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The present war\(; involves the study of the three dimensional trans-ant heat

transfer and vibratory analysis of turbine clades with mixed and non-linear boundary

cond itions. The equations derived for the heat transfer analysis are cenerat (three

dimensional) in nature and are new contnbutiOns In this field. The mathematical model

for both the heat transfer and the vibration analysis is formulated using curved, solid, Co

continuity. quadratic, serendipity. twenty noded isoparametric finite elements

The equations which are non-linear in nature for the transient temperature

distri bution within the turbine blade are derived using the finite element analysts. The

ncn-linearinee arise due to the radiauve heat transfer and also due to the change in the

material properties of the turbine blade with temperature. Using a finite difference

scheme. tI'le non-linear differential equations are transformed to non-linear algebraic

equations in the time domain . The transient temperaturesobtained from the heat transfer

analysis are used in the calculation of the temperature gradients and transIent thermal

stresses. The vibratory analysis is done at first for finding the undamped natural

frequencies of the turbine blade. These free vibration studies indude the effect of the

non-linearity in Ihe stiffness matrix caused by the rotat'cn of Ihe turbine blade. The

frequencies arising from the free vibration analysis also change because of the change

in the material propert ies of Ihe turbine blade as the temperature of the turbine blade

changes with lime. Thereafter, the stresses due to (a) the nozzle excitanon and (b) the

centrifugal stresses at different rotor speeds are calculated. The nozzle excta ncn



forces are modelled as a sinusoidal pulse . Finally, the total effect of all the three differen t

types of stresses (transl enl the rmal, centr ifuga l, and vibratory du e to the nozzle excitation)

on the fatigue life althe turb ine blade is stud ied.
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CHAPTER 1

INTRODUCTION AND UTER ATURE REVIEW

1.1 'NTROOUCnON

In the fast few decades, Ihe turb ines have found an ever increas ing servic e in the

field 01 power generat ion and in the pro pulsion 01Jet eng ines . The major gas turbine

compo nents a re shown in the Fig. 1.1. The air , as we see in th is figure. is let in thr ough

an air-Inlet or a diffuser. it Is then compressed and led to comb ustor where the

temperature of high-pressure air Is Inc reased. The air-Iuel mixture Is dire cted throu gh the

nozzles onlo the turbine blade and thu s cr nv ertlnq energy of the gas, evidenced by a

high pressure and tempera ture, Into kinetic energy and then 10 the shaft work.

As is ev ident, the major brunt of the energy conversion is thus taken up by the

lurblne blade which Is expose d to a varie ty of hostile environment and forces su ch as

thermal , centr ifugal and vibrato ry. Atllhese causes (separately and colle ctively) can lead

to turbine blade failure which Is a majo r cause of breakdown in the turbo machine ry. Figs.

t .2 and 1.3 show some of the exampl es 01turb ine blades which have und ergone failure.

Thus, it is essen tial to have a.' accurate estimate of the da mage done by these for ces on

the tur bin e blade In the early stages of de sign Which, in tum, can avoid the causes ol the

early bl ade failure. which Is the objective of this Investiga tion . This object ive Is ach ieved

In two sla ges: at first, Ihe heat trans fer analysis of turb ine blade Is don e and transient

temperatu res of the blade at different tim e steps are found . These temperature s help In

li n d ing t he th er ma l grad ien ts a n d tr an sient therma l s t resses .



Fig. 1.1 CUTAWAY DIAGRAM OF LYCOMING T53 · L · 13 [Traager , 1910]



F ig. 1.2 BURNT FIRSTSTAGETURBINE BLADES(Boyce, 19B2]



Fig. 1.3 CROSS SECTION OF FATIGUEDTURBINE BLADE.

MARKINGS NEAR THE TRAILING EDGE INDICATE CYCliC FATIGUE[Boyee, 19821



The second part cons ists in the dete rmination of natural lrequencles of the turbi ne blade

in the transient phase. This is used in finding the cri tical spee ds, the vibratory stresses

and the centr ifugal stresses. When c ombined together, this gives the overall p icture of

the stresses in the turbine blad e and f inally, th e fatigue lifeesti mation of theturbi ne blade

is done.

1.2 THE LITERATURE S URVEY

1.2.1 HEAT TRANS FER ANALYSIS

Since the advent of gas turbine s and their subsequen t appucatlcn in various

sectors of Industry, there has been a rising d emand lor more and mo re powe r output.

The blade lo adings have continually risen typ ically in increased hostile environment du e

10 te mperatu re. wetnes s, spee d and corrosion . These developments dem and (a) greater

output per bl ade, (b ) smaller frame size or g reater output per unit volume (e) highe r

ope rating spee ds, and (d) higherproc essing te mperatures and pressure s. Abov e all, th e

reliability is th e most demanding requirement . In ge neral, simu"aneou s satis faction 01

these demands has called for an inc reased attention 10the accurate heat tra n sfer and

vibratory a~alys is o f turbine blades.

Danie ls at sf (1981) and Mohenty e t al (1977) repo rted some of th e latest

developments In he at transfer anal ysis of turbine blades. Maya et al (1978) and

Mukherjee ( 1978) calc ulated the tran sient th e rmal stresses 01 the gas turbine blades.

However, their stud ies included the heat exchange pro cess by convection only and thu s

their lemperature and thermal stress distrib ution s tudies of the turb ine blade we re



inadequat e. One of the major deficiencies 01these studies was the ncn-tnclusfon ol the

radiative heat exchange terms which are qui te significant at the higher operat ing

temperatur es. Moreover, their investigation was based on the assumption that the

maximum stress would take place only at one of the points at lead ing edge , trailing edge

or mld-sectlon of the turbine blade. A llen (1982) stu died the effect of temperature

dependent mechanical prcpertles on the rmal stresses In turbine blades. The inf luence

01turbine blade geometry on its thermal stress sta te was studied by Bogav (1978). The

experimental ve rlncatlon of fin ite element calcu lat ion of the thermal stress state of gas

turbine blades was done by Gryaznov at al (1979) . Bah ree (1987) carried out th e two

dimensional heat transferanalysis of the turbine blade usingfinite element analysis . His

Investigat ion was based on the assumpt ion that the ther mal grad ients along the height

of Ihe tur bine blade are negligible during the tra nsient state 8S compared 10 the thermal

gradients along the airfoil cross-section of Ihe blade .

1.2.2 VIBRATORY ANALYSIS

T he dynamic ana lysis of the turb ine blade has been a challenging field for the

enginee rs for a longtime. Numerous mathematical approaches have been usedto derive

the dynamic equations. Most of the mathematical techniques were based on the

Newtonian approach and, asa first approxi mation, the geometry of the turbineblade was

modelled as a tapered beam having a rectangu lar cross-section. Rao and Carneg ie

(1970) usedthe Rilz-Galerkln m ethod to obtain the bend ingfrequencies l o r the first three

modes of vibration of tapered cantilever blades having rectangul ar cress-section. Mabie



and Rogers (1974 ) analyzed the ettect of various boundary conditions on the natura!

frequency of the turbine blade. Their method of solution was based on the use of the

Bessel's functions . Sato (1980) used Rilz method to carry out the effect 01axial force on

the frequencies of blades with ends restrained elastically against rotation. Sisto and

Chang (1984) formulated a finite element model to calculate the natural frequencies of the

blade. Their model, howe ver, was appropr iate for thin and high aspect rattc blades only.

Nagarajan and Alwar (19B4) used the twenty-noded finite element to analyze the tree

vibration behaviour 01 the blade without temperature variation. Bahree (1987) did the

transient free vmranon analysis of the turbine blade using twenty-noded finite element for

the turbine blade which included the effect of the change in temperatu re. The effect of

the stress stillness matrix , caused by the rotation of the turbine blade, was not carried

out in his study. Warikoo (j aBS) analyzed the propeller-shaft transverse vibrations. His

work included the non-linear stilfness variation but, it did not include the effect of change

01 the temperature on the transient natural frequencies 01the turbine blade.

1,2 .3 FATIGUE LIFE ANALYSIS

In spite of the fact that various design procedures for preventing failure of turbine

blades due to fatigue are being used, there is yet no indication that a satisfactory situation

exists with reference to basic data that will lead to estab lishing sound procedures in this

regard. This is because 01the lac t that blade fatigue is a multi-dimensional problem and

as such has bee n undergoing continuous investigations for a long time. The various

reasons which lead the blade to lailure are: high gas temperature. blade excitat ion .



material behaviour under high temperature and loading conditions. crack inilialion and

propagation. creep due to high temperature conditions. and other various thermo-erasuc

and aero-etesuc effects. Rieger (1983) discussed various aspects involved in the lile

estimation of a turbine blade. Rao (1991) and Vyas (1986) reported some of the rarest

findings on life estimation of turbine blading. Heywood (1962) studied the designing

against fatigue failure. Rust and Swaminathan (1982) did corrosion fatigue lesting of

steam turbine blading alloys. Collins (1981) reported failure 01materials in mechanical

design.

1.3 OBJECTIVES

Based on the survey of the previous research works, and more specifically.

aabree's (19B?) work where (a) two - dimensional heal transfer analysis was done, (b)

the non-linear terms in the stiffness matrix were neglected. and (c) the gas force

excitations were modelled as impulses of an arbitrary height. in this work a three

dimensional heat transfer model is analyzed; the non-linear stiffness terms have been

included, and the gas force excitations are based on fluid flow over an airfoil cross

section.

1. To derive the transient temperature distribution equations in a turbine blade using

twenty-noded Isoparametrfc finite elements.

2. To determine the temperatures and thermet gradients at various points on the



airfoil cross-section and along the height of the turbine blade by solving a non

linear system of equations. The non-linearity arises due to the radiative boundary

conditions along the surface of the turbine blade and also due to the variation of

the material properties.

3. To lind the transient thennal stresses due to the transient temperature obtained.

4. To study the free vibration characteristics of the turbine blade using twenty-noded

Isoparametric finite elements.

5. To study the eHect of the SIMSSstiffness matrix and the change in the material

properties 01the blade(as temperature changes) on the natural frequencies of the

turbine blade.

6. To study the dynamic stresses in the turbine blade due to nozzle excitation forces

modelled as a sinusoidal pulse.

7. To study tho effect of rotor speed on centrifugal forces.

8. To study the combined stress analysis in the turbine blade due 10the effects of all

of the stresses mentioned above.

9. To study the fatIgue life estimation of the turbine blade due to the combination of

thermal. vibratory and centrifugal stresses.

In Chapter 2, a mathematical model forthe three-dimensionalheat transfer analysis

01tho turbine blade is established. The non-linear equations for the transient temperature

determination in the turbine blade are obtained by using a twenty-noded isoparametric

finite element formulation. These non-linear system of differential equations are



expressed as a system of algebraic equations in the time domain by using the Crank

Nicolson finite difference scheme. The temperatures. thermal gradients. and stresses at

various points on the airfoil cross-section and along the height of the blade are then

determined by solving these non-linear system of equencne. A feasible heating path for

the gas tu rbine is establ ished to carry out the thermal stress analysis.

In Chapter 3, the three-dimensIonal mathematical model for the lurb ine blade is

used to study the free vibration characteristics of the turbin!) blade. The effect of stress

stiffness matrix caused by the rotation of the turbine blade, on the natural lrequency 01

the turbine blade is studied. The effect of the change In the material properties 01 the

blade{as temperature changes) on the naturallrequencles of the turbine blade is also

studied.

In Ohcpter 4, the nozzle excitation forces have been modelled as a sinusoidal

pulse. The responses due to nozzle excitation and centrilugal forces are used to

calculate the dynamic stresses in the turbine b~ade. The fatigue life of the turbine blade

is estimated based on the thermal and dynamic stresses obtained.

Finally, the conclusions and recommendations for future work are presented In

Chapter 5.

10



CHAPTER 2

TRANSIENT HEAT TRANSFER ANALYSIS

2.1 INTRODUCTION

In order to increase the efficiency 01a turbine, it is very essential that higher inle t

pressures and temperatures be used. However, higher inlel temperatures, though

imp0r1Snl l rom thermodynamic point of view, severely increase the thermal loading on the

turbine blade , and as a resu lt, high therma l stresses are induced in the turbine blade ,

The impact of these therma l stresses is known 10peak both, during the acce leration, and

the deceleration stages 01the gas turbine engine. The reason is Iha l there is a sign ificant

tempereture difference which is suffiCient ly large to cause plastic deformation (Bahree.

1987) at various points of the blade. Hence. it becomes very important to calcu late the

temperature distribution within the turbine blade with great accuracy. The presen t

investigation is based on the three-dimensional analysis of the turb ine blade. The

mathematical model fo r the non-linear transient heat transfer analysis is formulated using

curved. solid. C"continu ity, ser endipity, lwe nty -noded isoparametric finite eleme nts. This

type of element is chosen becau se of its versatility in accura tely mapping the complex

geometry of the turbine blade .The results obta ined from three -dimensional model show

that in addition to the thermal gradients along the aiMoil cross-section of the turbine blad e,

mere are signif icant thermal gradients along the height of the turbine blade, as well.

These elements of the turbine blade (shown in Fig. 2.1) exchange heat with the

su rro undi n g high te mperat ure gas by co nv ec ti on and rad iation

11



Fig. 2.1 THREE DIMENSIONAL FINITE ELEMENT MODEL FOR TURBINE BLADE
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processes. Because of the rad ialion te rm, we get a non-linear system of differential

equations. The Crank·Nlcolson finite difference scheme is then used to transform these

non-linear differential equat ions into non-linear algebraic equations in the time domain .

Then, using an iteration technique , the non-linear algebraic equations are solvedto obtain

the nodal and elemental temperatures. Once these transient nodal tempe ratures are

known, the thermal gradients (a) across the airfoil cross-section and (b) along the height

of the turbine blade, are calculated. Using theses transient tem peratures, one can

calculate the thermal stresses. In order to keep these thermal st resses well with in the

yield stress limit, a feasible heating path is also obtained In the present Investigation.

2.2 TRANSIENTTEMPERATURE DETERMINATION- THEMATHEMATICALMODEL

In the follow ing derivation, the general form of the three-dimensiona l equations are

obtained first and then the appropriate conditio ns relevant to our problem are applied.

The governing three-dtmenslcnet partial differential equation for heatllow in any soli d can

be written as

(2.1)

and lis boundary condition as

(2.2)

We make use of the calculus of variations 10solv e the partial diff erential equation, Eq.

13



(2.1) and the boundary condition, Eq. (2.2) associated with it. This solution is obtalneo

by minimizing the corresponding variational functional and solving the resulting system

of algebraic equations . We can rearrange the Eq. (2.1) and write it as

a'T a'T a'T 1 ar I-k__ k _ _ k __ O -pc- · 0
' ax2 ' '''ay2 laz2 at

(2.3)

Now the variational functional can be set up by multiplying Eq. (2.2) and Eq. (2.3) by the

first variat ion of T I.e., aT and integ rating over the whole domain. Th is results in the

equa tion

+f[ k iJ! 1 + k iJ! 1 + k ~ 1 .q.h( T-T ) 'OE( T' -T'I ]HdS
s ' ax ' fay f ' az' .. ..

Rearranging Eq.(2.4) one gets

s •f k iJ! 1 H dS - f k.~ H dV • f k iJ! I, H dS - f k,~ H dV
x s "ax ' v dX2 s yay v ay2

•f k,iJ! I, H dS - f k,q. ~T dV • f q sr dS - f [ Q - pciJ! 1ar dV
s az v az s v ilt

(2.5)
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Using Green's Divergence Theorem, we can transform surface Integral Into volume

integral. Thus the Integral in Eq. (2.5) can be written as:

and

Jk~ I H dS • Jk~ H dV • J~ 0 [ £! )' dV
s •oZ • v •OZ2 V 2 Sz

(2.6)

(2.7 )

(2.6)

SUbstituting the integral fromthe Eqs. (2.6) to (2.6) into Eq. (2.5), the new equation will

be

•J~ 0 [£!)' dV - Ja H dV • Jpc £! H dV
v 2 oz v v ot

•JQ H dS • J~ 0 ( T - T_) ' ds • Ja s 0 [ ~ - T~ T ) dS (2.9)
s s 2 s 5

Removing the variational operator0 fromboth sidesof the equation above, we get
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X·f![ k(~r·k (.§.! r ·k[ ~l' - 2 a T . 2 P C T ~ 1v 2 • Sx ' By z Sz 8t

(2 .10)

where 8 1 is the surface experiencing heat flux and 52 is the surface experiencing

convect ion and radiallon boundary cond itions.

Referr ing to Fig. 2.2 where there are zn-ncdes per element, one can use the finlle

element equalities mentioned below 10 formulate the finite element equations

corresponding to Bq. (2.10). Also, the temperature T is ass umed conti nuous nol over the

who le domain but it is defined over an individual element. The equations are:

[
k' 0 0]

I D' J . 0 k; 0 :

o 0 k:

if k. '" ky '" k. '" k then

[

, 0 0I
[D' ] • k 0 1 0 :

o 0 1

(2.11)
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Fig. 2.2 SOLID ISO PARAMETRIC , SERENDIPITY, COCONTINUITY , 20·NODED

ELEMENT (LOCAL COORDINATE SYSTEM)
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~,
Fig. 2.3 SOLID ISOPARAMETRIC, SERENDIPITY, COCONTINUITY, 20·NODEO

ELEMENT (GLOB ,AL COORDINATE SYSTEM)
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aN~ dN~ iiN~ ClN:O
a;- ax il< ax

I B' J •
aN: aN; aN; aN:O

• and
~ ~ ~ . 3Y
dN: aN; aN; ClN~

Tz" Tz" az . az

(2.12)

T,

T,

T,

N~ I

k
(2.13)

where T,. T2 • •• ••• T20 are the nodal lempera tures 01a twenfy-ncded finite etement. Also.

both the terms a and q in the Eq (2.10) are zero as there is no heat generation and no

specified heat fluxes in the present investigation. Therefore. substituting Eqs. (2.11·2.13)

into Eq. (2.10). we obtain

'f !l: ([ N' j{ T'I )' dS
s: 2
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•J¥ ([ N' ){ T' } )' dS - JO£ r; [ N' I {T'} dS
~ ~

(2 .14 )

The functio nal X· is rle fined for individual 20·noded element. If we minimize X· with

respect to the nodal temperalure vector. {I" ], we will get a stationary value of Xwhich will

satisfy Eqs. (2.1) and (2.2). The minimization of X can be written as

a-l <lx' aX' .. •K . 0
alT'} • alT'} • a{T'} ' . a{T'1

where n stands for the number of elements.

12.15)

The following relationships as given by Seger1ind (1976) are used 10dilferentiale Eq.

(2.14) with respecl lo {1j:

20



• f I B' j' [ 0 ' ]I B ]{ T' } dV

'.
(2 .16)

'f. P c'[N'lt} [ N'j' dV (2 .17)

2.- I h' T. [ N' ) {r-} ds • Jh' T. [ N' J' dS (2.19)
;){T'} ,; ,;

(2.201
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and (2.21)

2- J0 ' r.. [ N' ] fr'} ds • J 0 ' T: I N' I' dS
alT'} s: < 12.22)

Substituting these relationships into the Eq. (2.14) and summing up the conlribulions of

each etemenr as per Eq. (2.15), we get

~ - t J [ B' j' [ D' II B']{T'}dV
a{T') ,., ,

, J P c' [ N' J~J!j [N' I' dS
, iJt

•Jh' [ N' I'[N' liT'} dS - J h' T-I N' I' dS
s: 5;

,J° e ] N' J'{ [ N' I fro} )' dS
<
-J O, r.. [ N' l' dS - 0

':

The expressionsfor various elemental matricesare:

ELEMENTAL CAPACITANCE MATRIX [CpO] can be expressedas

[ CP' ] -IP e- ] N' I'IN' IdV.

ELEM ENTAL CONDUC TION MATRIX [Ke") can be expressed as

12.23)

(2.24)
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[ KG' J • I [ 13' J'[ D' ] [ B' : dV • Jh' [ N' I'! N' I dS .
~ ~

The FORCE VECTOR {F/ } lor th e convection process can be wr itten as

{F:) • f h' r. !N' )' dS . and
,;

the FORCE VECTO R {F,e} for the radiation process will be

{F:} • f a E r ; [ N' ]' dS - f c e [ N' I ([ N' I {T'})' dS
s; s;

(2.25)

(2.26)

(2.27)

In case of lecparametrlc fin ite etement etsnow n in Fig. 2.3), the most str iking featu re is thai

their sides may be curved and that tney make use of 8 spe cia l coo rdinate system (~. 11 .

~), ( Ihe shape fun ctions, IN,]. are de fined fo r the variation of the loca l coordinate system

from +1 to -1). There fore we can have: ~ = ±1; '1= ±1: and ~ = ±1. The shap e functions

[N,], lor the zn -noded Isopa rametric element can be expressed as {Zienkiew icz, 197 1]:

The details of Eq. (2.28) are given in APPENDIX A.
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Typical Mid.side~

12.29)

for the case when ;' '" O. (L '" :1:1. and l;.'" :1:1 . The subscript i stands lor the i'" node of

the twenty·noded elemen t in Eqs. (2.28) and (2.29).

Similarly one can write the equa tions corresponding to Eq. (2.2 9) as shown in APPENDI X

B.

The express ion for elemental matrix (CpO] in terms of ~ . 11 , ~ can be written as

(2.30)

The term IJ I ~.l1,~) I is the determinan t 01Jacobian matrik which relates the derivatives

of the temperature {T] with respect to the local coord inate syste:n g, 11. ~} to the

derivatives 01{T} with respec t 10the global coordinate syste m {x. y. z}. The following

chain rule evaluates the Jacobian mat rik:

12.31)

where T is a funclion of x. y. and z.

Hence, the Jacobian matrfx [J ) can be expressed as
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ox Jy OZ
~ a?: a~

[J I '~ iIY. az
ao aii

ax ~ az
~ a, a,

(2.32)

The elemenl J '1 of (JJcan be written as

. (2 .33)

lX20 20X1

where {xl-contains all the Cartes ian cccrdinates along the x-clrec ncn of the 20-noded

element with i =1, 2. 3•...• 20 and ,"'r ={N,. NJ , N" ...N2Q}' The similar procedure is

followed for Ihe other elements of matrix (J}.

Therefore lor the twenty-noded lscperametrlc element

,«I aN , <Q(J aN , <Q(l aN
~ il<,O,,)X, ~i(~'O ,'IY, ~ i(;'~")~

,04/0aN . «1 aN . oQO aN (2.34)
[J (;,~ )J • ~ a;;'(;,~ ,,)x, ~ a;;'1~,O ,')Y, ~ a;;'(~'O ,')~

. 'l?l) aN . 0('0 aN , oQ!) aN
~ i(;'~")X' ~ i';,~ "IY, ~il;,~ ,"Z,

The inver se of the Jacobi an mat rix will be indicated as
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aNI aNI

ax ~

aN, []" aN,ay o J ail
aNI aNI
iiI a(

The expression for elemental conduction matrix [Ke·) can be expressed as

[KC']' [ [ [ [B'(~. n. , II' [D'] [B'(~ . n. ' I ] IJ (~. n. , I I d~ dn d,

oJ, J, h' [N'(~ . ~I I' [N·(~. n)1 IJ (~ . ~ ) I d~ dn

The matrix (BO] in the equation above is expressed as

aNI aN:

ar ar '
aN, aN:
ail ail .
aNI aN:
"5f "5f .

The expressions for elemental vectors {Fc"l and {F,.} can be expressed as

(2.35)

(2.361

(2.37)
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!F:}. 1, 1, 0 Er:[N'( ; . ~ )]' IJ (; . ~ I I d; d~

-Iloe [N' 1;. ~ I ]' ( [N'I ;. ~ II iT' (;. ~ )1 t IJ <;. ~ ) Id; d~
(2.39)

2 .3 DERIVATiON OF THE ELEMENTA L EQUATIONS FOR [C P'}. [K'l , (Fe' ), {F,'}

Using the symbolic software package 'Maple', the evaluations of the elemental

capa citance matrix (Cpt), conduction matrix (Ke ' ], the force vector for the convection

{Fe'l. and the force vector lor the radiat ion {F,'} in terms of ~, T\. ~ were done numer ically

by evaluati ng the vo lume integral in lhese equations . For isoparametric formul ation , the

elemental matricesandvectorsmentionedabove wereintegratedusing Gauss quadrature

tec hnique. A quadratic polynomial for each side 01 the 20·noded element was used.

Thus 2 Gauss points on each side 01 the element and B Gauss poin ts in tolal were

sufficien lto integrate each ot the elemen ta l matrices. The expressio ns for the elemental

matrices [CP-!, [KC~I , {Fe-}, {F,-llor lhe case of a twenty-noc ed are given in APPENDI X

c.

Using Gauss quadrature, final exp ress ions for various matrices wo uld be:

12.401
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·t t w, W, h' [N ·(~. ")1' [N'l<. q)J LJ I~. q) I

(2.41)

(2.42)

, , [ • ( J )'-?; ?; w,W, a, N' (~. ") 1 IN'(~. q ) {T' ( ~. " )i LJ( ~ ." >1

(2.43)

where WI' WI' andWk are corresponding weightingfunctionsIn the ~ fl. and ~ directions

respectively.

Aftergetlingthe expressionsfor theelemental matrices andsubstituting themintothe Eq.

(2.23), we get the followingglobal equations:

(2.44)

In the Eq. (2.44), because of the non-linearity Introduced by the radialionterm, we gel a

non-linearset of partial differential equation. In the presentwork, we use the Crank·

Nicolsonfinite difference methodto transform the equations above inlo a system 01non-
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linear algebraic equations. Therel ore in the ti-ne domain, lor the time step At, the flrst

de rivative 01 the nodal temp eratu re vector will b e

d(ro!, • {T'),., - {TO},_,
dt ~t

Simila r expressions can be writte n lor {r \ and {PJ}, in the following way:

Substit utin g Eqs. (2.45), (2.46), and (2.47) into the Eq. (2.44), we get

(2 .45)

(2.46)

(2.47)

(2 .48)

The unknow n terms In the equa tion above are the nodal temperature vector {,..o} and the

vectors {Fea}. {FAo} at t ime t+AV2. All the vecto rs and the matrices at the previous instant

01 time (t-~V2) are known . Therelore the Eq. (2 .48) can be written as
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([KCG] • ftlcPGI) iTGI, ; •(f. [CPG] -[KCG])

(TO),., • (F;}", · 1';1." ' IF;},,, -IF;}",
(2 49)

After substituting all the known quantities et nme (hW2j one obtains the above equa tion

in the form { the vector { A, } contains values at time ( t ·I1U2 ) )

The vector (A,} is known al this point The vectors {Fc
G

},• .1I1 and (F,G},. ,: are 10be

evaluated using the nodal temperatures at time !+6U2, We can use an iteration

procedur e to solve the Eq. (2.50) for the nodal temperatures. In this procedure , we

assume a nodal temperature vector {~} at time 1+.i t/2, which is same 85 the nodal

temperature at lime t-6t12. This assumed value is substitu ted on the right hand side of

the Eq . (2.50). Then the Eq.{2.50) reduces to

([KCG] • t. [CpG] J (TOI", • (A,I (2.51)

where {A2} is now known. Solution of Eq. (2.51) will give us the un known nodal

tempera ture vector {,-<J}I'.lI2 The resu ltant nodal temperatures are compared wit h the

assumed nodal temperatures and if the converg ence criterion is not met, then for the next

iteration the calculated nodal temperatures become the assumed nodal temperatures

The iterations continue till we get the converged transient nodal temperatures of the

turbine blade. The transient nodal
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temperatu resare found in the airfoil cross-section at dilferent heights of the tu rbine blade.

Once the transient temperature distribution is known. the transient tempera tu re grad ients

along the x and y directions at different he ights ca n be calculated by using the follow ing

equation (2.521for a twenly -noded eleme nt:

T,

Ig'} ' l~} ' [B'I

T,

T, (2. 52)

T"

2.4 ILLU STRATi ON O F THEOR Y

Th e heat transfer p rocess within a turb ine blade was studied on a b lade made of

AISI 414 0 . which is a chromium alloy stee l. and is used in the manufactu ring of ai rcraft

gas turbine blades . In orde r 10carry out the finite element analysis of this turbine blade,

the blade was divide d into 35 curved. solid , Cocontinuity, quadratic, seren dip ity, twenty

noded tsc perametrlc elements as shown in Fig. 2.1. The convergence in the nodal

temperatures was achieved by refining the time increment. A Fortran code was wr itten

in order to carry out the convergence stud ies. Th e convective heat trans fe r coeff icient

were assumed to vary with temperature o f the blade. The values for these variations

were obta ined from MUkherjee (1978). All the mate rial properties such as ex. E, c. k, etc
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of the blade in the present analysis were selected as a function of temperature andwere

obtained from (Cubberly, 1980), Table In APPENDIX 0 shows the values of mese

parameters at diHerent temperatures.

2.5 TEMPERATURE GRADIENT DISTRIBUTION ACROSS THE AIRFOIL CROSS.

SECTION AT DIFFERENT HEIGHTS OF THE TURBINE BLADE

Bahree (1987) has shown that the effect of radiative heat flux is quite significant

at elevated temperat ures as the radiative heat nux contains terms made up of higher

powers of the nodal temperatures. Therefore all the results include the radiative terms

Assum ing the room temperature as the initial condition, one of the most important

findings of th is investiqation was to observe the change in transient temperature and

temperature gradients along the z-dlrection of the turbine blade modelled as a mree

dimensional problem. Fig. 2.4to Fig. 2.10 show the change in temperature varia tion in

the nodes alon g a-axis al different times at different crcss-secncns of the turb ine blade

From these graphS, it is clear that there is a change in temperature along the height of

the blade. Fig . 2.11 to Fig. 2.15 show the temperatu re contours along differe nt heights

of the blade at time t = 150 sec. Fig. 2.16 to Fig . 2,20 showthe variation of temp erature

gradients alon g the x and y directions at time t e 150 seconds as we go along the height

of the blade. The careful study of these gradients is very important to understand the

dynamics of the heat transfer process. An interesting observation can be made from

these figures that lhe temperature gradient Increases along the height of the blade which

is in accordance with the direction of the hea t flux. whic :-:is from the top to the bottom

This helps us to conclude thai, in addition to the

32



thermal gradients along x and y axes of the blade. the the rmalgredients a long the height

01the turtl ine blade are also very sIgnificant during the transient state and as suCh can

not be neglected in ca lCUlating the overall stress distrib ution in the blade .

2.6 TRANSIE NT THERMAL STRESS DETER MINA TION ~ THE MATHEMA TICAL

MODEL

The next step in tM heat transfer analys is Is ttl e calculat ion of th ermal str esses

caused by the te mperature variation across the cross-sect ion and 810ng the height of the

turbine blade.

The elemental sl ress is calculated using Hooke's law . USing this law. the elemen tal

stress and strai n vectors are related as given by [Segerlind. 1976 )

(a'1 · Io;]l,·) -[o:K,:)
where

{ t - } is the elemental strain vector

{e,- } is the elemental initial stra in vector

{ o· } is the eleme ntal stress vector

(°1- ) is the material property matrix.

Stress components for thermal stresses analys is can be written as

{O)T = [ a.., an ' au ' O. O. 01

Similarly , the st rain components are

{t)T =[e,.. En' &21' O. 0 , OJ

(2.53)
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Fig. 2.11 TEMPERATURE CONTOURSACROSSTHE AIRFOILSECTIONAT
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In order to evaluate thermal stress analysis, we have to know the matrix {S,' ] which

relates the strain in the element to the nodal displacements. The matrix {SI'] for the

stress analysis can be evaluated in the following way:

1. The strain vector in the global coordinate system can be related to the

derivative of the displacement field as

au
if,(

au
ay
au
az
av
if,(

II =[ P) ~

i)v

az
aw
if,(

aw
ay
aw
az

where the matrix (P] is given as

(2.54)
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100000000

000010000

[pj• ~ ~ ~ ~ ~ ~ ~ ~ :
00001010

01000100

6 x 9

12.55)

2. The vector containing derivatives of the displacemen t field in the global

coordinate system Is mapped to the vector containing derivatives of the

displacement field in the local coordinate system as

au au
a; ~
au au
ay ~
au au
iiI ~
av av
a; ~
av

- [a] ~ (2.56)ay
av au
iiI ~
aw aw
T, al;
aw iJw
Tv ~
aw aw
T, ~

Th e matrix [0) contains terms 01the Inverse 01the Jacobian (J] an d can be written as
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[Jr [0] [OJ
3x 3 3 x 3 3 x 3

[0]- [OJ
3 x 3

~r [0]
3)( 3 3 x3

(2.57)

[oj [0] [Jr
3 x 3J [3 x 3J [3 x 3J

The Jacobian matrix is formed by the chain rule of ditfsfI'mtial calculus as below:

Therefore. the Jacobian is given as follows:

ax dy oz
~~ ~
ox <Jy ilz
a;j a;j a;j
ox <Jy ilz

~~ ~

where Jll is given as:

J " -*-~ [N,r )(x)'

(2.58)

(2.59)

(2.50 )

3. The vector containing the derivatives of the displacement field In the tocal

coordinate system can be related to the nodal displacementvector as
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(~u d ,

7f," d,," c,,'"
'"R
Ev

~
Ev . [R (2 61)f;;
i'u
~

'W
~
,w
''1

~~'w
~

The matrix (RJcontains the derivative of the interpolation functions with

respectto the local coordinatesystem and this matrix can be represented

as
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aN,
af
aN,
a;;-
aN,
a[

aN,
af
aN,
a;;-
aN,
a[

[AI . 0 aN,a;;-
aN,
a[

aN,
a;;-
aN,
a[

(2.62)

9)( 60

Therefore. the (B,' matrix for an element can be expressed as

[B:J •[pI [0) [AJ

[6 x 60J [a x 9)[9 x 9J[9 x 60J
(2.63)

The materialspropertymatrix lOll for a three-dimensional isotropic material is given by
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, v

~H

v v
(f="V) (1:-;j

v ,

H~

1- 2v

2T1""=Vi
1-2 v

~

(2.64)

The initial strain vector for a thermal load is

(2.65)

The turbinebladematerial is subjected to thermal expansion and the thermal forcevector

generated as a result of this expansion is writt en as follows:
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{r"} • a v~ ~ (~T.. ) [ 8, I (2.66)

Ju st like be fore (as in Eq 2.44) one would have to obtain th e global stiffnes s matr ix [KSG
]

and the glObal force vector {FG
} (the equenonswu! be linear here) and write the equa tions

for any t ime I as

[KS' ] (d'i • (F' ) (2.67)

The solu tion of this system will y ie ld Ihe displa ce me nts d1• d2 • •• etc The stresses within

any element will Ihen be obtained using Eqs. (2.53), (2.54), (2.56) and (2.61) . The

modulus of elasticity E in Eq, (2.64), and the coefficient of thermal expans ion a in Eq.

(2.65) are evaluated at the average tempera ture of the element. The T•• is the average

temperature of the twenty nodes of an elem ent. .6T•• Is the differen ce in TI V at any instant

of time and T•• in itiall y when ther e is a s tress free sla te. The elemental temperatures

ob tained fr om the analysis bef ore thus he lp us to calc ulate the thermal stress c... 0'" , and

au uSing Eq. (2 .53). These stresses at d iffe rent instants of time are shown in Fig s. 2.21

to 2.23. It is clear from these figu res that stres ses along x and y directions are also

significant and thu s mus t be inc luded in the design analysis of the turbine b lade. It was

als o obse rved thai with Ihe presen t heating path, the maximu m stress curv e fororz would
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exceed uni ty as shown in Fig. 2.23 and as such would be an infeasible heatin g path. In

order that m aximum stress curve does not exceed the value of unity, the heati ng path has

to be modified so that the maximum stresses remain below the yield stress throughout

the heating period(Fig. 2.24). These stresses have been normalized with respect to the

yield stress, O'yltId . This yield stress is a function 01 temperature and the refore the

normali zing values would be different at d ifferent instants of time. From the stress-time

graph, one can clea rly observe that the pe ak stress occurs at time t '" 200 seconds . The

stresses in these figures Increase to a maximum value and then decrease because

diffe rent poin ts in the blade undergo differentia l rise in temperature 10a max imum value

and then the entire blade is expected to reach a stea dy slate temperature give n suffic ient

time. During the steady state, the thermal stresses would be zero because AT from the

refere nce state at two Instants of time In the steady state will be the same for any

element. Th ese resu lts show that 0.. and CJyyare not negligible as compare d to 0'.. . This

Is due to th e three-dimensional variation of the temperatures.
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~~~:2i~ ... ~~ ~~=~;~~ ~~ ~~
TIMEIN SEC.

Fig. 2.21 TRANSIENT THERMAL STRESS (c ••) DISTRIBUTIONIN THE BLAOE
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Fig. 2.22 TRANSIENT THERMAL STRESS (Oyy)DISTRIBUTIONIN THE BLAOE
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Fig. 2.23 TRANSIENTTHERMAL STRESS (0,,) DISTRIBUTION IN THE BLADE
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TIMEIN SEC.

Fig. 2.24 TRANSIENT THERMAL STRESS (ou ) DISTRIBUTION IN THE BLADE

FOR THE FEASIBLE HEATING RATE OF 24' C/SEC AT DIFFERENT INSTANTS OF

TIME
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2.7 CONCLUSION

The main objective of the mvestrceuon done in this chapter was to determine the

transient lemperature distribu tion, temperature gradient distributions and the ther mal

stresses in a turb ine blade modelled as a three-dime ns iona l non-linear finite element

problem. The observa tion made from the study done in this chap ter clear ly shows that

a signi fican t temperature gradie nts exisl along the height of the blade whic h are very

essential in the perform ance of an accura te ana lysis of the temperatu re and therm al

stress distribution In a turbine blade .
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CHAPTER 3

fREE VIBRATION ANALYSIS

3. 1 INTRO DUCTION

The free vibration analysis of the turbine blade has been a challenging area to the

engineers for a long l ime. Belore designing a turb ine blade. it is very essenl iallo know

its undamped natural frequen cies and there are various reasons for it. Righi from the

start and until it comes to a constant operating speed. the rotor goes throu gh the various

b lade net urat frequencies. In order 10avoid reso nance, the steady slate operating speed

should n01 match with the system natura l frequencies . Also, as the temperature of the

turbine blade changes with time, there is a change in the materia l properties ot the turbine

blad e. This change in the mat erial property o f the turbine blade is reflected in the change

in the conve ntional stiffness [K.l matrix of the blade and this causes a change in the

natural freque ncies 01the turbine blade. There is also a sign ificant change in lhe natural

freq uencles because 01 the variat ional effec t 01stress stilf ness matrix (KaJ which is non ,

linear in nature and is caused by the rotatio n of th e turbine blade .

The present investigat ion is to study the combined ettects o f the two non-uneartttes

on the natur allrequencies of the turbine blad e. The mathematical mod el lor the study 01

the vibration analysis of the turbine blade is formulated using curved, three -dlm enstonal.

CO continuit y. serendipit y, twenty-nodeo isoparametric lin ite elements. Th is lype of

eremen t ls chosen because 01its versatility in accu ratel y mapping the comp lex geometry

of the turbine blade . The blade is basica lly an airf o il cross -sectio n, being asymmetr ic,

64



pre-twisted and having tape r along its length. The two sections of the blade along its

length are shown in Fig. 3.1.

3.2 MATHEMATICAL FO RMULAT ION

The finite element analysis of the blade was done by dividing it into 35 elements.

as shown in Fig 2.1. These elements are curved. solid. Cocontinuity. serendipity. twenty

noded isoparametric finite elements. Such type of an element was chosen because it

gives a non-linear displacement field, which in tum takes ca re of the non-linear geomet ry

of the turbine blade. The element chosen was a Co continuity element because the

degrees of freedom etthe nodes at the element are translational in nature along aUthe

three axes. Hence. by selecting the degrees of freedom for displacements attne nodes

along all the th-ae axes. one can get the ether modes of vibration also. Also . in case of

lscparametrc elements. the generalised coordinates and the generalised displacements

are related 10 the nodal coordinates and nodal displacements respectively by the same

shape function. The striking feature of the isoparametric el ements is that thay make use

of a special coordinate system (0;. 1"1. ~) as shown in Fig. 2 .3. The shape functions are

defined lor the variation ot the local coordinate system 1rom +1 10·1 . Therefore. we can

have: ~ = :t:1; n = :t1; and ~ = :t1. The shape funct ions {N.J. for the 20·noded

isoparamelric element can be expressed as (Zienkiewk ., 1971):
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TIP

Fig 3.1 TURBINE BLADE AIRFOIL CROSS - SECTION AT THE ROOT AND THE

T1P[BlIhree. 19fi7]
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N. .. ~ (1 • ~;;) (1 • '1 '1,) (1 • ~ ~J (; :;, • 'l rl • • ~ ~. - 2) (3.1)

The details at Eq. (3.1) are give n In APPENDIX A.

Typical Mid-side nodes

(3.2)

for the case when ';' = O. fl,= :t1. and ~ = ~1 . The subscript i stands tor the r" node of

the twenty-noded element in Eqs. (3.1) and (3.2 1.

Similarly one can write the equations corresponding to Eq. (3.2) as shown in APPENDIX

B.

The mathematical formulation is arrived in the following way:

1. The local displacement vector {u, v, w} of a point In the element is related to nodal

displacement vector {d} through matrix (N]:

(3.3)

or

67



u,.,
w,

",
0 N, 0 0

. N" 0 0]
.,

(3.4)
0 0 N, 0 a N20 0 W,

N, 0 0 N3 •• . o 0 N20

""."
w"

2. The global coordinate vector {x, y, z} at the same point in the element is related

to nodal local coordinates {e} throughIN] as

(3.5)
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x,

v,
z,

x,

N" 0 0]
y,

(3.6)

o N~o 0
z,

o 0 N20

where

u. v, ware generalized displacements atong global X, Y, and Z axes,

x, y. z are generalized coordinates along global X, Y, and Z axes ,

{d} is nodal displacement vector,

{e} is nodal coordinate vector,

[ N land (N] are shapefunctionmatrices whichare thesamefor iscparametr icelements,

and both IN Iand [N]are functions in terms of ~ , 11, and (

The eigenvalues and eigenvectors of the system are obtained fro m the stiffness and the

mass matrices which are described below
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3.2.1 [K.'J ELEMENTAL CONVENTIONAL STIFFNESS MATRIX - THE

MATHEMATICAL FORMULATION

This stiffness matr ix which depends upon the elast ic properties of the turb ine blade

is gi ven by the following relati onship :

[K:I = I [B;]'[0,)[B;I dv (3.7)

In order 10 formulate (K.el, we have to kno w the matrix IB,·1which relates the strain In the

element to the nodal displacements and the material property matrix (D,l . The matri x

[B,· l for the stress analysis can be evaluated in the same way as explained in the Eq.

(2.54) to Eq. (2.63).

The materials property matrix [0 ,1 for a th ree-dimensional isot ropi c mater ial is same as

given by Eq. (2.64).

Thus, element al stiffnes s matr ix can be expressed as

[K:I· HB,]' [D,J [B,]dV • HB,]' [D,J[B,I dx dy dz (3.6). .
The [Kia]matrix in terms of ~ , 11 , an d ~ can be expressed as

(3.9)

whe re I J I is the deter minant of Jacobian matrix [J).

Since the local coord inates ~, 11. and ~ vary from -1 to +1, lor the Jsoparametrlc

formulation, the Eq. (3.9) can also be expressed as
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(3. 10)

The matrix IK: ] is evaluated numerically by making use of Gaussian quadrature.

Because of the quad ratic polynomial used for each side of the twenty-noded element, the

expression for the elemental !Ylalrix is also quadratic. Therefore, lor a general second

degree polynomial cI> =a -+- bS+ C~~ . lwo Gauss points will g ive an accurate solution. This

gives rise 10 a Gauss points within each element which is adequate to integrate each

element of the matrix [K$oJ.

Therefore,

where W,. WI' and W. are corresponding weighting functions in the ~ . 11 , and ~ directions

respect ive ly.

3.2.2 [K':l ELEMENTAL STRESS STIFFNES:S MATRIX · THE MATHEMATICAL

FORMULATION

We define anothe r elemental matrix [K"G] that accounts for the chang e in potent ial

energ y associated with rotation of volume elemen ts under load. This matrix is called the

stress stillness matrix. It Is indepe ndent of mate rial prop erties and depends only on the

element' s geometry, the displacement field, and state of stress. APP ENDIX E explains

how this matrix comes into the overall pictu re and why it Is important to include this matri x

in the present analys is.

The mosllmportant thing In de riving the mathe matical formulation for elemental
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Stress Stiffness Matrix (K"gl, for a compli cated geometry (as in our case) , is to make sure

that both linear and non-linear terms have been included, Thus, a general expression for

Elementa l Stress Stiffness Matrix [K"gl ls derived as follows:

Strains can be written as

(3.12)

where {Et.} Is the strain linear In the displa cement der ivatives and the higher order terms

give rise to {£~J , the non-linear strains . The strain energy U Is stored as a result of

constant stresses {Cg} acting through strains {t} and Is given as:

[i E VI c, [dv • [{ E, VI". ldv •[IE" 1'(".ldv (3.13)

APPENDIX E explains that [Kg] is produced by stresses acting through displacements

associated with higher-order contribution s to strain.

Therefore the [Kgl is extracted from UNL as follows:

Expressions for strain are written in conventional notation as

(3 .14)

and

(3.15)
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The terms within the parenthesis give rise to {Et.J where x, y. z are global directions.

In order 10 formulate IK.J. we define the following:

IS} = {Gild} wher e

{d} Is the nodal d isplacement vector as descr ibed belore. We can also write

,~) = {u.•, u." u....v... v.,. v.I' w,o' w." w...}

where u.•' u." and u..lare dU/dx, duldy, and dU/OZ respectively.

Differenti ating shape functi ons In IN) give us the coefficients In (G] given by Eq. (2.62).

We define one more matri x here which is

[O,J'

u.. 0 0 v, 0 0 », 0 0

o u., 0 0 v.v 0 0 «, 0

o 0 u... 0 0 v, 0 0 »,
U., U.. 0 v., v.. 0 w., w.fl, 0

o u... u., 0 v.fI, "» 0 w.l. w.,
U.. 0 U.. v.l. 0 v.fl, w.1 0 W..

(3.161

Therefore Eq . (3.13) can be written as

(3.17)

Displacements u, v, and w are functions of x. y, z where x. y, and z is the posit ion 01a

pornt In the continuum In the unstralned co nfiguration. Therefore {E} Is ca lled Lagrangian

strain and {E} =0 lor any rigid-bod y mot ion, no matter how large Is Ihe rotation or Ihe

dIsplacement (Cook. 1981),

The vecto r (oo) is defined as
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Combining Eqs. (3.13), (3.17) and (3.18), we get

[

(5) 0 0)
U" • ~{d}' f [a f [a, f to,}dv • ~ (d}'f [a I' 0 [5) 0 Is}dv

• • 0 0 [5]

(3.16)

(3.19)

where

[a f {o,l • [ [~J [~J ~ 1Is}
o 0 (5)

[9 X 6J [3 X lJ [9 X 9J [9 x l J

and

[3 X 3J

Thus elemental stress stiffness matrix Is given as

[

[5] 0 0 1
[ K; ) • flaf 0 [sJ 0 [ajdv

• 0 0 [5)

(3 .20)

(3 .21)

(3.22)

The element stressstiffness matrix[K"'Jisa symmetricmatrix like the conventional stress
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stiffness matr ix (K.l and the global [KG) is obtained by the usual assembly of elemental

(KGeJ matrices.

3.2.3 [M'] ELEMENTAL MASS MATRIX - THE MATHEMATICAL FORMULATION

The elemental mass matrix for the system is given by:

(3.23)

where [N)ls the shape function matr ix,

p is the material density.

In terms of local coordinate system ~. 11. and ~. the Eq. (3.34) can be represented as

(3.24)

Using Gauss quadrature, the elemental expression for IMe
] can be written as

[M') ' ,~ ,~ ,~ W, W, W. [N(~.~,,)Y [N(~,~,,)] IJ (~ .~ .') I (3.25)

3.3 FREE VIBRATION ANALYSIS

The global stiffness matrix [~l obtained from assemb ling global (K,G) and global

[KGGi. and global mass matrix [Mol were evaluated after assembling the elementa l stiffness

and mass matrices respectively. The natural frequencies were found by solving the

following equat ion for the eigenvalue problem:

[KO](x}-l.[M'K'} . 0 (3.26)
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Figs. 3.4 to 3.10 show the variation 01first five naturallrequencies 01the turbine blade

both without an d with the inclusion of stress stiffness matrix (K.J to the conventional matrix

IKJ at different rotor speeds. It is clear from these graphs that there is a significanl

Change in the frequency 01the turbine blade by including stress stiffness matrix. Because

of the change in the frequency there is also a C'!iange in the actual resonance of the

system. Fig. 3.11 and 3.12 show the projected and actual resonance lor urst and second

natu ral frequencies. Frequencies beyond second are 01only academic interest because

the maximum speed at which the rotor operates does not go beyond ~OOO rpm.

3.4 EFFECT OF TEM PERATURE VARtATION ON THE NATURAL FREOU ENCIES

OF TH E BLADE

One of ,he objectives of the present investigation was to show the effect of various

lact ors on the natural frequencies 01 the turbine blade. Besides the effect of stress

stiffness matri x, it was observed that the frequencies of the turbine blade also changed

with the change in the temperature. This is due to the change in the elastic propert ies

of the blade which resulted a change in the stiffness matrix of the system. The heating

path chosen for finding the effect of change in temperature on frequency was the one

which put the yield stress below one as shown in Fig. (2.24). Figs. 3.1310 3.17 show the

varia tion of first five natural frequencies of the turbine blade at diffe renl instants of time

during the heat ing process. II is very clear from these figures that as the material is

heated , the frequencies start decreasing due to a decrease In the value of the modulus

of elasticity of the material of the turbine blade . If the effect of stress stiffness matrix Is
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nOI included . then the frequencies decrease only with increase in temperature 01 the

turbine blade. The frequencies increase due to large deflections and . at the same lime.

these decrease due to increased temperature due 10 lowering 01 E. Ihe modulus ot

elasticity. Thus. it is clear from these figures that there is a significant change in me

natural frequencies in the transient stale and is thus an important faclor 10 be taken into

account while designing a turbo blade. Therefore. tho frequency analysis of the turbine

blade must include the combined euect of

inclusion of the stress still ness matrix 10the conventional matrix and

ii) change in the mater ial properties of the blade resulting in change in overall

stilfness matrix of the turbine blade due to change in temperature in the transient

phase.
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3.5 CONCLUSIONS

tn Ihis chapter. me eigenvalues and eigenvec tors lor the blade were found by

discretizing of the turbine blade into finite elements. The turbine blade had a heigh t of

12 em. and was discretized into 35 elements with 7 elements across the cross-secti on

and 5 layers along the heighl. The dynamics of the system was represented by 30e

nodes and 924 degrees 01freedom. The natural frequencies of the turbine blade we re

calculated etter taking into account the effect 01 including stress stiffness matrix to the

conventional stiffness matrix and tho effect of change in the material properties of the

turbine blade with the change in temperature and it was observed that inclusion 01these

two lactors resulted in a significant change In the natural frequency of the turbine blade.
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CHAPTER 4

TRANSIENT STRESS ANALYSIS

& FATIGUE LIFE ESTIMATIO N

4.1 INTRODUCTION

The presen t cha pter deals with the transient stress analysis due to thermal ,

vibratory, and centr ifuga l loadi ng on the blade. Primarily, th ere are three dilfe renl reasons

for the existence of the transient conditions of operation. They are du e 10: (a) unsteady

flow conditions on the blade arising oul of ga s admission 10 the stator, (b) rising gas

temperature till tt reaches 10 steady- state , and (e) acce leration and decele ration of the

rotor during starting and shulli ng operations 01 the machine. Under the transient

conditions of gas admission, the blade experiences variable magnitudes of excitation

fo rces. The resulting stresses may be high and can lowe r the life cycle of Ihe blade.

These stresses, however, can be minimized by good oper ating proced ures. The present

investigation studies the separate and collective effec t of transient conditions arisi ng out

of thermal, vibratory, and centrifuga l stress condition s . The trans ient cond itions of

operat ion that exist during the machine start- up and shut-down conditio ns gene rate

resonant stresses at ce rtain rotor speeds . The forces due to gas pressure are assumed

to be distr ibuted along the ent ire length of the blade. The actual magnitude of the

pressu re distr ibutio n wou ld depend upon the type and ope rating conditions of the turb ine.

As has been seen in the Chapter 3 thatthe ove rall stiffness matrix [Klchanges due 10a

change in the stress stiffness matrix (Kol which changes as a result of change in the
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deflection of the turbine blade. In order to econom ize on the CPU time the stress

stiffness matrix (K~ J IScomputed as til e average value of I K~I a t 12 different speeds near

the cnucat speed zone of the turbine blade. In addition , the value of E also changes due

to the change In the temperature of the turbine blade. Th is value of E has also been kept

constant as a first approximation towards saving on the CPU time for calculati ng the

vibratory stresses taehree. 1987). The bounda ry cond ilions at the root of the blade

correspond to zero deflection for the applicable nodes . This averaging approximates tne

linearization of the system

4.2 TRANSIENT RESPONSE OF A ROTOR BLAOE DUE TO NOZZLE EXCITATION

FORCES

The equa tions of mot ion for a damped system can be expressed as

(4.1)

[M'I I' } • [c' l l') • [K'I{xl ·IF(I)')

The response of each mode is found by decouphng the global equation of motion given

in Eq. (4.1). The procedure for deccu clinq the equat ions of motion is given below.

Introducing a stale vector

{v) .!;S!
Ixl.

(42)

Eq. (4,1) can be reduced to a set of simultaneous first-order equat ions whi ch are

expressed as
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(4.3)

where

10J [M'I

(nxn) I (nxn)

[AAI· -------- I

[MGl I [C' I

(nxn) I (nxn)

[-MGI [OJ

(nxn) I (nxn)

[BBl· - -- --- 1

[01 I [KG]

(nxn) I (nxn)

(4.4 )

(4. 5)

and

(o}
nxl)

(4.6)

(F' }
nx1)

The damped natural frequencies are then found by finding the eigenvalues 01 the

dynamical matrix (H] which can be expressed as

(4.7)

The dynamical matrix of the transposed system will be
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(4.8)

Eq. (4.3) can be transformed usin g the relation

(4 9)

where ($J is the moda l ma trix of the sys tem defined in Eq. (4.3).

Subst ituting Eq. (4 .9) into Eq. (4.3) and premultiplying by (¢l' )l , we ob tain

[. 'j' [AAj [. j li} . 10-)' [BB] [oj{z} . 10-]' {EE} (4. 10)

This leads to the diagonal izalion otthe global mass and stiffness matrices respectively.

Th us the entire system is expressed by individua l single deg ree of freedom systems by

deco upllnq the equations of moti on.

In case of rnaes-crtncncrrnauzeticn of the mat rix of eigenvectors. the Eq. (4.1) can be

written as

(4 .11)

Fo r individua l modes, Eq. (4.11) can be expre ssed as

(4.12)

where k represents the mode number.

The prese nt investigation models the nozzle excitation force as a sinusoidal pulse

as a superposilion 01two sine waves with a delay of time I" Consequently , there will be

two types of responses; ana for l ime t < I, (due to first wave) and second for l ime I > I,

( due 10 bolh waves l, as shown in Fig. (4.1). Now , we willcons ider a rotor blade excited

by a force F(w,t). Since the frequency
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Fig. 4.1 REPRESENTATION OFTHE NOZZLE EXCITATION FORCES AS A

SINU SOIDAL PULSE
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is time dependent, we have

w . w : t- at

where

140 = angular velocity

Q =angular acceleration, and

w =instantaneous angular velocity

The elCcilation force for sinuso idal pul se is

F .. Fo Sin(wt)

The response of each mode can be calculated as follows:

i + w~ '"~ Sin(wt)
m

Since w =n I t., we have

The general solution for EQ. (4 .16) is

(4.13)

(4.14)

(4 .1 ~ j

(4.16)

(4.17)
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The initial conditions are

For x(O) .. xCC) a O,we get

Since w" ="!"'7. we can wr ite

n n 7 7
t:'"W: .. t;"2i7 .. '2'""T,

Th erefore Eq. (4.17) becomes

(4.18)

(4 .19)

x(t) .. Fo

m

or

(4.20)

xlt) •
(4.21)

The Eq. (4 .21) is the response for the lime t < I,.

For time t > t.. the solution ab ove is added with t replaced by (t - t,). The response in
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that case willbe as

x(t) z

'(I) • ~ { -.!..Sin (w. (H ,») • Sin(W(t-I,»)!
(w: _w') 21,

(4.23)

The gas forces have been calculated from the circulation and the liftover the airfoil

The circulation over the airfoil is given by

r .. C! Y(9)sin6d9

.. 2V.C ! (Ao(1 + cos9) + IA~s in n8sin8 }dB

(4.24)
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where

V~ =: 7 18 .05 m/sec .

c =: 0.07

Ao = 0.40151

A1 = 0.08 146

Ao and A l are Glauert constants for a thin camb ered airfoil.

The lift L is thus calculated as

L '" TCCP8V~2Ao ;.AJ

whe re p = 2.89 . Fo was 10 % of the valu e of the lift obtaine d in Eq . (4 .25) .

4.3 T RANSIENT RESPONSE DUE TO CENTRIFUGAL FORCE

(4.25)

The radial location of the element with reference to (he axis of rotation of the rotor

shaft causes the centrifugal forces in the turbine blade. The centr ifugal force is given as:

(4.26)

whe re

m = the mass of the element

A = radi us of the rotor disk

z = distance from the root to the cent re of gravi ty of elemen t.

This fo rce acts at the centre of grav ity and such can be replaced by eight equivale nt

force s each of which act at the co rner and mid nodes. Also, these cen trifuga l forces are

time va riant because CJl in Eq. (4.26) is a varia ble which is calculated from Eq. (4.14).
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For ca lculat ing Ihe d ynamic response due 10 (he cen trifugal fo rces. the lorcing function

correspond ing 10 the Eq. (4. 19 ) is given as

F~ - (R + z) (al)! m

by a ssuming 000 = a in Eq. (4 .13).

The modal response Is given by:

who re w"" = nature! frequency of k" mode

W~k = damped natura l frequency 01k" mode

The so lulio n for this equatio n can be wrltte n aetweaet. 1975) :

(4.2 7)

(4.26 1

(4.29 )
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To calculate the response one has to decouple the equatio ns of mot ion us ing the matrix

of eigenvecto rs in the same fashion as sh own fro m Eq. (4.1) to Eq. (4.12) .

4.4 VIBRATORY STRESS ES

The dynamic load ing on the turbine blade is caused by nozzles placed at regular

intervals along the periphery of the rotor . For the purpose of calculating the vib ratory

stresses. the turbine blade is divided into 35 twent y-noded elements shown in Fig . (2.4)

Defining { y} and { x las elemental strains anc d isplacem ents, from the tota l response

of the turbine blade due to nozzle excitat ions , the strains in each elemen t are obtained

from the isopara metric fin ite element formulation as

{ y } • [ B, I I , I

s X 1 6 X SO SOX 1

and the dyn amic stresses are calculated as

101- [ D, I I,}

(4.3 01

(4311

6 X 1 SXG G X 1

The vibrato ry stresses we r!Jcalculated using Eqs. (4.30) and (4.31). The results obta ined

are show n in Fig . 4.2. This figure shows that the peak stresses occur at the critical

speeds .

4,5 CE NTRIFUGA L STRE SSES

Similar procedure was applied 10 l ind centrifugal stresses at different rotor speeds.
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In this case response was obtaiMu using Eq . (4.29). The Fig. (4.3) shows that centrifugal

stresses increase as the rotor speed increases. This follows from the fact that the normal

acceleration increases with the lncreese in the ang ular velocity.

4.6 THERMAL STRESSE S

The temperature distribution lo r the three·dime nsiona l turbine blade finite element

model was obtained Irom Eqs. (2.1) to (2.52). The thermal stress distribution was lound

trom this temperature distribulion IJsing Eqs. (2.53) to (2.67). It was also estab lished in

the Chapter 2 thai if ga s temperature is raised Irom room temperat ure to 8700 C

instantaneously, the thermal stresses in the blade for that particular heating rate exceed

the yield stress dS shown in Fig. (4.4). This problem is solved by increasing the gas

temperature in stage s; first to 4000 C, then to 870 0 C and finally maintaining the gas

temperature at Bn t' C. The Ihermal stresses for this heating path were then calcu lated

and found to be within the yield stress limit. These slrpc:o;esare shown in Fig. (4 .5).
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Fig. 4.2 VIBRATORY STRESSES AT VARIOUS ROTOR SPEEDS
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Fig. 4.3 CENTRIFUGAL STRESSES AT VARIOUS ROTOR SPEEDS
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FOR THE FEASIBLE HEATING RATE OF 24° C/SEC AT DIFFERENT INSTANTS OF

TIME
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4.7 STRESS ANALYSIS OF BLADE DUE TO COMBINED EFFECTS

From the Figs. 4.2 to 4.5, one can determine the critical instants 01time from the

stress point of view. The thermal stresses are maximum at time t =: 200 sec., and then

these stresses decrease slowly with time. At time t =: 200 sec. when the rotor speed is

2900 rpm, centrifugal stresses arc also high and are still increas ing with increase in rotor

speed. An interesting feature is that the vibratory stresses show their peak <It time I =:

204 sec. when rotor speed is about 3000 rpm. From these observations. it is clear that

between time I =: 200 sec. and I =: 205 sec., and between rotor speeds of 2800 rpm and

3200 rpm, all the three types of stresses are at their peak. All the stresses mentioned

here are normalized stresses(normalizing factor is the yield stress). By selecting a

feasible heating path forthermal stresses, the normalized thermal stresses are kept below

one. Also the centrifugal stresses can be kept within the safe limit by operating the rotor

at a speed within 4000 rpm. However, in case of vibratory stresses , we see normalized

stresses going beyond one. From all these discussions , one can conclude that, in

addition to vibratory and centrifugal stresses, the thermal stresses are also quite important

in the design of the blade . In the design of an actual turbine blade, the transient forces

have to be exactly known , and, therefore, the actual design would involve at first the

summation of 311 the stresses at any instant of time, and then finding the global maxima

of these types of combined slresses as Ihe lime varies. To do this, the stresses are

added up and the principal stresses in each element of the turbine blade are obtained by

solving the following cubic equation given by Timoshenko and Goodier (1970):
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- (a . a, a... 2 t., t ., t . - a . t;. -a , t:, -a, t:,I .. a (4 32)

Solving the Eq (4.32) will gIve the three pnnop er stresses as c ., at , and 03 In order to

know the state of stress in each element of the turbine blade , the design stress ( a. ) is

found uSing distortion enerqy theory. The o. is given by the fOllOWing equation:

This stress o, comprises of bolh mean and alternating stresses ansing from thermal,

centn(ugal. and Vibratory stresses . This gives us a Clear picture about the stress history

of (he turbine blade and their effect on fatIgue life of the turbine blade which is discussed

In next amcre

4.8 FATIGUE UFE ESTIMATION

The present inv estigatio n makes use of the fatigue failure sul1ace line by Bago (

1981) Fig. (4.6) shows the fai lure surface and the Bago line where the mean stress is

represented by 0 ., . This fatigue line gives the fatigue design of machine element s

subjected to cyc nccombined stresses haVing ncn- varustunq stress as in the present case

Il ls reported to fit the most recent fatigue data well and defines the two design zones,

namely, the zone of fatigue failure expe reo cmq brilli e fracture and
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the zone of failure due to yielding in one, aM thus, providing a unified fatigue design

equation for machine members .

Bagci's fatigue failure surface line is of fourth order and is given by

(4 .34)

where

a.!= failure value of alternati ng stress

o. = endurance limit

a m! = failure value of mean stress

Of =. yield stress for the material

The endurance limit c, of the actua l blade may be lower than the endurance limit 0: 01

the standard rotat ing fatigue specimen due to a numbe r 01factors discussed below,

The factors are accounte d for by using

(4.35)

where the -ndurence limit mod ifying factor

with

k•• surface factor

'" 0.46 for the turbine blade material with tensile strength, of 1183 MPa

kb ", size factor

= 1.00 for the thickness dimens ion (d S7.6 mm.) of the roct- secuon crtne turbine blade
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kc = reliability factor

= .86

kd = temperature lactor

= 3100/(2400 + 9T) for T :> 70 0 C. Therefore for T = 435 °C, kd .. 0.50

k. :: stress concen tratio n factor

1/(1 -+ q(k, • 1»), q is the notch sens itivity factor , whe re k, Is the lac tor which

depends on the geo metric values of the member. For a notch of 0.2 em. radius,

q == 0.85, kl = 2.6 whi ch give s k, == 0.424 .

k, == miscellaneous teeter

== 1.0 (assuming the blade to be unda maged).

Therefo re, A,,, 0.46 X 1.0 X 0.86 X 0.50 X 0.424 X 1,0 == 0.084

Using

Gu(ultlmate stress) == 1183 MPa

Gy(yield stress) = 855 MPa

G.(endu rance limit) == 591 MPa. and

from the values detaile d abov e. the following stresses for the material can be ca lculated :

using Eq. (4.27) .

G.,(alternating lailure stress) = 49.686 MPa

0ml(mean failure stress) == 89.4348 MPa
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4.9 CUMULATIVE FATIGUE DAMAGE

The turbine blades discussed in the present investigation are assumed to be

operat ing in a machine at an acceleration rate of 800 rpm/min and working for 8 hours

(480 rnmutes) at 4000 rpm. Fig. (4.7) gives blade loading pattern If the blade was to

operate at 4000 rpm without being ever shut down, the blade will have infil,ite life

However . that is not the case due to the actual blade loading pattern shown in Fig. 4.7

The turbine blade is excessively stressed while passing through resonant rotor speeds.

both dur ing start-up and Shut-down, in each load block.. Since it was established before

that the resonant stresses would be between 2800 rpm a.'d 3200 rpm at time \ =200 sec

a check of the stress levels experienced between these two rotor speeds and at Ihese

particular time instants were made In order to calculate the fatigue damage , the

calculations of the stress amplitudes between 2800 rpm and 3200 rpm were made The

peak alternating stresses within this speed zone are shown in Fig. (4.8). From these

graphs, it is clear that the resonant stresses lie above the failure value and the fatigue

damage would be caused to the blade. For the estimation of fatigue damage , the

resonant peaks are divided into 11 stress blocks. The rotor speeds and the

corresponding stress levels are shown Table 4.1. The number of cycles N to failure is

obtained by locating the load point on the failure surface and Ihe number of cycles. n.

experienced n is obtained from calculating the cycles in each stress blocks. Thus fatIgue

damage is obtained as a ratio of n/N.

The total fatigue damage during start-up in each stress block as can be seen In Table 4 1

is r: n/N =25 X 10-5
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Fig. 4.9 MAGNIFIED STRESS LEVELS BETWEEN 3100·3200 RPM DURING

START-UP AT ROTOR ACCELERATION OF 1500 RPM/MIN.

11 7



J
4
s
•
7,,
'0
II

,
7,,
'0
II

.UU.... " N<iS' R. So;P. I;. .. fA NSPHDlR P"I !CY CCfS'O.AlCUR[lRI ; C' ''fSUP• • 'ERCEDl"l ••,IG.... [>.o...." . (.... -,,,.,->I1
i 52SOOOOO ; 2XOO I(,OSOT>O I 2J ; I A.'3 0211107

I 53650000 : 2840 I 1665000 I 2.\ i I.JIII.1XU XI

i 5511 00000 ! 28110 I IJSOOIlO az 1 1.6296! 963

i 58650000 I 2920 I 975000 ! 27 ; 2.76'12.1076'.1
64500000 ! 2960 44'H1OO I 27 : 6 .11U .16.\02 9
6J 5{MIOlMJ 1 aece 45651MJ l.l J 2.X-I7754655

6 16I)(){MMJ I J040 • 5115lHMJ 20 j .\.4111110.\41<,1

58500000 J OIIO I 1l05 5UO 21 j 1.119'159!Il-l4

~500000 3 120 I 14001100 25 I 1.71157142116
52500000 ) 160 16U5OlMJ 21l ! 1.2-161059 19

505110000 32{M1 I 19l16JOO 20 Ltl4 '1! S2I1U'l

52....739'1 11100 176S01I1I 22 1.24(,4511')2-1

53590000 21140 Ilunoo 20 1.11'1 1111.\1157

557-145110 211110 1-1<,11MMIll 21 1.-1u'J.I'/S'I7.I

5115'16500 2920 1075200 III 1.(,7-1lU7 1.B

6-1-1]5000 2960 -I'B9 5U 19 .\. 11-11.5-1.\ 172

63-1]7600 J OOO 50121111 19 _\. 711.U 532-16

6153411011 311-10 6·U 7511 25 .\. 1I1I.~115 1 -16

579 145lM) .10110 1215060 20 I. M(,{lU925 1

~-I4IKKI0 3 120 l~o501' 12 0.771196711611

52447399 3 1(00 17660011 2] 1..\1123711256

50-1-1591111 3200 2096390 13 1I.6201Ilf.2-1

'O ' .C""GUl:OAOIACEOUR"'lCSUR' UP I 0 .OOO! 5-H311
'O' lol.f . ' '''U tiO'll ACEDuR' RGSHU1OOWH 0 .000 2121125

'G l.C'.. 'IGUfOO ......EDufI 'HG S1. RI ......ROSItUHIO .. N 0 .OOO-l675f!.l 1"' 46- 10 - - (-5 )

Table 4.1 STRESS-BLOCK APPROXIMATION OF FATIGUE DAMA GE FOR START·UP AND SHUT DOW N

OPERATION



In this table the fatigue damage during the shut-dow n IS

r:nfN '= 21 X 10-5

The total fat igue damage due 10 start -up and shut-down In each e eo block IS thus given

25 X 10-5 + 21 X 10-5 =46 X 10-5

Similar calculat ions with different acceleration were done A new value of accelerati on

(1500 rpm/min) of blade rpm was found to be safe as the peak of the resonanl stresses

obtained for the rotor speed zone between 2800 rpm and 3200 rpm, were.rocno to be

below the failure v alue indicating no fatigue damage caused to Ihe blade. Fig. 4 9 shows

til e peak alte rnating stress levels for a value of 1500 rprnrmm The total blade tatmue nre

is given by applying Mine r's rule

__, _ .. 2,173 I( 103 load blocks
46 I( 10-5

4. 10 CON CLUSIO NS

In sp ite of the tactthat various design procedures for preventing failure of turb ine

blades due to fatigue are being used, there is yet no indication that a satisfactor y situati on

exists with reference to bas ic data that will lead to establish ing sound procedures In ttus

regard This is beca use of the fact that blade fatigue is a mu lti-dimensional problem and

as such, h as been undergOing cont inuous investigat ions for long lime. However , the

approach discussed in the present investigation can t .eusee effectively to Idenlify the

time instants and roto r speeds which can cau se fatigue damage due to start-up and shu t-

down operal ions.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 A BRIEF DIS CUSSION ABOUT THE INVESTIGATION AND THE CO NCLUSIO NS

The objecti ve ott tus investiga tion was 10 find the fatigue life ollurbine blades due

to combined effects of thermal and vibratory loadings. Th is was ach ieved by separ ate ly

carrying oul the hea llransfe r and vibration ana lys is of a blade and then adding the effec ts

due to each of these. The heallransfer anal ysis was done using ncn-unea r finite elem ent

analysis in three-di mensions. The non -linearit y was due 10 change in mater ial properties

of Ihe blade with tempe rature. The trans ien t temperatures obtained from the heal l ransfer

analys is were the n used in the calcu lat ion of the tempera ture gradients and trans ient

therma l stresses. The dynamic analys is was done at first. for finding the undamped

natura l frequencies of the turbine blade . These free vib ration studies included the effec t

of the non- linea rity in the sti ffness matrix caused by the rotation of the turbine blade. The

effec t of change in the frequencies arising lrom the change in the materia l properties of

the blade with temperature were also studied . Therealter, the vibratory stresses due to

(a) the nozzle exci tatio n and (b) the cen trifugal stresses at diffe rent rotor speeds were

calculated . Finally , the total effec t of all the three differen t types of stresses (trans ient

thermal, cen trifugal. and Vibratory due to the nozzle excitation ) on the fatig ue lile of the

turbine bla de was studied . The mathematical model for both the heat transfer and the

vibratory analys is was formulated using curved . solid, Cocontinuity, quad ratic . serendipity.

twenty node d isop arametric finite element s.
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The studies car ried out in this investigation, the refore, helps one to draw the

following conclusions:

1. In addition to temperature gradients along the cross-sect ion of the blade, there

exists a sig.,ilicant gradient along the z-rflrectlcn as well.

2. In addition to stresses in z-directlcn. there are significant stresses in x and y

directions as well, which are due to Ihe three-dimensional temperature distribution.

3. The thermal stresses are maximum atttme I = 200 sec. These stresses decrease

slowly with time.

4. The transient thermal stressdistribution in the blade can be limited well within yield

stress for the feasible heating rete of 24 0 C/sec.

5. The solid lscparametrtc finite element can be success fully used to accuralely

predict the three-dimensiona l temperature distribution.

6. The effect of inc luding the stress stiffness matrix a longwith the conventiona l matrix

makes a significant cha nge in the natural frequencies of the blade.

7. The blade natu ral frequencies also vary quite significantly during the transient

period.

8. The kinematic equations can be successfully used 10rnooelthe nozzle excitation

forces as a sinusoidal pulse.

9. The centrifugal stresses increase with increase in rotor speed.

10. The vibratory stresses show their peak at lime t =204 sec. when the rotor speed

Is about 3000 rpm.

11. Between time t =200 sec. and t = 205 sec., and between rotor speeds of 2800
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rpm and 3200 rpm, all the three types of stresses are at their peak.

12. In addition to vibratory and centrifugal stresses, the thermal stresses are also

quite Important in the design of the blade.

13. The turbine blade is excessively stressed while passing through resonant rotor

speeds both during start-up and shut-down in each load block.

14. A new value of acceleration (1500 rprnfmin) of blade was found to be safe as the

peak of the resonant stresses obtained for the rotor speed zone between 2800 rpm

and 3200 rpm. were found to be below the failure value indicating no fatigue

damage caused to the blade.

5.2 LIMITATIONS OF THE PRESENT INVESTIGATION AND RECOMMENDATIONS

FOR FUTURE WORI ~

1. The calculations for non-linear temperature distribut ion were done assuming

surrounding gases to be at uniform temperature while the gas temperatures in

practice are not so. The present l inite element model can be amended 10include

the effect of non-uniform gas temperature distribution around the blade.

2. The creep under high temperature conditions was not taken into account.

3. Fatigue being a muln-tacet problem, data collection on broad blade-operational

aspects is essential for definition of a spec ific fatigue problem.

4. The dynamic response was calculated keeping viscous damping as a function of

rotor speed. The non-linearity in the damping due to dry-friction damping at the

root of the blade, where il is attached to the rotor disk, should also be taken Into
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APPENDIX A

EXPRESSIONS FOR SHAPE FUNCTIONS OF CORNER NODES FOR THE

~EP ELEMENT

N1 =( 1I8r1 1·'rl 1·~ ) · (1·;rI-'·" ·;·2 )

N2 .. ( 1/8r( 1 +~)"(1·11 )·( 1· ;;n;:'· 11·;;·2 l

N3 = ( 1/8J'(1 +~nl+11)"( 1·;nS+11 ·1; ·2 l

N4 = ( 1/8 )"( 1 · ~ )"( 1+11)"( 1 · ~ )"( ·~+ 11·~ ·2)

N5 '" ( 1/8n1·~)·( 1· 'ln1+~ ) · ( ·~ - 11+~ ·2)

N6 =(1 /8)'(1 +~n1·11 )'(1 +;nS·l"J+~·2 )

N7 = ( 1 /8 ) · ( 1+~ ) · (1+ Tl )'(1 +~ )"(S+11 +~ ·2 )

N8 = (1 /8)"( 1'~) ' (1 +11)' (1+~)"(·~+ T] +~·2 )
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APPENDI X B

EXPRESSIONS FOR SHAP E FI JNCTIONS OF MID·SIDE N0 0.E.S...EO.R...I

TWENTY·NOpED ELEMENT

N9 = (1/4)"( ' -; " 2)"(1-S\"( ' -0)

N' O= (114)'11-; " 2)"(' +;)"( ' -0)

Nt t = (1/4)"(' -, " 2)"(1+ ;)"( 1+0)

N 12 = (1/4)"(, -, " 2 )' (1-;) '( 1+0)

N13 = 1'/ 4)"(' -;"2)'{1-0)"('- ;)

N14 = ( 1/4r(H"f*2l·( 1+~) · (1 ·~)

N15 = (1/4)"( ' -; " 2 )"(1+0)'(1")

N16 = (1/4) '( 1-0" 2)'(1-; )"( ' -,)

N1 7 = ( 1/4)"(1·~"2)"( 1 · TJ)"(1 +;)

N16 = ('/4) ' ( ' -0"2 )'('+;)'(1+,)

N 19 = (1/4)'( 1-; " 2)'(1+0)'( 1+,)

N20 = (114)"(1-0"2) '11-;)' ( ' +,)
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APP ENDIX C

EXPRESSIONS FOR ELEMENTAL MATRiCeS ANn Ve CTORS FOR THE t WENT Y.

NOnED ElEMeNT

DESCRIP TION OF TEAMS IN ELEMENTAL CAPACITANCE MATRIX (CP1

11 • ,··2
12 = · 1+11

13 = · 1 +~

t4 = 12"13

t5 = 1+'1

16 = 15"2

17= ~"2

18 =· 1+17

t9 =16'18

110=· 1+~

112 = 14' 19'110

113 = t10' 12

114 =1 +~

115 =t13' 114
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116 =19' 115

117 =114'15

118 ::z 117" 110

119 =-~·n+~+2

120", 1'1"' 2

12 1 ", ·1+120

122 =119' 121

123:IE 1+~

124 = 13' 123

126 ,. 118 ' 122' 124

t27 =121' 114

t28 '" 127 '123

129 = -1+11

131 '" 18'129 '110

132 ;s 128"t 31

133 =18"2

134 = 129 " 2

135 '" 133'134

136 ", 110"2

t38 '" 136'18

t39 '" 138'15

140 =127" 139

' 36



141:: 14'15

142:: 141"131

143 :: t14°129

144", 143°t10

145 '" -~+11+~+2

146 '" 14S0t21

148 :: 144°146°124

149 '" 13So129

150 '" 127°149

151 =t43 '136

152:: 145°18

154 = 15 1°152°15

153 = tSOIS

156 '" t5S0123

157", t2°114

158 = t5 7' 129

159 = t56°15S

160 = 12"2

161 = 13"2

162 :: 160'161

163 = 15'129

164 = 162'163
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165 = 143"t23

166 = ~-n+C-2

167 ", 166'12

16B =: 13"tS

170 = 165 ' 167' 168

171 .. 133 ' 15

172 '" 123'129

174 = 171' 172' 110

175 = 114" 2

176 ", 17S' tS

177 = 123"2

t79 '" s+n+C-2

180 '" 179'129

182 = 176' 177 '180' 166

t83 = 114'134

185 = 166'13

186 '" ·s -n+C-2

188 = 183't77'18S'186

189 = 161"134

190 = 186" 2

194 '" 171'177" 29

195 = t76 '123
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196 '" 179·121

198 ", t95 ·196·110

199 ", t3"129

1100 '" 199·123

1101 ", 186·12

1103 ", t100·1101·117

1104", 117"123

1105 '" t79· 18

1106", t29·110

1108 ", 1104·1105· 1106

1109 ", 155·110

1110", 1109· 158

1111 ", 136*119

1113", 176· t111 ·121

1114", In·12

1115", 1114*11 4

1116", 19*t11 5

1117", 12 1**2

1120 '" t117· 13*136·114

1121 ", 121*13

1122 ", 177·18

1123", 1122·129
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t124:: 1121'1123

1125:: 128't 109

1126'" 175'134

1127:: 110' 145

1129 = 1126' 1127"12

1130:: 199'110

1131 '" ~+TJ+~+2

1132 :: 1131' 18

1133 = 15'123

1135 ., 1130 ' 1132' 1133

1136., t17"136

1137", t19' 18

1139 ", 1136'1137"129

1140 :: 1121 ' t23

1141 _1 140 '1109

1142:: 143' 177

1143., 166'18

1145 =1142' 1143 ' 15

1146 :: 121' 175

1147:: 113' 129

1148 = 1146' 1147

1149 ", t14'16

140



1150 = t149"123

1151 =179'12

1153 = 1150 °115 1' 13

1154", 161·t6

1155 '" ~·,., +~+2

t156 '" 110°1155

t158 '" 1154' 1156 '12

1159 = 1121' 149

1160 = 175'129

1161 ", 116 0°123

1163 ", 1161'167' 15

1164 = 110'119

1166 = 123'186

1168 = 117'1164 ' 199°1166

1169 = 13 '134

1170 = 1169 '123

t172 '" 1170·t10 1'114

1173 ", 1117 °161

1175 = 161' 129

1176 = 1175 ' 110

1177 = 1131'121

1179 ""1176°1177'123
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1180 ", 1121"110

t182 :: 1180"t 5r 15

1183 :: 1121"139

1184 ", 183"110

1186:: 1184 "152"123

1187:: 1117"175

1188:: 123'110

1189 :: 1187-1188

1191 c {+'1+~·2

1194", 1154"123"1191° 110°1155

1195 =168°110

1196 = 1155"t2

1198 = 1195°1196°t43

1199 = 177"179

1201 '" 176°1199 '121

1202 '" 161°15

1204 ", 1191"129

1206 = 1202°177' 1204 "186

1207 .. 177"186

1209 .. 1169"t20rt8

1210 =123"166

1212", 1126°t210"12
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1213 = 128"141

1214 = 199-177

1215 = 186-18

1217 = 1214-1215-15

!218=11 14-t5

1219 = 1146·1218

1220 = 1117-114

1222 = t220·124·110

1223 = t8 ·134

1224 = 1223"115

1225 = 1169-110

t226 = 1131-12

t228 = 1225-1226-114

t229 = 175°16

t233 = 1229-123-179'110·119

t234 = 136°1131

1236 = 1169°1234.18

t237 = 133-16

1239 = 183-123

t240 = 110-1131

t242 = 1239-185-1240

t243 '" 117-177
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1244 = 179-13

1247 = 1243'1244'129 '186

1249" 1149' 1199' 18

1251 " 1130' 1226'117

1253" 195' 1151'129

t255 =136'145

t257 = t83'1255'1 8

1258 = 13' 16

1259 = 136'1155

126 1 " 1258 ' 1259' 18

1263" 1239' 1143'110

1265 = 1225'1132 '123

1266 = 1258'123

1267" 1191-114

1269 .. 1266- 1267'1164

1270 = 160'13

1272:: 1270' 117'129

1273 =177' t66

1275 = 1160-1273'121

127 8 ::1 168' 1156 ' 143 ' 1210

1280 = 1149 't10

1282 .1280-t137' 123
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1284 = 14'129

t285 = 156' 1284

t286 = 168°t77

t287 '" 1191'18

t289 = 1286' 1287' 129

1290 = 1122'15

1291 = 1121°t290

1292 = 160'175

!293 = 1292°t63

1295 = 1202'1259'121

1296", 1114°129

129 7 '" t146°1296

1299", t150 01 105°110

1300 = 1202'123

t30 2 = 1300'1204°1240

1303", 1191·t21

t305 '" t300·t303·110

1306 = 166 ' 121

1307 = 13°110

1309 = 165°1306°1307

13 10 = 1155°121

1311 = t14' 123
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1313 ;; 1195" 310' 1311

1314 ;; tT" ' 191

1316 >:: 1258 '1314' 18

1317 '"' 168"23

1318 ;; 114'1 10

t32 0 ;; 1317 '1303'1318

1322;; 1175'1234'121

1326 ;; 189 '123'186'110'1 131

1327 ;; 145"2

1331 ;; 144"152'1133

1332 '"'1258 ' 110

1334 ;; 1332'1196'11 4

1335;; 1131" 2

t3 38 >:: 121'161

1339 ;; 1338 '1296

1340 ;; 128 ' 1264

1342:= 1266· t267' 110

t3 43 ;; 127'1290

1344 ;; 1270 "183

t3 45 ;; 176' 110

1346 = 119" 12

1348;; 1345 ' 1346"129
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1350 :: 1243 "196 "13

1352:: 1229"1164 "12

1354 :: t83" t273 "t8

1356 :: t160"1255 '12 1

1357:: 133S'121 8

1358 :: 123'1 79

136 1 :: 117"'358 ' 199"1240

1363 '" 1142'1306'13

1364 '" t68' t36

1365'" t155 ' 114

1368", 1364' 1365"129'145

137 1 ", t170"186 ' 114"1127

1372 :: t45 "12

1374 ", 1184"1372"13

1375 '" t86 ' 12 1

t377 '" 1100· 1375 ' 1318

t379 :: 13 17' 1287"1106

1380 = 1202 '110

1382 :: 1380 "1196' 129

t384 '" t3S0"13 10' 123

t3SS = t13 6"119 "13"'29"1131

1390 ", t155 ' 129

14 7



1392: 1202"136"1390'1131

1394 : 189' 1166 '12

1395 : 1155'18

1397:c: 1364 ' 1395' 129

1398 = 1160 · t10

t400 = 1398 ' 146 't2 3

1402: 118·t137 '172

1404 = 144'1372' 168

1406 : 1338' 1147

1407 : 119"129

1409 = 1345'1407"1210

1410 : 113' 15

1411 : 1338 ' 14 10

1412 =1237"1188

1414: 118'1346 "99

1416 = 1214' 1375 '114

1417 so 15'110

1419 : t1oo 't215'1417

1421 = 1364'1310 '114

1423 =1195 ·1395· t72

1424 = 119"2

1429 : 1286' 1267'129'166

148



1431 = 1229°t358'12

1432 =1 114°t3

1433 = 1223°1432

1435 = 195't 80' 1127

1436 = 1140 °131

1437 '" 1191°12

1439 '" 1300 0 '437°f29

1440 = 1191°.2

1444 = 1345· t22°t23

1447 = 176°136'1407'14 5

1450 = 171°136°129

1452 = 1104" 196°t307

1453:: 1175°t23

1455 :: 1453°t101 ' 15

t457 :: 1202 °t314' 12 1

t459 = 1130· t177" t3 11

1460 = 1270''1149

1462 :: W 1223'110

1464 = 1176' 1226 ' 15

1465 = n 80 "t58

1466 = 1146°'4 10

1468 "" 1266"1437 ' 114

149



1470 = 1260 "1346'13

1471 =135' 1168

1472 = 127"1123

t474 = 1332"t395 '123

1475 = 179"2

1479 = 1170 ' 1215 ' t1 0

\480 = t23 "1 91

t482 = 1154 ' 1480'12

t484 = t38 0 't3 90 't 166

1487 = t149 '177 '1244" '191

1489 = 1286'1303'11 4

t491 = 1220 ' 177 ' 13

\493 = 16S"t143 '\ 417

1495 = t243'1105' t29

1497 = 189 '1240 '12

\499 = 151' 146 ' 13

1501 = 1398 '1372"5

1503 =1149 "1111'18

1505 = t173"1188

1506 = t155" 2

15 10 =t175't207 ' 12 1

15 14 = t169" 36't131 "t14' t45

150



1516 = 1136°122°13

15rt =199°136

1519 = 1517"1132°15

1521 =1150°1244°1156

1522"" 19°1432

1524 = 1161°1306 °11 0

1525 = 1223°' 115

1527 "" 1317°1437°143

1529 = 1453°t375 °110

1533 "" 1126°123°166°110 0 t45

1535"" 1104°1151°199

1537 =1517°1177°114

1540 = 168°1480°143°1127

1542 = 166°°2

1546 = 1239°167"13

1551 = 1258°136°1365°119

151
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DESCRI PTION OF TERMS IN ELE MENTAL TEMPERATU RE·GRADI ENT

INTERPOLATION MATRIX [Bel

JN I JN2 (IN,

~ a~ · ~

I ( j" oN, oN, oN,
Jls.".) ih1 a;j . if.1

aNI aN2 aN,

o( "5f if.1

t1 • (" "2

12 = 1-11

13 = 1-11

14= t2't 3

15 = l -S

16= 1+'1

t7 = 15' \6

18 = -S' q-( -2

110 = 1 -~

111 = 17"110

113 = ~'16

114 = 1+~

116 = 12'15

117 = ~'15

153



119 ::: \3·110

120 =' ·n· ' -2

122 ::: 1 ~

123::: 122·13

124::: t23·110

t26 ::: 12·t22

127 ::: 1'1"122

129::: ; ' ·2

130::: 1-129

131 ::: 130·16

132::: t6·110

135 :::122 · t10

1:16 '" ~+n-~-2

138:::122'16

139 '"13B' 110

143 = ~·t3

147'" 12'16

148", 130· 110

149 ",1:;0' 13

150 = , " 22

152:: 11· ' 2

153 ", 1-152

154



154 .. 153" 14

155 :;z 1l·t5

t60 = 122'114

161 II ~-'1+~·2

163 = 123' 114

t65 :;z 153"22

t68 = t3 "114

t71 = 15"114

'72 =-l;-~"-·2

174 = 15"13

175 = 174"114

177 = 153"15

178 = 16"'14

' 79 = l;+~"-·2

181 = 138" 14

189 = 153" 10

194 = 15· '10

' 95 =-l;- ~-(·2

197 = 17 4"110

' 99 =-l;+~+(-2

1101 = 17 '114

1110 = 130't14

155



~
x
g
<
~

z
0

~ in.
iii

i>-
~
>- Iz

~w
5 I-c !:l-a:
'? Iur
a: !~
< !a:

!w
c,
s
l'!

I-'-c
>-z
ur I~

~ iw

I
I
i,
I
;



DESCRIPTION OF TEAMS IN SECOND PART OF ELEMENTAL CO NDUCTION

M.U RIX FOR ~ = 1

11 =1+11

12 = 11""2

13:= 1+1;

14:= 13""2

16 .. -1+Tl+1;

17 =16" 2

19'" 12'13

110 =-1+1;

112 = 1-Tl+1;

114 =19"16 "110"t12

115 =:11"14

t16 = -1+11

118 =+11+~

120 = 115 "t6"116·t 18

121 = 11"13

123 = 116"t10

12 4 = 1+11+~

157



126 "" 121"16"123"12 4

12 7 "" '1) '"2

128"" ·1+127

12 9 "" 16"128

13 0 ;; 115 "129

132 ;; 121" 129'110

13 3 = , 002

134 ;; -1+ t33

135 ;; 16'13 4

13 6 ;; 19' 135

138 "" 12 1"135'116

13 9 ;; 110"" 2

141 ;; 112" "2

143 ;; 11"110

145 ;; 116- 13

147 ;; 143 "112'145"118

14B ;; 11"t39

15 1 ;; 148- t 12'116"t24

152 ;; 112 "128

154 = 143"152 ·13

155 ;; 146"t52

157 "" 112"134

158



158 = 12*t10't57

160 = t4 3*157*t 16

16 1 = t16**2

t63 '" 118**2

t65 = 161*13

t68 :: 165 '11S"tl 0' 124

t70 = 118*128

t71 :: 116 ' 14*170

173 = 145 '170*110

t74 = 118* 134

t76 = 145*174*t1

177 :: 165*174

t79 = 124**2

tBl '" 124 *128

183 = 123*181't3

tB5 = 116'139'181

186 = 124 *134

IBB = 123*186*tl

190 = 161*110'186

191 = 128"2

194 = t9 1'13' t1 0

195 = 128"13

1 59



196 = 134"11

197 = 195 '196

198 = 134' 116

199 = 195'198

110 1 = 128'110

t102 '" 110 1' 196

110 3 = 1101"198

004 = 134"2

1107 = 1104 "11' 116

160



SECOND PART OF ELEMENTAL CONDUCTION MATRIX FOR ;; = 1

120 x 20)

t2 ·14·0/16 0 0 t 14/ 16 -t 20/ 16 o 0 -t 26/ 16 o 0 0 132 18 o 0 0 -13 6 /8 -13018 o 0 t3818

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0
114'16 o 0 12 · t 39 · t4 1116 -14 7/ 16 o 0 -151116 o 0 0 t5 5/8 o 0 0 -t 5818 -154/ 8 o 0 16018
-t201 16 o 0 -t4 7 116 t61 ·t4·t63116 0 0 t68116 o 0 0 -t7 3/ 8 o 0 0 t 76 18 t7118 o 0 -t77/8

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

-12 6116 o 0 -t 5 1116 t68 116 o 0 t6"t39 ·179116 0 0 0 -185/8 o 0 0 t88/8 t8318 o 0 -t9 018

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

132 /8 o 0 15518 -t 7318 o 0 -t8 518 o 0 0 t91 ·t3914 0 0 0 -t 10 2/4 -19 4/ 4 o 0 t10314

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

·13618 o 0 ·15818 176 /8 o 0 188 18 o 0 0 ·t 10 214 o 0 0 t104 '12 /4 t9 7 /4 o 0 -110 7/4

-t 3018 o 0 -15418 171/8 o 0 183 18 o 0 0 -194/ 4 o 0 0 19 714 t91"t414 0 0 -19 9 /4

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0 0

t3818 o 0 160/8 -t17 18 o 0 -19 018 o 0 0 110314 o 0 0 '110 714 -19914 o 0 t104·161 14



DESCRIPTION OF TERMS IN SECOND PART OF ELEMENTAL CONDUCTION

MATRIX FOR ~ ",· 1

11 : 1+11

12 ", 11"2

13 =1+~

14 = 13"2

16 = · 1+..,+~

17 = 16" 2

19 = 12'13

110= -1+l;

112 = 1·'1+~

114 = 19'16' 110' 112

115 = 11 ' 14

116 = -1+11

118 = - 1 - 1l+~

120", 115 '16 ' 116'118

121 = 11' 13

123 = 111 '( 10

124 = 1+ll+~

162



126 = 121't6'123'124

127 = 1'('2

128 = -1+127

t29 = 16' 128

:30 = 115 '129

132 :> 121'129'110

133 = ~"2

134 = -1+133

135 = t6 't34

t36 = t9 ' t35

t38 = t21' t35'116

t39 = 110" 2

t4 1 = 112"2

t43 = t1 '110

t45 = 116' 13

t47 = 143' t12' 145't18

148 = 11" 39

151 =148 ' t12' 116' t24

t52 =112'128

t54 =143' 152' 13

155 =t4£ "152

t57 = 112 '134

163



,
158 = 12'110'157

160 :: t43 't57't16

161 = 116"2

163 = 118" 2

165 :; {6 l't3

tSB _16 S 't1 S't l0't24

170", 118"28

171 = 116 ' 14" 70

173 = 145'170 '110

174 :; 118'134

176 = 145,,74'1 1

177 = 16 5'174

179 =124"2

tSl = t24"28

183 = 123 ' 181" 3

185:: 116't39 't81

t86 = 124 ' 134

t88 :: 123" 86' t1

190 :: t61'UO't86

191 = 128 " 2

194 :: 191' 13'110

195 :: 128 '13

16 4



196 = t34 '11

197 = 195' 196

198 = 134'116

199 = 195'198

1101 = 128 't1 0

1102 = 1101'196

1103 = t101'198

1104 .. t34"2

1107 = t104 'I1'I16

165



SECOND PART OF E LEMENTAL C O ND UC TIO N MATRIX FOR ~ = - 1

[20 x 20J

0 0 0 o 0 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0o 12-t4°17/16 114116 o 0 -120 l 16 -126116 o 0 -t3018 o 0 0 -136/8 o 0 0 t38/8 t32 /8 0
114 /16 12°t39-t41 /16 0 0 -t47/ 16 -t51 116 o 0 -t 54 18 o 0 0 -158/8 o 0 0 160 /8 155 /8 0

0 0 ') O · 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0

-120/ 16 -147116 o 0 161-14 °163/16 168 /16 o 0 t7 1/8 o 0 0 17618 o 0 0 117 18 t7318 0
-126116 -151 /16 o 0 t68 116 t6 1'139'179/16 0 0 t83/8 o 0 0 18818 o 0 0 -19018 -t8 518 0

0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0

-130/8 -154 18 o 0 t7118 18318 o 0 19"t414 0 0 0 19714 o 0 0 t99/4 -t9414 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 Q o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0

-136/ 8 -15818 o 0 176/8 t88/8 o 0 197(4 o 0 0 004°t2/4 0 0 0 -t l 0 7/ 4 -110 2/4 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0

t38 /8 t60/8 C 0 -t77/ 8 -t90/ 8 o 0 -t99 /4 o 0 0 -1107/4 o 0 0 t 104 ' 16 1/4 tl03/4 0
t 32/ 8 155/8 o 0 -t7 3/ 8 -t8 5/ 8 o 0 -19414 o 0 0 -., 0 214 o 0 0 t10314 191 '139/4 0

0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0



DES CRIPTION OF TERMS IN SECOND PART OF ELEMENTAL CONDU CTION

MATRIX FOR '1 '" 1

t1 '" 1+~

12 ", 11" 2

13 '" 1 +~

t4 '" 13"2

16 '" ~·1+~

17", 16u2

19", 11"14

110"'··.'~

112 '" ·~· 1 +~

114 ", 19'16-110"112

115", 11'13

117 '" · 1 +~

118 =: 110"117

119 .. ~+1+~

121 '" t15" t6 '118' 119

122 =12"13

124 '" ·~+ 1+~

167



126 = 122't6 'I17'I24

127 = ~ " 2

12B s -1+127

129 ", 16' 128

130 =19' 129

131 '" ~ " 2

132 ", -1+13 1

133 :: 16'132

135:: 115' 133' 110

137 :: 115°129' t17

138 :: 122°133

139 =110°' 2

141 = 112"2

143 z 139' 13

146 :: 143'112'117"119

147:: 110*13

149 =It '117

151 :: t47"112°149°124

t53 '" t12°128

154 ", t10014'153

155", 112'132

156", 143°155

168



t56 :: t47*153°117

160 :: t47*ISsoll

161 :: t17 " 2

t63 :: t19" 2

t65 :: 110°161

168:: t6S0119·l1't24

t69 :: t19°t28

17 1 :: 118·169·13

173 :: 119·132

174 :: t39· 117*173

175 :: t6S·' 69

t77:: t18·173·11

179 ", t24 · ·2

18 1 :: 124·128

183 ", 149·'81 ·13

184 '" 124·132

t86 :: 149·184· t10

188:: 11· t61· t8 1

190 = 12·t l 7*t84

t91 :: 128··2

193 :: 128·13

t94:= 132·110

169



195 = t93 °194

197 = 191°13°t17

19B", 132' 11

199 '" 193°198

1100 '" 132°'2

1102 .. 128°117

1103 ", 194°1102

1105 ", 1100'1 10°11

1107", 1102°198

170



SECOND PA RT OF ELEMENTAL CONDUCTiON MATRIX FOR 11'" 1

[20 x 20]

12-14- t7 116 -114 /16 -12 1116 126116 o 0 0 a -130/ 8 13518 13718 -t 38 /8 000000
-114 116 139 -14-141116 146/ 16 -t5 1116 a 0 0 a t54/8 -t 5618 -158 /8 160/8 000000
-12 1116 146 /16 t39-t61 -t63116 -16 8/ 16 o a 0 a t7 118 -t74/6 -t7 5/8 11718 0 0 0 0 0 0
t26 116 -t 5 1116 -168 /16 12-161-t79/16 0 a a a -t8 3/8 186 f8 18818 -190/8 000000

0 0 0 0 a 0 0 a 0 0 0 0 000000
0 0 0 0 a a f 0 0 0 0 0 000000
0 0 0 0 o 0 0 0 0 0 0 0 000000
0 0 0 0 a 0 0 0 0 0 0 0 000000

-130 18 t5418 t7 1/8 -18318 a 0 a 0 191-14/4 -19 514 -t9 714 19914 0 0 0 0 0 0
135/8 -15618 -174 18 t8618 o 0 0 0 -19 5/4 1100-13914 tl03f4 -l l 05f4 000000
137 /8 -158 18 -t7 5/8 t88 /8 o 0 a 0 -19 714 tlO3f4 191-16114 -1107/ 4 000000
-13818 16018 t17 18 -19018 o a a 0 199 /4 -tl 0 5f4 -tl 0 7f4 tlOO -12 14 0 a 0 a 0 0

0 0 0 0 o a 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 o 0 0 a 0 0 0 0 000000
0 0 0 0 o 0 a a 0 0 0 0 0 0 00 0 0
0 0 0 0 o 0 0 a 0 0 0 0 000000
0 0 0 0 a 0 0 a 0 0 0 0 or o o o o
0 0 0 0 a 0 0 a 0 0 0 0 000000
0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a 0 0 a 0 0 0 0 0 0 00 0 0



DESCRIPTION OF TERMS IN SECOND PART OF ELEM ENTAL CONDUCTIO N

MATR IX FOR fl = -1

11= 1 ~

12 = 11' °2

13 = 1+~

14 = 13"2

16 = ~- 1+~

17 .:: t6" 2

19 = 11' 14

110 .. -1 +~

112= -~- 1 +~

114.:: 19 ' 16 '110 '112

115 =11't3

117 = -1+\

118 = 110°117

1 1 9 =~+1 +~

121 = 115' I6' t18' 119

122 = 12 't3

124 = 0~+ 1 +~

172



I,·

126 := 122°16'117'124

127 = S"2

128 = -1+127

129 = 16°128

130 = 19°'29

131 = ~"2

132 = -1 +131

133 = t6°132

135 = \ 15°133° 110

137 = 115°129°117

13S =122°133

139 =110"2

141 = 112"2

143 =139'13

146 = 143°t12°117°119

147 = 110'13

149 =11'117

151 = 147"112°149°124

153 =112 °t28

154 = t10°14°153

155", 112°132

156 = 143°155

173



t58 :: 14r t53°t17

t60 =147°t55°t1

t6 1 = t 17002

t63 = 119°°2

t65 = t10 0t61

168 = t65°t19° 11°124

t69 = t19"t28

t71 = t18°t69°t3

173 =119°132

174 =139°n r173

t75 = t6S0t69

t77 = 118°t73°t1

179 = t24002

181 = t24°t28

t83 =149 "t81°t3

184 = t24 "132

186 = 149°t84 °110

188 = 11"161°1111

190 = 12°117°184

191 = 128 002

t93 = t26 "13

194 = 132°t10

174



195 '" 193°194

197 = t91°t3 "(17

198 = 132°t1

199 = 193°t98

1100 = t32 " 2

1102 ", 128°t17

1103 ", 194"t102

1105 = 1100°110"11

f107 '" 1102 "198

175
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DESCRIPTION OF TER MS IN SECOND PART OF ElEMENTAL CONDUCTION

MATRIX FOR ~ '" 1

11= 1~

12", 11"2

13'" 1+11

14 "" t3"2

IS ""~+11 · 1

17 "" 16u 2

19 ", 11·14

110=· '~

112 '" ~·'l+1

114 ", t9*16*t10°t12

115 ", 12°13

t16 = · 1+11

t18 '" ~· 11· 1

f20 '" t15 "tS"t16"t1B

121 = rt-ra

123 ", t100f1S

124", ; +'1+1

177



126 = t2 1·t G·123- t24

127 = 'l u2

128 = ·1+127

129 = 16· 128

130 = 115·t29

132 = t2 1· 129·110

133. S· · 2

t34 = · 1+133

135 = 16· 134

t36 = 19-135

t38 = 12 1·135·116

t39 = 110.°2

t41 = 112 °°2

t4 3 = 110 ·t3

t45 =11·11 6

147 = 143°112·t45 °118

148 = t39·13

151 = 148 °112.116.124

152 = t12 °128

154 = 143· t52°t1

t55 = 148·t 52

t57 = 112·134

178



158 = 110·14'157

160 = 143·t 57·116

16 1 ", 116··2

163 =t18 · ·2

165 = 11't6 1

168 = 165'118'110· '24

170 = 118' t28

171 '" t2·116·170

173 = t45· t70·110

174 = t18' t34

176 = 145·174'13

177 .. 165't74

179 = 124" 2

181 = t24·128

183 = t23-181-11

185 =t39 ·116't81

186 '" 124-t34

t8 B = 123·186· t3

t90 = 110'161 't86

t91 = 128"2

t94 = 191·11-110

t95 = 128' 11

179



t96 = 134't3

t97 =t95"t96

19B= t34 ' t16

199 = 195' 198

110 1 = t28·1 10

t102 = 1101 · t96

1103 = 1101 ' 198

1104 = 134'·2

1107 = 1104°t3' t16

180



SECOND PART OF ELEMENTAL CONDUCTION MATR IX FOR l;,= 1

[20 x 20)

t2-14"17/16 114116 o 0 -120/16 -126 /16 o 0 -136/ 8 o 0 0 13818 o 0 0 -130/8 '132/8 o 0
114/16 139 - 14 "14 1/ 16 0 0 -14 7116 -151/ 16 o 0 -15818 o 0 0 160/8 o 0 0 -154/ 8 t55 /8 o 0

0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 . 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0

-120116 -147116 o 0 12"161 -163116 168/16 o 0 17618 o 0 0 -117 /8 o 0 0 11118 -t73/ 8 o 0
-126116 -151116 o 0 t68116 t39"16"t79116 0 0 t88/8 o 0 0 -t9 018 o 0 0 t83 /8 -18 5/8 o 0

0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0

-136/8 -15818 o 0 176/8 188 /8 o 0 1104"1414 0 0 0 -110 714 o 0 0 197/4 -t10 2/4 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o c 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0

138/8 160/8 o 0 -11718 -19018 o 0 -t1 0 7/4 o 0 0 1104"16114 0 0 0 -19914 1103/4 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0

-IJ O/8 -154/ 8 o 0 t71/8 183 /8 o 0 197f4 o 0 0 -19 9/4 o 0 0 191"12 14 -19414 o 0
132/8 15518 o 0 -17318 -18 5/ 8 o 0 -110214 o 0 0 1103 14 o 0 0 -19414 191 -139 14 0 0

0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0
0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 o 0



DESCR IPTION OF TERMS IN SECOND PART OF ELEMENTA L CONDUCTION

MATRIX FOR ~ = · 1

t1 =. 1 +~

12 =t1002

t3 = 1+'1

14 = 13°°2

16 = ~-'1+ 1

t7 = 16"2

19 = 11°14

110 . ' '-<

112 =~+'l· 1

114 =19°16°110°112

115 = 12°t3

116 = -1+'1

118 "" ~+'1+ 1

120 = 115°16°11 6°t18

121 :: t1°13

123 = 110"116

'24 = ;.q.'

'82



t26 Of 121·t6 ·t23 ·124

t27 '" 71 ••2

128 ", -1+127

129", 16·128

130", 115·129

132", 121·t29·110

133 . ~· ·2

134 s -1+133

135", 16·134

136 :::19·135

138", 121·135·116

139 ", 110"2

141", 112 ··2

143 ", 110-13

145 ,.11 ·116

147", 143·112· 145·118

148", 139·13

151 = 148·112·116· t24

152 :: 112·128

154 '" 143·152·11

155 '" 148·152

157 ., 112· t34

183



158 '" 110.14°157

160 = 143·157 ·116

t61 :III 116"2

t63 = 118"2

t6S = 11·t61

t68 z: 165·t18·1100t24

170 = 118°128

171 = 12°116°170

t73 = 145°17 0°110

174 = 118°134

t76 = 145°174 °13

In = 165°174

t79 = t24· 02

181 = 124°t28

t83:::z123°181.11

185 = 139'116°18 1

186 = 124·134

188 =123·186 ' 13

t90 = 110·16 1"186

191 = 128' °2

t94 ", 191"11"110

195 = 128' 11
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1~6 = 134·13

197 = 195·196

198 = t34·116

199 = 195 ·198

n01 '" t28·\10

t102 = 1101·196

1103 = 1101' 19&

1104 = 134·· 2

1107 = 1104·13·t16

185



SECOND PART OF ELEMENTAL CONDUCTION MATR IX FOR ~ = · 1

{20 x 20)

o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 t2 -t4-t7/16 114 /16 o 0 -t 20116 -t 26116 o 0 -t3 618 o 0 0 t3 818 o 0 0 t30 /8 -132 /8
o 0 t1 4 /16 t39-t4 - t4-'1 16 0 0 -t4 7116 -t51116 o 0 -t 58/ 8 o 0 0 t6 018 o 0 0 154 /8 -t55 /8
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 • 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 -t2 0116 -t4 7116 o 0 t2-t6"t63116 t68116 o 0 t7618 o 0 0 -t7 718 o 0 0 -t7 118 t73 /8
o 0 -t2 6116 -t5 1116 o 0 t68116 t39-t61-t79116 0 0 t8818 o 0 0 -t9018 o 0 0 -t8 318 t8 5/8
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 -t3 618 -t5818 o 0 t76 18 t8 8lS o 0 t104-t414 0 0 0 -1107f4 o 0 0 -19 714 110214
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 t38/8 t60/8 o 0 -t17 /8 t9018 o 0 -U07/ 4 o 0 0 U04 -t6114 0 0 0 t9914 -t10 3/4
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0
o 0 t30/8 t5418 o 0 -t7 118 -t8 3/8 o 0 -t9 714 o 0 0 19914 o 0 0 191- 1214 -t94/4
o 0 -t3 2/8 -t5518 o 0 t73/8 t8 5/8 o 0 t102/4 o 0 0 -t 10 3/4 o 0 0 -t9414 t9 1- t3914



DESCRIPTION OF TERMS IN ELEMENTAL CONVECTION VECTOR {F~' FOR ~ '" 1

11 .; 1+11

12 '" 1 +~

16 _ 1-1;

110 ", 1-11

117", rf 02

118", 1-117

121 = , 002

122'" 1-121

187



ELEMENTAL CONVECTION VECTOR {Fe l } FOR ~ = 1

FC1(l ,l) = 1 1 '!2'(- 1 +11+~)/4

FC'12.1) = 0

FC1(3,l ) =0

FCl (4,1) =11*tS' (-1+11-~l/4

FC' IS.l ) . 110' 12·1-1-~+()/'

FC' 16.' ) . O

FC' I?') · O

FCl 16.1) • 11O·16'1 · ' ·~·')/'

FC119.1). O

FCl l' 0.' ). O

FC11".1) .O

FC1I' 2.1) = t22'1112

FCl l' 3.' ) = 0

FCl l" .l ) = 0

FC1(15,1) = 0

FC1 (lS ,1) =122*110/2

FC 1{17,1) = tlS*12/2

FC111S.1) = 0

FC1(19,1) =0

FC 1(20,1) =118*16/2

18B



DESCRIPTION OF TERMS IN ELEMENTAL CONVECTION VECTOR IF:I FOR ; =-1

11 == 1+'1'[

12 == 1 +~

16 = 1-,

t10 == 1-11

117 == Tlo·2

t18 == H1 7

121 = , " 2

122 = l-t21

189



ELEM ENTAL CONVECTION VECTOR {FC2} FOR;; ", -1

FC2( 1,1) =0

FC2(2 ,1) = U· 12·(-1+11+Q/4

FC2(3,1) = 11 ·t6 ·(-1+., ·~)/4

FC2(4 ,1) = 0

FC2(5 ,1) =0

FC2(6,1) = t l0·12·(-1-11+~)/4

FC2(7 ,1) = 110'16'(-1 -~-,)/4

FC2(6,1) =0

FC2 (9,1) =0

FC2(10,1 ) =t22·t1 /2

FC2(11,1) =0

FC2(1 2,1) =0

FC2(13,1) =0

FC2(14,1) =122·110/2

FC2(15,1) =0

FC2(16,1) =0

FC2(17,1) =0

FC2(18,1) =118'1212

FC2 (19,1) =118' 1612

FC2(20,1 ) =0

190



DESCR IPTION OF TERMS IN ELEMENTAL CONVE CTION VECTOR [Fee) FOR 11 = 1

11 = 1+1;

12 = 1 +~

\6 = ' -<
110 = 1 ~~

117 =S" 2

118= 1-117

'20 = ,··2
121 = H20

19 1



ELEME NTAL CONVECTION VECTOR {FC3} FOR 11 =1

FC31' ,1) = 11"'2°ls-1+,)/'

FC312.1) = 16°12°(oS_I+,)14

FC3(3,' ) =16°no ' los-l -,)14

FC31' ,1) = I1"n O'(S-l-,)/.

FC3IS,1) =0

FC316,1) =0

FC317, 1) =0

FC3Ia ,1) =0

FC3(9,1) = t18· 12f2

FC3( 10,1) = 121·1612

FC3(1 1,1) = 118'110/2

FC3(12,1) = 121·11/2

FC3(' 3, 1) =0

FC3( " ,1) =0

FC3( 'S, 1) =0

FC3( 16, 1) =0

FC3(17,1 ) ", 0

FC3(1a ,1) .0

FC311. ,1) =0

FC3(20,1) =0

,.2



DESC RIPTION OF TERMS IN ELEMENT AL CONV ECT ION VECT OR [Fe"J FOR 11 =-1

11 = 1';

12 = 1+~

16 = 1-;

110 = 1-,
117 = ;" "2

118 = 1-117

120 = ~"2

t21 = 1-120

193



ELEMENTAL CONVECTION VECTOR {FC4} FOR ~ = -1

FC4(1 ,1) = 0

FC412,1) = a

FC4(3,1) = a

FC414,' ) = a

FC4IS,' ) = WI2'(,-I+()/4

FC4IB,' ) = IB' 12'(-,-1+()/4

FC41? ,' ) = IB'lla'! -, -I-()/4

FC4IB,1) = WI1O' 1, -' -( )/4

FC419,1) = a

FC411a ,l } = a

FC41" ,1) = a

FC41' 2,1) = a

FC4(13,1) = 118·1212

FC4(14,1) = t21 ~t6/2

FC4(15,1) = 118·110/2

FC4(16,1) = 121"11/2

FC4IH ,' ) = a

FC41' 9,' ) = a

FC4(19,l ) = 0

FC4(20,1) '" 0

194



DESCRIPTION OF TERMS IN ELEMENTAL CONVECTION VECTOR IF: ) FOR, =1

11 ::: 1+~

12", 1+11

16 = 1';;

flO", 1-11

117::: 110'2

118 ", 1·117

121 = ~· ·2

122 = 1·121

195



ELEMENTALCONVECTION VECTOR {FCS} FOR , = ,

Fe S(1,1) = 11'12*(S+T\-1)/4

FCS(2.' ) = t6 ' t2'(-<+~- 1 )/4

FCS(3. ') = 0

FCS(4,' ) = 0

FCS(S.1) = t1"t10'(~-~- 1)/4

FCS(6.' ) = 16 · t1 0 · ( ·~·~-1 )14

FCS(?,' ) =0

FCS(a .' ) =0

FCS(9,') =t22't2/ 2

FCS('O ,' ) =0

FCS(11.' ) =0

FCS(' 2 ,' ) = 0

FC5(13 .1) = t22°t10/2

FCS('4,' ) = 0

FCS(' S, ' ) = 0

FCS(' 6.' ) =0

FC5 (17,1) = 118·11/2

FC5 (18,1) = 118°16/2

FC5(19 ,1) = 0

FCS(20 .' ) = 0

' 96



DESCRIPTION OF TE RMS IN ELEMENTAL CONVECTION VECTOR IF,1 FOR , =-,

11 = 1~

12= 1+'1

16 = 1 +~

110= 1·."

11 7 = 11"2

t1a = 1-11 7

121 _ ; "2

t22 = 1-121

197



ELEMENTAL CONVECTION VECTOR IFC6} FOR I; =·1

FC611,lI =0

FC6(2,lI =0

FC613,l} ="'12·1·~+~· ' )/4

FC614,l}. ·,6· 12 · 1~+~·')/4

FC6IS,l }=0

FC616,l } =0

FC617,1) ="'"0·(·~·~·'}/4

FC618,1}=16 '11 0· 1~·~ · ' }/4

FC6(9,1) = 0

FC8110,1) = 0

Fe 6(11,1) = 122"t2/2

FC6(12,l ) = 0

FC6113,l ) = 0

FC6(14,1) II: a

FC611S,l ) = 122'110/2

FC6116,l) = 0

FC6117,l ) =0

FC6118,lI =0

FC6{19.1) == 118*t1/2

FC6(20,l ) = 116'16/2

198



DESCRIPTION OF TERMS IN FIR ST PART OF ELEMEN T AL RADIATIO N VECTO R

IF,'I FOR ; =1

t1 :::1+n

12::: 1 +~

16 .1-,

t10 ::: 1-11

117 =T\u 2

t18=1-I17

121. , " 2

122 = 1-121

199



FIRST PART OF ELEM ENTAL RADIAT ION VEC TOR {F All FOR s= 1

FR ' I' ,' ): t1"12'("+~+Q/4

FA'(2, ' )'0

FA1(3, ' ) .0

FA' (4, 1) • 11"16' 1-, +~-,)/4

FA' IS,' ) ' 11 0' 12 · 1·'·~+')/4

FA'16, ')' 0

FR1(7,1 )= O

FA' (S,1) . 110'16' ( ·' ·~ ·' )/4

FA' (" , ' ) .0

FA' (' O, ' ) ' O

FR1(11,1) = 0

FR 1{12,1) == 122-1112

FA'(13,1) = 0

FA' I'4,' ): 0

FA' I' S,' ) = 0

FR1 (16,1) == 122-11012

FR 1(17,1) == tl B-I2I2

FA' I' S,I ). O

FR1(19,1) = O

FR1(20,' ) = 118'16/2
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;;~SCR I PTION OF TERMS IN FIRST PART OF ELEMENTAL RADIATION VECTOR

IF,' FOR l; . -1

t1 '" 1+11

12". 1+~

16 · , -,

110 .1"11

117 =: 11"2

118 :::1-117

121 ::: ~"2

122 :::1-121

201



FIRST PART OF ELEMENTAL RADIATION VECTOR (FR2) FOR i; = ·1

FR2(1,1) = 0

FR2{2,1) = tl ' t2' {~ 1+11+~)/4

FR2(3,1) = I1"t6·(·1+~·\)/4

FA2(4 ,l ) '" 0

FR2(5,1) = °
FA2(6,1 ) = t l 0· 12· ( -1·1l+~)/4

FR2(7,1) = 110'15'("'~'\1/4

FR2(B,1) = 0

FR2(9,1) = 0

FA2(10,l ) = 122'11/2

FR2( 11,1) = 0

FR2(12,1) = 0

FR 2(13,1) =0

FR2(14,1) = 122'110/2

FR2(1 5,1) =a

FR2('6,1) = 0

FR2('7,1).0

FR2{18,1) =118' 12/2

F A2{19,1) = 118'1612

FR2(20,1) = 0

202



DESCRIPTION OF TERMS IN FIRST PART OF ELEMENTAL RADIATION VECTOR

IF,') FOR ~: 1

11 = 1 +~

12 = 1 +~

16 = 1 -~

110 =1-,

t17 = l;**2

t18 = 1-t17

t20 = ~"2

t2 1 = 1-120

203



FI RST PART OF ELEMENTAL RADIATION VECTOR {FA3} FOR 11 '" 1

FA31l ,l ) =11'12"« -1+~ )/4

FA3(2,' ) = 16 " 1 2"1-<-1 +~)/4

FA3(3,') = 16"110"1~- 1 -,)/4

FA3(',') =11'110"IS-1-, )/4

FA3(5,' ) =0

F A3(6,1) = °
F A3(?,' ) =0

F A3(B,1) :: 0

FA3(9 ,1) = I1B'12/2

FR3(10,1) = 121' 16/2

FR3(11,1) = t18'110 /2

FR3(12 ,1) = 121'11/2

FR 3(13,1) = 0

F A3(14,l) =0

F A31' 5,' ) = 0

F A31l 6,l ) =0

FR3(17,1) = °
F A311B,' ) = 0

FR3(19.1) = 0

F A3(20,' ) =0
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DESCR IPTION OF TE AMS IN FIRST PART OF ELEMENTAL RADIATION VECTOR

IF: ) FOR n = -1

t 1 :::1 ~

12::: 1 +~

16 = 1 -~

110 = 1-,
117 , ~"2

11a::: 1-t H

120 , ,"2

121::: 1-120

205



FIRST PART OF ELEMENTAL RADIATION VECTOR (FR4} FOR ~ =-1

FR4(1,1) =0

FR4(2,I ) =0

FR4(3,1} =0

FR4(4,1) =0

FR4(5,1) = t1'12'(~- I +,)14

FR4(6,1) =16'12'(-~- 1+,)14

FR4(7,1) =t6·tW(-~- I -'}14

FR4(8,1) =t1 '110'« - I -, )/4

FR4(9,1) =0

FR4(10,1) =0

FR4(11 ,1} =0

FR4(1 2,1) =0

FR4(13. 1) = 116*t2/2

FR 4(14,1 ) '" t21*16/2

FR4(15,1) =118*110/2

FR4(18.1) '" 121*11/2

FR4(17 ,I ) =0

FR4(18 ,1) =0

FR4(19,1) = 0

FR4(20 ,I ) =0
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DESCRIPTION OF TERMS IN F!RST PART OF ELEMENTAL RADIATION VECTOR

IF:} FOR , = 1

11 == 1 +~

12 == 1+'1

.6 = 1 ~

110 ", 1-1'\

117", 1""2

116 ", 1-117

121 '" ~"2

t22 ", 1-121

20 7



FIRST P ART OF ELEMENTAL RAOIATION VECTOR {FRS} FOR ( = ,

FRS(l ,l ) =t1"12"«+~· ' )/4

FR5(2,1) '" tS"12"(·:;+11·1)/4

FRS(3,1) =0

FRS(4,1) =0

FRS(S,l ) =t1"11 0"«·~·')/4

FRS!6,' ) =16 "tW(·<·~· ' )/4

FRS(7,1) =0

FRS(6,1) =0

FR5(9,1) = 122"1212

FRS(' O,') =0

FR5(11,1) = 0

FRS(' 2,' ) =0

FR5(13.1) = 122'"110/2

FRS!14,') =0

FR5(15,' ) '" 0

FRS!'6,1) =0

FRS(' ?,1) '" 118"11/2

FRS('8, 1) =116"'6/2

FRS(' 9,1) =0

FRS(20,1) =0

208



DESCRIPTION OF TERMS IN FIRST PART OF ELEMENTAL RADIATION VECTOR

IF,'] FOR , = -1

tt = 1-<

12 z:; 1+'1

.6 = 1f{

t10::::1·T!

t17 ::: Tlu2

t18 = 1·t17

121 = <··2

122 = 1-121

209



FIRST PART OF ELEMENTAL RADIATION VECTOR {FR6} FOR , =-1

FR6(I ,1) = 0

FR6(2 ,1) = 0

FR613,1) = 11"2'1-1;+~·' )/4

FR614,1) . '6't2'11;+~·')/4

FR6IS,I): 0

FR616,1) : 0

FR6(7,1): 11'110' ( -1;·~·' )/4

FR6(B,I): '6'110'(1;·~·')/4

FR6(S,I) = 0

FRBII O,I ) = 0

FR6(1 1,1) = 122-t2l2

FR6(12,1) : 0

FR6(13,1) = 0

FR6(14,1) = 0

FR6(15,1) = 122'"t10/2

FR6(t 6,1) : 0

FA6(17,1; ""0

FR6(16,1) = 0

FA6(19,1) = 11 8'"11 /2

FR6120,1) : I1B"612
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DESCRIPTION OF TERMS IN SECOND PART OF ELEMENTAL RADIATION

VECTO R {F,' FOR ~. 1(C1. C4, C5, C8, C1 2. C16. C17. C20 are Ihe nodal

temperatures)

11 = 1+1'\

t2 '" 1 +~

15 = C4-11

t7 :=C1sol1

\8 =,·· 2

110 = lr ·2

111 = C1 °110

113 = C8 -110

115 = C4-110

117 = C5°11

119 = CS-t10

121 = C1- 11

129 = C17°t10

131 ::I ·IS -~·2·t7·18+111-~·t13-~·11S ·~·117·18+119-~+

#121·18+C5·18-2-C16-t8+2-17+C1-t8+t11+C4-t8+t1 5+C8-18+t13+2-C1 7°~

#·2·t29 ·2-C12-~
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t32 = C12*110

t33 = C20 *ll

t39 = CS*n

t44 = ·2*t32-2*133 ·2*C20*IS·2*t29*~+15 °tS+2 °C1 7+t 19·C8+2°132*zet

#a-11r~+t39°~·139*t8·C4+2°C12+2°C 16·C 1-C5+f2 1 ·~+2°t33* t8+

#2*C20

146 = (131+t44)· *2

t47 = t46· ·2

' 50 =·1,",

155 = ·1+n

164", ·1+110

169 = -1+18
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SECOND PART OF ELEMENTAL RADIATION VECTOR (FRII) FOR ~ = I

FR11 (1,1) _ 1 1 ·t2 · (· 1 +rl+~)" 147/1 024

FRll (2,1) = 0

FRl1 (~,l ) = 0

FR11(4,1) '" t l '150'(1 '11+~)'t47/1024

FAll (5,1) = -155'12°(-' -11+1;)"147/1024

FRll (S,I ) =0

FRl1(7,1) = 0

FA11(B,1) = -t55*150'( 1+11+1;)*147/1024

FRI I (9,1) = 0
-

FRl1 (I O,I ) = 0

FRl1( l1, l) = 0

FA11( 12.1) <:; 164*150'147/5 12

FRl1 (13,1) = 0

FRl1 (14,1 ) = 0

FR11 (15,1) = 0

FR11(16,1) = ' 169'11*147/512

FR11(17.1) = '164°12°147/512

FRI I (l B,I ) = 0

FRl1 (19,1 ) = 0

FRll (20, 1) = 169*155'147/5 12
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DESCR IPTION OF TERMS IN SECO ND PART OF ELEMENTAL RADIATION

VECTOR [F,' FOR ~ =· 1(C2. C3 , CS, C7, C10. C14. C1e . C19 are the nodal

te mpe ratures )

t1 = 1+11

t2 = 1 +~

15 =C3'1\

17 .. C2' 1'\

19 ", 1l"*2

110:ell C2-19

112= , 002

114 = C3-t9

117 = C14'1'\

t19 = C10-19

121 = CS' 19

124 = CS'Tl

12S = C7-1'\

129 = ·15·~+ 17·~+1 1 0·~+15·t12·1 1 4"~+ 17 ' 11 2·2 ·1 1 7 · t 1 2 ·2

# ·t19"~+12 1 -~+2-C14·C3·CS+2"C18+2·C1 9·C2·2"C 1 8"t12·124"~· I

1t 26 · t ' 2+t2S-~·C7
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130 :: C 1S"t9

t35:: C7"IS

139 :: C1S°'l

144 :: -2"130+C 2°t 12+ t1O+C3 · t12+t 14+CS°t12+121+C7"t12+t35+2"C1OOzel

lIIa-2°119-2·C 1 9 °~+2"t17-2· C14 °t12_2°t39+2°C10+2°139°112-t2 4"112-t

'35°~+2"1300~

t46 :: (I2S+144)"· 2

147 = ~46" 02

150 :: - 1 +~

155 :: -1+Tl

164 ", -1+19

169 = -1+t12
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SECON D PART OF ELEMENTAL RADIATION VECTOR {FA22} FOR ; = -1

FR22(1,' ) . O

FA22(2,1) = t1 · 12·( -1+11+\,) · 147/1024

FR22(3,1) = 1 1 · 150· ( 1- 11+~)·147/ 1 024

FR22(4,1) '" 0

FR22(S,' ) =0

FA22(6,1) = -t55 · 12 ~ (-1-11+~) · 147/1 024

FA22(7 ,1) = -155·t50·(1 +11+~)"147/1024

FA22(8,1) =0

FR22(9, ' ) = 0

FA22(10 ,1) = -t64· t2· t47/512

FR22(11,1) =0

FR22 (12,1) =0

FR22(13,1) =0

FR22(14,1) = -t69· 11· 147/5 12

FR22{15,1) =0

FR22(16,' ) = 0

FR22{17,1) '" 0

FR22(1a,1) = 169·155·(4 7/5 12

---
FA22(19,1):: 164 ·150· t47 /5 12

FR22(20, ') = 0
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DES CR IPTION OF T ERMS IN SECO ND PART OF ELEMENTAL RADI ATION

VECTOR (F,1 FOR 11= 1(C1. C2. C3. C4, cs, C10. C1 1. C12 are the nodal

lemperatures)

11 c 1+1;

12 = 1+~

t5 = ; "2

16 = C4"t5

t8 =C";

t9 = , " 2

111 = C4 "1;

114 = C9 °t5

116 = C12"~

118 = C2"IS

120", C2 ";

122 = C11 "IS

124 ", C1"tS

t27 =C10';

130 '" ·16"~+la"19·t1 1 "l;+ta·l;·2"t14"l;·2·t 16"19+t18·~

#·120"t9+2·t22"~+124 · l;·120"~+2"C1 Q·C2·C3·C4+2"127"t9·C1 +2"
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#C11+2*C 12+111'19

135 == C3't5

140::: C3'~

144 == -2'C12'19+C1· 19+124+C2· 19· ~t1 8+C3· 19+135+C4·19+ 16+2 ·C9·~

#2*114-2·127-2*C10*19-2·C11"~·2·122+2·116+2*C9+140·~·135·zel

#a-140*19

t46 == (130+t44)*"2

t47 == t46··2

150 = · '~

t55::: -1+~

164 == -1+15

t67 = -1+19

21.



SECON D PART OF ELEMENTAL RADIATION VECTOR {FR33} FO R T\::: 1

FR33(1,1) :::1,.t2"(~· 1 +~)*t47/1024

FR33(2.1) ::: · 150" 12*H- 1 +~)· 147/ 1 024

FASS(S,l) =-' 50"'55"(, . , . , )"'4711024

FR33(4.1) "" t1*155*( 'S+1 +~)*t47/1024

FAS3(5,1) =0

FA33(6 ,1) =0

FR33(7,1) :::0

FA33(B,l ) = 0

FR33(9.1) ""-164*12*147/512

FR33(10 .1)::: 167*150"t47/512

FR33(11,1) :::t64",55"147/512

FR33(12,1) ::: ·t67~t1*147/51 2

FA33(1S,1) = 0

FA33(14,1) = 0

FA33(15 ,1)=0

FR33{16,1)::: 0

FR33(H ,1) :::0

FA33 (1B,1) = 0

FR33(19,1) :::0

FA33(20 ,1) = 0
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DESCRIPTION OF TERM S IN SECOND PART OF ELEMENTAL RADIATION

VECTOR [Fr- ) FOR '1 = -1(C5, C6, C7, ca, C13, C14, C15, C16 are the nodal

temperatures)

t1 = 1+<;

t2 = 1+~

.5. C7'S

.6 = ,"2

.6 = C6'S

t10 = C1S"';

.12 =C6'S

tl 4 = ~**2

t1S = CS"t14

tl B = C6"t14

t20 = C7°t14

t22 = CaOt14

t24 = C13" t1 4

t26 = C1S"t1 4

t27 = -ts-te-te-q-cr-a-rtOot6·t 12·t6 +2"C16-C6+t1S+Csot6+CSOt6+t

#1B+C7"t6+t20+Ce °t6+t22+2"C 1 3 °~·2"t24· 2°C14"16·2"12S+2"tl 0

220



131 = C5';

138 .. C1 4·~

144 = ·2·C16·t6+15·~·1 1 2·~+t3 1 ·~+t1 5·t;;+t1 8·~-t20·ze

't a-122°t;;-2 '124 . ~+2°138°16+2°1260t;;...18°IS-2°e1S 01;-z-c14+

' 2"C15- 2°138·C8+2°CI 3+131°16·C5

146 ", (t27+144}U2

147 IE 146"2

150= -1';

1 55= · '+~

164 = -1+114

167 = -'+16

221



SECO ND PART OF ELEMENTAL RADIA TION VECTO R {FR44} FOR 11= -1

FR44(1,1) = 0

FR44(2 ,1) = 0

FR44(3,1) = 0

FR44(4,1 ) = 0

FR44(S,1) = t1-12-(1;-1+1;)*147/1024

FR44(6,1) = - 150· t2-H- 1 +~tt47/1 024

FR44(7,1) = -150'"t55-(1;+1+1;)'147 /1 024

FR44(8,1) = 1 1 ·155·(-~+ 1 +~)·t47/1 024

FR44 (9,1) = 0

FA44( 10,1) '" 0

FA44(11,1 ) =0

FA44(12,1) '" 0

FA44(13,1) = -t64-12·t47/512

FR44 (14,1) = t67"t50 "t 47/512

FR44(15,1) '" 164·15S·t47/512

FR44 (16,1) = -167' t1"147/512

FR44(17,1) =0

FR44(18,1) = 0

FR44(19,1) = 0

FR44(20 ,1) '" 0
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DESCR IPTION OF TERMS IN SECOND PART OF ELEMENTAL RADI ATI ON

V ECTO R IF,) FOR ~ == 1(C1. C2, C5. C6 , C9, C13, C17 , C1B are the nodal

temperat ures)

11 = 1+1;

12 :=1+11

15 = ~··2

16 = C9- t5

18 = C17·~

19 :=11.-2

111 =C2·~

114 =CS-15

116 = Cl ·~

119= CS·~

121 :=C6-t5

125:= C1-t5

127:= C2-15

130 = -2 -tS *'1"2-tB'19-t11 't9-t11'T\-t14'11+t 1S''1+ t1 S*19-t19'

#11-121'11-2-C17't9+2-C 17+C1-t9+t25+C2-19+t27+CS-19+t14+CS*t9+121 +2

#-18
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134", C13· 15

136 = C6·~

140 '" C18·~

144 '" -2·C1B·19+2 "C9 "1l-2·fS-2"C1 3"1l-2· f34+f 25"TI+t3S·Il+2·1

#34 "Il-C1-t36·19-2"t40-CS+2 "C18+2"C13+2· C 13·C2 -C5+2"t40·19+127"Il

#+119· '9

146 '" (130 +144)"2

147 ", 146"2

150= ·1+~

tS5 '" -1+11

t64 '" -1+19

169 ", -1+15
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SECOND PART O F ELEM ENTAL RADIATION V EC TOR {FR55} FOR ~ = 1

FR55(1,1) == t1· t2 · (~+t'\· 1 )*147/1 024

FRSS(2,11=tSO ·12·« ·~+1 )· '4711 024

FRSS(3,1) = 0

FRSS(4,1) . 0

FR SS(S,1) =·l1"ISS·«·~- 1 )"4711024

FR55(6,1) = · 150·t55 · (~+t'\+1 rI47/1 024

FR5S(7,' ) = 0

FR5S(B,11= 0

FR55(9 ,l) == · 169·12·147 /5 12

FRSS(10,11= 0

FRSS(I ' ,1) = 0

FRS5(12, 1) =0

FR55(13,1) =t69·tSS·14 7/5 12

FR5S(14,1) . 0

FRSS(15,1) =0

FRSS(16,1) =0

FR55(17,1) :: ·t64·Wt47/512

FRSS(18,1) =164·150· t47/512

FRSS(19,1) = 0

FRSS(20,1) = 0
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DESCRIPTION OF TERM S IN SECOND PART OF EL EMENTAL RADIATION

VECTOR (F:J FOR ~ = · 1(C3. C4, C7, ca. Cl l , C15 . C 19. C20 are the nodal

temperalUres)

t 1 :: -1~

12:: 1+11

;S = C8'~

17= ~··2

16:: C3·17

110 .. C4'~

112:: 1l· o2

t15 :: Cl1 ' 17

t16 :: C4°17

t19 = c rl7

121 :: IS·T\-IS·11-t10"11-C7 ·t1 2-C4·112+CS-2·C 19+2°t15 -2 ·C20 -2 "C

#11-2"C15+C3+C7+C4 +2·11S· 11-C3·112-16-11e-t 19-GS·t12

122 = Ce ' 17

123 • C19'~

125 • C20'~

t29 = C1S"t7
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130 = C7'~

134 = C3';

144 = -f22+2 'f23+2'C19'112 -2 'f2S+2'C20'U2-2'C11 ' Il+2'C1S ' '1+2't

' 29-130'1)-118 ' 11-110'112+134·TJ-2't23·112+2· t2S· 112-2· 12 9·J}+1

' 1 9·1J +I30·1 1 2+t22·11~ tS·t1 2+t34 '112

146:::(121+144)" '2

147 = 146"2

ISO= 1 ~

155 == -1+'1

t64 == -1+112

169 = -1+17
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S ECOND PART O F ELEME NTAL RADIATION VECTOR {FR66} FOR ~ = -1

FR66(1.1) = 0

FR66(2.1) =0

FR6 6(3.1) = 11"12*(S-11+ 1)*147/ 1024

FR66(4,1) :=150·12"(~+11-1 )·147/1024

FR66{S,1) :::0

FR66(6.1) =0

FR66 (7,1) := -11 ·t5S* (~+11+1 ) *t47/ 1 024

FR66(8.1) • · '50 ·t55· (,·~·, ) · t47/ 1 024

FR66(9.' ) =0

FR66(10.1) =0

FR66(11 ,1) = -169· t2·147/ 512

FR66('2.1) = 0

FR66(13.1) =0

FR66(14. 1) = 0

FA 66(1S .1) :::t69't55*147/5 12

FR66(' 6.1) =0

FR66(' 7 .1) =0

. FR66(18.1) =0

FR66(1 9,1) :::164·11*147/51 2

FR6 6(20 ,1) :::-164' 150' 147/ 512
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DESCRIPTION OF TERMS IN MATRIX (JJ1] (3 x 20] WHICH WHEN MULTIPLIED

BY COO RDINATE MATRIX 120 x 3] GIVES JACOBIAN MATRIX P]

t1 ::::: 1+'1

12 ::::: 1 +~

13 ::::: 11"12

14 ::::: ~+'l +~-2

1S::::: 1+;

t7 ::::: tS·11

18::::: t7"t2

110 ::::: ·~+Tj+~-2

112 == 1-l;

t13 = 112*11

114 == 113· t2

116 = 1-,

117 == tt -rt e

t18 == ·~+ Tj -~·2

t20 = 113·116

122 = ~+'1-~-2

124 = t7·t1 6

126 = 1-11

t27 = 126·t2
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128=~'~+\-2

t30 = 16°126

t31 = 130 '12

133 = ·;-11+~·2

135 = t12"t26

136:c: 135 "12

t38 = t26 °t16

139 = -~·~ ·'·2

141 _ 135 °116

143 = S·~·'·2

145 = t30 'H6

147 = '1**2

148 = 1-t47

149 = 148 '12

150 = t48°11 6

151 = ~'11

153 =, · · 2

t54 = 1-153

155". t54 "t1

'57 =~· 126

159 = 154'126

t61 = 16' 12
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164 = 112"12

167 = 112'116

170 = 16'116

181 = Ift6

183 = 11'112

187 = ; "2

t88 = 1·187

189 = 18e"12

190 = 154'112

191 = 188'116

192 = 154'16

1109 = 148'16

1110 = 148'112

1111 = 188·11

1112 = ~' 1 1 2

\114 = ,'16

1116 = 168't2 6
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DESCR IPTION OF TERMS IN MATR IX [JJ21[2 x 201WHICH WHEN MULTIPLI ED

BY COORDINATE MATRIX 120 x 2) GIVES JACOBIAN MATRIX [J) FOR ~ . 1

11 = 1+1;

12= -1+71+1;

14 :::1+'11

15 = t4·l1

17.'-,
18 ::: -1+'1-1;

t10 = 14*17

112 = -1-11+1;

t14 = 1-11

115 = t14·t1

117 = . , .~.,

119 :><11 4*17

123 . , · · 2

134 = 110°2
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DESCRIPTION OF TERMS IN MATRIX (JJ3] 12 x 20JW HICH WHE N MUL TIPU ED

BY COORDINATE MATRIX 120 x 2J GIVES JACOBIAN MATR IX IJ] FOR i .-l

11 '" 1+~

12 ~-1 +Tl+~

14 ", 1+TJ

15", 14-t1

17 =1-,

t8 '" -1+'l·~

110", t4-17

112", -1 -11+!;

114", 1-11

115 ", 114·11

117 '" -1-11-i;

119", 114·17

123 = , " 2

134", r]*·2
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DESCRIPTION OF TERMS IN MATRIX [JJ4) [2 x 201WHICH WHEN MULTIPLIED

BY COORDINATE MATRIX [20 x 2) GIVES JACOBIAN MATRIX [J) FOR TJ '" 1

11 = 1+~

12 = ~-' +l;

14 = 1~

15 = 14°t1

17 = -~- 1+,

19 ='-<
110= 19°t1

112 = 1 .~

113 = -~- 1 -,

US = 19°t12

117 = ~-1 -!;

119 = 14°112

122 = , 002

134 = ~002
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DESCRIPTION OF TERMS IN MAT RIX (JJ5) (2)( 20JWHICH WHEN MULTIPLIED

BY COO RDIN ATE MATR IX 120 x 2) GIVES JACOBIAN MATRIX [J) FOR 11 = · 1

11 ,., 1 +~

12= ~- 1 +\

'4 = 1"';

t5 = 14·U

17=-~- 1 .,

'9.1-;

110 = t9 °11

112=1-1;

113 = -~- 1 -l;

115 = t9°112

117 = ~-1 -l;

119 = 14°112

122 =, · ·2

134 =~··2
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DESCRIPTION OF TERMS IN MATRIX [JJ6) [2 x 20 ) WHICH WHEN MULTIPLIED

BY COORDINATE MATRIX [20 x 2) GIVES JACOB IAN MATRIX P) FOR , . 1

11 = 1+11

12= ~+Tl-1

t4 ", 1+1;

15", 14·11

t7 '" ·~+TJ·1

.9 = 1 ·~

110 = t9*11

112 = 1-11

113 . ~.~.,

115 = 14*112

117 = ·~·~· 1

119 = 19*t12

121 = 11--2

136 =~··2
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DESCRIPTI ON OF TER MS IN MATRIX [JJ7) [2 x 20] WHICH WHEN MULTIPLIED

BY COORDINATE MA TRIX (20 x 2] GI VES JACOBIAN MATR IX [J] FOR ~ = -1

11 = 1+'1

12 = -~+'l- 1

14 ", 1-1;

15", t4°t1

17 ", S+f]-l

19 '" 1 +~

110 ", 19°11

112 ::: t -n

11 3 = ,~,~"

t15 '" 14-112

IF '" ~-'l . '

119 ", 19°t12

12 1 ", 11--2

136 = ~"2
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APPENDI X D

VARIATIO N OF MATERIAL PROPERTIE S OF TH E TURB INE BLAD E WITH

T EMpes ATI JBe

TEMP (e, E(GPa) 0',;0111 (MPa) ,, (~m1m'k) c (Jlkg) K (W/m'k)

21 220 840 11.9 400 12.7

93 215 842 12.07 400 13.0

205 215 844 12.07 395 13.5

315 195 846 .3 12.4 420 13.8

425 190 848 .4 12.8 440 15.1

540 185 850 13.1 420 15.2

650 175 855 13.5 460 17.3

760 170 840 14.0 480 14.0

870 160 760 14.8 500 21.6

980 145 470 15.8 525 24 .9
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APPENDIX E

PHYSICA L INTER p RET ATION O E STRESS STIFFN ESS MA TRIX IK I"

II we cons ider a bar as shown in Fig (a) and assume that it can deform axially but is

infinitely stiff in bend ing, so that it is straight in any displaced configuration. then the axial

strain for small d isplacements is given by

(E l )

where

(E2)

and

l v,-v'f
E. "2l- L-

Strain E. ·~

(E31

(E' )

'''Jhere & is the lengthening associated with rotation of the bar through a small ang le a

without any motion In x-dlrectlon and is given by

[ ]'L 92 l V2 - V1
~L = _ _ - l - l (sec e - 1) - l _ =- - -

ccs e 22 l
(ESI

2. 6



Therefore strain energy In the bar is given by:

where AEt" is the axial force F, positive in tension and

' • • [[-, 1]{U, u,}

and

(E7)

(EB)

The terms E} and e, are quadratic in nature in nodal c.c.t but r..,2 is quartic, so is

negligib!e as compared to E,/. Thus with (d) = {UII VI' u2, v2},

u • ~{d}l~E ~ ; + 1~ ~ ~ :I{d} (E9)
2 L -1 1 l. 0 0 0 0

o 0 0 -1 0 1

Il ls clear from the equalion above that the first 4 x 4 matrix wilh coefficient AE/L is the

conventional stiffness matrix (K] and the second 4 x 4 matrix with the coefficient F/L (in

which F is Ihe axial force) and non-linear strain e, Is the stress stiffness matrix [1<,,).

The element stress stiffness matrix (K"e]is a symmetric matrix and (G] must be arranged

to yield displacement derivatives in the same order as shown below:
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Is} . [GIM
where

{a} -I U.. , u.,. U..l' v..' v.,. Vr W.o> W:,. W..l I
{dl is obtained by the relation:

where

IK..eJ is me stress stiffness cttne matrix

{F} is the force vector for the system obtained afte r assembling {II

{t} is the force vector for an element given by JyNTf • dv

I . Is the centrifuga l force acting on the element

The matrix [KaJ is given as:

(EI ' )

(Ell)

(EI2)

(E13)

2'6



--- I --- AA':'AAA
t==~VVVV'

1,1 Initial Posit ion

Ibl Final i'tlsit ion

Fig. (a) TRANSVERSE FORCE ON AN AXIALLY LOADED TRUSS MEMBER
(Warlkoo , 1989)
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