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Abstract

Speckle is a common phenomenon in all types of coherent energy imaging system such
as Synthetic Aperture Radar (SAR), laser, ultrasound, acoustics, sonar cte. Speckle
is a multiplicative-convolutional noise and as such s different from other commonly
found types of noise such as Additive White Gaussian Noise (AWGN). Hence different
methods of processing are required to restore speckled images. Morcover, in many
applications, the edge structure of an image is very important, and usual filtering
methods are not well suited for preserving edges particularly in speckled images. In
this work, an extensive study has been made to investigate the applicability of dif-
ferent existing nonlinear filtering methods and also a new Quadratic Volterra Filter
(QVF) based on speckle-model to solve the problem of speckled image restoration
in terms of noise smoothing and edge preservation. Edge detection itsclf on speck-
led images is a major problem which has not been addressed by many rescarchers.
This thesis attempts to provide a better approach to the solution of restoring inages

corrupted by speckle while preserving their edge information.
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Chapter 1

Introduction

1.1 General

A major task in digital image processing is restoring noisy images. lmages often
become corrupted with different types of noises during their formation. The main
aim of image restoration is to reduce the effect of noise as much as possible and
thereby to produce an estimate of an image what would have been produced had the
imaging system been ideal. There are many techniques for image restoration, based on
different criteria and depending on different types of noises. Not only is it impossible
to develop a general technique which would be able to restore an image exactly, but
it is also very difficult to establish a technique which results in an image estimate
reasonably close to the original. The problem is substantially more difficult when the
noise is significant and/or non-additive in nature. There are several methods that
have been developed to reduce the effect of multiplicative noise in images, but there

is still a wide scope for further research in this area.



1.2 Motivation

‘The purpose of this research is to focus on the problem of restoring digital images from
speckle-degraded versions. Speckle is a noise which occurs due to the physics of coher-
ent imaging systems such as those based, for example, on laser, ultrasound or synthetic
aperture radar (SAR) imaging. Speckle noise may be modelled as a convolutional-
multiplicative process, and is definitely non-additive. Linear signal processing is well
established for the case of additive noise but the problem arising from multiplicative
noise or convolutional noise may be better suited by nonlinear methods which has
not yet been fully developed. Volterra filters have been used in several nonlinear

applications in digital signal processing (8, 21, 22, 50]. The quadratic Volterra filter

has been used for different image i ications such as image

enhancement, edge extraction etc. (44, 49, 50]. Images corrupted with multiplicative
noise have been restored using filters based on Taylor series approximation [37) which
work quite cffectively. In terms of its input/output relationship, a Volterra filter may
be considered as a Taylor series with memory, the Volterra filter might be able to
give better results for the same problem. Although, speckle noise has been studied
in previous digital images processing research [16, 19, 24, 25], the problem of speckle
smoothing while preserving the edge structure in digital image has not been studied.
The rescarch of this thesis is carried out with an aim to restoring speckled images
using the quadratic Volterra filter which will trade off smoothing of speckle noise and
preservation of edge structure. The quadratic Volterra filter is compared to other

filters which have been previously proposed for the smoothing of multiplicative noise.



1.3 Problem Complexity

The complexity involved in the above mentioned problem arises from two major fac-
tors. First of all, nonlinear signal processing is difficult because there is no compre-
hensive and complete theory for nonlinear systems as these exist for lincar systems.
Second, the signal to be dealt with is a two dimensional signal and has several pecu-
liarities. Some of the characteristics of digital images which make them difficult to

treat as signals are the following
o Digital images are two-dimensional signal.

o They are non-stationary, which may mean that locally adaptive or spatially-

variant processing r:sthod is required.

They are random in nature, so that the processing of such images may need to
be based on their statistical properties which are, in general, not well defined
nor easily estimated. Moreover, estimation of image statistics requires a large
number of data which may not be available in a spatially-varying image or when

the processing is meant to be locally adaptive.

When images are processed for human viewers, the human visual system (HVS)

becomes an important id in the devel

of an image

technique, There is a number of different existing models of the HVS which have
nonlinear components. Hence, standard techniques such as the Mcan Square
Error (MSE) for performance measurement are not always adequale in judging
the visual quality of the images. As a result, any general signal estimation
techniques based on such standard performance measures (e.g. lLcast Mean

Square (LMS) adaptive technique) may need to be modified to use in image



restoration algorithms.

1.4 Approach to the solution

The approach to the solution of the stated problem involves the following three steps.

© Modelling speckled images

® Designing speckle-specific filters

 Evaluating the performance of the proposed filters
It is necessary to have a realistic model of speckle to design a model-based filter.
A realistic model has been developed for multi-look SAR images based on previous
work [19] and the accuracy of the model has been verified. Synthetic images using
the model have been created for use in testing the designed filters and other existing
filters. Filters based on the quadratic Volterra series, have been designed which are

made locally adaptive ding to the statistical ies of speckle. To demon-

strate the performance of the filters, evaluation measures have been used which focus
particularly on their noise smoothing and edge preservation qualities. Also, compar-

isons with other well-known filters have been carried out.

1.5 Organization of the thesis

This thesis has been organized as follows. Chapter Two provides background infor-
mation on four major areas related to the stated problem - i) speckle and especially

SAR speckle, ii) nonlinear filtering methods for image processing, iii) the application

of Volterra filters particularly in image ing, iv) edge detection algorithms par-

ticularly for speckled images. Chapter Three provides i) descriptions of the speckle



model, i) different filtering methods including basic background on the Quadratic
Volterra Filter (QVF), all of these are used later in the comparative study, iii) dif-
ferent speckle-specific edge detectors and finally iv) some performance criteria for
evaluating filter performance. Chapter Four focusses on the proposed methodology
for i) speckled SAR image modeling, ii) the design of QVF's for speckled image restora-
tion, intended for both speckle smoothing and edge prescrvation and also iii) a new
speckle-specific edgn detector with an edge-map thinning algorithm. Results obtained
from basic experiments with the QVF and from the comparative study are presented
in Chapter Five. Finally, conclusions based on the results obtained and suggestions

for future work are provided in Chapter Six.



Chapter 2

Literature Review

2.1 Introduction

This chapter is grouped into four major sections. The second section provides a
brief survey of the pr. .ious work on speckle-noise modeling, simulation and filtering
techniques. This section also provides a brief background information on SAR. image
processing mainly from the point of view of the speckle smoothing. The third section
is an overview of different existing nonlinear filtering methods and their importance

in image restoration. The next section discusses the application of quadratic Volterra

filters in various fields, particularly in image processi jcations. A brief survey of
different edge detection methods s presented in the fifth section. Since edge detection
for speckled images is of an important consideration in this study, special attention

is paid to speckle-specific edge detection methods.



2.2 Speckle Noise

Speckle is a phenomenon which occurs in images produced by all types of coherent
or partially coherent imaging system such as synthetic aperture radar (SAR), laser,
acoustic, ultrasound, etc. The effect of speckle noise on images is generally not de-
sirable because it degrades images in such a way that it may be difficult to extract
useful information from these. There are many image restoration and enhancement
techniques used for either removing speckle from the images or emphasizing the in-

formative aspects of images. To design an optimum image restoration technique, it

is necessary to have an 1 model of the speckle noise based
on its statistical properties. Speckle properties are discussed in several literatures
[5, 63], and in particular, the statistical properties of SAR speckle are well described
by Arsenault et al. [5, 6}. It is well known that speckle is a signal-dependent noise
(16,19, 23, 28], such that its magnitude depends on the intensity of the underlying im-

age. Lee's speckle smoothing algorithm [28, 30] for SAR images is based on employing

the sigma probability of the Gaussian di:

of the image intensity. Frost el al.
[16] developed a mathematical model for speckle and designed an adaptive filter for
multiplicative noise. Although most of the literature in this area assumes that speckle
is a pointwise multiplicative noise, there are cases where this assumption is not satis-
factory [62]. The model derived by Kuan et al. [24] takes speckle-correlation effects

into account where an adaptive filter and a i a Posteriori

(MAP) filter have also been developed. Raney has made an extensive study of speckle

and reviewed speckle

and simulation techniques in the li [51). SAR
image restoration has been attempted by Jin et al. [20], where the segmentation and

classification of SAR images are often very difficult due to the presence of speckle.



These problems have been addressed by different authors [15, 19, 25]. Hudson and
Jernigan (19] proposed a model for SAR images corrupted by speckle and compared
the performance of different filters in terms of their ability in texture classification
on the filtered images. The model they proposed is based on the statistical property
of one-look speckle as well as the impulse response of the radar which in fact causes
the spatial correlation of speckled images. The model has been verified and may be

considered a valid model for speckle corrupted SAR images.

2.3 Nonlinear Filtering

Lincar systems have found extensive use in signal processing because they are rela-
tively simple to analyze, design and implement. Because of their simplicity, it has
also been possible to establish generalized theories of linear systems. But there are
certain situations that require nonlinear processing of signals. Because, nonlinear sys-
tems are relatively difficult to design and implement, it has become usual to assume
many practical systems to be linear systems and to apply linear systems theory. Such

are i ble but there are cases in which performance

quality is substantially reduced and in such cases, nonlinear processing may become

unavoidable.

2.3.1 Nonlinear system theory

In 1968, Oppenheim et al. [41] made an extensive study with a view of providing 2
generalized nonlinear systems theory such as there exists for linear systems. They
were successful in using the concept of generalized superposition to develop homo-

morphic filtering. Moloney [37) used the generalized superposition principle for the



problem of image restoration in the casc of images degraded by pointwise multiplica-

tive noise.

2.3.2 Application of nonlinear filters

Oppenheim el al. [41] described the gencralized superposition principle for nonlincar
filtering of convolved and multiplicative signals with two examples of its practical
application, namely, i) audio dynamic range compression and expansion, and image
enhancement; ii) echo removal and speech analysis.

Mathews [34] provides quitc a broad overview on applications, current research
trends, results, problem areas etc. regarding nonlinear filters where a lattice structure

for nonlinear adaptive filters using truncied Volterra series has also been discussed.

2.3.3 Nonlinear filters in image processing applications

As mentioned above, nonlinear filtering has been used in image processing applica-
tions. One of the major reasons for using nonlinear processing of images is that the
human visual system is known to have nonlinear components (3, 58]. There are other
reasons why it becomes almost essential to process images using nonlinear filters.

One such situation occurs in restoring noisy images. Images oftea get corrupted with

tems

different types of noises due to the poor imaging media, non-ideal imaging

etc., and noise may be combined with the image cither lincarly or in some other fash-
ion. But even if it is linear, nonlincar filtering is often recommended because of the

non-stationary characteristics of many images. To enhance image details, specifically

in preserving edges, nonlinear filtering may be required. So it is casily argued that

is important to restore images by nonlincar methods when the noise itself is not

linearly combined with the signal.
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At this point, it is clear that nonlinear filtering plays a very important role in
image restoration. Abramatic and Silverman [1} modified the Wiener approach to
the problem of restoring images degraded by white Gaussian noise. They paid special
attention Lo preserving the edges which is another important consideration in image

restoration. Q itative and g between six well-known adap-

tive filters used for image restoration was made by Mastin [33). Chin and Yeh [12]
made a similar kind of study with commonly used filters. Nagao and Matsuyama [39]
suggested methods for the difficult task of trading off between noise smoothing and
edge preservation.

Lee's multiplicative filter [27, 29], designed for a pointwise multiplicative noise
model, is one example of such filters. His algorithm is based on local statistics of im-
ages and it produces very satisfacory results. Homomorphic filtering [4] is also an ef-
fective method of restoring images corrupted by pointwise multiplicative noise. Teklap
and Palovik (39] also investigated several techniques for restoring images that are de-
graded with pointwise multiplicative noise caused by sensor nonlinearity. Moloney
and Jernigan [38] developed a new approach to the solution of the same problem us-

ing the concept of ive superposition. The develop ithm is adaptive

because it uses the local statistics of the image with the optimal operators calculated
using Taylor series approximations.
Nonlinear filters using truncated Volterra series have been also developed and used

in different applications including image processing which will be discussed next.



2.4 Volterra filters

It has almost been a century since Volterra introduced his series, which has been found
to be a very useful tool for describing input/output relationships of nonlincar systems.
In recent years, it has been extensively used in different areas to handle nenlincar
-

problems. The main reason for its is that it i d a lized

theory for nonlinear systems in a relatively simple and conceptually manageable way.

2.4.1 Volterra series theory and application

Biglieri [7] discussed the nonlinear Volterra processor covering its general theory, im-
plementation and some applications, namely, i) Mean Square Error (MSE) prediction
of discrete-time random processes and ii) identification of nonlinear systems with
memory.

System identification by second order nonlincar Volterra filters, has also been
studied exter.sively by Koh and Powers [22]. The solution for the optimum filter,
iterative factorization to facilitate the implementation of the filter, LMS adaptive
algorithms etc. have been covered in this literature. The practical application they
were interested in, was to utilize the second order Volterra filter to modcl and predict
the dynamic behaviour of moored vessels under randomn sea waves. Sicuranza and
Ramponi [55] also proposed an LMS adaptive algorithm for second order Volterra
filters using distributive arithmetic. The main concern of their work was to provide
an efficient and simple realization of the filter which could be well suited to modern
technologies e.g. VLSI technology. Chiang et al. [11] handled the same problem

using a different approach, with an i ion based on matrix d ition

By extending the Kalman filtering approach, a fast-response second-order adaptive



12

Volterra filter was proposed by Davila et al. [13]. Nonlinear system identification has
been carried out using truncated Volterra series models by several workers (22, 45], but
all of them assumed Gaussian noise as the system input. Kim and Powers [21] made
an attempt to solve the problem of system identification assuming generalized random

input and using a truncated Volterra series model. Adaptive noise cancellation [57]

for voice band data issi llation of inter-symbol i 8] and
echo cancellation [2] are three similar applications where Volterra filters have been
found tu be effective.

In most signal processing applications, the signals are one-dimensional, usually a

function of time. Henc, work that has been discussed so far, has all been carried out

for 1-1) signals. However, i di ional dratic filters have been

of higher
dealt, with in (36, 56]. Mertzios et al. [36] proposed matrix decomposition techniques

for realizing 2-D filters.

2.4.2 Volterra filter in digital image processing

Since it is very important in image ing to deal with nonlinearity, the The
Volterra filter seems to be a possible choice for the nonlinear filtering of images. Non-
linear processing itself is very complex and since an image is a two-dimensional signal,
nonlinear processing of images is more complex. However, considering a Volterra se-
ries only up to the quadratic term, it is feasible to realize 2-1? quadratic Volterra filters.
Work that has been done previously using Volterra filters in digital image process-
ing applications has been based on Volterra series truncated up to the first nonlinear
term or the quadratic term and hence the filters derived are termed quadratic Volterra

filters.



2.4.3 Application areas

Since this is still a new field, there is little literature on the application of Volterra
series in image processing. One of the major studics in this arca has been done in
1990 by Ramponi [50]. So far, his paper could be taken as a framework providing a
background of the properties and design of quadratic isotropic 2-D Volterra filters.
The use of Volterra filter seems to be quite promising in both cases of additive and
multiplicative noise reduction [50]. Design examples in the same literature showed
how different situations could be dealt with using the Volterra filter for image restora-
tion. The enhancement of images is often of great interest, As mentioned by Ramponi
h hni

[44], most of the image have used lumi scale modii-

cation after processing the image through lincar or nonlincar filters. But this does
not improve the quality of an image, particularly if the image contains a significant
amount of noise. Because, in this situation, noise smoothing is done at the cost of
losing the image details, an optimization between noise smoothing and preserving
image details becomes a very important issuc. A recent approach made by Ramponi
[44] uses a luminance independent operator. The filter he used is a Volterra series
truncated up to the first nonlinear term. Edge extraction is one of the important
tasks in image processing which also needs nonlincar processing. Ramponi [19] also

proposed quadratic Volterra filters for this purpose.

2.4.4 Quadratic Volterra filter design

The main problem regarding the design of quadratic Volterra filters is the complexity

particularly for 2:D signals such as images. A 2-D quadratic flter hias both a set of

linear coefficients and a set of quadrati flici The number of filter coefficients
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for the quadratic part is quite large and hence difficult to design (e.g. evenfora3x 3

drati. T

support 2-D Volterra filter, the number of linear coefficients and
are 9 and 81, respectively). But as shown by Ramponi, [50], these large numbers may
be reduced by imposing certain conditions such as isotropy, symmetry, uniformity in
gray level ctc. But undoubtedly, it is difficult to find a straight forward design strategy
such as that exists for finite support linear filters. Because of this inherent complexity
of the problem, no such design technique has yet been available which is based cntirely
upon the theoretical properties of the Volterra series. Some literatures [46, 47, 48] were

reported which give a rough idea about the design approach one can follow. The main

d 1

strategy is to define the problem, an objective function based

on that, then minimize the function and thereby design the filter coefficients. An

optimization approach has been suggested by Ramponi and Ukovich [47] where three

existing nonlinear optimization techniques, namely i) Steepest descent, ii) Powel's
and iii) Simulated ling are used.

Ramponi in his literature [50] suggested a slightly different design strategy which

he referred to as “Bi-impulse response design” based on the same concept of impulse
response used in designing linear filters. For designing the quadratic part of the
quadratic Volterra filter the response to a pair of impulses at appropriate locations is
measured.

Lin and Unbehauen [31] introduced an adaptive approach for designing quadratic
Volterra filters, that could be used for channel equalisation and image restoration.
The technique used here is an LMS type where the constant, linear, and quadratic
cocfficients of the quadratic Volterra filters are adjusied during iterations until a
minimum mean square error is achieved.

Although little work has been reported in this area, it appears to be promising
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to apply the quadratic Volterra filter to restoring noisy images especially when the
noise is not additive in nature. Designing the filter is the main concern in this regard.
Though some previous work [46, 47, 48] proposed an optimization approach, the
formulation of an objective function to obtain the filter coeflicients is not yet clear.
The adaptive approach discussed in [31] deals with a slightly different issue where
the input/output relationship of the system is assumed t> be known and channel
equalization is of main interest. Since the main objective of any image restoration
is to smooth out the noise while preserving the fine details as much as possible, and
since an image itself is a non-stationary signal, a locally adaptive technique might be

a better approach.

2.5 Edge detection

One of the major tasks in image analysis is edge detection. Edges are fundamentally
important primitive features of an image because they often provide an indication of
the physical extent of objects within the image. Hence, edge detection is very impor-
tant for several image processing tasks such as pattern recognition, segmentation etc.
An edge is defined as a variation or discontinuity in image intensity resulting from
changes in some physical properties of the surface, namely, its reflectance, geometry
and/or incident illumination. It is interesting to note that while the human visual
system performs edge detection quite easily, it is not very casy to automate the pro-
cess. However, there is no shortage of edge detection algorithms which work on digital
images and provide edge maps as output. Classical edge detection operators devel-
oped during the 1960’s perform quite satisfactorily on ideal (un-corrupted) images.

But these edge detectors perform poorly on noisy images. Since in reality images may
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be corrupted by different types of noises, recent attempts have been carried out with
an aim to finding edge detectors which have been less sensitive to noise. Techniques
which are developed particularly for detecting edges on noisy images are also abun-
dant. But so far, attention has been paid mainly to images which are corrupted by
a common type of noise, such as additive white Gaussian noise (AWGN). Very few
methods are found which have been developed for images corrupted with noiscs other

than AWGN.

2.5.1 General edge detection techniques

A review paper by Davis [14] discusses several edge detection approaches which have
been proposed for the solution of the general edge detection problem. Most of the
previous work in edge detection uses small differential operators applied to an image
followed by detection operators such as the Robert, Sobel or Laplacian [18]. Such
methods work quite effectively on images without noise but show poor performance
on noise-degraded images, Marr and Hildreth [32) developed a theory for detecting
intensity changes and proposed the Laplacian of Gaussian operator for edge detection.
According to them, the Gaussian filter is the optimal filter which provides localiza-
tion in both space and frequency domains, an important consideration in accurately
locating edges. Shanmughan et al. [54] proposed a frequency domain filter for edge
detection which works globally on the image. A good edge detectors should satisfy
several criteria; based on these criteria, edge detection measures are usually defined
to quantify the quality of an edge detector. Pratt’s figure of merit [43] is one of the

standard measures available for edge detectors. Canny [10] also proposed some edge

detection measures in his work. A recent hi hical edge d i h made

by McLean and Jernigan [35] is based on some pre-defined performance criteria.



2.5.2 Speckle-specific Edge Detection Techniques

Most edge detectors are of the gradient type i.c. the detectors are based on the
difference between pixel values. This type of edge detector when applied to speckled
images yields very poor results because speckle is multiplicative in nature. 1t degrades
the image in such a way that the SNR becomes very low and the image loses its fine
details. Hence, it is very difficult to detect edges in speckled images and almost
impossible using the usual edge detectors. Since it is obvious that speckle depends
on the signal, speckle is more prominent in higher intensity homogeneons arcas than
in darker areas. Thus a ratio between pixel values should work better than their
difference. When dealing with noisy images, it is better to take the ratio of the average
pixel values in two adjacent neighborhoods, opposite to the pixel of interest. A ratio
magnitude image is thus formed and thresholding finally provides the edge map. This
is the basic idea behind the simple Ratio of Average (ROA) edge detector (9] which
is particularly useful for detecting images corrupted with a pointwise multiplicalive
noise. However. the problem involved with speckle is even more difficult because
speckle is not only multiplicative, but also has an inter-pixel spatial corrclation to
some extent. An efficient edge detector should be based on the speckle model.

Very little work has been reported so far in this area, although it is nccessary

to pay attention to the problem of edge detection on speckle imagery. A simple
method named the Coefficient of Variation (COV) has been proposed [60] based on
the Constant False Alarm Rate (CFAR) concept which uses a coefficient of variation
which can provide the edge strength measures [60]. Frost et al. [17] proposed an
edge detecting technique for SAR images. The method applics the maximum Like-
lihood Ratio (LR) as the measure of edge strength. The maximum likelihood ratio

is computed based on a SAR image model. Bovik’s Ratio of Averages (ROA) [9] is
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another approach which attempts to solve this problem. He suggested a combination
of the ROA and the Gaussian Smoothed Laplacian (GSL) methods. According to
Bovik, the ROA edge detector is quite efficient on speckle-degraded images but has a
drawback of generating very thick edges. On the other hand, a general edge detector
such as the GSL gives fine edges but also gives rise to many false edges which is not at
all desirable. A combination of these two (a logical AND operation on the resulting
images obtained from the output of these two detectors) gives a much better result
than cither of the individual edge detectors. However, it is worth-mentioning that
the ROA edge detector is optimal if a pointwise multiplicative model having either
negative exponential or Gaussian first order statistics, is considered. More recent
work which is simply an extension of the ROA detector is proposed by Touzi et al.
[60], using the Constant False Alarm Rate (CFAR) concept. This method is model
bascd and designed particulasly for SAR images. It has been shown that the perfor-
mance of the ROA detector depends on the size of the neighborhood, the number of
independent looks, and the ratio of mean powers. This detector uses some statistical
cstimates to calculate edge strength. The effect of edge orientation and neighbor-
hood sizes are also important considerations and have been taken into account in this

particular edge detector.

2.6 Concluding remarks

This chapter attempts to provide an overall picture of the previous work on areas
related to the problem of interest. Since there are at least four major areas involved,
it is impossible to provide more than a brief background for each of these topics.

But it is felt that a more elaborate description of the filters of interest (especially
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the QVF), the speckle model, speckle-specific edge detectors and filter cvaluation
criteria — which are all directly related to the main objective of this thesis - should

be provided which are dealt with in the next chapter.



Chapter 3

Approach to the solution

3.1 Introduction

The problem dealt with in this thesis originates with coherent energy imaging systems
which produce images corrupted with a special type of granular noise called ‘speckle’.
SAR is onc of the many examples of the source of speckle. It is very important to
keep in mind that these images are meant for human or computer interpreter for
interpretation .nd analysis by extracting useful information. To serve this purpose,
it is necessary to obtain reasonably good quality images. However, frequently, good
quality images are not obtained directly from the practical imaging systems and hence
the question of image restoration :ises.

The solution of the problem requires some knowledge of mathematical modelling of

image degradation and of linear and nonlinear filtering techniques. It is also important
to preserve the fine details of an image while smoothing the noise which is a difficult
criterion to meet. Edge detection on speckled images is essential in many applications
but it seems from the previous attempts that it is very difficult to obtain a good edge

map from speckled images. One of the major goals of this thesis is to investigate the

20



effect of filtering on the speckled images in terms of retention of fine details. A few
papers that have been collected in the area of edge detection on speckled images will
be discussed briefly later in this chapter. However, first it is worthwhile looking into
some well known linear and nonlinear filtering techniques that might help in designing

an edge preserving speckle smoothing filter.

3.2 Speckle model

A model based filter for suppressing any type of noise is always a better choice than a
filter developed in an ad hoc manner. So it is very important to have a realistic speckle
model in order to design filters for reducing speckle. It is well established that speckle
noise intensity is proportional to the underlying image intensity, giving a Signal to
Noise Ratio (SNR) in an observed speckled image, equals to one for fully developed
speckle. This implies that a pointwise multiplicative model would be able to describe
speckle quite well. A large amount of research related to this area is found which
assumes a multiplicative! model of speckle [16, 23, 30]. Filters developed initially for
multiplicative noise model have been used in speckle reduction application too. Thus

the model can be represented in (i, j) spatial coordinate system as,
y(irj) = 2(i\j) - n(irJj) @0

where z is the original image, y is the recorded image and n is the random noise process
having a Rayleigh distribution function with mean one and standard deviation eaual
to [(4/m) —1]'/2] [19).

However, it has been pointed out by Tur el. al (62] that a multiplicative noise

TFor simplicity, from now on “multiplicative” will imply “pointwise multiplicative” unless other-

wise stated.
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model is not always a good choice. The main disadvantage of this model is that it does
not take into account the correlation of speckle which is an important consideration
in some cases. The correlation results mainly from the Point Spread Function (PSF)
of the imaging system. A better model can be realized by taking the point spread
function into account. Thus, the model of Equation 3.1 as shown in Fig. 3.1 can be

wrilten as :

y(iyj) = [2(i,J) - ni, )] » A3 1) (32)

where * denotes “convolution”.
(i, j) y(i,j)

—_—

a(iri) |
Figure 3.1: Speckle model

The model described by Equation 3.2 is used by Frost et al. [16] with the assump-
tion that the PSF for SAR systems is an impulse. More recent work done by Hudson
and Jernigan [19] assumes a SAR PSF which has a circularly symmetric Gaussian
shape. Hudson and Jernigan used a one-look SAR image model throughout their work
which is not a generalized model, due to the common case that an image obtained
from SAR is the average of multiple independent looks. In such cases, the model of
Equation 3.2 remains the same but with a slight change in the Probability Density
Function (pdf) of n(z,y). The noise pdf now takes a x-squared distribution with N
degrees of frecdom. Lee [25] showed how the mean and variance of the noise process
varied for one-look and multi-look SAR image models. The variation due to intensity

and amplitude images is also addressed by Lee.



3.3 Image restoration filters

Most image restoration filters deal with additive white Gaussian noise (AWGN). But
there are certain cases where the noise is not additive, rather multiplicative and/or
convolutional or some other type and may not be Gaussian and/or white. The (il-
ters for AWGN are based on the well-established linear systems theory. These filters
assume the stationarity of both image and noisc which may also not be a good as-
sumption. For example, it is very likely that images contain some high frequency com-
ponents - the edges for example. Therefore, although lincar filters such as low pass
filters smooth out noise, they give rise to blurred images due to atienuation of high-
frequency edge conten.. Nonlinear filtering appcars to be an alternative when edge
preservation becomes important. Also, for signal dependent noise, such as speckle,
nonlinear filtering may be unavoidable. Attempts to deal with the signal dependency
of noise in designing filters suffer from various limitations. Onc of the major limita-
tions is that it is often very difficult to design a filter which is optimal with respect to
a statistical parameter such as MSE or SNK, because estimation of such parameters
might require the solution of complex mathematical equations or may not be explic-
itly found. Another approach that could be adopted in designing filters is Lo design
locally adaptive filters. Although a relatively new technique, there have heen many
applications of this technique in digital image restoration which have been found to
be quite successful. The main idea behind this approach is that a finite extent filter
operates on a finite support of a corrupted image with its filter coefficients depending
on local statistics of this support. The image is assumed to be stationary over Lthe
finite support used for filtering at any time. The results are significantly improved

over would have been obtained by globally processing the image with one fixed filter.



k(i,j) is the gain factor defined between 0 and 1 as given below :

P )= Qi)
R mETY

where

Q(irj) = El(y(i,j) - (i, )] - o

(3.1)

{3.9)

and ¢,? is an estimate of the additive noise variance and E[.] denotes the operator

giving the expected value or the mean value.

3.3.2 Nonlinear Filtering

Although linear filters are simple and easy to design and implement, they also suffer

from some limitations as mentioned earlier. For noise which is not additive, a non-

linear filter may he the only solution. A large number of ncnlinear filters have been

developed so far and research is still going on in this area. This section describes some

of the commonly used nonlinear filters which can be grouped into the two categorics,

1. General and
2. Model based

o Pointwise multiplicative

o Speckle Reducing

a) Median Filter : This is one of the most classical and commonly used gencral-

purpose nonlinear filters. This algorithm was first proposed by Tukey [43] and used

extensively in time series analysis. Later on, it found application in digital image

processing. The principle of operation of this filter is very simple. The filter is
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Although, the improvement achieved is at the price of complexity and time require-
ment in design and implementation, in most cases, it is worth while to design an
adaptive filter. The following section will focus on some of the commonly used linear
and nonlinear filters. As mentioned before, since the adaptive quadratic Volterra filter
is of main interest here and has both linear and nonlinear parts, it seems important
to understand how these two parts function in smoothing noise and preserving edge

structure. For this reason, a linear filter is also included in the following study. It is

intended to make a ¢ ive study of the perfc of several nonlinear adap-

tive filters including the quadratic Volterra filter in edge-preserving noise smoothing
of speckled images. Hence, it scems worth while to briefly describe some of the exist-
ing nonlincar methods which will be used later. The general theory and properties of

the quadratic Volterra filter will also be discussed.

3.3.1 Linear Filters

Lincar filtering has been used extensively for removing Gaussian additive noise from
images. The popularity of linear filtering stemns from the fact that it is very simple
in structure and hence easy to design and implement. The filter developed by Lee
[27] for additive Gaussian noise of zero mean is probably a good example of adaptive

lincar filters. Its input/output relationship can be represented by
#(i,5) = 2(i,1) + k(i, 1)y (i, 5) = 2(3,5)) (3.3)

where 2(i, j) is the estimated pixel intensity at (i,7), y(i, j) is noise corrupted image
pixel, based on additive noise model y(i. j) = (i,j) + n(i, j), and n(i, j) is the noise

component. Z(i,j) is the mean of the un-corrupted image, given by Z(i,) = §(,j),
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coripoasl sbasHliiig wiRdow Bnsenpaditig N odd Sisinbar 6F B THEpiNeL 6f
interest is replaced by the median of the pixels within the window. Although simple,
e fiterhashoon provento bea goodimage enhancer speciallydn:the cose:oF livsulie
or shot noise.

b) p

restoration when the image is subject to

Filter : Its technique could be used quite effectively forimage

Tiolicative siid lati

A “logarithmic” operation performed on the noisy image converts multiplicatively
combined signals to a sum of signals to which linear filtering technique can be applied
before a final “exponential” operation gives back the estimate of the original image
[4]. The algorithm is best illustrated in Fig. 3.2. At this point, it is worth mentisning
that it is quite difficult to design the linear filter in the middle of the cascade because
once the “logarithmic” operation is performed, the noise statistics are changed and

simplifying assumptions could lead to a poor overall estimate.

T - - -

Figure 3.2: Homomorphic filtering

c) Lee’s Multiplicative Filter : This is a very well known adaptive nonlinear
filter proposed by Lee [27] which is based on a multiplicative noise model. As with
Lecs additive filter, the mean and variance of the original image can be estimated

from local mean and variance. The multiplicative model uses the following relation,

y(@,4) = 2(i,j) - (i, 5) (3.6)



where y,  and n denote the noisy image, original image and noise processes, respec-

tively. The estimated image is calculated as :
2(i,j) = 2(i, 1) + k(i )ly(i,5) = 2, 5)] (3.7
where the gain factor k(i,7) can be obtained as

Qi j)n

4= Ty ot + QT

(3.8)

in which # and o, are the mean and standard deviation of the noise process, re-
spectively. Also since the signal and noise are statistically independent, 4(i,j) =

L

) - (i, ), with the assumption of A(i, j) = 1, which leads to

(i) = 9(i,3) (3.9)
and
24 o2
QGi,j) = el ”,':1(;;’) - #(i,) (3.10)

d) Two-point Taylor Filter : This algorithm [38] is devcloped for estimating
images from their noisy observation that are corrupted by multiplicative noise. It

is based on the calculation of local statistics estimates, Taylor series

to optimal formulas and normalization of data by local multiplicative sample means.

The degradation model can be expressed as,
y(i,5) = z(3,5)  nli,j) (3.11)

where z is the original image, y is the noisy image, and n is the noise process.

A pixel estimate (3, ) is defined with two point cstimators as,

#(i,7) =¥*(i,3) - (k1) (3.12)
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where z(k, 1) is a neighbouring pixel of y(i,j), and a = a(i,j) and b = b(i, ) are
two estimating power coefficients. The error function to be minimized thus takes the

following form,
J(a,b) = E[(z — y*z%)] (3.13)
The term y°z* can be expanded using Taylor series with the bivariate expansion of
v =1+alny+blnz+ablnylnz+..., Valny,blnz (3.14)
A simple version of the two point estimator only takes the first three terms of the
series i.e. y°z* =1+ alny + blnz. Minimizing the above function with respect to

a and b i seiting 42 = 0 and 4 = 0 the following system of equations is obtained.

The truncation of the series ensures that the system of equations is linear.

aB(In*y) 4+ bE(Inylnz) = E(zlny) — E(lny)
aB(Inylnz) + bE(In’z) = E(zInz) — E(lnz) (3.15)

which when solved ? yields,

o= Eln® 2)[E(zIny) = E(Iny)] - E(inyln 2)[E(zinz — B(ln )]
E(In?y)(In’z) - E[(lnylnz)

_ BE(ln?y)(E(zInz) = E(In 2)] - E(lnyln 2)[E(ziny — E(lny)]

- E(In’y)(In2) — E[(lnyln z)]?

b

(3.16)

Speckle Reducing Filters : There is a large number of nonlinear filters [16, 19,
23, 24, 28] which are developed particularly for reducing speckle. Any model-based
filter should be derived from an accurate model of the degraded image. Most of the
speckle suppression methods using nonlinear filters assume speckle to be a pointwise
multiplicative process which in some cases does not hold true. It has been quite well

2For complete details, see [38].



established that speckle in an image is spatially correlated. However, a few of the
multiplicative filters as described in previous sections have heen used and found to
be effective. The following sections provide an overview on threc filters based on
speckled image model.

e) Sigma filter : Lee [28] suggesied this tilter for smoothing speckle in SAR
images who observed that SAR speckle suppression techniques fall into major two
categories. First, SAR images may be improved by averaging several frames from
non-overlapping spectra. But when such means are not available, speckle smoothing
could be done after the image h. s been formed by methods based on the statistics of
image and noise. Lee's Sigma filter is based on the sigma probability of the Gaussian
distribution. Unlike usual linear filtering, in this case, the pixel to be processed
is replaced by the average intcnsity of only those pixeis which have an intensity
within two noise standard deviations from the intensity of the centre pixel. Thus, the
estimated pixel intensity (i, j) cat: be expressed

| onk mbs
i) =5 2 X kD vkl (3.17)
€ k=iinlzjom
where y is the noise degraded image, V. is the total number of non-zerc points in the

following summation. and &(k, 1) is defined as :

Sk ) = 1t (1= 20(1,5)) y(k 1) < y(i.3) < (1+200i7)) - y(ky1) (1.18)
0 otherwise

£) Frost filter : Although they began with a convolutional- multiplicative model
of speckle noise, Frost et al. [16] concluded that the SAR transfer function can be
assumed as constant over some finite bandwidth #nd hence the SAR impulse response

can be assumed as an impulse. If f(7,) denotes the impulse response of the filter,
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the signal estimate is :
2(i,7) = y(iy ) * £, ) (3.19)

Based on the simplified model of speckle (Equation 3.1), Frost et al. proposed a
locally adaptive speckle suppressing filter. The basic idea behind this technique is
similar to any other filtering technique based on a multiplicative noise model. The

following equation represents the impulse response of the filter :
Si,3) = K - ay(i,j) - exp (=a(i, )\/i? + 12) (3.20)

where K is a constant chosen such that the filter provides zero flat field response
(i.e. all filter cocflicients must sum to zero). The parameter ay is the decay constant

which depends on the local mean and variance and s given by the following equation,

% 4
(i) = 7 (3.21)

where L is the number of looks used to form the image, o; and o, are respectively
the local standard deviation of the image and the noise, and Z is the local mean of
the image. It is quite evident from equations (3.20) and (3.21) tha the filter weights
decrease exponentially with distance from the centre and that the relative weight
is controlled by the variance to mean squared ratio. In uniform regions (smaller
variance) and brighter region (greater mean), the speckle is more prominent and
hence the weights are more evenly spaced than they are in darker and non-uniform
regions.

g) Kuan filter : Kuan et al. [23] proposed a multiplicative filter which can be
used for suppressing speckle, if it is considered as multiplicative noise. Hudson and

Jernigan [19] considered this model as one of the best in terms of texture classification
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for speckled :mages. The algorithn: is similar to Lee's multiplicative filter [19). The

recorded signal y(i,j) .s considered as |
y(i.j) = 2(i,5) + u(i, ) (3.22)
where the noise process u(i, j) depends o the signal z(i, j) by the following equation,
u(irj) = (0,7l = 1] @3.23)
Assuming local stationarity of the image, the resulting estimate of the image is,
#(i,7) = 2(i,5) + Kly(iry, =3 ,4)] (3.24)

with

iy o Oa(ig) ~ )% j)od ;
k(i) = T on (3:25)

3.3.3 Quadratic Volterra Filter (QVF)

A relativelv new technique for nonlinear filtc. ing is based on truncated Volterra series.
Volterra series is inherently . onlinear in nature which has stimulated rescarchers to
apply them for nonlinear filtering purposes. To avoid the complexity of using higher
order terms, the series can be truncated at second order, leading to the Quadratic
Volterra Filter (QVF). Ramponi et al. [41]-[50] made an extensive study of this filter
and proved its robustness in restoring images corrupted by multiplicative noise as
discussed in details in Section 2.4. Based on Ramponi's work [50}, a quadratic Volterra
filter is proposed in present work to restr.re speckled images. Before approaching the
design strategy for a speckle specific filter based on the quadratic Volterra series,
it seems necessary to have an idea about the general theory and propertics of the

quadratic Volterra series as will be discussed next.
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3.3.3.1 Theory and property
The 1/O relationship of a quadratic Volterra scries can be described by the following

expression :
#(m,n2) = ho + Ruly(ny, na)] + Raly(m, na)] (3.26)

where y and Z are respectively the input and output of the system, (n1,n2) is the
pixel of interest and hq is the constant term of the Volterra filter.
The linear operator f; and quadratic operator /i, are given by,

Rily(yna)l= 3 hii,ia)y(n — ity —ia)
(i1,i2€8)

Raly(myma)] = 30 E ha(ix, ia, 41, 52)y(m = i1,na — ia) -

1,12€5) (j1.J2€S)

y(ny = j1,n2 — ja) (3.21)
where S is the finite support of the filter. For example, the finite support of size
N x N in 2D space is defined as,

W 2-(N-1)/2, 1 <(N-1)/2,
22-(N-1)/2, j2<(N-1)/2, (3.28)
for N taken to be odd.
Equation (3.26) can be described more conveniently in matrix® form :

Y = Ho+ tr{ Y7} + tr{H, Y37} (3.29)

where H; and Y] are N x N matrices, Y; and H, are N? x N? matrices; tr{.} indicates
the trace of a matrix and {.}” denotes matrix transposition. The element (iy,3) of

To avoid negative indexing in the matrices Hy & Hy, all indices are offset by (¥51), (V odd).
5
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the input matrix Y; corresponds to the input sample (ny — i, nz — iz). The matrix
Y, is obtained from Y using the following formula,

Ya=%0Y; (3.30)
where ® denotes the ‘Kronecker’ product. The matrix Y; contains the products of all
possible pairs of elements in ¥;.

As seen in the previous analysis, the number of linear and nonlinear cocflicients

for a finite support of N x N are N? and N* respectively. Thus, even for N =3,

the number of coefficients for the quadratic part of the filter is 81, a large number.

F Iy, some valid conditions can be exploited without losing the generality of
the filter, so that the number of independent cocfficients can be reduced to a large
extent under the following conditions :

i) uniformity in grey level which implies for a homogencous region, the lincar co-
efficients and nonlinear coefficients should sum up to onc and zero respectively as
expressed mathematically by :

2 halini) =0

i1,72€S

¥ hafinyiz, uya) = 0 (3.31)
1/12€5 j1.2€S

i) symmetry condition which is obvious from the following equations :
ha(inyia) = ha(iz, )
ha(ir, iz, 11, J2) = ha(f1sJarins 32) (3.32)
which reduces the number of coefficients by half; and
iii) isotropy condition which means that the orientation of the filter mask must not
make any difference to the output; this particular condition gives a large reduction

in the number of coefficients.
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Exploiting these conditions for V =3 the total number of independent linear and
nonlinear terms drop to 6 and 11, respectively.

It should be clear that the quadratic Volterra filter has mainly two parts — a lincar
part and a quadratic part and the filter response is the combination of these two parts
except for a possible constant offset. The linear part’s role is smoothing the noise,
whereas, the quadratic part compensates for the damage caused by the low-pass filter
on fine details of the image. This scems to give an improved performance provided
that the filters - both linear and quadratic can be well designed. However, this is
not an easy task. The following analysis is done based on Ramponi’s work [50] which
arranges the quadratic coefficients into three major classes, referred to as Type 0,
Type 1 and Type 2 coefficients. This concept will be used later in designing the
quadratic part of the filter used in this research.

The quadratic coefficients can be arranged in a 32 x 3 lexicographically ordered
matrix Hz. Thus, H, can be considered as a matrix which is composed of 3 x
3 clements, with each clement a sub-matrix of Hy denoted by Hy[i,f], where i, j
represents the row and column of matrix H,. Each sub-matrix Hj[i,j] of matrix
Hz is in fact a matrix composed of 3 x 3 elements denoted by Ha[i,j](k, 1), where
k,1 refers to the row and column of the sub-matrix Hyfi,j]. Thus, the element of
Hz, Hifi,j1(k,) acts on the product of the image pixels y(i — %L,j — M=1) and
y(k — B, q - K1),

A possible set A of the 11 independent coefficients are :

A = {Ha[1,1)(1,1),H[1,1)(1,2), H[1,1](1,3),
Hal1,1](2,2), 1, 1)(2,3), Hal1,1)(3,3),
Ha(1,2)(1,2), Hq1, 2](2,1), Ha[1,2](2,2),
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H3(1,2](3,2), H:[2,2)(2,2)} (3.33)

Depending on the relative position of the pair of pixels on which the cocfficicnts

act, these can be divided into 6 groups and the independent coefficients then further

reduced to 6. The set of all quadratic coefficients A can now be defined as ,

> w °

0
»

A={a,B,6,¢0,u} (3.34)

SH,{1,1](1,1) + 455(1,2)(1,2) + Ha[2,2](2,2)
4H,{1,1)(1,2) + 4H5(1,2)(2,2)

2H;{1,1)(1,3) + H31,2)(3,2)

2H,(1,1)(2,2) + 2H,1,2)(2,1)

2H,[1,1)(2,3)

Hif1,1)(3,3)

(3.35)

To render the subsequent design simpler, the responses are again classified into three

major categories based on the distance measured using 8 connectivity as a metric

between the couple of pixels on which the corresponding quadratic coefficient acts.
The distance between two pixels (i, j) and (k, {) denoted by dist((i,7), (k, 1)) is defined

dist((i, ), (k, 1)) = maz(abs(i — k),abs(j - 1)) (3.36)

And hence the three types are,

Type 0:  Ao={a} having dist((i,]),(k,{)) =0
Type 1: Ay ={f,e} having dist((i, ), (k1)) = 1
Type 2: Az ={6,0,u} having dist((i, ), (k1) =2 (3.37)
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3.4 Speckle-specific edge detection techniques

As mentioned in Section 2.5, edge detectors are mainly of the gradient type i.e. the
detectors are based on the difference between pixel values. This type of edge detector,
when applied to speckled images, yields very poor results because of multiplicative-
convolutional nature of speckle noise. Very few speckle-specific edge detection meth-
ods have been developed as discussed in detail in Section 2.5.2. Brief analytical

descriptions of some of these methods are included here.

3.4.1 Coefficient of Variation

It is well known that for radar imagery, the coefficient of variation (/s = ‘/IT(I)/ E(z))
is constant i.e. independent of mean power over a homogeneous area [60, 61). The
Probability of False Alarm (Pfa) is defined as the probability that a pixel of a ho-
mogeneous area is detected as an edge pixel [61]. If Pfa is dependent on the mean
power as it is in the case of speckled image, it is better to use an edge detector based
on an operator which is independent of the mean power and such an operator has a
property of Constant False Alarm Rate (CFRA). An edge detector of CFAR could
be developed using the coefficient ¢/u as an edge strength measure. In practice, an
estimate of coefficient of variation (i.e. the standard deviation to mean ratio denoted
by /@) is computed over a window of N neighboring pixels and the centre pixel of
the window is replaced by this value. o and p are computed as,

B
Bo= Sau (3.38)
and

(339)
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In practice since the distribution of o/u is around /%, the threshold is set to a value
T = /1/L + €, where ¢ is very small number and L is the number of independent
looks. So the larger o/ is, the greater is the probability that the pixel of interest is

a part of an edge. The pixel is assigned to an edge if the edge strength £ > 7.

3.4.2 Frost’ CFAR edge detector

Frost et al. [17] proposed an edge detecting technique for SAR images. The method
applies maximum Likelihood Ratio (LR) as the measure of edge strength. Maxi-
mum likelihood ratio is computed based on a SAR image model and works quite
satisfactorily. The likelihood ratio is given by,

2V 1Y, A" exp(=yi/Bo)
L, (Br% exp(—yi/ B) + Br ™ exp(~yi/ )
where y; the ith pixel value and

Ayiyava---yn) = (3.40)

fo=M,/L, (341)

with a local mean of M, using all pixels y;y,+* - yn, and L independent number of

looks.
Bi=ho-R
Br=Pfo+Ry
and Ry is defined as,
By = (g - A (42)

where W2 = S + M? with 57 being the variance of neighborhood.
Frost et al. claimed that the method can be generalized and applied to any noisy

images with some knowledge of the first order statistics of the noise. The given test
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image model assumes only the multiplicative model of speckle with correlation fully

d ratio is calculated based on this ion. A thinning

ignored and the li

operator [17] should be used after the LR operator in order to produce fine edges.

3.4.3 Bovik’s ratio of Averages (ROA)

Another approach to the solution of this problem was made by Bovik [9]. He sug-

gested a logical combination of a ratio of averages (ROA) and the Gaussian Smoothed

Laplacian (GSL) edge detectors. A ling to Bovik, the ratio of averages edge de-
tector is quite efficient on speckle-degraded images but has a drawback of generating
very thick edges. On the other hand a general edge detector such as the Gaussian
Smoothed Laplacian gives fine edges but gives rise to many false edges which is not
al all desirable. A combination of these two edge detectors (logical AND operation
on the resulting images obtained from the output of these two detectors) gives better
results than either of the individual edge detectors, The ratio of averages edge detec-
tor is computed as described below :

Horizontal component :
H(i, j) = maz(R(i, j)/L(i, 1), L(i,7)/ B(i,5)] (343)

where R(i, ) and L(Z, j) are the average values of the neighboring pixels immediately
to the right and left to the image coordinate (i, 7) respectively.
The vertical component V(i, ;) is similarly computed and finally the overall edge

magnitude could be given by,
R(, §) = IH(4) + V33, 1)) (3.44)

Now, a predefined threshold is used to obtain the final the edge map. Thus, R(i, ;) >

T implies that an edge is likely present or otherwise there is likely no edge.
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3.4.4 Extended Ratio of Averages CFAR

Another edge detector which is simply an extension of ROA detector is proposed by
Touzi et al. [60, 61] which uses the Constant False Alarm Rate (CFAR) concept. This
method is model-based and designed particularly for SAR images. It has been shown
that the performance of an ROA detector depers on the size of neighborhood, num-

ber of independent looks and ratio of mean powers. The detector uses some statistic

estimates to calculate edge strength. A contrast ratio of two homogencous ar

the samc intensity, is defined as C, = maz(Py/Py, Py/ ), with G, = 1 for two ho-
mogeneous areas. Given a threshold T, it is then possible to compute the conditional
probability of detection (Pd) within the boundary between two homogencous areas

of contrast ratio C,. :
T
Pd(T,C.) = Prob(r < T/C;) =/° p(r/Cr)dr (4.445)
Hence,
Pfa(T) = Pd(T,1) (3.46)

The effect of edge orientation and neighborhood size arc also important considera-
tions and have been taken into account. Edge orientation in 4 different dircctions is
suggested and this is different from Bovik’s method which uses only horizontal and
vertical directions. Although the concept of using different thresholds with increasing
window size is also proposed, but it is not clear how the different thresholds are com-
puted [60, 61). In present work, only the idea of four different orientations is used. A
thinning edge process based on grey-tone morphology [52] is also suggested following

the edge detection because the resulting edge map is quite thick.



3.5 Performance measures

valuating a filter's perf both qualitatively and quantitatively is important.
g q!

A comparison between several filters developed for the same purpose can be made
based upon some pre-established measures. There are a number of features on which
a filter can be evaluated. As it is usually not possible to find one filter which is the
best in all respects, a filter is considered as a good one if it performs reasonably well
according to most of the desired features. Depending on the purpose of filtering,
different performance criteria can be chosen. However, image restoration filters are
usually evaluated in terms of their noise smoothing ability. Images of interest in this
thesis are meant for interpretation either by human or machine and resolution is also
very important consideration. So equal attention is paid to investigating both the

noise smoothing and edge preserving ability of the filters.

3.5.1 Noise smoothing measures

A traditional measure of noise smoothing is the Mean Squared Error (MSE). When
working with synthetic image data, the un-corrupted image is assumed to be known.
Hence, the global MSE for the noisy image and filtered images can be calculated.
However, it is well known that reduction of MSE does not necessarily indicate an
improvement in interpretability (human or machine) [38). Another commonly used
noise smoothing measure is Signal to Noise Ratio (SNR). The SNR for a whole image
as well as for two sample homogeneous regions of low and high intensities can be

calculated too.



3.5.2 [Edge preserving measures

A filter can be evaluated in terms of its edge preserving capability. It is often the
case that filtering reduces the resolution and causes blurred edges which might lead
to mis-interpretation in the analysis of the image. Several edge detection measures
are available which can be used to compare cdge maps obtained before and after
filtering. Thus an evaluation of different filters can be made in terms of their edge
preservation ability and possibly even their edge enhancement ability. One such well
known measure proposed by Pratt is his ‘figure of merit’ [43] which yiclds a single
value with respect to edge displacement, ambiguity and incorrect classification, cte.
is defined by :

R= —maz(li'A,N,)ﬁ (3.47)
where N4 and Ny are respectively the total number of edge pixels in the actual and
ideal edge maps, d is the perpendicular distance from an actual edge pixel Lo the
ideal edge pixel and f is a scaling constant. Pratt’s figure of merit is very compact
and is quite biased [35]. Some more accurate measures for evaluating edge detectors
are proposed by McLean and Jernigan [35]. Some similar edge detector’s measures
are suggested here to evaluate the edge maps resulting from speckled image and

filtered images. The factors named “correct”, “ambiguous”, “missed” and “wrong”

are defined as,

¢ = _2xd#correct
T #true + #found
_ #ambiguous
- #lrue

i #missed

fttrue
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_ #false
W= iound 1348)

where
o #true= number of total edge pixels in the ideal or true edge map,
o #found= number of edge pixels found in the edge map of interest,

o #correct= number of true edge pixels which were found with either one or two
cdge pixels within a 5 x 5 window centered at corresponding true edge pixel

location.

® #ambiguous= number of true edge pixels which were found with more than
one edge pixels within a 5 x 5 window centered at corresponding true edge pixel

location,

o fmissed= number of truc edge pixels which were not found with at least a
single pixel within a 5 x 5 window centered at corresponding true edge pixel

location.

o #wrong= number of pixels found which were not in the ideal edge map within

a5 x 5 window centered at corresponding pixel location.

A good edge detector should provide a large value of C' and small values of A, M
and W,

3.5.3 Other measures

Visual interpretability is no doubt another important consideration in evaluating a
filter’s performance. Images of interest in this thesis are meant to be interpreted

by humans or machines. If available, real data can be gathered and processed and



43

expert viewers can be asked to evaluate the quality of the image before and after
filtering. This will likely give a better understanding of the improvement in terms of
the information content. Time consumption and complexity of filters in design and

implementation are also worth investigating as other measures of filter performance.

3.6 Concluding remarks

Based on the above discussion of SAR speckle modeling and of different nonlinear
filtering theory including the QVF, it is intended to design a speckle model-hased
QVF. As is clear from the previous discussion, the QVF has the most generalized
structure among all the filters that have been discussed and hence it is flexible from
the design point of view. The next chapter focusses mainly on the proposed method-
ology for modeling SAR speckle and suggests some speckle-specific QVF designs with
detailed descriptions for implementation. Also a new edge detector based on Bovik's

and Touzi’s ROA edge detector and a thinning algorithm [53] are described in detail.



Chapter 4

Methodology and Implementation

4.1 Methodology

Although speckle has been discussed and dealt with in the literature [16, 19, 23,
24, 28], there still remains the question of removing speckle from an image while
preserving the underlying informative structure. The present thesis is an attempt to
the solution of this problem. Some of the previously discussed image restoration filters
will be applicd to compare their performance on speckled images ia terms of edge
preserving noise smoothing. Some of these filters are meant for speckle suppression
and some are not. However, those filters which seem to be appropriate in terms
of reducing speckle while preserving the fine details ate investigated, A relatively
new technique which has not been applied previously to solve the speckle problem is

demonstrated as well.

4.1.1 Choice of speckle model

To choose an image restoration filter specifically for speckle degraded images, one

must know the speckle statistics and have a speckle model. A realistic model of
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speckled SAR images is one which is described by Hudson and Jernigan (19]. A
slight modification of this model (Scction 3.2) will be used throughout the remainder

of this thesis. The validity of the model will be tested. It is well established that

speckled images have a property of maintaining constant SNR as the mean intensity
of the image varies. However, the value of the constant depends on the number of
independent looks, the SAR PSF and also on the type of image (amplitude, intensity
etc.). A test will be performed to confirm that the model used would provide constant

SNR which is independent of the mean intensity.

4.1.2 Quadratic Volterra filter

It has been proven that speckle is a multiplicative and partially correlated noisc and
argued that a linear filter may not work optimally in suppressing speckle. Most of pre-
vious reported work in this area assumes a multiplicative model of speckle and hence
uses multiplicative filters for removing speckle. The fact that speckle is partially
correlated, has largely been ignored although it is an important consideration. The
inter-pixel correlation of speckle leads to a conclusion that the edge preserving speckle
smoother must have a spatial memory in its structure. The Quadratic Volterra filter
originating from the truncated Volterra series has been used widely and has been
proven to be a very effective way of dealing with nonlinear problems. As mentioned
in Section 2.4.1, some of the successful applications in which the quadratic Volterra
filter proved its robustness are echo cancellation (8], modelling low frequency drift
oscillations under sea wave excitation, electromagnetic scattering from quadratically
nonlinear targets and in general modeling quadratically nonlinear systems (21, 22].
The application of the Volterra filter in image processing is also found in many pre-

vious papers (as illustrated in section 2.4.2). Specially, applications of the Quadratic
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Volterra filter in image enhancement [44], edge extraction [49] and edge preserving
smoothing [50] scem to be very satisfactory. Moloney’s filter uses a truncated Tay-

d with a pointwi: ltiplicative noise model (38]. Since the

lor series in
Volterra series can be considered as a Taylor series with memory, the Volterra fil-
ter might be able to take into account the correlation property of speckle and might
yield better results for speckled images. The Volterra filter has a generalized nonlinear
structure which provides flexibility in different types of filter design. However, most
Volterra filters, used in various applications, are designed only up to the quadratic
term because of the huge complexity of further higher orders, and also because most
of the practical nonlinear problems are not so complex that they require higher than
a second order filter to obtain an adequate results. A quadratic Volterra filter is
therefore proposed here to solve the problem of speckle.

Though named a quadratic filter, it has both a linear part and a quadratic part.
The lincar part which is intended to play a role in noise smoothing, can be any low-
pass filter. A simple box-type local averaging filter is proposed because the quadratic
part is of main interest here,rather than the linear part. However, it is difficult to
design the quadratic part which compensates for the blurring effect caused by the
linear part, because of the large number of independent coefficients. The present
design is restricted to a filter support of N = 3. For a fairly homogeneous area in
a speckled image, it is perhaps best not to use the quadratic part of the filter at

all. Hence, a decision-directed impl tion of the filter is suggested here as was

also proposed by Ramponi [45]. The filter coefficients can be either set to some fixed
values beforchand or updated in a regular fashion throughout the image as will be
discussed later in detail in Section 4.2.2. The effect of the three types of responses

on the speckled images are investigated.



4.1.3 Choice of filters

The other filters which are chosen as candidates fo: the present study of edge pre-

serving speckle smoothing are:

Linear average filter

1

Median filter

o

Homomorphic filter

IS

. Lee’s multiplicative filter

™

Two-point Taylor filter

w

Lee’s sigma filter and
7. Frost filter.

The reason the linear average filter has been chosen is that it is important to see how
the other filters work with respect to a simple linear average filter. For a homogencous
region, a linear filter should perform quite well regardless of the type of noise. How-
ever, it is expected that edge retention will be much better in other filters. Although
median filter is an ad hoc choice, it plays a good role in image enhancement which
explains why it has been chosen. The multiplicative property is very prominent in
speckle and multiplicative filters have been previously used in many previous speckle

filter, Lee's multiplicative filter and the two-

point Taylor algorithm. The remaining two filters were developed for SAR speckle
smoothing purpose and hence are worth investigating for their smoothing and edge
retention ability. Finally the proposed filter will be applied to speckled images and a

comparative study of it and all of the above filters is reported.
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4.1.4 Types of data

To test the filters’ performance, it is necessary to have a set of images. It is worth

that in image ing, it is important to test a developed algorithm
on more than one image, since it might happen that an algorithm works well for
a particular image, but may perform very poorly for some other images. It was
decided to use created images of three or four different types and to simulate speckle
corrupted versions of each image using the speckle model (Equation 3.2). The choice
of synthetically created images need not necessarily be very complex. In practice, SAR
images are not very complex in terms of their number of grey levels or fluctuation
of image intensities. Most of the work previously done on synthetic SAR images
[9, 19, 23] usc images of relatively simple structure. Attention must be paid while

choosing images so that the edge detecting ility can be i even

in the worst possible situations. An annular ring and stripe pattern are appropriate
for this purpose. It is also important to show a filter’s performance in homogeneous
arcas of both bright and dark intensities. Images with two contrast grey levels would
be appropriate from this point of view. Also a more complex image is used to illustrate
the overall performance of the filters. In addition, to test the validity of the speckle
model some tests are performed. These tests require an image of gradually varying
intensities in the horizontal direction. This particular image is used only for the

purpose of validity of the speckle model as will be discussed later in Section 4.2.1.

4.1.5 Edge detection

Investigating various edge detection techniques for speckle corrupted images is an im-

portant issuc in this thesis, because a lack of good edge detector for speckled images
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makes it very difficult to detect edges in such images. Edge detection is necessary if

one must determine either qualitative or quantitative measures for the edge preserving

ability of a filter. For original un-corrupted images (known for synthetically gener-
ated images), any well known edge detector e.g. Sobel, Robert’s gradient, Gaussian
smoothed Laplacian etc. [18], will give substantially good performance. However, to
detect edges in speckled images, a slight modification of Bovik’s Ratio of Averages de-
tector and a combination of Ratio and Gradient of Averages (RGOA) edge detectors
are proposed, since most of the common edge detection techniques perform poorly on

speckled images.

4.1.6 Performance measures

Filter perfc needs to be evaluated and qualitatively. Two very
common noise smoothing measures are the global Mcan Square Frror (MSE) and
the Signal to Noise Ratio (SNR). These are computed for a corrupted image and
its filtered versions to examine the filter performance in terms of noise smoothing.
A lower value of MSE and higher value of SNR are expected after filtering. Edge
detection ability is determined before and after filtering by the correctness of the

edge map, based on some measure; namely number of correct, missed, ambiguous,

wrong etc. as defined earlier in Section 3.5.2.

4.2 Implementation

4.2.1 Speckle simulation

A multiplicative convolutional model (Equation 3.2) has been used for speckle model

simulation. The first step is to generate a two-dimensional noise field, There is
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a provision for generating noise having different probability distributions [42] (e.g.
X» X-squared, Gaussian, exponential etc.). However, noise having exponential and x-
squared distribution are used for generating one-look and multi-look speckled images.
The next step is to multiply each ideal image pixel pointwise with samples drawn
from the noise file of interest depending on the desired number of looks. Thus the
multiplicative part of the model is generated. To take the correlation property of
speckle into account, it is necessary to know or assume the point spread function
or impulse response of an imaging system. Since the present work involves SAR
speckle simulation, a hypothetical but realistic impulse response for a SAR system is
chosen. The assumed impulse response has a circularly symmetric Gaussian shape,
the edge of which is taken to be 10 decibels below the peak value. This response
was initially used by Hudson and Jernigan [19]. The resulting multiplicative image is
then convolved with the given PSF of SAR and an amplitude speckle model of SAR
image is thus obtained with the expected statistics of such an image. At this point,
it scems almost essential to test the validity of the model generated. This is done
using a 200 x 128 image with gradually varying intensities from 0 to 200 corrupted
with speckle as shown in Fig. 4.1(a). Both one-look and four-look speckle have been
considered (Figs. 4.1(b) and (c)). The ratio of the standard deviation (std) to mean
for all columns in this image are expected to be equal with theoretical values of 0.522
and 0.25 for one-look and four-look images, respectively [19, 25]. The plot of the ratio
against the mean intensity in Fig. 4.2. shows a close match between the expected
value and the values found. Moreover, the horizontal distribution of the ratios confirm
the fact that the standard deviation of the image is directly proportional to the mean
intensity. Another image with uniform intensity of 40 throughout the image has been

synthetically created and corrupted with one-look and four-look speckle (not shown).



(a) (b) (c)

Figure 4.1: (a) Original image “bands”; (b) One-look speckle corrupted version; (c)

Four-look speckle corrupted version

The histograms of these images are shown in Fig. 4.3. These figures illustrate the
pdf of these images which seem to follow a Rayleigh and x-distribution as expected

for one-look and multi-look speckled images, respectively, (19, 25].

4.2.2 Quadratic Volterra filter implementation

A variety of different implementations of the quadratic Volterra filter have been car-
ried out as a part of this work and although not all of them perform satisfactorily, it
is worthwhile to describe some of the previous experiments to illustrate the develop-
ment of the successful QVFs has been done. Finally, the implementation of the filter
which gives the most satisfactory results is discussed in detail.

As mentioned earlier, it is not difficult to implement the linear part of a QVF. A
simple box type low pass filter performs well for this purpose, and has been used in

all implementations. It is important to remember that the quadratic part may not
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necessarily perform any better over homogencous areas, and in fact, it may cause some
artifacts in these areas. For this reason, it was decided to turn off the quadratic part
in these areas. A threshold is thus provided in all implementations which determines
whether or not the pixel to be estimated is required to be processed through the
quadratic part. Thus,
- [ Ui Loy /u) 2T
0  otherwise

where, oy and p, are the local standard deviation and mean calculated from the noisy
image, respectively; L is the independent number of looks and 7' is a multiplying factor
which must be chosen interactively.

The difficulty arises in designing the quadratic part because it has a large number
of independent quadratic coefficients ; 11 even for a small mask size of 3 x 3. The
following discussion presents some methods used in this work used in sctting these

coeflicients. Some of these methods are based on trial and error.

® Fixed coefficients QVF:
One possible implementation is to choose the quadratic coefficients such that
the filter fulfills three conditions namely uuiformity, symmetry and isotropy
(Equation 3.29 and 3.33). An algorithm is thus developed which Lakes the set
of these coefficients as one of the inputs and maps them to the 9 x 9 quadratic
coefficient matrix creating a fixed mask. The same filter coefficients are used
throughout the image to be filtered. However, it is difficult to choose all these
values without having much information about the shape of the quadratic mask.
As described by Ramponi [50), some of these cocfficients can be considered as

zero when an edge preserving smoother is of great importance.
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Figure 4.2: Scatter plot of std/mean ratio vs. mean intensity (Image: “bands”)
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Figure 4.3: Histogram of a uniform image corrupted by speckle noise (mean = 40)



« Kronecker product coefficients QVF:
The next implementation avoids choosing all 11 coefficients. In this implemen-
tation, the 9 x 9 quadratic matrix is formed by taking the “Kronecker” product
of two equal symmetric 3 x 3 maltrices. Since the matrices are equal and sym-
metric, one needs to know only 3 out of 9 of their elements. Thus if Hy3 is a
symmetric 3 x 3 matrix then tt e 9 x9 quadratic matrix is given by the following

equation,
Has = Hiy @ Hn (4.1)

where @ stands for the “Kronecker” product. The flollowing constraint is im-

o

portant to meet the symmetry, grey-level uniformity and isotropy on
the quadratic coefficients. Thus,
2 Haliij) =0 (4.2)

(i)
This condition however reduces the number of unknowns to 2. So a trial and
error process is used to choose the best values of these two unknowns which

gives a satisfactory output.

o Proportional weight coefficients QVF:
Based on Ramponi'sidea of three types of filters [50], coefficient values Wy, W7y, W
for the three types (discussed in details in Section 3.3.3) are arbitrarily chosen

such that ¥2o W,

0. The weight calculated for a given type A; of the re-
sponse (Equation 3.37) is then equally distributed to all elements of that type.

Hence, the clements of A, (Equation 3.37) are assigned to have the following
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values,

a=W

W,

"=‘:Tl
—p=p=T2 ;
f=0=p=— (1.3)

Again, cach weight of a given type can be proportionally distributed to all

elements of the ding type. The inds ! fici

(Equation

3.35) are evaluated as shown below,

Ha[1,1)(1,1) = Hz[1,2)(1,2) =

5
Ha[2,22,2) = 1o
Hall, 1)(1,2) = Haf1,2)(2,2) = %
Hal1,11(2,2) = Ha(1,2)(3,2) = %
Hal1,1](1,3) = §
1101,2)(3,2) = %
I01,1](2,3) =
Haf1,1)(3,3) = (4.4)
Knowing the values for all 11 coeffici the 9 x9 drati flicient matrix

Hy is formed.

o Mean square estimated coefficients QVF:
Let z(i,j) denote the SAR image which is corrupted by speckle noise process

n(i, 7). Therefore, the corrupted image y(i, ) at pixel (i, ) can be written as,

y(ij) = [2(i,]) - nli, )] # h(ij) (1.5)



where (i, j) is the point spread function of the SAR.
Assuming that the estimated value of any pixel can be expressed as a QVF,
operating on the speckled image, a minimum Mean Square Error (MSE) esti-
mation is presented to obtain the coefficients of the QVF. A simpler structure
of the estimation for the problem is attempted here as given in the following
cquation,
N=1
F=3(,5)+ Y 0 3, ylhi)y(k) (4.6)
r=0 (i) (kD)]ES,
where S, is a sct which contains all possible pairs of pixels (i, j) and (k,{) such
that the distance (Equation 3.36) between these pixels are r i.e.
dist((i, j), (k1) =7 (%))
For simplicily, the index for the second summation will be omitted throughout
the following aralysis. For N = 3, three cocfficients ag, oy and @z have to
be determined. One simple way of estimating these coefficients is illustrated
below. To further simplify the process, one coefficient is estimated at a time
while setting the others to zero.

Determination of a,

An objective function J(a,) can be defined as,
J(a) = El(z(m,n) - 2(m, )]
El(z(m.n) - §(m,n) - & Y y(i, )y (k, D
= Eltz(m,n) ~ §m,n))] - 20, El(z(m,n)
~g(m,n))  y(i (kD)
+a E[(Y (i )k, D)) (.8)

o



5

=

By minimizing the objcctive function, an optimum solution for a, will be ob-

tained,

Eg:./(n,) (4.9)
This yields,

_ Ellz{m,n) = glm,n) SotisHulk, 1) o)
By )yl D] '

However, it is impossible to determine Elz(m, n) £ y(i, j)y(k, )] unless the noise

ar

statistics are well known. In this case, the overall noise statistics of the model
(Equation 3.2) are not well known. Nevertheless, if a purely multiplicative

model is assumed, the above joned ion can be

I casily from
the noisy image process. Denoting z(m,n), y(i,j) and y(k,1) as 21, yy and ys,

respectively, the following relation can be derived,

Nyays = Tyl
Elyyays] = Elmi)Eleiy2ys]
Elziyays] = Elyiyans)
It is also assumed here that the noisc process is independent of the original
image.
Therefore,

_ Elly(m,n) = 5(m, n)) £yl 7)y(k, D]
T(y(i,j) - ylk, 1)

o

(4.41)

4-direction-oriented QVF:
The next implementation is an attempt to make the quadratic part more sen-

sitive to the noise particularly in the edgy regions. The quadratic part in hoth



a) Vertical

Figure 4.4: 4 one-dimensional filters in different orientations

of the above implementations has worked on a 3 x 3 region of support which
does not scem to be large enough. But a large region of support means a larger
mask size of the quadratic filter. However, to avoid the huge complexity in
dealing with a two-dimensional quadratic filter having an N x N filter mask,
it seems much simpler as well as effective to use four one-dimensional filters in
four different orientations, - horizontal, vertical, diagonal and counter-diagonal
as shown in Fig. 4.4.

In this way, it is possible to cover a larger portion surrounding the centre pixel

1o be esti d in 4 icular directions without i ing the

This has been done where the estimated value of a pixel located at (m,n) is

described by the following equation,

i(m,n)

§(m,n) + Zz: i w(d,,d,)Y(d,,d,) (4.12)
du=0d,=0

where, #(m, n) and §(m, n) are the estimated value of the original image and the
expected value of the corrupted image, respectively; Y(d,, d,) is the expected
value of the product of pair of the pixels (i.) and (k1) having inter-pixels
distance of d, and direction of d,, and w(d,,d,) is a weight assigned to ¥ (d,, d,).
A definition slightly different than the previous one (Equation 3.36) of dist is
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used here and is given by :
dist((i, ), (k, 1)) = abs(i — k) + abs(j - 1) (4.13)

The direction of a pair of pixels, (i, j) and (/) is denoted here by dir((i. j), (k.1))
and the arbitrary values assigned to four standard directions are,

0 - horizontal

1 - vertical

2 - diagonal

3 - counter-diagonal

Thus Y(d,,d,) can be expressed as shown below,
1
Y(d,d,) = v~ y(i.j) (k1) (4.14)
TN (-'agu-.u '

with dist((i. j), (k,1)) = d, and dir((3, j), (k1)) = dr; where, N(d,) denotes the
number of such pixels in the direction of d,. The summation is taken over a
21+ 1 long strip, 3 pixels wide, symmetric around the pixel (m,n) and the strip
is along the direction of d;, where the d; indicates the direction orthogonal to
d,. For d, =0, only those pixels which lie on the line of d, passing through
(m,n) are used for calculating Y(0,d,). Thus N(d,) for d, = 0,1 and 2 are,

NO) = 2+1 (4.15)
N(1) = 202+1) (4.16)
N@) = 2041 (.17)

The product Y(d,,d,) is normalized with the local mean §(rn,n).

To make the algorithm simpler, the weights can be made independent of the

direction and in this case, the weights denoted by w(d, ) become a function only
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of the distance d,.. The weights w(0), w(1) and w(2) provided before processing
the speckled image. Different weights were chosen to test speckled images and
the empirical relations found among the three weights are as follows :

w(l) = Kuw(0)

w(2) = —(w(0) +w(1)) (4.18)
where K is a positive integer between the range 2 to 5.
The algorithm can be further refined to make it more sensitive to edges. This

is done by determining the probable occurrence of an edge at a pixel and the

probable direction and strength of the edge. A ratio r(d,) which measures

Iy the probability that the pixel estimated belongs to an edge, is
defined as :
CY(0.d,) Y(2,d)
7{dc) oz (y(z, 2)' V0.4, (£19)

The larger the value of r(d,), the higher is the probability that the estimated
pixel is a part of an edge in the direction of d,. So, calculating d,’s for all possible
4 directions, the direction d,, which gives the maximum ratio is determined
and only the products (Y(d,,d,m)s) are used for subsequent processing. This
rmethod has a big disadvantage, since in the vicinity of an edge in a particular
direction, the ratio corresponding to the orthogonal direction is most likely to
be maximum which may affect the resulting image in a severe manner. To avoid
this, it is suggested that it be checked whether or not the least ratio is below a
certain range (typical values found are (0.01 - 0.1)). A very low value of r(d,)
implies that the pixel is near the edge and it is better to avoid nonlinear filtering
onit. So, a second check is provided to determine whether or not a pixel should

be subjected to nonlinear filtering.
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N1
N1j| N2
: N2
2) Vestical b) Horizontal
N1 N
N2 N2

«) Positive Diagonal d) Negative diagonal
Figure 4.5: Neighborhood pair oriented in four different directions

In all the above methods, an overall scaling factor ¢ is applied to the quadratic
response of the filter. It can be adjusted properly after some trials; with the images
tested, the scale is found to be in the range of 0.05 - 0.5. In the following chapter,

only the “Proportional weight coeflicient” and “4-direction-oriented” QVF' are used.

To be consistent, the weights for the three types will be denoted as Wy, Wy and W,
for both methods.

4.2.3 Ratio of Averages edge detector

The typical gradient type edge detector is not suitable for detecting edges on speckled
images. Since speckle is multiplicative in nature, a ratio of averages edge detector
seems to work better. One such edge detector is proposed by Touzi et al. [60, 61].
Based on these studies, a simplified form of a ratio of averages is used in the following

edge detector.

* Modified Ratio of Averages (MROA) edge detector:

To determine whether an edge is present at a given location of an image, an
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edge strength measure is needed. A window of a given size N x NN centred
at the pixel of interest, is split into two contiguous neighbourhoods for each
of the four usual directions as shown in Fig. 4.5. The averages of the pixels
in the contiguous neighbourhoods for the four pairs are calculated. Thus, the
cdge strength measured at a particular pixel located at (z,y) for ith pair of

neighbourhood cau be defined as :

Ri = min(P,/Q:,Qi/P); -4 (4:20)

where, P; and Q; are the averages of the pixels in the two neighbourhoods.
The cdge strength is measured for four directions and since a lower value of R;
implies that an edge is moy : likely to be present at that location, the minimum

value among the four ratios is determined and finally the ratio R is obtained,

R = min(Ry, Ry, Ra, Ry) (4.21)

holded defined threshold

The estimated edge strength has to be th

usinga
T and the desired edge map is obtained. Too low and/or too high values of
T and N, respectively, might result in an edge map having a large number of
missing edges. On the other hand, too high and/or too low values of T and NV,
respectively, might yield large numbers of spurious edges and very thick lines
in the edge map. So it is very important to choose optimal values of T and N
which compromise between missing edges and ambiguous and/or wrong edges
in the edge map. For good performance, the range of T and N has been found

to be 0.2 — 0.8 and 5 - 11, respectively.

» Ratio and Gradient of Averages (RGOA) edge detector

It has been noticed that above method suffers from a limitation. It tends to
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locate more edges in darker regions than edges in brighter regions even if the
contrast is held constant. This makes the method very susceptible to noise
(false edges) in darker areas if edges belong to a brighter arca in the same
image, have to be detected. The effect cannot be noticed and hence can be
ignored in high contrast images. But this cffect is very prominent in the images
with low contrast regions. This is understandable because the ratio of averages
rather than the gradient is being used as an edge measure. But for correlated
speckled images the multiplicative nature of noise is compensated partially by
the correlation property of the speckle. Undoubtedly, a gradient type cdge
detector would not work properly. However, the combination of these two Lypes
of detectors might work better than any one of these. This is attempted in this
work and much better results have been obtained. An edge is detected if cither
the ratio-magnitude B < T, or the gradient-magnitude G > T}, where 2 is
calculated using Equation 4.20 and 4.21 and G is calculated in a similar fashion
as shown below. The gradient magnitude for the four directions (i = 1,2,3 and

4) are calculated as :
Gi= abs(Pi=Qi); i=1,...,4 (1.22)
and hence the gradient magnitude is obtained by :
G =maz(G},G,,Gs,Gy) (4.23)

Therefore, two thresholds must be set to use this edge detector. But as N in-
creases, the edge map becomes thicker making it necessary to apply a mothod
to thin the edge map. A simple cdge thinning process developed by Shan-
mugham et al. [54] is used following the edge detection. A brief illustration of

the algorithm is given in the following.
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4.2.4 Edge thinning algorithm

As mentioned in the previous section, it is very important to have a thinning process

following the cdge detection particularly when it is required to have an edge map for

noisy images. A very fast two-pass algorithm is proposed by Sh han et al. [53).

‘The algorithm uses a binary image which is in this case the output of the edge detector

and scans through this image twice — hori: lly and i The algorithm as
proposed requires two inputs for each pixel - i) the edge magnitude R(i,7) and ii)
the edge direction D(3, 7). The edge magnitude is obtained from the edge map which
is the output of the edge detector. For a binary edge map, it is standard to assume
R(i,j) = 1 for edge pixels and R(i,j) = 0 for pixels which do not belong to an edge.
Most edge detectors usually do not provide edge direction information. A simple
strategy is proposed here to set the direction of the edge at a given pixel point (i, j).
The algorithm is summarized below.

Horizontal thinning:

® For a given row index ¢, a connected string of 1s is searched for. A string of 1s
in any horizontal scanning implies :
R(i,j)=1 (4.24)
for all j = ji, ja,* - * jn corresponding to a string of 1s.
® The direction of the edge is checked. D(i, ;) is set to 1,if it is in the horizontal
direction, otherwise to 0. The value of D(i, 7) is determined using the following
expression :

D)= { L fasils (29)

0  otherwise
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where n indicates the number of 1s connected in a string and W,y is the maxi-
mum possible width of an edge. It depends on the type of edge detection used
and directly on the window size used in detecting cdges. In present application,
it is suggested that Wi, be about twice of N, where N x N is the window size
used by the edge detector.

I D(i,j) = 1, for a string of 1s, all values of R(, j) are set to 0 except,
R(i, k) =1 (4.26)
where k is the midpoint of the string given by :

_ditia j
k=B (1.27)

Vertical thinning:

o For a given column index j, a connected string of 1s is searched for. A string

of 1s in vertical scanning implies :
R(i,j) =1 (4.28)
for all i =iy, 43, +i, corresponding to the string of 1s.

o A nonzero value of D(i,j) indicates a vertical edge. The value of D(i, j) is

determined using the following expression,

1 ifn< W,
D(iyj) = S W (4.29)
0 otherwise

o If D(i,j) =1 for a string of 1s all values of R(Z, j) are set to 0 except,

R(k,j) =1 (4.30)
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where k is the midpoint of the string given by :

k= l;i (4.31)

Thus the output R is replaced by the thinned edge map.

4.3 Concluding remarks

So far, different methods for implementing speckle-specific QVFs have been discussed.
To avoid the high complexity in design and computation, simple experimental meth-
ods have been proposed to set the quadratic coefficients. The justification for the
experimental design method comes from the results of filtering as will be shown in
the next chapter. The next chapter presents the results obtained with the QVF and
also with other filters of interest. A comparative study is made and based on that a

critical discussion is included at the end of the next chapter.



Chapter 5

Results

5.1 Introduction

The previous chapters of this thesis have discussed the development of various filtering
methods and, to some extent, edge detection methods for speckle corrupted images.

This chapter focuses on ison between the of the filters in terms

of their noise hing and edge preserving abilities. Image ing results of Lhe
various filters are presented as well as quantitative measure of noise smoothing and
edge preserving. A critical review of the performance of the filters is also provided in
this context. Edge maps obtained from the Ratio and Gradient of Averages (RGOA)
edge detection method for speckled images, before and after filtering, are presented
too.

Outputs are obtained for the following filters,
o Liuear Average

¢ Median

o Homomorphic
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« Multiplicative Lee
« Two-point Taylor
o Sigma
® Frost
o Quadratic Volterra

All filters are applied to three different images; named, “bars”, “annular” and
“halloon”. The first two images are fairly simple, artificially created with high con-
trast, containing two grey levels and chosen to demonstrate the filters’ ability in edge
preservation. The third image is more complicated with many shapes and edges of
different contrast. These three images are combined in a single image called “com-
bine” which is shown in Fig. 5.1. This particular image is presented throughout this
study.

Two different images shown in Fig. 5.2(a) and Fig. 5.2(b) are generated for
one-look and four-look speckle, respectively. It is assumed in all algorithms that the
noise characteristics and the independent number of looks are known.

It is not feasible to provide all results for both one-look and four-look speckled
images. However, since in most cases SAR images are multi-look and since L =4 is
a very common choice, only the results of processing the four-look speckle degraded
image will be presented.

Different edge detection methods are attempted on the various filtered images
to show their ability to preserve edges. Most of the usual edge detectors perform

poorly as mentioned earlier due to the special type of noise involved. Therefore,
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Figure 5.1: Original “combine.pic” image

only the results obtained with the Ratio and Gradient of Averages (RGOA) detectors
(discussed in detail in Section 4.2.3) are presented in this chapter.

All images are stored in files with pixel values ranging from [0—255]. Although the
values are stored in “byte” (“char” in “C”) format to minimize space, all processing
was done with double precision. All algorithms are written in the “C” programming

language to run under the Ultrix operating system on DEC-2000/5000 stations.

5.2 Filtering results

The results obtained upon applying the above mentioned filters on the test image are
presented in this section. All filters other than Quadratic Volterra Filter (QVF) are
applied for two different window sizes. Since the QVF is the main interest of this

thesis, some basic experimental results are also shown for this particular filter. A



Figure 5.2: Speckle corrupted image (a) one look , (b) 4 look



different image “border” is used for this purpose. Finally the QVF has been applied
to the test image “combine” and the results obtained for different combinations of

the filter parameters are presented.

5.2.1 Linear filter

This is the only linear filter in the above list, and has been used o provide a bench-
mark. It demonstrates the importance of nonfincar filtering for this specific problem
of speckle. For N > 3, the output image becomes very hazy. The images obtained

with two different window sizes of 3 x 3 and 5 x 5 are shown in Iigs. 5.3(a) and ()

5.2.2 Median filter

Although very simple, this filter provides good image cnhancement results in some
cases, and has been selected in different comparison studies (12, 19, 33, 38, 50]. In
present implementation, various window sizes have been used in an attempt to find
a best trade-off between noise smoothing and cdge cnhancement; a value of N = 5
scems to be the best choice. lowever, output images obtained with N = 5 and

N =1, are presented in Figs. 5.4(a) and (b).

5.2.3 Homomorphic filter

This is th ically good filtering for the multiplicative noise model. A
simple box-type, 5 x 5 linear average filter is used as the low pass filter in the interior
of the homomorphic cascade. The resulting images are shown in Figs. 5.5(a) and

(b) for N =5 and N = 17, respectively.



(b)

Figure 5.3: Linear average filter, window size (a)3x3,(b)5x5




(b)

Figure 5.4: Median filter, window size (a) 5 x5, (b) 7x 7
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Figure 5.5; Homomorphic filter, window size (a) 5x5,(b) 7



5.2.4 Two-point Taylor filter

Although it is very sensitive to the noise model as mentioned in the literature [38],
it is considered as one of the possible choices as an edge preserving speckle smoother.
Various “process descriptors” are required for this particular algorithm. These are
calculated from the noise file which has been gencrated for modelling speckle and has
been stored in a separate file. These values are used later while processing the image.
Also, it seems important to provide lower and upper limits for the power coeflicients
a and b to cnsure stability. After several trials, (~0.2,0.2) is chosen as the boundary
values for both a and b, The output in Figs. 5.6(a) and (b) are the results of using

window sizes of 5 and 7, respectively.

5.2.5 Multiplicative Lee filter

As the name implies, this filter is based on a multiplicalive noise model. However,
there are many previous studies {16, 23, 30] that usc multiplicative filters on speckled
image since the multiplicative property of speckle is prominent. It is however diflicult
to supply the proper value of the noise variance. The overall image yiclds a standard
deviation to mean ratio of 1/v/Z (L is the number of independent looks), so a variance
of 0, = 1/L seems to be appropriate. But from the model of speckle noise, the
multiplicative noise process has a x-square distribution with a standard deviation of
1/M. The standard deviation of the latter distribution, o, = 1/L?, is also worth
attempting. Both of these values have been attempted and it appears that the filter
works better at o, = 1/L. The images shown in Figs. 5.7(a) and (b) represent the

output at o, = 0.25 and for N =5 and N = 7, respectively.



Figure 5.6: Two point Taylor filter, window size (a)
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(b)

Figure 5.7: Multiplicative Lee filter, window size (a) 5 x 5, (b)7Tx7



5.2.6 Sigma filter

Among the few speckle specific filters, this filter has been chosen, Both 5x 5 and 7x 7
regions of support are used to estimate the local mean and variance. The resulting

images are presented in Figs. 5.8(a) and (b).

5.2.7 Frost filter

This is another speckle specific filter which has been designed and used for speckle
smoothing purpose. Although this filter is based on a multiplicative model of speckle,
it scems worth investigating its performance on images satisfying the multiplicative-
convolutional speckle model. The filter requires the knowledge of the noise variance
and the number of independent looks. Both valucs of 0.25 and 0.0625 have been used
for the reason described above in Section 5.2.5. However the output images of Figs.

5.9(a) and (b) show the result at o, = 0.25 and for N = 5 and /¥ =7, respectively.

5.2.8 Quadratic Volterra filter

The quadratic Volterra filter (QVF) has been applied to the speckled images. It was
intended to investigate the impact of the different coefficient values, namely Wp, W;
and W, the scaling factor ¢, the threshold T and the window size N x V' as described
in details in Section 4.2.2. Only the 4-direction-oriented method is chosen for this

because this i ion can give an overall idea of the basic principle

of the Volterra filter. A simple 128 x 128 image called “border” is used to carry out
some basic experiments. The original “border” image and its corrupted version are
depicted in Figs. 5.10(a) and (b). One-dimensional horizontal and vertical filters

arc applied separately to demonstrate the effect of these filters on horizontal and



Figure 5.8: Sigma filter, window size (a) 5 x 5, (b) 7 x 7
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(c) (d)

Figure 5.10: “Border” image (a) Original, (b) Speckle corrupted, Linear average filter
(c) 5x5,(d)TxT.



(b)

Figure 5.9: Frost filter, window size (a) 5 x 5, (b) 7 x 7
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vertical edges. Different combinations of these parameters are chosen as shown in
Table 5.2.8. Due to thresholding, only some parts of the total pixels are subjected to
nonlinear operations. The thresholding is bascd on the local statistics of the image.
For homogeneous regions, the quadratic operator is better to avoid the quadratic
operation, although it is very important for the edgy regions. The value N, shows
the number of such pixels out of the total pixels of 128 x 128 = 16384.

The effect of the linear lowpass filter alonc is also demonstrated in Figs. 5.10(¢)
and (d). It is interesting to note that the QVI; horizontal, and the QVIF; vertical,
play an important role in enhancing the cdges in the horizontal and vertical direc-

tions respectively and that they present a great improvement over the lincar lowpiss

filter which does the smoothing quite well but causes severe blurring effects. Migs.
5.11(a),(b) and (c) show the effect of vertical filtering on the speckled image. As ex-
pected, the vertical edges are quite clear. Dilfcrent thresholds have been attempted
to deinonstrate the effect of thresholding on the speckled images. A low threshold
of T = 0.9 causes unnecessary filtering on some pixels which belong to homogencous
regions (N, = 6453), resulting in some bright spots within thosc arcas. Whereas a

higher threshold of T' = 1.1 reduces this eflect, but a very high threshold of 7' =

results in a blurry image because the quadratic part is inactive for most of the pixcls
(N, = 827 only).

Figs. 5.12(a), (b) and (c) show the horizontal filtering on the same speckled
image with different window sizes. As expected the bigger the region of support, the
smoother the homogeneous areas. But the edges do not appear as sharp as they are for
smallex window sizes. Figs. 5.13(a), (b) and (c) show the results of the simultancous
application of horizontal and vertical filters on the speckled image. Figs. 5.13(a)-(c)

illustrate the effect of scaling factor ¢ on the performance of the filter. As scen from
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QVF Fig. | T [N] c [Wo|wi|w N, MSE
Original sa06) [ - -] -] -] -| -] 1634000%) | o000
Corrupted si)| -] - -] -] -] - - | 80380
Vertical-1 511(2) 09| 7 (025 | 1] 8] -4] 6453 (30.40%) | 225.91
Vertical-Il 5.11(b) | 11| 7 /025 | 1] 3| -4[1882 (11.48%) | 17154
Vertical-ill saie) [13] 7]o2s| 1] 8| 4] s27 (s.0%) [ 16413
Horizontal-1 512(2) [ 11| 7[025 | 1] 3| -4 1882 (11.48%) | 157.80
Horizontal It 5120b) 1] 5]025] 1| 3| -4 1622(9.90%) | 19165
Horizontal-111 sa2(c) [ 1.1 9 o025 | 1| 3| -4 2190 (1336%) | 157.16
Combined-1 5.13a) [ 11| 7[025| 1| 3| -4 1882 (11.48%) | 175.58
Combined-11 5.13(b) [ 11| 7[085] 1| 3| -4 1882 (1148%) | 152.57
Combined-11T 513(c) [ 11| 705 | 1| 3| -4 1882 (1148%) | 24610
Edge Adap-1 5.04(a) |11 ] 7025 | 1| 3| -4 1745 (10.65%) | 166.54
Edge Adap-IT 5.14(b) [ 10| 7025 | 3| 1| -4[1745 (10.65%) | 19760
Edge Adap.-111 5.04(c) [ 1.1 7 [0.25 | 02| 4.8 -5 | 1745 (10.65%) | 159.78

Table 5.1: QVFs with different parameters (Image: “border”)

T - Decision-directed threshold
- Length of the filter

=

o

- Overall scaling factor of the quadratic output,
W; - Weight assigned to Type-i quadratic coefficients,

N, - Total number of pixels subjected to quadratic operations,
M SE Mean Squared Error.
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Fig. 5.13(b), very large scaling factor (c = 0.4) might cause some pixcls to have very
high intensities. On the other hand, too small a scaling factor (c = 0.1) might not be

enough to for the excess hing done by the lincar part of the filter

in the edgy areas.

It is important to mention here that there is an adverse effect of using both filters
simultaneously as described in Section 4.2.2 and scen in Figs. 5.13(a)-(c). In the
vicinity of vertical edges , there is a serics of horizontal stripes and similarly, in there
is a series of vertical stripes near horizontal edges. The horizontal response of the
QUVF is much smaller than the vertical response around horizontal edges (onc or two
pixels away from true edge pixel) and the reverse is also true. Recalling Section 4.2.2,
1o

if instead of two the i response is taken in order to

have more prominent edges, this effect will become even more severe. However, the
effect is substantially minimized by checking whether a pixel belongs to an edge or is
near an edge during filtering.

Finally, Figs. 5.14(a)-(c) show the results obtained from this particular implemen-
tation. The results are for different combinations of Wo, Wy and W,. It is obvious
that for Wo = 3W; (Fig. 5.14(a)), the resulting output is more prone to crror,
whereas for Wy = 3Wp, the output (Fig. 5.14(b)) is quite satisfactory.

Seemingly, it is rather difficult to choose a proper set of values of threshold 7',
scaling factor c, the window size NV etc., from the above experiments. The following

factors are found to be very useful in choosing these values.

o Too large a threshold T' might result in some pixels being missed which should
be subjected to nonlinear filtering; on the other hand, too low a threshold might
cause some pixels to undergo nonlinear filtering which should only be filtered

with the linear part. Thus, an optimization may be required to achicve the



(a) (b) (c)

Figure 5.11: QVF (vertical), (a) T =09, (b) T=1.1, (c) T = 1.3

(a) (b) (¢)

Figure 5.12: QVF (horizontal), (a) N =17, (b) N=35, (c) N=9



(a) (b) (©)

Figure 5.13: QVF (horizontal and vertical), (a) ¢ = 0.25
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Figure 5.14: QVF (horizontal and vertical edge adaptive)
(a) Wo = 1.00, W; = 3.00,W; = —4.00 and ¢ = 0.25,
(b) Wp = 3.00,W; = 1.00, W, = —4.00 and ¢ = 0.25,
(c) Wo = 0.20, W; = 4.80, W, = —5.00 and ¢ = 0.25.



Filters Figs. |T | t |Wo|Wi|Wa N,

QVF-1, 5 x5 5.15(a) | 1.0 | 0.5 (05| 1.5 |-2.0 | 15968 (17.69%)
QVF-L, 7x7 5.15(b) | 1.2| 0.5 |05 1.5|-2.0| 7903 (8.75%)
QVF-IL, 5 x5 5.16(a) | 1.2 [ 0.25 | 10| 2.0 | -3.0 | 12698 (14.07%)
QVF-IL 7x7 5.16(b) | 1.2] 0.3 | 1.0 | 1.0-2.0| 16897 (18.72%)

Table 5.2: QVFs with different parameters (Image: “combine”)

required performance.
o For a larger window size, a smaller threshold is required.

@ Too high a value Wy might result in presence of impulse noise in the processed

the image. To avoid this, it is necessary to reduce Wp.

After acquiring some knowledge about choosing the various parameters character-
izing a QVF, different QVFs have been selected and used in smoothing the speckle
while preserving the underlying structure from the test image named “combine”.
All methods described in Section 4.2.2, have been attempted. The best results are

obtained with the “Proportional weight coefficients” and the “4-directi iented”

methods, denoted by “QVF-1" and “QVF-II”, respectively. Table 5.2 shows the
different inations of the filter used to obtain the outputs shown in

Figs. 5.15 and 5.16. The MSEs are included in Table 5.3.




(®)

Figure 5.15: QVF-I, window size (a) 5 x 5, (b) 7x 7



(b)

Figure 5.16: QVF-II, window size (a) 5 x 5, (b) 7 x 7
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Ranges Mean, Std SNR
Filters/Images | Figs. | min[max | Global | Dark | Bright | Dark | Bright | MSE
Original 5.1 5-238 | 111,64.15 | 100,0.00 | 200,0.00 o £ 0.00
Speckled 5.2(b) 3-255 | 110,67.55 | 100,23.33 | 197,37.37 | 4.29 5.30 | 751.13
Lin. Av.,,3x 3 5.3(a) 5-255 | 109,63.23 | 100,13.43 | 197,20.92 | 7.51 9.44 [ 33572
Lin. Av.,5x 5 5.3(b) 9-247 | 109,61.38 | 102,11.06 | 197,13.95 | 9.24 14.13 | 266.98
Median, 5 x § 5.4(a) 7-255 | 108,62.20 | 99,9.38 | 197,15.75 | 10.63 11.15 | 278.68
Median, 7 x 7 5.4(b) 9-253 | 107,61.04 | 100,8.32 | 196,12.78 | 12,08 15.37 | 268.16
Homo., § x 5 5.5(a) 7-246 | 106,60.56 99,9.65 193,14.31 | 10.30 13.54 | 295.88
Homo., 7x 7 5.5(b) 10-237 | 105,59.33 | 100,9.27 | 192,11.39 | 10.82 16.91 | 318.39

Mul, Lee,5x5 | 57(a) | 4-238 | 109,60.41 [ 101947 | 196,103 | 10.70 | 1867

Mul. Lee, 7x 7 5.7(b) 9-238 | 109,60.39 | 103,11.14 | 196,10.85 | 9.28 18.10 | 260.77
Twopt, 5 x5 5.6(a) 6-255 | 121,68.77 | 114,14.20 | 220,18 8.05 11.85 | 5056.74
Twopt, 7x7 5.6(b) 2-255 | 120,68.23 | 114,13.16 | 219,17.97 | 8.68 12.21 {]
Sigma, 5x 5 5.8(a) 9-247 | 109,61.38 | 102,11.05 | 197,13.94 | 9.25 14.13 | 266.95
Sigma, 7x 7 5.8(b) | 13-238 { 109,60.18 | 103,111 | 196,10.85 | 028 | 18.10 | 276.86
Frost, 5x 5 5.9(a) 3-247 | 109,61.78 | 101,10.46 | 197,14.21 | 9.71 13.87 | 244.75
Frost, 7x 7 5.9(b) 3-238 | 109,60.96 | 102,9.61 | 196,10.81 | 10.64 18.17 | 22292
QVF-I,5x5 5.16(a) 7-252 | 110,61.73 | 102,13.62 | 197,14.24 | 7.54 13.84 | 279.43
QVF-I, 7x7 5.16(b) 13-250 | 110,60.27 | 103,12.20 | 196,10.85 | 8.48 18.10 | 279.40
QVF-II, 5 x5 5.15(a) 1-255 | 111,62.13 | 103,16.04 | 197,13.94 | 6.46 14.13

QVF-II, 7x7 5.15(b) 1-255 | 111,60.75 | 104,14.20 | 196,10.72 | 7.36 18.34

Table 5.3: Quantitative measures for noise smoothing
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5.2.9 Quantitative measures

As mentioned in previous chapters, it is important to have some quantitative measures
to evaluate the filters' performance and to make a comparison between them. To
evaluate the noise smoothing of the filters, the global MSE and SNR are calculated
for the speckled image and all filtered images. Also MSE and SNR are measured for
two sampled 25 x 25 regions which in the original “combine” image has homogeneous
intensities of 100 and 200. Various noise smoothing measures are presented in Table

5.3.

5.3 Edge detection results

For the edge prescrvation measures, it is necessary to first produce the edge maps of
the images before and after filtering. Edge maps are first generated using the modified
Bovik's ratio of averages edge detector (MROA) (Section 4.2.3) for the speckled image
and all the filtered images. It has been observed that the edge detector based on only
the ratio of averages does not perform a good job on speckled images. Therefore, the
combination method named RGOA in Section 4.2.3 is used instead and much better
results are obtained. Most of the filters do not perform very well. However, the best
four found are those which are derived from the following filters,

* Median
e Multiplicative Lee
o Frost

« QVF-1
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Hence, only the edge maps obtained from the outputs of the above filters are presented
here. Since it is important for a quantitative study to have a true or ideal edge map,
an edge map of the original image is gencrated using the Robert’s method (18] as

shown in Fig. 5.17. The edge map for the corrupted image is shown in Fig. 5.17.

Other edge maps for the filtered images are presented through Figs. 5.18 - &

Figure 5.17: True edge map of the original image “combine”

It should be mentioned here that the quality of an edge map is quite sensitive
to the edge detector mask N and the thresholds chosen for the ratio and gradient
magnitudes T, and T, respectively. Edge maps have been generated for several dif-
ferent combinations of N, T and T, for each filtered output. However for the same
filtered image, there is no significant difference among the various edge maps obtained

with different parameters. Only one from each filter and the corrupted image have
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been shown in Figs. 5.18-5.22, however, quantitative measures are presented for two

different. combinations of N, T,, and T, in Table 5.4.

5.3.1 Quantitative measure

Recalling Section 3.5, different factors denoted by C, M, W and A, which determine
the quality of edge maps, arc calculated as shown in Table 5.4. The number of edge
pixels found is also included in *his table. A good edge preserving filter should yield

a high value of C', and low values of M, W and A, as discussed in Section 3.5.2.

5.4 Critical Review

In this scction, a detailed discussion is provided based on the obtained results. As
emphasized before, the intention was to compare different filtering algorithms for
their solution of the problem of speckle in terms not only of noise smoothing but
also edge preservation. However, there is always a question of tradeoff between noise
smoothing and edge preservation and hence it is difficult to achieve both at the same
time. Most of the commonly used image restoration filtering methods work very
well in terms of smoothing but often the resulting image loses its edge resolution
to some extent. If the noise is not significant (e.g. additive Gaussian noise or even
multiplicative with unity mean and a small variance between 0.01 and 0.04), the
price paid by losing resolution for smoothing is not noticeable, but for a significant

noise like speckle, smoothing itself cannot provide a good quality image unless the

edge preservation is also jally good. The i d in this thesis
is based on both quantitative measures and subjective visual quality of the image.

Although standard, the quantitative measures used are not very effective in judging



Tmages
[Filters Figs. | N [T, | T |#found | Cin% | A in% | Win% | Ain%
Original 517 | 5|35 - 12827 | 100.00 0.00 0.00 0.00
Speckled — | 7[60] 07 572 68.28 22.16 18.71 2845
" 5.18 9(55| 0.7 4500 67.87 27.65 7.52 26.40
Median — | 7|35 ]072 4569 66.24 3235 15.86 2272
" 5.19 9132|075 4893 66.64 28.04 16.84 25.92
Mul. Lee 5.20(b) 7[22(075 4668 67.65 27.34 11.00 2651
" Gl 922|075 4600 69.91 2751 12.78 25.00
Frost 5.21 7]32]070 4793 67.31 28.72 14.98 25.04
" — | 9]30]068 4606 66.66 2981 11.27 24.89
QVF 522 ) 7[32] 07 4715 67.85 28.35 10.28 25.25
" — 930068 4553 67.28 3007 11.07 24.34

Table 5.4: Quantitative measures for edge prescrving

c
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Figure 5.21: Edge map of the filtered image (Median)



(b)

Figure 5.22: Edge map of the filtered image (Multiplicative Lee)
using (a) MROA, (b) RGOA edge detectors
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Figure 5.23: Edge map of the filtered image (Frost)

Figure 5.24: Edge map of the filtered image (QVF)
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the quality of the images (3, 38]. So, visual interpretation is equally or even sometimes
more important.

Although it was anticipated that the linear average filter would yield a smoothed

image, it does not perform the smoothing very well. For a window size of N =

the homogeneous areas (e.g. on the slant bar or the annular section), are still quite
noisy. However, a larger window size of N = 5 gives a betler result in terms of the
smoothing but shows a loss of resolution. For a window size higher than N = 5, the
picture becomes very blurry and the fine edges are almost lost as shown in Fig. 5.3.
This filter was not expected to work well because it is a linear filter and the problem
of interest here is undoubtedly a nonlinear one.

The median filter performs quite a good job on the speckled image. It is interesting
to notice that even for a window size N = 7, the filter attempts to preserve the edges
and the overall picture does not seem to blur as it does for lincar average filtcring.
However, the fine edges are mostly lost even for a window size of N = 5 as shown in
Fig. 5.4. Although it performs better than the linear average filter to some extent,
the output is not very satisfactory in terms of both smoothing and edge retention.
The poor performance of the filter is no surprise because it is an ad hoc nonlinear
filter and not matched to any specific model. Nevertheless, the nonlinear nature of
the filter makes it possible to work better than a linear average filter which again
provides evidence of the need of a nonlinear filter for the problem.

The next filter used in this study is the homomorphic filter which is based on a
multiplicative noise model. But since speckle is not purely multiplicative, it does not
perform very well for speckle noise, as it has a very poor edge preserving capability
as shown in Fig. 5.5. Another problem with the homomorphic filter is the difficulty

of choosing an appropriate filter for the intermediate step between the “logarithmic”
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anil “exponentiation” operation. In this study, a box type average filter is used and
it does not. seem to do a good job even in smoothing out the noise.

The multiplicative Lee filter performs much better job as shown in Fig. 5.7.
Although it is meant for multiplicative Gaussian or uniform noise [27), it works quite
satisfactorily for speckle too. However, the thin stripes on the balloon seem to have
alimost. disappeared, especially for the higher window size of N = 7. A window size of
5 5 gives the best overall result. For this particular filter, the smoothing is excellent

1 .

5, whereas there is no imp: on edge preserving

even for N =

ability over the other filters used in this study. The vicinities of the edges seems to

1

he more prone to errors. Iowever, the filter's optimization between noise
and edge presecvation is praiseworthy.

The two-point Taylor filter which is based on the Taylor series does not work
properly in the case of speckle noise as shown in Fig. 5.6. However, this is not very
surprising as it was mentioned in the literature [38] that thealgorithm is very sensitive

and has

1o the noise model. The algorithm is developed for poi
heen Lested previously with images corrupted with Gaussian multiplicative noise and
having a small variance in the range of (0.01 — 0.04). But speckle has a much higher
variance depending on the mean of the image and also has a statistical distribution
which is different from Gaussian. The two coefficients used in this algorithm are
restricted Lo be in a given range. After a few trial and error experiments, a boundary of
(=0.2,0.2) has been fixed for both the power coefficients a and & which give reasonable
output. But the mean square estimated values of both the coefficients a and b are
beyond this range for most of the pixels in the test image. The image appears to be

very bright for a wider range of coefficients. So it is suspected that this filter has a

stability problem in filtering speckled images.
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Although the Frost filter was proposed for speckle noise removal, the filter does
not. take the correlation property of speckle into account. The output for N = 5 and
N = 7 shown in Figs. 5.9(a) and (b) scem to be better than the first three filters
and competes quite well with that of the multiplicative Lee filter. But as scen in al

previous cases, it also cannot the limitation of low I

output. The
fine edges have almost disappeared from the image after fillering with ¥ =7 and are
also not very clear for N = 5.

The results obtained from the Sigma filter as they appear in Figs. 5.8(a) and
(b) are not at all good in terms of edge preservation. The main reason is probably
that the filter is very simple and based on a multiplicative model of speckle. For a
moderate window size, the pixels belonging to a window are more likely to he within
two standard deviations for speckle because speckle has inter-pixel correlation and
hence the filter works almost much like a linear average filter for speckled images.

‘The Quadratic Volterra filter is however the one which was expected to perform
very well. Although all methods discussed in Section 4.2.2, have been attempted on
the test image, only the results obtained from the “Proportional weight” and “4-
direction-oriented” methods as denoted by QVF-I and QVF-II in Table 5.2, have
been presented. The results agree with the theory quite well. As mentioned carlier, it
was expected to perform better especially from the edge preservation point of view.
This is quite obvious from the output. Although the quantitative measures do not
show a major difference in the measuring factors from the other filters of interest,
the visual quality of the image shows the difference. Since the quadratic Volterra has
a spatial memory, it takes into account the correlation property of the speckle and
works according to this correlation. Although, it was intended to maks this fier edge:

adaptive, it has been found that it is very difficult to get the edge information out of



101

speckled images, since the standard deviation of the resulting image is very high for
any realistic speckled image. Morcover, the inter-pixel correlation property of speckle
makes it more difficult to distinguish between true and false edges. The inter-pixel
correlation of speckle gives rise to many dark and bright patches scattered randomly
all over the image with different shapes and sizes. So, any edge-adaptive approach
responds to the edges of these patches before it can respond to low-contrast but true
edge pixels. So if a lower threshold is used to take all true edge pixels into account,
the resulting image becomes contaminated with randomly scattered bright spots in
some of the areas which were originally homogeneous. With the QVF-I, another
difficulty arises since the filter uses only a 3 x 3 region for estimating a particular
pixel which does not scem to be large enough. However, the QVF-II compensates for
this problem. To avoid the huge complexity of using the whole 2-D QVF structure
for N > 3, four one-dimensional QVFs are used in four different directions. Since
they are each basically 1-D filters, they combine with an adverse effect which is quite
visible near the edges of the image in Fig. 5.16(a), where the reason is discussed in
Section 5.2.8. A better result was also anticipated in terms of smoothing. A box-type
lincar filter works on the homogeneous areas; this may not be the best choice.

So far the discussion involves the visual interpretation of the output images from
different filters. At this point, it is important to ask whether the different quantitative
e

are consi with the visual i ion. The noise measures

give some important information about the noise smoothing ability of the filters. The
corrupted image has a global MSE of 751.13. The SNR is also quite poor for
(dark,bright) regions having a value of (4.29, 5.30). However, it should be pointed
out that the standard deviation of 37.37 in the bright region is much higher than that

of 23.33 in the dark region. This was expected because of the multiplicative nature of
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speckle. The filters, in general, show a substantial lowering of the MSE. As evident

from the Fig. 5.7(a), the multiplicative Lee filter shows the lowest MSE of 20335
for V = 5. This is interesting because normally the higher the window size, the lower
is the MSE. The (dark,bright) std. mean and SN R are also satisfactorily improved
for this filter. However, some other filters (e.g. the Frost and the Sigima) have these

values which are quite close although visually the smoothing does ot appear as good

as it is for the multiplicative Lee filter. The noise smoothing quantities for the QVI-I

and QVF-II are also consistent with their visual qualitics. Although, the A Sks
slightly higher than some of the filters, they are reasonably good.

The edge maps are generated using the modified ratio of averages edge detector
which combines two previous edge detectors [9, 60] as mentioned carlier in Seclion
4.2.3. It has been observed that this edge detector does not perform well. The detector
used, makes only slight differences among the edge maps obtained for different fillers.
Fine details are almost all lost in the edge map obtained, although they are quite
clear in some of the filtered i.nages with the human eye. A threshold and the window
size are the two variables in the edge detector and they have a great influcnee on
the quality of the edge maps . Although, several different combinations have heen
attempted, none of which could provide truly satisfactory results, Also, since all edge
detection measures are calculated using the edge maps, (i.c. fully dependent on the
quality of the edge map), the quantities obtained are contradictory. Previous studies
19, 60, 61] which employed the ratio of averages edge detector for speckled images, take
into account the multiplicative property of the speckled images. But, the problem
does not seem to be resolved satisfactorily for correlated speckle noise. It has heen
observed that the detector does not work properly in brighter regions. At a low value

of the threshold, for the ratio magnitude, some edges which are visually quite distinct,
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do not. appear in the edge map. On the other hand, for a higher threshold (for higher
threshold, more edges are found), some spurious edges start appearing in the darker
arcas. This is quite evident from the edge map shown in Figs. 5.20(a). Some spurious
edges begin to appear at the top of the “balloon” image (the sky over the balloon) as
shown in Fig. 5.1, which looks very uniform and dark with no distinct edges. The
middle segment of the balloon is quite distinguishable but the upper portion of this
segment which has a brighter mean intensity does not appear very clearly. Also, all
thin edges on the bottom part of the middle segment are broken in the edge map for
the same threshold. However, the ratio magnitude used in the ratio of averages edge
detector tends to detect more edges in the overall darker region than it does for the
same contrast in the brighter regions. This may happen due to because speckle being
not. purely multiplicative rather having inter-pixel correlation. Hence, the combined
method which detects the edges both from the gradient and the ratio magnitude as
described in Section 4.2.3 would be more appropriate. Therefore, this edge detector
is applied and much better results are obtained. Figs. 5.20(a) and (b) confirm the
effectivencss of the proposed RGOA edge detector. The edge measures calculated
using these edge maps agree quite well with the visual interpretation.

Using RGOA edge detector, maximum number of correct edges are detected after
filtering with the multiplicative Lee filter (C = 69.91) as shown in Table 5.4. However,
the QVF works satisfactorily giving a correction factor C = 67.85. The number of
wrong edge pixel detected is also quite low (W = 10.28) which is slightly higher for
the best performance of the multiplicative Lee filter (W = 12.78) as shown in Table
5.

‘The other two filters under examination are not as good as the two filters, men-

tioned above. Edge maps generating from the Median filter tend to produce many
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false edge pixels with relatively small number of correct pixels (c.g. an edge map
from the Median filter yields 1 = 15.86 and C = 66.24 as shown in Table 5.4). The
Frost filter works better than the Median flter. However, if the number of correct
pixels increases, it produces more false edge pixels. For example, as shown in Table
5.4, an increase of C = 67.31 from C = 66.66 is obtained with an increase in false
edge pixels (W = 11.27 to W = 14.98).

In terms of overall performance, the multiplicative Lee is the best among all these
filters under study. Although the quadratic Volterra filter does not outperform as it
was expected to do, it does perform well and attempts to trade off hetween smoothing
and edge preservation. The limitations of the QVFs are described earlier in this
chapter. Some suggestions are provided in the next chapter for future extension and

improvement of present work.



Chapter 6
Conclusions

"This thesis focuses on the statement and complexity of the speckle problem in SAR
images. It also investigates different possible filtering techniques to solve the problem
of restoring speckled images without losing much of the image edge details. It was not
expected that an absolute solution of the problem would be developed; rather, the
intention was to investigate the magnitude of the problem, probable solution methods
using cxisting filtering techniques and the applicability of a relatively new filtering
approach based on quadratic Volterra filter to the solution of the stated problem.
Present work deals with a model of SAR images. It has been emphasized throughout
this thesis that the filters used for smoothing speckle should also provide good edge
preservation. These criteria are important particularly for certain applications such
as image segmentation, coast line detection, accurate volume measurement, etc. 15,
25, 26]. Poor resolution is a common problem with any filtering method as it may
lead to misinterpretation of detail in these images. As mentioned earlier, the existing
speckle-specific filters are mainly based on a multiplicative model and they have not
been developed with special attention to their ability for edge preservation. Since

a realistic SAR model involves a multiplicative-convolutional model rather than a

105
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purely multipli model, the v used li filtering methods are not

optimal for this purpose. Consequently, further investigation into this problens ix
necessary. The new technique using quadratic Volterra filters has already been proven
capable of providing satisfactory answer to some problems [2, 8, 57] similar to speckle.
The applicability of this filter to present problem also scems very promising. The
results presented in the last chapter shows ils cffectivencss as an edge-preserving
speckle smoother. However, even better results may be possible if the QVF design is

optimized. Throughout the course of study, it has been strongly felt that there is a

wide scope for research in this area. Theoretically, the Volterra filter is very powerful
but its use and methods for its design need to be further explored. Present thesis is
a good start towards that goal. In terms of the speckle problem, the following are

some of the ideas which could be further investigated,
® A 2-D quadratic Volterra filter with a local window size greater than 3 x 3.

o A truncated Volterra filter of higher than second order (e.g. cubic Volterra
filter).

o A MSE estimation using the quadratic Volterra filter taking the inter-pixel

correlation of speckle into consideration.

o A good edge detection method and an edge-adaptive filtering scheme based on

this method.

o A different lowpass filter other than simple box type as the linear part of the

quadratic Volterra filter. For example, a Gaussian shaped filter could be used

Apart from its use in the speckle problem, the basic design approach may be used

with little or no modification to solve any other nonlincar problems similar to speckle.
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‘The present work undoubtedly provides a guidelines to pursue further study of this
topic.

Modeling speckle is also one of the major contributions of this thesis. At some
point it is felt that a thorough knowledge of SAR image processing is important to
handle speckle. It was also intended to process real SAR data but unfortunately
due to some unavoidable circumstances and time constraint it has not been possible.
Ience, it is suggested that future researchers work with real SAR data to investigate
the applicability of different filters in the real situation. However, the model used here
agrees with certain practical criteria, so it can be assumed that the filters will show
much the same performance with real data as they have with synthetically generated
speckled images. It is also important to test any filtering algorithm on synthetic data
in order to study its performance quantitatively. This has been done effectively in
this thesis.

As mentioned earlier, there is a great demand for good literature and work in edge
detection methods for speckled images. Present work also focusses on the solution
to some extent, but the problem seems to be acute enough to justify more time and
study.

‘The problem investigated in this thesis involves many complexities and so cannot
be expected to be solved in a final complete form. In particular, the nonlinearity of
this problem is very unusual and there has not yet been any established generalized

onlincar system theory which matches the problem well. However, it is important
to understand the magnitude of the problem and to realize its effect and also to

investigate possible ways of overcoming the problem. ‘This has been illustrated in this

thesis. The dratic Volterra filtering i proposed here, are mainly based

on experiments, however, this is not very uncommon in image processing research
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especially in image restoration which often involves a number of trials and errors
before reaching a specific goal. It is strongly believed that the thesis will contribute
to at least two different directions of research - firstly, the solution of similar noulinear
problem using quadratic or higher order Volterra fiters, and secondly, the solution of
speckle related problems and particularly those which involve modelling, smoothing

and edge detection for SAR images.
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