

for multiyear ice, the delayed elastic strain is the largest component, and both e*
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Table 3.2: List of Strain Components

e x 10 [ x 1070 [ 107 [ ¢ x 107 [ 5% 2% [=%
freshwater
ice 1395|0788 |0383 0221 [565% |21.5% | 16%
multiyear
ice 1395 0417|0591 | 0387 |30% [424% |26 %

and €° are larger than that of ice. So it is luded that the multiy

ice must have less stiffness and lower viscosity in the Kelvin unit (see Fig. 3.1),
due to the defects and crystal structure. Both delayed elastic strain and secondary
creep strain are enhanced by the defects (this will be discussed later). After a total
strain of about 1.5% to 2%, the strain-stress curves begin to converge again, and

as ioned previously, the ble strain is less than 10% of the total strain

when the stress reaches a plateau, most of the strain is secondary creep strai

€ = ¢; furthermore, the stress o is almost constant, so, ¢¢ & é 2 0, this yields

a
— thus 3.1
i @

(3.2)

where superscript prime means damaged material properties and the subscripts

ice and multiyear ice, respectively. The equation

f and i stand for
shows that the two types of i~e have similar viscosities. This suggests that in the
strain range of 0.1% to 0.5%, as mentioned above, the freshwater ice suffers more
damage than that of the multiyear ice due to the much higher stress. Therefore
the freshwater ice has been given a great deal of strain softening and viscosity
reduction. So the viscosity of ice, which was measured from the constant strain

rate test after the plateau, is actually that of damaged ice, not intact ice.
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The creep tests provided additional information on the elasticity and viscosity
of the ice. Fig. 3.13 shows the strain responses of intact and predamaged ice at
a stress of 0.75 MPa (¢° and € are the elastic strains; ¢? + ¢ and € + ¢ are
delayed elastic strains plus secondary creep strains for intact and predamaged ice,
respectively. By focussing on the strain versus time curves close to time = 0, the
instantaneous elastic strains can be estimated). The elastic strains and total creep
strains at 20 seconds are plotted in Fig. 3.14. The static elastic modulus of intact
multiyear ice is estimated as 8000 MPa at -20 °C, and the modulus of predamaged
ice is about 6000 MPa at -20 °C . These values are taken from the slopes of the
stress-strain curves in Fig. 3.14a, and these elastic responses of the intact multiyear
ice show that the small repeated loadings have not added significant damage in the
ice. Comparing the creep responses (delayed elastic strain plus secondary creep
strain) of the tests of intact to predamaged ice in Fig. 3.14b (see also Fig. 3.13),
shows that the presence of cracks and damage significantly influence creep strain.
The creep strain of predamaged ice is about 3 to 10 times that of intact ice. As
shown in Fig. 3.13, the strain response of the intact ice has mostly recovered,
and the permanent viscous strain is close to zero. This suggests that the elastic

and delayed elastic components of strain dominate for short load times. The strain

response of pred d ice has a signi of secondary creep, and the
delayed elastic strain rate (the slope of the strain versus time curve in Fig. 3.13)
is much higher than that of intact ice. This implies that cracking and damage can
significantly enhance the creep response of ice (see also Stone et al., 1989; Jordaan

et al., 1990a, b).



3.2 Spherical Indention Experiments
3.2.1 Experiment Setup

In April, 1989, a total of eleven tests were preformed on the Ilobson’s Choice Ice
Island. Six of them were spherical indentation tests with speed ranging from 0.3
mm/s to 90 mm/s. The insitu ice temperature was about -14 °C. The tests were
carried out in an area of 8 m thick multiyear ice which was attached to the edge
of the ice island. A trench 3 m wide, 4 m deep and 100 m long was excavated to
conduct the tests. The walls of the trench were roughly smoothed with a chain
saw and the test areas were specially machined with a vertically mounted circular
saw. The wall opposite the test face was also machined and made parallel to the
test face.

The ice indentation system consisted of a hydraulic actuator mounted upon
a large mobile skid of beam and strut construction (Fig. 3.15). The actuator
was powered by a bank of pressure accumulators and controlled by a servo-control
system which provided a constant displacement rate (with exception of no servo-
control system being used for the first test, NRC1). The indentation speeds could
be assumed constant over the whole test period. Seven 100 mm diameter pressure
cells for measuring local pressures were mounted to the front of the indenter. The
location of pressure cells is shown in Fig. 3.16. A flat back plate was attached to
the rear end of the actuator to support the system. This back plate had a larger
contact area than the indenter to force crushing failure on the indentation face

only.
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3.2.2 Results and Discussion

As discussed in the work of Frederking et al. (19902, b), both large scale and
local crushing under the indenter face typically accompanied the indentation tests.
Low speed tests allowed sufficient time for creep deformation and microcracks to
extend into the ice, and the total load versus time curves were relatively smooth,
while high speed tests appeared to produce localized failure near the indenter and
dynamic ice forces on the indenter were recorded. Analysis of crushed layer profiles
during spherical indentation tests showed that the layer thickness was irrcgular.
The thickness of the crushed layer was about 20 mm to 50 mm for test No. 7, and
the maximum thickness observed was about 320 mm at the center of the contact
area during test NRC5. There was a clear boundary between the parent ice and
crushed ice. For the low speed tests, the ice under the indenter was partly damaged
with short cracks. In the present work, attention is focussed on two of the spherical
indentation tests, these are denoted as NRC1 and NRC2, respectively. The load-
time results of the two tests are shown in Fig. 3.17a, b. The loading rate for test
NRC1 was 0.3 mm/s. The indenter came in contact with the ice at point A and the
system stopped at point C. It was observed that a very large piece of ice spalled
off during the test, when large cracks extended 6-9 m on either side of the indenter
towards the top ice surface. It is believed that the spall occurred at point B, and so
the test results after point B have not been used for modelling purposes. A similar
situation existed for test NRC2 conducted at 2.5 mm/s, in which two big spalls
probably occurred. Here again the portion of the test after point B was neglected.

From the pressure measurements, the maximum pressures were recorded at the

center of the indenter and the average pressutes were in the range of 5 MPa to 20

0



MPa. Due to high confining pressure and lower shear stress in the central area, the
ice is less damaged (the critical stress required for crack nucleation increases with
confining pressure (Kalifa et al., 1989)). Near the edge of the interface, there is less
confining pressure and higher shear stress, so the ice has become more damaged
and the crushed layer is thicker. Recrystallization due to possible pressure melting
has also been reported during indentation tests (Gagnon and Sinha, 1991), which

means that friction between the indenter and the ice may be very small.
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Figure 3.1: Photograph of ice samples
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i

Figure 3.2: Test setup for measuring the axial strain.

Figure 3.3: Test setup for measuring both axial and lateral strain,
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Figure 3.4: Stress-strain curve for uniaxial test No. 1.
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Figure 3.5: Stress-strain curve for uniaxial test No, 2.
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Figure 3.6: Applied stress history and strain response of creep test No. 3.

Stress (MPa)

500 1000 1500 2000 2500 3000 3500 4000 4500 S
Time (sec.)

Strain

500 1000 1500 2000 2500 3000 3500 4000 4300 5K
Time (sce)

Figure 3.7: Applied stress history and strain response of creep test No. 4.
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Figure 3.8: Applied stress history and strain response of creep test No. 5.
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Figure 3.9: Applied stress history and strain response of creep test No. 6.
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Figure 3.10: Applied stress history and strain response of creep test No. 7.
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Figure 3.11: Stress-strain curve for uniaxial test No. 8.
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freshwater ice

Figure 3.12: Stress-strain curves of constant strain rate tests on both freshwater
and multiyear ice at strain rate of 10=4s~!.
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Figure 3.13: Strain responses of intact and predamaged ice for stress at 0.75 MPa.
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Figure 3.14: Creep tests: (a) stress versus elastic strain for intact and predamaged
ice; (b) stress versus total creep strain at 20 seconds after the application of the
load for intact and predamaged ice.
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Figure 3.15: Schematic of the actuator indenter system (Frederking et al., 1990a).
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Figure 3.16: Schematic of the spherical indenter and the locations of local pressure
cells (Frederking et al., 1990a).
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Figure 3.17: The total load versus time records of test: (a) NRC1; (b) NRC2
(Frederking et al., 1990a).



|
|

Chapter 4

Constitutive Modelling

4.1 Ice Model

As discussed in the previous chapters, the deformation of ice is a complex pro-
cess, especially when cracking activity occurs. The properties of ice are strongly
influenced by the presence of cracks and damage. The idealized mechanical model,
called Burgers' model (see Fig. 2.1), consists of combination of a Maxwell and a
Kelvin units, with a nonlinear dashpot in each unit (sce also Jordaan and McKenna,
1988b).

Much work has been done to model the primary and secondary creep in ice and

other materials. A Kelvin unit with a p law sti ! dent creep i

as proposed by Jordaan and McKenna (1988b, 1989), Jordaan et al., (1990a, b), has
been shown to be appropriate for describing the initial primary creep under rapid
loading. This also provides an expedient computational solution for the primary
creep strain. With this model, at the beginning of each time increment, the program
only needs to read the stresses, strains and other model parameters which are stored
as state variables from the previous state, instead of requiring access to the whole

storage of past history. All of the state variables will be updated at the end of each
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increment.
In the case of uniaxial stress, total axial strain is given in terms of three com-

ponents, i.e.

a=€+el+¢ (4.1)
where the elastic component is given by

& =a/E, (4.2)

where oy is the axial stress and £ is the elastic modulus. From the laboratory results
of creep tests, Young's modulus of multi-year ice for the static case is approximately
8000 MPa at -20 °C. Since the primary creep properties of ice were estimated based
on these results, for consistency, this value is used in the modelling.

The delayed elastic and secondary creep strain rates are defined as
& =01/un, and (4.3)
& =o1/pm1 (4.4)

where gy and gm; are the viscosity coefficients of the Kelvin unit and Maxwell
unit, respectively. Assuming that the strains of the dashpots in both units follow
the power-law relation with stress, as given in Eq. (2.5), the delayed elastic strain

rate is given as
&4 = &(of/oo) (4.5)

where & is a creep reference rate; 0o = | MPa, is a constant with unit stress; and

of is the stress in the dashpot in Kelvin unit, which is calculated by
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of =0y - Erel (4.6)

where Ej is elastic stiffness in the Kelvin unit and following Sinha (1981), it is

defined as a function of the grain size

d

B = EE (4.7)

where ¢; = 9 is a material constant, d, = 0.00lm and d is the grain size.

The accumaulated delayed elastic strain € is given by
z'{:/ﬂ‘ édt. (4.8)
Comparing Eq. (4.3) with Eq. (4.5), it is found that
i = (01/é5)(a0/at)". (4.9)

Similarly, the secondary creep strain rate is also assumed to follow the power-law

with stress, i.e.
& = é(a1/ao)" (4.10)

where € is a creep parameter. So the viscosity coefficient of Maxwell unit is defined

as
#m1 = (01/é§)(a0/on)" (4.11)

From the creep tests on intact ice (see discussions in Chapter 3 ), it is found
that, under rapid loading, delayed elastic strain rate is much higher than that of
secondary creep strain. In light of Eq. (4.6), the stress in the dashpot of Kelvin

unit of is smaller than the overall stress o;. In order to fit the measured data, the
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viscosity of the Kelvin unit must be much lower than that of the main dashpot.
Hence, the viscosity parameter é§ is assumed simply to be proportional to that of

main dashpot &, i.e.
d=dé (4.12)

where ¢’ is a material constant.
In the case of multi-axial stress state, the deformation of ice is then written in

the form of
+e+ ¢, (4.13)

as given in Eq. (2.16). If the elastic properties of ice are assumed to be isotropic,

the stress-strain relationship can be expressed by
2
oy = (K - ic)(ikiu‘ +2G¢;, (4.14)

where A" is bulk modulus: G is shear modulus and &;; is the delta function.

Both delayed elastic strain and secondary creep strain can be expressed in terms

of a strain deviator e;; and a vol strain €y L€
e =el +el and (4.15)
€= + e (4.16)

Note that the volumetric strains here are not the results of elastic deformation
(compaction or dilatation); if the ice creep behaviour is assumed to be incompress-
ible, they are the nonlinear dilatation probably due to the cracking and some other

mechanisms which will be discussed in the next section. As addressed in Chapter



51

3, elastic strain plus delayed elastic strain is about or less than 10% of the total
strain during constant strain-rate tests. Since there is no clear evidence showing
that a portion of the nonlinear dilatation is directly related to the delayed elastic
strain, the volumetric strain component €2 is assumed to be negligible and the total
nonlinear dilatation ¢, is equal to €.

Based on the discussions in the case of uniaxial loading, the deviatoric strain
rates of delayed elastic and secondary creep components are assumed to be propor-
tional to the deviatoric stresses and are defined in the forms similar to Eq. (1.3)

and Eq. (4.4)

o/ ik, and (4.17)

5

3
& = 39ultn (.18)

where s, = oy; ~ $0i; is the overall stress deviator. These definitions assume that
ice creep behaviour is isotropic, and the viscosity coefficient of shear deformation
follows the same law as that in the principal directions.

The viscosity coefficients, ux1 and gt defined in Eq. (4.3) and Eq. (4.4) are
functions of axial stress. In the case of multi-axial loading, the coefficients, s and
1im are defined as functions of von Mises stress in the similar ways, by substituting

the axial stress component with von Mises stress, i.e.

Bie= (s/é)(00/s*)", and (4.19)
fim = (/66)(00/5)". (420)

The definition of von Mises stress is given as



o
2

5= (gs”s,,)'“. (4.21)

If incompressible behaviour is assumed for creep strain and €? = 0, the internal

stress s* (the von Mises stress in the dashpot in the Kelvin unit), is calculated by
st=s— Eie? (4.22)

where e is the equivalent (or effective) delayed elastic strain which is calculated

by
o = /’ édt
o
= /‘ (s foo)dt (4.23)
= [ dstfoor e :

The definition of equivalent strain is given by
9 12
e=(zenen) - (4.24)
Reference can be made to Appendix A for more details on the definition of equiv-
alent strain and its relationship with von Mises stress.
Substituting Eq. (4.19), Eq. (4.22) into Eq. (4.17), and Eq. (4.20) into Eq.
(4.18), it is found that

and (4.25)

(4.26)

In the case of uniaxial loading, deviatoric stresses sy = 301, 822 = 833 = —01/3

and s, = 0,(i # j), so von Mises stress s = oy, therefore, s = of; similarly,

o

|
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the deviatoric delayed elastic strains ef, = ¢f, — ¢ = ¢, (assuming ¢ = 0).

el = ey = ey = —ed, /2. thus ¢! = ¢, = ¢f. Therefore, the above two equations
become
iy
4 _ [0 Exe -
=& (T‘ and (4.27)
€5y = €5(a1/a0)". (4.28)

These two equations are equivalent to Eq. (4.5) and Eq. (4.10). So it is consistent
and convenient to assume that the viscosity coefficients, jix and i, are related to
the von Mises stress and equivalent strain, since the constants of ice properties are
calibrated from the uniaxial test results.

When rapid loading is applied, the dashpot in the Kelvin unit carries most of
the load at the beginning for a very short time, i.e. s x s. Since s¢ o ¢4, and the
stress in the spring is proportional to the strain e, the influence of the clastic effect
on &, is reduced, and the delayed elastic strain can then be modelled as a viscous

element in the same way as ¢, but with significantly softer viscous behaviour.

4.2 Dilatation of Ice

Only in recent years, more attention has been paid to the dilatation of ice on
loading, especially when cracking and damage is induced. As addressed in the
discussion of the previous chapter, the density of ice in the crushed layer adjacent
to the indenter (Frederking et al.. 1990a, b) was less than that of parent ice,
indicating the presence of dilatation due to the cracking and pulverizing of the

ice during the interaction process. Dilatation was also measured in small scale
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compressive experiments at constant strain rates by Wang (1981), Dorris (1989)
and at constant stress by Sinha (1989).
Sinha (1989) observed dilatation due to crack formation for S-2 ice subject to

constant uniaxial compressive loads ranging from 1.2 MPa to 3 MPa. Some triaxial

tests on multi-year sea ice were d d by Dorris (1989) at -5°C
for constant strain rates of 10~%s~' and 10~2s~'. The constant confining pressures
were 2,62 MPa and 10 MPa. The structure of the ice samples was basically granular
or mixed granular and columnar ice with an average salinity of 0.26 £ 0.19 °/,
and the average density of 0.902 % 0.14 g/cm®. The tests were loaded to a total

axial strain of 10%, which is a relatively large strain. Two techniques were used to

obtain ve strain; ing the di | ion of the sample in two

orthngonal directions at its midpoint, or measuring the fluid volume change within
the confining cell. The stress-strain curves of four tests were presented in Dorris

(1989) and shown in Fig. 4.1. The cor di L ic strains d from

changes in fluid volume and in diameter are shown in Fig. 4.2, which are found
to increase with increased loading rate and decreased confining pressure, and have
about the same order as the axial deformation. In the paper, compaction was
defined as being positive while dilatation was negative. Digitizing the volumetric
strain curves and stress-strain curves at the axial strain of 2%, 3% and 4%, it is
found that the ratio of volumetric strain to axial strain are almost constant when
the axial strain is larger than 2%. So ignoring the elastic strains, volumetric strain

rate is modelled as a function of the confining stress and axial stress. The ratio of

| 1+

strain rate to equivalent strain rate ( part) was plotted as a

function of the ratio of confining stress to axial stress for axial strains of 4% (see



Fig. 4.3). An exponential function was proposed to fit the data (McKenna et al.,

1990)
/e =025 exp(L5a,/s) 0, <0 (4.29)

where o, is the volumetric stress. Note that the volumetric strain rate is assumed to
be positive for dilatation, This equation is only valid for compression since the test
data were obtained from compressive tests with relatively high confining pressure.
Notice that the measured volumetric strain is not only due to cracking. The high
confining pressure may close some or most of the cracks. According to Horii and
Nemat-Nasser (1983), when the confining stress, or the normal stress of the crack
surface, is larger than the shear stress transmitted across the crack surface, the
crack wili be closed. In the case of triaxial loading, the maximum shear stress is a
half of the axial stress 11— 03, and the normal stress is equal to (o1, +033)/2, when
the crack surface is at 45° to the axial direction. For the tests shown in Fig. 4.1,
the normal stress was always larger than the shear stress, hence the cracks should
be closed. In this case cracks may not dominate the dilatation of ice. Dilatation
could be the result of the combined influence of grain boundary sliding and creep
around the crack tips (Jordaan et al., 1990b). There is not much information about
the dilatation of ice in tension, and in the present work most states of stress are
compressive, so when o, is positive (in tension), volumetric strain rate is assumed
to be zero. Conversely, the influence of randomly oriented open microcracks on the
elastic properties of a material has been discussed by Budiansky and O'Connell
(1976). A general method based on a self-consistent approach was developed to

estimate the overall moduli which are the functions of the crack density. Hence the
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volumetric strain in tension due to cracking can be calculated, this will be discussed
in detail later.

Finally, the strain rate tensor is expressed by
Gy = € 6+ 65 + 66 (4.30)

where é,, &% and & are elastic, delayed elastic and secondary creep strain tensor,

respectively; é, is the volumetric strain (nonlinear part).

4.3 Damage Evolution Law

Damage mechanics has only recently been applied to ice. Damage evolution de-
pends on stress, strain, loading vate, as well as cracks and damage state. Budi-
ansky and O'Connell (1976) discussed the reduction of elastic moduli due to the
presence of microcracks of a given shape for a three dimensional case. Their solu-
tion calculates the change of elastic properties from the strain energy loss during
the nucleation of individual cracks in an elastic brittle body. Their results include
interaction between cracks but do not account for traction across crack surfaces; all
cracks remain open. Assuming an isotropic array of similarly shaped flat circular

cracks, the isotropic damage parameter is simply related to the crack density by
Dy =a°VN, (4.31)

where a is the radius of crack surface and N is the crack density. According to Cole
(1986), the average crack size is about 0.65 times the average ice grain size, but for
simplicity, the crack size is assumed to equal to the grain size and by altering the

constant, then
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Dy = N[(8Ny); Ny = d=° (4.32)

where d is the average grain size. For cracks of certain shapes, the relation between
crack density and the elastic moduli, and Poisson's ratio are given detail in Budi-
ansky and O’Connell (1976). For flat circular cracks, which is assumed to be the

case in ice, the {unctions are given as

K'/K =1-[16(1 - v*)]/[9(1 — 2)] Dn (4.33)

G'IG =1-[32(1 - v')(5 - v)]/[45(2 = ¥')] Dy (4.34)
and

E'JE =1 =[16(1 =v")(10 = 3u")}/[45(2 = v')] Dy (4.35)
with

Dy = [45(v — v')(2 = "))/[16(1 = »*)(100 = V(1 + 3v))], (1.36)

where the prime denotes that the property includes the effect of cracks. Some
results were given in the paper and are plotted in Fig. 4.4, which shows that the
Poisson’s ratio, shear and Young's moduli decrease almost linearly with damage;
the two moduli are not strongly dependent on v, so the last three equations can be

simplified as
V[v a1 = (16/9)Dy; Dy < 9/16. (4.37)
G'/G ~ 1 - (16/9)Dy; Dy < 9/16. (1.38)

E'/E ~ 1 - (16/9)Dy; Dy < 9/16. (4.39)
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The bulk modulus is also a linear function of damage when v is very small. That
is
K'/K =1~ (16/9)Dy; Dy < 9/16. (4.40)

When v increases, the bulk modulus will initially decrease rapidly and the rate of
decrease slows with increasing Dy. Recall that these solutions are only valid for
randomly oriented open cracks where there are no traction or friction on the crack
surfaces.

Under compression, the effect of traction across cracks can not be ignored and
the above approach needs to be modified. It is comprehensible that the influence
of cracks on the elastic properties will be reduced in compression due to the crack
closure and difficulty in crack nucleation. The closed cracks can still transform
traction and shear stress, so in compression, the existence of cracks will not reduce
the strength of the solid body as much as in tension. Horii and Nemat-Nasser
(1983) developed a general solution for the case of two dimensional, plane strain,
compressive state of stress. Some results were presented in the paper and shown in
Fig. 1.5. From their calculation, the reduction of all elastic properties is smaller in
compression {cracks closure) than in tension (cracks open). Their solutions must
be solved numerically. So in present work, for an approximation, simple relations

were proposed as
G'/G =1 —wDy, and (4.41)
K'/K=1-wDy (4.42)

where w = 16/9 in tension, the above expressions approximate those given by

Budiansky and O'Connell (1976). For compressive stress states, w = 1. This is an
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approximation of the work of Horii and Nemat-Nasser (1983). As discussed in the
previous chapters, with increasing damage, the elastic strain becomes small relative
to the total strain. For a high degree of damage. the total strain is dominated by
creep strain and the elastic strain is not significant. The specification of ¢’ and K*
is therefore not critical. Additionally, for small degrees of damage, Eq. (4.41) and

Eq. (4.42) were found to produce good approximations of the maduli.
4.4 Crack Nucleation

Extensive experimental work has been performed to investigate crack nucleation
and crack density development in ice (Gold, 1972, Cole, 1986, Hallam et al., 1987,
Sinha, 1984, 1989b). Much of this work has been conducted with small scale
compressive tests in laboratory settings. Unfortunately this work does not ex-
actly represent large scale ice-structure interaction, but no additional information

is available at this time. Th ical lelling of crack develop has been

carried out recently by Jordaan and McKenna (1989), Jordaan ct al., (1990a, b),
McKenna et al., (1989, 1990) and Sinha (1989). Following McKenna et al. (1990),
the rate expression of crack formation;

(i”—)m (4.43)

o

is used in the present model.
As discussed in Schulson (1987, 1989) and Hallam (1986), the critical stress for

crack nucleation is a function of grain size

o.=ar+agd'?,
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where a; and a; are constants calculated [rom critical tensile strain €, = 5.7 x 10~5+
3.33%107°d~"/2,ie., 0 = E . for tension and 0., = E ¢ /v for compression. From

Kalifa et al. (1989) the critical stress is also dependent on the confining stress
.= a3+ ayo3, (0 is the confining stress )

It seems reasonable to assume that the critical stress o, in compression is dependent

on grain size and confining stress, and can be expressed as
oc=ay+ayd™? 4 ayos, (4.44)

since the elastic modulus of multi-year ice £ = 8000 MPa and Poisson's ratio v =
0.3. @y is 1.52 MPa and a, is 0.0888 MPa m™. In the case of triaxial compression,

von Mises stress is
s=0—03

where o is the stress in the direction of loading axis and o3 is the confining stress.

The mean stress is
oy = (1/3)(01 + 203), so that
oy =(1/3)(s -+ 03 + 203), and
g3 =0,—5/3, (03and o, <0)
In Kalifa (1990), parameter as is given as -0.4, thus

o= 1.52+0.0888d7""* - 0.4(0, - 5/3); @, <O. (4.45)
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It is also found from the uniaxial tests and the theoretical modelling practice that
the critical stress should also be influenced by the existing cracks and damage.

Therefore it is proposed that
ol =a(l —w,Dy) (4.46)

where w, is a constant and o, is given in Eq. (4.15).
There is not much information about the influence of confiuing pressure on
crack nucleation in tension, and this case is rare, so following Schulson and Cannon

(1984), it is proposed that in tension the critical stress is
ol = (0.456 -+ 0.0266d"/?)(1 —w, Dy): @, >0. (4.47)
4.5 Creep Enhancement

The effect of cracks on the steady-state creep rate for the two dimensional case was
examined by Weertman (1969) using dislocation theory. Approximate solutions
were given for materials obeying the power law creep equation. His result for low
crack density was used by Sinha (1988) as given in Eq. (2.33) where the creep
strain is enhanced by a factor of 27Va?n'/?. For high crack density (a’N > 1),

Weertman noted that the creep rates must be on the order of
& ~ Ag™(@?N)™H! (4.18)

where a is half of the crack size and N is the crack density, which means that
the creep enhancement is on the order of (a?V)"*!. Jordaan and McKenna (1989)
proposed a solution for the three dimensional case, as given in Eq. (2.37). The

exponential form models the creep enhancement on inelastic strain, which was
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redefined as exp(8Dy) in McKenna et al. (1990). This term is actually equal
to the series 72, b DY, where by are constants, so it will approximate the linear
solution for small Dy (Dy = Na®) and covers all orders of n for (:Va®)™*! at large
Dpy. Therefore, it is a more general form of the creep enhancement factor. So the

creep strain rates of damaged ice are described as

i = & exp(daDy). and (4.49)
&, = & exp(3:Dw) (4.50)

where the primes refer to the parameters for the cracked ice; 34, B: are constant
enhancement parameters, and ¢ and ¢, are given in Eq. (4.25) and Eq. (4.26),

respectively.

4.6 Finite Element Implementation and Model
Verification

The numerical solution of damage equations is performed using an explicit incre-

mental scheme. For the stress tensor given by
ay = Kyuegy, (4.51)
where
.3 .
K = (K - 50)6-‘,5)(1 + G(6byt + bubdyi), (4.52)
the increment of stress tensor is calculated by

80, = RKouSel, + 5K, uies, (4.53)



where the stiffness matrix is given by

K +4G/3 K =2G/3 /30 0 0
K +1G/3 /30 0 0
C+1G/3 0O
Kou= K363 ._.Gg g (4.54)
SY MM 26 0
2G

The incremental change in the elastic stiffness tensor 8K,y is obtained by first

calculating the increment in damage with Eq. (4.31) and Eq. (4.43):
6Dy = a*§N
3y (S0 5
= @ N [—=) &t 4
P \c< =) (4.55)
where 8¢ is the time increment specified by the user. Summing this to the accumu-

lated total damage and calculating the difference between the elastic parameters

for the current and previous states with Eq. (4.41) and Eq. (4.42), i.c.

K' = K[l = w(Dy + 8Dy)]

6K = K'= K(1 —wDy)

= —KwéDy, (4.56)
similarly,
8G =-GwéDy, (4.57)
thus
§K +46G[3 K —25G[3 8K - 26G/3 0 0 0
6K +46G/3 6K —26G[3 0 0 0
’ ; 0 0 -
S = 8K + 48G/3 Se ) S L
SYMM. 2G 0
2%G



The increment of elastic strain components ¢, is calculated by
8¢5, = b, — befl - bei, - 8¢5, (4.39)

where the total strain increment de,, is defined in the boundary condition, i.e.,
the indentation speed or strain rate ¢ and the time increment §t; §;, is the delta

function. The delayed elastic strain i of und d ice, §ed, is calculated

from Eq. (4.25) as

3., (s - Eet\" s
d _ Ded ke o)
bl = 565 (—w ) 4. (4.60)

Substituting this equation into Eq. (4.49), the delayed elastic strain increment of

damaged ice is found to be
. —2G,ed\" i
set=it (’—G"—‘) exp(3aDy) 2 6t. (4.61)
% B
Similarly, the secondary creep strain increment 8¢, can be obtained from Eq. (4.26)

and Eq. (4.50), i.e.

bel, = &5 (':T,) exp(d.Dy) 2251, (4.62)
The volumetric strain increment 8¢, is given by Eq. (4.29),

e, = 0.25 exp(1.50,/3) € bt; 7, < 0. (4.63)
The elastic strain components €;, are defined in Eq. (2.12) as

€; =Cyuay,

where Cijx is the compliance matrix which is the inverse of stiffness matrix.
In the above equations, the stresses s, s;;, oy, strain e! and damage Dy are
stored as state variables from previous states, and at the end of each increment,

these variables will be updated as



o, =0, +80,, (4.64)

(4.65)

The damage i have been impl d for erical tation in
several different forms. A simple version of the model for the uniaxial case has heen

implemented using MATLAB, a mathematical ing, array manipulation and

graphics environment which allows for rapid confirmation of resuits. The complete
multiaxial model has been developed in FORTRAN code and implemented as a user
material specification in the ABAQUS finite element structural analysis program.

The parameters of the damage model are all calibrated {rom the uniaxial test
results. By fitting the time-strain record of creep test on intact ice (sce Fig. 4.6),
the primary and secondary creep reference rates, ¢§ and ¢§ can be estimated. Then,
by fitting creep test on predamaged ice (see Fig. 4.6). the damage constant, N, and
the creep enhancement parameters, J; and 3. can be obtained. Finally the stress-
strain relation predicted by the model is compared with the result of constant
strain rate test, as shown in Fig. -1.7. Once the model predictions can fit the
results of these three types of test. the model verification has been accomplished.

All parameters used in the model are listed in Table 4.1.



66

Table 4.1: Parameters Used in the Damage Model

Description Parameter Value

Bulk Moduiuy K 6667 MPa
Shear Modulus G 3077 MPa
Primary Creep Reference Rate 4 8.8x10785=1 at-20°C
Creep Exponent n 3

Poisson’s Ratio v 0.3
Secondary Creep Ref. Rate & 3.52x10~7s=! at -20°C
Damage Constant Mo 20000
Reference Stress ) 1 MPa
Damage Exponent m 3

Creep Enhancement Parameter B4 8

Creep Enh Parameter Be 18

Table 4.2: Test Conditions for each Ice Sample (Dorris, 1989)

fu | 00i/sec | .01/sec
a3
2.62MPa | T494 T481
10 MPa T485 T466

033 is the confining pressure; ¢, is the strain rate.
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Figure 4.1: Stress versus strain curves for the four tests listed in Table 4.2 (Dorris,
1989).
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Figure 4.2: Stress versus strain curves for the four tests listed in Table 4.2 (Dorris,
1989).
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Figure 4.3: Ratio of bulk strain rate to equivalent strain rate versus ratio of butk
stress to von Mises stress. Data points were derived from Dorris (1989) Fig. 4.2
and a best fit line is shown (McKenna et al. 1990).
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Figure 4.4: Effective moduli: dry circular cracks: G is the shear modulus; E is the
Young's modulus: A" is the bulk modulus and v is the Poisson's ratio (Budiansky
and O'Connell, 1976).

=~

Figure 4.5: Effective moduli versus the crack-density for i d values
of stress ratio, v = 0.3, where p is the friction coeﬂiuent P is the normal stress
to the crack surface and r is the shear stress across the crack surface (Horii and
Nemat-Nasser, 1983).
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Figure 4.6: Comparison of creep test results with model results.
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Figure 4.7: Comparison of constant strain rate test results with model results.



Chapter 5

Finite Element Modelling of
Spherical Indentation Tests

‘The spherical indentation tests on the multiyear ice described in the previous chap-
ters, are modelled using a symmetrical finite element model, which aid to the inter-
pretation of the test data. In the present work the modelling results are compared

to the experimental results of spherical indentation tests, NRCI1 and NRC2.

5.1 The Elastic Solutions of Spherical Indenta-
tion

‘The theoretical elastic solutions of spherical rigid :ndentation problem are complex

and require numerical methods to produce computational results. But the solution

of total load on the indenter is much simpler, which was given by Sneddon (1964)

in the form

((r* + R?)log

R+
e~ rh) (5.1)

and

(5.2)

-1
©

iy
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where P is the total load on the indenter; / is the indentation depth; r is the
radius of the area contacted with the indenter: R is the radius of the indenter and
v is the Poisson’s ratio. This clastic solution is used to verify the finite element

model.

5.2 Finite Element Model

The finite element geometry is shown in Fig. 3.! The structure (indentation
system) is assumed to be a rigid body and moving at a coustant speed into the
flat surface of an ice mass. The radius of the spherical surface is 1.28 m. An
axisymmetrical condition has been assumed with cdge a-b as the axis of symmetry
(rotation). In this case half of the computation time can be saved. Ail the degrees
of freedom of the nodes on the edges, b-c and c-d, ha. been constrained, since
these degrees of freedom are theoretically assumed Lo be zero at infinity. The elastic
solution of the total load on the indenter calculated from the finite clement model
has been compared with the theoretical elastic solution, given by Eq. (5.1) and Eq.
(5.2), and is illustrated in Fig. 5.2. The reason for the numerical solution being
higher than the closed form solution is the restricted boundaries in the finite clement
model, which are actually supposed to be free: i.c., some relative deformation should
occur under the indentation load. So the difference of these two solutions increases
as the total load increases. For this reason, finite element modelling of the contact
problem has a size effect, i.c.. before sevting up the model, first one has to consider
the size of the model compared with the contact lingth or area. Based on the

5.1, the mesh

author's experience, for & two dimensional problem as shown in Fig

size in both X an Y direction should be at least five times the maximum contact
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length or more. If less, lower accuracy is expected: Additionally, if the mesh is too
large, more elements may be needed and much more CPU time will be consumed.
Therefore, some different sizes of the model have been tested to find out the size
effects, see Fig. 5.3. The present model Fig. 3.3a (sce also Fig. 5.1) has a size of
3.8 mx3.8 m, the maximum contact length is about 0.3 m for test No. 1, so the
mesh size is more than 12 times the maximum contact length. As shown in Fig.
5.2, the model gives reasonable results. The minimum stress near the boundaries is
very small (it is supposed to be zero at infinity), only 0.1% of the maximum stress
near the contact surface, while in Fig. 5.3d the minimum stress is about 4.4% of
the maximum stress.

Eight-noded axisymmetrical clements have been used. There are 16 interface
clements between the rigid indenter and the ice elements. The smallest elements
ncar the interface have a size of 0.025 m x0.050 m, and the maximum contact
length is about 0.3 m for test NRCI; therefore, there are about 12 elements in
contact with the indenter at the end of the run, so the interface element size is
reasonable coinpared with the total contact length. In the ABAQUS program,
multi-point constraints can be imposed such that small elements can be adjacent
(linked) to larger (double-sized) elements, thereby reducing the total number of

clements.

5.3 Modelling the Spherical Indentation Tests

The total load verss time records of test NRC1 and NRC2 are shown in Fig. 3.17.
Following the discussions in Chapter 3, it appears that a fracture spall occurred

during test NRC! at point B, so that only section A-B of the test has been used



for modelling. A similar situation existed for test NRC2.

The same damage model described in Chapter 4. and the relevant parameters
calibrated from the uniaxial tests. were implemented as a user subroutine and
applied to this finite element indentation model. The modelling results of the
load time history are compared to the results of test NRC1 and NRC2. in Fig.

5.4a. b, and show good The periodic fi ion in load of the model

result is associated with the discretization of the finite clements in the contact

problem. It is worth comparing the results shown in Fig,

a with those in Fig,
5.2. These load-time history curves were all obtained from the same finite element
model under same loading and boundary conditions (i.c., the same indentation
speed, penetration and boundary constraints), except that in Fig. 5.2, the ice was
assumed to be a purely elastic material with same Young's modulus as the multiyear

ice (8000 MPa), and in Fig. 5.1a, ice damage model has been implemented. It can

be seen from Fig. 5.2 that the total load on the indenter is about 30 MN, as much
as 10 times higher than that in Fig. 5.4a. This means that damage and crecping
in the ice have significantly reduced its strength, and the ice is no longer behaving
as a purely elastic material.

Following the discussions in Chapter 3, the crushed layer thickness of the spher-
ical indentation test is usually smaller in the ceuter or high pressure zones and
increases with distance away from these zones. The damage distributions of the
two tests are plotted in Fig. 5.5. At the end of each simulation, damage contour
levels 8 to 10 (Dy = 0.4 to 0.5) cover most of the area adjacent to the contact face.
The figures also show that there is less damage in the center area due to high con-

fining pressure and more damage at the edge of the interface where concentrated



76

shear stresses are high and confinement is low. This area can be characterized, to
a certain degree, as the crushed layer.

Tensile zones with stresses between 1 to 2 MPa have also been found in the
simulations, as shown in Fig. 5.6. These tensile zones can be related to macrocrack
development and spalling, i.e., a macrocrack could be triggered due to the linkage
of the microcracks or the development of a small flaw in these tensile zones. These
may become a macrocrack and possibly grow towards the ice surface, developing
a fracture spall. Based on the work of Schulson (1987, 1989), the tensile strength
or critical tensile stress for crack nucleation of granular freshwater ice is about
0.5 to 2 MPa, depending on the grain size and the loading rate. The data were

~! and 1072

obtained from relatively bubble-free ice at strain rates of 1077

This suggests that the development of a tensile crack is not necessarily due to the
existence of a microcrack or flaw. It could be the result of grain boundary sliding
or the stress concentration at grain boundaries due to the elastic anisotropy of ice.
In any case, the existence of damage or flaws in the ice will reduce its strength,
which in return will make it easier for the growth of macrocracks.

Friction between ice and indenter has been ignored. This would be reasonable
if pressure melting occurs. It might not be an accurate assumption in all cases.

Calculated interface pressures for test NRCI are of the same order as measured
local pressures (see Fig. 5.7). The initial contact pressures are as high as 20 MPa,
which is very close to the test results, and then reduced as damage progressed into
the ice, but the pressure is always higher in the center area and its distribution is

approximately parabolic.



5.4 Equivalent Viscosity of Damaged Ice

As discussed in Chapter 4, the creep strains of intact ice in both the Kelvin unit

and the Maxwell unit are defined to follow power-law relations with stress. and the

viscosity coefficients are expressed in Eq. (4.19) and Eq. (4.20), i.e.

x = (s/é8)(00/s")", and
= (s/€5)(00/s)".

The creep enhar.cement factors due to damage are given in Eq. (4.19) and Eq.
(4.50) as exp(3;Dy) and exp(3.Dy), respectively. So the viscosity cocfficients of

damaged ice can be expressed as
1y = (5/é8)(o0/s")" exp(=34Dv) and (5.3)
e = (/6 a0/s)" exol=3.Dy). (5.4)

The equivalent viscosity coefficient of damaged ice is then defined as a function of

von Mises stress and damage in the form

‘gt
r= utr:’m' ()
Fig. 5.8 shows the relation of viscosity with stress and damage. The viscosity of
water and the equi /alent viscosity of intact ice are also included for comparison,
since the viscosity of damaged ice should fall within this range for pressures greater
than 1 MPa.

As discussed in Jordaan and Timco (1988) and Finn et al. (1989), the viscosity

of the crushed ice is calculated about 0.0009 to 1.0 MPa.s in the speed range of 160
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mm/s to 2.5 mm/s. In general. higher speed gives lower viscosity. The progression
and distribution of calculated equivalent viscosity adjacent to the interface are
shown in Fig. 5.9 and Fig. 5.10, respectively. It can be seen that the modelled

viscosities are higher than the range mentioned above. It is necessary to have

more experi and good on the actual viscosities, so that better

understanding and modelling of the crushed ice can be achieved.



N2

SYMMETRIC

SN unn

1/ amrem

Figure 5.1: Finite element mesh for spherical indentation tests.
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Figure 5.2: Comparison of theoretical elastic solution of spherical indentation with
finite element solution.
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Figure 5.3: Four different mesh sizes have been tested for comparisons.
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Figure 5.4: The total load vs. time histories: model results and test results; (a)
test NRCI; (b) test NRC2.
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Figure 5.5: Distributions of damage, Dy, in the ice adjacent to the indenter (area
A, see Fig. 5.1). Dy = 0 for contour level 1; Dy = 0.5 for contour level 10, the
increment of Dy for each contour level is 0.05. () test NRCI; (b) test NRC2.
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Figure 5.6: Distributions of maximum principal stress between 1 MPa and 2 MPa
near the contact face: (a) test NRCL; (b) test NRC2.
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Figure 5.7: Calculated pressure distributions for test NRCI on the contact face.
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Figure 5.8: Modelled equivalent viscosity of ice as a function of applied shear stress
and damage state.
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Figure 5.9: Progression of equivalent viscosity adjacent to the contact face: (a) test
NRCI; (b) test NRC2.
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Figure 5.10: Distributions of equivalent viscosity between 20 MPa.s (contour level
1) and 1000 MPa.s (contour level 10) adjacent to the contact face: (a) test NRC1;
(b) test NRC2.



Chapter 6

Conclusions

Uniaxial laboratory tests on the multiyear ice, as well as medium-scale ice in-
dentation experiments on Hobson's Choice Ice Island (1989) have been described,
together with the development and implementation of an ice damage model. The
study is a comprehensive examination of the role of the damage process in ice, as
well as the influence of damage on mechanical properties of ice. Investigations on
the creep tests on both intact and predamaged ice have shown clear evidence of an
enhancement of the creep strain due to cracks and damage.

The model predictions of the strain-stress relations for uniaxial tests, as well as
the total load versus time histories for the indentation tests show good agreement
with the measured results. Both the magnitude and distribution of the contact
pressure calculated from the model are realistic. The tensile fracture or spalling is
not included in the present work, but it may be able to predict, to a certain degree,
when and where a spall might have occurred in the light of the calculation of the
maximum principal stress. Further study on modelling of fractures and spalls is
recommended. In a separate work, fracture and damage analyses of production of

discrete ice pieces have been carried out by introducing a small flaw, and predicting

87




the flaw growth time and direction (see Xiao and Jordaan, 1991).
Based on the analysis of the experimental results and the finite clements simu-

lations detailed in this work, some general conclusions can be made as follows:

1. The recoverable strain, i.e., clastic strain plus delayed clastic strain, is about
10% of the total strain or less, for the constant strain rate tests, after the

stress reaches a plateau.

©

The presence of cracks and damage significantly enhances the crecp responses
(delayed elastic strain plus secondary strain). The creep strain of predamaged

ice is as much as 5 to 10 times larger than that of intact ice.

@

The idealized ice damage model, consisting of combination of a Maxwell unit
and a Kelvin unit with a nonlinear dashpot in each unit, has been shown to be
appropriate for describing the ice behaviour under certain loading conditions,

such as proportional compressive loading.

-

Due to the domination of creep strain for a high degree of damage, the clastic

strain is relatively small, so the specifications of elastic moduli in the model

i

ritical, while the d ination of viscosities becomes
This is influenced by the existence of damage, confining pressure (pressure
melting) and loading rate (internal friction). More accurate cxperimental

results of ice viscosities are needed.

o

This finite element model can provide realistic results on load-time histo-
ries; damage distribution and progression; contact pressure distribution and

progression and viscasity progression. The estimation of crushed ice layer
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thickness can be made possible when more measurements on the distribution

of damage are obtained.
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In elasticity, Hooke’s law can be expressed as
aiy = 3eb;; +2Ce, (A1)
where A is Lamé’s constant:
_ vE
T (L4v)(1-2v)

When the three stress components, oi;, are equal to the principal values, i.e.

(A2)

o = o0
o = 02
o = o, (A3)

then the three strain components are also in the principal directions and ¢;; = 0,
€; =0 (i # j). So the above Eq. (A.1) can be written as

0 = 3he, + 2Ge;, (A4)

where o; and ¢ are principal stresses and strains, respectively. Then it is found
that

- = 2G(a —€)
-0y = 2G(a-&)
03— 0y 2G(ea —€1). (A.5)

So
[(01~02)+(02—03)*+(03—01)*]"/* = 2G[(e1—€2)*+(e2—e3)*+ (e3—€1)*]/%.(A.6)

The definition of von Mises stress is given by

1
= ﬁ[(ﬂl —02)' + (02— 03)* + (03 — 1)) /% (A7)
26
8 = _f‘[(fl &) +(@-a)+(a—a)]?
= f“ (£| @)+ (0 - &) +(a—a)% (A.8)
The strain intensity or effective strain ¢, is defined as (Bezukhov, 1953)

o= m[@. — e+ (62— @)+ (e — )], (A9)
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for ible as well as i

in the elastic range. So
s= Ee, (A.10)
The equivalent strain e is defined as

V2
= T((e,—-t;)'+(s,—e3)7+(q—-t,)’]""‘. (A.11)
Comparing e to €., it is found that
3
€= 2(_14-7)2' (A.12)
So, when v = 0.5, for incompressible materials, ¢. = e, and
3E 2
A1 +v)
3Ge. (A.13)

8 =

]

Since
sij = 2Ge;j. (A.14)

So the relationship between von Mises stress and equivalent strain is expressed as

(A.15)
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