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Abl'.rlet
\ N ’

Th|s ﬂlesls presenv.s an analysis or delta mod\llnled mvertm and theu- npph— .

cnhons to b ibl

motms

motdrs- are .inducti motors wnth

unique construcuonul features. These mgbors are nqmred to operate in one of the

" most harsh environmental itions. The in ch st ot Lhe sub-

mersible motor pump syst’h\ require soft starting, helhw and vamble speud
operation aunng productlon To sahsl'y both reqmremepts, a delta modulaled—

‘invertér supply is proposed for the operatfon of "thé submemb]e motor Several

delta modu@ schemes Imve Been studied and the- rectnngulnr wave delta

1 modulahon technique is selected for the swnchmg of the mvener Rectnnguhr X

. ® wave delta modulation provides mhenmt coustuit voltage/frequedty~ (V/f)
charactenshc of the supply voltage and current cantrol of the motor The con-
"

stant ij characteristic is ptovided | bLthe low-pl.sLﬁlLerm the !eedback loop- of~» —_—t

the modulator nnd the current control is provnded by’ the bysteresls wmdow of

, the quantizing camparat’or in the feedforward path of the mod\llltor.

The modnlntor and the inverter waveforms were studied using dlscrete =
Fourier transform (DFT) This" is slmpler than the ¢onventional Fourier, series
7 analysis. It is su{ble for on-line harmomc analysis of the modulated wnve!orms

It also gives the

=

informatfon about the sub- harmomcs of - the modulated

. An on-hne ic minimizati i using & tuned filter in

. y: o7 /' .
the delta modulator has been implemepted, This method uses the continuous tun- ,
; >

. :
ing of the feedback filter in the modulator to mihimize the low order harmonics
S .
v . '




¢ apmeeTaaNed wave for variable'frequeacy operation of the inverter.
The nead,y/ state and starting chwa@:s:i;s of/ the submersible motor. sup-
4 plied from the réctangulu wave delta modulated inverter have be‘en ‘studi'ed
using _c‘ime—domniil analysis. Time domain ;mslysis gl‘v inve‘ner-[edAsubmersible
_domiﬁ enalysis, The motor was proyided with ramp freqhency and- voltige
(RFV) control 16 redute its elecn;ical ﬁ;:d mechanical starting stresses. A semi-
«closed !oup operation has been chosen to maintain cohstnnt sli|;v operation of the

s

mutur, For the semi-closed loop operation, motor speed was eszimnted using, the

K 1 motor termjnal voltnge, cun'ent andithe phuse angle between them.

- The charactenshcs oI the modulator and the motor fed lmm the rectangulnr

e

a0, wnvedeltn' mvelterwere peri y verified.

* motors was found to be more accurate and éasier than the conventional frequency
’ E w . ~
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CHAPTER-1
INTRODUCTION

The submersible motor is a elus of induction motors. For certain npphc&-
tions 8s in pumping sub-surface ﬂ\nds, these motors Inve unique construcuonal
featum The uniqueness’lies in !heu- long and narrow constmcuon The size lnd
shape I restrict their number of stator turns nnd uumber of polea to the minimum.
Because of these restrictions submersible motors draw 8-12 times their full load

current during line voltage starts. Also, they reach their uténdy state operating

ditions quickly. Electro-mechanical probl iated with the high starting °

current and quick speed up result in frequent shaft breakdowns of these motors.

’ .
The i on-line ion of sub ibl

jmotors under variable load con-

ditions result in their inefficient Dperntionsf Researchers engage in a constant
effort to use the state-of-the-art static inverter cqnu&h for the soft start and the
near maximum efficiency. opernt}un of these motors.

The closed-loop control of a submersible motor using pu/lse width
modulated(PWM) inverter is difficult. One of t’he difficulties encountered involves
obtaining the speed feedback from the shaft of completely sealed n‘\oton‘ Asa

motors fed

solution to thi:‘problgm a semi-closed loop ion of

from ;ieltn modulnte;l inverters is proposed. One of the goals in lhis‘ respect is to”

du‘ign and study the delta modulation tecimiq\l.e for three phase inv‘ener opera-
s G

tions. ‘A proper uelg’zlon of the type of ,delta modulator ior switéhing a three

phase inverter is made on the basis .of drive re‘quirements..‘l‘hree simple delta




modulators are considered for the selection. These modulators sre the Iintu?,hs
sigma and the rectangular wave delta modulators. The rectangular wave delta

modulator is selected on the basis of its superiority over the other two modula-

tors in this particul lication. The b ics of the dul: and the
inverter waveforms are studied using discrete Foucier transforms (DFT). A novel ‘
way of optimizing the modulator and inverter waveforms using the tuned modu-

¢
lator is proposed and implemented. This method is suitable for continuous on-line

h ic minimization of the inverter forms. The delta modulation scheme *

is successlully used for the mverter operation to meet the m;mg and other

of b ible motors. A slmple but elegnnt technique to

estimate the speed of an induction motor is developed This method is incor-
porated with the submersible motor in a semj-closed loop control with delta
modulated inverter supply. The start up and operating peﬂormmcm*the delta
modulated inverters are szudied using the d-q axis model of the motor and the
inverter voltages. Analyses are carried out using the time domain solution of the
motor and inverter voltage equations. This*involves the synthesis of '!nvener vol-
tages in time don_min which is done by using gate functions. This. method is

different from the convén@ional frequency domain analysis.

L1 Features of Submersible Drives:

The electrical submersible'drive consists of a submersible motor ( SM ) cou-
pled to a load. The principsl applications of these systems are in pumping ground

water, ii_ninage of mines, of-shofe exploration and mui;le resource developments.




There are many applications of these motors related to marine envimnm;nu. »
% » s
Some of these applications are in the field of hydro-carbon exploration and pro-
duction, ocean mining, dredging, dynamic positioning of large ships and plat-
g, ging, dy! P g {4 p: P!

’ forms, and in drilling equipment for sea floor rock sampling.

Submersible motors are usually sealed from the environments they work in,

In' some cases they have an imposed hlmhnon on their radial dimensions. The
limit of radial dlmenslon also ratncts the number of stnwf{ua and the numher

poles of these motors. The long ng_d_shm—eon{ucnon ‘as well oS the small
Z:mber of poles and stator turns make submersible motofs vulnenble to severe
starting and operational stressé. During on-line «tart, submersible motors

accelerate to their steady state speed very rapidly. The loads (i.e the pumps)
—_—

experience tremendous torsion on their shaft Elring starting periods and fail to

respﬁ,}o the fast speed of the motors. A survey of literature shows that the
2 .

major failures in the form of broker shafts of these units are due to the electro-

thechanicafproblems during start up periods.
¢
* 4

The non-compatibility of load is another major problem of snbmenibh.-
motors. These systems ari dmgned to run with certain loads.at near opumum

fici d

y of i However, this i dition cannot be

dunnz the production cycle. The loads, may change due to changes in economic

or operating i In such ci inces two ios may prdml Either

the total system has to be replaced by a new one or the system is run below the

ded ing range. Also, sub. ible motors

L] %

~

N
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insulation failures due to thermal, mechanical, and environmental stresses [1-4].

Hesting problems -arise because of minimal insulations, delicate stator” lllrl;!. and
quick maguetic saturation of motors. These motors are also sensitive to the
operating voltage unbalance, overvoltage and the }requency of utﬁt/stop opera-
tions[5]. Variable speed open‘nior; of submersible motors supplied by static

inverters may reduce most of th;wé problems. N

/
1T Review of Submersible Drives:

The main tse of submersible drives is in the field of submersible motor

‘pumps. Significant ‘advances in the electrical submersible system’ design and

msnuluctnre have made it tfe most cost effective means of lift ynder most pump-

mg conditions. The submemble pumps were in use in the United So.ues as early
A

as 1900 [6]. These pumps were used for artificial lift of ground water and were

.
operated by motors at ground levels. -

Consideration of cost, mai and efficiency led to the development of

motors directly attached to the submersible pumps(7]. The first subsurface centfiy
% 5
fugal pump for oil well service in the United States' was installed in Russel field,

Kansas in 1926 [8]. Since then, these motors have been used extensively in in-

shorg lications. The signifi use of sub ible motor pumps for artificial
lift of 6il at sea was introduedk in 1065 at Long Beach Unit in the United

States[9]. The next major use of submersible motor pumps for artificial lift of ofl- -

shore oil was in the Montrose field in the North sea in 1076[10]. In 1981 the pro- +

(



duction of Bestrice field ‘in the North sea started relying exclusively on the
nniﬁcinllliﬂ using elgctricll submersible pumpalll.ml. During relatively short
‘Ee‘riod of experience these units showed short oyentinq” ife and unreliable opera-
tions[13]. Subsequently many other uses of s\lbmersibl’e. mo'::rs were reported in
) off-shore and on-shore applications. Some of these applications are in trimming

. /
and ballast duties on drilling and production platforms, fire fighting duties and

—

. -
mining [14). In 1978, a submersible motor pump was.used to handle 1,000 tons of

m.an,ganae nodules out of a 9epth of more than 5,000 meters be]oﬁ the/\ sea. Prior
to this, the: sui;m%rsible motor went into operation at a depth of 10,000 meter in
a French submarine, the .‘Archemedes[lsl. The riotors also have a wide rangs of
uses in off-shore a)‘)plicntinns as, for e’){ampie, in drilling and in propulsion [16].

The newer jon of dynamicall itioned ships invariably use electrical

submersible motors for driving their thrust propellers [17].
1.1.2 Advantages of Varlable Speed SMPs :

There are three different. types .Of submersible motors, namely _the oil filled ,
the semi-wet, and the wet submersible motors [18]. Since the enll}\dlyé the abil-
ity t(’) control the speed of a drive according to the load has been s desirable
feature, Submersible drives also require this feature in order to meet the
demands of start/stop stress and load variability. The start/stop stresses can be

’ reduced substadtially by using gower supplies with soft start characteristics.
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The various methods available for speed changing of a motor can be
clessified in three categories. These are the intermediate speed changer, the dc

® motor drive and the ac motor drive [19,20]. The first two types have very good W

speed variability. However, they are excluded from use in submersible motors
i because of their lack Of ruggedness. The speed of an ac induction motor can be
effectively changed by suPplies having variable frequency. Variable rrequ;ncy sup-
ply can be obtained from mgotor generator sets or static power converters [20].

Due to relatively low cost, weight, and ility, static power are\

the most populat ‘speed controllers of ac motors [21,25]‘, For artjficial lift systems
variable speed submersible motors are the most cost effective means for meeting
various operating conditions[23-25]. Variable speed operation w‘ould allow the
drive to adapt to well conditions and new requirements without replncing‘ pr\;duc-

\ 3 . .
tion equij [26-30!. The ad ges obtainable from variable speed operation

of submersible motors are:
1. Centinuous operafion.
2. Elimination of frequent start/stop operation.

3. Matched loading at all operating conditions.
v

S

+ 4. Reduced solid settling. ’
5. Reduced motor’ heating.
8. No need for additional soft starter.

7.  Extended range of loading.




8. Easy maintenance.
9. Elimination of the need for Irequent replacement.

10.  Automati itoring of load canditi

11. Improved efficiency. »

12. Improved reliability.

1.2 Inverter Fed Variable Speed Induction Motors :

0Thespeedo{ an induction motor is domii ly g d by the sy

speed, the slip of the motor, and the voltage applied. The usual methods of

. speed control of induction motors are: S

a)  Constant frequency stator voltage.control. .
b)  Variable voltage variable frequency control.
¢), Variable current variable frequency control.

d)  Slip power regulation.

AC voltage controllers are used in applications like single phase fractional
horse power drives, speed control of induction motor driven pumps, fans, and in
solid state start of mediurg to large horse power motors(30-32]. The controllers
produce harmonics in the supply line and ;u characterized by pgor power fdctors

and inefficient ‘performances[33-36]. Because of these disadvantages th® use of ac

voltage controllers for speed regulation of large motors is l'unit;d.




As the tnhnolo@e%elopzd, static voltage source inverters were introduced

for ing the lspeed of i motors. The inverters Mhi{ve the speed
control by changing the hequehcy of the supply. There are basically two different
types of voltage source inverters, th:a square wave and the pulse width modulated
(PWM) inverters. Square wave icverters were introduced in the 1080s with the

innovation of forced commutation techniques of the silicon controlled

,38]. Technological ad made vogsible the use of power transis-

"
tors, and /gate turn off thyristors (GTOs) as power switches in inverters (39].
Besides voltage source i'nvertens, induction motors can also be supplied from
current source inverters[40-41].

Vnmble voltage und variable frequency contml of induction motors can be
nchxeved in several ways. Tndmonally, solid state ac to actfrequency changers
commonly known as cyclo-converters have been employed in a limited scale.
Timxc converters allow voltage and frequency changes in one power conversion
stage without any energy storage elements. Applications of cyclo-converters are
limited due to their operating frequency ranges. The main spplications of cyclo-
converters are for large and slow speed drives|30]. Square wave inverters are used
for .vnrinble voltage, variable frequency control of sc motors. The disadvantages

b
of using square waye inverters are high harmonic losses and torque pulsation in

motors, poor line side power factors, b ic interf and the requi
- . A ’

of dual power ion for si voltage and freq: change. Various

techniques have been introduced to improve the .waveforms of inverters in the




°
past. One such technique is the puls_e wid!h modulstion (PWM) scheme_ for
switchingvinverurs. In this method, the :‘witchin‘g devices of the inverter u; !
switched” ON nnd‘OFF many times within a half cycle in order {o generate a
variable voltage variable frequency supply. The output waveforms of P‘lll!e width
modulated inverters are low in harmonics. The pulse width modulated inverter
drives are cn‘nsidered as the most versatile ac drives presently available. Side by
side with innovations of new schemes, the analysis of solid state drives also drew
nn.ention in the recent past[41-47). These analyses éongtituzz & significant .pm i

understanding the solid state drives.

1.2.1 Review of PWM Techniques For Power Converters:
H oy J
The disadvantages of normal square wave voltage source and current source

inverters have led to the developments of pulse width modulated converters. In

the pulse width moduletion technique the switches of the power converters are

operated at higher fi i diig 168 pRrtislas modilation teabntae o

23 to produce pulses of varyiug widths at the output of the inven‘er.
The earliest modulation techniques applied to inverter operation are single
pulse modulation and the multiple pulse modulation [48-52]. These techniques are

capable of providing inverter output voltages with low harmonic contents. ’I;hue

dulati hni, 11

were ly replaced by the sine pulse width modula-
tion (SPWM)[52,53]. At the beginning two different types, namely the asynchro-

nous and synchronous sine pulse width modulation schemes were used for

e
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¢ switching power converters[54]. In sine pulse width modulation teéhnique a sine

wave is compared with a high freq y tri wave to d ine the switch-

ing points of the modulated waves. For drive applications the fixed frequency

modulation was found.to be probl ic at different ing 1 ies. In
- order to overcome the drawbacks of ordinary sine pulse width modulation vari-
able ratio PWM schemes were introduced. Presently, three distinct sinusoidal
pulse width mo’duls;ion schemes are in use I;r inverters|54-57]. They are the 1)
nat;ml sampling method, 2) regular sampling method, and 3) the optimal
switching strategy. The first method is similar to the method described in the
previous paragraph. In the régular sampling technique,‘ the sine wave is replaced
by a sampled or a stepped sine wave. This method is very popular in microcom-

.
puter implementation [58,59]. The third h uses optimi: ing stra-

tegies based on certain performance criteria['w]‘ As a result of the developments
! in microprocessor technologylin recent years, the implementation of oplimiz.ed
pulse. width modulnti?n for switching inverters has become feuible[m—’
T;:«o types of PWM strategies have been reported recently‘ for inverter operation. )

They are the bang-bang sampled PWM technique and the delta modulation (DM)

5 tecimique: The principle of bang-bang sampling is based on the motor output

* current hysteresi ison with a reference wavolgggh, to generate the modu-
N
lated waveforms[84-68]. In recent years delta modulation has been finding its
q
way for generating switching waveforms of inverters[68]. Several types of delta

modulation have been investigated so far for various power converter operations |



o 1

including-inverters and rectifier-inverters{69,70]. The analysis and the lp’pliel—
~ 7

tions of the PWM inverters in drives are also important areas of research(71-76}.

dutati

However, due to the ity of p , 8 general

h for

such studies has not yet been developed. '

The control ofa¢ machines, especially an induction motor is quite involved.
N . .

The complexity igcreases if rigid perfc ecifications are ibed. Basic

- control schemes reported so far can be placed mainly in two categories: aj=bbre
p Ps ¥
scalar control method, and b) the vector control gnethod(77,78]. The scalar con-

. trol method includes V/f control, torque and flux controlp and current control.
~

The V/f control can either open-loop or closed-loop. The other scalar control
methods are implémented invariably in closed-loop control. So as to improve the

sluggish response of induction moyn acsln‘r control thg vector control tech-

nique was introduced. The vector®ontrol inethod is a closed-loop operation in-

which the fnpul currents of the motors are self controlled so that the machine’

behaves like a de motor{76]. Apart from scalsr and vector control methods, adap-
tive and sliding mode controls of PWM- inverter fed induction motor have, also
-

been proi)osqd. However, these techniques are yel‘bo become popular in' industrial

applications. Due to certain limitations, such as the ng;d for an individually

7
designed controller, vector control has not been wide&y accepted in industrial

applications until recently(76}.

: : - -
\ . 4
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1.3 Delta Modulated Inverter Control of Submersible Motors:
4
" The perating conditions of sub ible motors virtually preclude the use of

closed-loop conlmﬁschemes. Therefore, it is necessary to formulate an opén'loop
trol scheme for such drives. The basic requirements o; submersible drives are :
a) Well _dcﬁny‘] constant torque and constant power opersfion ove: a wide load
range with variable frequency operation. '
b)  Quick response 19 Joad changes.
c). Soft start. )

Current control.

d]

With proper design, the first and the third requirements can be met with g
V/I characteristic of the in_v‘ener fundamental output voltage as shown in fig.-1-1.
Quick Fesponse to load changes is usually achieved in conventional pulse width
modulated drives throurh closed-loop hysteresis current and ;peed controls. Fig-
ure 19 shows the waveforms of s eurrent eoitrolled single phase inverter drive.
In such & closed-loop control the excursion of the current within a window is
obt‘sined by the hysgercsis comparjgon of the load current and a reference sine
wn;ve. Whenever the current renchu"the upper;r lower limit of the window, the
switching of the inverter is reversed. Conventionally, this type .ol‘ control is
achieved by comparing the load current with a reference sine wave‘to produce a
difference signal. This\‘diﬂ'erence signal is fed into a hysteresis comparator which

produces the modulated wave required for switching the power devices in an

4




100
080 |-

040 |+
oz2o0 |,

Normalized fundamental voltage
component of the inverter in p.u.

000

A 1 1 % VI -5
00 03 06 09 12 15 I8
. frequency in pef unit ¢
( base frequency is 60 Hz.)
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inverter. Since the load current changes as the load vuié, it is necessary to scale
either the -current or the reference sine wave to facilitate the mm;)arison. The
. current limit is determined by the window ‘width of the hysteresis comparator. A
reduction in the window width or in the hys".ermis band would result in reduction

of low order harmonics of the motor current.

The Ghsic requirements of submersibld drive with pulse width modulated

inverter can mostly be met with a closed’loop controller if the ‘onventional sine
- ! :
pulse width modulation schemes aré

d. In submersible motors the con-

trol requirements are difficult to implement with the conventional open loop con-
trol leclaniquw‘ The adoption of delt_n modulation technique for the control of
inverter to drive submersible motor would allow sncl; control to become a real-
ity[80). The added advantage of using deltla modulation in drives lies in its ability

for on-line of the inverter ion. The bination of using delta

the on-line

pti and on-line. itoring of motor
operat{ng conditions would improve thé performances of the drives in open-loop

control. .

‘. A e .
The delta modulation scheme shown in fig 1.3 (a), is a simple and effective

For inverter switching a variable freq

y sine wave is

d with the esti d m of the modul The difference signal
i:roduced\by this comparison is vknown‘ as the error signal. The error signal is
“quantized by the quantizer in the feed-forward path of the modulator to produce
the modulated waveform. There are many types of delta modulators n‘vnilnble.

L.
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16

This thesis shows that the lar wave delta modul. exhibit ch

tics that meet the control requiremenis of submersible motor drives. The rec-

tangular wave delta modulator [fig. 1-3 (a)] is composed of. s hysteresis quantizer *

instead of a simple ON/OFF controller .. This mddulator has an inherent charac-
teristic which ensures the ramp voltage to frequency variation of the fl;ndgmen-

tal voltage during pulse width

dul

voltage vs. frequency i ip of the wave delta

is almost similar to the V/f characteristic shown in fig. 1-1. Due to this charac-
v

- teristic of wave delta modul; the drive requi of soft stan;
‘and distinct constant ‘k‘xrqne and constant power modes ol; operation at variable
frequency can be obtained in open loop control. The current control of this
modulation process can be explained from the expected waveforms of the n;odnh-
tor ( coder ) and the demodulator (decoder). The expected waveforms of the
coder and the decoder for a sifusoidal input to the modulator are shown in fig.
1-4. The output waveform of the modulator is a pulse width modulated wave.
The decoder 35 s linear filter which decodes this waveform as shown:in fig. 1-4(b).
Since /the modulator contains its own decoder.in the feedback circuit, a waveform
similar to the demodulated signal bl‘lt known as the estimated wave, is obtained
at the output of the feedback filter. The oscillation of the estimated wave is

bounded by windows of the b i izer. The same oscillation bound;

is, therefore, imposed on the decoded signal at the output of the decoder. In

drives, the dul, the switching signal for the inverter and the

d mode of ti This fund 1

output,
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mot;)r acts as a low pass filter in the same way as the decoder. Thus the excur-
sion of the current of rectangular delta modulated inverter fed motor is also
bounded between certain windows. It is important to note that the harmonic

currents in & motor are determined primarily by the leakage inductances and the

frequency of lhe‘ supply. At higher operating freq the leakage t

due to harmonics are higher. As a result, the filtering effect of the motor is
smoother during high/frequency operation of the inverter. Under thixv cir-
cumstance the current waveform of the motor is 16t only bounded by upper and
lower window limits but also smoothed by the filtering eﬂec‘t of the motor. This
current control pmﬂcesa‘ t!ue to delta modulation is obtsined without any !’oedbnnk
from ihg motor. ’i‘héréloré, the process is an opm:loop control. The rectangular
wave delta modulated waveforms are-well defined and they can easily be studied
analytically. On the othér hand, i:: the ordinary leedbu;k current bysteresis con-

' .
trol technique the output of the modulator is dependent on so many factors that
. 2

the analytical study of the modulated waveform is often tedious. \
‘Another benefit of lar wave delta dulation is the  on-line ’
ptimization of the modulat ‘ms. This is evident from the fact that the

dulated 1

barmonic contents of the
Ao

can be ntrolled through.

dulat.

the of several in the

Tvo of these parameters’
are (the window width and-the feedback alter characteristic.

N One of the easiest ways to achieve optimization is through the use of & tuned
filter, the cutoff frequency of which can be varied via the command signal of t‘hu
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modnlswr (fig. 1-5) [81; 82] This allows the reduction of low order harmonics.
Low order harmonics start appearing otherwise in the modnlated waveform as
.the operating frequency of the input sine referense wave is increased. Researchers
have been trying to selectively reduce the harmonics in the inverter output
waveforms. In the past, success has been achieved in this regard for constant fre-

quency inverter waveforms through various h ic minimizati iqy

and microcomputer wavelorm synthesis. However, such techniques had little suc” 1

cess in the oper:tion of variable frequency inverters. The delta modulation tech-

A
nique is, thus, a promising application in this ares. |

14 The Modulator and The Inverter Waveform Synthesis:

The studies of the performances of the  modulator, the inverter and their

licati require a knowledge of h ics of the modulated wa . In
the past, inverter waveforms generated by different pulse widtli\mﬂulation

schemes have been studied by Fourier series analysis. In the present study

discrete-Fourier is used to d ine the h ics of the modul;
and inverter waveforms. It is a well known fact that pulse‘ width modulated

contain subharmoni: due to the presence of the modulat-

ing and the carrier wave frequencies in the modulated  waves. The conventional

Fourier series analyses on such f determi only -the fréquency com-

dulating [

ponents which are multiples of the and ignore the presence
: . e
of subhlrmonics&o, in the past no comprehensive method has been reported

on the possible calculation of harmonics on-line. To overcome ‘the above

&
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Fig. 1.5 The block diagram of & tuned rectangular wave
N delta modulator.
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drawbacks of Fourier series analysis, discrete Fourier transform method (DFT) is

proposed in this ntudy\[sa,&l]. In this, approach, the pulse width modulated

1 itoh

waveforms are defined and si d by gate fi i and the ing points

'
of the waveforms. The switching points are obtained from the solution of a set of

lar wave delta modulated . The simu-

equations defining the

lated waveforms are then sampled for discrete Fourier transform analysis.

The rectangular data windowing of ordinary discrete Fourier transform gives
rise.to leakage spectra and Gibbs phenoménon[SS]. In order to reduce the effect of

these phenomena and obtain smooth spectra of modulated waveforms, tappered

ind dulated has been d. Windowing of

ing of sampled 8B
sampled waveforms is a common practice of waveform .synthesis in communica-
tions. The effects of three common windows were investigated. These are the

Hamming , the Hanning and the Blackman window. The windows have been

chosen lor1heir implicity of lication. A typical modulated of a sin-
gle phase inverter and the spectrum obtained by discrete Fourier transform is
shown in fig. 1-8. The Hanning windowed waveform of the ssme and its spectrum

« obtsined by DFT is shown in fig. I-7 as an illustration of the ?windnwing‘pmcm.
The_ main -dvnntage of the DFT- approach of analysis is that it is simple

and may be adspted for ca-line b ic determination of the modulsted

waveforms of the inverter. It enables the investigators to determine the subbar-
monics present in the “waveforms. The determination of subharmonics has been

neglected so far in power converter waveform ahalysis.
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1.5 The On-Line Control gy for a Sub ! Drive Sy
. e -
Fig. 1-8 ill the sch ic of an op loop control scheme. For

automatic gpeed variation in mpon‘u to sudden changes in load, it is necessary
that the inverter responds by changing the operating frequency. The .necity of
such a speed change in a submelﬁbk"f:mp drive upﬁﬁcntions is illustrated in fig.
1-9. To match 'the pump “production curves:and operate at nzn/ maximum
efficiency, the speed of the motor must be changed. It is, therefore, necessary for
the control scheme to have a provision to mul;itor the speed of the motor and
adjust the (quuedcy of th inverter accordingly. This is also r‘eqnired’for constant
slip operation of- the motor at all operatinig frequencies. The constant slip ensures

that the motor operates in the recommended effliciency range, In practical appli-
. oo

cations the speed is not obtainable from the sub ible motor by fonal
‘ speed !eedbuk methods. As a result, it is Decessary | to uhmate the speed, torque
and other operating condlnans from the voltage, current and the input por l
the motor. In this mearch a simple melhed based on input impedance measure-
ment technique :nu de‘;eloped for an on-line ptediction of required operating con-
ditionsi It was suééusfu\ly used for the control of the motor in the linear range.
* The schematic of the automatic control of such inverter operation wi‘th variation

of load is shown in fig. 1-10 ‘
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18 The Analysis of the Delta Modulated Inverter and

the Sub ible Motor Pump Perf

Most analyses of inverter fed u'l!riv: systems reported in the literature are
based on the Fourier series of the inverter output. voltages and on the d-q*axis
tramtormgén of the machine models. In this stu«!y the three phase inverter out-
put voltug(é- were.stmlied with DFT on windowed sampled waveforms. However,

\for the drive ) analysis an unconventiomal ;ppmnh was followed, Instead ‘of
finding the Fourier voltage responses and supep\impo;ing the;:, the unit step
- response of the motor for each pulse of a mod\llnu;r\;uvelnrm‘ wn/lound and
supgr-imposed. The d-q axis model of the motor was used to formulate the mt;tor
.;quutionz. This type of analysis eliminates the errors usually encountered in the
Fourier series, analysis. In the frequency domain, a l’lnh.e number of harmonics of
the Fourier s’eriu are usually fonside'red for the performance analysis of the

motor. The dominant harmonics of pulse width modulated waveforms occur at

very high fr ies and their i i i mﬁy result in the loss of

information of the effects of these dominant harmonics.

Steady state and transient analyses were performed on the d-q axis model of

- the motor. The steady state response does not change over time and it remains

the ;u.me over successive cycles. Therefo'e. in steady state analysis the response

for each single pulse is calculated. The indi '\’ 1 are then superi
>
posed to find the total response for one cycle‘of the supply. For tnnsignt

analysis ‘however, the responses due to pulses ranging over several cycles of the
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suﬁplx are calculated and superimposed.
1.7 Thesls Objectives and Outliness

The objective of this study is the application of the delta modulated
Everter for sub’mersible motor operation. Many of the control demands of sub-
n;enible motors can be satisfied through the use o{ délta modulated inverters.
The choice of the modulator for the submersible motor is made on the basis of

motor

ubmersibl The ional ch istics of different delta

q P

pod\d:bon were studied to lxeilit:ie the choige of the type of modulator. The
study of the selechon cmens was concentrated mnmly on the three slmplut
delta modulators aud the tesulu of the study are presented in chapter 2. The rec-
tangular wave delta modulation technique was selected for inverter switching.
The characteristics of the rectangular wave ’della modulated waveforms were
analyzed to find the performances of the modulator and the inverter. One of the
main objectives of 'this thesis was to develop 3 method ‘to optimize inverter
waveforms nn-line; A novel method of optimizatiol; of vinverter waveforms l_using
tuned rectangular wave delta modulator’ was proposed and snccm!ully imple-
mented during this research. The proposed method is descnhed and annlyzed in
7 chapter 3..Chapter 3 also includes the analyses of RWDM and tuned RWDM

output I For the analysis the discrete Fourier

transforms were used on the sampled and windowed sampled waveforms. This

type of waveform analysis is alsp suitable for on-line spectral estimation and

-
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olP"WM f

. Chapters 4 and 5 are concerned with
studying the performances of submersible motors fed fl’Ol;l delta modulated
. inverters. The inverter fed submersibl

motor perf

studied using time
domain solution of the motor and inverter voltage equatjdns. The semi-automatic

operation of a submersible motor was achieved by motor speed e;timntinn lmm
the eurrenl, vol!nze and pa&ner measurement of the motor and i8 described in
chapter 5. an\ly the elumq and conclusions of this research _sre summarized in
chapter 1] wgether with mu‘nmendmons for future works. ™~

r -
i . '
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CHAPTER-2

Delta Modulation Technique and The Selection'Criterla For Inverter Drives

2.1 Introduction: \ §

w -
The objectives of this chapter are to describe the delta modulation systems,
their émpcr(sﬁl characteristics as well as their limitations with regard to inverter

operation. At present, there are different types of delta modulators available. The

variations stemmed from the need for and requi of diffetint appli

and the necwsf&y to improve 1!1; modulator performance . For inverter switching
B,

the modulation schemes adapted are restricted to the simpler ones. A brief review -

of the delta modulation technique is presented in this chapter. Selection criteria

of the modul, for inverter switching are di

d. The criteria are based on
the requirements of the drive and the modulator. Charactéristics of lhr‘ee modula-
tors are :lud‘ied. These are the ;eu, the sigms and the rectangular waye delta
modulator. Based on this stndyL the rectangular wive delta moduh}of (}/IWDM )

bas been chosen for the inverter swit:hing for submersible motor drives.

2.2 Delta Modulation Technique:

Different forms of delts modulation (DM) bave recently been used in invert-
ers and other power converters. It has the advantage of retaining magy of the
features of currently used pulse width modulation (PWM) techniques. Delta
§ 4

modulation is known as the simplest method for modulating an analog signal to
1
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its digital form [86), without significant redundancy in encoding the signal. The
basic delta modulator consists of a comparator quantizer and a filter (fig. 2-1).
The coinpu_mtor at the input of this .block compares the input signal with the
step‘wi‘se approximation of té! input signal. The difference sig;!nl produced by the
compari;on is known as the error signal. The quantizer quantizes the error signal
according to the sign of the error signal to produce the positive and negative
pulses of the modulated wave. The function of the integntor' in the modulator is

tq reconstruct the input signal from the output modulated signal. The input to
~

the i is the modulated form. The i acts as a low pass filter
and estimates the modulating signal. For digital conversion _the" digitized

aveform is obtained by a sampler in the modulator block. Depending on the use

__/of sampler, the estimated waveform may be a stepped estimation or a triangular

estimation ( fig. 2-2 ). The estimated waveform is also called the carrier waveform
in delta modulation. The estimated waveform or the carrier waveform in delta
modulation is a self-generated signal. If x(t), % (t), m(t) and e(t) are the input, the
estimated, the r';lmdulnted and the error signal respectively, the DM technique

described above can be expressed as follows

For the modulator without sampler:

oft) = x(t)-%(t) (21)
\

m(t) = sga{e(t)) (2-2)

FaS
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Limiter *

Sampler Moduloted

Sine S I: N Wave

Filter

Fig. 2.1 The block diagram of a simple*delta modulator. : 7
\

input wave ectimated wave

I [/".ud;h..m\. . | "
| lHlll‘IIle”“

Fig. 2.2 Wail:gnl the simple delta modulator.
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%(t) = [m(t)de (23)
For modulator with sampler:
e(KT,)=x(KT,)- % (KT,) (2-4)
o .
m(t)=Y Vpsgn|[x(KT,)-%(KT,)]8(t-KT,) (2-5)
%(t)=fm(e)d - ° (2-8)

where, |
Vp is the level of quantization

_sgn is the sign’function

Y%

In epcoding a signal, delta modulation has two distinct restrictions. When

s the sampling frequency

the predicted signal (¢t ) is smaller than the nctual signal x(t) at the beginning,

the first impulse hps the- weight +Vp. When fed-back and integrated , that
impulse produces a 3tep wise change in e{t) and causes a negative impulse. If x(t)
remains constant i\( t) f;nbws it in steps until the rate of change is too rapid.
1f the rite of change is too fast slope overload takes place. This occurs when  the
window width A is too small to track a rapidly chApgini signai. Slope overload

occurs due to the modulator's inability to track large changes of the input
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signal x(t) in a small time interval. Slope overload is considered to be a basic

in delta

dul schemes for ication systems. However, the
- -

same characteristic may be used to an advantage in switching power convetters,

- A variation of DM is the differential pulse code moduiation (DPCM) with a

.

multilevel quantizer instead of two level quantization. Functionally, DPCM signal

is a pulse codé modulatéd - (PCM) rep jon "of the . diff signal
[x(¢)-%(e]] , where %(¢) bas a variable step size ranging from Vp to

/QVa/2. Q is the mimber of quantization level. Signal X (t) !ollows‘si;nal x(t)

* more accurately when com&a‘nding is used. This results in lower idling, fast sttt

up and less chance of slope overload. The following section gives a brief review of .

the DM technique as it evolved for digital communications.

2.3 A Brief Review of Delta Modulation Technique:

’ The’linear delta modulation was first reported in 1948 and its early descrip-
tion” emerged in the 1050s [87,88]. In linear delts modulation the modulator
receives a band limited analog signal at the input and produces a binary output
signal. The output of the modulator is also Iocally;deooded by the integrator in
the feéd-back path and subtracted from the input signal to form an error which
is quantized to one of two passib;e levels depending on the‘vpolzrily of the error
signal. The closed loop arrangement of tk;: DM encoder ensures that the polarity
of the pulses is adjusted by the sign of the error signal. This ensuresithat the
locally decoded waveform will track the input signt;l. This type of delta

*
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modulator is known as a linear modulator because the decoder at the receiving

end is a linear network. Despite the attractive simplicity of the delta modulation.

coders, initial drawbacks had p d their wide-scale use at the start [89].

Delta modulati ined an i ing field for theoretical studies in commun-

ication systems for decades. This situation began to change when more

refinements were suggested {90] and today development of delta modulation is in

full progress. At present, many ication research instituti are engaged
in in-depth ex loration of the technique and its applications [91,92,93]. The sim-
plicity of .delta modulation has inspired D and

since its basic invention in 1048 by D¢ Loraine and Derjavgotch [89]. Most of
these DM systems have received impetus from the ap@ons of digitization of
:nuiiq and video signals. The in}tinl DM coder consisted of a single integrator '
(analog) or a first order predictor (digital)-in its feedback path. Subsequently, the

" DM coder with double integrator and rnu‘ltiple integrator ( or their s;Jbstitules,e
the prcdi‘ctors in the digital domain ) were used in the feedback path for more

; pr‘ecise signnl’[mcki‘, [04]. Some investigators replaced the i‘nte‘g(ator of the
feedback loop with RC network by introducing the concept of exponential delta
modulators [95}\71}1 order to suit the techniquklor unc’onelated signals, sigma
delta modulation was introduced in 1962 [98,0"1]. In the iuiti:l sig‘m{ delta modu-
lators, the input signal was .pmed through an' integrator prior to co\’:iing. Subse-
quent modification replaced the feedback integn‘;tor and the integrator at the

front with a single integrator at the le‘ed-!orw;rd path. This pre-émphasizes the
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low frequency input signal thereby increui‘ng the sample correl:ltion. To keep

dul b

several

A &5
pace with pulse code d an adaptive delta
modulation (ADM) scheme [07,98]. In adaptive delt modulation the value of the
signal at each sample ti;ne is predicted to be a non-linean function of the past

-value of the quantized signal. In literature, two other DM schemes fre

d are the ; ded and the h
. ;

[99,100]. The ded DM technique uses ion of large signal levels,
‘@

delta modulation schemes

dompared to the smaller ones. Compression is done prior to: eneudy: using

p cireuits, and ansion of the signal is done at the decoder side to
recover the Signal. The asynchronous delta modulg_!ioh system Was digital outp’ut
quantized in amplitude but not in time. The lar wave delta modulati

(RWDM) is one of the h delta modulati baiqa In \!

wave delta modulation, the memory-less quantizer of the modulator cilcnit"a

h

replaced by a non-linear element whose are that of a h

loop or a bang-bang' controller. Also, snmplen'of ordinary modulators are per-
15 A
manently closed.*This form of delta modulation was first reported by Sharma

\
‘101,102, » '

In addition to the modulators already mentioned, there are various other

delta modulators which have been dicall; d by different h

[89]. Nonetheless, their operations are basically similar to the modulators already

dischscd. . *
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_ 2.3.1 Typleal Use of Delta Modulators Outslde Comi 1 ;?eldz

Since delta modulation is the simplest of all the available modulation tech-

niques it is being used ively in icati i However, it has

applications in other fields as well. At the present time instrumentation tech-

niques rely i ingly on digital techni Delta modul offer attracti

- applications in such areas . Due to very large scale integration (VLSI), the cost o‘ P

implementation is no longer a reason for choosing delta modulation over other

modulation techniques. It is the simple encoding processand the ;eqnirements of

a simplg decoder which are the most advafitageous festures of the DM tech-

dulati hni

niques. Some of the imp uses of delta in instrumenta-

tions are measurement of noise, time scaler (trnn‘xient) display of cathode\rny
tubes (CRTs) and recorders, peripherals for hybrid comp!lte;'s, and in power
measurements by» delt‘a sigma wattmeters [1032,104]. Also, delta mod;lmion stra-
tegy phys an important mle ic the design nnd fabrication of digital
mms(los 106,86]. In stdition, speed control of & smnll a® motor using delta
modulated class D low power amplifier was suggested during early days of DM
developments (107,86]. This idea of speed <ontrol of small motors can be
extended and adopted for high pow’er three phase voltage ‘source “ac drive

scheme.
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2.4 Delta Modulation Scheme For Inverter Fed Submersible Motors:

Inverters are, functionally, power amplifiers used for the frequency and vol-
tage control of the supbply to a device. Inverters are also.used in inverte’n for high
frequency links between utilities and in high frequency induction heating. In

induction motor drives modulation is used for the translation of sinusoidal refer-

ence voltage to a stream of positive and negative pulses. The pulses of nneq\nl B

widths, cnrry the voltage and lrequ%ncy information from the low power control

side to the high power load side thro\lgh the inverter. ll is dulnble that the low ~

power control sinusoidal wave-l;e conveyed to the load without much, distortion .

In applications such as the uninterruptible power supplies (UPS) and in hiéh fre- ~

quency link inverters, the output waveforms of the inverters are filtered to obtain

sine waves at the load side. For ac drives, the motors themselves work as the low

pass filters, thus additional filters are not required. The choice of a modulation

scheme and the control system for the ac drives are however, dictated by the

type of drives, their requirements and applications. !
\
%4.1 Drive Requirements: \

The requirements for solid state drives for induction\\motou are well esta-
\

blished [108]. Some of the basic requirements are: \
L - J \
\

1. Solid state ac drive 'has to be energy efficient. \\

2. AC to variable (réqnency ac conversion with a dc link ta meet the variable

\ p

o



motor load. -

3. Voltage variation with frequency to keep motor flux constant ( the require-

ment for V/f constant ). _
4. Formidable range of speed variation from .2 to 2 pu of rated speed.
5. Fast torque response.

8.  Good starting torque. ’

7. Lower torque pulsation and lower harmonic losses of the motor.

8. Adequate speed reg\ﬁntion.

9. Rapid protections lgnin)t overload and loss of power.

To meet most of the above requirements closed loop control 'c! the motor is
necessary. The most versatile control method is the field oriented vector control
or Mmmpled field theory control ['108] For high performance drives the con-
cept-of vector control is the prime choice. Independent flux and torque control is
possible through this method. However, since the inpnt/outg;lt relationships
between stator currents and input voltages of induction machines are non-linear,
open loop constant V/f control is still the most widely used scheme [79]. In the
vector control method, if the values used in the calculator deviate from correct
ones (which may easily happen due to multiple changes in motor operating condi-

tions) both the steady state and the transient responses of the motor would

detert b ially. Of-line ! identification has been used exten-

sively for fast and high performance motors. However, in such cases the whole
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"aystem cnnnot be b\ult as a puhge module ready for, Jndllmul use. Wlth a
vector controller euh motdr req\mu an mdependentty designed eontmller, and
the controller tuning is necessary at the beginning of installation as well as dur-
ing operation [109]. To avoid the difficulties inherent in the decoupled v‘eewr
control method, many researchers ha;e been trying to obtain comparable perfor-
mances of }llown using scalar control techniques. In n:n.lar control the vol-
tage and the cu:rent are varied to maintain the constant nl;‘ operltiol; of the
machine. These types of, controllers are used for robust drives. They are, not
optimized and are slow in rﬁponse [llo,l‘l_l]. To obtain quick.response in_lhe
scalar control methods, limit cycle or hysteresis.( bnng-b;ng ) contrel of the fAux
and the current has been reported [1 12,110] But such instantaneous current con-
trols aré problematic because of the necamy of threesindependent hysteresis

comparators.
Submersible drives ne’ mostly ;quirrel ‘cage ac induction motors. Therefore,

the selection criteria for solid state converters for these drives are the same as

discussed previously. In addition to the I i ioned, the sub ibl
motors require some additional features in the controllers. Submersible motors
are an unique type of squirrel cage induction ['notcrs. Their starting characteris:
tics'and continuous operating conditions are unique due to the following reasons:

Submersible motors are long and narrow in shape. They have high rotor

and stator ind

‘The geometry of the motor requires that the

number of poles be kept to the minimum. When these motors are started from




. it runs at near

SN a

the supplies of fixed voltage and frequency they start very quickly. The inertia of

* the motors help them start faster. As the motors start and attain their full speed

the loads coupled with them ( like pumps ) experience tremendous torsion on
their shaft. In some cases it has been observed that when the lower part of a
pump moves a full revolution the upper part remains in stationary position. This
;esulls in broken shafts in drive systems. Expéricncea have shown that most of
the failures resulting in submersible motor pump installations are due to this
starting characteristic. This - problem can be solved by proper voltage and fre-
gency control of the supply during the;tarbup. Usually for induction motors it
is an accepted pru%an the motors with I/o/w voltages in order to limit

the starting currents. In applications i ing motors it is, y

to provide a soft start method which will simultaneously limit the startingl

current, tiie speed, and the torque. This can be achieved by designing a PWM
controller which would allow the voltage and frequency of the supply to be low

during start and reach the rated voltage and frequency in a ramp fashion.

Another ;elnlcd problem of motors is the i changes in

b h1,

load conditions. During installation a motor is selected to match the load so that

Y. B‘ut dnrin; ion the load may vary. Also
due to many operational factors, after a certain time period, the load to the
motor may change. In such a case, the motor may operate at lower efficiency or it
may have to be‘replaced altogether incurring capital expenditures. The solid state

PWM controller, with its ability to change frequency of the supply to the motor

o



2

can meet the load variability without replacement.

In many of the applications of submemble motors it is not posslbla to mom-
tor the speed, torque and rotor position from the motor sln('. continuously. This
is because majority of these motors are sealed. This gives ri:ie to the choice of
only open-loop control with the facility to obtain motor operating quA’ntities from
the input voltage, current and power to the motor. ! -

The ab»o’\.ve discussion highlights th:a following congtraints op the PWM con-

trollers to be used for submersible motors:

a.  For soft start of the motor, the controller has to provide a low voltage and

low frequency supply which will gradually reach its operating volta‘ge and”

speed. ®
I
b.  Variability of speed with load change to meet the criterion of operation at

maximum efficiency condition.

c.  Open-loop controller is the choice with additional i of predi
motor speed and torque from the motor terminal quantities like voltage and
current,

' N
To obtain these characteristics, an open loop delta PWM inverter control
method has been chosen. For on-line parameter estimation, a simple technique

based on motor constants and the ’ﬁeuurement of terminal voltage, and current

has been developed. K
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To minimize both harmonic losses and pulsating torque in ac drives, the

PWM techni of h i ducti are ly used. The h

m‘iuimizétion in PWM strategies are aimed at removing the low order torques so
as to avoid low frequency mechanical resonances. When these strategies are
implemented, rotor motions of motors improve. However, such techniques intro-
duce higher order térque harmonics to the extent that they may excite additional
resonance at higher frequencies in the motor and in the load [112]. Such high fre-

quency are ble in lications like sut ible motors. As a

result, such optimized modulation techniques cannot be used in converters sup-
plying submersible drives. In order to reduce the hnrﬁonic losses and pulsating

torques a b ic minimization method is developed based on the tuned filter

concept of delta modulators for the submersible drives. _
2.4.2 Modulator Requirements:

Modulation schemes are used in inverter operations for obtaining variable
frequency supplies with low distortions of the output waveforms. Induction
motor drives require such modulators to produce smooth V/f control of the out-
put waveform upto the base frequency. The inverter requires low switching at
higher operating frequencies. To achieve this in a normal sine PWM inverter it is
necessary to vary the carrier triangular wave's frequency over a wide range. How-
ever, in drive applications this is not'practical. The reason for this is that at

higher carrier frequency, the commutation hazard increases and at low carrier fre-
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quency the motor are i i for ad 1 i P
. In sine PWM mod such 3 dilemuma is solved by u/{ variable

ratio schemes [113,114]. In delta modulation this property is obiained" as an

inherent characteristic of the modulator.

One basic disadvantage of using sine PWM modulators in inverters is the

low de voltage utilization, usually in the order of 45-50 percent. Researchers are
cnns!antly attempting to improve this percentage. Voltage utilization ol 85 %
has been nchmved &carefﬂl selection of the delta modulator{115].

Smaller low order harmonics at the inverter ontpln are functions of modula-
tors' switching waveforms. It is, thus, necessary for the delta modulators used in
inverter switching to have low order harmonics. In .the delta modulation tech-
nique this is usually ensured' by the waveform tracking principle of the modula-
tors. The integrators used in the delta modulators are basically low pass filters.
Also, the window Width keeps the estimated wave within a certain limit. These
two characteristics provide a kind of current control in the open loop operation

of the motor. Similar current control is usually obtained in &ther PWM control of

inverters by h is current ison in a‘closed-loop

)
To reduce the pulsating torques and harmonic losses in the motor it is ne¢es-

sary for the |t to

ptimizati i In delta modula-

tors such i

P! in can be attained by on-line vari-
\ntion of the modulator parameters like filter characteristic or the window width.

{ln_section (3.2.3), an improved delta modulator with tuned filter is described.




The stable operation of motors requires higher voltsge availability at a
hlgher operating frequency. This requirement 0[ the dnve/c:m he sahsﬁed to a
large extent by the V/[ variation inherent in !he del!a mndulated inverters. In
open loop control of sul;mersible drives, a gradual increase of voltage and fre-
quency for the soft start purpose is also met by the switching characteristic of the
modulator. ’

The two main criteria for the choice of delta modulators are th(e stability of

*the modulators during variable. frequency operation and the speed of their

response to a changing input signal. Some applications also necessitate fr?quency

indepen’dcnce of the output of the modulator. Delta dul. are i
device with or without hysteresis quantizer within the feed-forward ldop. There-
i, i Ayl wethad F Biding The Widp iesponse Fudy e SABI, &
‘
difficult. Usually, the step responses of such modulators are found by the system
sitnulation technique and also from experimental observations. The st:bilily eri-
teria reported in this study are obtained by the describing function method (116~
119) :
The criteria for the modulators described above, cannot be fulfilled by any
single modulator. This is especially true when different limear delta modulators

(LDM) have different characteristics. In choosing the modulator for switching the

inverter for drive applicati the ing ch istics of three modul
were examined. These three modulators are the linear, the sigma and the rec-

tangular wave delta modulators. N




2.4.3 Charactéristics of Three Simple Delta Modulators: 4

Three simple delta modulators which have been used in the past for generAt-
ing inverter switching waveforms are shown in fig. 2-3. The linear delta modula-
tor (LDM) consists“of a quantizer-comparator in the feed-forward path snd an
integrator in the feeghack path. In addition it has a'sampler to qi;itize the out-
put waveform. In the sigma delta modulntor(SDM) the integrator is placed in the
feed-forward path before the quantizer block. The rectangular wave delta modu-
lntorl(RWDM) has a hysteresis quantizer. The san:;;ler in th‘e rectangular wave | °
delta moddBor is permanently closed. The output of the linear snd the sigma
delta modulators sre digitized and appear in the form of pulses. In contrast, the -
output of the rectangular Wl;le delta thodulator is in pulse width modulated
form. The tracking signals of the linear and the rectangular wave delta modula-
tors are the integrated output (stepped in the LDM and triangular in the
RWDM). For the sigma delta modulator (SDM) the tracking signal is the output

wayeform itself.

The characteristics of these three modulators are exantined with respect to

the drive requirements. The modulator performance in ac drives depends on

many factors. The basic char isti ined for each modul. are:
1. Theidling characteristics.
2. Theoverload characteristics.

3. The availability of fundamental voltage with change in operating frequency.
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4.  Stability of the modulator.
5.  Step response of the modulator.

8.  Current iruking capability in the open loop control of ‘drives.

A.  Characterlstics of The Linear Delts Modulator:

The linear delta modulator ('LDM ) is the simplest of all delta modulators.

The input signal to the Imear ‘delta modul is pared with the esti d

_signal. The error sigmal pmduced by this comparison is qunntlzed to two levels.

The output of the quantizer is then digitized by the sampler.

1.1dling Characteristics[86]:

A linear delta modulator with no signal at the input‘produces an output of
equally spaced positive and negative pulses. This property of delta modulators is
known as the idling phenomenon. The sequence of output represents a high fre-

quency square wave. Fig. 2-4(a) shows the idling pattern of "LDM. If an inverter

is ON during the idling, either the'load or the filter before tlie load attenuates .

the idling waveform. Nevertheless, it constitutes a loss in the overall system.

2. Overload Characterlstic:

In the delta modulation technique a situation may prévnil during the encod-
ing process when the slope of the input signal may become‘grener than the slope
of the esumnled signal. In such a situation the feedback sngnnl fails to track the
input signal. .’l'his is known as the slope overload cu}ditidn’ of the modulator.

Slope overload of a linear delta modulator depensig on many factors such as the

' u
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Fig. 24 Idling waveforms of three delta modulators.
(a) Idling waveform of the linear delta modulator.
(b) ldling waveform of the sigma delta modulator.
{c) Hliag waveform of the rectangular wave delta
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frequency of Ui input signal, the magnitude of the input signal, the clock rate
and the step size of the estimated wave etc. In a linear delta modulator, when

slope overload takes place, a sequence of identical polarity pulses occur at the

For a si

output of the 1.input to the modul the diti

for preventing slope overload condition is (8]

Eq2rl, SAT, T (27)
’

where,
input signal = Epsin 2w fyt,
A s the step size, and

f, is the clock frequency of the sampler.

and the maximum amplitude E, which does not overload the modulator-is given
by [36]
. f

af, 8)

Ea=rrs

dul is dependent on the

The slope overload in linear delta

and the frequency of tHe input sine wave. Since there is no other waveform track-

‘ ing mechanism involved in an LDM, the slope overload takes place quickly. This

characteristic is disadvantageous for the inverter operation.

L4 i
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3. Fundamental Voltage Availability:
The fundm‘mnlal voltage of an inverter shows a similar trend to the funda-
mental voltage of the switching waveform. It is, herefore, necessary that the fun-
damental voltage variation of the switching waveformy provides a trend of ramp

increase from the low starting freqt to the ing freq . In addition,

voltage should remain constant after the transition ?f inverter wav‘elorm from the'
PWM mode to the square wave mode of the operation. '

I_t has been found that the fundamental voltage availability of the linear
delta’ modulator varies slowly with increasing frequency. Once the slope overload
takes place, the voltage afilnbilizy does not changé with lrequency. The varia-

tion of voltage in the low in pulse width m mode is

not a signi one. The fund: | voltage y of a linear delta
modulator is shown in fig. 2-5.
~
4.:Step Response:
The initial settling times of delta,modul: are usually i i d by step

&

of the modul Analytical -of such of

thé delta modulators is restricted due to the nonlinear quantizer in the feed-
A
forward path. However, computer simulation approach or an experimental
. ¢

determinatiop allows us to find their response time to step changes. The simu-

lated step response of a linear delta modul with linearized approximation of

the modulator is shown in fig. 2-6(a). It is apparent from fig. 2-8(s) that the

linear delta modulator requires a certain settling time after application of'a step

.
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to track the inp;nt signal. The responses gf these modulators are not rapid
enough for sudden changes and thus may not be suitable for operation of invert-
ers to supply motors.

5. Stability:

‘The delt’s modulators, being closed-loop systems, are subject to an invétigu-
tion of their stable operating conditions. Some of these mod;xlatén encounter
unstable operation with the increase ?n operating frequencies. Due to the presemce
of the qnantizér in the feed-forward path all delta modulators are non'!inenr dev-
ices. For the stability study of these modulators-several methods of nonlinear
con‘tml techniques can be used. Fhe most common method in thewprelimil?nry
study of such non-linearities is the describigg function method [118-119]. The
method assumes that the non-linearity does not generate sub-harmonics and all
harmonics are filtered out or reduced before the input smie of the nonlinearity.

© By deﬁniiion‘. the describing function is the ratio of thegundnmenlul,of the out-

put voltage to the peak value of sinusoidal input voltage of the the non-linear

element.
Y,
Ky (Egw) = - (2-0)
. -
, ¥
where, -
\
Kn(Eqw) - is the deseribing function,.
Y, -is the fundamental of the output wave, and
: )
/ .




55
Ep is the amplitude of the input sine wave Egsinwt.
4
In stability studies using describing function, the nonlinear elements in the
systems are replaced by their describing functions. The Nyquist stability criteria

for closed lopp g}(s!e;ns are then applied. The characteristic equation for a closed
e

loop system rep! ing the delta_modul is Y d.:The limit cycle

of a modul. is then d ined from the root locus of characteristic

equation.
For the linear delta modulator, the describing function Ky ( Eq, w ) is given

by [120]

Ku(Ea) = ¥ (2-10)

and the characteristic equation for this system for the block diagram shown in

fig. 2-8 (a) can be formulated as follows: !

The input /output relationship is given as

< K Em )
[ e . .. S A— -11
r 1+ Ky(Eg )H(jw) {211)
wl;cre: H{ jm' ia the transfer function of the feed-forward path.
-
The characteristig equation u given as
1+ Kn(Eg)H(jw) =0 . (2-12)

From relation (2-12), the limit cycle condition can be deduced as
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1.1dling Characterlstic: .

S .
The idling characleristi_g of a sigma delta modulator is the same as the idling !

A characteristic of a linear delta modul: The idling ch éristic of a sigma

delta modulator is shown in fig. 2-4(b).

A

2.Overload Characteristic:

The performance change in a sigma delta modulator from t‘hstwol an ordi-
nary linear delta méduhlor is in the slope overload charnc'leristic due to the
repoaitioni;g of the integrator. In linear delta modulators, it was found that
slope overload condition is depe’nd‘ent on the frequency of the input signal. For a
sinusoidal input in a sigma delta modulator, the condition of slope overload pre-
vails only when amplitude of the input sine wave is equal to theuproduc!; of the

window width and the sampling, frequency(88]. This slope c*erltw:l condition is

independent of Operating freq of the modulating wave. The condition of
slope overload of a sigma delta modulator is given by
)

E, = Af, (2-14)
¢ .

As a result of I ind dence, in variable jon of
L § F

inverter, slope overload condition will not be encountered if a sigma delta modu-
lator is used. These modulators are, therefore, suitable for applications in invert-

ers where slope overload cannot be tolerated over a’wide range of frequency.
- ‘ .
' \ Y




3. Fund: Voltage A b s

The fundamental output voltage of a sigma delta modulator shows little

variation with the chznge of operating : q y. Due to" q y ind d

o 3 -
of slope-overload it remains in pulse width modulation mode of operation for a

wide range of frequency. As a the necessary i voltage

14

variation for ac mator operation is not available from a normal sigma delta

dulator. The fund 1 voltage ilability of a sigma delta modulator-is
!

shown in fig. 2-5.

4. Step Response:

. . .
The computer simulation of the step response of a sigma delta modulator is -

shown in fig. 2-6(b).\From this step respanse it is apparent that the sigma delta

modulator is faster in response than the linear delta modulator. This would

\

ensure a faster response to sudden load changes of the inverters.

5. Stability: 4
The stability criterion for a sigma delta modulator is the same as that for
the lmnnr delta modulator. The describing function method of nnnlysls shows

that slgmu delta modulators are inherently stable and they do not show any limit

‘eycle condition. Similar to a linear delta modulator, the descr‘ihin'$ function of a

sigma delta modulator can be expressed as(120] s

K Ba) = A e



C omew

'l‘ixe output/ input relationship for the block diagram shown in fig. 2-3(!)’) is
given as: <

G(iw)Kn(Ea)

P TR ono R frae)
Where, the G (jw) is the feed forward transfer fune‘tion of the in‘tegrator.
i The chamcteristic’ ;quntion is L
s 1+ G(jw)Ky(Ea) = 0 e
and the condition for limit cycle occurrence is » '
LGl = s @18

*

The root locus plots with varying gain of G (jw) and the inverse describing

i . <
function »KL( Ey) fora sigm’delts modulator are shown in fig. 2-8. From the
N h -

plot it is evident that the limit cycle condition does not prevail in a sigma delta

%\odulnwr.

N

'\. . .
6. The Current Tracking Capability In Open-loop Operation of

Drives: ! . L

The estimated waveform at the output of a sigma* delta modulgtor is &

pulsed . The integrated error signal is ized to produce the odu- .

lated waveform. As a result, there is no current waveform tracking situation in

open-loop sigma delta modulated inverter drive.




o1 /
7. Optimlzation Criterlon:

dul offers many ad features over the

The sigma delta

finear delts modulator. The fund I voltage availability of the modul

“and its inability to restrict the current oscillation within certain boundaries

makes it an un-attractive choice for drivg licati A].sé, when implen d
. .

in hardware, the sigma delta modulators do not allow any on-line optimization
of modulated wavelorm. This inability is due to the positioning of the integrator
in the feed-forward path. The tuning of thjnleglator is possible, but since the

error signat~has a veryflow amplitude, t ):gmng the integrator with an aim to

reduce harmonics would résult in plete loss of operation of the modul
)
C. Characteristics of Rectangular Wave Delta Modulators:
. -~
The lar wave delta modul (RWDM ) is similar to the linear

delta modulator. The difference between the two is in the quantizer comparator.
‘e

In wave delta dulator, the g izer is a y is q

rather than a normal ON-OFF controller. Also, the sampler after the quantizer is v

wave delta modulator. The modulated

ly closed in 1
waveform in this type of modul is also d by the ization of the
error signal. Due to the hy i quantizer, the esti d signal is

bounded by the hysteresis limits.

.

’
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»
L e by computer simulation is shown in fig. 2-4(c).

1.1dling Characterfstic:

The idling ch istics of the asynch delta modul! are different”

lmm those of the lmen and zha sigma delta modulators. During ldlmg lhe rec-
tangular wnve delta modulator oséllhtu at very higlt frequency, limited nnly by
the propagatmn delay. The output of the modul\or is enher +V or-V. The out-

put signal is fedback into the input comparator after mtegntmn in‘the lorm of a

rising or falling rnmp In the absence of an input slg-nnl the érror slgnul is the .

“same as the rﬂmp signal. When the rnmp hits the upper or lower bysteresis Ixmlt,
the output of the modulator changes the pohnty of the pulse. Therefore, the pro-
cess continues as long as no. input signal is present. The frequency of the idling

waveform is dependent on the hysteresis band and the integrator's time constant.

The idling f dul can be d

qu of the 1 wuve{ delta

as:
m;
fige = 'T:‘ T (2-19)
-Where, . 2 .

migie i3 the slope of the triangular wave and A is the window width.

The output of a rectangular wave delta modulator during idling as obtained




_on the f quency—of operation of the With sl other parameters .

, 2.‘(_)nrlond Qhﬁ'u@erhﬂm .
' LN 4 - s
_Overload ch isti¢ of a lsr wave delta mod (RwDM‘)

depends on xevernl fattors. These factors are‘the nnphtude of*the mpnl signal,

the slope o( the estimated form, the frequency of

and the window

width of the hysteresis band,

dul

wave delta isd dedt

The slope overload of the

remaining tnnélant, the slope overload takes place at a certain operating fre-
e \ ~

quency and the modlilntor remains in the slope overload béynnd this frequency.
¥ &

The frequency where the slope overload: takes place can be varied by,chanxin;g' '

the window widthsof the hystermis‘cgnip‘anwr. The Inrgexi the winclow width,
the quickeF the slope overlosd condition takes placeTr the rectangular wave delta
modulahon It tbe mndulamr is required to run wnthout slope overload, the win-
dow wxdth can be seh’\ted to provide such op*ﬂ ‘With consiant window
width, the slope oveiload occurs approximately when the slope of lho estimated
wave becomea equal to the slope of the input sine wavée. The slope overload con-

dition of the rectangular wave delta modulator éan be obtained as

Bzt XL 4 24, -

L (2-20)

LIS

where, Ay = window width of rectangular wave delta modulator.

.
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blishéd frorn the following:

N o

4 =

. N -

Equation (2-20) can also be expressed as
4
r=2f(Egsin2r+ 245 ) | (2-21)
r

= 404, o= ok (222)

3. Fund 1 Voltage Avallabill

A}

The nature of bounded estimated waveform of the rectangular wave delta =

et
modulator between the window widths + Ap, assures a ramp fundamental vol-

tage variation w_rith frequency of operation in PWM mode. This fact can be esta-

Ity and m are i d and the of a 1

wave delta modul;tor respectively, then for a simple inteﬁnwr circuit in thg

modulator having,transfer function — L _ the input/ output relationship
(1+jrw)
is given By
ELT S (2-23)
m, T+jra,
A \
where,
¥, and m, are the n-th h ic of the esti d and the dulated

of RWDM respectively, and w, = 2 xnf . For the fundamental voltage, the

following relationship holds
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o it el el b

Since the estimated waveform oscillates within -,wﬂ'\'ndow wjdlli of + Ap -about

the input sine wave, it can be mnmed that the f\andlmentll' voltage of the

esnmated wave if equal to ﬂ:e voltage of the mp\lt sinusoid E_ The equmon (2

: " 24) can therefore be written as g
s . K ;
. pS P -
En 1

: e l e (z28)

~ Equation (2-25) can be re-written as * \ N\

. o
\ M, - . )

== | o (2:26)

Since Eq is kept at a constant value in th; modulator for inVerter switching, ’
it is apparent that lundamental voltage vartiation is lmearly dependem on the fre- «
quency o[ operation.

A
My =rEuw = rEg 2t = ki ey

where,

Ka=rEg2rm |

5 P .
This linear dépendency of the fundsmental voitage of the modulator output
with frequency is valid until ':he/n::o.dulnor reaches its slope overload condition.

L4 : s
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During slope overload condition the’n‘-md;nhwlr ‘output is the square }va'\'e having

the same .Ireglléncy as that of the input sine wave. As a result, the fundamenwal

of the output waveform remains constant as long as the slope overload condition

prevails. The fundamental voltage variation of RWD¥ 'with frequency is shown

in fig. ‘2-5. Tl;e charuteristic‘obtnine:l meets the drive ‘req\xiremenis alreéﬂy dis-
'cusaed. ’

- ' : i
4. Step 'Response:,
* The rectangul

wave delta modul; are inh

ly quick in response.

This is due fo 'the presence of the‘ hysteresis limiter in the fee&"forward path ‘ol «

the modulator. The simulated step response of RWDM is shown in fig. d.6.
. ¢

5. Stablility:

v

_ Thé describing function analysis of the il

wave delta ‘modulal

shows that with single iniegrator in'the feedback loop the modulator is s‘table,
and does not show any limit cycle condition. However, this situation éhaugu
with the use of two or more intégrators in the feedback loop(101]. With a single

integrator in the feedback pith, the describing function analysis-is as follows: )
; # i L

The describing function of a hysteresis comparator is given as

5 °
L K.«s.)’-,‘—E"{ _ .

'

i




Ea L’ the amglitude of’;ﬁe input sine wave.

; - .o
The input/output relationship of the modulator is given as *

'y

Kn (En )

T+ R (E2) H(T0) (29

ey Eow
: 3

H( jw) is the lmns!er function of the mtegrntor in the lzedbm.‘k pnth The

characteristic equntwn ¢an be wnuen as . = ' LI
/f" > 2a LT
b+ Ky(En)H(jw) =0 o (230)

and the fimit cycle candmonw;wail it

v . .
1 o o8, o
THGW) = - = g (231
G ) (e ; ¢ (231
. ® el 3 .
‘The root locus plots with vnrying gain of H (jw) and ——— K ( = ) are shown in

_ fig. 2-0. It is evident (mm fig. 2-9 that the vechng\llar wave dtltn moduln!or wnh

single mteg—mtor does not exhibit uny_ l|m|% cycle condmon during its operation.
4 . Vo . s
Gy “ N .
8. Current Tracking Capability in Open Loop Operation: R

; :

The use of rectangular wave delta: mo‘dnlaﬁon offers a fajor. ndvantnge in

. inverter fed drives. If- an mverter u\wnched by the wnvelcm of rectnnguln

wave delta modulntor. the hysterals current control o( inductive . loads is
obtmned Without' any I‘eedbnck from the load. In motnr controls, usunlly1 the

current tracking is done by elosed loop coritrol. The use ol a rectnngnlnj wave'’
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Fig. 2.9 Root locus of the rectangular wave delta modulator.

() The Poot locus of RLN-(F..,)

{Eq) 20d H(jw).
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" RWDM, the modulafor sets the switching f

delta modulated inverter would allow one to.obtain hysterésis current control fo
open loop operation of. the motor. Due to the presence of thé hysteresis band in

q of the inverter in such a

manner tlmt the current waveform of the load is bouna within certain unvelope. )

This cntenon of the modulator s particularly needed in inverter ppemtlon for

the motor in snuntlon where the required feedback sxgmls for clwsed loop- npcrn‘

tion is difficult to obtain.

* Table 2-Icontains both a. summary and a compatisan of features ur the

three delta madulaturs discussed. The cpmp:mson shows that the R\VD\[ shnuld

be the. c}\olce of the dul for inverter hi 1 bl

g for s dri

X
Besides the advanlageous features alrendy mcnhoned the rcclnngnhr wave delta -

médulator was con;ldered to be the besz among the simple ‘delta modulators
because of its lowest signal.to noise raho. and low qunnhz:\llon enor[Sﬁ] It was

>
also suggested- for md-ustnal uses pamcularly in tmnsmlmng slgn‘ﬂs over slmA

distances for instrumentatjons.

[ e ¢
The other significant reason for choosing rectangular wave delta modulator
for inverter swntchmg is the ability o! on-lme optimization of the-inverter ouLput

waveform~by the tuned ﬁlter A unique method ‘of onL|m|z|nLthe modulutor .

waveform using a tuned filter is discussed in Section 3.2.3. : -
.

-




. Summary and Comparigon of LDM, SDM and RWDM

RWDM

square wave

Idling Square wave square wave

output output, of high output of high of high frequency
Erequ;ncy high frequency 3 .

) 5 F : . ~ . . .

_overload | Depend on ;$tep (gepénd' on step "Dependis on step
sizé‘and, frequ- . size only. size and freg-
ency of /input .uency of input

- s & )
‘ijundametal moderate ramp * “moderate ramp ramp in PWM modé
voltage characteristics characteristics and constant
availability in PWM mode . voltage in square
e g = wave mode
C T -« ° ™
_ step - slower r s is is
response than the SDM ‘fast 1nherent1y faster
and RWDM : due to hysteresis
~ @ 5 quantizer s
2 ». I
stability Inherently Inherently . stability "
stable stable depends ‘on 'the
' . frequency and the
gain of overall
. N ! modutator
Turrent Absent. Absent Present
limiting Y .
capability E i
Oon- Possible , Possible but Possible
optxmization with tuned difficult vwith
filter tuned filter




25 Copcluslons: » » .

The delta modula!.ion technique is proposed for the’ switchills of inverters in

- P ’ A
drive applications. The criteria for the modulator An';d/{ha drive requirements of
3 7 4 5

% + g = o
submersible motors hnve been established. On the' basis of the requirements-for

dnve applications, the characteristics o! three slmple delta modulators havé been
exnmmed to find the best smtable delta mcdulnor for swnchmg an mv:rter The

- three modulators exnmmed for possible use in inverters to run suhmembla

motom are the lmenr, the slgrnl and Jhe re lar wave delta odul It .

has been blished tlnt the, lar wave delta modul, is the most suit- .

able of the three which g&n sdv;qta;euusly be used for the operation of submer-

sible motors.
Ay

¢
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o _ , Chapter-3 -
Analysis and Optimization of The R lar Wave Delta Modulator
31 Inty?inctlonx A
»

A .novel waveform synthesis and an on-line harmonics minimization of the

dulati b deserib

inverter output voltage using delta o are d gn this

chaptet. The proposed on-line.harmonic reduction method uses a tuned filter in
the feedback path of the deltnq_ modulator. .Tlxe analysis of-switching waveforms

dulat:

genent‘ed by a rectangular wave delta

is described. An i
into thé conventiongl way of deﬁnil.;g the sv;yitching points and their analytical
determination for harmonics using the Fourier series .has 'l;een conducted.‘How-
ever, it was found that the disc(e:te Fourier transform (DFT) technique would be
more appmprial‘e to study PWM waveforms, particularly in detecting’ sub-
harmonics and for the on-line cnlculnti:m of spectra of modulated .
waveforms(83,84]. Emphasis is given to the windowing=process of sampled
wavelorms in order to reduce spectral leakage and the cflects of Gibb's
phenomq{mn gncquntergd in discrete Fo‘urier transforms (DFT). ‘

anex;' 3 ‘th% analysis, the, features of the de’lta mOd“ll;tiOl‘; technique as

applied to the operation of inverter are summarized. Realization of a pract‘ical

circuit, its ion, and the perf are also discussed. The
B
details of the practical modulator circuit are included in the appendix. The opera-

tional limitations of inverters using DM switching are briefly discussed.
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] 3.2 Rectnn’x;xllr W‘lu Delta Mod\uluwr_: ) : ’ &

. Based ‘on 'the selection criteria discussed’ in Chapter %, the rectangular wave
delta modn:]ntion (RWDM) has been sejected lc;r switching of an inverter to drive
submersible motors. The intrinsic features of rectangular wave delta modulators
are proved and verified. A novel method of ‘optimization of inverter waveforms

using the tuned modulator is suggested in this section.

§2l The Simple R lar Wave Delta Modul t
. . . R
The following are te intrinsic features of reetnng\lln’ wave delta modula-

tors: <&

Ly Upto the Pase T q the fund 1 voltage t;) frequency ratio
remains é;ns!ant.

2. Beyun& the base frequency, the modulator opt’amtes in the square wave

g moﬁe of o;)elat_ion. The available fundamental component of -the voltage

is constapt in this region. . ' *

3, Low or:Ir' harmonics in the carrier.and the modulated waves_are small
in magnitudes. ' )

4. For fixed window width the number of commautations of the modulated
wave decreases with increase in operating frequency.

5. Modulator performance can be changed by changing the window width
or the filter characteaic. C

8. The modulator is stable,-and it has-a fast response to any ste;change

~
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in its input.

* The basic fectangular wave delta modulator is shown in fig. 3-1. With a

. sinusoidal input to this blofk, the output waveform is a modulated waveform as

shown in ﬁE: 3-2(b). The integrator in the feed-back path of this modulator is a

low pass flter having an_approgimate transfer function of r‘—! The output of

this integrator is, therefore, a hig!: frequeney triangular wave having an average

shape of a sine wave. %his waveform is also known 4§ the estimated_waveform.

The comparator at the front,of the m;:dulaiol: compares the input sin: wave with

the estimated wve. An error signal  is generated from the diferéiice. The hys-
f .

teresis comparator quantizes the error signal to give the modulated signal. Due to

.the [;rmence of the hysteresis comparator, the error signal is bounded between
e _presens )

+ AV of the reference signal. As a result, whenever the error signal reaches
any of the hysteresis boundaries the modulated signal is forced to change its
polarity. This in turn changes the directiol\?f the the excursion of carrier tri-

angular wave. The excursion of the carrier triangular wave is also bounded above

and below the input sine wave by a window + A V. The various waveforms of

the rectangular wave delta modulator are shown in fig. 3-2.
~
.

3.2,3\Anl|ys!s of The Rectln;ull} Wave Delta Modulator:

The. kna]ysh of the Tectangular wave delta modulator requires the
knowledge of switching points of the modulated waveforms. To find the switch-

ing points of typical output waveforms of a rectangular wave delta modulator of
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5
* Hysteresis

<
‘Limiter -

. - Modulated

Sine Wave
4
Filter ~
Fig. 3.1 The block diagram of a rectangu'ar wave
+ delta modulator.

Y

4 waveforms of a rectangular wave

Fjg. 3.2 Ex
 deltgfmodulator. -~
(a) The input sine wave and the estimated
triangular wave.
(b) The modulated wave. 3
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fig. 3-2, the following basic equations are used.

X
*Termination of the first pulst position is governed by the relationship

v
% AS—V- + ?R!inwmh = wt (3-1)

Where, g v

AV = half the window width as shown in fig. 32 [

S = Slope of the triangular carrier wave

v = first pulse termination time

Vg sin wg t = input sine reference wave

wy = the frequency of the input sine wave in radians/sec.

“With the knowledge of the first pulse termination time, the successive
s . A
switching points of the modulated waye can be obtained by numerical solution of
the output equation(3-2) (121] . —

24V +5St, '+ Vgsin wh, - Vgsinwg t,
' s - (-1)'s
In the PWM mode of operation a knowledge of the switching points of the

(3-2)

modulated wave allows one to write the equation of the modulated wave in terms
of gate function ag~

~



zr - Ny "
m(t) = % % (g (tA+tAry,)]
A=0,T2T. i=0

where,
N, is the number of pulses in one cycle

T is the period of one cycle

(Z-1) is the number of cycle of the input sigual simufated

t; is the i th pulse termination time

tis1 I8 the (i+1) th pulse position

m(t) is the modulated wave

g(t,v, w ) is the gate function and defined as

g(tv,u) = u(t -v) - u(t-w)
u(t-v ) and u'( t-w) are the unit step functions which are given as
» .
u(t-v)=1fort>v
2

=0for t<v
—

u(t-w)=l\fort>w

=0fort<w

(3-5)

(3-8)
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The waveforms of the rectangular wave delta m"odulntor were defined using
the switching: points obtained from solution of equations (3—11 to (3-6). The ordi-
nary Fourier series technique was initially carried out. The modulated wave can_
be expressed in terms of Fourier series. The Fourier coefficients of modulated

waveforms in terms of switching points can be written as

Ny
A, = 2 Vac Y (1)"(sinn 4 - sinné,,) (37)
nr 3
. N, %
8, = 2 Vie 5 (1) {cos n 6, - cos néi ) (3-8)
LR X N

4

where,

6 = wp t; is the ith pulse position in radians.
Y

Vge is the de supply voltage

o is the order of harmonics

A, and B, are the n th order Fourier coefficients.
. .
~
For the pulse width modulated mode of operatiorf, the fundamental voltage

of the switching waveform can be obtained from equations (3-7) and (3-8) as

N,
A= 2 S g sinbiy) (39)
T =12, .
- T
By %.-.;. [t cosﬁh!—cos-ii) (3-10)
o b
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Fundamental voltage is given as

V= (AT + B . (31

The fundamental voltage variation of the modulated wave can slso be

obtained from the mod‘ulator's characteristics as follows:

Iy and m are the AN —— wiveform of t \

wave delta modulator réspectively, then for a simpl¢“ftegrator circuit with

transfer function :l;’ the input/o\n),bnt relationship of the integrator is

(@12

T~

Where y, and”the m, are the nth harmonics of the twd waveforms and
w, =2nfz n . For fundamental of the voltage, equation (3-12) can be_expressed

a8

(3-13)

Assuming the fundamental voltage Of the estimated wave to be equal to the mag-

nitude of the input sine wave Vg, equation (3-13) can be written as_

v ”
23 - (3-14)
o Ta
my
- ] m] (3-15)
* . ‘.




. i .
s ) Since Vg remains constant, the fundamental component of voltage varies almost

linearly with frequency. When the modulator operates in the square wave mode
: s &
. of operation, its voltage variation can be obtained from the slope overload condi: X

tion. o &)
The modulator reaches its slope overload condition when the following con-

A

dition prevails:

Vnainﬁxlﬁ% +24g

r= o ) (3-16) .
2 %\ .
where, Ag = is the window width of the hysteresis limits.
qumtion (3-16) can be simplified to
fr= —— : (317)

T4,
. . . <
In the square mode of operation during: the slope overload the harmonics of the

modulator output waveform are given as .

4V

V, =
a oF (3-18)
\
~ The fundamental voltage variation is given as
' )
. 4V, 2
v= 1k i (3-19)
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. A typical fund; tal voltage relationship of ret: It wnvadelh modu-

lated waveform with variation of opmtmg frequeney is shown in fig. 3-3. Flgure

3-3 shows that, for pulse width modulation mode of operntlon of the modulator,

the fuudumencnl voltage increases linearly with frequency, nnd in the square wave
.

mode of [operation the fundamental voltage remains constant over an i‘ncreued

range of the frequency.

. \ .
The| theoretical hsrmonic analysis is cnrried out. using the ex'pre&;ions

obtsined |in this: section and the results are shown in-fig. 34. The theoretical

result shows that dun& Tow frequency ration of the odul; r the si

harmonics of the output waveforms are of higher orders. As the ohe{u}ing fre-
. [N

qu‘encyv of the modulator is increased the lower order harmonics. start appesring.

Once the| modulator reaches the squsre wave mode of operation tk’\r‘nagniwda

" of the hatmonics remain constnnt _The stndy revealed that the harmonlc ﬁontcnu

of adelta modulator can be changed by variation of different pnrameters like the

window Width AV, the integrator tife constant r and the amplitude Vg of modu-

lating wae.

; ;
n =
Variation of Number of Switching ln RWDM, waveform: |
: |

. |

= ] g [

The 'number of commutations in any inverter is an ir}nportnnt lf/nture. The
= i
% |

increase in commutation’ results ig increased commutation - losses-in #he inverter! <
] : &
. i /
Some applications require that this loss be kept at a minimu‘rh level. The

/
amount of switching has to be kept at 8 mini for perfect lutati :1( the
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deltamodulated waves with change in operating fre-
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switching devices of the inverter as well. The number of pulses/half t;yﬂs of the

dulator output f cat be d

d by using the amalysis for determi-

nation of switching points. _

The i-th pulse termination of the modulator output voltage in RWDM mode

of operation is given by

5 = wy (3-20)

where t,is the ith pulse termination time. Solution of the equation (_3-20) for §;

at'6, = r, gives the number of pulses per half cycle of the modulating wave as
© b

.
4 Pi=N, (3-21)
The number of switching per cycle is given as !
. \
N/cycle = 2N, - (3-22)
The number of co;vxrﬁutat\oa /sec c‘sn be oblainedasv s ‘
N/see = 2N,k (3-23)

"

Equations ( 3-20) to (3-22) are solved for differentfrequencies of operations . The
fesults.are shown in fig. 3-5 for various\v:lues of modulsikm signal level Vg . The
"results show that without nnyvothcr change, the number of ;wizching of modu-
lsted wave decreases with the increase in operating frequency. This is a desired

characteristic for the safe operation of inverters.
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Idling Characterlstic:

The idling characteristic of RWDM is mentioned in relutis to the selection
criteria in section 2.4.3. The idling fnq\l.e{ncy of RWDM is given by :
e =0 =5 (3-24)

44

" /
The output of the modulator during idling is a square wave. Thg harmonics of

this idling output waveform are given by

'

Since the fundamental frequency of the idling wave is very high, other har-

monics which are the odd multiples of the fund 1 freq are high also. "
A typical spectrum of an idling waveform of the rectangular wave delta modula-

tor is shown in fig. 3-6. e

3.2.3 The Tuned Rectangular Wave Delta Modulator for Optimized

Operation:

~

Delta modulathn offers the podsibility -of ‘on-line harmonic minimization of

pulse width modulated inverter output without resorting to conventional optimi-

zation processes. C ional b ic minimization includes selective harmonic

limination and h i ighti hni (122,123]. They attempt to

modify the harmonic contents of the inverter output voltage in a desired 5mhinn,
) . %

Vem T o (‘”ili'-
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Fig. 3.6 A spectrum of the idling waveform of a rectangular
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These a‘re normally achieved by waveform synthesis methods. Harmonic minimi-
zation through waveform synthesis are computationally intensive because they

require the solution of sels of transcendental equations. The preferred tzchmque

has been to | delermiiie the switding istanca by-omiye compmuon with a

main-frame computer. The switching points are stored in ‘the erasable pro-
grammable read nn{?‘memory (EPROM) of a micro-computer for use during the
i

inverter operation. For fixed frequency inverter operations this works well. How-

ever, for i ly variable [req peration of an inverter it requires
numerous look-up tables in BPROMs. These teéhniquu of PWM iulve‘rter
wt’weform synthesis for optimization have beeJn identified and reported as spectral
manipulation similar to the filtefing process [124]. It has been shown that har-
monic contents of a sine pulse width modulated inverler‘wavelorm can be altered
23 desired by a filter. Nonetheless, reconstruction of filtered waveforms, to gen-
erate actual switching wavefotms of ap inverter is very involved. As an alterna-
tive, the use of digital delta filter {124] or a multi-stage * delta modulator was
suggested [81]. Fig.3-7. shows a double integrator rectangular wave delta modula-
tor. The second integrator in the modulator performs addit{onal low pass filtering
to the estimated signal to reduce the magritude of harmonics at a particular
‘r'mge of freqx‘x‘e‘my set by the filter characteristic. However at very hlgh fre-
quency operation, the double inge&rator modulators become unstable [101]. This
instability restricts the application of double integrator ‘delta modulator in

inverter operations.
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Hysteresis
Limiter

Modulated

5ml+ » E Wove )
- >

Filter 2 Filter | .

Fig. 37 A rectangular wave delta modulatot with two integrators
in the feedback path.
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In this research, an easy but versatile method of improving the harmonic
contents of the inverter by using a tuned delta modulstor is developed [82]. This
method allows the use of a single integrator in the delta modulator, yet it is used -
to perform the harmonic minimization in the dedired fashion without limiting its

.
performance.

Tuned Delta Modulstor:
h A
The integrator circuit generally used in.the feedback path of the delta
modulator is shown in ﬁg. 3-8(a). The integrator acts as a low pass filter having a

fixed /t_:utoﬂ’ frequency as detbrmined by the following ‘trsn;fer function

() _ & 2
e(s)  rts+l (xas)

whe!'e k is the gain of the filter and r is the time constant of the' integrator. In
the moduylator, e,(s) is the output signal and e, (s ) is tlrhnput signal. The
filter has a fixed cutoff frequency I't‘, ‘The harmonic contents of the estimated
and that of the modulated Waves can be changed by varying the time constant of
thé integrator.

In the tuned delta modulator/the fixed cut-off !req\lency int‘egra[or is
replaced by a tuned filter as shown in fig. &S(b.]A The tuned filter is a combina-
tion of a linear analog multiplier and an integrator [125]. The tuned integrator

has a transfer function as




o1

(a) The simple integrator citcuit.
(b) The tuned integrator <ircuit.

M,su‘-uin 5
Limiter - '

Moduloted -
Wove

Fig. 3.9 The block diagram of a tuned rectangular wavé
delta modulator. .



edf2) k
- (3-27)
o(s) 1}3«1;—s T,

Ii this filter, the input to the maltiplier is a command signal E,. Equation *
(3-27) shows that, the incorporation of the multiplier with the integr@or makes
the integrator’s time constant variable with E.. This ability to change the time

»

constant makes the cut-off frequency of the filter a variable parameter. The vari-

ation of E. is made in such a way that, as the frequency of operation of the

dul i d, the cut-off freq y is lowered. This, in turn; reduces the

appearance of lower order harmonics from the modulator’s output waveform:

This criterion is selected because it has been found that. in the ordinary rec-

-
tangular wave delta. modul. the modulated f hes. a square

wave with the increase of operating frequency. This causes the low order har-

monics to be dominant.. The modified block diagram of the delta modulator w}&b

the tuned filter is shown in fig. 3-9. . A
«
- The performance of a tuned delta modulator was studied theoretically and
experimentally. The theoretical study was carried with the help of discrete

Fourier transform ( DFT ). . - % A
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£33 Analysisof RWDM Using DFT and Windowed DFT: e

-

3.3.1 Necessity of DFT Analygls of PWM Waveforms: ’

Previous theoretical works on pulse wi{ﬁh‘ modulated inverter waveform syn-
thesis are based on the ordinary Fourier series method [126]. Spectral information
of thesetonverter wavelorms is necessary for their design and performance study.

Very few papers, however, dealt with computer processing of actual waverorms

for validation of simulated f . Also, harmonic. analysis by the Fourier
series does not account for the s\lbharmnnics present in the pulse widch‘)modu-
. lated waveforms. These subharmonics are-inherent in all pulse width modulated

“because they h mp of modulating waveform -and the car:

rier ;vaverorm [126]. In the case of delta modulated waveforms, this is true-as
well. Most of the delta modulntio'n';chemes, being nongynchronous process u!;l-
sll)" do not have the symmetrical }.:roparties of the Fourier series analysis. There-
fore in order to study. the nature of the modulated waveforms of the delta modu;
lated inverters, an approach is taken towards the development of an efficient
method aof spectral analysis b&‘sed on discrete Fourier transform ( DFT ).
Emphasis is-placed on the problem. of spectral le;&ge minimization inlroduced’
by truncation of s;mpled wa;'e{orms. The long and short range spectmlvleakagav
are caused by non-synchronous sampling (127] and the abrupt data truncation.
The method of spectral analysis reported in this setion includes the simula-

I
tion of delta modulated waveforms from the switching-points obtained by

is
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solving equations (3-1) ‘and (3-2). The waveforms are sampled and then the
discrete Fourier transform is carried out on the sampled waveforms. To minimize
spectral. leakages in the magnitude spectra, the sampled waveforms are studied

~ ¢

with three different window functions as well. These windo¥Ws are the Hamming,

the Hanning and the Blackman windgws.
3.3.2 Methodology:”

Discrete Fourier transform has been carried out on the sampled simulated

waveforms of the rectangular and the tuned rectangular wave delta modulator..
v -

* The discrete Fourier transform pair representing the continuous Fourier

transform has been used in this analysis. This ‘was done to facilitate the detec:

tion of all f incliding the u@ nics of the modulated

signal. N
Discrete Fourler Transform (DFT):

The Fourier transform pair for continuous signals can be written as:

N

N X(1) = f x(e)eite i, T (am)

x(t) = [ X(r)e?7irat. . (3-20)

for-o0o < f<ooand-o0<t<ooj=vl. -




. v
s -~
. .

- .
The kaus discrete Fourier transform pair that apply to the sampled versions

" of these fu itions can be written as (85] ; £
- izrma %
X(m)=<Ex(n)e W (3-30)
. CONY e :
o JLITYY . .
x(2)=% X(m)e V (3:31)
=0
57 N

Both X(m) and x(n) are’fn complex series.

-

2 - .
When the expressioi?’ &N i replaced by the term Wy, the DFT transform pairs

take the form

AN
A X(m) = %:)i?(nw"---  (aa2)
N-t }
x(n) = EDXW)WN"' T (339)
im0, "

Equations (3-32) and {3-32) ean be denoted by the transform ‘pair as

X(m) = D[x(n)) (®:34)

x(n) = D'[X(m)] ' (3-35)

v

o

AN
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With the subscripts omitted from Wy , the equ/uinu (3-32) can be written as

x(o)ax(u)\n/"jx(uwﬂ{x(z)ww o+ X(N-1) W° (3-36)
?
X(1) = x(0) WO + x(1) W' +x(2) W + . + X(N-1) W

T hd
X(N-1) = x(0) W+ x(1) WN! +

X(N-1) WwN-1*

In matrix form, equation (3-36) can be written as
s s

; ) . -
) WOWo W we «0)
X(1) weowhowe L w x(1)
T X(2) woowe Wt e x(2) :
. = . . ... (3-37)
X(N-1) wows L owee ||
e . .

Where x(0), x (1)...x (N-1) ar¥ the snmple_ values of signal x(t) at sampling
m?ﬁnccs, The evaluation of the ablo:? form of DFT can be done either by a
direct method which is computationally time consuming or by various fast
Fourier t;n‘ sform ( FFT ) algorithms available to evnluate.DFT’[ 128,85 |.

. Az
3.3.3 Discrete Fourler Transform of RWDM Waveforms: ~
) . o

The first step in evaluating spectraj’cén!ent of the modulated waveforms is




to simulate the waveforms at diflerent frequencics of operation using the switch-

.ing points obtained by solving equations ( 3-1) and (3-2). The waveforms thus

obtained _for the RWDM modulator for 10 Hz-75 Hz operation are shown in llg»x.'
~

3-10(a) - 3-10(c). Similar waveforms have been obtained for the tuned rectangu-

lar wave delta modulator. Simulated waveforms at 60 Hz operation \uth B, vary-

ing from 1 - 7 volts are shown in figs. 3-ll(a) 3-ll(c) The m'xgmtude spcctm

obtained for waveforms of figs. 3-10 and 31 are shown in figs. 3-12, and 3-13

pectively. The ioned properti “of the lar and the tuned rec-

tangular wave delta modulators are exjdent fromt these spectra. In fig. 3-10, it is

clear that the waveforms are in pulse width modulation mode at lower 'frequon-

.cies of ‘operations. At higher frequencies of operations, the waveforms are square
¢

waves. In tuned rectangular wave delta modulators the same feature is nvnilni)le,
but at higher operating frequencies the waveforms remain in modulated form
due to the tuning of th‘e filter. From the spectra of fig. 3-12 for RWDM the lincar
variation of fundamental voltage of the RWDM with ﬁequency is observed, From
the spéctra of fig. 3-13; tl{e improvement of the lower harmonic contents of the

modulated waveform from those of fig: 3-12 i observed. Also, it is evident that

the spectra obtained by this DFT i are virtually i .giving all

frequency components,

Usually. the sptchra obtained by DFT operation on sampled waveforms are

corrupted by spectml leakage [85] Ermls are introduced due to rectangular data

wmdowmg and sampling of the actual wuvelorms. Similar errors are encountered
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Fig. 3.11 Simulated modulated Waveforms of a tuned rectangular
wave delta modulator for control voltage variation
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(a) The waveform at control voltage = 1 volt.
(b) The waveform at control voltage = 4 volts.
(¢) The waveform at confrol voltage == 7 Volts.
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Fig. 8.12 Spectea of waveform of igure 310, obtained by
discrete Fourier transforms. -
(a) Spectrum of the waveform at 10 Hz operation.
(b) Spectrum of the waveform at 55 Hz operation.
(¢) Spectrum of the waveform at 75 Hs operation,
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discrete Fourier transforms.
(a) Spectrum of the waveform at control voltage == 1 volt.
(b) Spectrurg of the waveform at control voltage = 4 volts.
(c) Spectrum of the waveform at control voltage == 7 volts.
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in the spectra obtained for rectangular wave delta modulator waveforms analyzed
in this section. The spec:ral leakage is explained with an illustration in section
3.3.4. ’I-‘he conventional method to reduce the effects of spectral leakage in DFT
analysis is to window the waveforms to be analyzed with proper windows. The
data windows lruncate the s’xmpled wave[nrms graduzlly at the front and the

trzulmg end Discrete Fourier transl’urms are_then carried out on windowed
)

modulated waveforms. b
3.3.4 SPECTRAL LEAKAGE:

Spectral leakage is explained in fig: 3-14 by an illustration of discrete
Fourier transform of a cosine waxeform [8s}. Fig.®-14(a) shows that the con-
tinuous Fourier transform of a cosine wave consists of two impulses, symmetrical
about zero frequency. The data window w‘(l) through v:hich the signal s(t) is
analyzed has a continuous Fourier transform of a sinc function as shown in fig.

’3—14(\1). When tife cosine wave of fig. 3-14 (a) is windowed by the rectangular
window uv{ 3-14(b), it results in a truncated waveform which has a Fourier spectra
as shown in fig. 3-14(c). Thus, the spectrum consists of two sinc functions and is_
cormpted by a blurred spectrum around actunl spectra. When sampling is per-
!ormcd the -resultmg frequency domain runctmn gives rise to further error in the
spectra as shown in ﬂg 3—|41d) - 3-14(f). The problems of leakage are associated
with the variations from ideal conditions. The multiplication by the data win-

dow in the time domnix: is equivalent to convolution in.[requency domain. Thus,
®
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the result of the impulse structure of a cosine wave's freduency response when
convolved with the Fourier transform of a sguare data window, is a function of

38X form. This sine function is not localized on the frequency axis. In fact it
x & .

has a series of spurious peaks called side lolies. The ;hjectives of spectral analysis
of windowed waveforms are to localize the contribution -of given frequencies by
reducing the amount of leakage through the side lobes. This consists of applying
the data window to the time series of the signal to l‘ze analyzed which has lower
side lobes i the frequency domain than the rectangular window.
o
3.3.5 Window Functions: !
Wmdowmg of sampled waveforms is analognns to the welghtmg of modu-
lnted waves to reduce the side lobe patterns of waverorms in order to m\mmnze
loak?ge‘lbmugh the side lobes. In thxs study, three windows are considered for
data wi;dov;ing of delta modulated waveforms. These are the Hamming, the
Hanning and the_Blackman windows. These three window functions are chosen
for their convenient application to the sampled data. An extensive review of these
and other window functions are given in reference [126). The three windows con-

sidered in this study have the following expressions [120}:
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Hamming Window:

2rt (.'{-38)

5w (1) = 54 - 48 cos I
Hanning Window:
2t .
w(t)=5(1-eosilr) (3-39)
Blackman Window:
2rt ame
w(t)=42- 5cos NT+;08co=NT (3-40)

The three widows represented, by equations (3-38)-(3-40) are shown in li‘g. 3

15°. The sharpest rising ch istic is that of Blackman window and the

flattést is that of-Hamming window. The Hanning window occupies a position in ’
"_between. The side lobe characteristics of these three windows when us!ezi as a
filter, are obtained by the discrete Fourier transforms on the sampled windows
using equations (3-38) through (3-39). The side lobe characteristics of the three
windows are ;hown in fig. 3-18. Fig. 3-18 shows that the Hamming window has a
smaller main lobe with the first side lobe located at 0 db. The Hanning windm‘v
has wider main lobe and the first side lobe is located at -40db. The Blackman
window ha$.almost similar main lobe as HanJming window but the first side lobe
is located at -70 db. It is, therefore, expected that thé DFT .M the windowed
sampled modulated waveforms will have order of performance as the Blackman,

the Hanning and the Hamming window respectively.
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3.3.6 DFT of Windowed RWDM Waveforms: o

T Ny perform the discrete Fourier f

Nitowed

dulated

on

A
waveforms, the waveforms obtained as described in section 3.3.3 and shown in

T
figs. 3-10 and 3-11 were sampled . The sampled waveforms ‘were windowed by

sampled Version of the Hamming , the Hanning and the Blackman wingows. The

sampled windows are expressed as: -

Hamming:

.
w(n)= .54 .46 cos 271 (3-41)
5 N-1
for 0 <n < N-1
> . \
Hanning:® - ' N
\
) w(,.)=_su.w=(2N’11“), (3-42)
for0 <n < N-1 :
Blackman :
vy ’
.
0 ,A W) = a2 - Seos AR 4+ 05 con K11 )
£ oa = 1
for0<n <N-1 ) .
“
The windowed rge lar wave delta modulated

waveforms of figs. 310
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and 311 are shown in figs. 317 through 3-19. The windowed waveforms of the
tungd modulator with a control woltage range of 1 - 7 volts are shown in figs. 3-
28 10 3-22. The typical spectra for windowed modulated waveforms obtained by
discrete Fourier transforms are shown in fp. 3-23 to 3-25. Typical spegtra for
windowed waveforms of a tuned modulator are shown in figs. 3-28 to 3-28. The
results of these windoyﬁ{l::noni.c anglysis show that the spectra obtained by
this method have less leakage compared to those obtained for rectangular win-

dowing of the waveforms. ~

3.4 Summary of Analytical Results:
A .
The fundamental voltage variation obtained by spectral analysis shows the
following trerid:

1. For ordinary RWDM waveforms, the fundamental voltage increases lincarly
with the frequency. The linearity remains in the modulated mode of ?pem-
tion. Beyond the base frequency, the modulator goes into the square wave

mode of operation and remains there for higher operating frequencies. The

<fundamental componeng of this square wave is constant and is given by V-
: =

§ . -

(hg. 3-29).

-
In the tuned modulator the fundamental voltage variation is linear with fre-

©

quency. However; the rate of linear variation is less in the tuned modulator -

than the variation obtained for ordinary modulator. Tuning of the modula-

tof causes the fundamental component of the voltage to increase at a slower
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rate. The control voltage E, moves the base frequency to a higher \‘/alue.

These trends are shown in figs. 3-30 and 3-31.

3. The switching number of a rectangular wave delta modulated waveform

debreases with the increase in the operati q y of the i} as
shown in fig. 3-32.

4. With constant control voltage E, ( fig. 3-33 ), the number of switching of a
tuned modulator waveform decreases wi:h the increase of operating fre-
q\;ency. It was observed that the simultaneous increase in {requ'euv{y and the

& control voltage keep ‘the number of switching points nearly constant. As a

;esu[t, for a longer range of frequency of operation the tune‘d modulator’s

output waveform remains in the pulse width modulation mode.

The spc‘clml;nnlysis of rectangular wave delta modulated ‘waveforms are
summarized in 'l:xhle.S-l‘ The results of the analysis of the tuned modnlator
waveforms are summarized in L:;ble 3-2. The comparison of the results of two

“TabEs shows.significdntNimprovement of lower order harmonic contents in tuned

RWDM waveforms over those of ordinary RWDM waveforms.

L v
3.5 Practical Modulator Circuits: ~ .
The block representation of RWDM shown in fig-3-1 was realized in a prac-
\ tical circuit. The integrator of the rectangular wave delta modulator was replaced
.

by a tuned integrator to realize the tuned modulator.
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Table

a3

Table of Harmonics
£ RWDM™

o

Harmonics are in p.u. value, which is the

ratio of actual magnitude of the harmonic

to the magnitude of fundamental of the
square wave )

order of
harmenics 1 2 3 4 5 6~ 7 8 9 10
frequency 5 —

in Hz. pu pu  pu pu  pPu  pu pu pu pu

. ; it
10 .16 N
25 .20 < 15 .55
35 +27 .04 .90 .59 .15
55 .45 .05 .25 .66  _ .16 .16 .25
75 1.00 .08 .87 .15 .25 .166 .15 .15
7

order of g -~ .
Harmonics 11 12 13 14 15 16 17 18 19 20
freq. in Hz. Pu pu pu pu pu PuU  pu pu pu pu
10 .08
25 .75 .3 .15 .25
35 .11 .25 .3
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Table 3-2
Table of Harmonics
of Tuned RWDM
( Harmonics are in p.u. value, which are
the ratio of actual magnitude of the
Harmoni¢ to the magnitude ok, fundamental
of tﬁf square wave)

order

of Harmonics

Ec in volts

4 o 6 7 8 9 10

1 2 3

pu pu pu _pu pPu pu pu pu pu  pu.

2 1.00 .166 .316 '.20 .166 .166 ,066 -15 .125
4 .31 .04 .125 1.00 .12 .15 .04 .04 .166
5 .25 2125 .125 Aliﬁ .91 .16 .12 .10
6 .25 .125 .125 .91  .16- .166 .08 .08 .166 .08
7 08 ..08 .15 .15 .166 .166 .20 .833 .383 .25
order of - 11 12 13 14 15 16 17 18 19 20
harmonics

Ec in volts

pu  pu pu pu pu pu pu pu pu  pu
o

2 .04 .04 .15 .125 .25 "~ h
.15 .04 .125 .15 .183

5 .066 .04 .04 .15 .166

6 .066 .04 .04 '.15 .08

.04 . .008 .166 .09 .
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35.1 The R lar Wave Delta Modul:

The analog circuit implementation of a RWDM is shown in fig. 3-34. The
operation of the circuit can be described as follows: Sine reference or modulating
wave Vg sin uR.E is applied to the input of the co parator A;. Whenever the out-

s ' ' "

put voltage of A,{Exceeds the upper or lower boundary ( preset by E:— ), the com-
parator A, revent;s the polarity of modulated wave V; at the input of A,. This

. -

reverses the slope of Vy at the output of A, . It forces carrier wave Vg to oscillate
around the reference waveform Vgsinwpt at ripple frequency .u,. Onco; the
switching waveform is obtained, the signals for switching inverter can be gen-
erated by pr(;per logic circuit d'esign. Some basic waveforms of the circuit are

shown in fig. 3-35.

Tn the circuit, the window width A V is determined by the circuit constants

the logic power supply. Dependence of A V on parameters like R; , Ry and
Vs is givin by the following expression .

Ry
AV = —V, 3-14
= (3-44)

The slopé of the carrier waveform is determined by the time constant of the
integrator of the modulator. Since A, acts as a low pass filter, the pctual output

of the filter has the following relationship

Via

Ve = 2R, Chon
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where,

Ve, s the n th order harmonic of the carrier,

Vi, s the n th ordler hafmonic of the modulated fwave,
wg is the frequency of the in‘put sine wave,

A7 = Vg is the the rms voltage of the input sine wave.

From the circuit analysis perspestive, the fundamental voltage variation of

rectangular wave delta modulator with frequency is given by

i gs Vi
a4 Ve = Vg TR Chn ’(J—«lﬁ)
or
v,
= = (R, C) Vg (3-47)
Ty :

Since the amplitude of Vy is maintained constant , the ratio [J
. w

remains constafit. Therefore, it is evident from the circuit analysis that the fun-

damental voltage variation follows the linear trend with increase in frequency.
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3.5.2 The Tuned RWDM:

The practical modulator circuit described in the section 3.5.1 is ‘modified
according to the requirements\ for a tuned modulator,‘ The ordinary integrator of
the-circ\lit of fig. 3-34 is replaced by a tuned i‘nlegrator as shown in fig. 3-8 (b). \
When ‘the tuned ixitegrator is incorporated, the modified circuit takes the form
shown in fig. 3-38. The principle of operation of this circuit is the same as

described in, subsection 3.5.1. The only exception from the circui‘t"described

. before is that the time constant of the integrator used in the tuned delta modula-

’ +
tor can be controlled by an external control signal. This feature allows adjust-
ment of the filter to a certain cut-off frequency to limit the harmonic ¢ontents of

the output waveforms.

36 Experimental Results:

The harmonic contents of the rectangular- wave delta modulator and the
tuned modulator were studied using a spectrum analyzer. The results obtained
theoretically were thus _ver'\ﬁed. The analyzer used in the experiments had the
Grovislon (of Hauilig Windowisgs ot 46 wavetoris prior ta:the dlictats Bouier
transform.” The waveforms of the experimental RWDM circuit (fig.3-34) are
shown in fig.3-37 for a frequency range of 10 Hz'to 75 Hz_. It is evident that With

the increase in frequ , the dulated wavdprm gradually goes through a

transition from PWM mode to square wave mode. In the case of ordinary RWDM

circuit the waveforms indicate thatsthis transition takes place at 75 Hz. The
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Fig. 3.37 Waveforms of the rectangular wave delta modulator
circuit for 10-75 Hz operations,
(a) Waveforms at 10 Hz operation.
(b) Waveforms at 55 Hr operation.
(c) Waveformé at 75 Hz operation.
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transition [frequency can, however, be changed by varying the modulator's
parameters. During the change of operating frequency it is appnicm that the

number of switching points also decrease with increased frequency.

Experimental waveforms of tuned RWDM are shown in-fig. 3-38 for the 60
Hz‘operatien with control voltage variation from 1 to 7 volts. It is evident that
the carrier triangular wave's slope varies with control signal E,._ The nu‘mher of
commutation of tuned RWDM varies with a change in frequency of the rgrcrence
wave. However, the variation i§ at a slower rate than that observed in the ordi-

nary modulator waveforms.

The experimental wsveforms were analyzed by a spectrum analyzer and the
results for the regular and tuned rectangular wave de]ta modulamr are shown in
figs. 3-30 and 3-40 respectively. In fig. 3-39, thg linear variation of the funda-
mental voltage of the modulator output is obvious. At 10 Hz the fundamental
power component detected was 8.3 db. At 75 Hz the fund‘nmentnl com]yonent of

the power was 20 db. The fund 1 power ined constant for

. modulator operation beyond 75 Hz. The fund‘amental components of the modula-
tor obtained from these experiments are shown.in fig. 3-41. Fig. 3-41 shows that
the voltage‘ increases wiﬂ: the increase in frequency and l’e’m;\ins constant beyond
the base frequency of the modulator. Spectra for the tuned modulator waveform
at 60 Hz with control voltage \rar_iation of 1 to 7 volts are shown in l!g!. 3-40.

From fig. 3-40, the fund. 1 power of the dul: wave isy

found to be 15.8 db with dominant harmonic frequencies at 240, 300, 330, 360,
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420, 520, 540 Hz and above. As the control voltage E. was increased to 4 volts,
the harmonic frequency components below 420 Hz were eliminated. The most
dominant harmonics at E, = 4 volt appear at 420 and 780 Hz. All other harmon-
ics were reduced to negligible values. Increase in E, at 60 Hz beyond 4 volts had
little effect on the harmonic .reduction ‘es $hown in the illustrations. The other

factor observed during these h

was dm the fund; 1 vol-
tage components reduced as the control Yoltnge was increased. The fundamental
vollage/\;sriations of the tuned modulator, with constant frequency operation at
various control voltage and wi@h@ﬁstnnt control voltage operation at ‘ariable

frequency, are shown in figs. 3-42 and 3-43 respectively.

. 0

The variation of the commutation number with the change in operating fre-
quency for-ordinary RWDM is shown in figs. 3-44. The variation was found to be
8s predicfed. With an increased frequency in the operation of the modulator the

number of ion/cycle di d and ined constant after the modu-

lator reached its square wave mode. In the tuned modulator the number of com-"
mutations increased with the incredse in the control voltage E.. At a constant E,

the-pattern was the same as that of the ordinary modulator.

The experimental results of the h ic analysis of the gular wave
4dta modulator and tuned lar wave delta modulator are ized in
table 3-3.

e Y g
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for vatious operating frequencies.
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of rectangular wave felta modulated waves
(3) rectangulat wave delta madulator.
(b) tuned rectangular wave delta, modulator.
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Table 3-3

Table of Harmonics
of RWDM ;

.Harmonics are in p.u. value, which is the
ratio of actual magnitude of the-harmonic

to the magnitude of fundamental of the

* square wave ) s
C Y Expe;,imental Results

order A -
of harmonics 1 ) 2 3 4 5 6+ K
frequency b

in Hz. pu pu pu pu pu pu pu
10 . : -
15 - 216
25 . 257 ]
35 .331° . N .. 105
45 +394 .06 .08 .442 .313
55 »50 .372 .11 .148
65 .833 .221 .176 .186 .118
75 I.BBJ .148 .209; .125 .09 .125
85 .883 .11 .263 .104 «125 .095,
100‘-' .88 .105 .234 .09 .118 .09




o
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Table 3-3
(continued)

- Table of Harmonics
of Tuned RWDM

Harmonics are in p.u. value, which are

the ratio of actual magmtude of the

Harmonic to the magnitude of tundamental

of the square wave)

" Expermental Results.

order of

Harmonics 1 2 3 4 5 6 7 8 "9 10
Ec in volts pu pu‘ pu  pu  pu  pu pu - pu pu, ‘pu

TN

1 - .5 .37 .11 .15 .18

2 £313 .09 .66 .19 .18 .124
3 .167 .118

4 .139 =

5 12 .093 .788 .122

6 -102 05 .78 .105

7 095 - 05 747 18

- B

. order of 11 12 13/ 14 15 16 17 18 19 20
harmonics ¥

Ec in volts pu pu pu pu  pu  pu pu Pu pu pu
1 .

2 (248 .248 .09 .109 -
3 v | «176

4 .156 .095 '
5 .1‘24

3 .

7 109 v
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Table 3-3
(continued)

Table of Harmonics
of RWDM

Harmonics are in p.u. value, which is the
ratio“of actual magnitudé of the harmonic
ko the magnitude of fundamental of the
square wave )

\ Experimental Results

order of

harmonics 8 9 10 11 12 13 14
- frequency

in Hz. - pu pu pu  pu pu pu Pu

10

15

PR §

35 .148  ,590 .313 .118 -

a5 0156 111 .1 <197 .15 <105

. ~

55 .18

65 .06

7 . 2 3

85

100
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Table 3-3
” ‘ (continued)
Table of Harmonics
Of RWDM - . .

( Harmonics are in p.u. value, which is the Ve
ratio of actual. magnitude of the harmofiic: ’
to ‘the magnitude, o¥f~fundamental of the . oy

P square wave )
Experimental Results

s
order of | E . .
harmonics 17 8 -19 29 21 i 22 “23. 24 - 25. 4

f?;quency
in Hz.. « pu pu pu pu pu pu pu - pu pu
10

15 .216 .220 .607 .363 .09 .09

25 .10 .176 . O
35

a5 : -

“
55 : 1L
75 L4

85
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3.7 Limitations: .

Delta modulators when used in inverter applications, have three basic limita-

tions. These limitations are:
1. Voltage limitations,

2. - Commutation limitations, and

3. Synchronization limitation

In the pulse width dulation mode of the modul oltput the fund
- tal voltage variation has shown linear dependency with the f}equency. The vol-
tage availabilities at lower frequencies are about 15'-25 percent higher than
those available lrornl conventional sine PWM techniques. However, as the har-
monic reduction technique is used in the tuned RWDM, this voltage availability
is reduced. This reduction in the available voltage imposes limits on the harmonic
reduction beyond a certain extent. Proper operation of the inverter switches angd
redustion in commutation losses require that the commutation pumber of the
modulated*waveform be limited. In the tuned m,odulator, the number of commu-
tation increuies with the increase of control voltage E. . The modulator tune-up
is, !tierelqre;'{limited by the permissible number of switching of the inverter

switches. The third Iiinin;tion of the delta modulation arises from the free run-

ning. ch istics of the modul Thé modulators in the delta modul

/7 technique track the input refq ¢ signal i ly and the estimation pro-
cess rung “into successive cycles of the reference signal. As a result, the output
" waveform of ordinary RWDM is not symmetrical. In the inverter operation,




o

feference signal, i
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especially for three phase inverter ion, such non-sy i tion of
the modulator would result in a dc level at the output of the inverter. This is not
desirable. To make the modulated ;waves symmetrical in each half-cycle of the

the practics

1 ions the modulator is forced-to-star!

the estimation process dt the beginning of each half cycle of the reference signal.

_This has been achieved in the practical modulator circuit of fig. 3-34 by setting =

the capacitor voltage to zero at the the instant of the beginning of each half cycle

of the'reference sine wave.
3.8 Conclusions:

A novel method of on-line inverter output waveform optimization using

tuned rectangular wave delta modulator circuit has been described. This method

eliminates the necessity of pre-programmed waveform synthesis and use of

micro-computers for optimized v:ayeform generation. The waveforms of ordinn'[y
RWDM and tuned RWDM have been analyzed using discrete Fourier transfor
and windowed discrete Fourier transform. The conventional time-frequency
domain analysis of modulated waveforms was found unsuitable for on-line com-
p’utntions. It also fails to detect the non-integer hnr!nonics presen‘t in the modu-
lated wave. Discrete Fourier transform ' was found to be a better approach in this
w“
respect. Discrete Fourier transform was carried out on the Vindowed sampled
waves to overc:me the limitations of spectral leakages encountered in an ordinary

discrete Fourier sfries analysis.
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Chapter-4
% 4
Analysis of Submersible Motor Fed From Three Phase RWDM Inverter

4.1 Introductlon :
- - - N

. ! . ) .

In !hie»ch}pter the synthesis of three phase RWDM inverter waveforms is
outlined. Two different ty pes. of switching are-analyzed. The type-A switching is
one in which-the switches of the inverter may be turned ON and OFF in each
successive pulse of the modulated wave. In type-B switching each inverter switch
is turned ON and OFF during one half-cycle by the switching pulses. Depending
on the type of switching the inverter output waveforms are.of different nature.

These waveforms are analyzed to find their fundamental voltage availability and

the harmonics of the output voltages. The wnvefor‘ms are defined using switching

dulated

points of the waves d by delta dul: The h

1

. ]
analysis of inverter wivc!omu is done by the discrete Fourier transform on sam-

A
pled_waves. ‘The analytical study proves that the type-B switching performs

. better than the type-A switching in the operation of three phase inverters. There-

fore, the implementation part involves only the type-B switched inverter. The
results of the three phase invc}ter%va{om synthesis are used with the motor
d-q axis model to find the steady state and the start up response of the submersi-

. Al
ble motor. The analytical results obtained are substantisted by experimental

| dulated

results. For experimental purposes a tuned

wave delta

transistorized inverter was designed and built. The inverter was tested for the
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.
steady s&ate and the start up operations of the submersible motor.

4.2 synchula of Three Phase Rechn;nln Wave Delta- Modulated

Inverter ‘Waveforms .

In single phase bridge inverters the inverter switches can be operated in two

diffs !\t achemes".ln the ‘first scheme ( type-A’), the inverter switching devices
can be turned ON and OFF by the succ;wsive positive and negative pulses of the
modulated wave to A;btx;in the inverter' output, as shown in fig. 4-1. In the aec'ond
scheme the inverter switches are operated in such a manner { tyPe -B ) that the
output waveform appears like a modulated square wave as shown in fig. 4-2. Botl‘:
the s;vitnhing schemes are common in a single phase inverter operation. The
type-A switching of three phase inverters nl]qws the inverter to have very low
harmonic contents but with low fundamental voltage availability. Whereas type-

B swntchmg allows grealer fundamental voltage Avmlnblllly TypeB switched

verter cutpit ‘voltes tiave: demiaant low h ics higher than

those of type-A switched inverter.

In type-A scheme, the switchihg waveform of the inverter is the same as the

modulated waveform obtained from the modulator. It has beon shown that this

hi f

g can be

p! d by following expresfions:

For one cycle

coNy i
. (1) = 8 (0 [0t ] (1)
i=0,1.. .
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Fig. 4.1 The single phase bridge inverter output.
( type-A switching )

gug -

Fig. 4.2 The singie phase bridge inverter output.
( type-B switching )

el A
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For multiple cycle

zT N y
cm= B E U [slhamatua] @)
A=0,T2T.. i=0,.. g

” -
In type-B scheme, however,' the switching waveform is the processed modulator
output waveform and appears like ihe waveform shown in fig. 4-3(b). This
switching waveform of fig. 4-3(b) can be represented by the following expressions

as obtained from the illustration of fig. 4-4:

For one cycle ~

z

=01

2 "
5 mr(v)= 3 [;( Gt ) - B4tk T aeit ) ] (+3)
2

For multiple cycle

N,
T T T T
m ()= N [elttrAtatA) gttt tA b b tA)
A=0T2T  i=01 2 2
(44)
)
Knowing the rep ion of switching ¢ of both the schemes and
¢ .

by proper phase staggering ( 120°, -120°, etc. ) and addition ol)scnled waves, the
inverter output vz;ltnges can be obtained. The method for obtaining inverter out-
put voltages is illustrated in fig. 4-5 for the square wave mode operaticn of the
modulator. Tn fig. 4-5, the line to line voltages of three phase inverter are
obtained by thegddition of scaled modulator waves with the ph;ue shifted

p \
scaled modulated wave, For nbtaining three phass PWM.inverter waveforms, the
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Fig. 4.3 Switching waveforms of the three phase inverter.
(a) Switching waveforms, type-A.
(b) Switching waveforms, type-B.
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Fig. 4.4 The construction of type-B switching waveforms

by gate functions.
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Fig 4.5 The illustration of defining the three pbase
inverter output from the switching waveforms.
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resultant waves are gated by the line 5"line vnltage waveform of unity magni--
tude, and then the modulnted pulses are shaped ¢ m #Vor- V This is necessary

because inverter hne voltsga unnot be more thnn Vin elther dlrecuon The

analytical exprsxons for the line to line voltnges in ternis of switchifig

waveforms of type-A and type-B are obtained as

: / .
vﬂ,=§va‘[mm+mu+})]-(a)a. (#5)
, v
vk=§vd‘[mu-§)+mu-})]u(ncx ()
vu=%v,([m(u%)+mu+%)]umc,. (+7)
Since,v
N m(t-T) = 4m(t) (+8)
in(t—%)—«m(u'%) and (49)
w(er Dym-me-I) - (+10)
X Y
Equations (4-5) to (4-7) can be re-written ag:”
Vo= Ve |m()ra(es T |ufers, (#11)




T 2160 f
- - - WS
Vk=71'vd_‘[m(t-% »'m(t+—}')]u(l)G,_ M 19
,V(.=-,%V.k[-m(t)~m.(c--'§—)]...(¢)c, (413)

7 S ,

In equations (45) to (+13),.G, , Gy, and Gy are lineto line voltage waveforms of
unity magnitude in the square mode of operation. T_i:e line to neutral v‘olgagu of

the inverter are given by the following expressions ~

“ Vi = 2 (V- V) T i
Vb.’%(v.rvu) i 15)»
. : Va=3(Ve-Va) - . (4-18).

The expressions for line to neutral voltages of {he inverterican be written in

terms of switching waveform as

~ : ‘
Va2 [(m(w)—mw%nca-(‘m.m+m<_z+}nc.]um

(417)

Vi o= [(-mmmm%nc, ‘(m(l’%)-m("""’:—))cz]“(”

(4-18)

V.

Vo= [—(m(c'—{»mm{nc,-(-mm—mu-}nc, u(v)

®19)
. . '
In equations (4-1) to (4-19), the following terms apply:




fut, Lymhe gate function starting at time ¢, ind ending amitile i

u( ti is the unit step function,
m(t) is the modulated’switching waveform for type-A or type-B,
# N
N s the number of pulses in half cycle,

. .
A =04 2T... etc , where T is the period of the inverter wave, e
. .- . N
mr,_ is the. modulated switcl\]{‘ng waveform for one cycle only, N
s = 3 S

m(t+nT) isthe modulated s\.vhch'mg wuveforgn shifted by +nT
. \ . 5 :

o B B . -
*, ViVie Ve, are the line to line voltages of the invertpr, ) 7
~ i

VinVia Veaare the line to neutral voltages of th¥=igverter. .

»

Typical wa_volurms obtained by the above expressions for type-B switched
inverters are shown in figs. 4-6 and 47 resp‘ec‘t’ively. Us.ing this method it is also
possible to papdict the theoretical waveforms of d-q axis voltages for the motor
analysis. The d-q axis voltages V4 B,nd Vo g re obtained by the following trﬁns&g/\\;

mation

Vie (420)
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' delta modulated inverter. ( type.B awitching |
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Fig 4.7 Typical line to neutral voltages of a three phase
delta modulated inverter, (type-B switching )
(a) Van , with control voltage = 2,0 volts,
(b) Van , with control voltage = 30 voley *
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\ ) . Lo
O Vem e [V va L T e
Vo= g [2vvieva ] T

Substituting equations (4-5) to (4-7)-in equations, (4-21) and (4-22), V, and Vo

can be obtained as: .~

d « ® 5 o % )
Vu=#Vd‘%%—%)—m(rf%))G‘+‘(m(t)+m(tv‘-‘§-))c, ;.
o C o g - LW

- Y
o Vo=Vl (m(O+n (et TN G- (ac-4)m(e+ Dy,
lem()-m- TG
™~ Mo o © (424)

Typlcnl axis voltages of a three phue type-B switched inverter wavel'm‘ms

obtmned by equations (4-23) and (+24) are shown in fig. 4-8.

43 Cholce of Switching For Three Phase Jnverter :

‘ o
Fora three'p’hase inverter tyN_uB' switching is the ;;relerablevoplion. In single

phase inverters, type-B switching gives rise to 3rd, 5th and other low order har-

monics at the output of the inverter. However, jin a three phase inverter due to

inverter and load connections, some of these low order harmonics disappear or

e
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-are substantially reduced in their mngnmldes The cholca of type-b swnlchmg u

slso due to the higher fundamental voltage availability o{ the inverter. Typxcnl

voltage gvmlabxlny of a three phue RWDM inverter switched: in scheme-B is *

shown in fig. 4-9.

44 Bmonlc Analysis of Three th RWDM Invertg aneformm

. Uslng DFT on Windowed &.v.rumu :

" Harmonic snalysis of a ‘tlm_ae ‘phase’ ! dulated .

waye . delta

inverter wnveform's by discrete Fourier. transform is desceibed in this ‘seclion

_The lme to line, nnd the line to neutrnl vollages of:| the mvener were defined by~

equations (4—1) to (4—10) The line to, neutral voltnges thus obtained for a tuned

delta modulated mvener are shown in fig. 4-10. The. discrete Fourier trunsform

(DFT) has been performed oii the sxmpled waverorms The spectrs obtained for
the ordinary DFT operation on the wavelormx of fig. 4-10(b)-are shown m\ﬁg 4
11. The inverter waveforms were also studied with the Hamming, the Hnnmng
and the B)ackman windows. The windowed waveforms were obtained lmm the

equations of three phase inverter output voltaga and the wn_ndow funétions.

The windowed waveforms are obtained by the !oll‘o“v‘ving s
Vae(4) = Vaw(t) (+25)
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Vae(t) is the windowed waveform,

e .

V,, is the line to neutral voltage of the inverter, ¢

..
"y N “
. w(t)is the window function.

The windowed waveforms of the inverter output of fig. 4-1Q(b) are shown in figs.
.
412, 4-13 and 414 for the Hamm’ing, the Hanning and the Blackman winj}_ws

respectively. Typi&l spectra for windowed waveforms of fig. 4-12 to 4-147are
T -« '
shown in figs. 4-15 to 4-17 respectively.
The hnrﬁ}bnic analyses of the three phase inverter waveforms were carried
. . -

sout to find the fundamental voltage hvailability and the low order harmonic ~mn-
tents of the output. It was evident from these studies that in three phase
inverter output, the I;:ow order ha[monfcs Iij‘(e s;d , 5th, etc. are };_rment, but in
ve'ry small magnitude. The spectral plof obtai-ned by the DFT are continuous
spectra and the swb’ﬁrmonics of the g@erter output voltages are detected as
well. The information of these subharmonics is important in thé frequency

“domain analyses of inverter fed motors.

45 Analyfleal Modeling of Inverter-Fed Submersible Motors:

a,

In, the past, the steady state and transient performances of inverter fed

hines have been investigated by fi

domain analyses using the Fourier

series and harmonic equivalent circuits of motors. It involves the determination
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.
of individual harmonic current and torque. The total current and the torque ire

obtained by superposition of the indi

usl components. Motor losses lnd
efficiency are also calculated from the hlrmum: motor equn slent circuits and the
vollage hnrmomcs of th?/mverter output. To obtain an accurate determination of
the current and the torque by this method, it is necmry to include a- large
number of barmonics. For pnlse‘ividlh modulated invert.ers. it is n;easny to
include all significant sid;l;nnd harmonics up to the ffth nn;‘l the higher hurmon‘-
ics of the carrier frequency|130]. This implies that if tl?e carrier he(;\lency is
eleven or thirt,een times the freduency of the modulating wave, harmonics
including 55 th or 65 th and‘higher of the inverter output waveform h‘lve to be |
cdusidfred for the solution of the motor equntioxlls. The process is, thnre;o}é, com-
pu!atio;lslly- long and tedious. Another factor that restricts (33 accuracy of this
kind of analysis is the ‘omission of subharmonic components of the voltage
waveforms. @rdinary Fourier se’ri.é' analysis does not provide perti}nent informa-
btion sbout the subharmonic, components of inverter output ;roll;gg, However, the
pulse width modulated inverter output voltages contsin sublurmor‘ﬁc components
due to the simultaneous presence of modulating and carrier wave “‘frequenciu. As
a result, significant deviation from actual performance is obtained from this type *
of analy‘sisA o7 ( " &
s
These problems involying frequency domam snalyses| of invirter led

/
machms are ot encountered in time domain analyses. In the llme domain model

the effects of all bar l}lc! are atcounted for in the 1eﬁmuon of output
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waveforms of the inverter. As a result, time domain analysis is considéred to be
accurate and more efficient in ﬁnding‘th‘e perlor:ances of inverter fed mok;r&

~ The analysis of the performance of an inverter fed motor in the time domain
require.s the formulation of the inverter output voltage and the system equations

o!“the motor and the lo The basic three phase inverter voltage equations are

rieveloped in sectiop 42. For motor equations standard - d-q axis equations of
reduced order are used. The sys‘tem equatigns of the submersible pump load are
formulated using the electrical analog circuit of the pump. The system equations
ate*presenited in sections 4.5.1 through 4.5.3. The solutions of-the system equa

tions of inverter output voltage, the motor and the load mode!§ give complete

e . I '
. f result of the sub ble drive systems. - B
4.5.1 Inverter Output Waveforms: . ’
Inverter output voltages for the analysis are based on the inverter voltage .
. synthesis presented in section 4.2. In section 4.2 inverter line voltages are
z ; )

described as

r *e T . ; ‘

m(t) m(t+-—

Vi 8
Vie | = E Vi [m(- Ty cm(es T
Va ) T
Sl ame) ae-T)
. . i
Gu(t) o 0
. x| o Gu(e) o ; (420)
s ’ 0 0 Gyu(e)
.




!
I

9

The d-q axis voltages required for the analysis are given by

o Vi VB wiv m(u-—:-
Vol _va| -7 2 T T
[vr,]"Td Lol | [mleg) melery)
2 2

—m(t) —n'z(c-%)

Gu(t) 0, 0 .
L X 0 Gyu(t) © (4-27)
[} 0 Gyu(t)
N

4.5.2 Motor Model: E 5

. 5T ‘

The motor model used for thestudy of inverter fed submersible motors is
based on the d-q axis motor equivalent circuits shown in fig. 418. A re‘lced
order model in stationary axis can be obtained by assuming V,, = 0 and Vg, =0,

and neglecting the derivatives ol'V, and Vg, ( appendix-VI ). The motorsmodel

equations in matrix form are given as

Ve j R 0 o ] iq

Vi [ o . o0 i
0 |7 | Lap wrla vt Ly il | | (2

° wly Lop  wly e+ Lip | |ia

! where,
‘
. . $

§ s Lytlg=1L, ~ (4-20)
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Fig 4.18 The induction maching models in d-q aves.

(a) q-axis
{b) d- axi

),

(b)
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- L+ L= L, . (4-30)

§ d E
= ~ °
and p "
- .
In the above dynamic motor model each of the d-q axis voltage is dependent
| B
on two current varigbles. But if the current varisbles are replaced in equation (4-
. 28) by flux variables, the voltages become¢’dependent on the stgte variable of the
flux. This makes computer solution of these -equations easier. The following
s

modification is carried out for the dynamic motor model

Let,

' ¢
\

v =1ba Yu Vor v | (+3) o
L, 0 Ly 0
oL 0L
L=y oL o b (4-32)
‘ 0L, 0L
4 i L 0 -Ly
0 L, [
. 1 ¥ ot 4
it sl VA R (4-33)
= <L, 0 L
., i=L'y (4-34)

substituting L, L, - Lp? = F, and equations (4-84) and (4-33) in equation (4-28),

one obtains the required equations in flux variable as ¥ §



v, ¥ ’
g 5L, rla - .
Va 0 F °. F Yo &
o= |-nla rL, L Ve (4-35)
0 F ‘,

/ E

The simplified form of motor equations as shown in equation (@35), and the
voltage equations of inverter waveforms given in section.4.s.3 rorl;n the basis for
the performance study of the mverte\;- fed: submerslblr motor. The solution of
equation (4-35) allows one to obtain the I!nx mformahon Thxs can nlso be used
for solution .ol' “eurrents “using equation (4—34). The équation used foﬁnding the

torque is i %

o= 20 ) Lo ia-aia) . (+39)

e

~“
where,

P is the number of poles,\

453 Load Model:
" .

The load used in the study is a submersible pump coupled to the submersi-
ble motor set. The motor pump set can be modeled as shown in fig 419. The
equations goven\ing this model can be derived from the electrical analog circuit

as shown iu( fig. 4-19(b). These equations are given as t !




H Dp

(b)

Fig. 4.19 The electrical analog model of a
submiersible pump.

»(a) mechanical model (b) electrical model
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[T‘] Dm+pJ.+p—K, [ } .
- 4-
0 -p—'K—'- D+pl, +—— “ a1
Bere, - N ;

T, is themotor torque,

* Ju isthe motor inertia constant, xfi

46

wy is the motor angular speed,

.
K, is the stifiness*constant,
J, isthe pump inertia constant,
w, isthe pump ahgular speed. - : 4
Equation (4-37) can be re-written as
o 1 B
_| i e
[wml Dt p s pK, T [Tm] ;
4-38)
_d 1 0
e D+pJ, +—p X,
<

Steady State Performance.of Submersl‘la Motor Fed From RWDM

* kverurx o

The models of the three phase inverter voltages, the mq‘f’ nd the load

. were used to study the steady state performance of the submegsible motor fed

from the rectangular wave delta modulated inverter. The study .was done for a
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230 V, 1.5 hp, 2 pole sub‘ersible motor. The motor parameters for B:e’ submersi-

_ ble motor are listed in the appendix-IV. The parameters of a 230 V, 15 hp, 2

pole conventional class-B induction motor are also included in the table. The

steady state performances were studied for the submersible motor and the con-

motor. The listed in dix-I'V show that, com-

pared to the jonsl class-B induction motor the sub ible motor, has

higher stator and rotor resistnnces and also has higher leakage reactances. These

higher values of motor psmmelen of suhmemb}e motor obvlously increase thev E

motor losses during the stendy state operation. Thme would also Iend to hlgher

input current in the submemble motor for the same load conditions.

The steady stnte performances_ of-the motors were snslytlcally carried out by

mlvmg the si di ial ati formed by, the motor input vol-

tages and the motor equations. Frum the dynamic mot&\model of the equation

(4-35), the flux Waveforms were obtained by re-nrnngm{/the equauon (4-39) as

Equation (4-39) shows that the flux relationships in a reduced order model

are first order simull ¥s gl i i For steady state conditions,

nLe L, -
Ty L
= F 9
Ya ml “rila Ve
Ya S . F Va La
oy L ) 0| (39

e
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these equations were solVed using » standard technique ( using IMSL

in VAX/VMS .system ) for sinusoidal and gular wave delta modulated

inverter fed motors. The d-q axis currents of the motor are related to the d-q axis

flux by linear algebraic equations. as in equatioh (4-40)

L, La

- F LT .
i v
» : i w |
gy 9 '% 8 La Ya \ 0
e e
iar P FoL Yar

i) .'“T"' o F o

- h

Equnt;'on (4—40)'shows that the d-q axis currents are the scaled combination
of flux wavel'on_ns. Since the flux solution for the different inputs were calculated
by solving the equation (4-39), calculation for curr$ at steady state condition
of the motors required simple algebraic summation of scaled d-q axis fluxes. The
d-q axis currents‘v&iere then used to obtain the line currents during the steady

state operation. The steady state line currents thus obtained for the conventional

‘motor and the submersible motor with sinusoidal input are shown in figs. 4-20

and 4-21. The line current for the submersible motor fed from the rectangular
wave delta modulated inverter at 60 Hz operation is shown in fig. 4-22. The
results show that the submersible m:;wr, due to its higher motor constant éhan
conventional induction motor, draws higher line currents from the supply under

=
the same operating conditions. The current waveforms thus obtained were



magnitude in amps.

magnitude in amps.

° ooz . oo “ooe oo ar
time in seconds

Fig. 4.20 The line current of the conventional induction
motor with sinusoldal supply ( 1/4 full load).
s .

woi | oor ooy oo, oos aoe

timé in seconds

Fig. 4.21 The line current of the submersible induction
motor with sinusoidal supply ( 174 full foad).
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magnitude in amps.

o2 604 008 oo L35 a1z, oie
L time in’seconds
Fig. 4.2 The live current of the submersible motor with
the rectangular wave delta modulated inverter
supply 2t 60 Hz. ( 1/4 full load )

magnitude in amps.

° 0 100 10 00
frequency in Hz

Fig. 4.23 The spectrum of the line,current obtained by
discrete Fourie transform at 60 H. ( 1/4
full load )

ot
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n.m;.lyzed for the h fiosk Typical sp obtained by ordinary
discrete Fourier transform on a current wave at 60 Hz operation for .% tull load
is shown in fig. 4-23. The torqug 6f.the submersible motor obtained for the 60 Hz
operation at % load is §hown in fig. 3;24. In variable frequency o?en loop opera-

tion, the slip of the induction mom!{chlnga with the change of load and the
frequency. It_is necessary to adapt a strategy that would change the frequency

. . i & * .
and the voltage of the supply in accordance with the variation of the load in such

a manner that near constant slip op{}g‘on is n!wn);s énsured. sl'his is necessary

to maintain the motor efficiency it at its opti

4.7 Start-up Response .of Submel\-slbla Motor Fed From RWDM
. 5

.

Inverter:
3

The start up performance of the submersible motor and the conventional
induction motor were studiefi theoretically for sinusoidal and RWDM -inverter
voltage inputs. Both on-line start with, and without the ramp frequency and vol-
tage (RFV) variation of input voltages were considered. The method involved the

solution of equation (4-35). The results are presented. for no-load start up !

respcns:m of the submersible motor and the ional motor. The sol:

were obtained by solving simull di ial and appropri
- 4

torque and position relationships using IMSL sub ines in VAX/VMS.

The starting current, torque and the speed cha¥actetigtics of a conventional”

induction motor fed from sinusoidal line voltage are presented in figs. 4-25 to 4
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27. The current, torqﬁe and the speed characteristics of a submersible motor fed
from sinusoidal voltage are shown in fgs. 428 to 4-30. These characteristigs were
obtained for a derated motor voltage of 175 V ling to.line. The experiments were
carried out with an inverter having a fundamental voltage limitation of 175 V.
Thus the derating was necessary [?r the purpose of}axperi:nenhl verification. The
onlin. Slébting chiaracterisies shiow that otk theconventional ud the subimer-
sible motors demonstrate a similar tendency. Without ramp frequency and vol-
tage start; the starting mnen'.; of both motors are very high. It was almost 12
tiines the rated current for a conventional motor and 8 times the rated curren'..
for the submersible motor. The speed fesponses of ‘both motors were also found to
_be extremely quick. The conventional motor mfched it;[u\perating speed jin 2.5

second w]

The faster speed nspon:e of the subi le m&tbr was due to its low inertia

constant. Iitia) torque fuctuations &1 the motoly were fowmd to be high as w’elL
The start up performance with a RWDM inverter supply wi.thont RFV showed
that motors take longer times to reach steady state conditions. Th’e results are
shown in figs. 4-31 to 433, Since high starting current and the fast speed
response are not desirable for submc_mible motors, it is necms;w to extend the
starting peri‘Bd of these motors with a gradual increase of voltage and frequency
during-start up. Thi; would ensure longer life and more reliable operation of
these motors. The ramp voltage and lrewéncy characteristic of the rectan‘gular

wave delta dulated

inverter was successl used for providing ' soft start

eas thé submersible motor reached the operating speed in 0.5 seconds.
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torque in Nm.

s . X 2 e 2 an e
time in seconds y
Elg. 424 The computed developed torque,of the submersible
motor with the rectangular wave delta modulated
inverter supply. ( load = 1/4 full load, where
foll losd = 15 bp. )
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Fig. 4.25 The computed on-line starting current of the

conventional induction motor with Ilnlllolﬂll
input.
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Fig. 4.28 Computed on-line-developed torque characteritics
of the conventional induction motor fox, a
sinusoidal supply.

(a) The forque versus time characteristic.
(b) The torque versus speed characteristic. -
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Fig. 4.27 The starting speed of the conventional induction
* motor with sinusoidal supply.
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Fig. 4.28 The computed on-line starting current of the
submersible induction motor with sinusoidal
supply.
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Fig. 4.20 Computed on-line developed torque characteristics
of the submersible induction motor
sinusoidal supply.

(3) The torque versus time characteri
(b) The torque versus speed characterist
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speed in rad./sec.

; (] 0.2 }\c 0 o8 1 1.2 1.6
time in seconds
“ Fig. 430 The starting speed of the submersible induction
i motor with sinusoidal supply.
o
~ '
~dJ
L]
< time in seconds
: . B
Fig. 4.31 The computed onffine starting current of the _

ith the rectangular
T supply without RFV.

submersible inductibn motor
wave delta modulated jnv
°
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Fig. 4.32 Computed on-line developed torque characteristics
of the submersible induction motor -for a
rectangular wave delta modulated inverter supply
without RFV,

(n) The torque versus time characteristic.
(b) The torque versus speed characteristic.

(2)

®)
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Fig. 4.33 The starting speed of the submersible induction
motor with the rectangular wave delta modulated
inveter supply without RFV.,
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0 . \
haracteristic of the the submersible motors. When the RFV charadteristic of
\

RWDM inverters was used, the starting current and speed responses showed gra-
dual transition to the operating current and the speed. The start up responses of
the submersible motor with a rectangular wave delta {nadulnted inverter w\ilh the
RFV characteristic at no-load are sh:)'wn in figs. 4-34 to 4-36. A comparison of
these results with those obtained for stnr/t up characteristics for on-line start
without the RFV shows. a significant reduction in transient torque and current

~
from those obtained during" start up with the RFV. The develpped torque vs.

time: characteristics showed a to the operating point rather
than high oscillation as compared o those obtained for start up without the
RFYV. The current profile showed that the initial current is lower with RFV sup-
ply than th; currents ob;sined during on-line start up with sinusoidal supply or
-RWDM inverter supply without RE;V. The speed time characteristic has a

h ition to the speed. It'is, therefore, proved that the

desirgd soft start characteristic of submersible motors can be obtained by dhe
RFYV characteristic of RWDM inverter supply. \‘
. *
4.8 Experimental Resulta: T J>
v ;
The theoretical results obtained in sections 4.2 to 4.7 were verified' experi-
mentally. zhe experimental verifications were done on a 230 V, 1.5 hp submersi-

ble motor coupled to a % horse power submersible pump. For inverter voltages,

@ a transistorized three phase inverter rated at 175 V, 5 kW was designed and
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Fig. 4.34 The computed on-line starting current of the
submersible induction motor with the rectangutar
wave delta modulated inverter supply with RFV.
(a) q - axis current.

(b) d - axis current.
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Fig. 4.35 Computed on-line developed torque characteristics
of the submersible induction motor for a
rectangular wave delta modulated inverter supply
with RFV,

(3) The torque versus time characterist
(b) The torque versus speed characteristic. .
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Fig. 4.38 The starting speed of the submersible induction
motor with the rectangular wave delta modulated
o inverter supply with RFV.
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constructed. The RWDM logic comtrol circuit for switching the inverter is
included in appendix I. A novel three phase sine wave generator was used for the

reference signal g of the delta modulators(appendix III).
\

The submersible motor was run from sinusoidal line voltage and the rec-

tangular wave delta modulated inverter voltage.. The motor current was

recorded. The line current waveform of the lar wave delta modulated

inverter fed motor at % full load and 60 Hz operation is shown in fig. 4-37.

The Iil‘ne current shown in fig. 4-37 compares favorably with that obtained analyt-
“ically. It is shown in fig. 4-22. The error between theoretical and the experi-
. mental results is within'5 percent. The start up response of the submersible

motor was also experimentally determined for no load conditions. Theé current

during the i | start up of a motor fed from sinusoidal line
voltage is shown in fig. 4-38. A similar waveform for the motor start-up with
RWDM 'mv;rter (without RFV) supp{y is shm‘vn in fig. 4-39. The line current and
speed variations obtained for RWDM inverter supply’ (with RFV) for a no load
condition is shown in fig. 4-40. It shows that the current fluctuation is reduced as _
predicted. In the study of start up response of the motor the e’rrom found in cal-

s

A4

culated and experimental.results are within 12 percent.
v
49 Concluslons: ¥

An analysis of the submersible motor fed from RWDM inverter has been

presented with the time domain modeling of the inverter output voltages, the
‘ "

N IS
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Figs 4.37 The experimental line current of the submersible
motor fed from the three phase rectangular wave
delta modulated igverter at 60 Hz.

g
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Fig. 4. 38. The _!Illlm; current of the’submersible motor with
sinusoial supply ( at o load ).
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Fig. 439 The starting current of the submersible motor with
the rectangular wave delta modulated ioverter
supply at no load,




Fig. 440 The startiog current of the submersible motor with
the rectangular wave delts modulated inverter supply
at noload (with RFV), -
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motor and the load. Tlle conventional !requenc)’ domain analysis was avoided. To
cbtnln accurate results by frequency domain nna]ysu, it is necessary to mclude
precise values of a- large number of voltage harmomcs. The time domain analysis
is free from su‘ch limitations. It is computationally easier and faster as well. The
steady state responses showed that. the submensible molor has higher losses and
lower efficiency f}an 3 con\{gntional induction motgr of the same size. These
results were anticipated because of the higher leakage reactances and resistances
of the motor. The start up perlormunce showed that wnho,u! the ramp frequency
and voltage (RFV)conlraI the starting current of the lhotor was mltmlly in the
order of 8-10 times the full load current. The current and speed osclllauons were
also prominent. The use of the RFV during start up period limited the initial
current to a low value of 2-3 times the full load current. It also reduced the
torque and speed oscillations substantially. The inherent 1‘>ropevly of V/f of rec-
tangulsr wave delta modulated inverter was used for RFV control ingthis study.
This property would enhance the expected operating life of motors by providing

soft starting characteristics of these units.
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i ”
. Chapter - 5 ) i
Varlable Speed Operation oi‘ Submersible Motors ¢
B

5.1 Introduction :

Variable speed operation of the submersible motor was studied with a pump
as its load. The production of a submersible motor is determined by the intersec-
tion of the pump load Ii;e and the pump capacity curve. With the constant
speed, the 61§nting point in the head capacity curve n;oves \Viﬂl'(!lc change in
production. The inlersec‘tion of t!le load Iin_e and the capacity nur:re may oceur
outside nte pre;cribed efliciency Tange: With the adjustable speed pumping, the
operating paint may be held within the desired range during the c‘h;\nga in pro-
duction. Where productivity‘is less thl;n expected it is desired that the system be
operated at a lower speed. Whe’reas, if the produ’ctivity is more than expected,
the motor-pump \should be operaten‘i at higher speed. Adjustable speed operations
also provide a means to avoid throttling, pump-offs, gas lock conditions,goli;] set-

/ ling and motor over besting ete[21]. * :

When submersible motors are used for pump operation, it is impractical to
have a closed loop operation of the system with motor speed as- the control
parametert This is due to the inaccessibility of the shaft of the sealed’ ‘motor. The

closed loop operation of these motors is therefore possible only with the speed

from d ities other than that measured at the shaft, This

chapter outlines a i-closed Ioo)‘) tion of sub ible motors supplied from
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delta modulated invertérs. The semi-closed loop operation is suggested for the

speed variability to match variable loads. The speed information of the submersi-

ble motor pump was obtained by an indirect method from the motor's input vol-
tage, current and the power factor. This control technique ensured the constant
slip operation of the motor, and maintained the motor efficiency at its optimnm

value at various loads.

5.2 Submersible Pump Per
The performance curves of a pump indicating total head versus capacity ;n,
rated gpwd are usually provided by the mm\ul’act(&’ret The curve for the psmp
u_scd us\ the load in this study is shown in fig. 5-1. The performance curve can be
shifted to give a new productivity curve at different speed of operation by observ-
ing the Tollowing conditions: ‘
Flow rate is proportional to { speed ),
Head is proportional to ( speed J, and
torque is proportional to ( speed s
Using ll;e above proportionalities it is possible to duplicate the curyes of
.

other frequencies as,follow

New flow rate  __ _old rate (5-1)
New speed old speed

New Head  __ _old head (5:2)

New speed * old speed ? E

‘The new pump performance wurves al different operating frequencies as

obtained by iti\;ations (5.1) snd (5.2) are shown in fig. 5-2. The pump efficiency
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Fig. 5.1 The pelformance curve of the submersible pump (J54). .

(Performance curves were supplied on tequest by the
pump division of F.E Myers Co., Ashland, Ohio, U.S.A )
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curve (also provided by the manufacturer) pesks at certain operating range as
shown in fig. 5-3. As the-operating point moves on a constant speed head capa-
gity curve away from peak efficiengy.point, the pump operation becomes unbal-

anced. l!\ however, the working point is moved down the load line by sdjustible
)

speed op fation, the ball d relationship between the flow lnd'the lift cantbe .
i ‘maintained" The efficiency will remrain practically unchanged in such a situation.
The criterioﬁ, therefore, demands that the flow be reduced or increased in propor-
tion to the speed and the head in proportion to the speed squared. The following
relaliunships‘are thus required for such an operation:
Q= KN d (5-3)

H=K N ) (5-4)
where,

Qis the flow rate in litre per minute,

His the head lift in meter,

Nis the speed in rpm,

K and K, is the constants of proportionality.

Based on the submersible pump performance, the control strategies adapted
for the submersible motor drive with delta modulated inverter supply are dis-

cussed. -
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5.3 Control Strategy for Variable Speed Submersible Motor Drive:

Basic requi of the submerible pump operation with a
p

b Do

motor can be met in an open loop scalar control manner. The schematic diagram
of such a control scheme is show’n in fig. 5-4. In this open loop control, the
increased or decreased lom‘i demand of the pump is. matched with the proper
5peed selection ‘of the motor by frequency command to the inverter. Since the
delta modulation technique is used to control the inverter operation, the current
control of the motor is achieved inherently by the modulation process. However,
to provide ;.he soft start characteristic of the whole system and to achieve an

automatic control of the speed when a sudden change of load takes place, it is

desirable to have a i-closed loop operstion with speed feedback. This type of
control is necessary in order to obtain s constant slip operation of the motor
because the efficiency of a motor depends on the slip. Since feedhp‘pk using a
t{;chomeler or other devices for speed sensing is not penﬁissible. a novel method
has been developed to monitor the speed of the motor from the terminal quanti-
. ties at the sup;)lyA The technique was used for the semi-closed loop operation of a
isubmersihle motor as shown in fig. 5-5. During the starting period, the speed
reference signal was set to attain a predetermined speed. As the motor supply
was turned ON, the speed feedback ensured a smooth linear speed up with time.
During operation the speed eomn\und was changed to match the new producti‘on
" level according to the need of the incréased or the decreased load. The changes in
loading were sensed simultanequsly by the current and the voltage sensors, “The
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Fig. 5.4 The schematic diagram of the-open loop control of a -
submersible molor fed from the delta modulated inverter
supply. .
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Fig 5.5 The schematic diagram of the semi-closed loop control of
2 submersible motor fed from the delta modulated inserter

supply.
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operating speed was calculated, fedback 4o the comparator and was compared

with the reference speed signal. A corrective signal to the inverter to change the

frequency in grder to maintain the constant slip operation was issued accordinz:ly,
e

It should be foted that the closed loop scheme has sensors in one phase of the

supply to sense the required voltage and current for speed measurement. The

sensors for the other tio phases are not required for this purpose. ’

5.4 Deter lon of Operating Condition of Ind Motors From

Terminal Quantities:

In many spplicati intaining the induction motor's operating condi-
tions is important. When a closed loop operation is desired, quaptities like speed,
torque, rotor position, etc., are used as feedback signals. Usually these cperal.in;;
conditi¥hs are monitored by direct coupled sensors. In many adverse situations, it
is not possible to monitor such operating conditions directly by sensors. The sub-
mersible motor is one such example, where the motor and its load operating con-
ditions cannot be monitored by direct sensors. To overcome this problem an -easy
and effective way of ﬁnding'mowr operating conditions from terminal quantities
has hucm‘(,ievilppeld. 2

" h developing the method, the basic equivalent circuit of the induction motor
of ﬁ.g4 5-8 was used. ‘_)Vilh “this method the motor's input voltage and current
were used to determine the equivalent input impedance of motor.

The basic equations for the equivalent circuit shown in fig. 5-8 area

Vi=[rn+i(Xi+Xa)]h-iXals (5-5)
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sic equivalent circuit of an induction motor
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0= Xali+[ 2 4i(X + X)L, (5-8)
where,
e

s

120 f
N, = l20f
L P

N, = ‘rotor speed

After simplifications the slip of the motor can be expressed as shown below

{appendix-I] N N\
\

n(L-Li-Lg) |

TR (Ll &0
since‘r
'N,==N,(l~xjr (5-8)
1201 rp(Le-Li-Ly)
Ne= S WL L) )

From the equation (5-9), it is evident that the motor speed N, can be calcu-
lated from motor constants r , L, , Ly, Ly and the measured motor cquivalent

resistance R,, and inductance L, R, and L, can be found by measuring the motor

.
voltage and current as

v -
R, = Re [Z,] = Z,cos 6, = [_'w. 6 « (5-10)
|

.

Z z,- v -
Le=lm [ ] = —tain, ='ﬁ!7nl, (5-11).
h

The equations (5-9) to (5-11) were used for-continuous speed monitoring of

b bl

motor for semi-closed loop operation as shown in fig. 5. The same

\
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relationships can further be used in estimating torque, temperature and other
3 X p
operating conditions of the motor pump in practical applications.

5.4.1 Speed Measurement Using a Pra&ical Circult:

\ The speed itori hai di d in the preceding section has been

d both th ically and experi ally to verify the accufacy of the

proposed technique. The method has been extensively tested for several motors
- with fixed and variable frequency supply with load. The theoretical speeds deter-
mmed by this method for a 230V, 3-phase, 1/4 hp motor with variable frequency

PWM supply and variable loads are shown in figs. 5-7 and 5-8. The motor speed

at the same operating conditions were d by ional speed i
device(tachometer) and are presented in figures 5-7 and 5-8. The results were

obtained for the PWM inverter fed motor so as to test the vajidity of the method

in inverter-fed motors. The maximum variation of the measured values of speeds

calculated by this method from the actual speeds were observed to be only.0.5
percent. Also, it was observed that the maximum variation took place during the

light load and the overload operations of the motor. This might be due to the

saturationeffect that changed the motor constants. However, since the error qu

found to be negligible, it is considered to be fairly” accurate method _when
employed for the speed feedback in !Ee submersible motor operation with
inverter supply. Foé e‘x\perimental purpose, and f:r the uie in the semi-closed loop
operation, 8 pro'.o-‘type speed measuring device was designed and built. The block

diagrnm. of the device is shown in fig. 5-9. The device received voluge'nnd

7
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current waveforms through a potential transformer (PT)' and a noninductive
current shunt conne;ted to the line with the motor. Fundamental waveforms of
the current and voltage wefe extracted by low pass filters. The phase difference
between the two waveforms was detected by the comparator and was then con-
verted to a dc signal dp in the phase angle detector. The current and voltage
waveforms were used for getting the de voltage Fy proportional to the frequency
of the supply by a frequency to voltage (/V) converter. A calculator was built to
calculafe the speed Np of ;he motor from ép , Vyp , Ip , Fp and the mator con-
stants. ’ND is a de voltage ‘proponional.m the speed N, in equation (5-9). The
details of the device\are given in appendix II. The speed measured by this device
for the submersible moh;r at various operatingdtequency at no load is shown in
g, 5-10. The device is used for the semi-closed loop cdntrol of submersible
motors fed from a delta modulated inverter.

55 SemkClosed Loop Operation of Submersible Motor Pump Fed

From gM Inverter:

The semi closed loop control of a submersible motor pump is obtained with
the delta'modulated inverter and the sl;eed estimator described in the previous
section. The open loop control of the motor pump to match the varying loads has
been mentioned previously. With the delta modulation scheme the required capa-
city curve matching of the pump is met by varying the lrequ‘ency of the inverter.
The motor requirements of V/f for constant flux operation is met inherently by

the modulation process. This requirement of the induction motor is needed by the
v
»
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time

Fig. 5.10 The speed of the submersible motor at no load measured
by the pmpos:d speed sensor.

3450 vpm

1700 rpm
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following torque relationships of the motor

i
T sr—':—’ (5-12)
(FFgdL? -
2 .
Tog—fu¥ . (5-13)
R TP
w 'y
where: ., .
Vv,
g Jd .
: ‘ v T h :
Matching of the lond‘by i ing or d i the fr of the

inverter ensures near optimum efficiency operation of the pump. However, to
ensure the maximum efficiency and the constant torque operation of the motor, it
must be operated at a conskant slip from a supply having V/f = constant charac-
teristic. In this study the feedback is obtained by the speed estimation from ter-
~m'mnl quantities of the motor by the relationship given in‘ equation (5-9). With
this speed feedback, the constant slip operation of the motor is ensured. This
feedback is also required for stable opemti;)n within certain limits during a sud-.
den change in pump operating conditién. The same control can also be obtained
in scalar control schemes with voltage and current as the control parameter ( fig.

5-5 ) (109). ‘

»
In terms of motor current, the torque equation can be written as
Te a#’—%‘ (5-14)
(ZP+d (Lot Lyf



2

Which can be rearranged as

T=3 5
T2
w

,k The motor current is given as

|

' I= Vl V' %

jwl,
ot ;_’- +iwly

Which can be replaced as

Since,

2
[ z ‘ >>uL?

Ve juty)

why £
)

(

I from equation (5-19) in the following motor voltage expression
. v

FNe

V=Vt [n+wly]l

2 ol Flld

Py X !

s swly, wrlye
iVl t - “"l:—]

wlo rn ry

(5-15)

" (5-16)

(5-17)

(5-18)

(5-19)

(5-20)

(5-21)




225

Since w>>sw and L,<<L, , the third and fourth terms in the real part of the

above jon can be neglected. Also with negligible error the imaginary part

of the above expression can be neglected to obtain the following:

[

AT (5-22)
2
r
Vo= bl + 5-23
eulrs b | (=23)
The above equations can be used for the scalar control and the constant slip
operation.
Usually it is difficult to méasure ¢. An expression is derived from alternate

terminal voltage estimation as follows:

jtuting equation (5-22) in (5-13) one obtains,

V2

o= %—T-r—__— sl
P ey PR E L B
(1+ 5 K e erzI
Since,
LIPS Lo
ws n
- B
One can write
<
N, 2
T _r__é_"____ (5-25)
e,
s r
F(Lr small perturbation [100] *
v
8T 5, ST
ATym ZoAst oAV (5-26)



220
o aT=ST a4 8T N
[ AT= 88+ Gr Al )
From equations (5-12), (5-23) -and (5-24), the !onowing relationship can be
obtained
As 2 Al _Av
Rty S e (e-22)
where, \
rp-sr '
K e =l (5-29)
2, 2 . .
S (Mot bn)on (5-30)
2 (Lot Ln) 41?2
As _ AL_AV) ?
’ el aie ! (&=
Integrating one obtains *
hs=Il-hV (5-32)
From equation (5-32), the following relationship can be obtained
=L (6-33)
v

Equation (5-33) shows that [ v ] is a good approximation of actual slip.

The constant slip operation of a motor can thus be obtained by maintaining %
= constant, either by voltage control or by current control. However, in principle
this type of control can be expected to have large overshoots in voltage for any
sudden increase in load [109]. The overshoot would be even, higher with current

control. This will happen even thogh the controller with a [ % l constant prin-

ciple was found to be stable one [109].
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Fig. .11 Variation of slip, ffequency and fundamental voltage of
the motor for a sudden increase in load.
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.5.6 Experimental Results: . ¥
The two methods dﬁgibe’d for scalar con‘tml are different in nature. The
first n;ethod uses a frequency variation of the supply to obtain the constant slip
opemnon The second method uses either the voltage or the clm'ent variation to
maintain the constant slip opemuon ptsa%xed frequency of/the supply. In the
Bppl]cnllons of submerslble motor pumps the speed variation method is the
desired technique. The reason is that pﬁ}ﬁp production snd efficiency are depen-
dent on the speed of the pump. The block diagram of the control mechanism
based on the first method is shown in fig. 5-5. The operational characteristic of
~ the overall system is shown in fig. 5-11 for 80 Hz. In this figure the variation of
vinverter’ frequency and motor slip are shown for sudden change of lomd‘. When the
load to the motor is suddenly increased it can be observed from fig. &.ll,‘tha& the
slip of the motor is increased. The inverter responded to this slow down with an
increase of operating Irequency..As a result, the’ slip of the motor st.aned to
decrease and eventually after the initial oscillations senled‘to a constant value.

57 Concluslons: ’ %

Two different scalar control methods have been described 'in this chapter.
The first method uses the s;eed information deduced from motor terrinal quan-
tities to maintain a constant shp operation. The second method _uses a constant
current to vnltsge ratio (I[V) opermog to maintain the consunt slip opersuon
The frst method is suifable for the submersible motor spplication to drive pumps

because it allows the pump to operate at different speed at different loads. This
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method would also be better in terms of the overshoots and the oscillations asso-

ciated with sudden load changes.
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Chapter-6

Summary and Conclusions

‘
The objectives established to investigate the use of the delta modulation

technique in inverters to operate motors were satisf: ily realized

during this research. The requirements of a submersible motor during its start
and operation were met by the delta moflulaled inverter in a simple and reliable
way. The performances ;)I t‘hr.ee delta modulators were exsmined..'and the rec-
tangular wave delta modulator was selected for inverter switching. A novel =
. : ) ;
rhethod of‘on~!iné‘uptimization of pulse width modulated waveforms using tuﬁg’
rectangular wave delta modulatipn has beén proposed. Analyses of the moltulator
waveforms were done using dis:‘retq Fourier transform (DFT). Speetral leakages v
in DFT of modulated waveforms were reduced by proper windowing. The {
waveforms of the modulator 3nd iﬁe'invertcr were studied by discrete Fn'urit-r
transform on the sampled windt.)wed waveforms. The ppr!onvrmnc_e of the submer-
sible motor fed from a.delta modulated inverter was studied employing time
° 3

domain analyses. S\ludics were done for the motor fed from supply voltages with,
and without ramp frequency and voltage (RFV) characteristic. The performance

the submersible motor thus obtained was compared to that of the motor fed
from the fixed voltege and the fixed frequency supply. Substantial improvements
in the starting Ad operating characteristics of the motor were observed. A sini-

"ple and effective method has beent developed to determine the speed of induction
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motors. The’ method was developed due to the requi of the motor td

operate at.near constant slip so that the desired maximum efliciency operation

can be achieved. The new speed measurement technique,was used with the delta

modulated inverter to obtain a constant slip operation of ghe submersible motor.
Major contributions and achievements of this work tawards inverter fed sub-

mersible motors are summarized as follows:

1. The rectangular wave delta modulati (RWDM) technique was ’",

used in an inverter-fed submemble drive. The severe starting cnrrent
char:lctensuc of the submersible motor was rcduced by the inherent V/f
characteristic of the RWDM inverter. The variable load demand of the sub-
mersible motor was met by the change of frequency in the inverter. Variable
speed operation enabled thg motor and its load to operate within the max-
imum cfficiency range consistently. Further, the use ot thie rectangular wave
delta modulator prondos a currnnl limiting -rocess by its inherent signal

tracking capability diid e hymms comparator in the modulator, -

2. An on-line optimization of inverter waveforms is proposed and implemented.
This optimization method uses the tuned recjangular wave delta modulation
technique. Unlike conventional inverter waveform optimization techniques,
this method is suitable for easy on-line hardware implementation. Further-
more, the tuned RWDM modulator allowed the optimization criteria for

inverter waveforms to be changed easily.
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The RWDM and the tuned RWDM waveforms were analyzed using discrete
Fourier transform. This method was found e be simple and capable of cal-
cylating the sub-harmonics of the modulator and the invefter waveforms.
B . .
The discrete Fourier transform method can also be used for on-line caleula-
tion of harmonics of the inverter output voltages and the input currents.
The spec’trnl leakage associated with discrete Fourier transform on the ;:\m-
pled truncated wavelorms introduces errors in the specl‘m. To reduce these
spectral leakages windowed sampled waveforms were considered for the
analysis, Windowing of the PWM modulator and the inverter waveforms was

examined and it was found to be useful ini smoothing the spectra cons

ably.

Analyses of the steady state and the start up performances of the delta
modulated inverter fed submersible motor was carried out using the fime
domain solution of the motor d-q axis, and the invérter output voltage equa-
tions. Accurate determinatiqn of the motor performance using conventional
frequency domain analysis requires a large number of harmonic components.
Freque‘cy domain analysis is computationally difficult and time consuming.
Tinre domain ;\nalysis on the other hand was found l;s be an easier and accu-
rate methodv for determining the performance of the motor. The analysis was
done for the RWI?M inverter }ed motor, with and without RFV characteris-

b

tic. The starting characteristics of the motor improved with RFV supply.




233

5. A semi-closed loop operation of the submersible motor with a delta modu-
lated inverter supply has been proposed. With constant slip operation of the
motor, speed feedback from the shaft of the motor was avoided. The speed
information was obtained from the terfinal quantities and motor constants.
This technique can be used in ypes of induction motor applications
where speed feedback from the rotor side is not available. £

7. The overall performance of the submersible motor fed from a delta modu-
lated inverter compares reasonably well with any closed loop scalar and vec-

tor controlled motor.

Future Work:

The delta modulation technique has been employed in various power con-
verter applications such as inverters, controlled rectifiers and voltage controllers.
The use of this technique has been reported for drivi’nnd for uninterruptible
power supplies. Efforts are underway lo‘implemenl this technique for various con-

verters with

P generated switchi f . The use of the DM tech-
nique for opernting a single phase inverter by micro-computer has slready been
reported [131,132]. Micro-computer ~generation of three phase  switching
waveforms for various power converters can be undertaken in future works. In

the waveform optimization by delta modulati hni only the slope varia-

tion of the carrier wave has been examined. There are several other parameters in
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'
the modulator which can be controlled on-line for optimization of waveforms.

One of these is the window width of the hysteresis band. It was found that win-
dow width variation plays a major part in determining the harmonics at the out-

put of the modulator. Optimizatipn using simul variation of the slope of

the carrier wave and the window width can be examined and implemented. Also,

the sibility of using switched: i filter in the modulators can be
axplored in the future works. ' \

In the submersible motor area, the possibility of using permanent magnet
synchronous motors can be explored. Permanent magnet motors are more /Energy
eﬂi:ient than induction.motors and are of smaller size than the conventional syn-
chronous motors. These motors have shown promise in various areas of applica-
tions. The starting characteristics of these motors are sev}ere umjer line voltage
start. However, similar to the submersible motors of the induction type, the use

" of delta modulated inverter fof their start would limit the severity of starting
current of these motors [133,134,135]. .,

Extensive field tests will réquire modifications and additions in the the
inverter logic to provide various fault protections.

Further work can be done to find the effects of hnm’unics and sub-harmonics
on the motor performance e.g. losses, pulsating torque, noise, ete. Thé.slnbility
study of the motor fed by the delta modulntéd inverter should also be carried

out.
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"~ Appendix-I

Three Phase Delta Modulator clrcnlﬁ and The Logle cireults

A three phase delta modulated inverter requires the same modulating circuit
as the modulating circuit lorlu single phase inverter. For-the three phase imple-
mentation of delta modulated' logic, one needs a three phase reference sine wave

generator, three single phase delta modulators and the logifir‘cuiu for producing

. the gating signals of i SCRs or other switching/devices of an inverter.
The three phase sine wave generator used in this research is discussed at length
in appendix-Mll. The utuul’ RWDM modulator to produce the modulated
waveform is shown in fig. Al.1. The logic circuit for producini the gating signals
of one pair of SCRs of the inverter is shown in fig: A1.2. The main gating signals
are high frequency modulated for SCR gating. The switching sigrlls for the
transistorized inverter can be tapped from the same circuit before high frequency
modulation. For zh; tuned RWDM, the modulated signal to the logic circuit is

supplied from a tuned modulator. The n\{odulator circuits in both cases have pro-

visiuns,.for resetting the itor through two bi-directionpl static switchés 8
and S,. At the start of each half cycle of the reference sine wave, tha’switches are
simultaneously closed for a short period to nllt:w the capacitor in the integrator
circuit to discharge. This ensures that the modulators will start performing at the

beginning of each half cycle.

“Thr. modulatorsywere used for hoth SCR and transistorized inverters., The
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Fig. A1 1 Practical delta modulator
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basic diagrams of the invert’er, individual snubber, the base drive circuit and the

power supplies for the bafle drive circuits are shown in figs. Al-3.

“ «
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Fig. A1.2 The logic circuit for generating gate signals of two SCRs
ot transistors of a three phase inverter
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(2)
A

Fig. AL3 The transistorized inverter (continued)




(b)

5 * Fig. AL3 The transistorized inverter (continued)
'



Fig. A1.3 The transistarized inverter.

(a) the power circuit.  {c) snubber circuit.

(b) base drive power supply. (d) base drive circuit, *
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: © . Appéndxm ©
Design and 'Ci)_nutrueﬂoh of The Speed Sensor '

Researchers are conshntly stnvlng to ﬁnd & w-y to estimate or denve indue-

: tion motor's operating ditic . from termmx‘;,l iti by vnnous Jnethnds‘ <\
z The submen}bl; motor is ‘one area of npplié_ntionxwhera a thotor and its operat- j
= ;ng éondilions cwnot be nioniqored from, the shaft by,., irhysicd se{so;.- ’En ovtr-
comethis problem, an euy but eﬂ’ecbwn wnyl'o! ﬁndmg mntor speed from temnu ‘
& o , nal qumhh:s has been developedA 2 \
T ° N

o ‘shown in fig. 4.8 is used:

are used to d ine-th ival mput d of motor as !ollows,
Y . . ) ¥

[;et,
¥, = fundamental input voltage to &mowr,
[ ] . L = fundamental input current to the motor,

8¢ = fundamental input power factor,

2, = motor equivalent inplft impedance,
% : C

R, = equlvalent ralstAnce of motor = Z, cos #;, and

- N

equlvslent motor reactance = Z, sin I,

"In developing the mazg the basic eqmvalent circuit of the mrlucnon mofo:

this method the motor’s input’ voltage lnd curnnt

N




" Defining, . X S
“ ' . )
S Xy =y,
. . LY
b3
Xy =wly, ~
v
Xo =L, ’
i :
we=2rxf, .
s =N Slip of the motor, !
- N
N, = .‘_22_'. = synchronous speed, and
: _.P = numbe of poles of théymotor; o L

. i - R
- The basic loop quations ;or the motor circuit shown in fig. 4.6:are

/
L MR (G 4 X)) [ - Xa
0= Xl + [ 22 453+ Xa) |l
; From ‘equatio‘n (A2~ﬂ”ane can obtain L as
[P U
. I— +i(Xz+Xa)]
Subsmuung equation (A2-2) into (A2-1), the !ollowmg expré{

obtained >

- . <Xl
Vip= [ 45 (X4 Xg) Ty - X ———20
: . 5 i EXa)]
e

3 \
Solving for-input impedance one obtains

\ . g
T =l=Ro+iX >
Iy - : “




-Yx+1(X|':.X )+
l +l(xz+x )"

. r.[——+(X=+X-)‘l+T A ( .

—+(x,+x Y

"

(X|+x.ll—+(X1+X )’l Gxa+x ) Xa g

+i
- - + (Xo+Xa P ’
Y Equmng .real and u-nagmary parts of (Az-s) the Iol]owmg relmonshnpu can be, 2
obtmned ) a. .‘ . .‘ ’ R :
W o 2. 2y 1% 1. [S
Sl r.[T+(x,+x..j]+ " 4
' T Rem o — (A2:8) <
- —+(x-z+x.,.)‘ G . Sy
A4 = " N :
. (X.+x.)l—+(X=+X.)‘l—(xz+x )x !
X, =
S e e
Equation (A278) can be r .,‘;u' ‘ PR
' R, -1, Xl (A2-8)
. T T e (X X ) . e
Equation (A2-7) can be re-afranged as i ~
. .l A
; M_E_D(___ (A2-9)
AN+ X ) . &
Dividing equmon (A2-8). by (A2-9), we get o o
. -1 L A
Re-m 4 5 P c 0
X% Kt ¥a) Azlo




" The eqTQtions (:3;]6) to (A2-17) have been used for continuois speed monitoring * _

. lation purposes. The voltage, the current, the frequency and the phu’e. angle sen-

B Tegm

‘From (A2-10), the motor slip s can be written as : B © 5
oo mXeXTR) LT e
RGNy o W
: o (Lo~ Ly = Lar) . “
4 . o ok ) AZ—I2
. = TRt L) i R
The motor speed in, terms of eqmvalent resistance /mductance and; the motar '
«onstants can be found as ’ ’ 4_/"'
P 5 |
% NN (i-8) L (AZ-13)
Tl Ly Ly)
Ne=N,|1+ A2-14)
[ —r,)(mL.J] azly
mnl - r(Le-ly ' ‘
N, = L - 5 (A2-15)
. [*(R—r.)(mu _‘( !

“where, o Do . .

4 Pl C d

2 V, *
R, = Re [Z,] = Z,cos # =.—*cos §,

of the submersible motor for the semi-closed 16bp operation. g BE 58

A practical speed sensor usmg the developed equntlons was bulll The buw g
bluck “diagram of the speed sensor is'shown in fig. A2-1. The speed sensor céhs\lsts

of a voltage sensor, a current sensor, a phase angle detector and .a frequency to,

voltage ter. The sensor ities are all d to de signals for calcu- i
& e

sors are shown’in figs. A2-2 to A2-5. The circuit diagrams of motor's ’speed‘

measuring device ‘are shown in fig. A2-6. . - g {0
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Appendix Il -

A Novel Variable Freqnenc’y Three Phase Sine Wave Gel_\eu—t;)_r_
& <

A simple variable lreqnéncy threo phase reference sine wive generator was

used for reference signals of the delta modulators in this atudy (136]. Apart from

simplicity this lllew sine wave virtually distorti “sine

waves and the method can easily be extented to any number of pclyphqe sine '

_ wave generahon Three phase variable frequency reference wg\;elorm of 5-200 Hz

are usunlly used in ac motor controls The low” powers;nnable [req\uncy'

sinusoidal signnla are nsed as reference signals for control circuitry of eyelo-

converters-and pulse width modulated inverters. A numbegdt techniques have

been reported in literatures in the past. These methods are described and com-

pared in reference [137,138]. The methods were either complicated or failed to .,

generate completely distortionless sine waves. For the use of delta modulation

z ‘ .
technique!in inverters it is necessary to obtain distortionless sine waves. It is

impoxznnt because, without di: ionless reference s, the dulated

signals ‘in the three controllers will be different-and will ruult in m-l-npentmn of

the invetter. The new method is based on the phasor addmon of sine and cosine

waves. In this method pure sine nnd cosine waves are generated initially by vol-

tage lled. oscil and then d to three phase f by plm-‘ :

sor addition of sine and cosine waves.
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A3.1 Scheme:
Fig A3-1 shows the phasor diagram of the generation of three phase variable
irequency sine wave. V, and V, are the phasor representation.of the original sine

oscillator

zmd cosine waves, whlch are d by voltage
( VCO ). The oscillator ontpu! V, is doubled in magditude and added wnh v, to
produce phase A waveform. The oscillator voltage V, is then reversed, amplified
and added to V, to give ph‘ue B ws;!elo‘rm. To obtain phase C, the voltage V, is
reversed and amplified to have equal mngnitude as the other phases.
A3.2Three Phase Sine Wave Generator:
The sine and cosine wavelorms are generated by a voltage controlled qundm-
_ture osclllator The block dxugrnm of the oscillator is shown in fig A3-2 (b) The
quadrahue oscillator is a variation of universal filter [136). Typical waveforms
obtained  from this circuit are shown in fig A3-2(c). Fig A3-3(a) is the ‘block
diagram of the three phase sine reference wave generator. The oscillator output .
voltuia/é added by phasor addition t‘o ;)bhin t}:e three phase waveforms. The h
- circuit impiementaﬁon is shown in fig A3-3(b) and the output waveforms of the
circuit is shown in fig A3-3(c). The distortion of the generated sine waves were
within 0.5 percent error below 30 Hz operation and \;rithin 0.25 percent above 30

Hz operation. The distortion is due to the amplitude limiting circuit used.




“ B

Fig. A3.1 Phasor diagram of generating the three phase variable
frequency sine wave.

s .
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time

Fig. A3.2 The output of a quadrature oscillator.

(a) 2t 45 Hr operation. {b) at 90 Hz operation.
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APPENDIX-IV
Motor Ratings

‘1. Type Three phase submersible@®nduction motor

Volts: 230V (L-L)
HP : 1.5 hp ’
Hz. 60 Hz, ~
R~ ¥ :

rpm 3450 rpm ] '
L, H 0.13 h/phase

¥ P ] 127 ohm/phase
o, 1‘.8 oh?l\/phése (cold resistance) : ' ’,—' A

oy 2.3 ohm/phase (hot resistance ) ‘ !
o 1.2 ohm/phase (hot resistance ) i - o
L 0.0084 h/phase } - - b(-,
L, © . 0.0084 h/phase N \‘W .
Motor parametrs at various frequencies
" Febw oOpen Circuit Tests: '
3 3 !..../phase ; rj/phase 7
" in henry ~in ohms a5
'70 Hz, ~  0.141 '_334 i i . ib\
.,

” so'zp o - 0 , -
50 Hz. 0.139 242
40 Hz. 0153 - 182 °, .
30 Hz. . 0.143 127 :

4 -~

20 Hz. 0.149 . 39 |




From Blocked Rotor Tests:

rh/phase
in ohms:
75 Hz. 3.2
70 Hz. . 3.11 7
60 Hz. 3.04
50, Hz. 2.96
40' Hz. 2.866
30 Hz. 2.81

20 HA. ¢

2y/phase
in ohns

8.565
7.22

' 5 7.06

6.02\

5.226

. b .
2. Three Phase Normal Induction Notor

Volts: 7230 V (L-L)
HP H 1.5 hp
Hz. : 60 Hz.
2
‘rpn : 3475 rpm

F.L efficiency : 76 %

power factor : 0.80'

L, : .200 h/phase

N
ry : .164 ohm/phase

r, : .32 ohn/phase
r, H .21 ohm/phase
L, :  0.005 h/phase
Ly ] 0.005 h/phase

(data for normal induction machine has been' taken from
\-.Theory and Design of Small Induction Motors’,

Veipott Y McGrawy Hi®l ,,1959 )
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Appendix-V_ g 5

Motor Equations of d-q Axis

The motor model used for the analysis of the performance of inverter-fed

submersible motors is bn{ed on the d-q axis motor equivalent circujt shown in fig.
3.18. Based on these models the motor equations are '

In synchy -onously romingljnxi:

S

Stator side: 3 /» N !
. p
v,-n,i,+_df;'-+w,¢,, C (A1)
* 3 s
Vas =R, igs + dT't‘l — UV (A5-2)
7blor Side: . » \
Do VomReig+ S50 4 - u e (A5-3)
4 .
Vo= Ryige —d‘(:" (e W (A5-4)

Also from the motor d-q axis model, one obtains the following expressions

" Voo = Liyigy + Lin (e +igr) ’ (A5-5) .
Yar = Lipige + Lof ige.+ ig) T (As-8)
Yoo = L iaa gt L (e + i) (A5-7)
Vae = e iaﬁ_h( 2y +ia) o lAs-9)

Replacing equations (A5-5) to (A5-8) in equations (A5-1) to (AS-4) and also

G
substituting \\

L% L=y (as-9)
¢ Li+Lly=L, and p ":? (A5-10)
: N »




[ 0 .
b ;
\ .
70 . ) & ol

» AR .
One cbtains the following dynamic model of the motor for analysis )
Vo | A Lp wlg Lap WLy i |
~ Vi —w, L, ntlLp -l Lap | T
.- A Lap,  (v-w)la FetLP  (u-w)l | fig] -
Ve “(we-w)l  Lop  -(we)le n¥Lep | fie| T g
. ) (A5-11)
= In the stationary axis w, = 0. Therefore, the equation in stationary frame
. o h s
v can be written as - -
1 ’ Vi . . !
S Vo] [ntle .0 Lap 0 i |
4 Var 0 rn¥Lp O Lap / )
o Va| = | taP -wln n¥Lp L, (As-12)_
Vo| [ aba - Lot wely nelo ‘
Assuming| V= 0 aad Vs = 0, the model can be further modified s i
N , :
: Vo n+L,p o Lnp .0 i
F | Var o rn+Lp O Lap in A5
J, 6 [™| Lap -wlp f+Lop L ‘) i (A5-13)
29! 4 0 ol Lop  wrle ndLep | |
|t > .
' Accordmg to reference [lSﬂ], all the derivatives in V, and Vyvoltage equa~

nons can be neglect{d lor further sm\phﬂcahon o! equation to obtain a reduced

order model
o »
Ve n 0 - W
Va [ 'S i &
! A
(] A, L. for s-14)
q Gla Lop Ly rtlep||ia
In the above dynamic motor mo«iel, each of thé d-q axis voltage is dependent on v
. two current varisbles., But if the current varisbles in equation (AS-14)
»
~ ) -
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replaced by Blux vugi%ble-, t&e voltages become dé¢pendent on\one state variable

of flux only, and the computer solution becomes easier. For this convenience, the

following modification is carried out for the wnmic motor mode|

Y=y Yo Ve Yol . (As-15)
, L 0Ly o]

0L 0 Ly| | .
L = La 0 L, 0 ’,‘ (A5-18)
0Ly 0 7, ! .

L, 0 -Ly 0

A . . 0 Ly 0 L. :

e B N P el
i . e 0 ‘L 0 L g

i=mLly (A5-18)

substituting L, L,-Lg? =F, and (A5-15) and (A5-18) in equntion‘.(As-M),v one

obtains the required equations in flux variable as

-~
nly 0 Zhlm )
F F
Var P o -rla Yo .
Va, F : F Ve i
0 [T [-Lar 5 Tr._L.+ e Vo ¢ P -
o F F R ' Var
. “lar Lr
“ s F v ® P
The d; ic motor equgtions in si

lified form as shown in equation (AS-

19), together with voltage equations of RWDM i:nverter waveforms giyen in 35.3,

constitute tile basis of the steady state and start up performance study of the

inverter- fed submersible motor in this thesis. The solution of equalion (A5-19)
3 ’

o
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allows one to obtain the fux mlormman which in turn can be used for solution

of current.a from the fgllnwmg equation

L L
¥ OOoF , ;
[ ip [ L, c Ly Yo .
i ‘0 FOY T e . Al i
o B BN .
it F F L &
Ln L
0 -2 o 2 R
. . . F
The equation used for calculation of mrque is
T, -—1—)L (lq-'n ida iqr) . (As21) |
where P is humber of pola of the motor . . N
The flux is obtained from (A5-19) as ' v
i K ~
ks ] 0
R Ve
Var Va
Ve | = 0 (A5-22)
Yar 0
Speed is obtained from the following expression
k’l
. ’ [1- 5, ] - j— = (A5-23)
P w, y
[T d_: _(As2)
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