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ABSTRACT

This thesis presents a broad based review of current
literature in the field of ship icebreaking and icc mechanics
i'efevent; to icebreaking.

A dimensional analysis of the ship icebreaking problem
is presented, l eadi ng to a system of non-dimensional numbers
based on division of the problem into three independent
components ; an ice breaking component, an ice clearing
component and a viscous drag component . Results from a
comprehensive set of model tests are presented, validating the
three component analysis method. In addition the method is
applied to a number of model scale and full scale data sets
with considerable success. It is concluded that testing and
analysis of icebreaking by dividing the problem into
components xs practically feasible a nd offers an improved
method of analysis, presentation and scaling.
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i . INTRODUCTION

The understandi ng of forces acting on vessels ope rating

in i ce c ove r e d waters has i nc r e ase d r emar k a bl y i n the past

t we nt y years . Despite this, it i s difficult to make a

prediction o f the in-ice performance of a n ew design ,

particularly i f i t is not within the s hape a n d s i z e parameters

of tho se ships fo r which there is some exp erience. There have

been many e f f orts to d evelop numerica l and e xperimenta l

methods f or full s c a le i c o performance pre d i ctio n . Although

each new eeveacpnene has advanced the fie l d , a u nive r s ally

acce pted comprehension of t he p r oblem has n o t yet emerged .

With d Lssccver-y- of 011 an d mi ne r a ls in the Arctic and

i n c r ea s e d interest in explorat ion of the Antarc tic, t h e need

fo r information on ves sel performance in ice b ecame more

u rgent . Thi s urgency , combi •. ..:d with t he fact t ha t the

mech anism of breaking ice is comp lex a nd difficu lt to

u n der s t a nd, l e d to a bypass of fundamental r e sea r c h in favour

of model te s ting and analysis of very specif ic applications.

T h e result has bee n a large body of i nformation with a narrow

range of application .

There have been many t heories atternptinq to explain

icebreaking . To d ate, none of thes e has been entirely

successful and considerabl e reliance is pla ced on model

t e sting . In this area , t e s t results h ave been scattered and

difficu lt to correlate between test facilities . This is

related t o lack of standal:d1zation, different test materials



and differ ing ideas on i mportant aspects of t esting .

Considerable effort has been put i nto devel opmen t of model i c e

f orm ul at ions t o s atisry streng-th, e lastic lIod u l us and other

sca ling requirements b u t eu c n less has gone into devercpnene

of t es t procedures o r i nv e s tiga tion o f basic i c e b r enk i ng

Jle c h ani s ms .

At the s t a r t of the work de tailed i n t h i s thes i s , the

i nt en t was t o identify two b as i c c ompo n e nt s of iceb reaking :

breaking the ice and clearing i t away . It was hypothesiz e d

tha t these two mechanisms were equally impo r tant but

fundamentally d iff er e n t phe nomena. Thus the y s h oul d be

experimentally s eparated for ana l ysis a nd s c aling . It was

thought that mz.ny p r obl ems i n i nterpreting resul ts from

l cebreaki ng lIodel t e sts could be re lated to i nab i lit y to

discri. i n a te between these t wo mechan isms. The a im of this

research was t o provide a pra ct i c a l experille n t al me t hod for

di v i ding icebre a ki nq r -es fst.ance i n t o t he s e t wo compo n en ts a nd

t o provide the anal ytical backup a nd similit ude r equirements

for a lIe t hod of indiv i d ual scaling .

Along the way it became necessary to develop a nd mod i f y

so me testing t echn i ques and methods of analyz ing a nd

presenting data. The end result is a method of conduc ting and

ana lyzing s hi p ice mode l t ests. Th i s met hod has been exer c i s e d

on a numbe r of data set s and found t o b e an improvement over

previous methods. It makes bett er use of scarce and e x pens i v e

da ta al t h ough it does requi re a mo r e invohed mode l test .



I t is believed that this type of a na lysi s ..ill provide

a frame....ork within which model test procedures and data

analysis can be s tandar diz e d . This shou l d result in a more

expedient d evelopment of icebreaking theory and i cebreakers .

The following three cha p ters ( 2 ,3 ,4) pr esent a r e vie w of

th Q icebreaking a nd i c e mechan ics lit eratur e c overing ma jor

deve l opmen t s up t o the peeeene t.ime . Follow i ng this, a

dime nsiona l ana lys is for i c e br e a k ing a nd i ce clearing i s

pr e s ent ed (Chap 5) . The SUbsequent three chapters (6, 7 ,8 )

describe experiments carrie d out to verify the d e veloped

exp ression s. Chapter 9 covers application of the ana lysis t o

a number of ot her model and f u l l s c a l e data sets . So me

discus s ion of the met hod , i ts strengths a nd s h ortcom i ngs , is

contained i n Ch apt er 10, along with d i scussion o f some

cha racteristics o f t h e two primary icebreaking co mponents .

Conc lusions and reconunend a tions fo r f urthe r wo r k

i dentifi ed in Cha pt er 11. The r aw e x perimen tal data are

con tained i n the apparrd I cea ,



PART ONE L ITERATURE R EVIEW

2 . DEVELOPMENTS U " NAVAL ARCHITECTURE

Attempts t o analy t ically d escr i be or experime nta11y mod e l

the icebreaking probl em have been ongoing f o r a lmost a

century. Th e object of mo s t d e v elopments has be en to estimat e

required power to prope l a vessel through ice. Success has

been limi ted i n tha t form ulations h a v e lacked genera l

applicabili ty, and even where good resul ts have been shown ,

t hey have b e en confined to a narrow range of vesse l or ice

parameters .

Such poor p redictions r e f l ect the limited under s tanding

of the processes invo l ved , b u t this has been difficult to

r ecti f y given the complexity of i c ebr e akin g and practica l

prob lems associated wi t h experimentation. In ma ny respects ,

t he problem has not been c r itical because numerous icebreaking

ships have b een b uilt and ope rated s uccessfully . Nevert heless

work o n icebreaking con tinues with t h e expectation t hat gains

in understanding wi ll l ead t o mo r e efficien t ships a nd

operations .

r n recent h i s t ory, refrigerated model towing tanks have

bee n introduced for vessel and structure testing i n ice .

Scaling requi rements are wel l docum~nted, but it h a s been

diff i cult t o ac hieve d e s i red ice p ropert ies at small scale.

As wi th a nalytical nccejs, l ack of knowledge of p r imary



processes h a s aad e it d ifficul t to j udge wh i r.h i c e ma t e ria l

p r operti es a re Ilost relevant t h us r e quiri n g cl os e s t scaling .

Th e fo llowing sections r e v i ew d eveloptlIent s i n t he area.

o t ships a n d aodels i n ice . Develop.....nts rel e v a nt to le e

mecha n ics a re Ilent i oned b u t cov e red in ac r-e detai l i n Ch apt e r

3 .



2. 1 Kash tel jan Poznj ak lind Ryvlin

The wor k o f Kash tel jan e t al. , published i n Ru s s i an i n

196 8 and t r ansla t ed i n 1969 ( 2. 1}. is the fi rst . a j o r t reatise

on s hips in i ce . Unti l r ecentl y, pri nc i p l es l a i d down i n t his

pUb licat i o n formed t h e bas is fo r m.uch of t he ice breake r design

wor k cond uct ed wo rldwide. Th e res i s t anc e equa t i ons sti ll f OrD

a baseline f or analytica l de velopme nt s i n shi p ice r e s istan ce.

Al thou gh more r e cent s tud i es have r evealed we a knes s es i n the

work , it of fe r s va l ua ble in sights i n to p e rformance a nd

ope r ation of s h ips breaking ice or tranl:liting i ce filled

channe l s.

Kas h t el ja n et a l. cove r a range o f subj ects r e l ated to

ships i n i c e i n c l udi ng rev iew of mechan i cal a n d phy s ica l ice

pr o perties , re sistance of s hips i n l evel con t i nuou s ice . and

ice mode l t es t i ng . A second part d eal s wi th ship s o per a t i ng

in b r oken ice . Thb i s a SUbject n ot extonsively c o ver e d by

ot h e r aut h ors .

The docume nt; p r ovi des a na rr a tive d e scr ipt i on of

i ce b r eak i n g and s t at e s t hat alth oug h r o l l ..ot i c n ma y develop ,

ship s do n ot exhibi t pe riodic pi tch ac t.Lons whi l e i c e b r eak i ng .

Thi s i s c o ntrary to later d es cr i ption s whi c h report pit ch

mot i o ns c aused b y re peate d riding up on t he i c e , fo llowed by

fa i l u r e i n th e s hee t u nder the b ow .

It i s s t a ted t h at i c e fails by d e velopi ng r a d i al a nd

ci r c unfe rentia l c rack s aro u n d th e bow l e adi ng to fo rm atio n of



c ne or IDOre rovs ot broken floe s down the side o t the vessel .

The size o f i ce p i ece s and nu tnber of r ows I s dependent on sh i p

s pe ed and i ce t h ickne ss. Gene r a lly, h i ghe r speeds and l over

th icknes se s result i n h i gher n ullbers ot rows of s maller i c e

floes .

Th e t o tal r esistance ot a sh i p in ice is d ivided i nt o

components attributable to :

1.. Bre a king ice at t he s t em and bow sides.
2 . SUb merging br oken ice .
3 . Tur ni ng ice floe s .
4. Motions o f the vesse l .
S . Impact with the ice .
6 . pushing broken i c e asido .
7. Ice fri ction .
8 . The wate r .

Th is list i s co ns olida t e d i nto two pri mary c omponents ,

a Dire c t Resistance a nd a Velocity ResIstance . The d i r ect

r e s i stance is made up of veloci ty i ndependent t e rms ie.

break i ng at the bow, some part of t h e submerging an d turni ng ,

and f riction al resistance. Th e ve loc i t y resist ance i ncludes

i ne rti al effects an d op en wa ter resistanc e . This divis i on i s

maint a ined through t he work and app lied to mode l testing a nd

a nalyt ical ex pressions for s hip i c e re sis tance .

Similarity cond i t i o ns for scal i ng mode l t est results a r e

derived . By satisfying geometric , Jd nematic and d ynami c

s i mi l a r i t y , Fr oude, Reynolds and Cau chy numbers are s ho wn to

be relevant to i cebreakl ng vessel s . It i s s tat ed that a part

of the r es i s tanc e t o pushing i ce as ide is viscous drag which

s h ou l d s at isfy Reynolds sca l i ng. Be c aus e i t is not p o ssible



to satisfy Reynolds scaling in a ship model t owing situation,

some error may be realized i n testing for these co mponents .

It is noted that the Froude condition c an be satisfied and if

so, leads to the r equirement, based on the Cauchy number, that

ice s t r e ng t h and elastic propertie s be s ca l e d by the geometric

s ca l e rat io . Thus the s c a ling requirements be come :

!.sIr..,. = Es/E" '" hs/h,. = as/ a" = n

Vs/V" = (0 ) 112

where 0 is the g eometri c s cale factor,
S indicates the full sca l e ship,
M i nd i c ates the mode l.

(2 .1)

Friction coe f f icie nt i s ma i ntained at both scale s and

Po i ss on I S Rat i o of the model ice shou ld be t he same as t he

full s cale. These r elat i ons a r e ba sed on a s sumpti on that ,

under the load i ng condition s impos ed b y i ceb reaking, i ce acts

as a lin ea r elastic material and fail s i n a br i t t l e manner.

Anisotropy in sea i ce is treated by introducing a reduced

El astic Modulus .

The work deals at length with mode l test ing but s t a t es

that the met h od i s laborious and SUb j e ct to scaling errors.

It is proposed that an analyt i cal ex p r ession without

d ependence on mode l test r e sults would offer better

pred iction. Dev elopment of thi s ex p r essi o n draws f r o m the

historical r eview presented in the paper but i s based on the



breakdown of components presented earlier. These are condensed

to;

{2.2}

R,
R,
R,

total re sistance
resistance due to breaking ice
resistance associated with weight forces
(ie . sUbmersion, turning floes, dry friction)

resistance due to penetration through
broken ice
open water resistance

components are assumed independent of each other and the

ship is as sumed to be moving at s t ea d y speed. compon ents ar e

calculated by determining energy expended over a unit length

of ship travel. The Direct Resistance is the sum of R1 and Rz

while the velocity Resistance is the sum of R] and R,.

Breaking resistance is sub-divided i nt o a term for the

sides of the bow and a term for the stem. A term for the sides

is given as;

Where J'o is, in this case, a hull shape factor and k 1 is

determined from model e xperiments . This is somewhat at odds

with the originally stated objective of the analytical

expression . The term for the stem is ;

(2 .4)
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wher e t i s stem angle . Rathe r than use both, the f irst

expression is t aken a s the best app roxima t ion a nd t h e

component a ssoc iated with the stem i s dist ributed amon g

r emain i ng direct compo nent s . The sec ond direct compo nent is

t aken to be t he s um of r es i s t anc es d ue to :

.5 . 6
V (1lI/s)

.3 . 4
0.' ~0=:.J. L.:1 =-~.2--,---!L..---!~-L..---!LJ

R 10-3 ( t ons )

I.' ,..-,..--,r---:=-4"""'=-r::-c7'1M

I.' f-df:-,~-""1F---1--f---1H

iIG~R: is1 T/ lode1 Ice Resistanc e USSR ERMAK [2. 1 ]

2 a E 19 T/ m2

J a - II T/ mZ

4 a = 6T/ m2

(a) Chang ing th e Vessel positi on:

Rz' = kl ' Ch1.15a1.251l0

(b ) Tu r ni ng I ce Floes:

Rz" Ie: kl Il6Bhl·7SEo. 25po

(l .S )

(2 .6)
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and (C) submerging Broken Ice:

(2.7 )

The basis for these is obscure but appears to be largely

the authors I intuition . The component associated with changes

i n vessel position i s neglected, as is the turning component.

The Rz is taken as follows:

R2 = ' k26Bh2:Jjo

and the direct res istance becomes:

Ro = k,Bohl'o + k 26Bh2:Jjo

(2 .8 )

(2 .9)

(2.10)

Velocity resistance is a combination o f hydrodynamic and

inertial effects. Open water res istance i s separated and

inertial resistance given as:

R3 - ~B"hvY/n2

where "2 is another hull sh ape factor .

This expression i s strange becaus e It, is has dimensions.

The k factors for all three components and the exponents X and

y a re determined from model tests on a single vessel and the

final expression given as ;

This expression is said to be applicable to all vessels

necauee Po and nz are form eepeneene , ncvever , no evidence is

given and Laeer data for other ships has net borne this out.

Following the ....ork on cont i n uous ic e , cons i d e r ab l e
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explanation Is devoted to ship resistance in broken i c e . Thi s

is interesting because if icebreaking can be d i v i ded into

independent components then resistance in broken ice should

be a sub-case of the continuous ice situation , assuming that

floe sizes are comparable. The case of complete coverage in

fine ly broken ice is relevant for comparison with breaking

consolidated ice. Some deacz'Lpti Lcn of model t e s t i ng in br oken

ice i s given, but of greater interest is development of

ana lytica l expressions covering the si tuation . The earlIer

work is not followed , but resistance is reduced to components

attrIbuted to i n er t i a , impact, ice deflection, submersIon ,

turning , and elastic compression. Submersion and t urn i ng

components are neg lected and t he broken ice r e s i s t an c e

expression presented as ;

This is quite different from the non-breaking components

presented earlier. This equation is semi-empirical in nature

with constant values dependent both on the ship and ice

concentration . Coefficients are given, but are derived from

a single ship case. This case in turn is presented as proof

o f the express ion. While nardly a valid approach , so lit t l e

work has been done in t h e area that few further improvements

have been made .



1 3

2.2 White

I n a Doctoral Thesis llnd pa per, Wh i te ( 2 . 2 , 2. 3 ) p r e s ent s

a simplified t reat ment o f icebreaking . Th e basis is that Il os t

effective i c eb r eak i ng is done by ge nerating do....nward f orce a t

the s tem of the vessel. Ene rgy eeepenene e assoc i at e d ....i th ice

c rush i ng , floe i ne rti a , SUbme r ge nc e and side f ric tion

neglec ted. However effects of friction pertaining t o t he

abi l i t y o f the bow t o r i de up onto the ice s heet

consi d er e d .

White does not dea l ex tensively with co ntinuous transit

in i c e but is co ncerned mainly wi th r lllmming . co nc lusions deal

mor e wi t h de sign ot an effec tive bow s h ape t han a pred i ctiv e

met hod , a l t houg h s caling laws for mod elling i n Lee a re

de rived . Th is pa pe r prompted 60.e d iscussion r e ga r d ing

neglect o f other c ompo nent s o f resistance. White , however,

Ilain t a i ne d t hat the pr i ma ry i c e br ea king res i sta nc e wa s

br eaking the i ce . He a l so e xpres s ed s t r ong disagreement with

t he conclusions o f Kash teljan , partiCUlarly r ega rd ing t h e

submergence c ompone nt .

Al though t r e atme nt of t he i cebreaking mecha nism is simple

and cons iders only a s i ng l e component o f res i sta nce, the

parabolic s tem l ine a nd f orebody s hape d ev e l oped by White ha s

be en a succ e s s f ul b ow form for a number of i ceb re a k i ng s hips

(s ee Fiq. 2.2 ) .
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FIGURE 2. 2 White BoW' Form [2.3 )

The des ign, or va r i a t i o ns on it were used on MANHATTAN , t he

USCG Pola r cl ass and the CCG R-Clas s. All these vessels have

s hown good performance in polar a nd sub polar r eg i o ns .
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2. 3 Lewi s and Edwards

Lewi s and Edwar ds (2 . 4 ) present a theoretically based

e xp r essio n fo r sh ip r esistance i n leve l i ce. Sh i p , or Ice

dep-e ndent; coe f f i c ien t s a re determined by r~ression ana lysis

of model data . Scaled results a re co mpared wi t h a regression

equation from f u ll scale trial s data.

The e xpre s sion t ak e s the form:

12 . 13)

where the firs t t erm i s t he resIstanc e a s s ocia t ed wi t h

br eaking t he I c e co v e r , the sec ond is s ubme r g en c e resistan ce

and the third is i nertial or ve locity resi stanc e .

Coeffici e nts a re derived from lIode I test data o f the USCG Wind

Class .

The break i ng componen t is derived f r om an analyti cal

s olution f or bending f a ilure i n a se mi-infinit e wedge on an

elastic foundat i on. Wedge type f ai l u re, reSUlting lrolll

fonation of r adilll a nd c ircumfere nti al c rac ks i n t h e i ce is

as sumed t o be t he mode of fa ilure a t the b ow o f a ve s s e l.

Thu s, s o l u tion of the s i mpli f i ed p roblem should give an

indication of forces at the bow. Howev er, it i s also apparent

t hat t h e vo lum e of ice b roken dep ends on s hip beam and

co nsequently one would expect some be am dependence in a

breaking t erm .

The submergence teI'lll indicates t h!lt i ce will be pushed
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down to a depth h (ice thickness ) . It is more likely that the

degree o f s Ubmer g enc e i s a s h i p related pa r ameter, probably

related best to ve ssel draft (T). This , and lack of a beam

dependent breaking term, is noted in discus sions o f the paper.

Frict ion i s not explicitly identified, although t he

authors s tate that the coef ficient s account for friction

associated with each c ompon ent . This i s not a n ideal

approa ch , becaus e di fferent c oe fficient s are r equired i f the

friction c han ges .

Full sca l e predicti ons fo r a Wind Class vessel are given

(Figure 2. 3 ) . The se are comp a red with i ce trials data for

use-e STATEN ISLAND . Pr e d i ct i ons show good agr e ement ,

regarding e ffec ts of i ce t hickne s s . Ag reement on ve locity i s

not as good . A major difference i s that t he full scale data

s how a l i ne a r depend en c e on velocit y . The range o f forces is ,

h owever , fairly narr ow. The full scale data do not e xh i b i t .:.ny

dependence on ice flexural s t r eng t h , which is attributed t o

a limited range of ice s t r eng t hs t e sted at f u l l s cale .

While thi s method s h ows promi s e, there are some

weaknesses . Ice res ista nce is presented i n terms of 0 (ice

s t r e ngt h) , h (ice thickness), B (beam) , and V (velocity) .

Given that all t e rms in t he regress ion equation contain h or

h2, two out o f t hree c ontain B, the coef f icient o f the

b r eaking tenn (involving 0 ) is small a nd, the velocity term

doe s not s h ow good agreement with fu ll scale d a t a , i t a ppea r s

that t he regression is really in terms of B a nd some power of
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"
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. wn w CLASS Full Sca l e S"", I ~..
OWIKD CU SS 1'Iodd Sc al e Sell l ee

FIGURE 2 . 3 t.evre and Ed wards 19 70 [2 .4)

~ zR~B(:~2~rgh/(J )

h . Th is na rrowing of the range i s fu rthered by the fa ct t h at

the proof data are for a s i ng l e ship, el iminating variation

i n B an d l eav ing the only demonstr ated effect a s that of i ce

thickness. Thus , much more ver i f i cat i on would be r e qu i r ed

before it cou l d b e wi d e l y a p plied .
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2 .3.1 Edwards and Lewis et al 1972

In 1972 Edwards, Lewis and others [2 .5] presented results

of model and full scale resistance tests on USCGC MACKINAW.

A set of dimensionless icebreaking coeff i cients, which differ

from those used earlier, are presented.

Full scale trials detailed in the paper were performed

in fresh water i ce, on the Great Lak e s . There are a number of

fa ctors leading to error in the figures. The MACKINAW has a

single bow propeller which comp l i ca t e s the icebreakinq

mechanism at the bow . In estimating thrust, propeller shaft

torque was measured and thrust estimated from open water

propeller charts . Thi s takes no account of loss of thrust due

to passage of ice through the propeller which could lead to

significant errors . A better method would hav e been direct

measurement of thrust.

The model test data show some scatter i n ice properties

particularly flexural strength. Elastic modulus is not

considered and in scaling model data, open wat e r resistance

is not separately accounted for.

Dimensionless group s for the ice resistance are presented

as follows :

R/ (r"gBh2)

V/(gh) 112

a/(r"gh)

h./h

Dimensionless Resistance

Fraude Number

Dimensionless strength

Dimensionless Snow Cover



These groups are different f r om the expression presented in

1970. Translating back t o a d i mens iona l resistance

expression, one obtains:

RI "" COOBh + c,r"gBhZ + czr"VzBh

Neglecting sno.... cover

12 . 14 )

I t can be seen t h at the breaking term has been changed

to uBh from ah Z• I n addition t he non-dimensionaliz ing factor

is r"gBh Z (the submergence term) rather than ah z (the

strength term) . No explanation is given for t he s e changes,

although this equation is more in keeping wi th more current

pUblications.

In performing r e gre s s i o n analysis on the fu ll scale da ta

it was found that ice strength is not a significant

co ntributor to the resistance . The major parameters are

stated to be ice t h i ckne s s , velocity and snow cover th ickness.

No conclusions are drawn about vesse l parameters as o nly one

ship was testod . In general, correlation bet....ee n model data

and full scale da ta is reasonable for l ow Froude numbe rs but

divergence increases with veacctty,
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2.4 Milano

In 1973, Milano (2 .6] provided a new approach to

determination of ship resistance in ice. It considers

icebreaking a cyclic process for which average resistance is

the total energy lost over a cycle divided by distance

travelled per cycle . The work cover.s a pu rely analytical

expression for energy lost in an icebreaking cycle . Total

energy consumption is broken down as :

(2.15)

where; Erc Total expended energy .
E1"" Energy a ssociated with movement

through a broken ice filled
channel .

Ez= Energy associated wIth impact and
crushing of the ice sheet .

E3"" Energy associated with the ships bow
moving up onto the ice sheet .

E,:::: Energy associated with the ships bow
falling after failure i n the ice
sheet .

E5= Energy associated with forward
motion and SUbmergence of ice
subsequent to failure.

Complicated expressions are developed for each component

and developed into a numerical computer program.

This approach is significant for a number- of reasons. It

does not involve regression a na l y s is of model or full scale

data, eliminating the limited applicability a ssociated with

that method. The algorithm recognizes that many mechanisms

resist transit of a ship through ice and that they may not all
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act at the sallie time or to the sam e degree .

Milano's formul ation do e s raise some questions h owev er .

Breaking i ce i s not a separate term but i s included with the

Ez and E] terms. Thu s e ne r gy lost t o breaking i ce is not

e xplic itly i de ntifi ed . The E, term du e to t he ship falling

after fa ilure appears to be doubl e c ount ing becaus e this

energy is regained from the E] term (Energy assoc i a ted with

cl imbing on t o the ice s heet ) . Thus p otential energy o f E] is

converted t o k i ne tic en e r gy in E, . It is not logical to

consider t h i s a fu r t h e r l o s s in e ne rgy . Finally I the met hod

only deals with en e rgy lost at the bo w (back t o the section

of ma x imu m bea m). For older ice breaking forms this i s fine,

as there is r e al ly no flat mi dsect ion . However for newe r

vessels a nd n on-i cebreake rs this i s a more serious omi ssion .

In compar ison with f u l l scale r esults, ( Fi g ure 2 .4 )

Milano' s method s ho ws goo c:i agre ement a t low velocity. At

higher spe eds the met hod p r edicts overly hig h r esistances . In

discussion , J . W. Lewi s reveals that t he an alytical line is

for an i c e s t r e ng th h i ghe r 'cha n that recorded i n the full

scale trials . Had r e co rded strength be en us ed, correlation

wi t h the full scale data wou l d have been wor se than that

shown .

I n a sec ond pap er, prese nted i n 1975 . Milano [2 .7 ]

exerc i sed the method further. This compris e s r esults f r om

variation s i n ship a nd i c e parameter s, i nc lud i ng relative

magnitUdes of the e ne r gy components for a sing l e ship-ic e
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case . It shows that E] and E, t e rms are similar in magnitude

and i d e nt i cal in form when plotted against velocity. This is

ev idence that these two terms represent the same energy in

different forms . Remaining illustrations provide insight into

effects of various ship parameters on predicted resistance but

do not provide verification of the underlying assumptions .

°0 J • 10 II U " " JO 11 :I<l
...·.-tlll~"lSt<

FIGURE 2 .4 Milano Prediction USCGC STATEN ISLAND [2.6]
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2.5 Enkvist

Enkvist [2 .S} presents a broad based work covering ice

properties , full scale trials, model tests and analytic

developments. The stated objective is to provide a means of

predicting full scale ice performance based on model testing

but with a degree of analytical back up . Enkv ist maintains

that lcebreaking i s too complex for analytical methods t o

replace model testing .

In discussion of ice properties at \;,odel and full scale,

Enkvist notes two important problems in model testing . First,

the ratio of Elastic Modulus to Flexural Strength (E ja) is

lower in model ice t han real sea ice . For fa ilure in flexure ,

this lack of similarity leads to

error in model test prediction.

The second phenomena i s r e sidual

plasticity in model ice . Natural

ice fails as a brittle material

with a clean break. Hodel ice, on

the other hand, suffers brittle

failure in the top layer and

plastic failure in the underlying

material (Figure 2 .S). The result

of this is that model ice consumes

r~roportionally more energy in

F nIII'otural I"

.tz>:
Deflection

FIGURE 2 . 5 ETjergy to
failure thC"n the full scale. Break Model and Full

Scale Ice [ 2 .8]
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Enkvlst notes the importance of these problems to the breaking

compon e nt of tota l ship resistance but states t h at breaking

resistance i s a smal l component of t he total and thus t he

erro r is sma l l .

The relat ion between cantilever beam tests and strength

e xpe rienc e d when brei!lking cus pe d ice p iece s , normally obs e rved

at the ship bow, is also discussed . For a l i mi t e d nu mber o f

cas e s, no relation was fou nd between strength recorded during

beam t e s t s and s t r e ngth measu red in cusp bre aking t ests . Unde r

i ce properties , a disc uss i on of the r ole o f friction in

.i c e b r ea k i ng is pr esented . This i s r e inforced with r esults

from exp e r In e nt s at mod e l a nd full s ca l e (Figu r e 2 . 6) .

Measurements ( 2 . 8 ]

Po

~,
. 30

. 20

.15

~. 10

. 05 2
3

0
0 5 10 15 20 25

Pressure kPa

FIGURE 2 . 6 Hull Frict i on
Dry Sno w
Dry Ice
Wet Snow
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. a j a r c on cern I s hul l r oughne s s and how i t should be scaled .

Although definite ccmclus lons are not d r awn. i t is recolllllended

t hat standards be establ I shed for deal ing with ice frict ion

a t mode l scale .

In developlllent of a predictive method , Enkvist ve ri fie s

his f o rmu lation with thre e ve ssels f o r wh i e :) mod e l and full

scale data were av aIlable. The se a re the Russi an MOSKVA Cl a s s

i c e b r e a kers, the lcebreaking RO-RO vesse l FIN NCARRIER and t he

lcebreaking tug JELP PARI. repres enting a cros s section of

lceb reaking v e sse l types .

DurIng fu ll s ca l e trials , vessel speed, pitch motions a nd

the s i ze of broken ice p Laoa a were r ecorded . Engine power a nd

s haft rpm were logged as a mellln8 o f est ima t i ng thrust .

Diffic u l t i es a re r e ported i n estimating actua l thrust and t h is

is recognized as a source of err o r .

A methodology employed in model t e s ting is de s c ribed a nd

p robl ems maintaining ice thickness and propert ies are not ed .

Ana l ys is of data i s ba s ed on d iv i s i on o f r e s i stance into three

co mponents :

12.1 6)

wheze r R; .. Total ice r e sistance .
Roo = Re s i sta nc e du e t o breaking

the ice co v e r .
~ • Re s i stan ce due to

SUbmerging broken i ce .
Ry '" Re s i stan c e d ue t o veloc ity

effects.
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By dimensional analysis, the following fOIlllulations are

developed:

(2 .17}

which are combined to give the equation:

A term for friction is added and a draft VB. thickness factor

T/h i ntroduced. The final result is :

where:

FT = V/CgT) 1/2

This is similar i n form to e ar lier equations with addition of

t he friction factor CJ'(tt) .

Enkvist calculates constants in the equation by

regression analysis of model test results. Constants are

dimensionless and assumed applicable to full scale

predictions . On comparison with vessel trials, correlation

is reasonab le when assumed friction coefficients a r e in the

range 0.3 - 0 .4 . These coefficients are quite high al though

Enkvist asserts that they are reasonable . Because of t he way

friction is included in the expression , adjustments to it ac t

as mU ltiplicative correction factors. It is not clear if t he

fric tion coefficient is at f au l t or if other factors influence

thE:' resistance prediction.
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On the analyti c al s i de , Enkv i st pre sents the

c omponen t s, with methods f or calcul at i n g const ant s based on

ship parameters. For CO' and CSt agree ment between calculated

values and measured values i s poor, but for Cy ag ree men t i s

go od. The ma j or i ty of ve l ocity r e s istance i s attrIbuted to

t urning i c e floes. As pa r t of this me c han ism, a ph eno me na

calle d ve n t ilat i o n is i ntroc1uced . Th i s occurs when the edge

of a floe is pu shed down by t he s h ip side a nd wa ter is unabl e

t o flood the t op of the i ce p i ece. Thus the r e is a hydrostatic

pressure o n the floe i n a ddit ion to b u oyan cy an d dynami c

forces . This i ncreas es f orce on the s h ip and consequent ly

resIstan ce . It is s tat e d t hat vent i lat i o n i s o nly ob s e rv ed at

h igher ship sp eed s .

In summary , Enkv ist 1s formul ation does not de part sha rp ly

f rom prev i ou s d e velopments ex cep t i n t he ex pl i c i t add i tion o f

a friction term. Di s cussion o f the issues i n icebr e a k i ng i s

howev e r very de tailed and c omp l ete .

2 .5 .1 Enk vis t 1 983

In 198 3 Enkvis t [2 . 9] s howed that the br e a king component

of t otal i n-ice resistance i s higher than originally

estimated. Brel!' k ing i s s a id t o represen t be tween 40\ and 80 \

of the total linear zero s peed" full sc a le ice resist ance . I t

Is not indicat ed how t his i n forma t i on a ffects e arlier

predict ors but a n exp ression f or res i stance du e t o sub me rgence



28

at low speeds is given. A neW' f ormulation for breaking

res ist anc e i s no t o f fe r ed . I t i s con c l ude d that the high

breaking resistance cannot be attributed to bending in the ice

she e t alone, and that other fa ilure mec h an isms , such as shear

or crush i ng must come into play .
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2.6 Vance

I n 1 9 74 a n d 1975 Vance ( 2 . 1 0 ,2 . 1 1 ] published ~ork

scaling. mode l t est ing and regression a nalysis a p p lied t o

s h i ps in ice . This led t o a nother formulation f or p redicting

fu l l scale s hi p r es i stance f rom mod el t e s t s .

Prior to d i s cus s i on of scaling, Vance list s ice material

properties relevant to icebreaking . Non-dimensional numbers

are deve loped b ased on similitude for weight , i nert ial,

elastic and v i s c ous forces . Weight s imilarity i s s atis f i ed

t h rough geometric scaling an d Froude , Cauchy and Reynolds

Numbers a r e derived as fact ors to satisfy t he remain ing

condit ions . Ice characteristic l e ngt h and f ric t i on a l forces

are included . Similarity fo r cha r a ct eris t i c length i s said t o

Insure that the s i ze of broken ice pieces is proportiona l at

model scale. Vance indicates t hat requirements fo r

ch a r ac t eri st i c l ength lire slltisfied if Poisson's Ratio for

model ice is the same as full scale . I t is shown that t he

f r iction coefficient f or model a nd fUl l sc ale sho u ld be t he

As with open wa ter t e s t s , Froude and Reynolds nUmbe r s

cannot be satisfied at the same time . Because inert i a l effects

are more impo r tant , Reynolds s c a ling is not satisfied and

correct ion i s made by ca lculation . Ot he r factors can be mo r e

or less satisfied , except the ratio of elastic modul u s t o

f lexural strength is not properly s ca led in mode l i c e . Va nce
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lists parameters relevant to the iceb reakinq process and

develops expressions t or components of i cebr e a ki ng resistance .

These are based on J(ashtel jan and Enkvist and the resul tlng

expre s sion i s similar to their e qua tions . Total resistance

1 s divided i n to three co mponents (br e aking . SUbmergence and

velocity ) and t he fri ct ion factor included as an overall

mUltiplier .

An expres sion ter the breaking componen t i s based on the

equation for a ca nt i leve r beam . The mor e r ealistic case of

a semi-infinite plate is not analyzed. Vance s tates that

there is no e vide n c e to indicate that there i s a velocity

effect i n t he br eaking component of resistance .

Derivat ion of a sub me r genc e r es ist ance t e rm i s similar

t o Enkvist' s a nd r esul t s in an expression of t he same fo rm.

Fo r v e loc i t y r es i stance, Vanc e a ssumes . ome n tull tra nsfer as

the dom i nant phenomen a and t he expression takes t he f orm 'tw.
Th i s is con t r ary to Enkv i st who assumed t h e domi nan t speed

e f fec t a s turnin g i c e floes .

Open vater re sistance i s calculate d by Re ynolds frict i on

onl y. No a c c ount i s taken of any wa ve generation or fo rm

drag. This is probably a v a lid appro ach , given the low speeds

n o rmally us ed in icebreaking.



31

The result is:

where ;

and ;

R "" C, [Rs + R, + Ryl + Ra..

Cf is a frictional mUltiplier Ie , l + f

~ .. csrd9B-h"Tl

Ra "" C.OfBh

Ry .. CyI',VZL"'hnaP

x+y+z .. 3

(2 .20)

m+n+p .. 3 for dime ns i ona l homogeneity

Values f or constants and e xponents i n this ex p r es s i o n are

derived by an involved process. Model test data sets for five

ships are used in a stepwise regres sion analysis to derive a

BElt of 64 expressions in the f orm pres en t:ed above, for each

v e s sel (a total s et of 320 expr essions) . Each of th e sixty

four expressions uses a different s et of exponents , s ubjece

to certain constraints and the same e xpo nent s are us ed for

each v e s s eL The multipl e r (statistical measure of goodness

of f it) is used to rate express i ons .

Each set of five res i stan ce expressions i s used to make

f ull scale predictions by retaini ng C values ca lculated in the

regre ssion and sUbstituting vessel a n d i ce parameters as per

the fu l l s ca le situation . These predictions are compa red to

regression lines for each vessel based on available ful l scale

data . The expression with the best average fit over five
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vesse ls , betwe e n full s c a l e pre diction a n d fu l l sca.l e

regre ss ion is selected as the -best- COrli .

12 . 211

Fric t i on is l ef t out , apparently d u e to lack of data at

. ode 1 or f ull s c al e .

Alth ou gh th i s e xpre s s i on o f fe r s t he bes t ave rage

pr e d i ct i o n , i t d oes not golve bes t prediction f o r a l l vessels

i n t he a nalysis. Vance at t r i but e s th is t o s h a pe f a c t or s or

poo r data .

Followi ng t he predictor equa t i on, t her e is di s c u s sion on

design o f an adeq ua te ice res i s t an c e t e s t, co ns ide r i ng

co n f i dence i ntervals on pre dict i ons . Thi s is interes ting

bec ause Va nce s ug ges t s 64 d a ta points p e r fri c tion factor an d

tests at t hree fr i c t i o n fac t or s f or a total o f 19 2 points .

This r esul t s i n a mi d ba nd c onfid e nce interv a l of about 1 0 \.

Given the expense of f ull sca le o r Dode l t ests i t i s unlik e l y

tha t 192 o r ev en 64 g o od data po i nt s a re often obt ained tor

a ves sel & Thi s in d i c a t es that con fi de n ce i n terval s on mo st

Jlod e l test s 1n i ce a r e very wid e &

In d i scus s i on of t he pre d i ctor equa t i o n , plot s a r e

presented showi ng mod el scal e reg ress i ons , full s c a l e

reg ress i o n, fu l l sca r.e dat a points and pr ed i ct i ons by ot h er

met h ods ( i e. Milano, Lew-is and Edwards , Kashte1jan et c . ) .

Alt h ough i t is n ot c l e a r vne e e the fu ll s c ale r e gr es sion l i n es

co me f r om, model sca l e predictions sho w qood ag r eem en t with
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full s cale data po i nts . This is not surprising, giv e n that

the predictor i s based on a r e g ression of the eee e data

points .

). prediction f or a ve ssel n ot us ed i n t h e r e gress i on

ana l ysis is presented , bu t does no t show such good agre ement .

This i s , however , s tretching the regression becaus e th i s

ves s el (Th e JE LPPARI) is s ubstantially different f rom the

others in h ull f o rm an d size .

As a fina l note, re lative magnitudes of resistance

comp o nent s aga i n s t s h i p velocity a r e mentioned . It is shown

that the s ubmergence c ompone n t is disproportiona tely h i gh fo r

mode l t ests but t hat the sum of break i ng and s ubmergence is

equa l fo r both model and f u l l scale. This is con t r ary to

conventional wi sdom t h a t model ice absorbs more enerqy i n

breaking due to residual plastic tearing . This phenomena is

presented by Enkvist a n d r ev i ewed by Vance, but not incl uded

in the discu ssion .
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2.7 Naegle

Naegle [2 .12] develops a motion simulation algorithm for

i cebreaki ng ve ssels with three degrees of freedom (surge,

pi t ch and heave) . This is based on a theory that forces at the

bow in level cont inuous ice, are cyclic a n d r elated to the

length of the broken ice cusps . As each pair of cu sps

a ppro a c hes the breaking poi nt. for ce be comes maximum i n both

horizontal and vertical directions .

Considerable work i s devoted to defining hydrodynamic

c oeff i c i e nts for an icebreaklng hull. A s ec o nd portion

involve s analysis of the cu sped breaking pattern c re ated in

the ice a s the ves s e l progresses . This r el a tes the i cebrea kl ng

force cycle to characteristi c cusp length, as a funct ion o f

ice prope rties and vessel properties . Inertial and s ubmergence

c o mpone n ts are calculated us ing methods presented by Enkvist

includ ing e f fects of ve nt i l at i o n . Force at the v esse l s t em

is ass u med to be generated by shear f ailure i n the i ce .

Expressions for icebreaking for ces and hydrodynamic

coefficie nt s a1"8 used in three cou p l e d equations of motion,

wh i ch form the basis f or a motion pr e d i ction co mputer program.

Horizontal forces generated at each time s tep in the motion

s imulation are av e raged o v er e ach Lcebre ak Lnq .ey e Le (cusp to

cusp) to giv e a srean resistance for the ve s sel.

On comparis on with full s c al e a nd model data (Figure

2 .7), Naegle1 s motion simulation tends to under predict
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resistance a n d agreement gets wor se with i ncreasing ic e

thickne s s . In motion sim u lation , the p r ogr a m predic t s 8 degree

of sinusoidal p itch motion whi ch has not been observed in the

li.mited n umber of c a ses for ""hl eh s uc h dat8 has been r ecorded .

Lack of c orre lation is attributed to poor estimat ion of

forces related t o tur ni ng broken ic e floes . Th i s may be t he

1tr"' 10-6
(N)

S

4 S
Spe ed ( I. /S )

oI,-o--~--:--~--~--:-

FIGURE 2.7 Naeg l e Pr e d J.ctio n fo r CCGS LOUIS ST. LAURENT
( 2 .1 2]
Ice thickne s s "" . 9 14 m,
1 Full Sca l e
2 Model Sc a le
3 Naegle Pr e dictor

c ase , as Enkv i bt i n dica ted i n 198 3 t h a t the resist an ce cause d

by t urning and sub mersi o n were poorly estimated i n hi s 1972

p a pe r . Give n t hat t hi s was the met hod u sed by Haegle, an

overall under es timation would a ppear likely.

Th e r e i s another iss ue which may c o nt ri b u te t o poor

res i stanc e ca l cul at i on a nd could exp lain the disc repa n c y i n
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predi cted VI>. observed pitch mo t ions . As a basis for t he

a nalytic a l model it is assumed that vessel roll will not be

a n hl po r tant ractor an d the ice wi ll break symmet r ica l l y on

bo th s i d es ot the ves sel bow. On consid eration, this i s n ot

like l y . It is probable that ice cusps will f aU in a

s t a gger e d pat tern, f irs t one side and t hen t he other . Thb

would 9'1ve rise t o a r oll e xcitation which would augn ent the

a symmetric break Ing patt e r n. An as ymmetric pattern wo uld

i n troduce a number o f modifi c ati ons t o the model. Pitch

motions woul d be r educed. because the exeitatian f orce i s

reduced . The same rat ionale would app l y to r eduction in peak

b reakI ng r es i s tanc e a l t hough averagQ r e s i s t ance lIIay be

una f f ected.

Although NaegI e' s JlrxJe l is not perfect , it represents an

importan t stop i n the u ndersta nding of iceb r e aking by

r e c 09niz 1 n9 t hat ice f orces induce tM)t i o ns in t he vessel wh i ch

affect the iceb reaki ng pe rforma n ce. Seco ndly i t presents an

a na l ysi s ot the bre a king pattern at the bow, i nc l Ud i ng s ize

a nd as pe c t ratio of floe s a nd r e s ul t ing cusp pattern i n the

broken channel. Relationships bet~een t hese parameters, ice

properties and vessel ch aracteristics h ave i ..plications t or

the exeiting f orces and frequencies e x perienced by vessels

breaki ng ice .
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2.7 . 1 Kot r as , Ba ird Bnd Naeg l e

This pape r [2 .13) , pUblished i n 1983 . further d e ve l op s

Naeg I e' s model . Re sista nce is divid ed int o b r ell.ld ng . fl oe

t urn i ng a n d fl oe sub merg In g components ..,ith a fr i ctional

componen t a s s ocia ted wi th ea c h . Fur t h e r a n a ly s is of a

simplif ied c uspe d bre aking pattern a round the bo .... is pres ent ed

and c ons i de r abl e a t tent I on i s devoted t o tur ni nq ic~ f l oel:l en e

as s ocI at ed f or ce s on t he Ves s el. An a lgor i t hm for SUbme rge nc e

f or ces is n ot well ex p l a I ned.

A de parture f rom the orig in al wor k is the neglect of

pitch a nd h e ave mot i ons in t he e xpr e s s Ions. Al t hough p r edIcte d

t o h e sIg n ificant I n t he origi n a l mod el t hei r effect on

es t ima t ed r e s ist a nce is said t o be sllall .

Al though t he tina I )lod e l i s not clearly presen t ed. so me

resul t s a r e . As with pr evi ou s . od e ls, c oeff icie nts caine f r o m

r egres s ion ana l ysis of full sc a le data . The resulting

exp ressio ns show good agreement wi t h t hi s d a t a but r eal l y onl y

il l ust r ate t he d e gr ee o f sca t t e r i n t he fu ll s c a l e data .
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2.8 Carter

In a 1983 report, Ca r t er [2 .1 4] presents an analytical

method f o r estimating r e s ist ance of a sh i p transiting level

continuous i c e . Res istanc e is divid6d i nto ice r es Lstence and

open water r e sistance. The ice po r tio n is split i nt o two

components attributabl e to t he ma ximum fo r ce gen er a ted i n the

i c e sh e e t prior t o f ailure . Th e firs t co mponent is due t o

fo rc e g e n er ated at the ves se r s t em and the s ec ond to force s

gener ated al ong the sides of t h e bow. The mode l assumes that

ice fa i ls i n f lexure through r adial , f ollowed by

circumfe rential cra c king. Maximum f orce occurs prior to

f ailure along the circumfe r ential crack. Thi s fo rce is

c a lcu l a ted and s ummed over the bow

i c e bre aki ng c omponents .

In ca r te r 's e xpression, r e s i sta nce associat ed wi th

b r ea king ice a t t he stem is in d e penden t of v es sel bea m. Both

components are f unctions o f ice th ickne s s s qu ared and the s i de

component in c l u des effects of fr iction . sxp r ecs I o ns for the

two a re de veloped for a s t a tic c a se and a ve l ocity correction

applied. based on dynea i c r espons e of a floati ng wedge . This

a c t s to i ncrease the breaking re s i stance with i ncreasing

velocity . Thi s is ccnt -aey to previous developments , in which

the br eaki ng mechan i sm i s a s sumed t o be velo c i t y i n depe nd e nt .
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A correction for late r l!l1 pressmee i n the i ce and

e mpirical add ition f or resi ~tance due t o s now a r e add ed to

g ive the re rae....! ug :

Rr = RIS{1+0 . 4v21l/ahlJ'I2«o+oo)/O) + 0oh(2 L-L-)f + 900h. + Rc:w

( 2 . 22)

R
I

.. . 5483 (lJ/2-Q)( sin a sin t/J + f cos t/J lahO!

sin a cos t/J - f sin t/J

1+2cos¢
Rz.. . 75 ahlB/1 {tall <1' + f(2L'/B

(sin a + cos 0) (1+2 sin 6)

(1+2C05 a) +l. 732 tan II»

{2 .22:1}

(2.Zb )

where R, i s t h e f o r c e associated with t he stem ,

Rz is t he force associated wi th t he sides,

( 1+O.4v21 l/ oh 2)1I2 is a ve l o c i t y co r rection,

«a+oo)/a) + O'oh(2L -L")f is a p ress u re correction,

900h. i s r e s i s t an c e due t o s now cover , (h.- s now depth) .

RaJ is vessel open water resistance,

L· is the l ength of t he vesse l forebody,

(/I, a are bow ang les.

There are some points to be not e d about this express ion .

I t is an equa t ion f o r maximum force at the bow and as sume s the

en tire b ow a rea is in co n tact with ice at, or close to, the
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failure point. No account is t aken of f orc es r equire d to

sUbmerge , turn or accelerate i ce pieces after b reaki ng. All

effects of v e l oc ity a re attr i buted t o dy na mi c increase in

f orces r equ ired t o break i c e . This is at odds with most other

i nve s t i gator s in t he field .

a.l ll tinee ,-- ------- - ----
( ~l

_.-.

FIGURE 2. 8 Carter Prediction for CCGS LOUIS ST. LAURENT
[2.14]
Ice t hickness = 1 .0 rn,
1 Full Scale
2 Model Scale
3 Carter Predictor
" Kashteljan Pr edictor
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Carter c ompares hi s equation wi th avail able full s cale

a nd mode l data a nd i nclude s predi c tions using the Kas htel j an

method (F igure 2. 8 ). I n a ll casas, c orrel ati on betwe en t he

a na lytica l expression and published data i s good . Thi s

ag reement is a s t r ong case f or t he presented ex pression as a n

a c curate r epres entat i on of ! c e bre ak ing r esis t an c e.

On the other h an d t he e xp ression c al c ulates maximum fo rc e

du r i ng a n iceb reaking cycle . Traditiona l the ory indicates that

f orc e on a vessel du ring ice t r a nsit fluct uates . If thi s i s

t he case then ave r a ge force s hou l d be something less t ha n t hat

calculated by Carter . Hi s express ion however neglects

components, :"lota bly t he turning and clea r ing of fl oe s . It is

conceivable that t he neg lect of some elements i s co mpens ated

by the c ons ervati v e assumptions of t he ex pression , in

calculating p eak forces.
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2. 9 Poznyak and l o nov

In 1981 Poznyak and lonov [ 2 .15) presented a paper

describing a method of analyzing ship-ice resistance . In

addition to b r e aking , sUbmergence and velocity components, a

separate component for frictional effects i s i nc l uded. I n t he

fina l analysis the frictional component is separated into

terms associated with each of the component s. The resulting

expression takes t h e form:

(2.2J)

where R". Rs ' and Ry are as defined previously (eqn . (2 .16»

and R,,,. Rh l and RfV are frictional components associated with

R". Rs and Ry. This recognizes t hat different frictional

coefficients or mechanisms may be at work during the

icebreaking process.

A methodology for estimating the magnitude of components

from mode l tests is presented . For an unidentified mode l

moving at a speed of 0 .13 mjsec. (said to be near the design

point for t h e vessel) in 29 mm o f ice , the relative magnitudes

of the components come out as follows :

R,,=41. 3%
R. = 15 . 8 "
Ry co 12.4 "
Rf = 30 .0 %

Rr = 100 \ = 17 N.
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In this case the frictional components were lumped into 4

single value.

An expression based on the component breakdown Ie

presented as follows:

R; : ~' ,114°o~~~il:~~ :oIfr:~~B~~]+ BILl) [a,(8)s1no
o

+ fdaZ{S) t2.24j

+ 1. 5 ~~;~~~C(ol;l/COS 0:0>( (tan 00)2/ (2tan 00 - B/L) + f d)

without going into detail on the derivation it is

interesting to note that the first term (breaking) contains

hZ contrary to recent formulat ions . As previously mentioned,

each term has a frictional coefficient, {d" A further

improvement would be to carryon with the original idea of

different frictional coefficients for each term , supposing

these could be determined .
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2.10 Model Trials

Most model tests have been in support of specific designs

and are not available in the open literature. Ice testing

facilities have their own methods of testing and e xtrapolating

which are not public knowledge and this reduces the value of

much model test data . Ice formulations, test methods and data

analysis are still developing, making older results less

reliable and l ess comparable to current tests . These factors

dictate caution in use and interpretation of much data .

2.10.1 ITTC standard Model Ice Trials

In an attempt to assess the degree of standardization in

the worldwide ice testing community, the International Towing

Tank Conference (ITTC) initiated a series of Standard Model

Tests in 1982 . The purpose of these tests was to provide a

standard model for testing at all major tanks . The model

selected was the Canadian coast Guard R-Class hull at scales

of 1:40 and 1:20. First resures of this program have been

collected and presented at the 17th. ITTC {2.16].

Initial presentation of results (Figure 2 .9) serves to

illustrate the wide variety of values obtained at different

facilities . For example, the reported frictional coefficients

ranged from 0.038 to 1 .3 for the same surface . Of the tanks
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reporting, three us e Saline i c e , two us e Carbamide (Urea ) a nd

on e uses a r t i fi c i a l (wax) ice.

R- CLASS RES I STANCE COAPAR I SON- '_UCHol 'aEf""t<S

- ~,

s *
; -• -
~-

~

~ ,~

~ '00

- ~,

ro

ro ., ro ro - - ..
-.eEl RES 'sr....:::IE ( 10

FIG URE 2.9 I NTERNATIONAL
R-CLA SS HODEL TEST DATA

Although t he co _It tee s ugges ted fu ll scale t arget val ues

to r i c e flexural s t r en g t h , ice thickn e s s a nd ve l ocity . r es ults

show that d iff i culty i s e xpe ri e nced i n achievin g and

ma i nt a i n i ng t arget valu es .

OVerall r e sults indicate a dif f eren ce of about 50\

between low e st v alues and highest . Bec a us e of high sca t ter

a nd l a ck of data on effects o f friction, results have no t be en

s c a l e d up for c ompa ris o n with sh ip data .
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The s t a ndar d Inodel tests served ma i nly t o i llus t r a t e a

degree ot sca t ter and non -conformi t y i n ice mode l t esting .

It is c l ea r that e xtreme ca re would be r e qu ired i n compa r i ng

resul ts from di ffe r en t tanks. Further to this, it ",,"ould s eem

that p r ed i ct i ons ba s ed o n t he se results s ho u l d s h ow an even

higher de gree o f variabi l i t y. This can b e overcome by more

basic work , s tandardizati on an d data .

2 . 10 .2 At kins and Caddell

I n papers pub lished in 1 97 4 a nd 1 975 AtkIns and Ca dd ell

[2.17.2 . 18] develop a non d i me ns i on al sca l ing parameter f or

use in i ce model tests . This number i s related t o f racture

toug hnes s a nd ve lc- ,·l ,ty o f crack propag a tion fo r i ce at model

a nd f u l l scale . The assumpt i o n i s tha t f orces required t o

p r opa g a te cracks in an i ce shee t are more important than

elasti c forces i n determining i ce b r eaking r e s i stance .

This is r ea sonabl e g iven t hat ice broken by ships fail s

t h r ough ge ne rat ion and p r op a g ation of c r ac ks . It is al s o

obv ious that na tura l i c e c onta i ns ma ny e xisting flaws du e to

brine pockets , a i r inclus i on and pre s s u r e c rac ks. Thus

fracture mechanisms and c rack propa gation s houl d p l a y a role .
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Follo....ing co nsideration of s imilitude for c r ac k ing r o r -ce e

a dimensionless "nu mber" i s developed . This t ake s the f o rm:

i s t h e ship veloci ty
ice density
ship l e ngt h
e c r e ee intensity factor
ice Elastic Modulus
ice Fracture toughness

wh er e V
r
L
K = ( EG) 112
E
G

This i s c all ed the Ice Number by t he authors a nd is s h own

to be a combi nat i on of the cauchy number and a f a c t or

(EL/G) 112. I t i s explained as the Cauchy number corrected for

e f f e c t s of a cracked mater ial .

Al though this is r eleva nt t o testing models in ice, it

ha s not attracted much attention. It appears that fracture

mech anics deserve more attention as the a pp r oa ch seems more

valid t han the traditional Elastic Material approach .



48

2.10 .3 Timeo

Timeo (2.19] presents an overview of issues involved in

model testing ships and other structures in ice . For vessels

and structures where flexural failure is thought t o be the

prime mode of icebreaking, TimeD derives scaling laws using

a rat ionale identical to that of Vance. He gives a history of

model ice development and a list of ice types employed

worldwide . This is followed by discussion of the mechanical

properties of ice and the degree to which they are properly

modelled in Urea (Carbamide) doped model ice. Explanation of

the crystal structure of model ice and its effect on

mechanfcaj, properties is included . It is noted that the

commonly used cenc Lrever beam test is not a good indication

of the actua l flexural strength of the ice but serves as a

relative index . The problem of plastic failure in model ice ,

opposed to brittle failure in un-doped ice, is also mentioned.

Elastic modulus problems in model ice are identified along

with difficulties in scaling fracture toughness (Figure 2 . 10).

Timco gives the best ob tainable E/o (Elastic modulUS/Flexural

strength) ratio as 2500 for model ice compared to a mean of

about 5000 for full scale ice.

The paper discusses ice-structure .interactions briefly,

and presents recommendations for future work, followed by a

comprehensive list of references .
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2 . 11 Full Scale Trials

There have been a number o f full s c a l e i ce trials

conducted worldwide . A list of vessels and r elate d

pUblications is given i n Tab le 2 .1. As a rule , full scale

tests a re expensive to conduct a nd present considerable

measurement difficul ties . The major problem is translating

vessel thrust into res istance , compou nded by difficulties in

measu ring true thrust on propulsion shafts. It is shown by

Lewi s at al ( 2 . 20) that the propulsive characteristics of

propellers are affected by the presence of ice but i t is not

clear t o what degree . Th i s introduces error i n estimating

thrust deductions and hul l resistance . Where sh aft t orque is

measured , errors are c ompound e d because correlation between

torque and thrust is dependent on unknown hydrodynamic

conditions.

Further problems arise in measurement of ice properties.

It is d ifficult to measure t hickness and flexura l strength at

a suff i cient number of points along the ships track t o give

an indication of i ce properties a long t he entire route .

Despite these, and other p roblems such as ve locity

measurement. , ful l scale trials continue and are improving .

In fact t hey s upply the on)'1 data which can be used , t o

calibrate model tests or analytic methods. Chapter 9 presents

fu l l scale results for t h r e e ve ssels in comparison with

resistance predicted on the basis of the pres ent work . Howev e r
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caut ion in the us e o f t he s e da t a i s r e qu ired i n view of

ex perime nta l scat ter an d nec e s s a r ily crude t echniques .

Table 2 .1 Full Scale I ce b r e a k i ng Trials

SHI P VEAR LOCATION REF .

USSR Ermak - Bal tIc 2. 1
H .V . Finnc a r rier 1 9 7 0 Baltic 2 .8
H . V . Jelppari 1 9 71 BaltIc 2 .8
USCGC staten Island 2 .5
USCGC Mackinaw 1970 Great Lakes 2 . 5
USCGC Katmal Bay 1 97 9 Great Lakes 2 .2 1
H .V. Manhat tan Arct ic
H . V . Ar c t i c 1 9 79-8 1 Arctic/ 2 .22

Lak e Melville
USSR Moskva 1969 Baltic 2 .B
CCGS Louis s t . Laurent 1970 Arctic 2 .23
CCGS Pierre Radisson 1978 -79 Arctic / 2 .24

st . Lawrence
coos Fr ilnklin 1 9 80 Lake Mel ville 2 .25
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3 . REVI EW OF ICE PROPERTIES

To date , ice h a s been a difficult material to qua ntify.

Within broad limits, the s t rength of ice in any mode o f

failure is dependent on many f actors including loading rate,

g eometry and temperature. Temperature i s particularly

important because natura l ice is us ually close to the melting

point . At high homologous t emperature s, most mater ials e xhibit

unsteady material properties and ice is no exception . This has

l ed to c onservative design practice fer structures and vessels

in lce encountering ap plications an d h a s fostered a great deal

of effort towards better defini ng the mat erial properties of

i c e.

This chapter presents the state o f ice mechanics applied

t o offshore structure s and ice transiting ve ssels . Interest

is generally in vessels which penetrate ice in one way or

another and consequently in ice failure . At present , work in

this area i s advancing rapidly , particularly in the s t Udy o f

fracture mechanics a nd ice friction. The r e levance of so me new

theories t o traditional failure modes is also discussed.
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3 .1 Ice i n Nat ure

The freezing po i nt of fresh wate r is O·C. a nd s al t wate r

about - 2 ·C . • Given that l a r ge portions of t he globe experience

temf:.d ratures below 0 · C. for at least a portion of the year .

ice oc curs natur al l y in many a reas and covers som e ocean areas

permanently . On t he other ha nd , temperatures over most of t he

globe do n ot drop below - 40 · C. for e xtended periods . This

limits t he temperature o f natural ice to a r an g e c l os e to t he

mel ting point .

Natural ice i s usually not pure because f o r e i gn mat e ria ls

a r e present in the water from wh ich it is formed. The mos t

conunon i mpurity is salt f rom seawater, whi ch has a sign ificant

influence on the properties o f sea ice .

3 .1 . 1 Material Structure

Pure i ce i s crystalline with a he xagonal molecular

s tructure a t norma l temperatures a nd p ressures (Figure 3 . 1 ) .

Oxygen atoms are l i nked by hyd rogen bonds i n a lattice of

planes o f c l osel y grouped oxygen atoms known as Basal Planes

[3.1 ) . The a x i s normal to these planes i s called t he C axis.

The hexagona l mol e cu l a r structure often carries over to t h e

shape of i ndividual ice crystals which are known as grains

when agglomerated in a solid . crystal g rowth is more

p r o nounc e d in t h e basal plane directions and shear s t r e ng t h
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i s least be t wee n basal planes .

I ce has litt le ab ili ty to ab sorb interstiti a l or

sUbstitutiona l impurities s o fore ign e lements in water are

rejected during crystal fa rn at i on . These i mpurities lir e

re jec ted a l ong the growt h i n terfa ce and often trappe d be tween

gr a ins.

The cl~'<1otal lattice of i c e d oe s c ontain d i slocations i n

t he s truc t ure . 'rn ec e a re a reas whe r e g aps o r overlaps occur

i n the l att i c e .

di s locat ions

a b le t o move wi thin

material. As

lo a d ,

the crysta l leading

U n d e r

t o p e r ma n e n t

deformat i on i n the

di s c o n tinu iti e s

move within a grain
F IGURE 3 .1
[3.1 ]

Cry s t a l Structure of Ice

t hey tend to pile up a t g ra i n b oun d a r i e s c rea t ing area s o f

high stre s s .
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3 .1.2 Fr e s hwater Ice

The structure o f Ice and consequently i t s materia l

pr ope rt i e s are d e pe nd e nt on t he way i n which the ice formed.

I ce o n l ak e s a nd r i vers r epre s en t two different f onna t i on a nd

growth co nd i t i on s .

Lake ice will form (nUCleate) naturally pro v ided t h e

water t empe r at u r e i s slightly below zero . Gra in s ize depends

on t h e concentration of nuc leating agents at the surface a nd

the rate of cooling . Finer grained ice will r e s ult f rom h igh

concentrat ions a nd h i gh coo l i ng rates . A common nucleat ing

age nt i s snow o r f al l i ng i c e crystals but in many cases ice

wi l l nu cleate on sma l l impurities in the water . Nucle i grow

preferentially in basa l plane d irections u ntil lateral growth

i s restrict ed b y other crystals. I f the wa t er surface is ca lm

and t h e g rowth r ate no t great, a surface skim of crysta l s wi th

C axes oriented vert ically wil l be f o rmed . If t he water

s ur f a c e i s tur b u lent or the co oling rate h i gh , orientation o f

crystals wi ll be more ra ndom. SUbse~ent g rowth is ve rtica l ly

downwa rd with crysta l s tructure dependent on orientation of

grains i n the i nit ia l ly formed ice . For initial cover wi t h

vertically oriented C axes growth will be a long the C axis and

the ice wi ll mai ntain t hi s structure across its depth. For

r a nd omly oriented grains, those wi t h horizontal C axes will

dominate be cau s e of higher growth rates in the basa l plane

directions . Thus t he primary crystal orientation wil l bec ome
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C axis horizontal with r andO b or i e ntation I n the h o rizontal

p l ane . A I eyer of c ompl etely randomly o riented grains up to

a few C1lI. t h I ck ..,111 e xist at the top surf a c e o f the sheet .

Ri ver ice In a r apId flow situation is i n i tia ted by

f ra zil nucleation . This is a proc e s s whe reby r i ver water is

51 i q htl y supercool e d and we ll mi xed t o t he p o i nt where ice

c r yst a ls s tart t o fonn ac ross the depth of the water . While

t h e s e c ryst a l s are s ma ll they r e main ent raIned i n t he water

fl ow where they t e nd t o agglomerate a nd f orm slush. As the

size of individual I c e pieces grows , they float to the top

whe re further c o nsolid ation o ccurs l eading t o an ice cover or

ice floes . I n s low movi ng r i vers t he fo rma t ion of i ce i s

similar to t hat f or l a kes .

3 . 1. 3 Sea Ice

In i tial i ce cover formation on sal t wate r is silllil a r to

tha t for fresh wa te r . Howev e r the sea s u rface is rarely callll

so the s u r face laye r contains r and ollll y or iented grains leading

to su bsequent d ominat i on of c ry stals wi th hori zontal C axes.

The presence of sa l ts l eads t o the f ormation of po ckets of

brine within the i c e s t r uc t u r e (Figure 3 . 2).

As sea ice grow s , s a l ts are r e j e cted from the crystal

st r uc tur e reSUlting 1n a layer ot highly sa l ine ater along

the growth i nterface. This cau ses nonuniform gro th at the



boundary with thin platelets of ice

growing a t higher rates than the bulk

of the ice sheet . The platelets

penetr ate though the brine layer and

gr o w laterally, trappin g brine i n

spaces between platelets [3 . 1] . This

fo rms elongated brine pockets in the
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FIG URE 3.2 Br i ne
Pockets [3 .1]

i ce whi ch d o not f r ee z e bec ause of h i gh s a lini t y (Fi g u re 3 . 3 ) •

As s e a i ce a ges , brine travel s downward in th e i ce s heet

f orm in g brine drainage channel s a nd c a us ing a reduction in

sa l inity of the ice , F i rst y ear i c e, which is quite s a line and

cont e Lns a hi gh fracti on o f

drain a g e channels i s weaker than

freshwater i c e . As the ice ages ,

salin i ty is r educed by drainage

and seawater flUsh i ng, leading t o

reduct i on i n the vo lume o f

drai na g e cha n nels and an i ncr e ase

i n str e ngth . I ce that su rvives one

o r mor e years become s s t ronger and

FI GURE 3 . 3 Brine i s known as s econd or mUlti-year
Dra inage Cha nnel s

ice depending on a ge .
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J .2 Ma t e ri a l properties

I n deal i ng wi t h Ice i t is useful t o d iscuss material

properties and note whe re c01l'\lflon concepts present d i f f i c u l t i e s

in application . I n cases wher e ice and man made s tructures

c o me together, interest is usually in fail ure of t he ice. Thus

it mus t f r acture o r defon. This is an area of materia l

science that is not well unders t ood, even f or e xtensively

s tudied materials .

J . 2 .1 De f orma t i on Properties

Deformation can be b roken down into t hree ca t egories :

e lastic, plastic and creep deformation [3.2] .

Elastic d e f orm a t i on is defined as reversible deformation

Where strain is linearly proportional to applied stress . For

isotropic polycrystalline materials this i s true of thQ t hre e

modes of deformation; t e ns i on, compression and shear. A

frequently used test for e lastic properties is t he un iaxi al

tensile test . However fo r brittle materials the compress ive

test is more commonly us e d because of higher strength in t h e

com press ive direction and the unpredictable nature of bri t t l e

fa ilure in t e ns i on.

On the molecula r l e v e l , elastic behaviour manifests

itself a s stretching or compression in inter-mo lecular bonds

wi t hout perma nen t d e f orma t i on in either the crystal l a t tic e
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o r t he bound ar i e s be tween adjacent crystals . Elastic

p roper ties a re highly dependent on the strength o f molec ula r

bonds in t he crystal lattice.

Pla s tic d e f ormat i on is permanent , non- recove r a bl e s train

in a materia l which occurs at some s tress l eve l higher tha n

a th reshold level defined as t he e lastic linli t or yield

s tress . I t is t he stage following elastic deformation f or a

ductile material. (Distinction between brittle and ducti le is

discussed i n the next section)

At the molecular level, plastic deformation is associated

with s liding between crystal l a t tic e planes. Slip between

t h es e planes is made easier by movement of dislocations in the

crystal lattice. In pol yc r ys t all i ne solids, p l a stic

deformat io n can also result from s l iding between crystlll

(grain) boundaries and rearrangement of the grain structure.

Creep de f om a t i on is time delayed strain which may be

r e cove r abl e or non -recoverable . Unlike elastic or plastic

s trains which occur simUltaneously with the app lied stress,

creep strains are time dependent and may con tinue i nde finite ly

i f s t ress levels are maintained . Creep deformation is

t e mper a t ur e dependent a nd at low homologous temperatures fo r

most materials creep rates are almos t ze ro .

Non-recoverable creep is plastic strain which is de Layed

because of finite d islocation velocity. Recoverable creep i s

associated with g rain boundary 51 iding a nd is some times

r e f er r e d t o as delayed e lastic strain.
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3.2. 2 Failure Mechan i s ms

Essen tia l l y, f a ilu r e a nd fracture a r e t h e same. Howe v e r

i n some circumstances , pa r ticula r ly comp ressive f a ilure , a

materia l may b e sever e ly f r a c tured but s till a ble to suppo r t

load and t hus n o t tailed. It is t raditional t o d ivide fracture

or fail ure i nto t wo c lasses , brittle failure and duc t i le

failure . The basic differ enc e be t ween t h es e i s the prese n ce

or absence of p l astic def o rmat i o n prior to generation and

pr o p a gat i o n of c racks of SUfficient magnitu de t o

fai lure.

with britt le failur e t her e is little or no plasti c

de forma t ion pr ior to f ract ure. Failu re starts a t a p re ­

existing crack in th e mate r ial when t he app lied load induces

a SUffic iently h i gh stress concent ration around the crack t i p

giving rise t o u ns t able propagation of t he crack .

Ducti l e f ailure is more complicated because ther e i s

considerab le pla stic defomation leadi ng to formation o f small

cay i t i es i n the material. Th i s process is no t de pe ndent on

pre-existing fl a ws be cause t h ese are bl unted by prior plastic

deformation. When sufficient cavities i n the material have

come t oget her t o form a crack, i t pr opagates outward to the

su r face c a using f a ilure i n the material.
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3 . 2 .3 Applicat ions to Ice

Ice is unl i ke mos t Ila t eria l s i n ways which confound

a pp l i c ation of cenven c I cnej, mat e rials ten dnology and test

methods . The primary r e a s on for th i s I s i t ' s h igh homologou s

temperature po l }. lee i s also a v e ry br ittle mat e r i a l. Thus

i t e xhibits re co verable an d non-recoverable c reep deforJllatlon

but n ot true pla st i c deformation. Cr e e p i n ice occurs so

qu iCkly that it appea r s t o be plastic deformation. This leads

to confusion in identifying the defamatIon mechanism .

Although ice exhibits linear elastic deformat i on behaviour ,

i t is often dIff Icul t t o measure be caus e o f c r e e p .

Natural ice is not isot ropic and c onsequently mat eria l

p r operties a re no t the s ame in all di rections. Like other

brittle mat erial s , ice i s n o t strong in t e ns i o n and d oe s n o t

l e nd i tsel f to t e nsile t esting.

Class i ca l fracture theory i s thoug ht t o appl y t o i ce

wi t h s ligh t lIodif ication fo r p l astic deto n at i on at the crack

t i p . Thi s modific a t i on is c ommonl y applied t o po lycr ystall i ne

lIIaterials but the mec ha nism f or ice is like l y t o b e c r e ep

r ath e r than t rue plastic defomati on . I n this case, c r a ck

velocity and cree p mechanisms compe t e in time, compl i cat ing

the required theory. unpredictable material properties r'esult

trom a combination ot ac t i v e c r e ep mechanisms and bdttle

ma t e r ial properties . Th i s has ma d e it difficu lt to define Or'

determine co mmonly used measu res o f s t r e ng t h .
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J • J Ice For c e s

There are _any ways i c e ca n exert f or ces on a stru c t ure , .

or a v essel c a n e xer t fo rces on i ce . In e i t he r e vent , i t is

des i r able to qu antify the f orc e b etween t he ice a nd t he object

o f i nte re s t . Usua lly t h e pro b lem du div i ded i nt o l ocal

p r es sure s and gl ob a l fo r c e s. Lo ca l p res su res are of i ntere st

f o r st r uctural des i gn be c ause t h e s t ruct u re mus t be ab le t o

withst a nd ice pressu r~ wit hout r upt ure o r permanent

d eformation . Global fo r c e s are o f in t e r es t i n design of l arg e

c l emen t s and founda tions . In the c ase o f vesse ls , global for ce

dicta t es t he s iz e of p ropul s ion package t o d r i v e a s hi p

thr ough ice of qiven c ha r a c t eri s tics . where a s l oca l pres sures

d ict ate t he t h ickne s s o f hull pla ting and size a nd s pacin g of

s tiffen e rs.

3 . ] . 1 Causes of I c e For c es

Ice fo r c e s o n fixed s t ruc tures are caused by natura l

move ments i n s urro u ndi ng i ce . The se movement s a re i nduced by

wi nds , c urre n t s or c hange s i n t emper a t ure . Wi nds and cu r rent s

h a ve s i mila r effect s i n that the stress i s due to fluid dr ag

a c r oa s t he i c e sur f a ce.
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These may be d escr i bed i n terms of IS se mi-empirica l l a w of

f l u i d d rag for examp l e ,

F .. cdrA..r

drag' f orce
d r ag coe f f i c ient
fl u i d density
i ce s u r fa ce a rea
flu Id v e t oe dt y

( J. l)

Dr ag co eftic ients for a i r or water over ice depend o n th e

roughne s s of the ice sur f a ce exposed t o the fluid . Ra ng e s of

c o e ff I c i e nts a r e pUb lishe d a nd availa b l e t o ca l c ul a t e wind and

c u r re nt fo r ce s on Ice sheets.

Mov ements due t o t he rmal e xpans i on and con t r ac t I o n ca n

a lso be c alcu lated bu t h i g h t h e rmal i nerti a i n ice cou pled

with t e mperatu r e mode rat ing effe c t s o f wat e r r e sult i n slow

application of th erma l force s . Cre ep deformat ion unde r slow

loadi ngs usua l l y rel Ieves stress due to t herma l e ffects. Thus

e xtr eme ice l o ads due t o tempe r at ure variations on l y occu r

u n d er r e l a t i v e l y un u sual c ondit i ons .

Ice f or c e s on vesse l s a re i nduced by a t tempts t o proqre ss

t h r ough t he i c e . Th ere is salle con t r ol of t he ice f or c e s In

this ca se because p ower o u t put of the v esse l can be regu lat ed

u p t o the maximum ava ilable. Ne ver t heless, maxi mum i ce f o r ce s

govern the r ate o f progress f or a gi v en hu l l form and

prop ulsio n pac kage.
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3 . 3. 2 Limitinq value s

I c e forces are limited by one of t ....o factors [3 . 4] .

Either the drivi ng f or ce r each e s an upp er l i mit or the i ce

f a ils i n some manne r against the structure (Fi gure 3 . 4 ). In

c a s es wh e r e the dri v ing f o r ce r eache s a limit, there may be

small sca le loc al failur e in t he ice . An example o f this wo ul d

be a floe pus hed ag a i nst a struct u re wi th i n s uf fi c i ent e n ergy

FI GURE 3 .4 Limit Forc e an d Limit Stre s s [3 . 4 ]

t o ca use widesp r ead f a ilure in the ic e or the s truc t ur.e . Thus,

the global f orce on the s t ructure would be l i mited by forces

dr i v in g the f l o e but local pr es s ures sufficient t o cause s mall

scale ice crush i ng or s t r uctura l denting wou ld be ev iden t .

Whe r e t h e driv ing f orce can be arbitrarily l arg e , ice

failure a t the in ter face d i ctate s the maxi mum l oad . In t his

ca s e fo r ce is d ependent on a numb e r o f fa ct ors i ncluding mode

o f fa ilu r e and r ate of s t rain ( F i gur e 3.5) .
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J . 4 Fai1u r e Mod es

Fai1 ure modes for ice are primarily dependent on geome t ry

at t h e interface. Ice has l ittle ability to withstand tens ile

loads an d i t is common pract ice t o t ak e adva ntage o f this by

,.
2 ".

~;.,
~6 .J.

-2'~ ;:. v:{'

~ / '.'C Pure Ice

.1 100

FI GURE 3.5 Load vs . St ra in Rate ( 3 . 5 ]

designing the str uc t ur e or vessel to i n d u ce fa ilure in

bending . Other . modes which are commonl y encoun tered are

compre ssion, shear and buckling . Pure tensile l oads are r a r ely

encountered i n a nat u r al situation .
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3.4.1 compression

Co mpressive s t r engt h of ice has been studied by a number

of au t h ors with a great deal of emphasis on t i me dependent

defo rmation [3.6]. There is a wi de range of r ep o r t ed values

ev en at s imilar stra i n rates . The comp r ess i v e s t rengt h of ice

sh ows a pparent sca l e effects in th at i ncr eas i ng s ample s izes

e xhi b i t lower strengt h . There h ave b e e n a nu mber of theories

pres ented to e xpl ain th e r educ tion in s t reng th with i ncreasing

s iz e .

One exp l a nat ion is a t heory th at a s s a mp le size i ncreases

the s i z e of e xi sting fl aws in the ice i ncreases and thus by

f ra cture mec h ani c s a l a r ger ice piece will fa.i l at a lower

l oad. Howeve r evidence t o date s uggest s that this is not s o

becau se sign i f ic an t popUl at i ons of larger f laws have not been

obse rve d i n 1arqer sa mp l es .

An other approach has bee n t o con side r non- simu l t a n eous

f a ilure over t he a r ea o f a larg e sample. I ce i s assumed to

fail r andomly i n sm aller a reas leading t o high local stresses

b ut lower a verage stress. The re ar e diff i cu l t i e s with t his

con ce p t as well , but it a ppea rs t he more promi sing theory .

Despite the fact that r eas o ns for sc a le effects are not

c l ear, a number of pUbl ic o!ltio ns have g iven pressure-ar ea

cu rves fo r i ce . An example is s hown in Fi g u r e 3. 6.
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FIGURE 3 .6 Pressure VB. Area [ 3 . 7 ]
A. Laboratory Tests
B. Mid Scale In Si t u Tests
C. Full Scale Structures
D. Meso-scale Models

3 . 4.2 Tension I Flexure

Tensile strength tests of i c e a nd ot h e r brittle materials

are difficu lt due to the nature of brittle fa ilure . At all

strain r ate s , t e n s ile f a ilur e i s dominated by forma tion of

cracks (3 .5 ] . critical crack size for t ensi l e loading is s ma l l

and as soon as a c rack is f onned it p ropagates . Tensile t es t s

are e t e c complicated by difficulties in attaching apparatus

for load ap plication t o the i c e sample . Attachmen t points

often create str e s s concentrations l e a di ng t o premature crack

formation and fai lure in the .....r ong part of the s ample . For

t hes e c e ascns the tensi le test is not often employed and
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reports of u niaxial tensile strengths for ice are rare .

A common mea ns of measu ring tensile strength of i c e ha s

been to test for flexural strength by beam bending tests . Th is

can be done wi th canti lever beams o r simply su pported beams.

A drawback i s t hat assumptions have to be made about stress

distributions in the beam sample , and thus f lexura l stren~th

is not a material p ro perty but an ~ ndirect measure o f one .

Howeve r , the t e s t is easy to perform and of particu la r

relevance to icebreakers because the usual mode of ice fa ilure

is in flexure .

cantilever beam tests are employed both in ful l scale

trial s and model basins as a measure o f i ce strength. A t e s t

i nvolves sa....ing a b eam ou t in the i c e leaving one e nd attached

to the sheet elS a c a nti l e v e r (F i gure 3.7). The free end 15

loaded until failure occurs and the l o a d to cause failu r e

recorded . Flexural strength i s ca l culated based t h e

geometry of t he b e a m and a

correct tcn for buoyancy . I ~ c I
Fr ed er king and ~'''~.'' 7 ~"'-4;tJ

Hausler ( 3 . 8] d eal w1th ~ -_._~

the assumptions impl1cit £':~ ,7 I ".I ~ I

i n the test, 1n cluding FIGURE 3 .7 Cantilever Beam

effects of buoyancy and (3 .8 )

nan-homogeneity in the beam. They develop an equivalent

sti ffness for an ice beam with vary ing brine volume in the

vertical d irection . They s tate that a b e a m length to t h i ckne s s
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ratio o f 1 0 o r less resu l ts in a ne g lig i b l e buoyancy effect

on the bending mo.ant d i str i but i on . Results from expe r iJllents

a re plot ted i n Figure 3 . 8 . The authors ind i cat e t hat the

theory wo r ke d well but t hat sODle plastic deformation was

FULL SCALE FLEXURAL STRENGTHS

FIGURE J .8 [3 . 8]

eviden t at the root of the beams . This wa s p robab l y c reep

deformation but i n e i t her eve nt would be a v i o l a tion of t he

init ia l assumption of linear elastic behaviour.
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3.4.3 Buckling

Ice does not often fail in buckling _ This mode r e s u l t s

from in -plane forces which cause the ice sheet to lose

stability prior to failure in bending . However, there are

cases where buckling is the lowest energy mode of failure .

Buck ling strength is ca lculated by the theory of a thin p late

on a n elastic foundation. A number of experimental studies

have been carried out at small scales [3 .9]. The s e studies

have shown that buckling loads increase with relat ive veloci ty

and t hat buckling is more likely to occur as the ratio of

structure width to ice thickness (B/h) increases .

Most experimental results match theoretical calculations .

fall Ing between two extremes of boundary conditions .

Assumption of a frictionless interface predicts lower loads

than calculations for a

hinge type boundary

condition . Experimental

results usually lie

between the two . Use of

a theoretical solution

based on the h i nge d

boundary condition

result s in

con servative estimation

of buckling l oads.
FIGURE 3 .9 Buckling Loads [3.9]
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At. l ow s t ra i n rates. an ice sheet llIa y unde rgo c r eep­

bu c kling whi c h h a s n o t been ex t ens ively studied [ 3 . 1 0] . Unde r

this condition the ice s heet d e f orms into t h e buckled s h ape

a nd may achieve a wa ve-l ike pa t tli! rn of c ons i derab le ampli tude

wi t hou t b reaking . It ha s be en proposed that c reep - buc k l i ng

loads would be l ower t h a n thos e r e s ulti ng from e l astic

bu c kling.

3 .4 .4 Shear

Unt il r e c en tly t he r e was little i n terest i n shear

s trength from t he ship/structure point o f v iew be cause it was

u nc ommon for i ce fai l ure to occur i n s hear when impinging on

c VERTI CAL Sf-ltAR
• H()IUZOI.;I~l SHU>R
to t ·~ GO"" l· n:!/SIU SfVo.R
.. DI~GOIiIll 'COMPR!SSIVE SH£),R
o VERTICALSHEAR l P~IG[ ....NDLEt 1'1611
• V[AIICAl AND ~0IlIZ0NTAl SHu.A IOYK lm , 19711

0. 1 0. 2 0. )

tTOTAl 'OROS tTVou/J2

o!-. --+'--+'---f:----:'

FI GURE 3 . 10 Shear Strength of Ice [3 .1 1}
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a s tructur e . Recent l y however. sh i p d e s i gns have been

de veloped t o t a ke advantage of low s hear s t r e ng t h in i c e

(Fi g u r e 3 .10) and thus mor e interest i n the property ha s

developed (3. 11 ] .
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3 .5 . Friction

Material properties of natural i ce make i t diff icult to

determine friction coefficients in the normal sense. I ce Is

a relat ively l ow friction material, bu t for icebreaking ships

or s t ruc t u r es in moving i ce f ields , f r ict i o n g enerates

s ubstantial r e rce s .

There have been a numbe r o f theori es ge ne rated to explain

the fri ctional p r ope rties o f i ce . Two h ave emerged a s most

l i kely, and it a p pea rs that both mech anisms act to a greater

or l esser deg r ee depending on t he sit ua t ion . It i s generally

ag ree d that the low frict i on i s due t o the pres ence o f a thin

water lay e r between the ice an d the sl i de r . It i s the

mec h a n ism generating this l a yer which i s the SUb ject of study .

The most promis ing theory appe ars t o be that o f a liquid­

like layer at the s urfac e o f the i c e . This layer is thought

t o arise because natural i ce at high homol og ous temperatures

ha s a surfa ce molecular s t r u c tu re which i s disordered and

amorphous c ompa red to t he r e g ul a r c rystal s tructure of the

s olid mat erial [ 3.12 ] . Th i s l ayer exh i bits pr operties simila r

t o a liquid layer and reduces the fri ction be t ween ice and

other materials .

The second i dea exp l a i n i ng the presenc e o f liquid a t the

surface is frictional heating between ice a n d the s lider

leading to melting at the interface . Although ev i de nc e has

been generated to suppor t t h is hy pot hesis [3 . 13 ) there has
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al s o been some to d isprove i t [3.14] . It appears that in some

cases the liquid-like layer is the major s ou rce of l ubr i c a t i on

while in o t he r cases frictional heating i s t h e dominant

mech an i sm of lubricat ion . An exam ple of a case where

frictiona l heating wou ld be dominant i s a high slider velocity

on i c e a t a low ambient t emperature . On the ot h e r hand the

disordered surface layer would domina te at tempe ratures close

t o melting an d l ow sl i d e r ve loc i t i es. In intermediate c a ses

the me ch ani s ms woul d i nteract .

There have be en a number o f experimental studies o f ice

fr i ct i on co e f f ic ient and r e sults of t.hese a re s ummari ze d i n

the foll owing t a b l e .

TABLE 3 . 1 ICE FRICTIONAL COEFFICIENTS

MATERIA L STATIC DYNAMI C
Steel . 2 ' . 04 . 0S . 0 4 5 .098
Alumin um . 3 0 . 035 . 033 . 094
Brass .2S .13 .0 79
Glass .13 .009
Granite . 7 S
Teflon . os
I nerta 160 . 025 . 066
stainles s s teel . 040 . 025 . 064
REFEREN CE 3 .16 3 .1 2 3.12 3 . 15 3 .14 2. 8 3 .16

Although the s e a re p rese nte d a s f rictional c oefficients

i mpl y ing that the c l a ss i c a l fdctional l a w:

F = J1N (3. 2)
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hoI d S I m ost

i nvestigators ha ve

o bserve d that

. 1I7~ . "" ft.'. ......,,~
fri ctiona l v .....

coeffic ients change

with slider velocity

,... 006

-;:- -::- -i-
and nonnal pres su re

(F igure s 3 . 11 and

3 .12) . Both a spects 'oFI"'G:;;U'D'REo-"'.'",----",==:;;-=-==,....!

a re consistent with ( 3 . l 5 J

the presence of a water lUbrica ting layer . Var i a t ion i n

frictional c oeffic i en t with pres s ur e and veloc i ty ha s

impl i cations f o r testing ship and s t r uc ture models in i ce. In

thes e cas e s, p r essu res are reduced by the linear scale f actor

s o, i f a fr i ct ional coeffic i ent ba s ed on s imi l a r measurements

..
• 37~· ~Pl> "',• •" ,
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• I ~ Z ~
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.~ .
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. " ec sc ..
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factor even i f

i s ma i nta i ned , the t angent i a l f r iction a l f orc e will not scal e

by the cube o f

the line ar scale

a nd mode l s cale

a r guments a pp l y

t o f ull s c a le

does . similar

the normal f orce

ve l oc i ties .

FIGURE 3 . 12 Fr1c t 10n v s . Pr essur e [J .15]
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J .6 Fr acture

Fractur e e ee n e ntee appl i ed to i c e has gained incre a s i ng

prominence in recent years . I t is now believed t hat the

ge neration and propa ga t ion o f cracks i n ice a re r elev a nt to

mos t mod es o f fai l ure a t a l l bu t very low s t r a i n r a t es.

Miller [ 3 .17 ] r e v i e ws a ppl i cat i on o f f ractur e mechanics

t o ice . This pap er co nside rs p l astic deformation mechanisms

at the cra c k tip a nd requ i red mod i fi cati on s t o the cla s s i cal

theory of e lastic fracture mechanic s. The Gri f fi t h Equat ion :

cre - (2Ee/'If8) liZ

where is the El astic Modu lus
a i s the cra c k l e ngt h
cre i s the c ritical s t r e s s
e i s t he surface ene rgy

(3 . 3)

i dentifi e s c reation of surface in the . a t e ria l a s t h e c on s ume r

of e lastic s train energy in crack p ropaC?'8tion . This equation

leads to a feilure criterion of the fo na :

I< _ Ya( wa) 1I2 13 .4 )

is the critica l stress intensit y factor
(a measure of stre s s at t he c r a c k tip)

i s a calibr ation f actor depen dent on geometry

and

'" • GE

G is the fracture toughness

(J .5)
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The pap er outl i ne s c rite r ia u nder whic h linear e l ast ic

fracture mechan i c s is va lid f or ice . The primary cri t e r i on is

that the r adius of the a rea of plast ic de f ormation i s sma ll

in comparison t o c rack l e ngth .

Good man a nd Tabor (3 .18] propose fra c t ur e t ough ne s s liS

t h e best measure of ice strengt h. I t i s i ndicated t hat the

Gr iffi th t heory remains va lid if the plastic zone a t the cra c k

tip i s significantly smaller tha n the c r a c k l e ngth, a lthough

i t i s observed t hat co nsiderable energy is absorbed i n plastic

deformation in t h i s area . The r ad i us o f t he plastic zo ne is

given as:

where

13·6 }

Both papers identify t he stress r e liev i ng mecha nism at

t h e c rack t i p as plastic deformation although i t is mor e

l i kely t o be c reep. Even though t he effect would appear

s imilar, t he t i me e lement i n creep deformation would make a

di f ference in some c r a ck growt h scenarios . Creep mechan isms

woul d a lso serve to b l unt ex isting cracks, reducing t he i r

effectiveness i n i n i tiating failure.

Goodman [3 . 19 ] gives results from four point bending

tests on pure polycrystalline ice samples. The four point test

i s used so that t he t e s t section of the samp l e is SUbjected

t o a co ns tant ben di ng moment an d thus the i nitia l crack is
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under pure tensile loading. These tests were performed at

three temperatures (-4C, -ne, - 24C) and at a loading rate of

500 N/sec . Results show l i t tle or no temperature dependence .

Urabc et a1. [J.20} performed in situ 'f r a c t ur e toughness

measurements on sea ice . These tests were three point bending

tests with a notch rceeeec in one of three positions (top ,

bottom or side) on the beam sample . The results (Figure 3 .13)

show that the KIC value is roughly constant up to a strain rate

of about 10 .3 sec· l • Above this rate , Urabe gives the

expression ;

KIC '" -1 .56 In(6) - 2 . 36

where 6 is the strain rate

s" ••~ II.,. I:

p.7)

FI CURE 3.13 Effect of Strain Rate on Fracture Toughness
[3. 2 2 )
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The KIC va lues fo r sea ice are lower than those recor ded f o r

pure ice. The explanation for this difference is the presence

of brine pockets . In another paper , Urabe a nd Yoshitake [3 .2 1 ]

present an express ion relat ing the change in fracture

toughness to t h e ice brine volume or size of brine pockets .

I n the same pape r and a later pub Ldoatri cn [ 3. 22 ) Urabe

relates the dif ference in KIC to grain size (Figure 3 . 14 ) . Th i s

indicates t h a t

effective notch .,r-- - - - - ----=-- , I
l e ngth is influenced

by grain size . Areas

where grains

large not as

sig nificantly

weakened by a notch

- -:- .-: .
! ..: :.~
' . . ~ ""'~~

as those where

g rain size

smaller .

is FIGURE 3 .14 Effect o f Grai n Size on
Fracture Toughness ( 3 . 22 ]
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3 .6.1 Flaw populations in Ice

Although there are methods for measuring fracture

toughness, failure load is dependent on another parameter,

that being the flaw population. Fracture strength a lone is not

sufficient to predict a load at which failure will occur and

it is in fact t he l oa d bearing capacity of the ice which is

of interest in failure scenarios.

I t is thought that the i oveet- order of crack nucleating

locations in polycrystalline ice are grain boundaries . These

r epresent the smallest discontinuities in the ice material

structure, .. lthollgh crystal imperfections may represent an

even smaller type of flaw . Mean l e ngt h of grain boundary can

be calculated given that grain size can be determined from ice

samples.

With sea ice , particularly first year ice, the presence

of brine pockets and brine drainage networks constitute

another source of pre existing flaws in ice . Measurement of

t h e s e discontinuities is more difficult than measurement of

grain size. However the extent of brine drainage networks can

be related to temperature and salinity . These parameters have

been correlated with strength over certain ranges ( 3 . 23] . In

general, the size of brine channels is an order of magnitUde

larger than grain size ( 3 . 1 ] , so in cases where such channels

are present and suitably sharp, they would dominate i n terms

of crack nucleation.
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The largest fl aws in natural ice are p r e s sure cracks

generated by thermal contraction or ot her movements i n t he

ice . Flaws of this type a re large and dominate any fa ilure

scenario provided t ht;! l oad is sUfficiently large and

widespread t o t ake advantage of the c rack extent . Effects of

large flaws on ice s trength has no t been demonstrated altho ugh

it is l og i c al that they would s ignificantlY reduce strength

in the area around the c rack .

Given that fracture toughness of ice has been widely

studied in recent years, the utility of the material property

for icebreaklng applications suffers from the lack of mare

d e f i nite research on flaw popUlations ill natura l ice . A

further comp lication is that it is not clear if pre-existing

flaws in ice serve as crack initiators or if they are

effectively blunted by creep mechanisms . Until

information is genera ted in t he s e areas, it remains difficult

to predict fallure l o ad s for ice u sing fracture mechanics .
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J.7 Ice Modelling

A common method of estimating ice forces has been to

conduct model tests . However model testing is more complicated

than i t first appears . It has been stanrlard prcceeure to try

to scale all ice mechanical properties . This is done to

satisfy force similitude considerations while maintaining

Froude velocity scaling in ship model tests . TimeD [2 .19}

gives a review of ice modelling and its associated problems.

Strength reduction in model ice has been achieved by

introducing dopants and controlling grain size . Dopants have

included salt , carbamide (ur e a l and most recently combinations

of glycol, detergent and sugar [3 .24 J . All these formulations

exhibit controllable flexural strength in the range of 15 kPa

to 100 kPa , with the lower strengths achieved by tempering

(warming) the ice sheet . However, elastic modulus is in all

cases disproportionately low, and for saline and urea

formulations, fracture toughness is too high . It i s generally

believed that these factors lead to relatively high energy

consumption in scale model iC ,ebreaking tests .

Synthetic model ice formUlations based on paraffin or

other wax like materials have been developed but have been

found to improperly model fri ctional characteristics . These

are not widely used.

To date, a model ice formulation which fully satisfieG

proper scaling of all mechanical properties of natural ice has
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not be e n de ve loped. Scale eUects I n crushing s t rength and

f r ictiona l co efficient lIIay require that the se properties be

adj usted by some f actor ot her than the theore t ical s cale

factor to g ive an adequate testing med i um.



..
4 . LITERATURE SUMMARY AND PROBLEM STATEHENT

Al though there ha s be e n a l arge alllount of work on ice

and i t s effect on s hips and s t ru c t u r e s , the p r eb l e .. of

accurat e ly quant ifying global forces remains. The Ilajor

difficul t y appears to be the complexity o f l CG failure and

interaction mec hanisms.

Es timation of i c e f orces by calcul ation o r model t e s t is

a science from which results are not yet fu lly reliable. The

a pproach taken toward each i nd ividua l p roblem is dependent on

the geometry a nd e nv i r onment of the s i t u a tion . The savi ng

grace of existing icebreakers and a r ct i c s tructures has been

c onservat ive d esign and caut ious operation .

I n the are a of s h i p res i s t a nce i n ice. iceb r eaki nq has

been s h own to be a r and om. phenome na i nvolving a number o f

d ifferent proces ses . The basic dete rministic mec han i sms are

n ot well understood nor are t he stati stical distr ibutions of

r elevant parameters kn own . I t is also no t clear if lIech a ni s••

are linear s uch that thei r effects lIIay be superimposed .

Analyt ica l e f f or ts ha v e not emphasiz e d prillary

i c ebr e a k ing mecha nisms . Although iceb r e ak i nq has been

concept ua lly d i v i d e d into component s s i nce i<as htel j an 's wor k ,

i t is only r e c e ntl y t hat ex periments have be e n co nduc ted to

i dent i fy individual components.

Regression a na lysis , applied t o e xpressi ons f or overall

r e s i s t ance , presents a nu mber of dange r s. Most da ta sets f rom
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mode l or f ul l scale tests do not show sufficient variation i n

key pe eaeeeer-e t o allow confident application of regression .

The only parameters which have consistently shown good

variation a re ice t h i c kne s s , ship speed and d epth of snow

cover. Ship l en gt h , beam and ice strength a re constant

nearly so fo r most exercises . I c e strength measurement is

particularly suspect for ful l scale trials.

Friction is also an issue in ice resistance analysis. In

many analytica l expressions, the f r i c t i on coefficient is used

as an adjustment factor to bring end results in line with

experimental d a t a . This serves to confuse the i s s u e and

probably hides flaws in the developed expressions. Better

understanding o f f r i ct i onal processes and consistent measuring

methods are r e qu i r ed at both model and full scale .

scaling laws fo r model tests are well developed on t he

assumption that flexura l failure is the dominant icebreaking

mecha nism . It appears , however, that fracture mechanics and

crack propagation play a g reater role. The fact that ship

model tests are c onduc t ed under Froude scaling, resul ting in

errors in viscous forces, does not appear to be a significant

problem .

Considerable emphasis has been placed on development of

ice formu lations to satisfy simultaneously all scaling

requirements . Al though steady p r ogr e s s has been made in

improving properties of mode l ice, t h i s is similar t o

attempting to formulate a test fluid to satisfy both Reynolds
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and Fr oude scaling at t he se ee tille . An equally valid and

pot en tially mor e frui t f ul approach would be t o divide the

prob lell into separate ltec ha ni sl:Is wh i ch can then be scaled

s eparat ely.

Full s cete d at a , presented t o da te, must be t reated ....ith

scepticism. Me asure ment difficulties r e s ul t i n

s ign i fic ant scatter in most full scale da ta. Neve rthe less f ull

sca l e data remains t he primary s tandard agains t which "odel

and analyt i cal p r edi ctions ar e jUd ged.

I n sununary , it a ppears t hat , through modeI t e sting and

ex pe rience wi th ex i s ting ve s se ls , r ea so n abl e predictions ca n

be made f or lcebreak ing ve s s el s that do not s t ray f rom t he

size and s hape limits of c onven t i onal vesse l s. However t he

i cebreaking proces s is not yet well eno ugh unde r stood t o alJo\l

confident prediction for unusual forn s or op timi za tion o f

existing f otlDs .

New res earch could a ddress the pr obl ell of icebreakinq

resistance in 1Il.any ways, i ncludi ng t ack linq issues in basic

i ce mechanics and .. ater ial properties . Ne verthe l es s , a

fundamental que stion is whe t her or not the total r e s ist ance

ca n l egit i mat ely be divided i nt o c ompone nt s for purposes of

ana lysis . This encompasses II numbe r of issues inc l Uding wha t

c omponents exis t , the r elat ive magnitude of each, and whether

the ccnpcnente can be iso l a ted experimen tally .

I cebr eaki ng resi stance compone nts have be en wi dely

pos tulated in t he lite ra ture and r e l a t i v e lIaqn i tudes addre s s ed
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by a few authors . Pr oo f o f e xistenc e, a nd qu estions of

inde pe nden c e , selJarab i lit y and linea r ity in co mp one nts ha ve

not be en c ov e red . Clearly the first s t ep in ve r i fy i ng these

c ompo ne nts i s t o d ev elop a nd v a lidate a con s istent

expe r imental method of s ep arating the primary mec hanisms .

The re i s little po i nt In div iding t h e problem into

c omp on ents an alytically if they canno t be experimentally

isol a ted . Once isola ted , i nf orm a t i on on i nd ividua l compo ne nts

may be used to bette r und e rstand t h e t ot a l proc e s s . In

a dd i tion , each mode l s ca l e compo nent may be separatel y s cal ed

acco r d ing e c the ap propri at e r e quire ments an d the resu l ts

s ummed at f ull s c ale t o yield a tot al re s i s t a nce .

The mai n obj ect i ve o f the pre s en t wor k wa s t o develop a

set o f ex pe riments to r ev eal t he ex i stenc e of primary

comp on ents o f i c e brea ki ng r es i s tance . Some e xploration o f

e f fects o f ce r tain parameter changes o n these co mpon e nts ....a s

a l so undertaken .

Exper i ments we r e c o nducted at mode l scale , to permit

better con t r ol ove r most parameters a nd in rec ognition of the

i mpracticality o f performing a l a rg e s tudy at full scale. I n

principle, ho wever , the met ho ds deve loped a re a p plica bl e at

full s ca le .

Although other i mport ant aspects of i cebreak ing

r esistance were not extensively inv estigated (for example the

influence o f friction) it i s felt that the i s s ues addressed

in this s t udy offer considerable i ns ight i nto the ba sic
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icebreakinq mechanisms and provide an improved method of

conducting icebreaking model tests and s ca l i ng the results of

s u ch tests . Some limitations in the concept of independent

c omp one nts were identified during the work, but these appear

t o be s econd order in nature .
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5 . DIMENSIONAL ANALYSIS

The major problem with modelling ships i n ice is that

many different mecha nisms resist the v e s s e l motion at the same

time . The s e include hydrodynami c effects, f riction, i c e

failure , buoyancy and i nertia . I t ....ould be difficUl t to model

and scale co rrectly all these phenomena at the same tIme. The

issue is complicated by the fact that no agreement has emerged

as to which mechanisms are dominant.

Pr evious analytical expressions and model scaling laws

have been based on a single functional expression fer the

entire "s h i p i n ice" r e s i s t a nc e . This has not given credit to

the idea of independent components. although many researchers

have based their deve lopments on the existence of such

components . In contrast , vessel open water resistance has,

since Froude 's time , been divided into viscous a nd wavernaking

components, each of which i s scaled separately . As a firs t

s tep to achieve this situation for icebreaking resistance, a

dimensional analysis of the problem is performed based on

s e pa r a t e components .
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5 . '\ Analysis

The approach t ak e n he re is to t r e at t he tota l ship-ice

resistance as t h e s u m of t he fol lowi ng independent t e rrns f

1. Open Water Res istance R, (S .la)

a. I c e Bre aking Resi s t ance R, 15. tb )

3 . SUbmergence Res istance R, (5.1e)

4 . Inertial Re sistance R, (S .ld)

5 . Frictional Resistance R, {S .lel

6 . Snow Res istance R, (S .H)

A method of modell ing s n oW' c over does not presently exist

bu t is included rei- the sake of ccnpteeeneee a nd because full

scale data usua l l y reports some resistanc e due to s now on the

ice.

Tho se variables associated wtth the identif ied components

are t aken as ;

Opan Water : R," e, (jA,L, B,T, V,g ,rl/ 'S) (S ·2a1

Fracturing : Ra = f 2(B, h , o " oc, os , G, a , E, S , V, r j ) ( 5· 2b1

Submergence : Rs .. f 3(rd, T , B, S , h , 9 l ( 5. 2c )

Inertia l : R, .. f 4(V, r " h , B, s , g , r w) (s .2d)

Frictiona l : RF = fs(L,ff,P,h) IS.2e l

Snow: Ro · f6(B,fs,ocs, hs) IS.2f )
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The ope n water term is treated in the c l a s s i c a l sense ,

c ove r e d in many previous works . s trength and e lastic e f f e c t s

a re included in the fracturing or br e ak i ng term . All mass,

i ne r t ia l , a nd ad ded mass effects ez-e included i n t he inertil! l

tenn . Submergence i s incorporated l ar gely because i t has been

identified in previous developments , and is taken as t h e speed

i ndependent buoyancy effect . A f rictiontll component i s shown

separately in order to explore the pa rameters relev a nt to

friction i nde pe nde nt ly.

Appl ication of dimensiona l analys i s to the equations

S.2a-S . 2! leads t o : (s ee Ref. 5 . 1 for details of dimensional

an a lys i s )

~~vr " ' ,eY& v' L B
5 ) "..here v=lJ./r.. ( S. Ja )v qL' • T

rl:~VZ- = ' ,( G ... ~, L .lL G I..f-2 , 5) (5 .3b)
~ G, G, . G, h Eo

-.Bs ._ . ',e T B
5 ) (S . 3c )r d9 Bh T Ii Ii

~:hvr- = v' -L .lL 5 ) {s .3d}t 4 ( 9h r, h

s.;
" ' ,e f,. .n,

) (S .3e)PLh L

~~ = ' ,( h, f, ) (S .3f)B

Although many d iffprent arrang emen ts of the variables are

possible , t hose chosen here ha ve been selected to f ollow

tradit ionally de veloped formulations . Using t h i s system,

indivi dual r e s i s t a nces have t o be combined di.'f1ensiona l ly to

give a t ot al resistance because a single g r oup wi t h units of

force co mmon t o al l compo nents is no t evident .



.5. 2 Di s cu s s i on

Geometric similari ty requires that all s h i p d imen s i ons

be scaled by a linear s cale f a c t o r n (l.p - nr... , p - protot ype

m ... model). Correct scaling o f open wa t er res istance (item

a i n eqns . 5 . 1 -5 .3) r e qu i r e s t ha t ge ome t r i c similari ty be

satisfied , a long with Froude and Reyno lds sca ling of ve l ocity .

This is not possible with water, because for Froude scaling,

V.==VplCO) 112 and f a r Reynolds scaling, V..=OVp' This p r oble m is

wel l known and hand led by fu r ther dividing into viscous a nd

wavemaking comp one nts . Calculated correct ions a r e made for t he

viscous term. It is interesting t o note that at normal f ull

s cale icebreaking s peeds (2-5 Knots) , viscous drag domi nates

wavema king r esistan c e. Thus, t he Froude si.milari ty condition

is not a primary scaling l aw for the open water component of

icebreaking resistance.

It is common practice to subtract open wate r resistance

from total r esis t anc e i n ice to y i e l d a net ice res is tance:

I S .4}

For this pu r pose , open water resistance is measured i n a

t owi ng t a nk . This may not be a correct approach be cau s e of t he

presence of en ice sheet i n both the ice model test a nd i n t he

f ul l scale. Viscous r e s i s t a nc e should be largely unaffected ,

as the r e is no significant c hange in the vessel IS bo undary
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lay@r flow c ond i t ions induced by the s he e t . It is also

unl ikely that these co ndItions are a ltered by ice pieces

pa ss i ng over the bot t OIll o f t he hu l l . On t he other ha nd ,

boundary condltion s for ""ave ma king r e s Istance

sig nifican t ly altered by t he presence o f the ice sheet .

Although wa ve s obs e rv ed i n an ice sh ee t a r e sma l l e r i n

a ..pl ltude than t hose cbserved i n open water , there i s much

greater capac ity to ab sorb en e rg y in the water-ice

c ombinatio n . The ze ro pre s sure boun dary c ond i t ion for a free

s u r f a ce is rep laced by a more comp l ica ted cond ition such that

the pressure at the i ce/water interfa ce is not constant but

dep e ndent on local motion of the ice s heet . This i nt :-oduc t lon

of a n e l ast ic bounda ry y i elds a lIIuch more d ifficult solut i on

t o the flu i d p ro b l e m which i s beyond t he s cope of this work .

Howeve r some ex periments were carri e d out t o de t ermine t he

effect s of t he floating i c e sheet on wavelllaking res i stanc e .

Resul ts are de tailed i n l a ter sec t ions .

co ns i de r i ng d i tllensionless gr oups associat e d with t he

breaking c ompo ne nt, (e qn. 5 . Jb) , ice thickne s s is scaled to

the same ge oJletric r atio as the s h i p (n) , and ratios of

s t r e ngt h and e lastic modulus for the mode l ice must be the

same as full s ca l e . If Froude velocity s c a ling is to be used,

then it follows f r om the Cauc hy number ( r 1v2/ E) that the

Elastic Modulu s a nd all ice strengths must be s c a l e d by the

factor n (a s suming ice density at b ot h sca l es is the s ame) .

Fr actur e t ough ness (G not Klc) on the othe r hand mus t be s c a l e d
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by the factor 0.2 and the flaw size (a) by the factor n .

A dimensionless ratio similar to the Cauchy number can

be derived by compounding i t with the E/a ratio to give rv2/o

or in another form V I (air) 1/ 2 • Thi s number represents the

rat io of ice Inertial forces to ice strength forces and will

be referred to a s the strength Number .

Although velocity scaling is traditionally by Froude, if

the breaking component can be measured in isolation, this need

not be the case, and model velocity could be adjusted to

maintain the relevant dimensionless ratio for varying flexural

strength or fracture toughness in the mode l ice . It is ,

however, important that ratios of strength properties be

maintained and this has been a difficUlty with model ice

formulations to date.

Many pUblications use water density i n place of ice

density in their developments on ice res i stance. This is based

on assumption that ice density and its ratio to water density

is constant . This is not the case for model ice and thus ice

density is used in this work .

Resistance associated with SUbmerging broken ice {eqn ,

5 .3c ) is a function of the volume of ice broken, the density

difference between the ice and water and the depth of

submergence. This is not a velocity dependent component but

a funct ion of ship shape and r elative draft .

Inertlal resistance (eqn . 5 .3d) shows similar

dimensionless rat ios to the submergence term with the addition



95

ot velocity e f f e c ts . It appears r easonable to neglect

sub lle rgence as a separate compo nent and combine i ne rt i a l and

s ubme r g enc e r es i sta nce s under a common ice clearing t e rm. The

onl y advantago of s epara ting these tw o compo ne n t s i s tha t the

iner t i a l re s istanc e can be assumed t o b e zero at very low

speeds vh ile the s Ubmergence co mponen t r ema i n s. Howeve r as

s pe ed increases , the p h ys ical distinction between the t wo

componen t s I s s ome what a rbitrary . It I s p r e fera b l e to c onsider

submergence r es i s t a nce as the zero speed limiting va lue of t he

inertia l r e s i s t a n c e . Dimens ionless r atios associ a t ed wi t h

i nertial resistanc e dictate maintenancQ of t he ice-wator

density ratio and geome tric scaling o f ice t hi c kn ess . The i ce

t hickness Fr oude Numbe r in equ ati on 5 . 3d i nd i c a t e s a

r equ i rement fo r Froude Ve l oc i t y s caling i n modelling this

.echa n i sJII.

Frictional r e s i stance {e qn , 5.38) i s pr ima r ily a function

o f t he coef fic ient of fr iction between t h e i ce and the ship .

In pr incipl e t he c oeffic ient sh ould be the same at f ull and

lIIodel scale . However, r e lia b l e fu ll sc a le n ea suresenes of the

f ric t i on coet rlclent are pract i c a lly n cn exaaeene , Al s o a

parameter which is often excluded from ice r e s i s t ance

form ulations is l at eral pr e s s ur e i n t he ice s he e t . It is

l og i c a l that th i s would ha ve a n effect o n fricti on al

resist a nce , but on ly if the ship is i n contact with the

unbr o ke n ice s he e t . Usually the ice breaks some d i stanc e away

from t he vessel side s and t h e r e i s no d irect contact, but
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force may be trans mi tte d t hrou gh ice pieces t urn ed and j ammed

between the hu ll and t h e intaot s heet . Furthermore t here is

still some question as to how friction should be treated

because of e vidence that f r ictional coefficients for ice a re

a fu nc t i on of pressure a nd sliding velocit y (Figure s 3 . 11 and

3.12) . If this is the case, t hen t he fri ct iona l coefficient

for model t ests wi l l r e qu i r e adjustment due to l ower abso l ute

velocity and pressures at mode l s ca l e . Fric t ion is also

i nt e r t wi ne d with t he other comp onen t s of ice resistance and

i s probably no t t ru l y independent or separable from t hese

mecha nisms. Thus, c ons i de r a t i on of a separa te frictional

component i s a limited concept , at best a pp l i cable on ly t o

forces along t he sides uf a f l a t s i d ed vessel. Even t he n , i t

may not scale solely according to the f r i c t i on coefficient.

Re s i s t a nc e due t o snow on t he i ce surface (eqn . 5 .3f) i s

thought to be primarily a frictional problem. Howeve r if t h e

snow is t h i ck (Le. of the order of t he ice t hickness) t he

compressive s t r e n gt h of the snow would play a role i n

res istance . I f snow c over is to be mode lled, t hen the

frictional coefficient must be maintained and the thickness

and compressive strength va l ue s s caled by the factor Q .

Development of the preceding no n - d ime ns i ona l ratios

illust rates t hat icebreaking mechanisms invol ve d if f e r e nt

parameters and different sc a ling l a ws . The f ac t t hat a single

non-dimensional r a t io, r e l ev a nt to all resistive components ,

is not apparent p resents a case for isolating components and
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s caling them i nd ivi d u a lly . Ideall y , ice model t ests would be

performed to separate ea ch compon e nt, with e lements comb ined

a f t e r s caling to generate a prototype prediction . As

previous l y s t a t ed , this is s i milar to the t echn ique used f or

op en water r e s istance to deal wi t h v iscous and wave making

res i stan ce co mpone nt s . It i s u nr eal i stic t o e xpect the more

c omplica ted cas e o f ice r es i s tance t o y i eld t o a single s i mple

model t e st .

The mos t promisi ng mean s o f separa ting breaking and

clearing res istance compo ne nts i s the p r e - sawn ice t est

int r odu c ed by Enkv ist ( 2 . 9) . Th is involves r e du ction of mod el

ice s t rength to ze r o by s awi ng s l ots i n the ice. Resistance

due t o b r eaking can be dete rmined by SUbtracting r esistan ce

va l ues r ec orded during a pr e-s awn t e st from thos e recorded

duri ng a r egular i c e test . Enkvist , ho wever , as sumes that the

b r eaking component is ve loci t y i ndepende nt and only co nducts

the pre - s awn t est at low s peeds . I n a dd i tion , the e ffects of

f r i ction are not clearly s epa rat ed by the p roc edure, but a s

previously discussed, t his may no t be p ra ctical in any event .

Despite s ome l i mitations, the pre-s awing t echnique was

selected as the method of c hoice f or the experi mental port ion

of th i s res earch . Unc e rtaint i es assoc i ated wi th the t eChnique

required t hat so me i nitial exp e r i mentat i on be car r i ed out to

provide verification, but th i s was d e emed worthwhile a s it

would provide further informa tion on both the technique and

the i c eb r e ak i ng c ompon ents.
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5.3 A SiJnp lified System

Having discussed i cebre aki ng to a d egr e e of comp leteness

a nd deve loped a set of non - d i mens ional . e x press i ons , the

problem arises that many o f t he variables e1 t he r cannot be Dr

are no t r out i nely measur e d . Thus, a co ns i d e r ab l Y r educed

number of va riables is available f o r ana lysis from a tank or

fu l l scale situation . In r ecogn i t i on of t h is . a r edu ced

formula t ion , ba s ed on t he p revi ou s development is require d f or

practica l a pp l icat ion .

The ope n ....ater e c npon e nt; r ema i ns u ncha ng e d , but a number

of variables a r e eliminated f rom the i c e r esi stance component .

The breaking tern is esse ntia l l y unaffec ted . Terms due to

SUbmergence and i nertia are combined i n to a single co mponent

h e r ea f t e r t e rmed Ice Clearing Re s istance. I n the combinat ion

of the t wo terms, effects due to i c e - wa t e r den s ity d i ff e r e nc e s

(buoyancy) have been neg-leetEi''';' be ca us e t h i s i s thought t o be

larg e l y a 10'0{ spe ed phe nome na . As speed increases . buoyancy

forces are quickly overwhelmed by inerti al and ad ded mass

e ffects. These effect s a re more dep endent on the ab s olut e

densities than the buoyant difference .

Frictional resistanc e is eliminated as a se pa rate

component because i t is interrelated with e a c h of the other

c omponents and thus cannot be treated as independen t .

Res ist ance due to s n o,", cover i s elimi nated for the pu r po ses

o f t ank wor k be cause i t is genera l ly not mode lled . ThiB
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reduces t he problem to three resistive components .

Open Water Ro - 9,(JJ.,L,B,T,V,9,r..,S) IS.5a}

Breaking Ru = 9z(B ,h,u"E,V,f'f.f t'S) 15.5b}

Clearing Rc " 93(B,h,9 ,V,T,I't ,I'.. ,fI'S) {5.5c}

Following on with the analys i s :

~V2 tl (~
v' L B

5) where v= /J./ r (S.6a)9L '. ' T

r t:~,p t>2(~ ~ ~ S f, > 15.6b}
h ' ·f

~,p - 1>1(* ~ ~ .L 5 ff IS. 6d )
h T r. '

The open water terJll i s treated i n the

d i s c u s se d p reviously. However , the ice related terms are

co nsiderably s impl ified from the previous case . This leads to

a workabl e s ys tem o f the form:

~yr :: f{ ~~I-)

r;;fuvr =f(-f.->

(S. 7a )

(5.7b)

if it i s a ssumed that E/U/. B/h, the shape factors , density

ratio and frict.ion coe f fi c i e n t s preserve their full s ca l e

values . Thes e two equations (neglecting the open water

component briefly) cover the t wo components that should come

out of a pre-sawing test : breaking the ice and clearing the

broken piece s .
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This same res ult c an be re ached by cons i de r i n g force

rat i os . Assuming f our t ypes of f orc es in the problem as 8

whole , al l of wh fch a r e influenced b y fr iction in t h e

i nt era ction :

Re s i stive Forces

Gravitat i ona l Forces

strengt h For ces

I ne r t i al For c es

FA .. Ro or Rc
Fg ;; r,QL3

Fs ~ a L2

F I ;; r l L2v2

IS. Sa )

(S.8bJ

(S. Be )

15. 8d }

where L is a ge nera l l engt h dimension.

considering t he b re aki n g r es istance:

and the clearin~ r es i stance :

(5 .9)

(S. l Oj

t he i nertial fo rce ap pea rs wit h both c omponents and p ro vi d es

a cornmon d e nominator:

~ ,. f ({~ )

~ ;; g({: I

15 .1181)

IS.Db)



Expandi nq these two expressions :

~. f <Art;?
=few)

r#VL.. q(~~)
• g(~h

'01

(5.l2a)

S hi p beam (8) and ice thickness (h) a r e the r e l e vant linea r

d imen s ions a nd the equ ations r e ar r a n g ed to t he previous form .

~.J2 "f~1l

~V! " f(; )

(s .7a)

{5."ib}

The result i s th e s ame as that from t he d i mensi o n a l analys i s.

These tw o expressions give what is believed t o be the aominant

relat ionship betwe en parameters for the i c e breaking and i c e

c le ar i ng c ompone n t s of the total resistance . It can be argued

t hat other non-dimensional formulations a re equally valid or

offer ad vantages such as a more dire ct d e mons t r a ti on of the

velocity effect . The forms s hown in equations 5 . 7a and 5 . 7 b

have been s e l ec t e d for t he fo llowi ng reasons.

The development and resu l ting expressions a re s i mil a r in

form to those used i n other branches of f luid mechanics , for

e xeepf, e , presentations of Drag Coe f f i cie n t against Reynolds

Number or Ship Resistance Coefficient against Froude Number .

In a ddition , i t i s nonal practice , when d ealin g wi th
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ac ce lerative fluid syst e ms , t o use t he inertial t erm

c ommon non-dimensionalizlng factor as has bee n done here .

It i s also believed that there i s II physical s i gni f i canc e

t o the r at io RI (r IBhvl) in t hat it represents II ratio of the

resistive force to th e inertial res istance of a b lock of i c e

B*h*lm . at the ve l oc i t y of interest . Finally in Chapter B

t hes e ex press i ons h ave been applied t o experimental da ta ...i t h

go od r esults. When comp a r ed with II number of other poss ible

f ormula tions us i n g we i g h t o r s t r e n gt h forces a s the

dirnens l onali zing fa ct or the abo ve f orms demonstrated best

c ollapse of the d a ta .

Th i s l e ads t o t he development of two i c e re sistanc e

coe f f i c ie nts ; an Ice Breaking Coeff i cient C
B

and an Ice

Clearing Co e ffic ient Cc:

cR "" rl~ ( 5 .l3a) Cc = rlB~ 15.l3:>}

scaling for the c l e ari ng component is Froudian although

t he Froude nu mber i s based on ice thickness ra the r than sh i p

l ength . co n seque n t ly I there needs to be some distinction

betwe e n the two . The term V/ (gh) 1/2 wlll be cal led t he

Thi ckness Froude Number. Scaling fo r the icebreaking c o mpone n t

is dependent on the numbe r VI (al f ) 1/2 whic h has been pr e v io us l y

na med the strength Number . Thus, the two fund '...mental

mechanisms in icebre aking are SUbject t o different scaling

laws: with icebreaki ng a function of St r e n gt h NUmber , and ice

c l ea r i ng a f unct i on of Th i cknes s Froude Number.
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6. REMARKS ON MODEL TESTING I N IC E

Bef o re d e ta iling the ex pe rime nta l port ion of tltis

r ese ar c h , it is worthwhile to discu s s s ome i s sue s in model

t esting' wh i ch a re not generally co vered i n t h e literature .

There a re many ways i n which conditions in a model tank differ

from the full scale . Inde ed, tests c arri ed ou t in a tank are

not so much mod els of the r eal sit uat i on a s refe re nce cases

f or compar iso n between f onns . An i c ebrea k i ng v e s sel r are ly

f ind s its el f in a uniform s h e e t of l evel , co ntinuous , flawles s

i ce . This , however, i s a repe at able an d de finable c o nditio n

which provi de s a go od baseline fo r t es t i ng. Alth ough it can

be cr i t i cized as un re:t.list i c in t e rms of ac tual fu l l sca le

co nd itions, it i s pre f erable at thi s stage i n the de ve l opmen t

o f icebreaki ng t h e ory t o s tick wi th a wel l defi ned a n d

con t r ol led c ondi tion for r esearch purposes. This

simpl if ication i s s imilar to t hat made by tes ting for open

wate r resistance in perfectl y ca lm tank co nditio ns .
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6.1 Towing System

While propelling 15 modej, through ice of limited

dimens ions . restraint must be placed on some model motions .

Commo n practice is to tow from a point near the centre of

gravity. Th is leads t o a model whl ch is not directionally

st a b l e and thus r equ i r e'l Yaw re stra in t . Yaw cont ro l o n a full

s ca l e vesse l i s pr ovided by r udd e r whi ch is 1I force exerti ng

device bu t model yaw re straint i s a rigid connection applying

a t ixed displacement . Under fi )(ed r estraint , the mod e l is less

abl e to d eflect due t o a symmetr i c l oads at the bow . Th i s

results in higher forces at the bow, pro bably leading to

increased r es i stance . cons equel'lt..:ly , it i s ex pected t hat the

us e of rigid y aw r estraint r esults i n h i gher t ow forces than

woul d be e xperienced .... itb a s of t restraint .

Restraint i n h e ave , pitch an d roll are not normall}'

provided so these motions do not pr es e n t problems .

11. s i mila r cond i tion t o the ya w rQstraint arises in

towing . Usually a model i s t o wed at const ant speed th r ough t he

i ce. This i s contrary t o f ull s cale , whe re pr op Ul s i o n is

sup p lied b y a force generating dev ice . Alternately t he model

can be propelled with a scaled propUlsion system. This is

frequently used but suffers from s ome drawbacks , particularly

the difficUlty i n r e a chi ng stead y s t a t e , given the nature of

a propeller driv e s yst em an d va r iat i on in i ce failure for even

a u n iform she e t . The problem i s compound ed ....hen i c e i s
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ingested by the propeller ca usIng f luctuations i n measured

t or que and t hr us t . Constant speed towing offers gre ate r

economy in use of t ank time and ice, and improved cont r ol of

test conditions. The cost is in the r e alis m of the test.

Towi ng system dynamics a re relevant to the nature of

measured loads. With fixed speed towing , the towing post and

model form a mass -spring combination whic h 10'111 vibrate when

excited . Forces exerted on the model by ice are cyclic and of

considerably higher magnitude than those in an ope n water

test . It is desirable to avoid resonance, and thus the natural

frequency of the tow post~model combination should be we l l

removed from the range of fundamental frequencies arising from

the ship model-ice interaction . The ~ost can be stiff with a

high natural frequency or soft with a low natura l frequency.

Howeve r , a soft system may not be able to genera te sufficient

fo rce for adequate towing without increasing stiffness . I t is

more coneon to employ a rigid system but this also h a s an

effect on recorded results . Given the nature of icebreaJdng,

even at model scale , vibrational noise is generated a nd

filtered by t he towing system. Thi s filtered noise is recorded

as f l uctuation in resistance at or n e ar the natural frequency

of t he towi ng system. Indee d , most high peaks observed in

resistance traces are due to v i br a t i on in the t owi ng system

and not model -ice inte raction events. Account must be ma d e for

this in data ana lysis.
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6 .2 J:r:e properties

1.n providing a sheet of ice t or t ank testing, the most

de sirable featur e is c ons ist e n t mechan ical properties. Gi ven

the nature of i ce and scaling requirement s for very loW"

s t r en g t hs, it is d ifficult to mai ntain consist e nt mec h anica l

properti es. There is al s o spatial var lation in s he et t h i c kness

en d mechanic al s t r eng t h over the ar ea of t h e i c e sur fa ce. Both

pro perties c ont i nu a lly change i n time and canno t be arrest ed

i n order to co nduct a t e s t . ThUS, even i n t he be s t of t ests

t here is a varia tion i n r esu l ts s t emming from va riat i on i n

i ce prope rtie s . s trengt h measurement i s destruct ive to the i c e

a nd v e r y time con s uming . co nsequen t l y , i t is impr act i cal to

me as u r e s t rength at a l ar ge number of l o cat i on s , although

t h i c kne ss can be de t e rmi ned at a ny nu mbe r o f l o c ations

imme d iatel y aft er a t e s t .

Als o r elated t o ice strength f or t e st ing an d s calir.g

purposes i s the degre e of v ariabilit y in cantil ever beam

tests. Measured s t r engt h ha s be en shown t o be dependent on

samp l e size, geometry and l oading rate [3. 8] . Thus the

s t r e n g t h mea su red at model sca l e may not correspond directly

t o that measured in the f iel d .

Another pot e ntia l co ncern in a t owing t a nk is t he e f fect

of in- plane con f i nement of i ce by the tank walls . The effect

of confinement on re sistance i s not y et clear , but i t does not

appear to have a great e ffec t o n measur ed r es i sta nce. L imited
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tr i als vit h an i c e sheet cut away from the tank walls d i d not

record an y signi ficant change i n resistance. Never t he less,

t e s t s ar e n ormally cond ucted a mi nimum o f 2·3 beam wi d t hs from

the t llnk walls t o mi nimize con fi nem en t effects.

It is "'idely rep ort ed in the lit e rature on full sc a le

icebr ellking t ha t radia l cracks i n t he ice emana t e f r o m thE! bow

area during i cebreakl n g . This ra d ia l cracking i s not o bserved

i n model t es t ing , and g enera l ly the i ce fails alo n g

circumfere n tia l l i nes wi t h limited secondary radial c r ac ki n g .

The ne t result i s still a cu s ped pattern of b r o ken pie ces in

the cnan ner s i milar to t hat repor t e d f o r f u l l scale

i c e breaki n g . It i s be l Leved that the abs ence of primary r ad i al

cr a c k s i s d ue to a degre e o f cohesi ven e ss i n the mod el ice

which does not exist a t fu l l sca le . Whether o r not the l ack

of i n i t i al rad i a l cracks i n the model case caus es lio n i ncrease

i n t he sca led ice resistance is a s yet unpro ven .

Friction betwe en i ce and mode l surf aces i s a probltllll fo r

whi c h ade q uate s tandards have not been established . Fr icti onal

coef ficie n ts are measured by movin g i ce s amples ever II model

s ur rece or s i mi l a r ly p r epare d f ri c tion p late . Normal l oad i s

va r ied and t ang e ntial force meas ure d . Tr end s in resu lts have

been observed due to sample orien tation and t hi s h a s been

attributed to wa ter drainage l ead i n g to increased l u b rication

f o r some o rientations . Tr e nds hav e also bee n observed with

s liding velocity , normal pressure . and ice temperat u r e. This

l e ave s a g reat dea l of i n formati on t o reccncfLe before
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frictional coe f ficie n ts can be established . Although

fric tiona l coefficients are routinely meas ur ed as part of ice

testing procedure , the y are of litll1ted value except f o r

compa rison between models . At present i t is not possible to

scale frictional r ,!sults with any accuracy.
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6.3 statistical validity

Model testing in ice presents issues of data reliability

which do not arise to as great a degree in other bra'nches of

testing. In fluid and aerodynamic fields, the small scale

behaviour of the test medLura is better understood on an

empirical if not a purely theoretical basis. This is not the

case for icebreaJdng. There is a degree of large scale

randomness in ice failure, coupled with variation in

mechanical properties over the duration and area of a test.

Thus, the r-esu t t.s of ice tests are really random variables .

If distributions of these variables are normal, then a

resistance value recorded during a test would not be truly

repeatable but given SUfficient samples at the aame

conditions, a distribution would be obtained of which the mean

could properly be called the mean resistance for the given

condi tions . This concept of random errors has not been widely

adopted in ice testing, in spite of pubLdahed results which

show wide confidence intervals on recorded data .

A practical problem in gathering sufficient da ta for

statistical validity is the high cost and time associated with

ice testing. For a given sheet of ice it is rare to get more

than four or five data points in a day. For thicker sheets the

yield is lower , sometimes less than six points per week .

ThUS, it is a luxurious test program where runs are repeated

pur(,ly to e~tablish an average resistance for a given set of
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conditions. In most cases , inherent error in measureme nt is

no t recognized a nd n o pUblished wor k could be fo u nd a t t empting

to quantify the deviation . It ha s been s tated t hat 1£ l ce

prope r t i e s could be adequately co ntrol led, t he n tests would

be repeatable with much smaller errors . Undoubtedly bett e r

uniformity in material properties would reduce e rror , but this

would not eliminate t he randomness in mat eria l failure.

Although not covered in this research , it would be wor t hwhile

t o addre ss distributions of mechanical propert i es and measure d

variables i n ice t esting in general.
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7 . EXPERIMENTAL METHOD

The objective of the experimental program conducted for

this research was to demonstrate that icebreaking resistance

can be physically separated into two components , and that

these components are better presented and scaled individually .

A number of approaches were taken to the problem in ar.

attempt to provide verification of the concept . Early on, it

was recognized that it would be difficult to prove the

ex istence and separability of the components in an absolute

sense, based solely on the pre-sawing technique , The obvious

f irst requirement was to prove the legitimacy of the

technique . A first approach to this was to vary the basic

parameters inherent in the technique to determine the effect

on recorded results. The second approach was to develop

another experiment which would allow at least one component

to be measured by a different method for comparison with that

measured by pre-sawing.

The final approach to the wider question of the behaviour

of individual components was addressed by performing a range

of experiments in which one parameter was varied at a time.

Although neither one of these investigations offers a method

of absolute proof, when taken together they offer a body of

evidence which provides insight into both the concept and the

techniques.
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Experiments involving vllriations i n pre-sawn pattern were

the first approach to v alidat i ng the technique itself. In this

case a number of test parameters were varied to determine the

effect on measured resistance . This was to provide data on the

robustness of the technique and to give an indication of

reliability and repeatability . In addition the relatively wida

ranges of parameter variation allowed the limits of the

technique to be deterlllined.

Trials conducted with the so called shallow draft wedge

formed the second experimental approach to validating both the

concept of independent components and the technique of pre­

sawing. By towing a partial hull which was really only a bow

section without significant below water volume or after body

it was intended to provide a test i n which only the breaking

component was measured. There would be no hull to displace the

ice or give hydrodynamic drag . Thus the breaking component

measured directly by this method should be c omparable to that

induced from the pre-sawing technique .

The third phase of the program was to perform a set of

more or less standard ice t ank tests i n which the two

components were measured while a number of parameters were

varied . These included ice thickness, ice strength, vessel

speed and vessel beam. Vessel beam was the only ship related

dimensional parameter to be v a r i ed because it was jUdged to

be the dominant linear dimension and thus the best used in a

non-dimensional formUlation . Unfortunately the full range of
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all variables could not be cross correlated but sUfficient

information ....as gathered to identify relationships.

Testing was carried out in the ice tank of the Institute

for Marine Dynamics, a large government/commercial research

facility . As part of the experimental program, it was intended

that testing procedures be developed appropriate for regular

ship model trials . Under these conditions, procedures have to

be carried out quickly, and to be useful , results should not

be sensitive to small variations in ice conditions.

Initially it was hoped to cover a wide range of ice

thickness and flexural strength, but this was limited by

practical considerations and an extremely bUSy tank schedule .

The range of ice thickness was limited to that which would

allow one test per day . However , this limitation has been

mitigated by incorporat ing a larger group of data gathered

during other model test series covering a wider range of ice

properties .

The test series conducted for this r esearch was carl'led

out as a normal set of tests at the IMD tank. The following

two sections describe the ice tank and operations associated

with ice production. sections 7 .3 and 7 .4 describe features

of the experiments specific to this research .
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7 . 1 The Ice Tank

The I ns t i t ut e fo r Marine Dynamics Ice Tank has a usable

ice s heet area of 76 m. by 12 m. and is presently the largest

such facili ty in the world [7 .1l . A 15 m, setting up area is

l oc a t e d at one end of t h e t an k separated from the main area

by a t h erma l door . At the opposite end of the t a nk is a mel t

pit which enables one ice s he et t o be grown while the previous

on e is melting (Figure 7 .1).

A service carriage is provided for i ce pr e pa r at i on and

measurement work. This carriage i s f i t t ed with a work platform

rr:.,., ~tmb~~=====:::=::=I .."."_."/_,,._

FIG URE 7. 1
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and an ice boo m fo r moving the ice sheet .

The r e fr i gera tion system employs t wo mec ha nica l

compr essors deve loping 160 0 HP t ota l. and us es auonla (R- 717 )

as t he r e f rige ra nt . c oo l i ng is p r ov i ded by 26 ceiling hu ng

evaporator units. Refrigeration plant output is computer

controlled to lIaintain uniform t empera t ur e at the wat e r

sur f ace . Th e systelll supplies cold air t hroughout t h e t a nk r o om

with re l a t i vely still air a t t he tank surface t o allow heat

trans f er by natural conve c tion. Air temperature at the i ce

s ur fa ce i s meas ured by 12 the rmoc ou pl e s pos it i oned a bo ut 25

rom above the surface. These provide f e edback co ntrol t o t h e

refrIge ra tion system . Air t e mpe r a ture can be cont r o l led i n t he

range of -30 t o +15 degrees c. a nd 15 mai ntained at - 20 deg.

C f or ice frel!zing and +1 deg . C for ice t emper i ng a nd

testing . He at i ng is provided by manually co n trolled. f o rced

air hea ters ",hich are used t o ",arlll the room after freezing is

complete .

The I ce Tank towing ca rriage is an 80 t on n e s teel

structure 15 IQ. long by 14 .2 111. wide by J .9 m. h i gh . The

carriage r i de s on wheels bu t is p r opelled by a t oothed gear

and rack systelll.. Motive powe r is provided by e lect ric motors .

s peed r ang e is .0002 t o 4 m/s. Control is provid e d by a n on

board compute r whi ch can be programmed fo r up to eight test

llo ,;.oeeds in a s i ngle r u n, with specified interval dis t an c e and

accele ration rate .

Models are attached to a 150 IlIlII dia . steel towing post .
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The f rame supporting the post can be traversed t o either of

three lateral po sitions i n t he tank, allowing: tests to be run

at t he centreline or the quarter width points . The f rame ca n

be v e r t i c a lly positioned to accommodate differing model sizes .

Maximum mode l l engt h is 12 m. ....ith maximum design l oa ds o f 60

kN on centreline and 30 kN on t he quarter points.

The ice tank data acquisition system is a digit81

computer ba s ed system with analog tape back-up (Figure 7.2).

It is housed in the carriage control room with signals fed by

pernanent cabl ing to

and from the test

excitation is prcv Ided

by a NEFF System 620

Series 300 s i g na l

conditioner . Transducer

outputs are amplified

and digitized by a NEFF

Sy stem 620 Series 10 0

amplifier/multiplexer .

Digitized data is

passed to DEC

MicroVAX II co mputer

which also controls

functioning of the NEFF

frame . Transducer

c:\- --.....J?
sys tem . Amplified FIGURE 7.2 D..lta Acquisition System
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analog outputs are r ecorded on tape by a KYOWA RTP-600B 14

ch anne l tape reco rder . This provides computer system backup

but also allows sUbsequent analysi s of an alog data if

required .

Digiti zing i s performed at 50 Hz and current memory

c apacity 81110\015 about s even minutes of s ampl i ng over 20

channels in a single burst . Data c a n be displayed a nd averaged

over relevant interval s l ocally on a graphic d i splay terminal

attached to the HicroVAX . More invo l v ed an alysis is performed

on the main I ns t i t ut e c omput er } a DEC VAX 11/750 after

transfer via c ommunicat i o ns network .
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7.2 EG/AD Ice

The original [GlADIS Ice developed by Tilllco is foned

frOJl\ a dilute aqueous sOlution of Et hylene Glycol , Aliphatic

Detergfmt and Sug ar i n the rat ios , 40/. 0 3/ . 041 by weight.

Mechanical prop erti e s are described in de t ail i n the r e f e r enc e

[3.24 ] •

The fot1llu lat ion us ed at IHO during th i s t e s t series

differs trom the origina l in t h a t the suga r component i s not

i nclUded and t h e solution i s only of Ethylene Gl yc ol a nd

Aliphatic Detergent i n the ratios . 39/. 02 71 . To distinguish

f rom t h e original , this formulation will be refe r red to llS

EG/ AD. This mixt u re wa s adopted be caus e bacterial consumption

of suga r in the orIginal formul ati o n l ed t o excessive fouling

i n the tank a nd s ubsequent e r osion of i ce mecha nica l

propert ies. Mech an i cal propertie s o f the EG/AD ice are

som ewh a t degraded from those reported f or the EG/ AD/ S

formulat ion ap pa rent ly be cause o f a mor e p r ono un c ed t op laye r.

usually 2-3 IIUII th ick. Gene r a l l y the pr opert i e s have been fo und

to be s i milar to the previOUSlY used UREA (Ca r bami de ) doped

solution .

Me chan i c a l properties of t h e t ank ice as measured for

this expe r i me nt a l program are p r e s e nt e d in the second section

following .
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7.2. 1 I c e pr epara tion

Prior to starting an i ce sheet , t a nk wate r is c o ol ed by

c i r c ul a t i ng it t h r ouqh water chillers . cooling efficiency is

reduc e d below 1 d e q . C so s Ubsequent cooling is achieved by

r ed uc ing tank r oom air teJllper ature be low ze r o a nd circulating'

t ank va t e r by means of a n ai r b ubbl e r system . Water

temperature is monitored by t he nn oc ouple s mounted i n t he tank

wal ls a nd the rmi sto r s t rings d ep l oyed in t he t an k.

I ce seeding is ca r r ied out wi t h water temperature s

be t ween + .3 and - . 1 deg . C a nd a n a i r t emperature of -2 0 de g .

C. Remains of previous ice s heets are pus hed i nto the me l t

pi t . At the t i me of seed i ng, ref r igera tion f an s are switched

o ff to r ed uc e ai r c i r cu l a t i on . The t a nk is wet s eeded by

b lowing a fine mist of warm water i nto t he a i r a bov e t h e wate r

s u r face . This i s ach i ev e d wi th c ompres sed air and spray

no zz les mou nted on t he s ervi c e c a r riage. A dens e fog of ice

c rysta l s is c r e at ed over the l e ngth o f t he t ank by moving t he

s pr a y from one en d of the t ank t o t h e other at about .04 . / s .

At th i s rate i t t ake s 30 mi nutes to seed a sheet an d

approxImately 35 litres of seed wat er are us ed. The seeding

pr o c ess p rovides a n eve n l a ye r of tine ice crystal s on the

s ur face of the t ank f r om which the sheet i s nucleat e d . At the

e nd o f seeding. t h e refri geration s ys tem i s r estarted an d the

free ze cycle commenced .

I c e is g row n at a t e mpe r atu r e of - 20 de g . C. During
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freezing , ice growth averages 2. 5 mm/hr . Followi ng c ompl eti on

of t he f reeze cycle, a warm up and tempering cycle is e ntered .

OVer a four hour wann up period , the room t e mpe r a t u r e is

raised t o +1 d eg . C. The room is he ld at t he 1 deg . C

tempering t empe r a t u r e fo r s ome time . Tempering serves to

weaken t he ice to t h e desired tes t s t r e ngt h . Because ice

growth c ont i nue s during warm up and temperi ng. f inal ice

thickness is greater tha n at the end of f ree z i ng (see Figure

7 .3) . Thus i ce t hi c kne s s must be calculated considering growth

rat e s during the three s t age s o f preparation (freeze , warm up

r . ..peutllu (~I

~'------o.=------<f/!
up :

' hod

I ~:.rhletn..~

:~: ,, ", ,
, ", ", ", "
: I I

FIGURE 7 .3 I c e Growth and Tempering Cycle

~."
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and tempering) and the cycle adjusted for different tempering

t i De s .

Different i ce strengths are achieve d by va ry i ng t empe r i ng

time. As tempering t i ae i nc r eases, ice s t r en gth de creases . The

rate of d e c r e a se de pends on ice thIckness , but the t r end tor

a ll is a negative exp onential curve i n time. The strength of

an i c e sheet c a nnot be maintaine d at a ny given v a l u e , so

testing must be perrormed quickly wh en the s t r e ngt h i s at the

de e i r ed point .
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7 .3 Ice properties

Hodel ice properties obviously play an important role in

testing ships and structures . Model ice formulations differ

substantially from the full scale material and exhibit

differ6nt mechanical and physical properties . In most cases,

considerable effort has gone into modifying the mechanical

properties of the model ice to satisfy certain scaling

requirements which are judged to be of primary importance .

However, other properties may not be suitably scaled so a

given ice formulation may not be ideal in all respects.

7 . J • 1 Thickness

Based on ice thickness surveys over the tank area,

average deviation in a 40 mrn ice sheet is approximately 1 mm

or 2 .5 .t. This is typical of de viation recorded along the

model track. Figure 7 .4 shows a typical ice sheet thickness

profile . In all test cases, ice thickness 1s measured along

the model track and variations c an be accounted for in

analyzing results.
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I CE TH I CKNESS PROF I LE

FI GURE 7 . 4 I c e Th ickness Profile

7 . 3 . 2 Fl e x u ral St reng t h and Fracture Toughne s s

Flexural s t rength o f EG/ 1"D ice can be adjusted in the

range of 1 00 kPa to 15 kP a by varying t empering time (Figure

7 .S ) . At lower s t r en g t hs the i ce s t a r t s to lose structural

i nteg r i ty and h i gh e r strengths a r e difficult to a chieve unless

tank tem pe rature is held below 0 deg . C during testing .

strength i s me asured by in sit u c ant i lever bea m test,

u s ing a beam with a th i ckness:width :length r a t i o of 1 : 2 :5.

Failure load i s applied manually using spring balances at

moder a t e loading r ates . Rep orted strength val ue s are the mean
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EG/ AD I CE T EMPER I NG CURVE

FI GURE 7.5 Ice Sheet Temper i ng c urve

of fou r samples t e s t e d at a s ingle location .

There is some v a r i a t i o n i n f lexura l s trength ov e r t he

tank area . It is not poss ible t o meas ure this v a riat i on

completely , d ue t o t he time r eq uire d to pe r f orm s treng t h tests

an d the f a ct t h at. the y a r e d es truc tive t o the i c e . Va l ues

r eported f or e ac h t est are t a ken in ;"'l e middle are a of the

t ank on e i t her side o f the. model tra ck . Th is ha s been f ou nd

to r epre s e nt a r e a s onabl e av erage f o r t he e nt ire s heet .

Frac ture tough ne s s in mode l a nd f u ll scale Lee is an

i s su e that has gained i ncreased pr omin ence in the i c e model

testing field. A claim of the or i g inal EG/A D/ S fo rmUl a tion was
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much lower fracture toughness than previous formulations . Over

a year of t e sting , frac t ure toughnes s of EG/AD ice has proven

to be higher than that r eported for the orig i na l EG/ AD/S

f ormul a t i on . In addition the fracture toughness has not s hown

good co nsistency f rom s h eet to s heet . See Reference 7 .2 for

a descript ion of fractur e toughnes s measurements .

Give n the lack of consistency in fracture data for

previous t ests , it was not e xtensively recorded du r ing the s e

t e sts nor used in the anal ysis . Tho s e points wh ich were

r e cor ded are shown in Fi gur e 7 .6 . As part o f thes e exp eriments

or an y a na lysis of icebreaklnq, major i nt e r es t i s in failure

EG/ AD r CE FRACTURE TOUGHNESS

" -.-----"'=====~-------,

"""

""
-e.,.

FIGURE 7 .6 Fracture Touqbness
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of the i ce cover. Th at this occurs by generation end/ot"

propagation of cracks in the ice i s beyond debate . Ho....ever.

fracture toughness as a materIal property is a measure of the

energy required to propagate a crack. In order to predict a

fai lure load, the distribution of pre-existing flaws must be

know n . I f. on the other band . these flaws are non-ex i stent or

ineffectual as crack initiation points , then the load required

to nucleate c r a c ks must be kn c....n , Thus . mor e informat ion than

just the fracture toughness must be i n hand before the

property c an be us ed as a measure of material strength .

Fle xural strength testing de t erm ines a load to i nduce

fracture without requirement t o know flaw distributio ns . It

is not a test of a n y fundamental ma teria l property but an

indication of t he gross mechanic al s t r e n gt h of a given sample.

If it i s r ea sonable to a s sume that fracture properties wil l

interact in the same way throughout an e ntire i ce sheet, t hen

flexural s t rength is a better indication of t he e ffective

strength of the i c e sheet than the frac ture toughness by

itself . ncvever-, because fl exural strength is not a measure

of any single mat e r i a l property , it is r ea sonable t o assume

that there will be variations du e to scale or changes in

geometry. Both these things have been observed in the

literature on i ce strength t e sting [3. B] . Therefore the

princi pal use of fl exural s t rengt h i s as a r e lat i ve indication

of i ce strength , much as r esis t anc e in level ice is a relative

indication o f icebreaking performance.
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7.3 .3 compressive strength

compressive strength of the EG/AD ice i s recorded by a

uniaxial unconf i n ed compression t est performed in the in-plane

di r e c tion on samples cut from the i c e sheet . Compressive

s t r e ngt h i s not judged to be of primary i mpo r t anc e in the

flexural type failure, an d thus it is not usually cons idered

i n a na l ys is of s hip icebreaking data . This s ame approach has

been t aken with the present s tudy . al t h o ugh typical

compressiv e strength v a l ues fo r this t est series ar e given i n

Fi g u r e 7 . 7.

EG/ AD I CE COMPRESS I VE STRENGTH

,
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FIG URE 7 .7 Compressive Strength (unconfined)
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7 .3. 4 Elastic Modulus

Elastic mod u l us is measured by the static deflec tion

method de s cribed i n ne re ren ce [7 . 3 ). Th i s met hod i nvo lves

recording s heet deflec tion a t the po i nt o f appl i cation of a

concentrated l oa d . The ice sheet is assumed t o b e an inf i nite

elast ic plate on an e last i c f ounda t i on . Modulus measureme nt

is u su ally performed once per ice s hee t a nd used t o indica te

the E/q r at i o for t he sheet. Beca use t h e measurement is r a t e

de pendent , it is un l ikely t ha t it is a good me as u re of the

effective e lastic modulus a t model speeds . At h i gher spe e d s ,

it is ex pected t hat t he appa rent e lastic modulus would

i ncre as e althou g h t he extent o f t h is i ncrease is unknown .

uncertainty as s ociat ed .... i t h this p ar amete r reduces i ts va lue

i n analysis of i cebre aki ng data . Chang es i n e lastic modUl US

as measure d i n t he t ank were not found t o i nfl uence r e s ults

recorded during t his s t udy .

7 .3.5 Density

Ice density mea sur ements a re a lso t ake n onc e pe r ice

s heet and have be e n f ound to correlate wel l wi t h ice thi ckn e s s

and fle xural strength. Density figures f or e a ch s heet a re

de termined afte r model testing b y cu t t ing a sample f ro m t he

sheet , measuring the v olume a nd calculat ing de nsity by r ead i ng
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the load r equired to maintain submersion . Th e volume i s

calculated by manu a lly measuring the s ampl e dimensions .

Ice del·... ity is measured at the e nd of eac h days

testing . Because density tends t o increase wi t h tempering

time, thi s reading i s higher than at test time . Ice strength

a nd thicknes s are also me asured i n t he are a of the dens ity

mea surement, and the de nsity has bee n found t o co rrelate well

with t h i ckne s s and strength (or tempering t ime ) in the model

i c e . Density at test time i s calculated bas e d on thickne s s and

str ength in the t e st i n t erva l us ing a r e gres sion e qua t i on

d erived from all sheet s i n ill series . Values o f i ce d ensity fo r

the EG/A D i c e usually f all within the range o f 925 to 950

kg / ml .
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7. 4 TEST HODEL

The hull form used in the mod e l test portion of this study

is shown in Figure 7 . 8 and Photograph 1 . The shape was tested

at three diffe r ent beams while ma intaining overall l e ngth and

bow angles. This requ i red that t h e length of the bow section

be increased with beam which was jUd ged prefGrable t o changing

angles . The hull i s a flat s i ded , barge shape designed to

satisfy a number of criteria . The bow is representative of an

i cebreak.er without the curvature and v a ry i ng angl e s of a

F IGURE 7 .8 Model Hullform

realistic s h i p form. Th e waterline form i s maintained

t hroughout the hull depth, e l i minating gross changes i n

icebreaking geometry with slight cha ng es i n trim . For pre­

sawing t e s t s , the form provides constant flare a nd waterline
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a ngles in t h.e bow region. This gives a chevron breaking

pat t e r n which can be easily duplicated by sawing a similar

pa t t e r n in the ice .

7 .4 . 1 Model Construction

The three models were cons tructed i n the mode l shop of

the nlD . All were built of po lystyren e f oam o ve rco a ted with

epoxy r es i n and glas s fibre mat ting . I nternal frami ng is

plywood. The outer surfac e i s a smoo t h s anded resin body

filler primed a nd pa i n t ed with flatt en ed aut omotive l acqu e r .

This surface gives a relative ly 10.... fr i ction c o efficient with

ice (app rox. 0 .06) .

7 .4 .2 Test Cond i t l cms

The mode ls were ballasted with 27 kg lead i ngots to the

following hydrostatic c ond i tions (Table 7 .1) .
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Tabl e 7 .1 Model Test Condi t ions

Model A Model B Model C

Displaced Vol ume emU ) 0 .798 1. 116 1 . 421
Wetted S urfac e (m**2 ) 5.300 6. 550 7 .800
waterline Length (m) 4 . 430 4 . 4 30 4 . 4 30
Beam (m) 0. 7 00 1.000 1 . 300
Draft (m ) 0 . 300 0. 3 00 0 . 3 00
VCG( ce n t r e of gr avit y ) (m) 0.270 0. 350 0.350
VCB{cen t re of buoyancy) (m) 0 . 160 0 .156 0 .153
KM (met acentr ic height ) (m) 0 . 323 0. 452 0 . 7 52
Roll Peri od (sec ) 2 .86 2 .44 1 . 39

Model VCG wa s de termin ed by p e r fo rm i ng an inclining experime n t

on the mode l i n the t ank and calculating VCG from t he measur e d

'3M (distance from metac entre t o c .g . )

7. 4 . 3 Towing Arrangement

Two t owi ng syst e ms were used as part of the model t e st

se ries . Th e f i rst was a normal:] d egr ee of freedom rigid tow

us i ng t he I HO To wi ng Gi mbal ( Fi gur e 7 .9 , Photc.:;Jra ph 2) . This

dev i ce is a combinatio n l oad cel l an d u niversa l join t , wh i ch

when plac e d at t h e model c e ntre of gravity a l lows moti on s i n

rc r r , pitCh and h eav e . I t a lso al lows f reedom i n yaw but thi s

motion i s r es t r a i ned by a y a w res t ra i nt l ocated at the s t e rn

of t .he mod el (Photogr aph 3 ) . The device has a maximum

measuring c apacity of approx imately 6000 N a nd a s e nsitiv ity

of a bout 5 N. Th e l oa d ce l l i s l o c at ed on t h e model aide of
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FI GURE 7.9 Model To wing S ystem

the u n ive r s al j oint , and thus resistance is measure d i n the

mode l coordinate system , rather than the t a nk coordinate

sy s tem. Th is means that as t he model pitches, t he measured

l oa d is sl 19htly r edu c e d from that a et ue Lk y required to prop e l

the model down the t a nk . Beca use p i tch angles a re usually les s

t han 1 d egree this e r ror i s ins i gnificant. The natural

f requency of t he t owing sy s tem with a 1 t onne model a t t ac h ed

is a bout 8 Hz

A sec ond towi ng s ystem wa s used fo r trial s where t he bow

s ec t ion (wedge) was t e sted a lone and at very s hal l o w draft .

For this test , i t was nec es s ary to r estra in the mod e l i n all

modes of motion and measure t owing f orc e . The frame used t o

acco mplish t hi s was attached t o t h e carri a ge s uspe nde d on four



134

linear be a r i ngs so that it was free t o move in the

longitudinal di r e c tion only ( Fi gure 7 . 10 , Photograph 4) . A

smal l l oad cell wa s i nstalle d t o rest rain mot i on and me asure

tow force in t hi s direction. The f rame has a maximum mea su ring

ca pacity of 500 N and a se ns i t ivity of ab ou t 2 N. The mode l

bow section was bolted to the underside of t h e frame . with

t hi s ar r a ngement,

t he mode l

sus p e nded in

l evel a tt i tude . I --==T=-" _"=' --,---r--~"'i~"---

Draft wa s a djusted

by mov i n g the

c ar r Laqe tes t fra me

up or down.

FIGURE 7 . 10 8 0'11 Towing System
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7 • 5 TEST PROCEDURE

The t e s t series was divided i nto five different s ub t e s t s

(numbered 1, 2 . 3 , 4,5 ). Two o f these involved verification of

pre-sawing procedures , and three were standard t ests on t he

hullfonn at differing be am s . The tests were classified as

follows :

Set 1 Va r i at i o ns in Pre -sawing Pattern

Set 2 Shallow Draft Wedg e

S et 3 1 . 0 m Be am

Set 4 1 . 3 III Be am

Set 5 0 .7 m Beam

Number s 1 , 2 and 3 were conducted in september of 1 9 87

while 4 and 5 were c onduc ted in October 1988 • A range of

target ice thickness fr om 30 mm t o 45 :rnm and ice strengths

f rom 30 t o 60 kPa ....as covered with some sets ta king i n more

po ints than others . In general the aim was t o provide a g o od

basis for co mpariso n within the l imited ice t a nk t i me

available . Tab le 7.1 illustrates the t a r get t e s t conditions .

Table 7 . 2 Test Ice Condition Matrix

Thi cknes s mrn 3 0 37 .5 45

Strength kP,
ao [1,2 ,3,4 ,5 ] [3 ] [2 , 3 , 4 , 5)
4S ( 2 , 3 , 4, 5 ] - [2,3,4,5)
60 13] [3] (3 )
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The g e ner a l test pr ocedure is described below .

lee f l e xur a l s t rengt h was mea s u re d in the centre area of

the tank at one hour i nterv a l s until the t arg et strength wa s

approached. Then, Elas t l c mod u l us of the sheet was mea sured .

The first model tes t wa s then ca r ried out on the tank

cen treline. after which the i ce f lexural stren gt h was tested

and the ice t hickness measu red a t 2 rn interval s along the

mode l track .

The model was moved over t o t h e south q u ar t er p oint i n

the t ank and t he ice prepared f or a seco nd t e s t . Th is

prep a ration c o ns is t e d of placing ch a n ne l s p readers in the

pr e v ious l y cut chann e l to prevent the rema in i ng i c e f r om

mov i ng ov er i nt o the a rea o f clea r water (see FI g . 7 .lI, and

Photograph 10). Because t he second t es t was n o r lt,ally the pre­

sawn ru n , t he ice wa s sa wn in t he desired pat tern along t he

model track.

The model was the n run on the qua r ter point , after which

i c e thickne s s wa s measur ed along t he second c hanne l and the

ice strength tested a final t i me .

Ice d e ns!t y was mea sured once per s h eet b etween the f irat

and s e co n d tests .

Model test s i n i c e invo lve running a t more t han on e s p eed

in a g i ven s h eet of ice . The c hoice o f test interva l s and

spe e d s e quenc e are i mportant aspects o f a test pl an . The mo de l

sh o u l d be fllil y sur r oun ded b y ice t hat has been br o k e n at the
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FIGURE 7 .11 Use of Channel Spreaders

set speed before a legitimate measurement can be taken . Thus ,

at l ea s ':. one model length of t r avel is required before a

measurement can be con sidered r e l i a b l e . Al so, accelerations

i nduced by speed changes in mid run give rise to t r ans i e nt

vibrations in the tow system which must be a llowed to settle

out • It has be en traditional to allow a mode l l e ngt h for
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Jle a s ur eme nt after the s ettling period , but this leads to very

s hort me a s u r ement t i me per iods at high speed an d to very long

measur eme nt time pe r i ods at low speeds .

To mi n illi ze these pro b l ems a nd )lake best use of available

tank l ength, the fo l lowing scheme was d eve l o ped to c a lcu late

run length. In general, t he settling period was t a ke n t o be

the longer of on e mode l l ength or 5 seconds of run at t h e

g ive n speed . The measurem e nt i nterva l was then t aken t o be 20

to 2 5 second s a f t e r the s e t t l i ng period. Fo r this mode l , the

formu la yielded the following run l e ngths and measurement

intervals (Table 7 .2) .

Table 7. 3 Meas ure ment Inte rval s

Speed Run Se t tle Se ttle Measurement Measur emen t
Le ngth Length Tille LGngth T i1!le

(m/s) Cm ) Cm) (sec) C.) (sec)

. 10 7.5 5 .0 50 2 . 5 25

. 2 5 1 0 . 0 5 .0 2 0 5 .0 20

.50 1 6 . 0 5 .0 10 11. 0 22
1. 00 2 5 . 0 5 . 0 5 20 .0 2 0

The i n tervals a re e xcl us i ve of any distan ce and t ime lost

to ecceae eeefcne between speeds.

Speed s e quence is a related issue . Ideally the sequen ce

ot speeds would be ra ndomi zed f o r eac h t e s t i n an attempt t o

r emove an y systematic va riation i n ice s t rength along the
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length of the tank . However, ice strength is also varyIng in

time, and it is desi rable t o avoid speed sequences t hat are

either steadily increasing or decreasing. Thus, four speed

sequences were used on a four test rotation as fol lows .

Table 7 .4 Speed Sequence

speed Order 1 a 3 4
speed (m/s)

Sequence 10

I
A 0 .25 m/sl 1.00 I 0.10 I 0 .50
B 0 . 10 0 .50 0 .25 1 .00
C 0 .50 0.10 1.00 0.25
0 1.00 0 .25 0.50 0 .10

This sequencing of speeds , c omb i ne d with the unequal run

lengths meant that there was considerable variation in the

area of the tank in which t he speeds were run within the f ou r

test cycle . It was jUdged that this would avoid systematic

errors due to repeated combinations of ice strength and mode l

speed.

Each set of t e s t s h a d certaIn procedural de tails that

were peculiar to that set of tests . These are covered i n the

follow ing sections .
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7.5 .1 Pre-Sawn Pattern Variations

For the tests of pre-sawn patterns, the 1.0 1I\ beam hul l

was used with four s e t s of trials run in t wo ice sheets. Model

speed was maintained at .50 m/s . Target ice t hickness was 30

mm and target strength for the first test in each sheet was

30 kPa .

Prior to each run, the ice sheet was sawn to the requi red

patterns and then photographed from above to allow subsequent

determination of the exact p arameters (Photograph 14) . In the

firs t sheet, four included angles were tested on the

centreline run and four piece lengths on the quarter po i nt

FIGURE 7 . 12 pre-sawn Pattern Definitions
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(See Figure 7 .12). In the second sheet , four piece lengths

were tested on the centreline and four channel widths on the

quarter point . Ir.p. cutting was accomplished manual ly us ing

s mall pruning saws . Longitudinal cuts were made by holding the

saws in the correct position on the service carriage, with

tips in the i ce , a nd running the servi c e carriage down the

length of the t ank . Cross cuts in the che vron pattern were

made by hand sawi ng a s t he servi ce carria g e mov ed s l owl y down

the t ank in the direction of model travel. Ang l e of cut was

mainta ined by towing a large ad justable protractor behind the

carriage s o that individuals mak ing the c uts would have a

reference (Se e Photogr aphs 8 Ii< 9) . This s ys t e m worked well

an d g en erated con s i stent, wel l controlle d patterns ,

particularly f or channel width and incl ude d angle . piece

l e ngt h was SUbje c t to the j Udgement of the individual doing

the sa....ing and thus a little more va r i able .

7 . 5 .2 Shallow Dra ft Wedge

Th e shallow draft ....edge trial s were conducted with only

the bow s e c t ion of the 1. 0 m bea m mcde L, This could be done

because the geometry of the bow is co ns t ant at all waterlines,

and thus at shallow draft the i c ebreaki ng g e ome t r y i s the same

a s at deeper drafts . Howeve r, i n thi s case t h e resistance
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associated with clearing ice, open water drag and friction is

minimized because only a sma ll section of the hull is immersed

(Photograph 5) . That Is, the shallow draft partial hu ll

experiences the same breaking resistance component as the fu l l

vessel , with minimal inf luence from the other components . The

draft was set at 60 nun, just deep enough to cause the ice to

crack .

Tests were conducted by running the model on the tank

centreline and then r epeating t he run on the quarter point

with a different speed sequence . This yi e l ded two level ice

tests pe r sheet at different i c e strengths . Because the wedge

did not significantly displace the ice after breaking , the ice

l eft behind the model was very s imilar in pattern to the

chevron pre-sawn pattern . To take advantage of this, the model

was lifted out of the water at the e nd of the second run and

carried back to the start point without disturbing the ice in

the channel . A third run was then carried out over the pre­

broken ice to measure resistance due to displacing the ice

pieces. This was essentially a pre-sawn test although the ice

was not sawn but broken by the first pass of the mode l .

This run was included to measure non-breaki ng resistance

components acting on the partial hull a s a check on the

validity of this means of isolating the breaking resistance .

It a lso provided data to allow the non-breaking resistance to

be subtracted from the total measured in leve l continuous ice .
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7 . 5 .3 Full Model Te sts

Tests on the simpl i f i ed hull form at three different be ams

were conducted as a regul a r s e t of i c e mode l tes t s i n t he IMO

tank . Model r es i s t a nc e and c a r r iage s pe e d were measured in

ad dition to roll pitch a nd heave motions . Video records we r e

made of the model under tow and the flow o f ice underneath t h e

model .

Tests were c arried out with t he model on the tank

centre line ~ or level i ce tests (Ph otographs 6 & 7) and on the

so ut h qu a rter point f or pre-s awn runs (Ph otograph 11 ) . Ice

sawi ng wa s acco mplished in the s ame wa y as des cribed earlier .

Includ ed a ng le an d p iece s ize we re me a s ure d a t the "pr int"

left by the model at the en d of the level i ce run (Phot ogr a ph

12) . This i s the area at t he end or a run Where the mod e l ha s

a dv a nc ed f ar en ough t o crack t he ice bu t not e nough to

di s place it . When t h e model is backed off , the primar y

cracking pattern c an be Obs erved in t he ice. From this, t he

angle o f primary cracking and ap p roximate piece length are

ev ident . This pattern was used as a gu i d e for the sawing

pattern for each test . As with the pre - sawn pattern tests ,

control of channel width a nd i nc luded ang l e was found to be

very good with piec e length somewh at more v a ria b le . Overall

t l:e c ons i s t e ncy of s awn channe ls was judged t o be v e r y good .

It was a lso c lea r that patterns o f thi s quality cou l d be

a chieved on a regular basis as part of c omme r c i a l testing .
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8. RESULTS OF EXPERIMENTS

The full data set recorded during six weeks of ice t an k

test ing is presented in Appendix 1. This represents r e su l t s

from 47 tests conducted in 22 i ce sheets and a numbe r of open

water data points . The sum is approximately 195 da ta points

relating ice breaking and ice c l e a r i ng t o ship speed , ship

be am, ice strength a nd ice t hi c kne s s . Although t he range of

ice propertie s i s som~what na rrow , particularly in t he ca se

of ice thickness , t he range o f mod el speeds is s Uf f i c i e n t l y

....ide to co ver most p r a c t i cal appl icat ions .

In analyzing d a t a from even a simpl e ice model t e s t , t he

immediate problem is c ompa r i s on of r esults between

experiments . The na t u r e o f the testing is su ch that on ly model

speed ca n be control led SUf f ici e ntl y to insure consistency

from ru n to run . All other i nde pe nde nt variables show some

variation from target va lues. Thus, on e i s faced with a non­

dimensiona l presentation a s a matter of necessity . Ev en a good

non -dimensional presentation will be SUb ject to s ome r andom

vari ation . As noted in t h e literature r ev iew, presented

earlier, t he r e have be en many fo rmulations by d ifferent

authors wi th l i mite d success . Analysis of data generated for

t h i s study has been carried out us i ng the formulation

deve loped i n Chapter 5 . Results i ndicate that the icebreakinq

process can a nd should be divided i nto at least three

co mponent s for presentation and sca l i ng .
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8. 1 . 1 Primary Data Reduc t i o n

Raw data colle c t e d a t t he t owi ng carriage co ns ists of

model resistance and speed . As part of standa rd mode l t est

proc e du r e , model motions i n rol l, pitch an d heave were

co l lected but no t used i n a na lysis o f t h e t e s t program . Model

resistance is me a s ur e d at SO Hz and presented as a d i gital

format time series . Quoted resistance is the arithmetic mean

of all samp les within t he time interval of the steady s ta te

run . For this test series this average was taken over the l a s t

20 to 25 seconds of each constant speed interval as explained

in 7 .5 . Readings of model speed az-e digitized at t h e same rate

and averaged over t h e same interval.

Reco rding information on ice properties presents a

problem because no aspect of t he ice remains static i n t i me .

Al though there are many properties of an ice sheet which can

be measured, t he two which are consistently use d in s hip-ice

mode l and f ul l scale t r i als a re ice f lexural s trength and ice

thickness .

Flexural strength is moni tored by cantilever beam t e s t s

as the ice sheet t empers a nd once before and after each model

test. Recorded data are curve fitted to a negative exponen tia l

c urve in time and t h i s curve used to i nterpolate ice strength

at t e s t t i me . Strengt h is usually measured in t he middle

section o f the t an k an d represents an average f or t h e entire

sheet . Loca l va riations in strength are not accounted for .
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Ice thickness data are collected immediately after each

test. Average t h i c kne s s e s are computed for each test interval

in a sheet . For reasons co vered in 7.3. 4 elastic lllodulus was

not used i n analysis of data from t his t est prog r a m, although

t h e informat ion was co llected for each sheet to assess the E/a

ratio .

Ice density was recorded for each sh eet and e xtrapolated

t o test time for e ach speed i nte rval. Thi s was achieved by

deriving a regre s s ion e qu a t i on in s t r e ngt h and thick ne ss based

on the readings for all ice s he ets in a series . This equation

'Was used to calculate de ns ity based on the av era g e th ickness

and strength for each t est i n terva l .
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8.1.2 Assessment of Data Quality

Some methods used in gathering data for ship ice model

tests are necessarily simple and allow considerable room for

error. Because final analysis of mod e l resistance requires

combinations of measurements, all sUbject to some degree of

error , it is worthwhile to consider t h e quality and degree of

error in each of the variables recorded and used in analysis .

Measured resistance i s jUdged to be of good quality at

higher load l eve l s. Background electronic noise in the load

cell and data acquisition system has a peak amplitude

equivalent to about 5 newtons of load . This noise is high

frequency and does not a ffect average resistances. Mechanical

stickiness , hysteresis and drift have be en consistently below

3-5 newtons in repeated calibrations . Thus, measured

resistance is jUdged to have an ab solute error of no more than

±5 newtons .

Model s peed , provided by the towing carriage, is accurate

to one part in one thousand . Consequently, model speed is

jUdged to be the parameter least s ubject to variation .

Ice properties are more variable than parameters

associated with the model . Ice thickness variation is usually

within 5% of the mean value for a whole sh e e t . Locally

measured thickness in an test interval is usual ly less

variable (on the order of ±3% of the mean t h i ck n e s s in the

interval) because values are t aken over a smaller area . These
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a re t h e va l ues used in da ta reduction .

Fle xur al strength measurements f r e qu e nt l y oxhibit 10 to

15\" v a r i a t i on even within a narrow t es t r egion. Variation

across the tank width is of similar magnitude but l e ngthwi s e

variation is higher . Figure 8 .1 shows a lengt hwi s e profile o f

ice s t r e ngt h indicating a standard de viation of t10\ of t he

mean. Although quoted average s t r e ngt h i s derived frol'll a

FLEXURAL STRENGTH VAR I AT ION
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number of 's amp l e s , usually e ight , and titted to a s mooth cu rve

in t i me, there c a n be con s i de r able vari ati on f roll the lllean

within an ice s heet .

Elast i c JIlodulus a e a s ur en e nc a are jUdged to be of q ood

qual ity wIth up t o ten measur emen ts t aken for each reported

value . Th is is howove r a time cons uming test a nd , a s s t a ted

earlier, highly rat e d ependent. ElastI c modu l us a nd E/o r a t i o

are known to change with t empering t i me and t hi s change i s not

r outinely monItored making i t difficult t o predict t he modulus

at t est time. Becaus e E/a is on ly u sed to ch arac terize the ice

sheet, this Is no t a major drawback .

rce d e ns i t y is also only mea sured on l y onc e per test, but

as previous ly mentioned , is well co rre l ated with thicknes s and.

s t r en gt h . The r a nge of v a riation a t maximu... is on l y 3 .5\ an d

with in t he r egre s s ion t or de nsity at t est t i me the error i s

e s tilllated to be l e s s than 2\ ev en t h ouc;lh t h e a ee s ur ee e n e error

is great er . The r e s ults of t h e f orego ing disc us s i on a re

summa r ize d belo.... (Ta ble 8 .1) .

Table 8.1 Experimental Errors

PARAMETER Max imum Expected Error

Resistance 5N or 2- 5\:
Speed 0 . 1\
Thickne s s "Streng t h 15'Density ,.
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Stren gth is obviously the l a r gest s i ng le source of

variability 1n the c ollect e d data . Bec a use the s t r engt h of the

i c e influen ces the total resistan ce measur emen t, thi s variable

can be ex pected to s how a rando m va r i ation of a bout 15\ . Pre­

s awn resistance i s not s Ubject t o ice s t rengt h an d thus s hou l d

be les s va riable . This ha s been con firmed in t he data.

Therefore the de riv ed c learing r e sis tance shows les s

va riab ility than t he t otal resis t an ce or the deri ved break i ng

r e s i sta nce . Clea r ly , ice strength quanti f icat ion i s the

l arge st source of error i n i c e r e s i stanc e d a t a and the a rea

most r equ iring improvement.

Thu s it i s imp ortant t hat sufficiently l a rg e vo lumes of

data b e c olle cted to a llow c al cu l a t i on o f c o efficie n t s with

co n f i dence i ntervals as na r row as possible .
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e .2 Open Wate r Resistanc e

Pe riodica l l y du r i ng the t est series, r uns were conducted

i n c lea r wate r o r in the broke n cha n nel after clearing out all

i ce p ieces . The s e tests provide data on the ope n water

res i s tance of the hull f orm and give an indicat ion o f the

e f fec t o f i ce cover on the hydrodyn a mi c res i stance when

ope r a ting i n a c ha nnel .

These resu l ts must be t r eate d wi th ca ut ion . Although

t r ends are thought t o be correct, lack of absol ute ac cu racy

arises because the measureme nt is of a r elatively small load

with a de vice de s i gned t o me asure much h i gher l o ad s .

Ne vertheless, t he resista nc e c urves in Fi gure 8 . 2 show

that r esistance i n a c hannel is sl i ght l y higher than

re sistance i n cle ar water . I nSUff icient time an d fac il i t i e s

we r e ava i lable t o pe rfo rm a n i n-depth s e t of e xperi ments on

the effect of running i n a c han ne l, bu t the r e corded r e sults

g ive su f f icient informatio n to indicat e t he tre nd a nd t o

p r ov ide open wa ter data for analys is o f i cebreak ing .
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HYDRODYNAM I C RES I STANC E

FIGURE 8 .2

8 .2 .~ separa tion of Hydrodynamic Resistance

I t h a s been cornmon practice in analysis of icebreaking

data to s e parate hydrody namic r e s i s t anc e by sUb tracting open

wate r res i stanc e as measured in a clear tank from the tota l

r es i s t an c e measured i n ice. ThI s n egl ec t s effects whi ch may

arise f rom the i ce sheet on the wat er surface or c oupl l ng

between water flow around the bow and ice piec es wh i ch a re

c leared a s i de . Data gathered f or t hi s s tUdy a1 1" w5 a

p r el i minary investigation of t he s e i t ems . Howev e r , be c a us e of

the rel at ively small d if f e r e nce s i n resistance a nd t he l a ck
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of s en s itivity i n the load mea suring apparatus , t hese re sults

are more qu alitative than quantitat i ve .

The h igher resistance measured in a cha n nel is thought

to be due t o the grea t er cap ac ity of the co vered free surface

t o a bsorb wavG energy , part icul arly at shor t wavelengths.•

Thu s, i t i s more diff icult f or t n e model to move water aside

beca use of presence o f t he i c e cover . It is expected that this

ef fect wou ld become mo re p ronounced at highe r speeds wh e re

large r wa ves a re ge n e r at ed . Howeve r , it is n ot c ommon for

iceb reakers to oper ate at the se s peeds, a nd t hus t he i ncrease

in r e sis tance d u e t o ice cov e r i s not l a r g e in a bs olute terms .

Evidence of cou p ling b etw een hydr o rlj"llamic flow and ice

fl ow ari ses whe n the c lear wate r resista nce is s ubt rac ted from

the pre- s awn resistanc e . In t heory , the dif f e re nc e between

t hese two shoul d be r e sistanc e associated with c lear i ng broken

i ce pi ec es. Increas ing velocity s hould r esul t in an increase

i n i nert ia l forc es required to push ice aside . However, a s

sp e ed i nc r eas e s the difference b etwee n pre-saw n e esfa cance

and clear water re sistance levels off o r de c r eases (Fi gu r e

S. 3). Thi s is attributed t o c ouplin g bet .....ee n the flow of water

ove r the hull a nd the movement of i ce p i eces as they pass

ar ou nd t h e mod eL Subt ra c tion of the ca l c ulat e d vi s c o us

comp onen t alone yields an ice cl earing r e sistance wh i ch shows

mor e r ational c haracterist i cs wi th increasi ng speed. In this

case the v iscou s term is calculated us ing the I TTC 1957 Model

Ship Correlatio n Li ne and t he met hod pre sented in aererence
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HYDRODYNAM IC COUPLING IN ICE CLEARING

e.a
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FIGURE 8 .3

B. l . There i s f u rther s uppo r t f or th i s approach in t hat both

wavernaking r esistance and ice clear ing r e s i stance a re

domi nated by Fr o u de ve loc i ty sc a ling . Viscous dra g on t h e

oth er hand i s do mina ted by Reynolds sca ling a nd t hus canno t

rightfully be comb i ned with t he other t wo .

Base d on the s e d ata an d expe rience with p r evious pre ­

sawi ng t ests, i t i s co ncluded that t here is co u pling betwe en

the floW' of wat e r and t h e flo w of broken i c e pieces arou nd the

vessel which masks the resistance associated wi th cleari n g

ice . Thus, i t i s not a ppr op r i ate to sub t ra ct the wav elllaking

comp o nent o f c .reer water r es i s t a nce from the p r e- s awn



'"
resistance . Subtracting viscous r e s i sta nc e o n t he other ha nd

is viewed as a legitim&te s t ep in light of. the dif ferent

scaling requirements . This r epr e s e nt s a departure f rom present

p r a c t i c e .

I c e c learing r e s i s t an c e is derived by calculatinq viscous

skin fric tion r e s i s t a nce and SUbtracting it from t h e pre- sawn

r e s i s t a nc e . The resultant ice c l e ar i ng resistance is the su m

of wav emaking and fertll drag c omponents of hydrodynamic

resistance comb ined with resistance of mov i ng crcxen ice

around the model hu l l. At the present time it does not appear

t hat these mec h ani s ms can be separated e xpe r i ment a lly.
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S . J I s olat i o n of The Breaking Component

Two app roaches were taken toward isolating t he breaking

component of icebreaking r es i s t a nc e . The first wa s to us e the

r e sul t s of the pre-sawing t es t s; the breaking component equals

t he measured total resistance less the measured pre-sawn

reslstancQ (clearing and viscous components) . The second

approach was more direct , in that a n attempt .....as made to

minimize the other components . A partial model wa s towed 1n

s uch a way that t h e bow waterline shape was mai ntained but

there was not any hull underneath or behind t he small sectlon

breaking the ice . I n this way , it was intended to measure

directly the resistance associated with primary breaking of

the i ce cover . The two methods were compared and it was fou nd

that the breaking component derived by either method is the

same. This is strong evidence that a breaking c ompone nt does

exist and that it can be identified by ex periment . In

addition, it was found t hat there is a slight velocity

dependence in the breaking component and a qualitative

explanation for this effect presented itsel f. The resu l ts of

this investigation are presented in the fol l owi ng sections .
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8.3.1 Pr e - sawi ng Te sts

Non - dime ns iona l resis t a nce coefficient data from t he four

t e sts of the 1 .0 m, beam model i n which pre- s awn pattern

pa r ameters were systematica l l Y varied are presented in Fi gures

CLEAR I N3 RES I STANCE ve INCL UDED ANGLE

--0 0_
---,,----'

o+.,~~~~~~~-,~"'~~~~~~~---j

PS I'o\HEIl Ol ItlCUJOED ...IG.. E(dOQ)

FIGURE 8 .4

8. 4 to 8 .6 . Th e figures incl ude effects of va riation in

i ncluded ang le , piece length an d cha n nel widt h . See Fi g ur e

7 . 12 fo r defin i tions of pa t tern p ar amete r s . Although channel

widt h wa s held t o a c lose tolerance, i ncluded ang l e and pie ce

length in t he pre- s aw n patterns s howed some r andom va riat i on .

Howeve r , the p attern fo r each t est was r ecorded and v ariations
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i n s e cond a ry parameters are c ons iderably les s than that i n the

independent va r iable for ea c h test.

Although s c att er in the data ap pears t o li e grea ter than

variation due t o t he independent par ame t er, eac h graph d o e s

show a s l ight trend . Howev e r , t hese s l i g ht tren ds i ndi c a t e

CLEARI NG RES ISTA NCE v s PIEC E LENGTH

FI GURE 8 . 5

that the inferred c lear ing resistance is no t sensitive to

sma ll variations i n the pre-sawn pa t t e rn. Thi s i s a key

prerequis ite: for pre-sawing to be a rel iable t es t p r ocedu r e,

because sma ll varia tions in pat t ern geometry are i nevi t a b l e

in r outine test ing.
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FIGURE 8 . 6

For t he s e experiments and the remaining test series,

pattern angle , width and piece length were measured from

photographs (Figure 8 .7 , Photograph 14 ) taken ove r each pre-

sawn c h a nnel pr i or to testing . Thi s meth od was found to be

more satisfactory t han measuring the pattern directly on the

i c e . In determ ining angle or piece length for a given t est all

angles and piec e l engt h s wholly within the photograph

(typically 2 metres long) ....e r e measured a nd mean values used

for data ana lysis .
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FIGURE 8 . 7 P r e-Sawn Channel (Tracing from Photograph)

8 . J . 2 FUl l Hull Tests

Tests on the full simplified hullforn models (s ets 3-5 )

we re done t o cover a ra nge of i c e strength, th ickness llnd beam

v a l ues . Both t he c l e a ri ng and bre llking resistance compon ents

obtained from these tests lire d i scussed below. The resu l ts

s h ow some scatter wh ich is attr ibut ed to two main f a ct ors . The

f irst a nd most important is normal va r i abil i t y as s o c ia t e d with

t e s ting in i c e . The second i s the i nability t o dete rmi ne

accura tely ice flexural s trength in a g iven test area .
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Figure 8 .8 shows the non-dimensional cl ear i ng resistance

c o e f fic i e n t f or all t ests on the 1. 0 In beam simplified

hullfom . Each group of point s i n the f igure represents a

s ingle model s peed . Th is figure i llus t r a t es that the clearing

r e sistance a s measured by the pre-sa....n method is independent

of' i ce s t rength . Thus , by inferenc e , t he breaki ng' compon ent

and the c l ea r i ng compone nt mus t b e separat e and independent .

At low s pe e d ( . 10 m/ s ) broken pieces of ice s tuck to the

mod el bottom a nd moved wi t h it ra ther t han pa ssing under .

Appare ntly t he c ombi na tion o f buoya nc y and frictional forces

CLEAR ING RES IS TANC E v s I CE STREN::;TH

_"-__.- ---'.10 ml'

_.----_ _ ++ +~25 m/ s

-OO--00---~--o+-r4 0• •5 m/ s
_ 4-,-"",---+,---1.0 m S

~ '"
ICe STllEtGl K[I<Pa.)

FIGURE e . 8
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wa s greate r th an hyd rodynami c drag on t h e pieces a t t he low

speed.

To o b t ain t he bre aki ng r es i stance c Ollpo nent froll this

type of i c e t@st, the resistance me as ur ed i n pre-s awn Ice is

s ub t r a ct e d { rotA tha t mea s u r ed in a level ic e . Having

established t hat mino r vari a tions i n pre-salin pa ttern do not

ca us e ma j o r va riations i n r e sistance , no r is there an ef fect

due t,~ ice strength , this s Ubtrac tion may now be ca rr ied out

with some conf i de nce. Howeve r , a s previous l y noted , i t I s

preferable to co nduct t he analys is u sing non-d im en siona l

pa rameters rather than SUbt r a cti ng re sis t ance s directly . Th iB

was d one b y fi r s t ob taining t he i c e cl e a ring res i stances an d

de r iving a smo ot h curv e o f c learing r es i stance fo r the

hu l lofotlll . Non- d imen sional c l e ari ng r es i s tance can be e xpre s s ed

as a functi on ot the Thic kness e rec ee Number ( see F i g 8.9 ) :

Ct - f( Fn) IB.la)

whe re

Ct - ReI (rBhv2 ) IB.lbl

Fn _ VI (g h) 112 (B. l e i

The relat i onship i s f ound t o be a n e gativ e powe r, wh i ch

becomes s i ngUl ar as V approaches 0 and as ymp t ot ica l l y

a pproach es 0 a s ve l oci ty go e s to inf i ni ty . The s ingUlar ity at

zero ve locity is a c onsequence of division by the

ve l ocit y while the cleari n g res i stance r ema i ns fin ite (the
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CLEAR I NG RES ISTA NCE
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F I GURE 8 .9

sUbmergence compo nent ) . The asymptotic features make it

d iff i cult to interpolate values at t he e x t re me ends of the

curve . Thi s can b e over com e by pl ott ing v a lues on a log-log

(bas e 10 ) scale and pe rformi ng a linear regressi on on the

data . T he res ul t o f this ca n b e seen i n Fig. 8 .1 0 and i s

d e scr i bed by a best fi t equation of the f orm:

Cc = k 1(Fn)··

k , .. 6.918
a '" 1. 48

r 2 ", • 99

(8 . 2)
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The data can be s een to be closely grouped around the

regression line and the correlation coefficient (r2) is very

good . This l ine is valid for all c ombinations o f i ce t hicknes s

and model velocity and thus can be used to ca l cu l a t e Rc for

any valid (within the bounds of the regres s ion) combination

of the independent variables, via:

Rc "" k ,rBhVZ(V/ (9h)'12I-· (8 .3)

Equ atio n B.3 i s used to c alcul a t e va lues of Rc correspo nding

to ea ch LeveL ice resis tance ba sed on th e measured th i ckne s s,

CLEAR I NG RES ISTANCE

-r.a
-i.a,.,
,.,
, .e
0 '

"",..
e.a
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FIGU RE B.10
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density lind v e l ocity. Vi s cous skin f r i c t i o n lind t he r egre s s i o n

based clearing resistance are t hen subtracted from t h e t o t al

resis tance to yield a breaking componen t ~ . Obtained in t h i s

f a s h ion , b reak i ng r esist an ce ma y b e p lotte d i n non- dimensiona l

fortll aqainst strength Number (F igure 8 . 11 ) , and as ....i t h the

clearing resistanc e, th i s reveals a negat ive power functio n ;

C• • g(5n)

whe re

C. _ R./C r bh Vl )

S n - VI (aIr) 1/2

BREAK I t>.'G RES I STANCE.
\
\

\
<1',
II ~o

+-__a-....,,_,~-GI;-o-o==w\=""=i~==j

SlRBGT>l~ (Sn)

FIGURE 8 . 11

( B. 4a )

( B. 4b)

(8 . 4c )
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This function is also singular at zero ve l oc i t y because of

division by zero ve locity and a non -zero breaking resistance

at zero speed. Performing simi lar r e gr es s i on ana lysis on

l ogari t hmi c values of the da ta points re sults in a n eq uation

ot the f orm (see Figure 8.12) :

( 8. S )

)t;t =: 4
12

••
8
6558

r l = . 9 7

BREAK ING RES ISTAN CE

FIGURE 8 .12
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for which t h e correlation is a lso very good . This yields a

non-dimensional exp r ess i on for the b r e ak i ng resistance whi ch

i s val id for the tested form at all combination s o f ice

strength . ice thickness and model v e locity .

Functiona l singularit ies at Fn "" 0 and an = 0 indicate

t hat the ex pre s s i ons a re un ab le t o pred i ct zero speed values

of t he brea ki ng or c l ea r i ng components . If t he equations are

rearrange d t o s o lve f or Roe or ~ directly, then a zero v a lue

for veloc ity p r e d i ct s a zero value for e i ther resistan c e

c omponent, unl ess the e xpon e nt s a or b are g reater than 2 , i n

whi ch ca se t he resistance is infinite . Nei ther approach

prov ide s a satisfact or y solution for predicting zero s pe ed

resista nce s which a re , in all like l ihood, both no n- zero an d

fi nite.

Thi s singUlarity a t zero speed is not viewe d as a major

drawba ck fo r two reasons . Zero speed resistance i s of l ittle

pract ica l value because vessel s general ly have t o a chieve

min i mum s peeds , wel l r emoved [roln ee-cc , to maintain progress

i n i ce . Se co nd ly , t here i s undOUbtedly a discontinuity i n the

r esistan ce c urv e at zero speed becaus e o f differen c e s in

s tat i c a nd d ynamic fr iction coefficients and po s sibly due to

dif ference s i n ice fai l ur e mechan i sms at speeds low E lough t o

i ntroduce c reep deformation . Thus . any dynam i c resistance

f ormulat i on is unlikely t o give a proper predict ion o f the

zero s pe ed r esista nce values .
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8. J . 3 Shallow Draft wedge Tests

The shallow draft wedge t ests sho....ed very e nc ou raqing

r esults in both the qualitative and qua ntitative sense .

Measured resistances were s i mila r both in magn i tude and trend

wi th the breaking component res istan c e s c a l c u la t e d using the

pre ~sawing method .

Qu a lit a t i ve l y , the t ests sho wed that the primar y

icebreaking p a t t e r n fo r the wedge i s the s ame a s that obs e rved

for t he full model. Unlike the full model, p ieces behind t he

wedge were not s i g n i f ica nt l y d i s p l a ced nor did they unde r go

s e con da r y breaking. The arrangemen t o f ice piec es behind the

wedge was almost identical to t he pre-sawi ng pa t te r n u sed i n

the full hu l l t e s t s (see Figure 8 .1 3 a nd Photograph 13) This

is a s trong endorsement of the chev ron pattern as a good

approximation of the pri mar y bre ak i ng patt ern f or thi s hull

f o rm.

Analysis of data from the wedg e t e sts was not as

straightforward a s originally hoped . l t was intended t hat the

clearing co mp one nt s hou l d be essentially zero and thus t he

breaking component co uld be measur ed d i r ect ly . As it t urned

out, it was necessary to subtract a significant clearing

resistance from t he t otal . Thi s c leari ng r esistance r anged

from 15% to 3 0% of the tota l r e s istance eve n a t this shallow

draft. This comp a r es with 35% to 65% fo r t he full hull form .

Apparently considera ble energy l o s s i s assoc i at ed with i n i t i a l
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FIGURE 8 . 13 Wedge Icebreaking Pattern (Tracing from
Photograph)

acceleration of the broken i ce . Despite t hi s , t he bu lk of the

energy ex pended in t owing t h e wedge i s s t i ll at tribut ed t o

primary breaking .

" Pr e - s a wn" measu rements from the wedge tests (i.e .

resistance in t he b r oke n channel) were analy zed in the same

way as those from t he full model tri al s . Cl ea ring resistance

is presented in Fig. 1:1 . 14 . The regression equation trom t his

data is used to calculate a clea ring resistance fo r each leve l

ice measurement . The di f ference between the measured l eve l i ce

r esista nc e and t h e smooth curve clearing resistance i s
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calcul ated , and the result i ng b r eaking resistance non­

dimenslonal ized a s per the previous resul ts . Th ese are plotted

in Fig 8.15 along with the bre aking component derived by the

pre- sawing me t h od . It can be see n that the two data sets

overlap . Within the data scatter , the breaking component by

either method is essentially the same .

Essentia lly , the shallow wedg e is an i c ebreaker with

SUbstantially reduc e d c l earing a nd viscous resistanc e s .

However , be cause it breaks ice in the s ame f ash ion a s the ful l

hull form, i t should experience the s ame bre ak ing resis t ance

component . The f act that this is s o is strong confirmat ion



17 1

t hat t he pre-sawing method doe s indeed isolate the breaking

compone nt .

Velocity effects in ice breaking were more easily

observed with the wedge t ha n they would have been with a

regular model. The best examp le of this is again primary piece

size . At low speeds the distance between transverse cracks in

the c hevron pattern was observed t o be greater tha n at highe r

speeds . This r e sul t ed in l ar ge r primary piece sizes at lower

speeds and smaller ones at higher speeds . This effect would

be obscured by secondary breaking in a regular mode l test . I t

is hypothesized that this change in piece size is due to

dynamic interaction between inertia l forces and strength

(COhesive) forces i n the ice sheet. At high speeds t h e s heet

is forced down in the area close ec t he bow at a rate higher

than the wider area of ice ca n react to (inertia dominates).

Thus a sharp bend i s induced in the ice, close to the b ow, and

the. ice breaks off in relatively small pieces (photograph 6) .

At lower speeds the ice is able t o deflect i n a wider area

arou nd the bow (strength dominates) and the point of maximu m

stress moves away f rom the bow due to the la r ge r rad i us of

curvature (Photograph 7). Thus the ice breaks o ff in

reret.Ivery larger pieces . This a lso explains why the strength

Number whi c h is the no n-d i men s i ona l ratio of ine r t i al f orce s

to strength forces is t h e parameter most re levant t o t he

breaking component.

Increased energy absorpt ion is attributed t o an increase
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i n created crack surface , bu t be c aus e f rac t u re toughne s s In

i c e I s qu ite l ow this increase i s no t high . This veloc ity

depen dence is b or ne out by t he regre s s ion eq u a t ion for the

breaking compo nent wh ich c a n be rearrange d t o ;

{8.61

Showing a slight d ependence on veloc i ty i n the ice brellk l ng

mecha nism .

There i s s ome question , i n light of the differi ng

deflec:t ions in t he ice with vessel speed. o f the r ole p layed
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b y e lastic fo rces in t h e ice sheet. It is po s s ibl e that

elastic forces d o not have a significant effect a nd thl!t t he

major c ons umer' of e nergy in t he b reaking compo ne nt i s t he

fracturing mechanism. I t is a lso possible t hat t h e increased

de flection at l ower speeds resul ts in higher e ne r gy l oss t o

elastic mechanisms which is s l i gh t l y more than compensated for

by the reduction in energy l ost to fractu re . At the pre s e nt

t ime it is not possible to determi ne e x actly wha t t he

interaction between de formation and frac ture i s , but t he gross

effect c an be seen i n t he shallow v e loci ty dependenc e i n the

ice bre aki ng compo ne nt .
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8 .3 .4 A Case for Pre-Sawing

One of the main objecti ve s of t his study i s to indicate

whether or not pre - saw ing i ce is a l egitimate mode l test

t echnique and if the information g athered f r om s uch II test i s

of va lue in d i viding the overal l r esistan ce into co mponents .

Th is i s d ifficult t o de mon s trate directly , s o the p r oblem ha s

been a pp r oa ch ed f rom II nu mber of angl e s t o s e e i f eviden ce

mounts for o r against the t est .

Th e firs t approach wa s to va ry ke y paramete r s in the pre­

sawing pattern t o see wha t e ffe c t each of the s e had on the

mea sured resistance . Results s hown i n Fig 8 . 4- 8 .6 indicate

that the d egree o f scat ter is h ighe r i n most c ases tha n

varia t ion d ue to change in pa r ameter . This mean s that the

mea s ured r esistance would not v a r y s ign ificantl Y be c ause o f

minor irregulari ties in pre-s a wn pa tte rn .

Further evidence is d r awn from the da t a in which pre- saw n

tests were performed at s imila r i c e t h ickne s s but differing

ice strength (Figure 8 . 8) . The re is no pe rcept i b l e change i n

pre-sawn res istanc e with i ce strength . Thu s s awi ng the i ce

into an acceptable patter,n effect ively remove s an y effects o f

i ce s t rength in the measured resistance .

In a ddition , the sh a l l ov dra ft wed qe t ests (vhe re the ice

b rea k ing c omponent predomi nate d over the ot he r eve components)

yielded e s s entially the sam e brea k i ng coeff icient a s the pre ­

sav i ng method. Th a t is , a la r ge reduc tion i n t he c lea r i ng and
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viscous resistance does no t affect t he compu ted br ea ki ng

component .

The stronge s t co nfirmat i on o f p re-sawing, and t he chevron

pa t te rn i n parti c ular, is l a r gely qualitative. Underwater

video recordings of both l ev e l ice t e s t s and p r e - s awn t est s

show ice p i e c e s f lowing d own a round the model hu l l i n the same

manner. In addition, t h e primary crack pa ttern l eft by the

mode l bow at the end of each ru n was observed t o be a lmost

exact ly a chevron pa't t a r-n , Figure B. 16 and Phot og r aph 12 sho w

t he crack pattern left by the mode l at the end of a run.

l.l m

1
FIGURE B. 16 Br oken I c c Pat.tern (Tracing from Pho togra ph)
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Best observations were made during t h o s hallow draft

wedge t ests . Du r i ng t hese, the i ce on ly s uffe red pr ima ry

c racking, breaking i n t he same chevron pattern with ice left

behin d t he mode l a rranged similar) y to t h e pre-sawn pattern.

comparing Figures 8 . 16 8 .13 and 8 .7 or Photographs 12 ,1 3 and

14 reveals the obvious similari t ies .

From t h i s e vidence it is concluded that pre-sawing ice

i s a l eg i t i mat e technique for mode l testing p u rp oses . I t

al lows the t wo f undamental processes , breaking ice an d

clearing ice, to be separated for an a lysis . Figure 8 . 17 shows

t he division of components fo r the simplified hull form .

RES I STANCE BY CCMPONENTS

..~,., Tor....

~""''''~
FIGURE B.17
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8 .4 A Method of Analysis and Predict ion

As a result of data analysis i nvo l ved in the mode l tests,

a met hod of presenting and analyzing data from icebreaking

mode l tests ha s been developed. Thi s method r e qu i r e s t ha t pr e ­

s awn tests be conduc t e d in addition to r egula r l evel ice

tests. It is desirable that as many data po ints as possible

be co l l ected t o improve co n fidence i n t he curve derived from

the data . This method offe r s s ome ad vantages over previous

methods . The primary ad vantage i s that all data , regardless

of ice s t r eng t h , i c e th i c kness or model veloc ity , appl ies to

the s ame non -dimensional CUr'. ~ . This makes the most efficient

use poss i b le of results from a l l tests . The required

parameters a re non -dimensional an d base d on ice material

pr operties and ve s s e l d imens ions that are easily and r ou t i ne l y

measured at all ice model tanks, a nd in many f ull scale

t r i a l s .
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The basic s t eps i n the met h od are:

a ) Mea sure mode l r esistanc e in level i ce ( RLl and pre­

sawn ice (Rp) a t a r an ge o f ve locity, t hickne s s and s t r e ng t h

su i tab l e to cove r t he require d ra nge o f Thickness Froude and

Ice St reng t h Numbers :

Measure RL(a,h, r,V) a nd R,.( h , r , V)

b) Calculate v iscous d r ag on the mode l by a n a p propriate

method ( i n t his case the I TTC method) a nd s ub trac t it f rom the

pre-sawn r esistanc e t o yield an ice c learing r esistanc e:

Rc( h, r,V) = R,(h , r,VI - Rf(V) ( 8 . 7 )

c) Plot Rei ( rBh~) VS. VI (g h) 1IZ (Th i c kn ess Fr oud e

Numbe r) a nd perform a LOG-LOG linear regression t o d etermine

two c ons tants in the equation :

( 8. S)
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d) Us ing the clearing regression equation (B. e)

calculate Rc for e a ch 1\ and subtract it and the viscous

resistance from each ~ to yield the lee b r e ak i ng resistance .

e) Plot ~/(rBhv2 ) VB. V/ (a/ r )'/l (Ice St rengt h Number) and

perform a LOG-LOG linear r eg r e s s i on to y i eld t wo c ons tants i n

the equation:

(B .IO )

f) Using appropriate v es s el and ice data, c alculate

model or f u l l scale resistan c e s ba sed on the two regres s i on

equat i ons an d a sui table method f or ca l cu l a t i ng visc ous drag

( sk i n f rict i on):

(8 .11)

Th is method prov ides a me a n s of making ful l scale

predictions or co mpari ng mode l tests. It eliminates the need

to accurately hit target ice condf.t.Lcn s in order to compare

or s c a l e . The r e s ults o f this an alys i s are non-dimen sional

c oe f f i c i e nts (ice breaking a nd ice c learing) which are form

an d fricti on factor dependent . Th e d r awba c k of the method is

that the friction factor cannot be e xpl ici t ly separated and
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i ts e f f ect ca n only be determined by co nducting repeat tests

at a nu mber o f fric tion f actor s .

In Chapter 9 th i s procedure is applied to a number of

s hip forms .
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8.5 The Effect of Beam on Breaking a nd Clearing

One of t h e o riginal int entions of th i s stUd y was to

demo ns trate the effect of ship beam on the meas ur ed r esistance

i nd epend ent of ot her f orm parameters . I n ad di tion it wa s

int ended to verify t ha t beam was the mos t cri tical l inear ship

dimens i o n fo r t he purpos e s of n on- d l llle ns i on a lizat i on . Thu s ,

three models of t he same basic shape with diffe r i ng widths

were tested for ice resistance . The re is a p roblem with

c hanging the width of a ship shape wi t h out changing any other

pa r amete r s . In fact it cannot be done without chang i ng e ither

the length o f t he forebody or the bow waterline angles . I n

th i s case, it was decided to cha nge the length of t he forebody

a nd hold constant the waterline ang les . Indeed, t h e choice of

the sim p lified hull form was largely dictated by t h e d esire to

va r y the beam wi th as little i mpa ct on other form parameters

as pa s s ible .

Results from t he se t ests , broken out by componen t and

a na lyzed by the method presented in the previous section ,

sho....n in Figures 8 .18 and 8.19 . It can be seen that the

breaking resistance coeffic~ent i s independent of beam wi th in

t h e b oun ds of the scatter exhibited in p rev ious ice data. The

c learing res istance on t he other hand s hows a t rend of

i ncreasing coefficient ....i th increasing beam. It is

hypothesized that thi s is due to the hydrodynamic r esista nce

....hic h is buried i n t he clearing component . A non-l inear
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i nc rease i n hydr od ynamic r esistance wi t h ship be a. ( for

constant l e ngt h) would be expected. Thus , i t would be

nece s s a ry to separate t he hyd rodynaaic and ice c learing

components before t he beam effect on i ce c learing c ould b e

p r ope r l y d e mons tra t ed . However, as stated ea rlier, the s e two

e t fects appea r t o be co up led, and t he i r separat i on would

r equ ire con s i de r able add i t i on al study .

Neverthele s s , t he b r ea k ing component i s SUfficiently

indepe nden t t o draw c onclus ions about i t a l o ne. Within the

bounds of the data s ca t ter , thi s coeffic iG nt i s es s ent i ally

indep e ndent o f vessel beam. Thus, t h e actual bre ak ing

CLEARI !'G RES I STANCE BEAM EFFECT
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BREAKING RES IST ANCE BEAM EFFECT
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FIGURE 8 .19

resistance would be linear with vessel beam. This will be

further demonstrated i n the following c hapter with data from

a realistic icebreaker form at a number of different model

scales .
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9 . APPLICATION TO ICEBREAKER FORMS

Having developed a method of analyzing icebreaking model

tests, an appropriate step is to apply the methodology to a

number of icebreaker forms to provide verification of its

applicability. Over a year of tank work at IKD, a number of

vessels were tested, of which three hullfort\ls are well suited

to this purpose. pre-sawing tests were carried out in all

cases, and in two of the three, full scale data a re readily

available . Additional full scale data from a towed resistance

test are also available for one vessel . Al though model test

data are not available for this vessel, the two component

method of analysis is applied with good results .

Where pre-sawn model t es t data were available, the non ­

dimensional reduction and analysis is by the method presented

in the previous chapter. All show similar relationships

between parameters, with slight variations in constants and

exponents . Full scale prediction presents a problem in that

the ccmpcnerrcs cannot be independently verified wi thout

performing a full scale pre-sawing test . This is clearly not

very practical. However a full scale prediction can be made

for the total resistance at any combination of parameters

based on the r egr e s s i on lines derived at mode l scale. This

prediction is compared to measured full scale data .

The following sections contain data from the CCGS LOUIS

ST. LAURENT, the CCG R-Class HUll, the M.V. ARCTIC and the
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USCGC MOBILE BAY. With t.he exception of the MOBILE BAY. each

of these was tested in the IHO ice tank over the year 19B7 .

The MOBILE BAY was towed in ice at full scale i n 1386 and the

results reported in [9 .6) . In the other cases, pre-sawn and

level ice tests were conducted and the data re-analyzed using

the method developed in this stUdy . Despite the fact that all

the vessels presented in this chapter h ave curved bow rerns ,

characteristic of icebreakers, the basic chevron pattern was

used for the pre-sawing trials. Raw data for all tests and

full scale trials are contained in Appendix 2.
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9.1 Louis St . Laurent

Mode l test da ta for t he CCGS LOU IS s t. LAURENT in its

original configuration(A) an d wi th t wo new bow f o rms (B, C) a re

presented in Figures 9 .1 and 9 .2 . These data were ga t hered as

part of a study t o evaluate two new bow designs wi th r e f ere nc e

to t he original . It can be seen that all data fol low the same

trend in both c learing and breaking resistances. The new bow

designs both exhibit lower resistance than the origina l but

are not significantly d i f f e r e nt from each other. For each

conf iguration, the data are closely grouped about t he mean

CLEA R I NG RES 1STANCE

FIGURE 9.1
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BREAK ING RESIST ANCE

"

F IGURE 9 .2

lines . Th i s test ser ies is better tha n many because ice

s trength was measured l oca lly in each test i nterva l rather

t ha n averaged f or t he entire sheet . Th i s r ed uced the e rro r

associa ted with v ar i a t i ons i n ice s trength .

Some f ull sca l e data f or the original LOUIS St . 1.JI.URENT

a re av a ilable [ 9 . 1 ] and pr edi c tions for t h e se d a t a are made

using the t hre e compo ne nt scaling method. A de v i a t ion plot for

t he s e p redictions i s shown in Fi gure 9. J . The repo r ted da t lll

is f or i c e e s t ima t ed t o be of very l ow strength (1 55-159 kPa l .

Th a pred i c t ed resistances agree r easonabl y well with me asured

f ull s cale va l ues. Large scat ter in the full s ca le data
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reflec t s t he relativ e l y poor qua lity . Thi s is t hought t o be

due pr imaril y t o po or s tre ngt h measurements .
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9.2 M. V. Ar cti c

The H.V. Arctic wi t h i ts new bow shape wa s mode l tested

using a number of differing surface coa tings on t he bow e nd

mid section. Analys i s of these da ta indica tes that the nli db ody

friction coefficient h a s a minor effect on ove rall r e s i sta nce

when compared to t h e bow friction coefficient {9 . 2]. Level ice

and pre-sawn test data were analyzed by grouping r e sults by

bow friction coefficient . Th ese det.a are plotted in Figures

9.4 and 9.5 . No clear relationship is e vident between the

slopes of the regression l ines (exponents a and b ) and t he

friction coeffic ient . Howeve r, constants kc a nd k. did show

CLEAR ING RESI STANCE

lffi Fn
t • .DSl

FIGURE 9 .4
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BREAK I NG RES I STANCE

FIGURE 9 .5

c lear t re nds wi th bo W' friction coefficient. These

re lationships are plot ted in Figure 9 .6 a nd are remarkably

well defined .

Unli ke previous wor k , I2 . 8, 2 . 10 ] i ndicating t h a t e ffects

of fri ction a re linear with friction coefficient a nd equa lly

ap plicable t o all c ompone nt s o f resistance , these data show

the e f f e c t i s no n linear and o f different magnitude fo r each

c omponent . This s uggests expressions including effects of

friction:

{9 .l}
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The. equations can be combined to give an expression for total

ice resistance coefficient Ct. fol' which coefficients and

exponents a re de ri v ed from model t e sts conducted at differing

friction coefficients .
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( 9.3)

For t he M. V. Arcti c model data, va l u es of t he s e

coefficients ar e: ke, . 6 .310
ki F .. 79 . 8 0
II .. 1.52
b - 1. 64
c "" . 2 3 2
d • • 17 0

Unfortuna t ely. full sca l e da ta fo r the M. V. Arc t ic

with t hi s new bow a r e not readily av ai l a b l e an d thus

c otlpa r i s on cannot be made .
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9 .3 a-caeee Hullform

In recent years, a l a r ge vo lume of data has been

co l lected on the R-Class hullform at various faci l ities arou nd

the world [9 .4] . Ho r e recent work at t HO has involved testing

the h ull at three scale factors (40 ,20 and 8) ( 9 . 3 , 9 . 5]. These

data are shown i n Figures 9 . 7 and 9.8 . The three data sets

fall into the eame range for clearing and breaking components .

Clearing resis tance at all t hre e scales is essentia l ly

t h e same across the range of Thickness Froude Numbers . Wit hin

the bounds of data s catter there is no apparent scale effect

in t h i s component.

CLEA R I NG RES I ST ANCE
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BREAK I NG RES I STANCE

...,..,...
e.a
e.a.,

.+.,,-, ~~-j-~~~~----:~~--,r~....,."'--'I

LOO S"
1::10 .., .1.

FIGURE 9.8

Breaking r esistance shows more variance a nd som e

sepa ration of t he data groups . Howeve r the t r e nd is not

consistent . Results f rom 1 : 20 scal e t es t s a re higher t h an the

other two in the mid dl e range of s t rengt h Number while at the

ends of the curve , t he three data g r oups co nverge . The 1: 4 0

a nd 1 : 8 groups a r e equal ac ros s the ra nge . Regress ion lines

e xh i b i t the s ame slope and no d lscernable trend i n ma gnitud e

with s ca l e . Friction coef f icients f or a ll tests were nom i nal ly

the s ame (£=0.1) so s l ightly highe r r es i stance s at 1 : 20 are

u nlikely to be due to frict i on al e ffects .
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I f outl iers are remov ed f r om considera t ion, the data

groups are close and of s imi lar trend . It appe ars that the

va r i ation exhibited i n t he s e data is more due t o di ffere nc e

in expe rimental procedure t ha n to a ny g e nui ne scale effect .

Full scale data are available fo r two of th e R-Class

ve s sels (CCGS PI ERRE RADISSON and CCGS SIR JOHN FRANKLIN) . Of

t he s e , the RADISSON data f r om t h e Saugenay River showed a

number o f points i n l ev e l ice with lit tle or no snow cove r .

These data are compa red with the t wo compo nent model equation

us ing c oe f f i c i e nts derived from the 1:8 scale model tests

(Figure 9. 9 ). On ave rage t he equ ation is about 30%: higher t ha n

FULL SCALE RESI STANCE PRED ICTION
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the da ta . However , on ly t wo ice s t r eng t hs are quoted, and it

i s unlikely that over 10 trials were conducted i n ice that was

consistently of only one strength . The points a re h i ghl y

sca ttered but this is not u nexpected wi t h f ull scale data .

As wi t h t h e p revious two hu llforms, t ank data show

encouraging t r e nds in t hat they are closely grouped about

l i nes of similar form . In comparison with full scale data

t here is a gr e a t deal of scatter . This may be due to different

friction coefficient s or unknown factors in t he measurements.
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9 .4 USCGC Mobile Ba y

I n 198 6 , full s cat e towing t e sts were carried out with

the USCGC MOBILE BAY (Re f e rence [9 .6) . Although the eve

co mponent metho d cannot be applied to thes e data directly,

bec a us e mod el test r e sults are no t av ai labl e, the method i s

appl ied in an i ndire ct manne r . Thi s was thought to be

worthWhi l e because t he da ta a ppea r s t o be of g o Od quality an d

full scale t owed da ta do not have the problems of converting

thr ust to r e sista nce that self pr opelled data ha ve . To develop

a t wo c ompone nt r e qre esfcn e qua tio n , c e rta i n l imiting

assumpt ions we r e ap p lied . Base d on the se a ssumptions , t he

met h o d wa s found t o be very s uc cess f u l .

Total r ep orted r e sistanc e i s a s su med to be made up of a

break i ng co mponent , a c lea r ing c ompone nt a nd the viscous

r esistance co mponen t . The v isco us compo ne nt is calculate d by

the I TTC formulati on and sub t racted froIn t he t otal r e s I stance

t o yield i c e resistance :

(9 .51

where

( 9 . 6)

The previou sly de velope d ge ne r al ex pressions are then

substituted :

(9 .7 )
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It i s assumed that t he exponents a a nd b and t he c ons t a nt s Icc

and k, are conf i ned to the r a nge s previously established.

Reg r ess i on ana l y s is of the data applied t o the ab ove

exp r e s s i on res u lts i n the following:

kc - 12 .82
a .,. 1 .45
lea - 55 .38
b - 1. 65

For these constants , the data exhibitCld a . 97 correlatio n

coefficient (r2) a nd a mean standard error of 14\ See Figure

9. 10 ) . This i s bette r than the f ormu lation given in the

r eference [9 .4] which s ho ws an r2 of . 83 and a mean s t and ard
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,~

no
,~

,~

,~

h
n o
,~

,~

i ; ,~

, ~ m

s- ec

i
m
w
~

eo
ec

"e

FIGURE 9.10



,..
error of 19\ . Al though hardly a rigorous t e s t of the above

expression, it does prov i de further evidence of good f it and

general applicability .
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10 . DISCUSSION

Although the concept of icebreaking components has been

recognized for many years, little has been donQ to identify

and explore the nature of these components . The purpose of

this research has been to demonstrate that two major

components of icebreaking, breaking and clearing, can be

measured experimentally . Further objectives have been to

develop methods of testing, analysis and scaling, and to

explore characteristics of the components under varying

parameters.

The analytical work has been to apply principles of

d i mensional analysis and force similitude to individual

components of the problem r-athet than to the entire resistance

as a whole . This has demonstrated that each mechanism is

functionally dependent on different non-dimensional parameters

and ebus requires a separate scaling law. It is believed that

this is the primary reason that, up to now, it has been so

difficult to non-dimensionallze and scale the results of

icebreaking tests. Without measuring both components , it is

impossible to say what fraction of the total resistance i s

made up of either .

Choice of an inertial term (rBhv21 as the common

parameter on which to base the analysis is borrowed from

clearwater resistance prediction and an intuitive sense that

inertia in the ice sheet plays a role in both breaking the
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Ice sheet and clearing the broken pieces. Al though the

r e s ul t i n g Thickness Fraude Number is evide nt i n many pr ev i ous

deve lopments, the strength Number r e l evant to t h e br eaking

component ha s not been previoUSly presented. alth ough i t is

similar tf) t h e cauchy NUmber. This appears to be ,l a r g e l y

because t he breaking component has t r a d i t i on a lly been assumed

t o be veloci ty independent. Although t h e dependence on

velocity is not strong, it has consistently appeared in data

col lected fo r this stUdy .

As part of the experimenta l program, t wo methods were

used to isolate t he breaking component . The direct me a sur e me nt

method was carried out as a ver i f i c a t i on f o r the pre-sawing

method . The fact t h at the results of both techniques were

nearly identical is strong evidence that the breaking

component can be isolated experimentally. It is recognized

that the hu ll'form used in these experiments had a how shape

which is particularly applicable to the chevron pattern used

i n sawing t he ice . Nevertheless , tests in which the piece size

and pattern ang le were varied did not resu l t in appreciable

changes i n measured res Ieuence . This i nd i c at e s that the

technique is robust and t hat minor variance i n the sawn

pa t tern does no t significantly a lter results of t he pre-sawn

test . Data for more regUlar icebreaker forms, fo r which the

same chevron pa t t er n was used , has shown the same and equally

consistent trends .
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The direct measurement tech nique is a l s o promising a s a

mod e l test prncedure t o mea s ure the Ic e breaking component .

The a dvantage of the t e st is t hat the i ce does not have to be

sa wn or prepared in a ny wa y . It does , however, requ ire

co ns t ru ct i on of a s epara t e model of the bow with the be low

wat e rline sect ion r emoved . It also r equires a s p ec i a l towing

syst e m to a dequa t e ly s u pp or t the model during the tow. Despite

t his add! tiona l ex pe nse the test do es r eveal interesting

details about l cebr ea k ing mechanisms Whi c h are not evi d en t i n

r egula r icebreaking t ests . Al t ernate ly. becaus e the broken

pieces a r e not s i gnif icantl y displaced i n t he cha nnel, the

partial model co u ld be us ed t o prepa re, a p r e -broken channel .

The patter n in this c a s e wou l d pr esumab l y be the on e br oken

by the fu ll hull. Thi s .....oul d e limi nate the ne ed for pre - s awing

th e sim pler che vron pat t ern . For t he pur poses of this

r esearch , the met hod p rovided a goo d second approach to verify

th e pre~sawing technique .

In an alyzing d ata generated f or thi s s t udy, a ne ..... method

and presentation was de velop ed a s part o f t he a na l yt ica l

i nve s tiga t ion . This method uses two non-dimen sional group s

which, while not e nt i rely new I n thems e l ves , have been

comb ined to give a unique met hod ot analysis and presentation

for i ce br eak i ng da ta . originally it was believed that plots

of . the breaking or c lea r i ng coefficients aga inst their

respec tive non dim e nsional numbers wou l d result in smo o th bu t

not necessarily mathemat ically definable curves . However, for
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all data generated thus far, curves have been consistent in

trend and definable by a single function within the range of

data available . cons i stency between hullfoI1lls and from scale

to scale has been encouraging (See Table 10.11. The only

negative aspect has been a high degree of scatter evident in

all data sets. Better design of icebreaking tests may serve

to reduce this scatter in the future .
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Table ],0.1 Resistance Coefficients

.g~, .,.~

'"
a r' DF .. b r' DF

VESSEL

Sirop . 0 . 7 m 8. 13 1.492 .9' 14 42.36 1. 99 5 . 9 8 14
Fom 100m 6 .90 1. 4 7 5 . 9 9 JO 42 .76 1 . 854 . 9 7 JO

103m 4.94 1.332 . 9 7 14 73.96 1. 74 9 . 9 ' 14

Louis St . • 5 .19 1.462 . 9 ~ 7 99.54 1 . 86 5 . 9 7 7
Laurent B 3 .64 1.479 . 9 . 10 54 .95 1.662 . 9 3 10

C 3 .64 1.565 . 9 9 10 64.86 1.775 .97 10

R-Class 1 :40 4.52 1. 26 1 . 9 3 18 20.65 1.354 . 9 2 19
1 :20 4 .38 1.386 . 9 . 14 41.30 1.653 .9' 42
1 :8 5 .58 1.516 . 9 . , 32.43 1.898 .97 20

H.V. 1J"" ·OO4 1.78 1.605 1.0 1 31.33 1. 42 7 1.0 2
Arctic IJ=. 061 3. 20 1.419 . 9 3 • 49.20 1.705 .9. 14

1J=.450 5.35 1.591 1.0 2 69.98 1.680 1. 0 2

Mobile Bay 1 2 . 8 8 1.450 .97 15 54 .95 1.650 . 97 15

DF = Degrees of Freedolll

In look ing at curves for breaking clearing

coefficients an important aspe c t is the negativE! power

re lationship which appears for both and the implications of

t h e va lue of the exponent. For both components the

re lationship is of the form :

( 10.1)

where Nn = Thickness Froude Number or strength Number .
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The exponent P ranges f r o m 1.26 to 1.61 f o r the cleari ng

component and 1.43 t o 2.00 fo r the breaking component .

This r ange of exponents for t h e c learing component

indicates a l ower power i n velocity fo r the clearing

resistance than expected from theoretical considerations. with

P ranging from 1.26 t o 1.61, t he ex ponent on the ve locity term

for Roc range s from . 26 to . 6 1 , respectively. This i s

considerably less than v 2 aris i ng from s imple inertia l

c o n s i de r ation s . It i s likel y that the l ow power in ve loci ty

a rises f r om interaction between a number of effects , each with

widely d ifferent dependencies on velocity . These include

inertia in the i c e , buoyancy , friction, ad ded mass a nd v i scous

drag.

The ice breaking res istance compon ent shows a weaker

depende nce on velocity, wi th powers in the range 0.0 to .57,

and it is easy t o see h ow this co u l d be interpreted as

ve l oc i t y independence in d ata sets with a high degree of

scatter. Although weak , this ve l ocit y dependence has appeared

consistently in all data analyzed to date . velocity e f f e c t in

t he breaking component can be explai ned by i nterplay be uveen

i n e r t i a l and strength f orces i n t he ice s hee t . At low s p eeds ,

strength forces dominate and t he sheet deflects significantly,

leading to l a r ger curvature and a br ea k a t some distance from

the point of displacement . At h i gher spee.ds i ner tia l forces

come into play and t h e sheet i s less prone to deflection . The

radius o f curvature in t he s heet is decreased, and the break
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occur s a t a point clos e r t o t he po int o f d i splace ment . Thu s ,

t he d i stanc e be t wee n primary crac ks de c r e ase s leadi ng t o III

dec rea s e in prl.ary broken p i ec e s ize . Because c rack: e x ten t

in the l at era l direction is not cha nge d s ignifi c antly , more

ene rgy i s expended in propagating ill la r ge r numbe r of c racks

per unIt l en gth of travel. In t he tenin ology o f fract ure

mech a nics, more c rack s ur f ac e area i s c r eated , r e qu iri ng more

energy . Given that fracture t ou ghne s s of ice i s very low it

i s not expected t ha t the veloci ty effect would be very s t r ong

and this has been the c a s e wi t h data to da te .

Although t h i s velocity e ffe ct ha s no t been demo nstra t e d

a t ful l scale, it h a s b e e n with a very J.arge model ( 1:8 scale

R-Class) . In addition . us e of the thre e compon ent method on

data f rom t.Se MobUe Bay t rials showed better correlation than

the met hod presented with t h at da ta . Fi gure 10 . 1 shows t h e

relationship between piece sizes and mod e l veloci ty measured

during trials wi t h the shallow draft wedge . It can be seen

that t he primary piece size is c l ea r l y :..dated to the vessel

s peed .

Depe nd e nce on ice s t re ngth is nearly l i ne a r an d quite

consistent . It iii d iftic ult t o see how so many i nvestig a tors

have decl ar e d resistance t o be un co r r elated to i c e s t rengt h .

It appears likely t hat t he inability to dis c ern the e f f ects

of ice s t reng th i s due t o poor or i nadequate me a s urement. This

i s part i cul a rly t rue o f f ull scale tria l s .

Relat i v e iAagnitudes o f b r e a k i ng and c learing compo ne nts
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across a r ange of veloc i t ies for the simplified hullforrn a re

shown in Fi gure 10 . 2. The breaki ng compo nent oc cu pies a larger

fra c tion of t he total r e sista nc e (60 -80% ) a t lo....er speeds but

the pr op ort i on d r op s off as speed i nc reases. Within t he

p ractical limits of vessel speeds (0 to 1. 2 m/s on the g r ap h)

t he r el ative magn itude o f the bre aking comp one nt drop s by 20 -

30%. This i s in t he same r a ng e reported by En kv i s t (10 . 1).

I n separating the wate r indu ced r e s i stanc e it i s not yet

e ntirely clear whether the wavem a king component c a n be

s ep arat ed f rom the ice c learing . For pu rposes o f thi s an alys i s

they h ave b e en l eft t ogethe r b ecau s e of appa r e nt c oupling
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COMPONENT RELAT rVE MAGN ITUDES

FIG URE 10 . 2

be tween t he flow of water a nd the fl ow of i ce around the hull.

This however is based on a specific interpr et ation of t he da ta

and a t heoreti cally bas e d not i on of ho w t he c learing compo nent

should behave wi t h ve loci ty . Rega r d less o f what a pproach i s

t aken with open water res i stance, it does not af fect values

of the breaking component. If , however, t he f u l l open water

r e s i sta nce va l ue is sub t r a c t e d from the pre-sawn res i stan ce,

thi s t ends to make t he power (P ) in t he c l-:ar1n9 r e s i s ';.anc e

expression,

Cc e k (Fn )·P (1 0 .2 )
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e ve n more negative . The effect o f t h is is t o move t he

Qxpress Ion c loser t o v e l ocity independe nce . Given that t hi s

d e pe nden c e is al r e a dy less tha n l ine a r, th i s d oe s not ap pear

t o be a desirable thing t o do. There is, h oweve r , no

conclusive data eit he r in this s tudy o r a nywhe re e l se that

indicates which is the correct ap proach . SUbtracting on ly t he

v i s cous component appears to be more sensi b le , a nd thi s i s the

approach whIch ha s been t aken .

Effects of friction between ice and hu ll have not been

extensively dealt with , but the available data has e na bled a

few conclusions . The first is t hat effects of f riction are

not the same for both breaking a nd c learing component s. This

can be expressed as differing frict ion coefficients or as

different constants and exponents applied t o the same friction

coefficient . The approach of using different coefficients has

been presented previous ly [ 2 . 15 ) but no evidence has been

given as to wha t they may be . Deve lopment of a power

r e l at i ons hip f or each r e s i s t a nc e co mponent based on a common

friction coefficioOlnt i s preferred because i t i s simpler to

derive given the measurement and reporting of friction

coefficients , and be cause it gives a clearer indication of

velocity effects or other changes i n f r i c t i o nal effect between

t h e t wo components .

A second indication bas been t hat the dependence of

measured resistance on fric tion is n o t l i near but l ogari t hmi c

and at powers considerably l ess than one . This is not an
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unexpected result , because even though the friction

coefficient has beea shown to be i mportant, it is unreasonable

to ex pec t that a ten fold reduction i n friction co efficient

would result in a similar r edu ction in total ice resistance .

un fo r t unat e l y, even t he treatment presented in this analysis

rema i ns qu ite simple a nd doe s not adequately r ev e a l effects

due to s liding ve 1.ocit y or chang i ng p r essure .

Feature s i de n t ifi e d i n this s t udy, s t rictly speaking.

app l y only a t mode l scale a nd i n EG/AD ice. co mpari s on with

ot he r da ta gives reasonable r esu lts but only on t o t al

predicted r esist a nce be cause o f t he lack of pre-sawn data .

Although t he degre e o f ag reement e xpe r i e nc ed t hus fa r pr ovide s

co nfidence i n the method , it wou l d be desirabl e t o ca r ry out

fur ther ve r i fication . To pe r f or m th i s v e rifi cat i on completely,

it i s nec e s sary t o ca r ry out l e vel i c e a n d pre-sawn tests

ac r oss a r ange o f ve locit ies a nd friction c oefficients, i n

addition t o ice s t r e ngths a nd t hick nes ses . Althoug h thi s could

be e asily don e in ot he r t an ks a nd other mode l ice

formUlations, it i s not v e ry practical a t full s c a le. Better

qu ality full s ca le data co u l d be us ed t o vc :t>ify total

predict i ons ba sed on mod e l t est da ta. The method of testi ng

and an alysis presented here provides a consistent met hod of

sh i p i ce model testing which makes best us e of ava i labl e data

an d prov ide s better compa rison bet we e n hull forms . The met hod

a lso allows true non- dimensional s ca l i ng.

To this po int, r e sults o f the ana l ysis have been
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consistent and encouraging over a number of data sets.

Howe ver, comparison with earlIer sets is of very limited

benefit due to lack of pre-sawn data . It is hoped that this

method will be applied to future icebreak!ng resistance

trials. This should provide a degree of consistency in

reported test results.
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11 . CONCW SIONS AND RECOMMENDATIO NS

The p r b a ry concl usion of this s t udy is that the co ncep t

of icebreakinq components is va lid an d o f f ers an i mp r ov ed

met hod o f ana lyzinq the r e s ults of i cebreaki ng lIIOdels . OVer

the cou rse of t h i s wor k t he t ec hn i que of pre-s awing the ice

t o a llow sepa ration o f re s i stanc e i nto component s has become

8 s tandard procedure at I HO. The da ta gathered ov e r a tw o year

pe riod has prov e n the met ho d to be co nsistent and robust

e nough to wi ths t an d the vari ab ility associated with norma l ice

tank t est ing .

Unfo r t unate ly. conclus ions ca n onl y be drawn abou t model

t e s t s a t the present time. Full scale d a t a i s still o f po or

quali ty and diff icult t o ana lyze wi th confidence. Although i t

is unlikely that testing to isolate lcebreaking components

will be r outine l y conducted at full scale, tests at d i f f e r e nt

model scales have be en consistent wi t h each oth e r . I n

addition, towed trials at f ull scale (USCGC Mobile Bay ) have

s nevn good agreement wi th t wo component ba s ed pred i cti ons.

The s e f acts l e ad to the co nclus ion that the major pr oblem wi t h

sel f prope lled f ull scale trials is t h e mea8 ur ement and

t r an s l ation of t h rust t o r e s i stan c e . This is c ompounded by the

problem of mak i ng e xten sive and accurate ice strength

measurements . The s e are clearly ar e as r equiring furthe r

effor t . De s pite the lack of go od f ull s c a l e d a t a , the model

t est res ults show r e a s on a bl e co r relation with lfIost dat a sets.
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In analyzing data on the components of lcebreaking . two

points whi ch had not been previously dealt with were evidont .

The first i s a weak but consistent veloel ty dependence i n the

breaking component of resistance . Previous developments have

proceeded on the ba sis that this component Is independent of

s h i p velocity. This assertion was made without exp erimental

e v f de nc e a nd i s i nc onsistent with fracture theory a nd

considerations of time dependent deformation in ice . Evidence

in this stUdy shows a c lear velocit y effect a nd the use of a

non-dimensional co e f fi c i e nt including an inertial (velocity

dependent) t erm has allowed a mor e compact and con si stent·

presentation of data.

Th e second point is t hat t here i s considerable coup l ing

betwe en t h e flow of i ce and the fl ow of water around a sh i ps

hull, particularly at higher speeds . This effect c omplicates

a nalys i s o f ice c l eari ng resistanc e a nd make s i t difficult t o

i dent ify i ce mass o r submergence effects . Fo r the purpose of

this r esear c h, it ha s been fo und adequate to leave the

wavemaking a nd i ce c l e a r i ng components together and onl y

sepa r a te the v isc ous c omponent of hydrodynam ic resistance.

This, however, beg s the que s tion of interaction between ice

p i eces a nd the flow o f wate r a round t he hull. There i s al s o

e ne rgy lost in the p ro pagat i on of fle xural and g ravity wave s

f r om the ship bow. The gr a vit y waves are c o ns i de r a bly modified

by the s ur f ace ice sh ee t . In further pursuit of resistance

co mponents, the a rea of ice-water interaction i s the nex t
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logical avenue of research . It i s believed that an improved

u nde r s tand i ng of i ce-water flow co uld i mprove hull design and

pos s ibly reduce problems wi t h propeller ice ingestion . This

may be part icularly true as the trend i n i cebreaker de sign h a s

been t owards increa singly a nguLar and l e s s hydrodynallli cly

efficient hullforms .

The method of c ond ucting , and mor e i mpor tant ly , analyzing:

s h i p ice mod e l t e st r e sults d e velop ed for th i s s tU d y is fe l t

t o o f fe r greatly improved method prev i ous

p r es en c ee f one , It a llows all test data t o be used t o generate

two basic c urves whi c h fu lly de scribe t h e i ce bre a k ing

e f ficiency o f a g i v en hull f orm. I t a lso allows more rational

c ompari so n bet wee n forms, t est media or ana lysis of fr i ctional

e f f ects. Frict ion is pa r t i cu larly impo r tant be cau se t he

pa r a mete r h a s been abused as an overall correct ion f actor in

many prev ious de velopments . A co nsis t e nt method o f gatheri ng

a nd a na lyz i ng r esu l ts may al s o o f f er some ho pe in rec on c iling

widely v a ry i ng r esults from diff erent i ce towing t ank s.

The dimens i onless parameters pres ented i n thi s s t udy a re

new i n some r es pects but c on sistent with pre viou s d evelopments

in the field . They pa rallel similar prese ntations for flu i d

flow a nd ope n wat e r s hip mode l t est i ng. Use o f these

coef fi c ients ha s sh own ex t remely good r esults in t e rms of .

c onsisten cy and ph ys i ca l r elev ance t o the icebrea k i ng proble m.

Data pres en t at ion based on t he se nu mbers i s more c ompac t a nd

u nderst a ndable than prevrcus met h ods of presenting ice
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r es i s t ance.

The objectives of this s t udy are deellled to be

successfully complete in that a sound , physically-based method

of analyzing icebr e a k ing resistance has been developed and

e xpe r ime ntally ve r i f ied . In developing- the method, a number

o f question s deserving of further r esearch ha v e come to light :

(a) Methods of conducting f ull s cale trials i n i c e to

measure the t rue lev e l ice r e s i stance.

(b) The effec t of water f low on the f low o f broke n i c e

a r oun d a s h ips hulL

(e) Frictional e ffect s i n the interaction between s h i p

hulls a n d Ice .

It i s hoped that the se a nd other i s s ue s i n t he

development of icebreak ing t heory c an be t ackled in a rational

mann e r , wi t h ex pe r imental s up po r t t o ad equat ely illustrate

und erstand i ng of t he problem.
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PHOTOGRAPHS

List of Photographs

Plate Title
1 S i mp l i f i e d Hull f o rm 1. 0 m Beam
2 Towing Gimbal
3 Yaw Restraint
4 Wedge Tow Fr ame
5 Wedge Breaking I c e
6 S imp l ified Hullform Breaking Ice at Hig h Speed

(1 .0 rnjs)
S i mplified HUllforrn Breaki ng I c e a t Low Speed
(0 . 1 m/s)

8 pre-Sawing I c e Front View
9 Pre-Sawing Ice Side Vi e w
10 Pre-Sawn Channe l Before Test
11 Simplified Hullform in Pre-Sawn Channe l
12 Bow print , Simplified Hullform
13 Wedge Br e ak i ng Pattern
14 Pre-sawing Pat tern
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PHOTOGRAPH 1 SIMPLIFIED HULLFORM L 0 m BEAM





PHOTOGRAPH
HIGH SPEED



PHOTOGRAPH 7 SIMPLIFIED
LOW SPEED (0.1 m/s)

PHOTOGRAPH 8 PRE-SAWING ICE, FRONT VIEW









APPENDIX 1

SIMPL I FI ED HULLFORHS

MOCEL TE ST DATA
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Co n tents

Op en Water Data
l"r e-s awn Pattern Variations
Simplif i e d Hu l l f orm 0.7 , 1 . 0, 1. 3 m Be a m
Shallow Dra f t Wed ge

Nomenclature

TE S T NO.

WIDTH
ANGLE
LE NGTH

MODEL SPEED

I CE THICK.
I CE STR.
DENSITY

RES .

VISCo

NET .

CLEAR.

BRE AK.

Fn
S n
cc
Cbr

I c e Sheet , Run , Te s t Le , lA2 Ice S heet I
Run A
Tes t 2

Sawn Channel Width 1n em.
Chevron Pattern Included Angle 1n deg .
Dis tance Between Lateral cuts 1n t he Direction
of Travel

Average Model Speed i n t h e Test Interval
(m/sec) 0.5 m/s when not specified

Average Ice Thickness in t he Test I nterval (rom)
Average I ce strength fo r a Run ()cPa)
Regression Ba sed De nsity fo r the Test Interva l
(kg /cubic metre)

Average Tow Force Measured in the Test Interval
(Newtons)
Cal cu lated Viscous Skin Friction Resistance
(Newtons )
Net Resistance I e . RES. - VISC o
(Newtons )
Regression Based I c e Clearing Resistance
(Newtons)
Calculated Breaking Resist ance
ie . NET. - CLEAR. (Newtons)

Ice Thickness Fro ude Number
Ice s trength Number
Clearing Res istance Coefficien t
Breaking Resistance Co(·fficient
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CCGS . LOUIS ST . LAURENT Model Test Data
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R- cla s s Hul l Hodel Te s t Data 1 :8 Scale
R- Cl a s s Hull Hodel Te st Data 1 : 20 Scale
R-Class Hull Model Test Data 1 : 40 Sc ale
CCGS PIERRE RADISSON (R-C lass) Full Sca l e Data
H. V. ARCTIC Model Te s t Data
USCGC MOBILE BAY Full Scale Towed Resistance Data

Nomenclature

TEST NO.

SPEED

I CE THICK.

ICE STR.
DENSITY

RES.

VI SCo

NET.

CLEAR.

BREAK.

Fn
Sn
en
ebr
cr

Test Identifier

Average speed in the Te st I nt e rva l

Reported Average Ice Thickness in the Test
Interval (mm)
Reported Ave rage Ice s t rength for a Run (kPa)
Reported Density t or the Test Interval
(kg / cUbic metre)

Average Tow Force Me a s u r ed in t h e Test I nt e rv al
(Newtons) Calculated f rom thrust measurements
fo r fu l l s c a le trials .
Calculated viscous Skin Friction Resistance
(Newtons)
Net Resistance Le , RES. - VI SCo
(Newtons)
Regress ion Based Ice Clearing Resistance
(Newtons)
Calculated Breaking Resistance
Ie , NET. - CLEAR. (Newt ons)

Ice Thickness Froude Number
Ice strength Number
Clearing Resistance Coefficient
Breaking Resistance Coefficient
Net I c e Resistancce Coefficient
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