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Abstract

In order to the limitations of ional design techni of totally

self-checking (TSC) circuits and provide simple, convenient, and systematic design
techniques, we formalize a new two-element morphic Boolean algebra — strong
morphic Boolean algebra Bsyy — and propose a new classification of checkers.
Based on these, we have developed three types of universal two-rail (TR) totally self-
checking (TSC) basic building blocks (BBB) — EIS BBBs, EISS BBBs, and EIIS
BBBs. Besides, a group of TR-TSC multi-function BBBs has also been proposed.
These BBBs, like ordinary logic gates in common digital circuits, can be easily

used to i any arbitrary inational logic using our proposed design

rules. The resulting circuit is a TR-TSC circuit.

A simple interconnection method (SIM) and an image design method (IDM)
for the design of TR-TSC circuits have been proposed. The SIM is suitable for
the case that the self-testing property can be easily achieved or verified. The IDM
deals with the general case that includes complicated logic functions with a large

number of inputs.

We also present a new method to design a TSC circuit with separate error-input
indication (EI) and separate internal fault indication (IF). This objective has been

achieved by using a new BBB — a TR-TSC decoupling BBB (DC;).

An efficient method of diagnosing relevant error sources has been studied. With
the help of decoupling circuits consisting of DCj's, the error status of relevant
inputs and outputs can be indicated. This greatly improves localizability and en-
hances maintainability. A totally new circuit concept named error-confining civeuit

has been introduced. TR-TSC crror-confining (ECF) circuits implement given logic



functions during fault-free operation. But when any internal fault from a prescribed

set of faults occurs, the circuit ically forms several ind dent areas which

are surrounded by isolation boundaries. Thus, the fault is confined to a special area
and indicated. This property enh localizabili intainability and availabil-
ity. A TSC double-input decoupling (DIDC) BBB, which is a key component to be

used in ing the isolation boundaries, has been developed.

The design problems of TSC sequential BBBs have also been discussed. A
scheme for designing TSC D flip-flop has been proposed.

In addition, we have also devel

ped an efficient combinational TSC checker for
L-out-of-3 code. The proposed checker uses less hardware, has fewer gate levels,

and possesses a higher test capability.
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Chapter 1

Introduction

1.1 The motivation for the research

Totally self-checking (TSC) circuits [1], [2] are highly desirable for ultrahighly reli-
able digital system design [3][6]. The superiority of TSC circuits to other digital
circuits is mainly reflected on three aspects. First, temporary faults — transient
faults and intermittent faults are detected; second, faults are immediately detected
upon third, software di

[6]-

Considerable work has been done on the design of TSC circuits [1}-[31]. How-

are no longer necessary [3]-

ever, unlike the design of ordinary logic circuits which has not only a group of logic
gates and a set of sequential logic blocks available, but also has Boolean algebra
as its theoretical basis, neither general theory nor universal basic building blocks
(BBBs) are available for the design of TSC circuits. Existing two-rail (TR) totally
self-checking (TSC) operator blocks [9], [11]-[16], [31] are only suitable for the de-
sign of TSC checkers [9], [11)-{16], [23]. Thus, existing techniques for designing
TSC circuits remain complicated, inflexible and non-systematic, and to construct

a TSC circuit is still a challenging work.



1.2 Objectives and organization of the Thesis

In this thesis, developing a group of universal BBBs and formalizing a general

theory for the design of TSC circuits are our two main objectives.

A brief overview on the devel and major i f fault tolerance has
been given in Chapter 2. In ison to software sch f fault hard-
ware scheme possesses a higher speed and reliabili ially the TSC techni
provide error detection for both and errors.

In Chapler 3, we have summed up the existing design methods for TR-TSC
checkers. It shows that TR-TSC checkers not only can be independent TSC checkers
to check other TSC functional circuits but also are widely used in designing other
useful TSC checkers. TR-TSC checkers can be constructed by only two-input two-

variable comparators (N;), as well as by universal operator blocks.

A new Boolean algebra called strong morphic Boolean algebra Bsas has been
formalized in Chapter 4. This new Boolean algebra deals with two-element morphic
variables and possesses both the properties of usual Boolean algebra B, and con-
ventional morphic Boolean algebra Bys. We also have proposed a new classification
of checkers. According to the new classification, five types of checkers have been
defined.

Based on Bsy and new definitions of checkers, four groups of universal TR-
TSC BBBs have been developed in Chapter 5. These four groups of BBBs are
error-input sensitive (EIS) BBBs, error-input semi-sensitive (EISS) BBBs, error-
input insensitive (EIIS) BBBs, and a group of TR-TSC multi-function (MF) BBBs.
These universal BBBs can be easily applied to the design of TR-TSC circuits, and

are particularly efficient for TR-TSC functional circuits.
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In Chapter 6, we have described two design techni to truct TR-TSC

circuits using the proposed BBBs and previous operator blocks. A simple inter-

connection method (SIM) has been proposed and it is suitable for the case where
the self-testing property can be easily achieved or verified. For the general case, we
have proposed a design technique called image design method (IDM). This method
can be used to design TSC circuits which implement any given combinational logic
functions. It enhances the testability, and the self-testing property of resulting cir-
cuits is easy to be verified. A new block called TR-TSC decoupling BBB (DC;) has
been developed. DC; is very useful and efficient for designing a new class of TSC

checkers which have a separate error-input indication (EI) and a separate internal

fault indication (IF). D li hniques for relevant error indication variables
has been studied. The decoupling technique provides a new way to locate faulty
units and greatly improves maintainability. The concepts of isolation boundary and
error-confining (ECF) circuit have been introduced. Properly using the proposed
BBBs, a new generation of TSC circuits which have the capability of confining er-
rors can be achieved. An auxiliary block called TR-TSC double-input decoupling
(DIDC) BBB has been developed. This block is particularly useful for

the isolation boundaries.

In Chapter 7, we have proposed an efficient TSC combinational checker for 1-out-
of-3 code. The checker itself is not a TR-TSC checker. However, the achievement
of the checker is based on the principles of TR-TSC checker and morphic space
theory.

In Chapter 8, this thesis is concluded and recommendations for further research

are discussed.



Chapter 2

An overview of fault tolerance

2.1 The importance of fault tolerance

As the theoretical basis of fault tolerance, the history of fault-tolerant comput-

ing dates back to the early 1940’s when the evolution of computing systems reached

the level of ped by Harvard University and

Bell Telephone Laboratories [32].

of the relay

Designers of the first electronic computer, the ENIAC, were likewise aware of

the extreme reliabili i iated with the jon of a complex

computing system. In the words of H. H. Goldstine, one of the principal developers

of the ENIAC [33]:

“To gain some rough measure of the magnitude of the risks (in un-
dertaking the development of the ENIAC) we should realize that the
proposed machine turned oul to contain over 17000 tubes of 16 differ-
ent types operating at a fundamental clock which issued a signal every
10 ps. Thus, once every 10 ps an error would occur if a single one of

the 17000 tubes operated incorrectly; this means that in a single second



there were 1.7 billion (=1.7 x 10°) chances of a failure occurring and
in a day (=100000 s) about 1.7 x 10 chances. Put in other words, the
contemplated machine had to operate with a probability of malfunction
of about a part in 10 in order for it to run for 12 h without error. Man
had never made an instrument capable of operating with this degree of
fidelity or reliability, and this is why the undertaking was so risky a one
and the accomplishment so great.”

The reliability requirements of the ENIAC were met, for the most part, through
careful selection, pretesting, and use of each component. However, as early as 1946
it became clear that, as the physical and logical complexity of electronic computers
increased, other precautions would have to be taken to enhance the reliability and

availability of computing systems.

In 1948, J. von Neumann proposed that the components of a computer should
be viewed as having a nonzero probability of failure and suggested triple modular
redundancy (TMR) as a means of improving system reliability [34]. In von Neu-
mann’s belief, the correct way to design fault-tolerant computing systems was to

utilize

in some ic manner, the TMR scheme being

but one way of doing this.

It was the establishment of the IEEE Computer Society Technical Committee on
Fault-Tolerant Computing in May 1970 that both theoretical and practical aspects
of fault-tolerant computing began to grow steadily (32], [35].

Fault-tolerant computing has been defined as “the ability to execute specified

leorith dless of hard

correctly failures, total system flaws, or program

fallacies” [35]. Basically the technology of fault-tolerant




theory and techniques of fault and error detection and correction, modeling, anal-
ysis, synthesis, and architecture of fault-tolerant systems and their evaluation [35].

It can be classified into three areas:

o The design and analysis of fault-tolerant circuits and systems;

o The diagnosis and testing of digital circuits and systems;

o The validation of programs or “software reliability”.

With the recent revolutionary changes in circuit technology, more and more
VLSI and ULSI chips are used as the core and auxiliary components and aimed
at achieving high speed, more functions, and broader fields of applications. These

require that modern have ultrahigh reliability, ultrahigh availabili
reduced life-cycle costs, and long-life applications [5]. Asa isite, high quality

chips must be used in building a reliable computer; therefore, we still can not
build a commercially feasible computer depending only on these chips. The highly-
integrated chip doubles the complexity of its internal circuits. Also, the chip itself
becomes susceptible to a more diverse variety of failures. Besides internal opens and
shorts and bonding failures, there are other fault modes, such as bridging faults,
stuck-at faults, and crosspoint faults. Some defective cells exist when a chip has just
been made, and some sprout up with the wear-out course. The uncontrollability and
unobservability of the highly-integrated chip make it impossible to diagnose these
faulty units promptly. In order to solve these problems, varivus fault-tolerance

measures are employed in highly reliable computers [3]-[6].

Fault tolerance in a highly reliable digital system is achieved through redun-

dancy in hardware, software, infc ion, and/or i Fault-tol

strategies consist of the following elements (36)].
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Masking: Dynamic correction of generated errors.

Detection: Detection of an error - a symptom of a fault.

Containment: Prevention of error propagation across defined boundaries.

Diagnosis: Identification of the faulty module responsible for a detected error.

o Repair/reconfiguration: Elimination or repl of a faulty

or a mechanism for by-passing it.

Recovery: Correction of the system to a state acceptable for continued oper-

ation.

For short-term ultrareliable operation, where no time is available for off-line
fault diagnosis and repair, a static or passive configuration of elements is designed

to mask a given maximum number of faults (36].

Dynamic redundancy, on the other hand, involves the switching of modules or
rerouting of communications as faults occur. The faulty components are detected,

diagnosed, and repaired or replaced (36].

In a hybrid approach, a static base configuration masks a given number of
faults, while faulty modules are detected and replaced within the configuration.
Hybrid redundancy is desirable for long-term ultrareliable applications in which

the probability of multiple faults is high [36].

High availabili lications do not ily require conti i
operation, although database and other critical resources must be protected and
contained within replaceable modules, rather than masked. System operation is
then degraded or halted to perform diagnosis, reconfiguration or repair, and recov-
ery [36].



2.2 Common schemes of fault tolerance

As we know, the reliabili s of ing systems is achieved

through two fundamentally different approaches. The first approach is called fault
prevention (also known as fault intolerance) and the second is fault tolerance. In
the traditional fault prevention approach, the objective is to increase the reliability
by a priori elimination of all faults. Since this is almost impossible to achieve in
practice, the goal of fault prevention is to reduce the probability of system failure
to an acceptably low value. In the fault tolerance approach, faults are expected
to occur during computation but their effects are automatically counteracted by
incorporating redundancy into a system so that valid computation can continue
even in the presence of faults. These facilities consist of more hardware, more
software or more time, or a combination of all these; they are redundant in the
sense that they could be omitted from a fault-free system without affecting its

operation.

Fault tol is not a repl t but rather a I to the most im-

portant principles of reliable system design: (a) use the most reliable components
(however, cost constraints often preclude their use); and (b) keep the system as

simple as possible, i with achieving the design

Redundancy can be implemented in static, dynamic, or hybrid configurations

3]-(6).
2.2.1 Static redundancy

Static redundancy, also known as “masking redundancy”, uses extra compo-

nents, and the effect of a faulty is masked i ly. Two major
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Figure 2.1: Triplicated voters and modules forming one triple modular-redundant
stage of system, with voting at module inputs copied from Ref [36].
techniques employed to obtain fault masking are the triple modular redundancy
(TMR) and the use of error correcting codes [4], {36]. For example, a TMR system
(36] is shown in Figure 2.1.

Continuous operation is often provided by using the majority vote of the outputs

of three or more identical modules, masking failure of the minority. Triple modular

redundancy (TMR) has been used ively in ult; liable systems for
and industrial applications, with two out of three votes masking single-module

failures.
Coding is the most widely developed mechanism for error detection, correction
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and masking in digital system, typically requiring less redundancy than other er-
ror detection, correction and masking schemes [37]. A code’s error detection and
correction properties are based on its ability to partition a set of 2" n-bit words
into a code space of 2™ words and a noncode space of 2* — 2™ words. For most
codes, each word comprises m-bits of information and k = n —m check bits. Each
code is designed so that a given number of errors transforms a code-space word
into a word in the noncode-space. Errors are detected by decoding circuits that
identify any word outside the code-space. Error correction is performed by more
extensive decoding that uniquely associates a noncode-space word with the original

code word transformed by the errors.

Hamming distance between the words of the code space determines the capa-

bility of error detection or ion of a given code-space. The most common
words include simple parity checks to detect errors in buses, memory, and registers.
Parity-based Hamming codes detect and correct errors in memory; cyclic redun-
dancy checks and other cyclic codes detect and correct errors in communication
channels and disk storage; m-out-of-n codes detect errors in microprogram control
stores and other ROMs; and arithmetic codes detect errors originating within arith-
metic logic units (ALU). Unidirectional error control codes have found a real-time

lication in VLSI mi where the bus line area increases as the pro-

cessor word length increases. Since these lines connect circuit elements, line faults
or defects seriously affect LSI chip yield and reliability [3]-[6], [36].

Figure 2.2 shows 2 bus line circuit that can mask single “0” errors. The decoder
G consists of AND gates go Lo gs, corresponding to code words V5 to V3 in code
C. Because each gate has transistors at the bus line where the element in the code

word is “1”, a gate is only activated by receipt of the corresponding code word.
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In general, when “0” errors change the code word Y to Y”, any other code word,
sey X, in C has to satisfy the condition XY # 0. This causes the bus line circuit
to work correctly. This condition shows that there are one or more cases where X
has 1 at the position where ¥' has 0. From this, it can be easily proved that a code

C with A = ¢ + 1 can mask ¢ asymmetric errors [37].

As impl jon costs for er trol coding continue to decrease, the de-

P! of cost-effective, low-level techni may offset the need for massive

high-level redundancy. Therefore, the major challenge of the future is devel

an integrated design framework where we can study the various trade-offs between

low-level and high-level redundancy techniques.
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Figure 2.2: Circuit for masking single, unidirectional “0” errors on bus line copied
from Ref [37].




2.2.2 Dynamic redundancy

Dynamic redundancy is also known as “Standby Redundancy”. In the dynamic
redundancy, spare modules are switched into the system when working modules
break down [3]-[6].

Figure 2.3 illustrates the concept of dynamic redundancy [4]. The system con-
sists of S + 1 modules but only one operates at a time. If a fault is detected in
the working modules, it is switched out and replaced by a spare. Thus, dynamic
redundancy requires consecutive actions of fault detection and fault recovery.

Recovery is defit.ed as the continuation of system function after the incidence
of an error in data integrity.

The detection of fault in the individual modules of a dynamic system can be

achieved by using one of the following techniques [4]:

1. Periodic tests;

2. Self-checking circuits;

3. Watchdog timers.

In periodic tests, the normal operation of the function module is temporarily
suspended and a test routine is run to determine if faults are present in the module.

A disadvantage of this technique s that it cannot detect temporary faults unless

they occur while the module is tested.

Self-checking circuits are designed so that they either provide correct output or

indicate the presence of a fault in a module during normal operation.
Watchdog timers are set to certain values at pre-established points, called check-

13
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Figure 2.3: Dynamic redundancy scheme with S spares copied from Ref [4].

points, in the program executed by a module. A timer at a particular checkpoint
counts down while the module performs its function, and is normally reset before
the next checkpoint is reached. However, a software bug or a hardware fault will
prevent the program from resetting the timer. The timer then issues an interrupt

command which causes automatic switch over to a spare module.

Dynamic redundant systems can also be classified to cold-standby system and
hot-standby system [4], [36].

In a cold-standby system, one module is powered up and operational, the rest
are not powered. Replacement of a fault module by a spare is effected by turning
off its power and powering a spare. In a hot-standby system, all the modules are
powered up and operating simultaneously. If the output of all modules are the
same, the output of any arbitrarily selected module can be taken as the system
output. When a fault is detected in a module, the system is reconfigured so that

the system output comes from one of the remaining modules.

14
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2.2.3 Hybrid redundancy

Hybrid redund iz ic and the dynamic redund )

It consists of an NMR system (in general) with a set of spare modules. When one
or less than n = (N —1)/2 of the NMR modules fails, it is replaced by a spare
and the basic NMR operation can continue (4], [36]. A hybrid scheme is shown in
Figure 2.4 [4].

Redund

can also be impl d by other hardware redundant techniques

such as self-purging redundancy, and sift-out modular redundancy (SMR) [4].

Replacement units can be either hot or cold [36]. A hot spare concurrently
performs the same operations as the module it is to replace, needing no initialization
where it is switched into the system. A cold spare is either not powered or used
for other tasks, requiring initialization when switched into the system. System

designer must weigh the cost of unused spare against that of initializatior. time

15



when deciding between hot and cold spares.

2.2.4 Time redundancy

Time redundancy is commonly used in the detection and correction of errors

caused by temporary faults [4]. It involves the repetition or rollback of i
segments of programs or entire programs immediately after a fault is detected.
The rollback operation requires that a program restarts processing from the last
checkpoint, where all the information relevant to the successful execution of the
program beyond the checkpoint is stored. If a fault is temporary, rollback the
program to a checkpoint should allow successful recovery. However, if the fault is
permanent, the fault detection mechanism will be activated again and an alternative

recovery method should be attempted.
2.2.5 Software redundancy

Redundancy, which is used to achieve fault tolerance in hardware, has not found
wide application in software, The main problem is that it is not possible to quantify

the expected improvement in reliability that can be achieved by using additional

software. Chen and Avizienis have d the idea of N-version p: ing

for providing fault tolerance in software [4].

In the N-version programming approach, a number of independently written
programs for a given function are run simultaneously, results are obtained by voting
upon the outputs from the individual programs. In general, the requirement that
the individual programs should provide identical outputs is extremely stringent.
Therefore, in practice sufficiently similar output from each program is regarded as

equivalent. However, this increases the complexity of the voter. In addition to its

16



ability to tolerate design faults, V-version programming is also capable of masking

certain categories of temporary hardware faults,
2.2.6  Fail-soft operation

Ifa faulty system has ability to continue to operate at an acceptable but reduced
level of performance, when the faulty modules are disconnected from the system and
the rest of the system are reconfigured, this ability is known as fail-soft operation

4.

In order to achieve the capability of fail-soft operation, a system must have a

distributed archi a hensive fault detection bility, the ability to
achieve both logic and power isolation between functional modules, and the ability

to reconfigure itself to operate as efficiently as possible without a fault module.

‘The space shuttle computer complex is an example of this strategy. It uses
four processors with majority voting for critical operations. Voting continues after
one failure, but a second failure ends voting and a single processor performs all

remaining operations.
2.2.7 Practical fault-tolerant systems

By the end of the 1960’s nearly all of the basic forms of fault-tolerant architec-
ture to be found in later designs had been built and experimented with (e.g., trip-
lication with voting, duplication and comparison, self-checking units, and backup
sparing). These concepts were refined and adapted to more modern hardware and

software technology in sub (4], (38], [39].

Two very advanced research machines were developed to the same specifica-
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tions by the same NASA sponsor, and were built and tested as prototypes: the
fault-tolerant multiprocessor (FTMP) and software implemented fault tolerance

(STFT). Simplified block diagrams of the two architectures are shown in Figure 2.5.

Both systems execute three copies of a program in different hardware and vote
the results to mask faults but they do it in quite different ways. All processors in
the FTMP are clock synchronized and voting is done by hardware. Processors in
SIFT use independent clocks, and voting and synchronization are carried out by
software.

In the FTMP structure, a set of and are d to five

redundant buses through special redundant bus guardian circuits. Processors and
memory modules can be dynamically assigned to be a member of a group of three
processors and three memories which will run the same computation (designated a

to

triad). This is done by ding their iated bus
over specially assigned buses. The guardian circuits in the processors vote on the
three copies of data arriving from their assigned memories, and conversely the
memories guardian vote on information from their assigned processors. If a bus,
processor, or memory fails, there will still be two valid copies of information at each
voter, and the fault will be masked, allowing the triad to continue. When such a
failure occurs, a different triad can sense the condition and reconfigure the affected
triad by sending commands to bus guardians to assign a new processor, memory,

or bus to the affected triad.

The SIFT are totally d. Each can broad a

message over a serial line to dedicated buffers in all the other computers. The

+ronized hard '

computers operate with unsy clocks, and ization oc-
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curs by a software, voting process. Each computer contains a synchronous software

executive, and software voting d Periodically, the h

messages containing their views of the time, and develop a consensus as its value.
As user processes are scheduled in a time-synchronous fashion, they are executed
at approximately (but not exactly) the same time and send their results to the

other processors where a software voting procedure is invoked to mask faults. 1f a

fails and disagreeing outputs, the other two ignore it.

In practice the FTMP architecture has two major advantages over SIFT in

dedicated real-time control applications. It runs faster than SIFT because its vot-

ing is done by hardware. The SIFT use a signi of their
processing time running the software voting and synchronization programs. More
importantly, the fault-tolerant features of FTMP are nearly software transparent.
Nealy any software executive can be run on FTMP with fault recovery procedures

written to run under it. (Remember, the triads will continue to operate under fault

until a

is invoked). SIF'T, on the other hand,

is constrained to using its custom h ive which impl the

fault-tolerance features.

Although the relative hardware cost of a highly fault-tolerant computer may be
several times that of a non-fault-tolerant machine, hardware prices have dropped
an even greater relative amount making fault tolerance cost-effective for a large

number of applications.

Ad di ion p ing system (AIPS)

Figure 2.6 is a structure of the advanced information processing system (AIPS)

(38]. A group of processing sites is d through switching nodes to a redun-




dant inter-communication structure which behaves like a triply redundant bus, but
which can be circuit-switched over different paths to provide physical damage tol-
erance. Each processing site may be a fault-tolerant multiprocessor (FTMP), a
triplicated (TMR) fault-tolerant processor (FTP), a duplicated pair of processors,
or a single non-redundant machine. Each site has a local clock which synchronizes
computers at that site, but clocks are not synchronized between sites. Hardware
voting is done throughout the system. With a site containing triplicated (TMR)
processors, voting is straightforward because the processors are clock-synchronized

and are ing identical Voting of d data sent between

processing sites with different local clocks requires a hardware synchronization op-
eration, but the data skew can probably be kept small and hardware voting is still
feasible. This design recognizes the needs for selective redundancy. In a complex
system, not all tasks are sufficiently critical to justify triplicating their processors.

Thus, duplex and single processors can be included.

In general, the hardware implementation of a fault-tolerant systems s naturally
achieved at several levels based on functions provided by specific subsystems. It

sl

centains and recovery hanisms which may be employed

in different ways at different levels. For example, at the highest level, a distributed

system may recover from a failed computer by shifting its ions to other

machines. At the next lower level, a single computer may be capable of replacing

to

a faulty memory module with a spare and
channels to circumvent a failed part, but may not be able to recover when a short
occurs on the local memory-processor bus or when its power supply fails. At a lower
level, the memory modules may be capable of replacing defective RAM chips with

spares, or the chips may contain redundancy and be capable of tolerating certain
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failures but not others.
2.3 Self-checking (SC)

For fault detection, modules at all levels (computers, logic modules, or on-chip
redundancy), fall between two basic types. At one extreme are circuits which can
detect internal faults concurrently with normal operation — we will call them self-
checking (SC) — and at the other extreme are modules which have no internal fault

detection bility which will be desi d f-checking (NSC) [38]. When

used in a redundant partition, SC modules can be operated singly, since faults will
be detected, if an external recovery mechanism can substitute a spare module for

the one which has failed. NSC modules must be duplicated and operated two-at-

a-time with outputs d for fault detection and, th t-a-time and voted if

a faulty module is to be identified quickly (or if transient faults are to be located).

Self-checking circuits offer a number of advantages, the most obvious of which
is the immediate detection of errors. Another is the capability of detecting er-

rors caused by transient failure. Further, self-checking circuits are becoming more

with the ad in VLSI technology [3]-[6].

A self.checking computer can be developed at an approximately 10 percent
increase in hardware complexity [40]. The reason for this relatively low cost is that
the majority of a computer's logic is memory which due to its regular structure
can be designed to detect faults with a few extra bits per word. Irregular logic
must often be duplicated, but this makes up a small percentage of many modern

machines.

An imp! b istic of this hodology is the fact that self-checking
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checkers have been developed which signal faults in the checking circuitry as well
as in the operational circuits. This largely solves the problem of “who checks the
checker?” Checking signals are implemented as complementary morphic pairs which
alternate between values (10) and (01) when no error exists. Upon detecting an
error in the circuits being checked or in the checking circuits, these signals take on
values (11) or (00) indicating a fault has occurred. A reduction circuit has been

developed so that a number of these ! 'y pairs from i I checkers

can be reduced to a single self-checked pair which serves as a master fault indicator

[38]. A general structure of TSC circuit is shown in Figure 2.7.

A TSC circuit is composed of two parts - a TSC functional circuit and a TSC
checker [6]. The TSC functional circuit implements given functions during fault-
free operation. The TSC checker monitors the outputs of functional circuit, internal
error propagation paths of the TSC functional circuit, as well as the inputs of the

TSC functional circuit.

If any error input is applied to its inputs or any internal fault from a prescribed
set of fault occurs in the functional circuit or in the checker itself, the output of the

checker will indicate this fault during normal operation.

There are many works on the design of self-checking circuits, especially on the
design of TSC checkers such as parity code checkers, duplication checkers, parity
prediction checkers, m-out-of-n codes checkers, Berger codes checkers, and residue
code checkers [3]-[6]. These checkers have already been applied in an adaptive man-
ner to some functional circuits, for example, adders, multipliers, decoding circuits,

data path circuits, and the like.

Unlike the design of non-redundant logic circuits, there is no simple, conve-
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nient, systematic method available for designing TSC circuits, particularly for TSC

functional circuits.

M the of ional TSC circuits is very complicated. This
leads to a low localizability. We need a more complicated decoding circuit if the

correction scheme is employed.

Consequently, it is desirable to provide a general method to design TSC circuits

which makes the design of TSC functional and TSC checks i and efficient.

2.4 Concluding remarks

The development of the technology of fault tolerance has been driven by high re-

quirements of modern military system, missions,

activities, communications, etc. Fault tolerance can be achieved at different levels.
Although NMR scheme is widely applied to construct highly reliable systems, it is
desirable that modular units have the capability of concurrent error detection so
that they can signal any fault occurrence. Since TSC circuits possess this desirable
property, they have been intriguing many researchers. However, the design of TSC
circuits is still a pending problem. We hope that the design of TSC circuits could
be done as easily as that of common digital circuits. Thus, it is highly desirable
to develop a group of universal basic building blocks and formalize a set of design

methods for achieving TSC circuits.
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Chapter 3

Principles of two-rail totally
self-checking checkers

3.1 Preliminaries
3.1.1 Failure, fault, and error

When applied to digital systems, the terms of failure, fault, and error have
different meanings [3-[6), [36).

Failure: Failure denotes inability of an element to perform its designed function
because of errors in the element or its environment, errors are in turn caused by

various faults [36].

Fault: A fault is an anomalous physical condition which may or may not cause a
failure. Causes include design errors, manufacturing problems, damage fatigue, or

other deterioration and external disturbances.

Error: An error is a manifestation of a fault in a system, i1 which the logical state

of an clement differs from its intended value [36].

A fault in a system does not necessarily result in an error. An error occurs
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only when a fault is sensitive. A fault is referred to as latent if it has not yet
been sensitized in the system. The term soft is often applied to errors that persist
after the originating fault disappears. Once corrected, soft errors usually leave no

damage in the system.
3.1.2 Modeling of faults

In general, the effect of a fault is represented by means of a model, which

represents the change that the fault produces in circuit signals [3]-[6], [36).

Stuck-at-faults: It assumes that a “ault in a logic gate results in one of its inputs
or the output being fixed to either a logic 0 (stuck-at-0) or a logic 1 (stuck-at-1).
The stuck-at-fault model offers good representation for the most common types of

failures, e.g. short-circuits (shorts) and open-circuits (opens) in many technologies.

Bridging fault: A bridging fault occurs when two leads in a logic network are
connected accidentally and wired logic is performed at the connections. Two types

of common bridging faults are input bridging fault and feedback bridging fault.

Stuck-open faults: Stuck-open faults are a peculiarity of CMOS digital i d
circuits; they are not equivalent to classical stuck-at faults. The major difference
between the stuck-at faults and the stuck-open faults is that the former leaves
the faulty gate as a combinational circuit, but the latter turns it into a sequential
circuit.

The error modes which are possible to turn up can also be categorized into

d dent bit errors and

symmetric errors and ic errors; i
clustered bit errors; transient faults or intermittently occurring bit-errors and per-

manent faults. Transient faults are non-recurring temporary faults. Intermittent
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faults are recurring faults that reappear on a regular basis.
3.1.3 Totally self-checking (TSC) concept

The concept of totaly self-checking was first proposed by Carter and Schneider
(1], and was formally defined by Anderson and Metze (2], [7] as follows:

Definition 1 : A circuit is code-disjoint if it maps code inputs into code outpuls

and noncode inputs into noncode outputs during faull-free operations.

Definition 2 : A circuit is self-lesting if for every fault from a prescribed sct, the

circuit produces a noncode output for at least one code input.

Definition 3 : A circuit is fault secure if for every faull from a prescribed set, the

circuit never produces an incorrect code output for code inputs.

Definition 4 : A circuit is tolally self-checking if it is both self-testing and fault

secure.

Definition 5 : A circuit is a TSC checker if it is both code-disjoint and tolally

self-checking.

TSC checkers are mainly used to monitor the outputs of TSC functional cir-
cuits and produce an error indication when one or more noncode inputs are received
or any internal fault from a prescribed set occurs. They can be achieved at dif-
ferent levels, such as transistor level [30], logic gate level [3]-[6], functional unit
level [11]-{14] and system level [16]. They also can be implemented with differ-
ent technologies, such as NMOS/CMOS impl ion [30), PLA impl tion
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[4], combinational logic impl ion [3]-[6], and ial logic impl
[10]).

There have been many proposed TSC checkers which employ simple, useful, and
efficient codes such as Parity codes, Berger codes, m-out-of-n codes, Hsiao code,

flamming codes, low-cost arithmetic codes, two-rail codes, etc. [3]-[6].
3.2 Two-rail (TR) TSC checkers

Tuwo-rail (TR) means that each TR variable is represented by a pair of ordi-
nary variables. A TR TSC checker is a TSC circuit which its input variables and
output variables are two-rail variables [5], [6]. Each pair of TR variables has com-
plementary values during normal operation. A TR-TSC checker itself can be an
independent checker to monitor a TSC functional circuit. It also can be a part of a
TSC checker [5], [6], [19]. One of its useful functions is of converting N error indi-
cation variables into one error indication variable for an observable error indication
output. With this important property, TR-TSC checkers, especially two-input two-
rail comparator N, [41], are often used in designing other useful TSC checkers. For
example, A TSC Berger code checker which uses TR-TSC checkers as its reduction

circuits [20] is shown in Figure 3.1.

3.3 The design of TR-TSC checkers using two-
input two-rail comparator N,

3.3.1 Tree structure with maximum depth

Let C, denote a two-rail code with n bits and N, denote a checker for Ch.

In general, C, does not always contain 2" codewords. Checker N,, has n pairs of
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Figure3.1: A TSC Berger code checker which uses TR-TSC checkers as its reduction
circuits copied from Ref [20).

inputs (Xi1, Xiz) (1 £ i < n)and a pair of outputs (z1, 22). Input (Xi, Xi) and
output (zl, 22) are d by X; and Z, respectively. The prescribed set of

faults are single stuck-at faults, which are on concern here. Any fault in N, can be

transient, intermittent, or permanent [19).

A two-input two-rail TSC comparator [41] is shown in Figure 3.2. It is a basic
TR-TSC block which is widely used to build other multi-input TR-TSC checkers.
Let N; denote this two-input TR-TSC If (01) logic 0 and

(10) for logic 1 in normal condition, the N, is equal to modulo-2 adder. Multi-input
TR-TSC checkers can be implemented by interconnecting Ny to form multilevel
trees of arbitrary size [3]-[6], [19]. For example, a tree with eight input variables

formed by interconnecting seven N, checkers is shown in Figure 3.3.

Since each block is fault s‘ccurc for ali unidirectional multiple faults, and self-
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Figure 3.2: A two-input two-rail comparator N [41].

testing provided that it reccives the complete minimal test set Ts!. Thus, the
resulting circuit is a TSC checker. Proofs for the following theorems can be found

in [19].

Theorem 1 [19]: Ny is a TR-TSC checker for C, if and only if: i) every fault in
N, is detected by some word in C,; ii) it maps code inputs into code outputs und

noncode inputs into noncode outputs.

In general, 2" test patterns are sufficient to diagnose such multiple-input trees if
each TR block has no more than n input pairs [19]. However, all these patterns may
not be applied to the multiple-input tree circuit during normal operation. This is
because two-rail checkers are usually placed at the output of the circuit under check;
that is, they are embedded, and hence a restricted number of patterns may be given
to the checkers. Even for this situation, some techniques have been proposed that

'A complete minimal test set (Ts) consists of 73, Ty, T3, and Ty, where Ty = {(01),(01)},
Tz = {(01),(10)}, T = {(10), (01)}, and T4 = {(10), (10)}.
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satisfy the self-testing conditions [19].

Theorem 2 [19): Let all of the 2* two-rail codewords be applied to N,, which is
a tree circuit consisting of only Ny’s. The number of codewords which give one
pattern from Ts on the two pairs of input line of every Ny in Ny is equal to 2%

n=2).

Theorem 3 [19]: Any n-input tree circuit consisting of only Ny's is an TR-TSC
checker for C if k> (3 x 2"2 +1).

In case k < (3 x 2""2 4+ 1), a circuit consisting of only N's cannot always
become a TR-TSC checker. In this case, however, the probability that the circuit
is a TR-TSC checker is expected to be high [19].

There are many other design methods for constructing TR-TSC checkers, such
as Tree Structure With Minimal Depth {19}, Decision Graph Design [19], and Auz-

iliary Input Technique [42]. These design methods have their particular advantages
[19], (42].

3.4 The design of TR-TSC checkers with uni-
versal operator blocks

TR-TSC checkers can be achieved not only using N3's but also using universal

operator blocks (9], [11}-[16].

34.1 T 1 morphic Bool algebra

Two-element morphic Boolean algebra was formalized by Carter et al [9] and it

is the theoretical basis of the design of TR-TSC checkers using universal operator
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blocks.
We define:
(A). The usual Boolean algebra as:
B, ={0,1,{*}} 3.1)
where {*} is the set of usual logic operators.
(B). The two-element Boolean algebra as:
By = {{(en,&), (&1, e2)}, {(ensea),
(&n,&2)}, {*m}} (3.2)
where {#u} is the set of morphic logic operators.
We have the morphism:

Mleryeq) = { b iges (33)

h: Q1=
where e;,e2 =0 or 1.

This morphism relates the two-element Boolean algebra Bas to the usual Boolean

algebra B, and the correspondence between them is:

M(Ai+ar Aj) = M(A;) x M(4;) (3.4)

where A;, 4; € {(0,0),(0,1), (1,0),(1,1)}-
3.4.2 Factorization technique

Carter et al [9] proposed a set of universal operator blocks consisting of three

basic blocks — MNOT, MAND, and MXOR blocks. Their internal constructions
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are shown in Figure 3.4, Figure 3.5, and Figure 3.6, respectively. They formalized
a factorization technique consisting of three steps to achieve a TR-TSC checker
which implements any given morphic Boolean function using their proposed oper-

ator blocks. These three steps are [9]:
(a) Factorization step

Take the subpolynomial § consisting of the largest number of terms contain-
ing a common variable, say A;, and replace it by Au(P;), where P is a Boolean

polynomial such that Ay (Py) = S.

Apply the above step ively to the ining terms of the pol ial G

until the remaining polynomial has no terms with variables in common.

(b) Parenthesis-removal step

If any Boolean pol ial within the i is has an odd number

of terms and is immediately followed by two right parentheses, then delete the outer

parenthesis.

Apply (a) and (b) alternatively until no more factorization or parenthesis re-

moval is possible.

(c) Complementation step

In the form which cannot be d to further f: ization or thesi:

removal, replace the substructure 1+ P by P'.

A self-testing structure implementing the morphic Boolean function is obtained
as follows from the final parenthesized form resulting from the above algorithm.
The complementation is implemented by MNOT block. The + is implemented by
MXOR block. The AND structure is implemented by MAND block.
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Theoretically, any arbitrary morphic logic expression can be implemented by
TR-TSC checkers using these blocks and the factorization technique; therefore,
complex morphic logic expressions with multiple inputs and outputs are difficult
to implement since it is hard to transform given complex morphic logic expressions
into testable structures of specified XOR-parenthesized forms under normal condi-
tions. The verification of the self-testing property for a developed morphic circuit

is difficult [9].
A design example using Factorization Technique to achieve a testable structure

9] is described below. Let

G = A7+ AiAr+ ArAgAg + ArAgAgAro +
AzAsAg A + AiA2AsA4As + A1 Az A4As Ag

Recursively applying Factorization Step and Parenthesis-Removal Step, we have

G = A7(1 + AsAs(1 + Aro + An)) + ArAs(1 + Ay(As(4s + Ad)))

Finally applying Complementation Step, we have the expression as

G = Ar(AsAo( Ao + An)) + ArAx(As(As(As + Ae))) .

Figure 3.7 is an implementation of the given expression.



Figure 3.3: A cight-input two-rail code checker.
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Figure 3.5: A MAND operator block.
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Figure 3.6: A MXOR operator block.
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Figure 3.7: A design example with Factorization Technique.
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3.4.3 Multiple error detection TR-TSC checl

Until now, we have discussed various methods for the design of TR-TSC check-
ers. Although they can deal with different cases which have multiple inputs, and
large amount, medium amount, as well as small amount of codewords for given
two-rail code Cn, they are incapable of detecting multiple etrors. As independent
TSC checkers, these TR-TSC checkers have no ability to locate fault sources but

indicate fault occurrence.

Based on the two-element Boolean algebra Bay, Gaitanis proposed a univer-
sal set of TR-TSC operator blocks and formalized a general technique to design
multiple error detecting TR-TSC checkers [11]-[16}.

The new universal set of operator blocks is composed of a single-error detecting
two-rail operator (SEDTR), an odd-parity two-rail operator(OPTR), a conditional
single-error detecting two-rail operator (C- SEDTR), an¢ a double-error detect-
ing two-rail operator (DEDTR). The combinational circuils which are designed
using these blocks are TSC circuits if every internal fault propagates to a set of
observable outputs. In comparison with the previous set of operator blocks, this
set can be easily used in implementing complex morphic logic expressions. The
self-testing property of the resulting circuits can be easily proved with cyclic diag-
nostic sequences CDS. The internal constructions of SEDTR, OPTR, C-SEDTR,
and DEDTR are shown in Figure 3.8%, Figure 3.9, Figure 3.10, and Figure 3.11,
respectively. [b]

2SEDTR has the same internal construction as Nz
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Figure 3.8: The structure of SEDTR operator block.

Design of multi-input TR-TSC doubl heck

Suppose that we have an ny-input DEDTR checker with single and double error
indication outputs S}* and D}, and an nz-input DEDTR checker with single and
double error indication outputs S3? and DJ?. Then, multi-input DEDTR checkers

can be designed according to a recursive formula as follows [14]:

Dy = DYDY (S +5SP) (3.5)
5 = sy (3.6)
The modular st of a multi-input TR-TSC double-error checker [14] is

shown in Figure 3.12.
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Design of multi-input TR-TSC multi-error checkers

Let n two-rail inputs be denoted by A;, i = 1,2,-+-,n. Let n scparate error
indication outputs be denoted by T, e = 1,2,:-+,n which indicate up to e input

errors.

The multi-input TR-TSC multi-error detecting checkers called MEDTR checker

can be constructed according to the following recursive functions {15}:

Try = THT + Ar) (3.7)

T4 A = TE4+T 4 A (3.8)
where T¢ > Tt

Since the TR-TSC multi-error detection checkers can provide multiple error
information, they are particularly useful and efficient in designing TSC SEC/DED
circuits [11]-[16].

3.5 Concluding remarks

A TR-TSC checker can be an independent checker to monitor a TSC functional
circuit or a key part of another TSC checker. Various design techniques are available
for the design for TR-TSC checkers. According to the structure of TR-TSC check-
ers, there are two main methods to design TR-TSC checkers. One is to use only
Na's to construct TR-TSC checkers. The other is to use universal operator blocks
to build TR-TSC checkers. Based on the functions of TR-TSC checkers, TR-TSC
checkers can also be classified to error-indication-only checkers and multiple error
detection checkers. Since TR-TSC multi-error detection checkers provide multiple

error information, it brings new prospective applications for TR-TSC checkers.
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The techniques discussed in this chapter are not suitable for the design of TR-
TSC functional circuits. In the following chapters, we will introduce new theories
and techniques to design TR-TSC functional circuits using universal set of basic
building blocks (BBB).
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Figure 3.9: The structure of OPTR operator block.
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Figure 3.10: The structure of C.SEDTR operator block.
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Figure 3.11: The structure of DEDTR operator block.
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Chapter 4

Strong morphic Boolean algebra
and a new classification of
checkers

Existing universal sets of operator blocks are only suitable for the design of TR-

TSC checkers [9], [11)-[16), [19] which impl joual morphic fi

with error indication variables. Conventional morphic Boolean algebra By formal-
izes two-element morphic logic [9] for error indication variables; therefore, it does
not describe ordinary logic operations of usual Boolean algebra B, under normal
condition. Thus, the theories and methods of the design of TR-TSC checkers using
existing universal sets of operator blocks cannot be directly applied to TR-TSC
functional circuits. The design of TR-TSC functional circuits is still based on trial
and error. For example, a TR-TSC full adder (FA) [31] is shown in Figure 4.1. This
TR-TSC adder has been successfully achieved; now, how about the next design task
for another TR-TSC functional circuit? Consequently, it is necessary to establish

b for

new theory and provide simple, jent and ic design

the design of TSC circuits, especially for TSC functional circuits.
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Figure 4.1: A two-rail TSC full adder copied from Ref [31].

4.1 Strong morphic Boolean algebra (Bsy)

Two-element morphic Boolean algebra By discussed in Section 3.4.1 formalizes
two-element morphic logic for error indication. In Bay, (01) and (10) are equivalent
for normal state; (00) and (11) are equivalent for fault state. There is no difference
between (01) and (10) under normal condition. This leads that By does not con-

duct ordinary logic operations of usual Boolean algebra B, under normal condition.

In order to the limitations of By, we il a new Boolean algebra

called two-element strong morphic Boolean algebra Bgsas.

We define two-element strong morphic Boolean algebra as:
By = {{(er,&2), (&1, e2)}, {(en, €2, (€1, &)} (wsm}} @

where ey, e = 0 or 1, {*sx} is a set of strong morphic logic operators.
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The strong morphism is formalized as:

Ly,
Moo= g 22 (2)
and
[ oa=la=0
‘“"{ 0, =0, er=1 (43)

1p — morphic logic 1 for normal state; Op — morphic logic 0 for fault state; 1 —

usual logic 1, 0 — usual logic 0.

‘This new morphism relates the strong morphic Boolean algebra Bsas to usual

Boolean algebra B,. The correspondence between them is:
Ms(Aiay Aj) = M(Aiwsu Aj) = Ms(A:) » Ms(4;) (4.9

where A; and A; are two-element error indication variables, {#} is a set of oper-

ators in Bar, and {#} is a set of operators in B,.

Definition 8 : The state space and operators +sy,
By = {{(e1, &), (&1, €2)}, {(e1, €2), (&1, &)}, {sm}) (4.5)

Jorm a Boolean algebra termed strong morphic Boolean algebra.

Theorem 4 ; There is a natural correspondence between functions g(ay,z, 1 an)

in By = (0,1,{+}}, and functions G(Ay, As, -+, As) in Bsp.

Proof: For any logic operation from {*} of B,, tk re exists one and only one
operation from {*sas } in Bsas. This correspondence is given in (4.4). Consequently,

the natural correspondence between B, and Bsy exists. a
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The most prominent advantage of B is that it relates the state (01) of two-
element variable to usual logic 0 and (10) to usual logic 1 while it still possesses all
the properties of By

The natural correspondence between B, and Bsys only formalizes the behaviour
of Bs in its intrinsic state space — code space. The extrinsic state space - noncode

space also needs investigation.

4.2 A new classification of checkers

According to the conventional definition, a circuit is called a checker if it maps
code inputs into code outputs and noncode inputs into noncode outputs during
fault-free operation. However, this definition is not enough to describe the entire
properties of TSC checkers in a TSC space. We should study the TSC space and

give a new classification of checkers.
4.2.1 A TSC state space

A TSC space is associated with two spaces — input space ¢ and output space
. The input space @ consists of code space ®. and noncode space ®y. The output

space ¥ consists of code space ¥. and noncode space ¥y.. That is
@ = DU (1.6)
o= YUY, (.7)
U, can be further distinguished by ¥.; and ¥,. That is

Y = VaUVa



INPUT SPACE OUTPUT SPACE

Figure 4.2: A TSC state space.

where W,y stands for correct code output space during normal operation and .,
which is generated by noncode inputs, for incorrect code output space (disregarded
code space). Thus, W, = We (W2 is null) when inputs are code words; W, is Vo,
or equals to Wep (W, is null) when inputs are noncode words. s and ¥, cannot

co-exist as non-null sets.

The TSC state space is illustrated in Figure 4.2,

4.2.2 A new classification of checkers

Let X, Y, Z represent two-element error indication variables, and X, Y for
input variables, Z for output variable. Based on the partition of TSC space and
the behaviours of a checker in intrinsic and extrinsic state spaces, we define the

following five types of checkers.
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Type I chacker
Type I checker is the conventional checker. The formal definition is given as:
Definition 7 : A checker is a Type I checker if and only if:
i) When X, Y € ®c, then
X, 8L 7 =Gy(X,Y) e ¥y (1.8)
1i) When either X € @, and Y € ®pc or X € Ppc and Y € & or X,Y € &, then
XY 85 Z = Gi(X,Y) € Ve (1.9)

G - Type [ mapping.

Type II checker
Type II checker is defined as:
Definition 8 : A cherker is a Type Il checker if and only if:
i) When X, Y € @, then
X,Y 4 Z = Gu(X,Y) € Va (4.10)
ii) When either X € @, and Y € ®nc or X € ®pe and Y € &, then
XY 8 7 = Gu(X,Y) € Vo (4.11)
iii) When both X,Y € ®,., then

X, Y &4 2 = Gu(X,Y) € Vo (4.12)

Gur - Type Il mapping.



Type III checker
Type 111 checker is defined as:

Definition 9 : A checker is a Type I checker if and only if it meets:
i) When X, Y € &, then
XY &4 2= Giu(X,Y) € Va (4.13)

ii) When cither X € & and Y € ®nc or X € &, and Y € &, or both X,Y € &,
then

XY 2 7= Gu(X,Y) € ¥y (4.14)

Giyr - Type 11l mapping.

Type IV checker
Type 1V checker is defined as:

Definition 10 : A checker is a Type IV checker if and only if:
i) When X, Y € &, then

XY &% Z=Gu(X,Y) € Va (4.15)
i) When cither X € ®. and Y € ®yc or X € ®yc and Y € B, then

X,Y &% 2= Gv(X,Y) € ¥a (4.16)
iii) When both X,Y € ®pe, then

X,Y 8% 2 = G(X,Y) € ¥y (4.17)

Gyv - Type IV mapping.



Type V checker

Type V checkers are conditional checkers which have conditional inputs and

non-conditional inputs. We still consider two inputs case. Type V checker is defined

as:

Definition 11 : A checker is a Type V checker if and only if:

i) When X, Y € &, then

XY &% 2= Gy(X,Y) € ¥u
ii) Let X be a conditional input,
(a) When X € ®. , Y € by, then

X,Y &% 7= Gy(X,Y) € Wne
(5) When X € ®pe . Y € &, then

X, ¥ &% 7 =Gy(X,Y) € Vo
i) Similarly, let Y be a conditional input,
(a) When X € ®re , Y € &, then

X,Y &% 7 = Gy(X,Y) € Vne
(b) When X € ®., Y € @, then

Y% 7= Gy(X,Y) € ¥a

iy) When both X,Y € @y, then

XY &% 2= Gy(X,Y) € Va

Giv - Type IV mapping.
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According to the new definitions above, for two-input case, we know that Type
I checkers are error-input sensitive (EIS) checkers, Type II checkers are error-input
semi-sensitive (EISS) checkers, Type I11 checkers are error-input insensitive (EIIS)
checkers, Type IV checkers are double-error-input sensitive (DLIS) checkers, and

Type V checkers are conditional error-input sensitive (CEIS) checkers.

All five types of checkers can be used in designing various TSC checkers to
achieve multiple error detection. But only Type I, Type II and Type III checkers
are efficient for building various TSC functional circuits. Type IV and Type V
chckers are very useful for constructing TSC checkers but their applications in TSC

functional part remain unclear.

4.3 A group of strong morphic basic operations
in Bsy

We have formalized a strong morphic Boolean algebra Bsar and a new classi-
fication of checkers. Here, we propose a group of strong morphic basic operations
which implements three basic functions — XORsar, ANDsa and ORspr. According
to the new classification of checkers, we develop three types of basic operations for
cach basic function. For XORgas basic function, we define XOR a1, XORsaz and
XORspa operations; for ANDsps, we define ANDsp1, ANDsprz and ANDisps oper-
ations; for ORsar, we define ORsas1, ORsar2, and ORsps operations. These thre»

types operations correspond to Type I, Type II, and Type III checkers, respectively.
4.3.1 Strong morphic operators

We define a strong morphic operator as:
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Definition 12 : An operator is a strong morphic operator if and only if it possesses

the following two properties:

d

o It imple a natural cor between Bsy and By in the intrinsic

slate space;

o It functions as one of checkers among Type I, Type Il and Type 111 checkers

in eztrinsic state space.

We use the symbol {«px} to stand for a group of morphic operators, + for
a natural correspondence between Bey (or Bag) and B, and P for the type of
morphic operator, i.e., when P is $M, it is a strong morphic operator, and it is a
conventional morphic operator when P is M. N € {1,2,3,4,5), and it indicates to
which type of checker does the operator belong. For example, Dsaa means that

this operator is a strong morphic Type I1I XOR operator — a EIIS-XOR operator.
4.3.2 Strong morphic basic operations

We define a operation which involves only two variables as a basic operation.
Accordii g to the definition of strong morphic operators, we propose three basic
strong morphic functions — XOR, AND and OR — which give three naturai cor-
respondences between Bsp and B, in the intrinsic state space. These natural
correspondences are given in Table 4.1, They implement the following basic func-

tions:

E=A®dsm B (4.24)
C=AesuB (4.25)
D= Advsub (4.26)
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Table 4.1: Three hasic SM operations in intrinsic space.
Input A [Input B ANDsy C [ ORsy D [ XORsy E

AJAB[B[G] G [D] D [E] E
0 1 0 1 0 1 0 1 1
oftft|ofo| 1 0o t| o
tlofofr]ol 1t [1]of1] o
tjefrjofur) o Jtfo 0] 1

In the intrinsic state space, these three basic functions can implement any given

combinarional logic function.
For eaca basic function, we formalize three basic operations — *sar1, *sar2 and
+saa. Thus, we have formalized nine strong morphic basic operations as
Group 1: XORsar1, ANDsp1, ORsar;
Group 2: XORsma, ANDsarz, ORsara;
Group 3: XORsars, ANDsara, and ORsara.

In intrinsic state spacc, all these three groups implement the basic functions
which are defined in Table 4.1. In extrinsic state space, they work like Type I,
Type 11, and Type III checkers, respectively. These are illustrated in Table 4.2,
Table 4.3, and Table 4.4, respectively.

4.4 Concluding remarks

We have proposed a new Boolean algebra — strong morphic Boolean algebra
Bsar. This new Boolean algebra overcomes the disadvantage of conventional mor-
phic Boolean algebra By which is incapable of providing natural correspondence

between By and f3,. While possessing all the properties of Ba, Bsp also provides
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Table 4.2: The three basic SM1 operation in extrinsic space.

Tnput A [ Tuput B [ AN Dsara C [ ORsys D [ NOlisan E |
(00) [ (XX) [ (00)/(11) | (0)/(I)) | (00)/(T1)
(11) | (X X) || (00)/(11) | (00)/(1L) | (00)/(11)
(XX) | (00) (00)/(11) | (00)/(11) | (0O)/(11)
(XX) | 1 { ooy | o)) | o)/

Table 4.3: The three basic SM2 operation in extrinsic space.

Tnput A | Tnput B | AN Dsara 7" | ORsyiz D | XOlsars
(01)/(10) [ (00)/(11) [ (00)/(11) | (00)/(11) | (00)/(TT)
(00)/(11) | (01)/(10) || (00)/(11) | (00)/(11) | (00)/(11)
(00)/(11) | (00)/(11) || (01)/(10) | (01)/(10) | (O1)/(10)

Table 4.4: The three basic SM3 operation in extrinsic space.

Tnput A | Tnput B || AN Dsrs C | Oltsary D | XOMsars I ]

(00)/(11) | (X X)_[_(0D/(I0)_| (01)7(10) | (01)/(10)
XX) [(00)/01) | (00)/(:0) [ 0D)/(10) | (01),119)

(00)/(11) [(00)7(11) [ (011/:10) [ 101)/(10) [ (01,/(10)
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a natural correspondence between Bgy and B,. We have given a new classifica-
tion for checkers. Five types of checkers have been defined. These five types of
checkers formalize various behaviours of different checkers. Three strong morphic

ding nine basic ions have been fc lized. This

basic functions and
chapter provides a theorctical basis for developing universal TSC BBBs and design-
ing TR-TSC circuits, especially for TSC functional circuits. Based on the theory
presented, we will develop new groups of universal TR-TSC BBBs and provide

design techniques of TR-TSC circuits using new TR-TSC BBBs.
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Chapter 5

Two-rail totally self-checking
basic building blocks

Based on strong morphic Boolean algebra and the new classification of check-
ers, three types of basic building blocks (BBB) have been developed in this chap-
ter. These three types of BBBs are error-input sensitive BBBs, error-input semi-
sensitive BBBs, and error-input insensitive BBBs. Each type includes three basic
function blocks — AND BBB, OR BBB, and XOR BBB. Using these three basic
func:ion blocks one can implement any given combinational logic function. Properly
using different types of BBBs, various TR-TSC circuits which have the capability
of confining internal faults in separate areas can be achieved. In addition, we also
present another set of universal BBBs called TR-TSC multi-function (MF) BBBs.
The applications of BBBs will be described in Chapter 6.

5.1 TR-TSC error-input sensitive (EIS) basic
building blocks

TR-TSC error-input sensitive (EIS) BBBs implement a group of extrinsic sen-

sitive strong morphic Boolean basic opr-rations — XORsp1, ANDsar1, and ORsmn
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— which have been defined in Chapter 4. TR-TSC EIS BBBs are composed of
three TR-TSC BBBs — TR-TSC EIS-XOR BBB, TR-TSC EIS-AND BBB, and
TR-TSC EIS-OR BBB. These BBBs are Type I checkers.

5.1.1 TR-TSC EIS-XOR basic building block

The proposed structure of TR-TSC EIS-XOR BBB! is shown in Figure 5.1.

Itisac jonal two-input two-variable Table 5.1 gives its truth

table. It implements the following basic operation:

E=A®sm B (5.1)

Any single internal fault can be tested by the minimal testing set Ts:
Ts = {1, To, Ts, Tu} (5.2)
where 7y = /(01), (0)}, T, = {(01),(10)}, T3 = {(10), (01)}, and Ty = {('0), (10)}.
For example, (1). Suppose that a stuck-at-0 fault occurs at gate-2, its ouptut
keeps correct value when its input vector is T or T or Ty; it indicates the fault by
(00) when its input is T}. (2). Suppose that there is a stuck-at-1 fault at gate-4, it
keeps correct outputs when its inputs are T; and Ty; it will give the fault indication

when it receives the input which is either Ty or Ty by (11). The verifications for

the rest of stuck-at faults follow the similar procedures, and here are omitted.

Theorem 5 : The proposed EIS-XOR BBB is a TR-TSC BBB.

Proof: Its fault secure and self-lesting properties are illustratedin A.1- A.6. It
either keeps the correct value or gives an error indication at its output E when any

'Its internal construction is the same as SEDTR
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Table 5.1: The truth table of TR-TSC EIS-XOR BBB.

Toput A T Input B Gates
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010 | Dju v 0‘ " 1
Llrgrlogdr vt
oot a 11: [T AT )
[ | Lo o oo [

3 | O b0 v “l” (U
RN RN N NS

single internal stuck-at fault occurs during normal operation; it possesses ‘he fault
secure property. Since any single internal stuck-at fault can be tested by at least
one testing vector T; € Ts when T’ is applied to its inputs, the sclf-lesting property
is also preserved. Consequently, the proposed EIS-XOR is a TR-TSC BBB. O

5.1.2 TR-TSC EIS-AND basic building block

The proposed structure of TR-TSC EIS-AND BBB is shown in Figure 5.2. The
proposed EIS-AND BBB implements the following basic operation:

C=Aesyi B (5.3)

Besides its main functional output C, it has another output E which implements
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Table 5.2: The truth table of TR-TSC EIS-AND BBB.

[Tuput A T Input B Qutput E f Ontput ©
AR BT B ] Fr v ] |
o[ T ool mjol
o Lol oo oy
1 U 0 I 1 0 ‘J oo
Llofifofol 1 d1ioo
01 o[fnofo 0o [0
o] ] [ )

0 0 0 1 0 0 0 0
vl fol o] v oy
tlfofojlofol| o fuf o
plofl || o
ofoflit|ofol o o] o
Ll rjofud [l
oo oo ol o0 o]0
ofofrfrfgofojol|o
tprgotofol ool o
Lo o] ol

XORsas1 operation. It is an EIS-XOR function output.

Its truth table is given in Table 5.2.

Theorem 8 : The proposed EIS-AND BBB is « TR-TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in A.7- A.16.

The rest of the proof is similar to in Theorem 5. Consequently, the proposed EIS-
AND is a TR-TSC BBB.
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5.1.3 TR-TSC EIS-OR basic building block

The proposed structure of TR-TSC EIS-OR BBB is shown in Figure 5.3. The

proposed EIS-OR BBB implernents the following basic operation:

D=A+sin B (5.4)

Besides its main functional output D, it has another output E which implements

XORsan operation. It is an EIS-XOR function output.

Its truth table is given in Table 5.3.
Theorem 7 : The proposed EIS-OR BBB is a TR-TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in A.17- A.26.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EIS-
OR is a TR-TSC BBB. o

5.2 TR-TSC error-input semi-sensitive (EISS)
basic building blocks

TR-TSC error-input semi-sensitive (EISS) BBBs implement a group of extrin-
sic semi-sensitive strong morphic Boolean basic operations — XORsma, ANDsara,
and ORsp2 — which have been defined in Chapter 4. TR-TSC EISS BBBs are com-
posed of three TR-TSC BBBs — TR-TSC EISS-XOR BBB, TR-TSC EISS-AND
BBB, and TR-TSC EISS-OR BBB. These BBBs are Type II checkers.



Table 5.3: The truth table of TR-TSC EIS-OR BBB.

Toput A || Input B | Ouiput E | Ontpuwt D |
A A BB B ] F D] s
0 1 0 1 0 | ] I
0 I | 0 1 0 1 [}
tlofof ] oo ]
1 0 | 0 0 1 1 b0 ]
0 1 0 0 0 0 0 0
of el rgr b
0 0 0 1 0 ] 0 0
Clr oo o
1 0 0 0 0 0 0 0
L 0 1 1 1 | 0 })
0 0 } 0 0 0 0 0
1 1 | 0 1 | 0 0
[} 0 0 0 0 0 0 0
ofofft| ol ool
1 1 0 0 0 0 a 0
1§ 1 I | ] | UJ 0

5.2.1 TR-TSC EISS-XOR basic building block

The proposed structure of TR-TSC EISS-XOR BBB is shown in Figure 5.4.
The proposed EISS-XOR BBB implements the following basic operation:

E=A®smB (5.5)
Its truth table is given in Table 5.4.
Theorem 8 : The proposed EISS-XOR BBB is a TR-TSC BBB.

Proof: Its fault secure and self-testing properties are ill {in B.l and

B.2. The rest of the proof is similar to in Theorem 5. Consequently, the proposed
EISS-XOR is a TR-TSC BBB. o
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Table 5.4: The truth table of TR-TSC EISS-XOR BBB.

Input B || Output E

Input A

M| A B [BIE] F
[N 0l 0 [
0 1 1{0 1 0
! 0 0.k 1 0
1 0 Llo 0 )
0 1 00 0 0
0 1 1 1 1 1
00 01 0 0
1} 1 01 1 1
L 0 00 1 1
1 0 1 1 0 0
o0 1[0 3 1
1 1 110 0 0
0] 0 0]0 0 1
00 1 1 1 0
1 1 0|0 1 0
1 1 1 1 0 1

5.2.2 TR-TSC EISS-AND basic building block

The proposed structure of TR-TSC EISS-AND BBB is shown in Fig 5.5. The
proposed EISS-AND BBB implements the following basic operation:

C=AesinB (5.6)

Besides its main functional output C, it has another output E which implements

XORsp; operation. It is an EISS-XOR function output.

Its truth table is given in Table 5.5.

Theorem 9 : The proposed EISS-AND BBB is a TR-TSC BBB.
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Table 5.5: The truth table of TR-TSC EISS-AND BBB.

Input A || Input B [[ Output E J Output C
Al BE] ETCTC
0f1 01 0 1 0 [}
01 1o 1 0 0 1
1[0 0 1 1 0 0 I
110 110 0 ! ! 0
0 L o]0 1 1 1 ]
01 1 L 0 0 ! I
0l0 0 I 1 1 1 I
1 L 0 I 0 0 ! I
1 0 [ 0 0 0 0
1 0 | § 1 i I 1
0] 0 110 0 0 0 1]
1 1 1 0 1 i 1 ]
00 0f0 0 [ 1 0
[ ] 1 1 1 0 0 L
I 1 0 0 1 0 ] I
L 1 1 1 [ | 0 |

Proof: Its fault secure and self-testing properties are illustrated in B.3 - B.g.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EISS-
AND is a TR-TSC BBB. o

5.2.3 TR-TSC EISS-OR basic building block

The proposed structure of TR-TSC EISS-OR BBB is shown in Figure 5.6. The
proposed EISS-OR BBB implements the following basic operation:

D=A+su2 B (5.7)

Besides its main functional output D, it has another output E which implements

XORspm operation. It is an EISS-XOR function output.
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Table 5.6: The truth table of TR-TSC EISS-OR BBB.

Input A || Input B || Output E || Output D
M A BB E] D] D
0 1 01 0 1 0 I
0 1 1 0 | 0 ! 0
1 0 0 | 1 0 | 0
1 0 1 0 0 1 | 0
0 1 [N 0 0 0 0
0 1 1 I 3 I 1 I
0 0 01 0 0 0 0
1 1 0 1 1 1 1 I
i 0 o]0 1 1 1 |
I 0 1 1 0 0 1 |
0 0 110 1 I | |
| | 110 0 0 1 |
0 0 00 0 1 0 I
0 0 1 1 1 0 1 0
1 1 o]0 1 0 3 0
1 1 1 1 0 1 1 0

Its truth table is given in Table 5.6.

Theorem 10 : The proposed EISS-OR BBB is a TR-TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in B.9 - B.14,
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EISS-
OR is a TR-TSC BBB. =]



5.3 TR-TSC error-input insensitive (EIIS) basic
building blocks

TR-TSC error-input insensitive (EIIS) BBBs implement a group of extrinsic
insensitive strong morphic Boolean basic operations — XORsa3, ANDspg3, and
ORsp3 — which have been defined in Chapter {. TR-TSC EIIS BBBs are composed
of three TR-TSC BBBs — TR-TSC EIIS-XOR BBB, TR-TSC EIIS-AND BBB,
and TR-TSC EIIS-OR BBB. These BBBs are Type III checkers.

5.3.1 TR-TSC EIIS-XOR basic building block

Proposed structure of TR-TSC EIIS-XOR BBB is shown in Figure 5.7. The
proposed EIIS-XOR BBB implements the following basic operation:

E* = A®sms B (5.8)

Besides its main functional output E*, it has three other outputs — E, C, and
D. E is an EISS-XOR function output which implements XORsp, operation; C
is an EISS-AND function output which implements ANDsy, operation; D is an

EIIS-OR function output which implements OR g3 operation.

Its truth table is given in Table 5.7.
Theorem 11 : The proposed EIIS-XOR BBB is « TR-TSC BBB.,

Proof: Its fault secure and self-testing properties are illustrated in C.1- C.26.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EIIS-
XOR is a TR-TSC BBB. o



Table 5.7: The truth table of TR-TSC EIIS-XOR BBB.

Input A [l Input B || Output E || Output C || Quiput D
Al A [ B B [ B By JC] Co D] Dy
0 i 0 i 0 1 0 I 0 |
0 1 ) 0 1 0 0 | 1 0
1 0 0 1 1 0 0 1 I 0
1 0 | 040 | I 0 I 0
0 [l 0 [ 1 1 1 1 [ 0
0 I 1 1 0 0 I 1 0 1
0 0 0 I | 1 ! 1 I 0
1 | 0 1 0 0 1 1 0 1
L 0 0 0 0 0 0 0 ] 0
1 0 1 1 1 | 3 1 1 0
0] 0 1 0o 0 0 0 | 0
| 1 1 0 1 | 1 1 1 0
[N nfo 0 1 I 0 1 0
00 § 1 1 0 0 I L 0
I 1 0f0 1 0 0 I 1 0
| I t | 0 i 0 ! 0 1

When T is applied to its inputs, every single internal stuck-at fault is reflected
at its main output E* for at least one testing vector T; € T's except the single

stuck-at faults at gate 1 and gate 2 which are indicated at E and C.

5.3.2 TR-TSC EIIS-AND basic building block

The proposed structure of TR-TSC EIIS-AND BBB is shown in Figure 5.8.
The proposed EIIS-AND BBB implements the following basic operation:

o (5.9)

Besides its main functional output C, it has two other outputs — E and D. E

is an EISS-XOR function output which implements XORspm2 operation; D is an

1



Table 5.8: The truth table of TR-TSC EIIS-AND BBB.

Input A || Input B || Output E || Output D f Ouiput C
Al A B BT E B D] Do C ] G
O[t o] o]t o] Jo]1
ol v tfofrpo bt gl
tloflof v farfo by o ol
Vo adofo] b gl
0 I 0 0 0 0 0 n 0] 1
(/28 I T T A AN A S AN A
ofoflol oo fololfol
Lo (I T
tloflofjof 1]t [ R
tlofur ool o
oo t]lofu [ I T
Ll ool o o] it
oo fofofo T o[ ol
olof vl efo o gola
tprflojof o o] ool
Lfvfifufoft Lol

EISS-OR function output which implements ORs2 operation.

Its truth table is given in Table 5.8.

Theorem 12 : The proposed EIIS-AND BBB is a TR-TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in C.27- C.35.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EIIS-
AND is a TR-TSC BBB. o

When T is applied to its inputs, every single internal stuck-at fault is reflected
at its main output C for at least one testing vector T; € T's except the single stuck-at

faults at gate 1 and gate 2 which are indicated at E.
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Table 5.9: The truth table of TR-TSC EIIS-OR BBB.

Input A [ Input B [| Output E || Output C || Qutput D
AT A BB E] £ JC ]G IDi] D
0 1 0 1 0 1 [) ! 0 |
0 ! I 0 1 0 0 | 1 0
1 0 0 I 1 0 0 I | 0
I 0 I 0 0 i i 0 1 0
041 010 I 1 1 I 1 0
01 1 1 0 0 I 1 0 1
00 [t 1 I | 1 | 0
1 1 0 i 0 0 1 I 0 I
I 0 0] 0 0 0 0 0 ! 0
L{o 1 | 1l | | | I 0
0 0 1 0 0 0 0 0 | 0
| I 1 0 1 1 | 1 | 0
0 0 0 0 0 1 1 0 [ 0
0 0 1 1 1 0 0 1 I 0
| I 0 0 I 0 0 1 I 0
1 ! 1 1 0 1 0 1 0 1

5.3.3 TR-TSC EIIS-OR basic building block
Proposed structure of TR-TSC EIIS-OR BBB is shown in Figure 5.9. The
proposed EIIS-OR BBB implements the following basic operation:
D=A+susB (5.10)
Besides its main functional output D, it has two other outputs — E and C. E

is an EISS-XOR function output which implements XORsp2 operation; C is an

EISS-AND function output wh' h implements ANDgy; operation.

Its truth table is given in Table 5.9.

Theorem 13 : The proposed EIIS-OR BBB is a TR-TSC BBB.

3



Proof: Its fault secure and self-testing properties are illustrated in C.36 - C.44,
The rest of the proof is similar to in Theorem 5. Consequently, the proposed EIIS-
OR is a TR-TSC BBB. a

When Ts is applied to its inputs, every single internal stuck-at fault is reflected
at its main output D for at least one testing vector T; € Ts except the single

stuck-at faults at gate 1 and gate 2 which are indicated at E.

5.4 TR-TSC Multi-function (MF) basic build-
ing blocks

A universal set of TR-TSC MF BBBs [43] is proposed here . This set of BBBs
implements the functions of the morphic basic operations formalized by Gaitanis
[11}-[16] and some strong morphic basic operations described in Chapter 4. It
consists of a TR-TSC MF-OR BBB, a TR-TSC MF-AND BBB, and a TR-TSC
MF-XOR BBB. TR-TSC MF-OR BBB incorporates the other two MF BBBs -
MF-AND BBB and MF-XOR BBB. It is a multi-type checker which includes Type
1, Type II, Type IV, and Type V functions. TR-TSC MF-AND BBB is a Type |
checker, and TR-TSC MF-XOR BBB is a Type II checker.

5.4.1 TR-TSC MF-OR basic building block

TR-TSC MF-OR BBB is multi-function BBB. It provides all the functions
of the morphic basic operations formalized by Gaitanis [11]-[16] and some strong
morphic basic operations described in Chapter 4. These functions are:

D" = A+sm B (5.11)

D = A+mB (5.12)
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Table 5.10: The truth table of TR-TSC MF-OR BBB.

AR CiEA AT
! s i [
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D' = A+m:B (5.13)
C = Aesu B (5.14)
C' = AewB (5.15)
E = A®sw: B (5.16)
E = A®mB (5.17)
F = A+usB (5.18)

The internal construction of TR-TSC MF-OR BBB is shown in Figure 5.10 and
its truth table is given in Table 5.10.

Theorez: 14 : The prorosed TR MF-OR BBB is a TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in D.1 - D.52.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed TR
MF-OR BBB is a TSC BBB. o
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For example, assume that there is a stuck-at-1 fault at the cutput of gate 17 in
type 2 block. This fault can be tested by T3, Ts € T, and will be indicated at its
output D* by (00) (the outputs — D’ and D also indicate this fault). If the output
of gate 2 has a stuck-at-0 fault in type 2 block, this fault can be tested by T} and
only indicated at its output C’ by (00).

‘When Ty is applied to its inputs, every single internal stuck-at fault is reflected
at its main output D' for at least one testing vector T; € Ts except the single stuck-
at-0 fault at gate 2 which is only indicated at C'. Thus, the output C" also has to
be monitored when using TR-TSC MF-OR BBBs to building TR-TSC circuits.

5.4.2 TR-TSC MF-AND basic building block

The internal construction of TR-TSC MF-AND BBB which implements

C = Aesmi B, (5.19)
C' = Adsm B (5.20)

is shown in Figure 5.11.

Theorem 15 : The proposed TR MF-AND BBB is a TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in D.1 - D.23.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed TR
MF-AND BBB is a TSC BBB. a

For example, assume that the output of gate 4 has a stuck-at-0 fault, this fault
can be tested by Tj. The outputs C’ and C indicate this fault by (00) and (11)

respectively.



5.4.3 TR-TSC MF-XOR basic building block

The internal construction of TR-TSC MF-XOR BBB which implements

E = A®sma B, (5.21)

E = AomB (5.22)

is shown in Figure 5.12. @pg is the odd-parity operation [11]-{16].
Theorem 16 : The proposed TR MF-XOR BBB is a TSC BBB.

Proof: Its fault secure and self-testing properties are illustrated in D.40 - D.48.
The rest of the proof is similar to in Theorem 5. Consequently, the proposed TR
MF-XOR BBB is a TSC BBB. a

For example, assume that the output of gate 2 has a stuck-at-1 fault; this fault

can be tested by Ty, Ty € T, and will be indicated at its output E by (00) and (1)

respectively.

5.5 Comparisons of four sets of TR-TSC basic
building blocks

Table 5.i1 lists the number of logic gates used in different BBBs. It also gives
the gate levels in the BBBs.

In comparison with TR-TSC EIS BBBs and TR-TSC EIIS BBBs, TR-TSC EIS
BBBs use less hardware and has a 12wer gate levels; howevere, they are not widely
used in designing TR-TSC circuits. TR-TSC EIS BBBs and TR-TSC EIIS BBBs
have acceptable number of gates and gate levels. They are the most useful BBBs

in building TR-TSC functional circuits while they also can be applied to the design
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Table 5.11: The table of comparisons of different BBBs.

TYPE OF BLOCKS || AND/OR [ XOR/XOR | lnverter || Total Gates ]| Gate Levels

EIS-XOR 6 0 6 2

EIS-AND 10

EIS-OR 10

EISS-XOR

EISS-AND 6

EISS-OR [

EIIS-XOR 13

EIIS-AND 9

EIIS-OR 9

EXOR BBB 4

o|olfrs]rf = || o ool
PO S =Y 1= 1 Y P | P )

AND BBB 1

olo|ell=|=|~[e|=|=|=|=|=!
of = [rcf = [ el v ve] =l 2] =

OR BBB

S|
=|

26

of TSC checkers. TR-TSC MF BBBs possess the functions of both the morphic
basic operations proposed by Gaitanis [11]-{16] and some strong morphic basic
operations described in Chapter 4; therefore, they cost much hardware and have
more gate levels. Thus, they are only suitable for cases which have modular cell

structure.

5.6 Concluding remarks

‘We have proposed four sets of universal TR-TSC BBBs — TR-TSC EIS BBBs,
TR-TSC EISS BBBs, TR-TSC EIIS BBBs, and TR-TSC MF BBBs. These BBBs
can be used in building TR-TSC circuits which implement any given combinational
logic function. Since EIS BBBs and EIIS BBBs possess useful properties, they
are essential for designing TR-TSC functional circuits. This will be discussed in

Chapter 6.
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When EIIS BBBs are used in building TR-TSC functional circuits, both main
function outputs and output E have to be monitored because single stuck-at faults

at gate 1 and gate 2 are only reflected at the vutput E.
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Figure 5.1: Proposed structure of TR-TSC EIS-XOR BBB.
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Figure 5.11: A proposed structure of TR-TSC MF-AND BBB.
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Figure 5.12: Proposed structure of TR-TSC MF-XOR BBB.
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Chapter 6

Design of two-rail totally
self-checking functional circuits

It is highly desirable that digital circuits possess TSC property. Since the TSC
concept was introduced by Carter et al in 1968, a lot of work has been done on
the design of TSC circuits. However, there is still no simple, convenient, flexi-
ble, and systematic design method available for TSC circuits, especially for TSC
functional circuits. In many cases, to achieve a TSC circuit is very difficult and
even impossible. In addition, the structure of conventional TSC circuits is usually
complicated and makes it very difficuli to locate faulty units. This leads to a low

maintainability.

In order to the limitati f ional theories and design methods
for TSC circuits, new design theories and methods are formalized in this chapter.
New design methods are based on Bsy and the new class of checkers, and make
use of the proposed new BBBs for constructing TR-TSC functional circuits. We
also use existing design techniques of TR-TSC checkers to build TR-TSC error

propagation circuits.
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6.1 Simple interconnection method (SIM)

A design method called simple interconnection method (SIM) using new BBBs
is presented here. SIM is suitable for the case that the self-testing property can be

easily achieved or verified and has a large amount of inputs.

A functional circuit which is composed of the proposed BBBs and/or the prim-
itive operator blocks [11)-[16] is a T'SC circuit if and only if it meets the following

conditions:

Condition 1 : All the basic building blocks in the functional circuit receive the
complete minimal test set Ts in their testing vectors under normal condition when

a set of diagnostic sequence pairs is applied to the inputs of the circuit.

Condlition 2 : There ezists at least one path which makes every single internal

Jault propagate Lo one (or a group) of observable error indication output(s).

Condition 3 : All the components which form the error propagation circuits are
able to receive the complete minimal test set Ts in their testing vectors during

normal operation.

The structure of this new class of TSC functional circuits consists of tws parts.
One part implements given combinational logic functions, the other pact provides
the path to propagate error indications. The new BBBs are highly suitable for
the first part while they can also be used in constructing the second part, and the

primitive operator blocks are efficient for the second part.

We give an example to demonstrate SIM for the design of TSC functional circuits

using the proposed BBBs and the primitive operator blocks.
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6.1.1 The Design of TR-TSC full (FA) adder using TR-
TSC MF basic building blocks

Full adder implements the following logic functions:

S = XioY,0Cia (6.1)
Ci = Xi-Yi+Xi-Ci+Yi-Ciny (6.2)

where S; - sum, C; - carry, X;, Y; - inputs, C;_y - previous carry.
A structure of TR-TSC full adder is shown in Figure 6.1.

Any single internal fault will propagate to an observable error indication output
IF and any error input will be indicated at output EI. This TR-TSC full adder im-
plementation requires considerably more gates than the TR-TSC full adder circuit

in Figure 4.1. But, the method presented here is general for any function.
Theorem 17 : The full adder described above is a TSC full adder.

Proof: The proposed full adder maps code inputs into code outputs and noncode
inputs into noncode outputs during fault-free operation. Thus, it is code-disjoint.
Since the adder either keeps the correct value or gives at least one error indication at
its error indication outputs EI and IF when any error inputs or any single internal
stuck-at fault occurs during normal operation, it possesses the fault secure property.
Its self-testing property can be verified by a set of 6-bit diagnostic sequence pairs
W;. The complete set of 6-bit diagnostic sequence pairs are given in E.l — E.5.
With the 6-bit diagnostic sequence pairs, it has been verified that each component is
able to receive T in its testing vectors during normal operation, which is illustrated

in Figure 6.1. Consequently, the full adder is a TSC full adder. o

9%



Since this TSC full adder uses two big BBBs and many other BBBs (SEDTRs),
it is not an economic scheme. Later, we will present a better scheme using EIS
BBBs and SEDTRs.

6.1.2 D pling techniques for rek error indicati
variables
We propose a di ling method to achi p: error indications of EI and

IF in this section. This will help to locate faulty units and enhances maintainability.

A TSC decoupling BBB (DC;)

The proposed TSC FA in Section 6.1.1 has two error indication outputs - EI
and IF. However, IF is not independent of the inputs of the adder. When any error
input appears, both EI and IF indicate this fault by (00) or (11). In this case, C;
and S; have to be disregarded; therefore, it will be desirable to have a separate IF.

In order to solve the above problem, we propose a special BBB calleX TR-TSC
decoupling BBB (DC;). Here, we develop two types of DC;. The Type I DC;
employs less hardware than the Type II DC; but its internal faults are reflected at
both its outputs EI and IF. In comparison to the Type I DCj, any single stuck-at
fault in the Type II DC; can be indicated at its output IF.

The internal constructions of Type I DC; and Type II DC; are shown in Fig-
ure 6.2 and Figure 6.3, respectively. The corresponding truth table is given in
Table 6.1.

From Table 6.1, we find that there is no case which both EI and IF are (00) or

(11). If this case occurs, it means that there is a single stuck-at fault in DCj.
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Theorem 18 : The proposed Type I DC, is a TSC BBB.

Proof: It is similar to the proof of Theorem 17. Here, it will not be repeated.

Similarly, the Type II DC; is also a TSC BBB.

A decoupling technique for relevant error indication variables

‘We give an example to demonstrate the decoupling method of relevant error
indication variables.

Figure 6.4 is a structure of a TR-TSC decoupling checker (DC,) with four
relevant error indication variables and its truth table is given in Table 6.2.

Theorem 19 : The proposed DCy is a TSC checker.

Proof: It is similar to the proof of Theorem 17. Here, it will not be repeated.

An example application of DCj is shown in Figure 6.5. Its internal fault detec-

tion is illustrated in Table 6.3.
D = (((X0- X1) ® X2)- X3) + X4 (6.3)
The relationships of four variables are:

A—B—C—D (6.4)

Table 6.1: The truth table of DC,.

IF1
(01)/(10) || (01
(00)/(11) || (00;
(00)/(11) [ (01
(01)/(10) ] (00,

=l
1=

Il




Table 6.2: The truth table of DC,.

T A D0
117 1 (00 woi/(11) 110)
/() | ()] W0/(10) | (00)/tTD) | (0T,
[T00)/(TT) | (@0)/(11) 3 (01)/(10) [ (017110}
)10) [ (OM/(TT) | Oy/(10) | (01)/(10)

T 1
)/ A

(00)/(11)

Table 6.3: An example of internal fault detection using DCj.

(O1)/010) T101)/(10)
(O1)/(10) § (01)/(10)

{1/

On)/110)
(11710 [ (90)/11]

O0)/01) T(00)/(11) |
O7)/(10) [(un)/(11)

(1)/(10) | (00)/(10) | @ /iin (L/(10) [(OT)/(10) ; (00)/(11) | (011/(10)
A(ﬂl]/lm) (01)/C10) | 01/ (10; (011/(10) [ (01)/010) | (01)/(10) T (00)/(11)

where “—" means that an error indication at the left causes an error indication
at the right.
From Table 6.3, we can see that any single stuck-at fault is only indicated at its

own error indicator.

6.1.3 The design of TR-TSC circuits with separate inter-
nal fault indication IF

TSC circuits with independent IF can be easily achieved using decoupling BBB
DC,. We use a design of TSC FA with separate IF to demonstrate the design
technique of TSC circuits with separate IF.

An internal construction of a TR-TSC FA with separate IF is shown in Fig-
ure 6.6. Suppose that there is only one kind of error which can occur during
normal operation. When the proposed FA receives error inputs, only EI indicates
the faults. When there is any single internal stuck-at fault, IF produces an error

indication.
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Theorem 20 : The proposed full adder is a TSC full adder.

Proof: It is similar to the proof of Theorem 17. Here, it will not be repeated.
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Figure 6.1: A structure of TR-TSC FA using TR-TSC MF BBBs.
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6.2 Image design method of TR-TSC functional
circuits using BBBs

In many cases, SIM cannot achieve TR-TSC functional circuits. For exam-
ple, a two-rail voter (VT) with three inputs using BBBs, shown in Figure 6.7, is

constructed using SIM. VT implements the following function:
Q=Qs(Q1+Q2) + Q: (6.5)

where @, Q2,Q3 and Q are two-element variables.

Obviously, this VT possesses the fault secure property, for it either keeps the
correct value or gives at least one error indication at its output Q when any error
input or any single internal stuck-at fault occurs during normal operation. Since
@Q1,Q2, and @ come from three identical TSC modular units and always give the
same logic values (01) or (10), each BBB in the VT can never receive the complete

minimel test set Ts during normal operation. Thus, it is not self-testing.

In order to overcome this problem, we propose an image design method (IDM)

with a pair of complement translators.
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Table 6.4: The truth table of CTHS and CTLS.

CTHS CTLS
Strobe | Input || Output Tnput || Output
Sb_ [ Ay Az [ Ary | Anz [| A1 | As || Apy [ AL
0 [N 0 1 01 1 0
1 01 1 0 01 0 1
0 110 1 0 1 0 1
1 110 0 1 1 1 0
0 00 0 0 0 1 1
1 00 1 1 0 0 0
0 1]1 1 1 1 0 0
1 1 1 0 0 1 1  § 1

6.2.1 71'SC complement translators - CTHS and CTLS

Two TSC I I are introduced here. One it comple-

ments its inputs when its strobe Sb is at high level. We call it TSC complement
translator with high strobe (CTHS). The other is just the opposite. It complements
its inputs when strobe Sb is low. We call it TSC complement translator with low

strobe (CTLS).

Their internal constructions are shown in Figure 6.8 and their truth table is

given in Table 6.4,

Their TSC properties are demonstrated in Table 6.5 and Table 6.6, respectively.
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Table 6.5: The verification of the TSC property for CTHS.

stuck-at fault_ar gate| stuch-at fault at
Strobe | inpu stuck-at-0 at gate-1 | stuck-at-1ar gate-1 § stuck-at-0 ar gate-2 T stuck-ai-1 at gate-2
Sb || A [ A2 || Ans Aia ™ Aml Aus A
0 [} 1 0 [
[ [ [ T
i [ [
1 ! 0 ]
4
I I
o | T
! )

Table 6.6: The verification of the TSC property for CTLS.

Stnck ot fauht a1 @ate |

T ek fault gt
Strobe | mput | stuck-at:0 at gate-l | stuck-at-l at gate ]  sturhai-0 at gate? ] stuck at-1 al gate-2
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Figure 6.8: The proposed CTHS and CTLS.
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6.2.2 Image design method (IDM)

A general design method called image design method (IDM) is introduced in
this section. This method is a universal technique to design TR-TSC circuits using
BBBs. In order to make each component receive the complete minimal testing set
Ts, a pair of complement translators - CTHS and CTLS - is employed.

In order to achieve the TSC goal with IDM, the minimum requirement for a
circuit which implements the given logic is that the inputs of the circuit do not

keep only one logic level during normal operation.

A general structure of a TR-TSC circuit designed by IDM is shown in Fig-
ure 6.9. It is still composed of two parts ~ a TSC functional circuit and a TSC
checker. Further, the TSC functional circuit has three different parts. They are a
TR-TSC functional circuit with CTHSs (FC-L), a TR-TSC functional circuit with
CTLSs (FC-H), and a TR-TSC multiplexer (MUX). Their functions during normal
operation are described below.

1. FC-L: When Sb is low level, it implements given logic functions. When Sb is
high level, it no longer gives correct functional values but proceeds with error

diagnosis.

1

FC-H: Its function is just the opposite of FC-L. When Sb is low level, it
proceeds with error diagnosis. When Sb is high level, it implements given

logic functions.

L

MUX: It produces the outputs of the TSC circuit. While Sb is low level, it
selects the outputs of FC-L as the outputs of the TSC circuit; while Sb is
high level, it takes the values of FC-H as the outputs of the TSC circuit.
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Figure 6.9: A general structure of TR-TSC circuits with IDM.
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The TSC checker consists of a TSC input checker, a TSC reduction circuit for
internal fault propagation, and TSC error analyzer. The input checker monitors
error inputs. The reduction circuits provides error propagation paths for internal
faults. The error analyzer distinguishes between any input error and any internal

fault from a prescribed set of faults.

Since this structure has two symmetric functional circuits — FC-L and FC-H, we
call the structure as image structure. Consequently, the design method employed

in the design of this kind of TSC circuits is called Image Design Method (IDM).

The IDM is formalized as:

. FC-L: Place CTHSs at one of the two inputs for all BBBs.

©

FC-H: Place CTLSs at one of the two inputs for all BBBs.

w0

. MUX: MUX is an EIS-XOR BBB. We locate a CTHS (CTLS) at its output
and a CTHS (CTLS) at one of its inputs which is connected to FC-L (FC-H).

o

The TSC checker: Investigate each pair of monitored internal lines. When
it produces only one value (01) or (10) during normal operation, place a

complement translator at that placz.

Theorem 21 : The circuit constructed using IDM is a TSC circuit.

Proof: The resulting circuit maps code inputs into code outputs and noncode
inputs into noncode outputs during fault-free operation. Thus, it is code-disjoint.
Since the circuit either keeps the correct value or gives at least one error indication
at its error indication outputs EI and IF when any error input or any internal fault

occurs during normal operation, it possesses the fault secure property. Because
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each block is able to receive at least two testing vectors out of four testing vectors
in Ts when Sb is at low level, and receive at least the other required testing vectors
when Sb is at high level, the self-testing property is also guaranteed. o

Any combinational logic can be implemented by this design method. Let us
consider an example of a TR-TSC voter which cannot be achieved by SIM. A
group of simplified symbols of BBBs, CTHS and CTLS is given Figure 6.10. The
proposed TR-TSC VT is shown in Figure 6.11.

Let Qae stands for the majority value determined by FC-L, and Qamy for the
majority value determined by FC-H, Q is the output of the circuit; then Q = Quz,
and Quu = 1 when Sb is low level, and Q = Quy and Qpz = 1. Thus, Q always

achieves the majority values.

Theorem 22 : The proposed voter is a TSC voter.

Proof: The proposed VT maps code inputs into code outputs and noncode

inputs into noncode outputs during fault-free operation. Thus, it is code-disjoint.
Since the circuit either keeps the correct value or gives at least one error indication
at its error indication outputs EI and IF when any error input or any internal fault
occurs during normal operation, it possesses the fault secure property. Because
each block is able to receive at least two testing vectors out of four testing vectors
in Ts when Sb is low level, and receive at least the other required testing vectors

when Sb is high level, the self-testing property is also guaranteed. o

Its internal fault indication IF is independent of error input indication EL
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Figure 6.10: The simplified symbols for BBBs, CTHS and CTLS.
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Figure 6.11: A structure of the proposed TR-TSC voter.
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6.3 A new generation of TSC circuits — TSC
error-confining (ECF) circuits

Ordinary TSC circuits have the bility of error detection but do
not have the capability of confining internal faults in several particular areas. This

leads to a low localizability and availability, and a high cost for maintenance.

A new generation of TSC circuits called TSC error-confining (ECF) circuits is

introduced here

6.3.1 The definition of TSC error fining circuits
We define an error-confining circuit as:

Definition 13 : A TSC circuit is called a TSC error-confining (ECF) circuit if
and only it is capable of confining internal faults from a prescribed set of faults in

separate areas.

According to the above definition, ECF circuits has many independent areas in
teams of error detection. When any internal fault occurs, it will be isolated in a
particular area. Each area has its own error indicator /F;. If any internal fault
occurs in i*P area, it is only indicated by IF;. Each IF; is independent of each other

and also independent of error-input indication EL.

6.3.2 The design of TSC ECF circuits

In order to form independent error-isolation areas, EIIS BBBs are properly
used to build isolation boundaries.

We give an example to demonstrate the configuration of TSC ECF circuits.
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Example: An arbitrarily given TR-TSC circuit consisting of BBBs and CTHSs
and CTLS is given in Figure 6.12. Suppose that the inputs of each BBB in this
circuit are connected to some previous outputs or inputs and its output is provided

to subsequent BBBs or as one of outputs of the circuit.

Now, all the BBBs composed of column 1 and 6, as well as row 8 are used with
corresponding EIIS BBBs so that the circuit still keeps the logic functions during
fault-free operation. The rest of BBBs are EIS BBBs. These placements using EIIS
BBBs, shown in Figure 6.13, form several isolation boundaries. These boundaries
partition the circuit into four independent parts (Part 1, Part 2, Part3, and Part 4)

in a sense of error detection. The proposed partition is illustrated in Figure 6.14.

These four independent parts have their own independent internal fault indi-
cations — IFy, IF;, IF;, and IF,. If any internal fault occurs, it will be only
indicated at its corresponding IF;. For instance, if any single stuck-at fault or uni-
directional faults occur in Part 2 and there is no fault in the rest of the circuit, the
faults in Part 2 only indicated at IF; by (00) or (11). If all four checkers produce
(00) or (11), this means that all four independent parts have internal faults. The
resulting ECF circuit which has four independent error-isolation areas is shown in

Figure 6.15.

Here, internal fault indication IF is independent of error input indication EI
Thus, the ECF circuit possesses a high capability of fault tolerance, a high local-
ibility, and a high maintainability. Of course, all these advantages are realized by
providing additional hardware. The amount of hardware required here is more than
what is required in the other design procedured, but this method results in circuits

that enable error location.
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Figure 6.12: An arbitrary TR-TSC circuit using BBBs.
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Table 6.7: The truth table of TSC DIDC BBB.

ElL Ely 11y Ely El; 117
(01)/(10) [(01)/(10) [ (01)/(10) [ (01)/(10) [ (01)/(}0) | (U1)/(10)
(00)/(11) [ (01)/(10) | (00)/(11) || (00)/(L1) [ (01)/(10) | (O1)/(10)
(
(

(01)/(10) [ (00)/(11) | (00)/(11) || (O1)/(10) [ (00)/(11) | (01)/(10)
(00)/(11) [ (00)/(11) [ (01)/(10) [[(00)/(11) | (00)/(11) | (01)/(10)

6.3.3 A note of isolation boundary

Isolation boundaries are composed of EIIS BBBs. Any single stuck-at fault in
an EIIS BBB is reflected at its two outputs. One is its main output (i.e. EIIS-
AND BBB is output C), and the other is the semi-sensitive output E (test output).
Since this semi-sensitive output E reflects one of its two inputs in a sense of error
detection, if we simply use EIIS BBBs to construct isolation boundaries, a part of
internal faults would pass the isolation boundaries and make its IF; preduce an

error indication when any fault occurs in its previous neighboring area A;_.

In order to overcome this undesirable case, we develop another special TR-TSC

BBB called double-input decoupling (DIDC) BBB.
A proposed structure of DIDC BBB is shown in Figure 6.16. It consists of two
DC;. lts truth table is given in Table 6.7.

Theorem 23 : The proposed DIDC BBB is a TSC BBB.

Proof: The proposed DIDC BBB possesses the fault secure property, for it either
keeps the correct value or gives at least one error indication at its output IF when
any internal fault occurs during normal operation. The self-testing property is also

preserved. This has been verified by CDS illustrating in Figure 6.16. a
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Figure 6.16: The proposed TSC DIDC basic building block.

To construct an isolation boundary, we should consider two cases. One is that
cach EIIS BBB in the isolation boundary is independent of each other. The other

is that some BBBs in the isolation boundary are not independent of each other.

For the independent case, we give the design method which is shown in Fig-
ure 6.17. The isolation boundary is composed of three EIIS BBBs and three DIDC
BBBs and two SEDTR blocks. Any input error is not reflected at IF,. IF; only
indicates the faults which occurs in three DIDC BBBs, two SEDTR blocks, and
a part of three EIIS. For the dependent case, we give the design method which is
shown in Figure 6.18. Similarly, any input error is not reflected at IF. IF} only

indicates the faults which occurs in the isolation boundary itself.
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Figure 6.17: A structure of isolation boundary with independent EIIS BBBs.
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Figure 6.18: A structure of isolation boundary with dependent EIIS BBBs.
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6.4 A brief discussion on sequential basic build-
ing blocks

Designing a set of sequential BBBs appears very difficult. There has been
no reported work on the sequential BBBs which can be used in designing TSC

sequential circuits. Conventional schemes of fault tolerance for sequential circuits

can be classified into two main methods — fault king scheme and state-coding
scheme. Although these two schemes can be implemented with TSC technique,
their complicated structure makes it very difficult to locate the faulty units and
replace them. Once internal faults occur, the whole circuit has to be disregarded.
Moreover, common sequential techniques cannot be directly applied to the design
of TSC sequential circuits. This leads to a high cost of maintenance and a low
availability. Therefore, it is also desirable to develop a set of universal sequential

BBBs.
6.4.1 A TSC D flip-flop

As one of the most important sequential components, D flip-flop is widely used

in designing sequential circuits which impl given ial logic fi

Unlike the ordinary D flip-flop which can be designed using common logic gates,
the TSC D flip-flop cannot be achieved using TR-TSC BBBs. If we develop a TR-
TSC D flip-flop using BBBs and using the similar technique as for ordinary D
flip-flop, the resulting D flip-flop will never work. The reason is that the resulting
D flip-flop cannot get out of its initial state (00). This means the flip-flop cannot

start automatically.

A TSC D flip-flop based on the TMR technique {16} is achieved. Figure 6.19 is
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its internal construction. IF depends only on masked faults in TMR system and
all the faults in the error detecting circuit. S indicates unmasked faults in the
TMR system as well as a small and constant number of faults in the error detecting

circuit. IF is a warning signal and S is a stop signal.

Theoretically, the proposed TSC D flip-flop can be used as a sequential BBB to
design TSC sequential circuits. Considering its hardware cost and its gate levels,
it is not an economic and efficient BBB. To develop a practical TSC D flip-flop is
a pending and challenging problem.

6.5 Concluding remarks

In this chapter, we have proposed two design methods — SIM and IDM —
to build TR-TSC functional circuits using BBBs. A special BBB — DC; — has
been developed. DC; is very useful for designing TSC circuits with separate IF. A
decoupling technique has also been studied. We have introduced a new generation
of TSC circuits — TSC ECF circuits. TSC ECF circuits have the capability of con-
fining internal faults in separate areas. The DIDC BBB which has been presented
in this chapter is a key component for building isolation boundaries. Finally, we

have a brief dis ion on ial TSC BBB, and developed a TSC D

flip-flop.
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Figure 6.19: The proposed TSC D flip-flop.
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Chapter 7

An efficient combinational TSC
checker for 1-out-of-3 code

for a combinational totally self-checking (TSC) 1-

An indirect design

In ison to the existing indirect

out-of-3 code checker is
to design combinational TSC 1-out-of-3 code checkers, the proposed one uses less

hardware, has fewer gate levels, and possesses a higher test capability.

7.1 Design motivation

There have been many results on the problem of designing TSC checkers for
1-out-of-n codes, a special subclass of m-out-of-n code, with n > 3, but only a few
of them relate to the n = 3 case [10], [17], [21], [25], [30]. Reddy [29] conjectured
that no TSC checker (direct design) exists for the 1-out-of-3 code, especially if the
checker is constructed from only AND and OR gates. So far, only two direct design
techniques of the TSC 1-out-of-3 code checkers have been published, but they are
both combinational NMOS impl ions [21], [30]. Combinational gate-level

1 ions of the TSC 1-out-of-3 code checkers described in [17}, [25] belong

to indirect design techniques.



Based on the fact that l-out-of-3 code has three codewords and these three
codewords are not enough to constitute a complete test set for an independent
combinational 1-out-of-3 code checker with respect to 2 set of all single stuck-at
faults [29], the design techniques in [17] & [25] make use of at least one known
TSC checker in a TSC system as their auxiliary conditions. The design methods
presented by Golan in [17] need any available m-out-of-n code in a TSC system
combined with 1-out-of-3 code to obtain a reduced (m + I)-out-of-(n + 3) code for
which a TSC checker can be designed. The design methods proposed by Paschalis
et al in [25] also follow the basic idea that combines the 1-out-of-3 code with other

codes although the codes are no longer restricted to fixed-weight codes. However,

a lator T first lates the 1-out-of-3 code into an i lete t iabl
two-rail code. Then, the incomplete two-variable two-rail code is properly combined
with the 1-out-of-2 code outputs of one or more other TSC checkers which are

available in a TSC system.

In this chapter, we present a combinational TSC 1-out-of-3 code checker with
respect to all single stuck-at faults. The basic idea to translate the l-out-of-3 code
into an incomplete two-variable two-rail code [25] is also followed. We make use of
the complement translator (CTHS) to provide the other necessary test input (01,
01) for the reduction circuit which is a TR-TSC EIS-XOR BBB. Thus, the TR-TSC
EIS-XOR BBB can receive its complete test set which consists of four test inputs
- (01, 01), (01, 10), (10, 01), and (10,10) - during normal operations.

The terms and definitions employed here are based on those used in [25].
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7.2 A proposed design method

With the help of any TSC checker available in a TSC system, the TSC 1-out-of-
3 code checkers have been achieved in [17], [25]. But any input error or internal fault
from a prescribed set in the known TSC checker will lead to an error indication at
its 1-out-of-2 code output. In that case, the resulting TSC 1-out-of-3 code checker
cannot receive all required test inputs. Thus, the test capability of TSC 1-out-of-3
code checkers is affected by the known TSC checker, especially when the known

TSC checker is very large.

Here, we present a simpler design which enhances the test capability and uses
less hardware and has fewer gate levels. The 1-out-of-3 code is also initially trans-
lated into an incomplete two-variable two-rail code by the TSC translator T [25].
Then, a TSC complement translator with high strobe (CTHS) is placed at the
output (al, bl) of T. The output (Z1, Z2) of CTHS and the output (a2, b2) of
T together form the inputs to the TR-TSC EIS-XOR BBB. Thus, the TR-TSC
EIS-XOR BBB receives its test inputs (10, 01), (01, 10), and (10, 10) when Sb is
low, and receives (01, 01), (10, 10), and (01, 10) when Sb is high. Consequently, the
TR-TSC EIS-XOR BBB will receive the complete test set during normal operations.

The auxiliary input Sb can be any independent line in a system, which has a
logic 1 level and a logic 0 level during the normal operation. For example, we can

choose system clock as the auxiliary line Sb.

The gate-level implementations of the translator T is shown in Figure 7.1. Its

truth table is given in Table 7.1.

The logic gate implementation of the proposed TSC checker for 1-out-of-3 code

is shown in Figure 7.2 and its truth table is given in Table 7.2.
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Table 7.1: The truth table of the translator T.

Taput Output
X1 X2 N8 [al bl a2 2
0 0 0o 0 0 0
0 0 1t 0 0 1
0 1 0 0 1 1 0
Lo oft 0o vt oo
0 - 1 1 I 1 1
1 0 1 1 0 1 1
1 1 0 1 1 I 0
1 1 1 1 1 1 1

Theorem 24 : The described checker above is a T5C checker for 1-out-of-3 code.

Proof: The proposed checker maps code inputs into code outputs and noncode
inputs into noncode outputs during fault-free operation. Thus, it is code-disjoint.
Since the checker either keeps the correct value or gives an error indication when
any single internal stuck-at fault occurs during normal operation, it possesses the
Jault secure property. It is obvious that the self-testing property is also reserved, for
each component- T, CTHS, and EIS-XOR BBB - receives its own all test inputs.
Consequently, the checker is a TSC checker. o

7.3 Comparisons

The proposed TSC l-out-of-3 code checker uses only 10 logic gates and four
gate-level delay. Although an auxiliary line Sb is introduced, the probability of
stuck-at faults at a single line is much less than in a complicated circuit. Therefore,
the proposed TSC checker has a higher test capability than the TSC checkers
described in [17], [25]. If the known TSC checker is considered, the presented TSC

checkers in [25] has, in the most favorable case, at least 20 logic gates and six gate-
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Table 7.2: The truth table of the proposed TSC checker for 1-out-of-3 code.

Sb X1 X2 X3 [lal bl |2l 22 [a2 b2] [ g
0[]0 o0 0J0 0J0 0o 000
0 0 0 L Lo [ 0 1 01
oo 1t offo t]o {1 oo
0 1 0 0 10 L0 I 0 I 0
00 1 Tt t ]t 1|1 T[i1
0 1 0 1 10 oo 1 1 11
ot 1 ofr vl oo
0 1 1 1 1 1 1 1 1 1 11
T|0 0 00 01 110 0|00
T[0 0 1|t 0[0 1|0 1|10
tfo 1t ofo vt oofr ofto
tf1r o of1 oo vt ofo
1 0 1 1 1 t [ 1 Lo o
oo rfroofo o onfuoa
Ll o1 ofir rfo ol ofooao
vl o1 e orfo o efr 1o
X3 [
x i
X1 " o L
5
Sb

Figure 7.2: The logic gate implementation of the proposed TSC checker for 1-out-
of-3 code.



X1 X2 X3

al bl a2 b2

Figure 7.1: The gate-level implementations of the translator T.

level delay. In addition, it has at least 7 input lines compared to 4 input lines of the
TSC checker proposed here. It is evident that the proposed TSC 1-out-of-3 code
checker is superior to the existing TSC 1-out-of-3 code checkers in [17], [25].

7.4 Concluding remarks

The design method for the TSC 1-out-of-3 code checker proposed in this chapter
is the simplest indirect design method for the combinational implementation at
logic gate level. It employs less hardware and fewer gate-level delay. As it does not
depend on any known TSC checker in a TSC system, it has a higher test capability.



Chapter 8

Summary and Suggestions for
Future Research

8.1 Summary

In this thesis, we have presented three types of TR-TSC BBBs. These BBBs,
like ordinary logic gates in common digital circuits, can be easily applied to the
design of TSC circuits. Common logic design methods, e.g., K-map simplification
technique, can be directly used in the design of TSC circuits. The formalizations
of strong morphic Boolean algebra Bsys and the new classification of checkers lay

down the th ical foundation for the devel of TR-TSC BBBs and the

design of TR-TSC circuits using the TR-TSC BBBs.

According to Bsy, the logic representations of two-rail error indication variable
are 01 for logic 0, 10 for logic 1, and 00 or 11 for error indication. Thus, TR-TSC
circuits composed of BBBs not only can implement given logic functions but also

have the of error detecti

Three types of TR-TSC BBBs — EIS BBBs, EISS BBBs, and EIIS BBBs

have been described. Each type of BBBs consists of three basic function blocks
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~ AND-BBB, OR-BBB, and XOR-BBB. These universal BBBs are very useful for

constructing TR-TSC functional circuits.

Two design methods — SIM and IDM — have been proposed. SIM employs less
hardware but is suitable for the case where the self-testing property can be easily
achieved or verified. The verification of self-testing property of circuits which are
designed by SIM is difficult. On the other hand, IDM can deal with any case. It
is a general design method but uses more hardware. The verification of sclf-testing

property of circuits with [DM is quite simple.

A very useful BBB — a decoupling block (DC;) has been proposed and two
types of TR-TSC DC,'’s have been developed. DC; is particularly useful for design-
ing TSC circuits with separate EI and IF. A new class of TR-TSC circuits called
TSC decoupling circuits has been studied. These decoupling circuits are mainly

used to distinguish relevant error indication variables, and to locate fault sources.

A new generation of TSC circuits called error-confining (ECF) circuits has been
introduced. In a ECF circuit, internal faults are confined in separate arcas and

indicated by independent internal fault indicators. These greatly improve main-

bili ilability, and reliability. A special technique for desi isolation

boundaries has been presented. This has been achieved using EIIS BBBs and a

double-input decoupling BBB.

A structure of a TSC D flip-flop has been proposed. Theoretically, the proposed
TSC D flip-flop can be used as a universal sequential BBB, combined with com-
binational BBB, to design any TSC sequential circuit. However, the proposed D
flip-flop costs much hardware and has a low speed.

By means of the principle and concept of two-element morphic space theory,
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an efficient TSC combinational checker for 1-out-of-3 code has been successfully
achieved. The proposed one uses less hardware, has fewer gate levels, and possesses

a higher test capability.

Finally, we can say that the proposed design methods for TR-TSC circuits using
BBBs and existing operator blocks are simple, convenient, flexible, and systematic
techniques. In addition, the proposed two-rail TSC circuits can detect not only
single stuck-at faults but also unidirectional faults. Thus, they have a wider appli-
cation potential. Some of the design techniques proposed here involve a high degree
of redundancy, but we believe that the increased complexity of hardware will be

offset by the benefits accrued in terms of fault tolerance.

8.2 Suggestions for Future Research
Future research could be carried out in the following aspects:

o Investigate characteristics of various TR-TSC circuits which are composed of
different BBBs. Since the placements of different BBBs in TR-TSC circuits
cause different flow of error indication propagation, error diagnosis depends
mainly on the relevance of error indication variables. In general, the rel-

evance of error indication variables in a TR-TSC circuit can be classified

as relevant, irrelevant, semi-relevant, conditionally relevant. S; 1l

study the theory of relevance of error indication variabies for TR-TSC cir-
cuits. Develop efficient circuit structure to enhance the capability of fault

diagnosis and improve maintainability.

o Study efficient and practical schemes of error correction for the TR-TSC cir-

cuits which are composed of the proposed TR-TSC BBBs. Make new TR-
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TSC circuits have the capability of correcting undesirable errors, as well as

the capability of confining, locating their internal faults.

® Develop cost-effective TSC ial Study theory and design
methods of TR-TSC sequential circuits.

® Improve the proposed BBBs and achieve new BBBs which use less hardware

and has fewer gate levels.

o Develop special BBBs to enhance reliability, avail and
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Table A.1: The truth table of EIS-XOR BB which has a stuck-at fault at gate-1.

Tnput A || Tnput B || Stuck-at-0 || Stuck-
NN AR A
o[t oot Jao
0 |
I |
1

! 1lo 1
0o}l 1
0 | 0 0 0 0

Table A.2: The truth table of EIS-XOR BBB which has a stuck-at fault at gate-2.

Tnput A [[ Input B [ Stuck-at-0 [ Stuck-at-1 ]
Al A B BE] K o i

0 1 0 I 0 ) 0 |
0 1 L 0 1 0 I I
vlofol oo oy
Lilodolodol v Jol

Table A.3: The truth table of EIS-XOR BB which has a stuck-at Landt at gate-d.

Input A [[ Input B || Stuck-at-0
AT A (BB £] k
0 1 0 1 0 1

0 L L 0 1 0
L{ofof|rl 0 0
1{o 1{0f0 1

Table A.4: The truth table of EIS-XOR BB which

s i stuckeat fandt at gate-1

Input A [ Input B || Stuck-at-0 || Stuck-at-1
AlA BB E] B [ E] E

0] 1 o1 jo | | |
0] 1 Ljojo ] | 0
Llogojt 1 0 ! 0
110 Ljojo | ! |




Table A.5: The truth table of EIS-NOR BB which hias a stuck-at fanli at

Tnput. A | Tnput B || Stnek-at-0 [ Stuck-at-1 |
N AN B B [ [ Fe ] Fr
DRI R
o o]0 g
tlofol ol o i
tlofrjofol o foj
“Table A.6: The truth table of EIS-XOR BHH which s a stuck-at fanlt at gate-6.

Tnput A [ Input B || Stuck-at-0) || Stuck-at-1
ENEN NS V57
[ 1 0 1 0 [ [ 1
ofrtfrfofol o | 0
1 0 0 1 0 0 1 0
| 0 1 0 0 i | |

Table A.T: The truth table of EIS-AND BBS

which has a stuck-at faultat gate @

Input A [ lnput B Stuck-at-0 Stuck-at-1

A A [ BB B Cofl B[ GG
0 1 0 I 0 I I (N} 0 1
0 1 I 0 1 0 [N 1 I 1 |
| 0 0 I 1 0 o1 1 1 I 1
| 0 | 0 00 0o 011 | 0

Table A.8: The tru

th table of

EIS-AND BB which has a stuck-at fanli ar gate-2

Tnput A || Tnput B Stuck-at-0 Stuck-at-1
N A (B[ B [E Gl B E G
0 1 0 I 0 0 1 I 0 1 0 1
0 1 1 0 1 0 [ I | 1 1 1
1 0 0 I 1 ) 0 | 1 1 1 I
| 0 1 0 0 | | 0 0 | 1 0
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AND BEB which has a stuck-at fanht at sate

Table A.9: The truth table of 1

Input A [ Input B Stuck-at-0 Stuck-at-1
INENEREAE CUC T T E G
of tfofr ool vi ol
of vt joedolrsrjudal
tftogoftfojololoftlbojfoein
tjofiJofola ol vtbolelag

Table A.10: The truth table of EIS-AND BB which has a stuch-at Tanltar gate |

lput A | nput B Stuck-at-0 Staek-at-1

N RS C e B L ] G0 6
ooy opr ) IR RN
0 1 i 0 vl [ ) |
tlofoln Gl e fo o)
tlofi]oe EIE R RN

Table A.11: The truth table of EIS-:

Toput A [ Tupi B

A A [ B By fil

ol T o] 1o I I 1 1

ol v fofrjogolegrprg|n
Lo ol e rjugoprgrpr e

1 0 | 0 0 0 ] ' I 0 1 J_._LL

Table A.12: The truth table of EIS AND BB whicli s a stuckeat fanlt at gate-G,
Input A | Input B Stuck-at-0
Al A [[Bi] B [ B [ B[ Gl
0 L 0 1 0 I 0 I
0 L 1 0 o000
1[0 0 1 [ U
1]0 110 0] 1 110
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Table A.13: The truth table of EIS-AND BBB which has a stuck-at fault at gate-7.

Tuput A [ Tuput B Stuckat-0__ | Stuckat-l

N B [ Be [ Fa [0l B [F (s
ol 1ol [N N
of oo poegrf
tloflolrfrfofol o frjofr]
tJofrjofolrfrfololrfofu

Table A.14: The truth table of EIS-AND BB which has a stuck-at fault at gate-3.

Iuput A || Input B Stuc Stuck

AL A [ B By | B ES

0 1 0 I 0 I 01040 I 0 |
[N L{o Ljfogoprfgrjopofao
I 0 0 I | 0 0 [ [V
1 0 L 0 0 I | 0§ o0 | L i

Table A.15: The trath table of AND BBB which las a stnck-at fault at gate-9,

Tuput A [ Input B Stuck-al-0

Al B [ ETETCC]E
0 1 0 1 0 | 0 I 0
0 1 1 0 1 0 0 1 1
ool Llofofr |1
1 0 I 0 0 1 010 0

Table A.16: The truth tableof I|

AND BBB which has a stuck-at fault at gate-10.

Input A || Input B Stuck-at-0 Stuck-at-1
A B [ BIETELTCICIE[E[C]G

01 01 ofrgoftofolrjoll
01 o Liogofofrjofpoll
ool Ljfojfoyoftrjofoql
1o Liojjojft Lijojojrjrjt
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Table A.17: The truth table of EIS-OR BBB which has a stuck-at fault at gate- 1.

Input A [ foput B Stuck-at-1 ]
LA BBk Fol b (1 0]
ofr o1 N ol
[N B AT AT I N R
Lo o] [

tjojtrjofu 0l 11 1] l

Table A.18: The truth table of EIS-OR BBB which has a stuck-at fanlt ar gate-2,

Input A || Input B

Stnck-atl )

L I B B [ F Fe [ D D L D [ D2 |
oJtrJoJtrJololTojoforrolT]
ot oo eg | L
tlofdoj v ool ofol ol
oo ool

Table A.19: The truth table of EIS-OR BBIS which has a stuck-at fault at gate 3.

Input A [ Input B Stuck-at-0 Stuck-al-1

N[ B[ B [ETED D F ] Dy [ D
0 I 0 [ 0 1 0 | | 1 [ |
0 I 1 0 1 0 1 0 | [ I 0
1 0 0 I oo (LA ] [ | 0
1 0 1 0 0 1 | 0 | | 0 0

L

Table A.20: The truth table of EIS-OR BB which has a stuck-at Tanlt at gate-}

Stuck-al-1
Ey Bl Dy Dy

(Tnput A [ Tnput B
AT A BB

0] 1 [N K | 1
01 110 tjloftrfo
Llofo}t tlogoeio
1 0 1 0 | | 0 0
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Table A.21: The truth table of EIS

-OR BBB which har a stuck-at fault at gate-3.

Input A [[ Input B Stuck-at-0 Stuck-at-1

AN A B [ B [ B [E D TD B [ E DD

0l 0l ofoproidu 01
1
1

0 1

0 1 | 0 l 0 i 0 1 1 1
I 0 0 1 | 0 I u | 1 1
i 0 1 0 010 1 | 0 1 ! 0

‘Table A.22: The truth table ol -OR BBB which has a stuck-at fault at gate-6.

Input A |l Input B Stuck-at-0 Stu

Ml A B Ba [ B [ 1 | Dy [ D2l [ EST D] D
0 1 0 I 0 1 0 1 | I 1 1

0 1 1 0 ofofofo o I 0

I 0 0 1 00 010 Lo 1o

1 0 1 0 0 1 | 0 | ! 0 0

Table A.23: The truth table o

-0 BB which has a stuck-at fault at gate-7.

Tnput A [ Tnput B Stuck-ai-0
A [ e [ By ] Ba | B Fa P [ Ps
0 I 0 I 0 I 0 1

0 1 I 0 1 0 1 0
Lo o1 Lfoginrjo
1|10 LjojJoji1jfojo

Table A.24: The truth t. BIB which has a stuck-at fault a1 gate-3.

Input A [ Input B Stuck-at-0 Stuck-at-1

A f A [ B[ B [ E [ E [ D Do [ £ [ Ea [ D] D
0 i 0 [ 01 0 [} 011 0]0
0 1 1 0 Lo 1 0 1|0 L 1

1 0 [ 1{0 1 0 110 3 }

1 0 L]0 01 1 L 01 110
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Table A.23: The truth table of EIS-OR BBE which has w st hoat fandt av gate 0

Input A [[ Input B
A A [ B | Be

Table A.26: The truth table of EIS-OR BBE which lus a stk at Tanlt b gate 10,

Input A {| Input B Stuck-at 9 Stuck-at-|
ENES A A AT T U
RN EIENEEERERER N R
0 1 1 0 1 0 1 0 i 0 i I
{o 0 L I [ Lo I §

1 0 1 0 0 | | 0 0 1 | |
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NOR BBI whicl has a stuck-at Tault at gate- 1.

Table B.1: The truth table of I

Input A [ lnput B |} Stuck-mi-0

Al A BB [ s )
[ ol tjo 1 1 1
1 1 0 0 0 1 0
tlojogt 0 0 | 0
110 Ljojo 1 | |

-NOR BRI which lus astiuck-at Gt at gate- 20

Table B.2: The truth table of ElS

Tnput A [ Input B Stuckal-|

A A | B P T ] Fe !
[ o1 o u 0 [
ol oo ]|
tloflol 1t i]ow I [
Lo ool o ol 1]
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Table B.3: The truth table of EISS-AND BB which has a stuck-at fault at gate-1.

Input A || Input B Stuck-at-0 Stuck-at-1

Al A B BB BCGIETERE]C]G
0 I 0 I 00 1 I 011 01

0 1 1 0 L{ojuojg1 1 1 1 |

1 0 0 1 | 0 0 | 1 I 1 1

1 0 110 OJO0jojojol 1 {0

Table B.4: The truth table of EISS-AND BBB which has a stuck-at fault at gate-2.

Input A || Input B Stuck-at-0 Stuck-at-1

M |G B B[] T A
0 1 0 I 0 1 0 1 I 1 010
0 I 1 0 0fo 010 I 0 0 1
1 0 0|1 Ofogojo Lpojol|t
1 0 1 {0 01 L {0 | 1 | L

Table B.5: The truth table of EISS-AND BBB which has a stuck-at fault at gate-3.

Input A | Input B Stuck-at-0 Stuck-at-1

Al B[ BIE[E[G[GIE]R]G]G
0 1 0 1 [ 1 1 01 01
0 1 10 Lifojoj1 1o 1 1
I 0 0 1 1 0 0 I 1 0 1 I
1 0 1|0 01 L]0jJo]1 010

Table B.6: The truth table of EISS-AND BBRB which has a stuck-at fault at gate-d.

Input A || Input B Stuck-at-0 Stuck-at-1

A A |B B [ Ek]a|G[E]ERE]CG]C
0 I 01 011 opofolt 01

0 1 1 0 Lpogolt L{fojpojfo
1 0 0 L Lfojgojgt Liojojo
1 0 110 01 L{ojfof1t |1
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Table B.7: The truth table of EISS-AND BBB which has a stuck-at fault at gate-5.

Input A [ Input B

A A [ B By
0 1 0 1
01 1o
L{ojpoj1
Ljfojfijfo

Table B.8: The truth table of EISS-AND BBB which has a stuck-au fanlt at gate-t,

Tnput A [ Input B Stuck-at-0 Stuck-at-1 |
A A [ B B [ B[ [ [ [ I:}T by Gy
ojrtqgojueprjofofofofprjoft
ol v frjofoftfotofrfofoln
1 0 0 1 01 0o Lpofol
1 0 110 1{0 1L {ofol Ll

Table B.9: The truth table of EISS-OR BBB which has a stuck-at Tault at gate-1.

[uput A |{ [nput B Stuck-at-0

A A B[ B f[ By [ Fa D Dyl 1
0 [l 01 011 [ 1
01 110 ojcypogo 1
110 0]t ojopolo !
110 110 041! 110 !

Table B.10: The truth table of EISS-OR BB which has a stuck-at fanlt at gate-2.

Input A || Input B Stuck-at-0 Stuck-at-1

A A BB [EJE]D Dl [ Eaf D] D
0 1 0 1 ojofojfofoll 01

0 1 110 L]0 | 0 1 I | 1

ool oo furgrl

1 0 110 010 1 | 01 1[0




Table B.11: The truth table of EISS-OR BBB which has a stuck-at fault at gate-3.

Tnput A

Ay

|
1
0
0

=||5

P

truth

Input A

Ay

co—

The truth

Toput A

Ay

1

1
0
0

SS-OR BBB which has a stuck-

o - — of=

&

o —— o
o oo
o — — o3
o oo

truth

Tnput A

Az

1
0
0

o)

cco
—oo —
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Table C.1: The truth table of EIIS-XOR BBB which has o stuck-at-0 fanlt at

gate-1.
Input A [ Input B Stuck-at-0
A A I B BB DD
0 1 0 I 0 | ) I 0 I
0 1 1 0 1 I I | I 0 i 0
1 0 0 I I I | I I 0 I [l
i 0 ) 0 011 | 1) | 0 0 |

Table C.2: The truth table of E11S-XOR BBI which has a stuck-at-1 fault at
gate-1.

[nput A || Input B Stuck-at-1
A A [ B B Lo e,
0 | 0]t

0 I 1 0 0 I I 0 | 0
1 0 0 I 0 I | 0 | )
1 0 1 0 010 | 0 0 1

Table C.3: The truth table of EHS-XOIR BUE which hus o stuck at-0 Tanlt at

gate-2,
Input A || Input B Stuck-at-0
AT A BB BT DR
[ 1 0 1 [ 0 I 0 1 0 1
0 1 1|0 OlOffouf! [ Lo
tloflolrffologolef oo
1 0 1 0 01 | 0 | 0 0 |

Table C.4: The truth table of EIS-NOR BB which his a stuck an-1 fanht at
gate-2,

[Tiput A [ Input B Stck-at-1
N A [ BB B Fa LGP [P s L s

0 1 0 I ] 1 oro 0 | 0 I
0 i 1 0 Lio 0 1 I 0 I 0
L 0 0 1 1o 0 1 I 0 I 0
110 110 1] 11 LjofJojll

i



Table C.3: The truth table of EIS-XOR BS13 which has a stuck-at-0 fault at
gale-3.

Miput A T Tnpnt B Stick-at-0
T (BB E 1O To0 0
o rqolrtJofrr [Tt
ot foffrfojolfrf|o
tfoffofrffrfojofrfi|o
tjofijojJojifrlofi]o

Table C.6: The trath table of EIS-XOR BBI3 which has a stuck-at-1 Tault ai
gale-3.

Input A || Input B Stuck-at-1

Ml A B B BB C G DD B ES
0 | 01 [HEREEE 01 001l
0 3 1 0 1 0 1 1 olo 0|0
I 0 0 1 Lypojt I 0ol [
1 0 1 0 0 1 010 0lo0 | 1

Table C.7: The truth table of EIS-NOR BB which has a stuck-ut-0 Fault at
gate-d.

Input A | Input B Stuck-at-0

A A B By [ By [ B[ Co|| Dy Do || SRS
0 1 0of1 01 0ol 0oro 0ofo
0 1 1 0 Liojo 1 1 I i 1

L 0 0 1 1 o0 I 1 ! I I

1 0 1{0 0 1 [ [N 041

Table C.8: The truth table of EHS-NOR BB which has a ~tuckeat-1 fault at
gate-4,

Input A [ Input B Stuck-at-1

IMEN AR S Eea e
0 1 0 1 0 | 0 1 0 | 0
0 L 110 Ljyojfojo I 1 1
L 0 0 1 1 ojojo 3 1 I
1 0 1[0 011 1 1 1 1 0




Table C.9: The truth table of EIS-NOR BB which has o stuck-at0 fauht
gate-5.

Iuput A || Input B Stuck-at-0
A A [ B B B e TGO TR
0 I 01 0 I 0

oo
ol v ffrfof ool rfofdiio
tlojflofr ool ]|olifo
tloffrjofofofdofofofofr]l

Table C.10: The truth ta
gate-5.

21S-NOR BBB which has a stuck-at-1 fault at

Tuput A | Tnput B Stuck-at-1

N (B B [ [P [ [ D [ [ s
0 I 0ot 0 | I | 1 I I |

[ Lltofurfofrfefojfofoefao
1 0 01 ot 1 nu nlo
1 0 I 0 0 | | 1) | 0 0 |

Table C.11: The truth table o EHNS-NOR BBI which has o steckeat-00 faalt ad
gate-6.

Input A || Input B Stuck-at-0
Al A B]BE]ETCGTCTDID TETE

0 1 0 1 0 1 010 0lo 0fuv

1 1 0 1 ofQuilo 1 | 1 1
I 0 0 I 1 [ 1} 1 I I 1
L0 Lo fofjurjrjogurjogoj

Table C.12: The truth table of ENS-XOR BB which ls i stuekeat-1 fanlt at
gate-6.

Input A [ Input B Stuck-at-1
INEN AR R I RN

0 1 0 L 0 i 0 1 [} | 0 I

1 1 0 1 0fo0 I I 0 1 0
L 0 0 1 1 0o I 1 0 I 0
1 0 1 0 0 1 | 1 | | 010




Table C.13: The truth table of EIS-XOR BBB which has a stuck-at-0 fault at
geleT.

Input. A {[ Inpnt B Stuck-at-0

M | BB EBTETCTCGIO D kRS

(RN EEENEEEREK IR R
1 1 0 I 040 0 0 0

| 0 0 i I 0o 0 0 0o
0

I
I
|
1 0 0 1 i 0 | 0 0 I

Table C.14: The truth table of EIS-NOIR BB which has a stuck-at-] fault at
gale-T.

Input A || Input B Stuck-at-1

N | B B C PP F
0 [ 0 1 0 | | [ 1 I
0 I | 0 0 | i 0 | 0
1 0 01 011 1 0 L]0
1 0 10 110 | 0 01

Table C.15: The truth table of ENS-XOR BB1 which has o stuck-at-0 fanlt at
gates.

Tnput A [ Tnput B Stuck-at-0

AN BB [ B [ G [ E ]
O 1T ol T ot fo[roaJuofolo
ol v flrfoffrfofo|tfrfojifo
tlogofvfrjofolrfrjofifo
Ljofrjofojurjrjofrjojol1

Table C.16: The truth table of EIIS-NOR BB which has a stuck-at-1 fault at
gates.

Stuck-at-1
CIGID]D ] B

Tuput A [ Input B
EEN A

01 01 ol vrffofirforfl 0
0|1 L] Flojofl 1 I 1
110 01 Flogoifi 1 | 1
1|0 Ljojojtrgurjoju | 0




Table C.17: The truth table of EHS-NOR BBB which has a stuck-ar-0 Taalt
gate-9.

Input A || Input B Stuck-al-0
A [ B B [ [ G TCT D
[N ol rfofo i [N
(U T AV AU S O
ool ifogofrg
| 0 1 0 o{ofrioefuw

Table C.18: The truth table of ENS-XOR BBI which lias w stuck-at-1 fault at
gate-9.

Taput A || Input B Stuckear-1
NI U B B L b [ L [ D: [ s
0 1 0 1 0 1 0 [ 0 | 0 |
0 ! 1 0 I 1 | 1 i ) 0 0
L 0 0 I I 1 1 ! 0 0 0 0
| 0 1 0 0 | 1 0 | 0 0 |

Table C.19: The truth table of EIS-NOR BIBI which has o stuekat-0 fanlt st
gate-10.

fnput A [ Input B ekt 0

N | B B | BT PRI

0 ] 0 I 0 1 1] 1 0 1
ol ifofr]o o]
tlofolifui]o Plog o
1 0 1 0 0 1 1 0 1 1

Table C.20: The truth table of EHS-XOR B3I which has o stuck at-1 fault at
gate-10.

Input A || Input B Stuck-at-1

NN A A IR R Y
0 [} 0 I 01 0l [} | I |
0 1 | 0 1 0 0 1 1 0 0 )
tloflolrfurlofofurgrjpojgolo
1 0 1 0 0 | | 0 I 0 0 |




Table C.21: The truth table of EIS-NOR BBB which has a ~tuck-at-0 fanlt at
gate-11.

Input A [ Tnput B Stuck a1-0 ]
N A | B B [ BB DEF
0 1 0 1 0 1 0 | 0 I 0 1
0 1 1 0 Liojgolft Lo 1{o
| 0 0 I I 0 0 1 1 0 i 0
1 0 ! 0 0 1 ! 0 | 0 00

Table C.22: The truth table of EHS-NOR BBB which has u stuck-at-1 fault at

gate-11.
Tiput A [ Tnput B Stuck-at-1
ENE EA A IR A DR R
0 1 0 1 0 | 0 | 0 I 0 0
ol fo ool ol
ool frfofofrfriolifn
| 0 1 0 0 1 1 0 1 0 0 1

Table C.

: The truth tal S-NOR BBR which has a stuck-at-0 lault at

gate-12.
Input A [ Input B Stuck-at-0
N[ B B [ B Fe [ C D [P [ E s
01 0 1 01 [N o]t 01
0 1 1 0 | 0 0 i 1 0 0o
I 0 0 | 1 0 0 i 1 0 (U]
| 0 1 0 0 1 | 0 1 0 0 |
Table C.24: The truth table of EHS-XOR BBB which las a stuck-at-1 fault at
gate-12,
Input A [ Input B Stuck-at-1
A A [ B By [ By DD ETE;
o T o1 (o 0 1 N ERE
0 1 L 0 1 1 0 1 0
1|0 0 1 1 Ljo 110
110 1 0 0 1 ! 0 | !




Table C.25: The truth table of EHS-NOR BB wlieh Bas o stack-ar-0 faule at
gate-13.

Input A || Input B Stuck-at-0

Nl A U B B [ [ Fa G IO TE TS
EREEEREEEE R R \l 0o
ol fdefodvjogdolviriolyjo
Llojoftgrjojoll |‘n1|]n
! 0 110 vyl [ Liovguilo

Table C.26: The truth table of EHS-XOR BBE which has w stuck-at 1 fault
gate-13.

Input A || Input B Stuck-at-1
AN B[ B [E[F D F,

of ol ot e T ol
ol r el rjodo g pofaia
1 0 0 L Liodogt I 0 | 1
Vo i fo ol feda ool

Table C.27: The truth table of EI1S-AND BBI whicl has a stuck-at faultat gate-1

Tnput AT Tupnt B[ Stuck-at-0 Stuck-at-1 |
MEN AR AN AR RS

0 1 0 i 0 I [ nob i | 1 0
0 1 0 0 0 0 1] 0 0 1 I 0 o 0 |
tjfofofogofofojololofrlolc ofoll
tloJofuJofofbadlofduloguilifolofi]o

Table C.28: The truth table of EfI

AND BB which his o stuckeat faultat gate-2.

Input A [ Input B Stuck-at-0 Stueck at-1
A | A | B By | Ey Do foecies | e D, Th
0 0 0 0

I uot 1 0 | ) 0

1 o1 To[roJofoToT o
1 0 1
01 1 l‘u 1o I 0fo
110 |

|
ol jodo]r]n

0
1
1

1
1
0
0




‘Table C.29: The truth table of EHS-AND BB which hus a stuck-at fanlt ar gate-3.

Tnput A | Input B Stuck-at-0 Stuck-at-1
A

IE A AR R A NS
o[t fo]JrJojrTojrqgoestfuel P
oftfrfofut]o ’l tlogoiodvfofalofe]
tfofdol o frfod ooty dafole of1|a
o vfodofrlofofojofofvlvioli]fo
Table C.30: The truth table of ENS-AND B whiel has a stuckeat fanlt at gare- 1.
Tuput A [ Input B Stuck-at-0 Stuck-at-1

A A BB B T D D [ Coj B [ R D DG TG
O[LJoJ Ut o]t ofrqgojto]jtu,ofo
o fo o bodo o rgofo
tfofofvfrjofrtofefrffrf{ofryrjo]o
tfofrfofol v jurguefrfolifrjofijo

Table C.31: The truth table of EIIS-AND BBB which Las a stuck-at fault at gate-5.

Input A || Input B Stuck-at-0 Stuck-at-1

A [ B ] B A I JCTCTETET D JG]G
0ol W 1 0 1 [N 0]t Pal I 1
[ I (] ofo ot ffrjofstjofol]il
tlojfol1 ofojoffr ) frfopryofolfi
I 0 110 1 0o 00 01 1 9 110

‘Table C.32: The truth table of EIIS-AND BB which lias a stuck-at fault at gate-6.

Iuput A || [nput B Stuck-at-() Stuck-at-1

Al B By EE DD CICIETETDLIDJCTG
0 0 | [N} (IR Opo o]t [ ] 01
[N L]0 1 |0 | (1] [ 1| 1 1 010
1 0 01 Lo I (1 o Lo 1 | 010
110 Lo 0 [t 1 jo L{ofojt 1 1 I
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Table C.33: The truth table of EIIS-AND BRI which las a stuck-at fault at gate:7

Input A || Input B Stuck-at-0 Stuck-at-1

NN A A DA A S A
o1 ol ofrfoltJolrfoprfelicyr]t
ot frpofefodrfogolrdfofry o
plojof tlod v fogologarfofvlof]s
Ljofrjojojurgrjofuienfoll Lo

Table C.34: The truth table of EIIS-/

NI BRI whivh hasa stncheat fanftan gate 8

Input A {f Input B Stuck-at-0

[ A N B B [ E PP C e
oft ot ofrTolrjola]w
01 [ tltodt!iogota |
vlodof ooy fogoqafn
Llofifofo ‘ P dlofofofo

Table C.35: The truth table of EIIS-AND BBB which las a stuck-at fanltat gate 0.

Input A | Input B Stuek-at-0 Stuck-at-|
Al A TH e TETD T, T T THTE [N T
of T o]t Ju (NN ERER [N

of e to o gr ool o
vlo ol o i fogrjufoelirgn v et
tjoftfofojuygt{tfritju tiofrdo

Table C.36: The truth table of

S-OR BB which las a stuckeat Tault ar gate-1

Input A || Input B Stuck-at-0 Stuck-at-1

A A [ B B: | s C D D | B Ee o [ Ca [P [ D
oJT[oJrJo o1 ot oo rriroTT
o1 jojo| Pl o ooy
tfojofolj Pt jogrjoefdoelrf]o
1jojojjo plof v Jofofojojojrlao




Table C.37: The truth tible of EINS-OR BBI which hus a stuck-at fault al gate-2.
Tupnt A [ Tuput B Stuck-at-l

EN A EJETGTGD D,
(RN R BERERENERE
vl v g i fofoteiolofryoftrjefoloyfo
1 0 0 | 0 [ ] 1 0 | 1] 0 1 | 0
vJofir oo o v dodrjrgrjuiffo

Table C.38: The truth tabl s a stuck-at fault at gate-3.

[nput A || Input B Stuck-at-1

INEN AR T T [ Dy D,
[ [l 0 | 0 0l 0ol 0 1
ot tlofvirfo]o
I 0 01 1 [ 1 I 010
I 0 I 1) 0 011 Vinjojo

S-O1 B which has a stuckear fanht at gate-d.

Table C.39: The truth table of !

[Tuput A TTuput B Stuck-at-0

A EREA R

B

o rfojtJojifaojogajago 01
fof o oo ]jofol o] 1

oo fafol ol B
L v o vjodol ol lafo R

Table C.40: The truth table of EIS-OR BBI3 which has a stuck-at fault at gate-3.

Input B Stuck-at-) Stuck-at-1

By B | By [ I [ D [ &[G TG Di D,
0 1 0 1 0 1 0 1 0 1 [N 1 1
1 0 Tlogopt 1 0 1{o | i 0|0
0 | 1 0 01 | 0 tyo | 1 01]0
1} 0 0 (1 0Ojojfofo 01 110 1 0




Table C.41: The truth table of EIS-OR BBB which has a stuck-at fault at gate-ti.

Input A [ Input B Stuck-at-0 Stuck-at-1

Al L[ B GO DDy 8 Dy | Dy
ol r ot oo e u [
0 | 1 0 nio 1 1 | 0
1lofol]l ool 1|
§ 0 1 0 | 0 ! 1) i 1

Table C.42: The truth table of EHS-OR BBB which Las o stuck-at fault at gate-7

Input A || Input B Stuck-at-0 Stuch-at-|

N A [ B [ B [ B [ [ G D | ] Fa [ e Pe ] s
of T ffoft oft o [(HER KRR RN R
oftfrfofi]ofa ofofafofolififo
tfoffoftfo|ofuo aflodrfoffotodoto
tlofofofojefrfofofofoli o]l

Table C.43: The truth table of EIS-OR BBB which has a stuck-at Tanlt at gate-s.

Input A [ Inpul B Stuck-at-0 Stuck

A QB B [[EfE]C Dy DL ECE G 1),y
0 1 0 1 0 1 0l 0 0 0 [ 0 i

0 1 Lo Lfojfoli ! 0 Liofo 1

1 0 0 1 1 0 01 1 0 1 0 0 1

1 0 1|0 01 1|0 ! 001 1 I

Table C.44: The truth table of EIIS-OR BB which has a stuck-at fanlt at gate-),

Input A || Input B Stuck-at-0 Stuck-at-1

N A [ BB [ E N [ D D [ F [ B T [ Dy [ D
0 1 01 00 [ 1 ] 0 (LR 01

0 1 1 0 I 0 0 I i 0 I | | 0fo

1 0 0 1 TLO 0 ! [t} | | | (]

1 0 1 0 010 010 0 0 0 I ] | 0
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Appendix D

Verifications of TSC property for
the proposed MF BBBs
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Table D.1: The truth table of ME-OR BBB which has a stuek-at-1 fanlt as gate-|

[T A T Topet B [ WAND & [ WoR 7| WD ] TORE [ YORE [ or o]
EREN IR AR CALA G D0 BB GEIP%
VIOV O @ f o0 ] o 0 ] 0 Jtfofcloferofrjofijo
oftfufofef vfofofofofof v frfafifrgolrfefufu]y
oftfofufufofofugora fol v folifojrdijofifofals
! ol vl v oo galo Qufufujufofujfulofoln

Table D.2: The truth table of MF-OR BBI which las a stiuckeat 0 Fanlt at
Tnput A_| Tnput B ][ MAND C* [MXORE | ANDC | ORD_|| YORE OR D"

A A BB C ] G | b F: Er ] Fy |G [ Cal D] 0yl % Br ZHA A
T{O[1]0]0] 0 T[O JOJoJu|iro T
ofvfifafol ol v fofaditoliol 1o
ofifojifi]on ol o fofufolofifn wl
tdolfofjifo] vl o Jofufufojols 1 lo

Table D.3: The truth table of MF-OR BBI which has a stuck-at-1 Tanlt at gate-2.

TS S T 2 AT 2 IS T IR . 3
R A A B I B R NS N ) O N A
BRI T T RN EE
vl ol v g oo o fof o Tatada oot fafy
ol bo b el oo dafefal i dijadao
T N T P I R T N N RN [N
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Table D.4: The truth table of MF-OR BBB which has a stuck-at-0 fault at gate-2.

Tnpnn A_| It B[ MAND (7 [ \IOW 17 ] MCOR F* | 1, OR D & J OR D

{9 7% N & A Y EH G D, [y £ [07]
[N T 1 ] ] 0 1 0 T[o T]o [ 1To
o 1lofo 0 1 0 ! 0 1 0l 1o 1 |0
ol o I 0 0l L} 1 0 1 ol 0| 0 0 1
tfofojifo Lo g 0 1 0 [ 119 ! 110

Table D.5: The truth table of MF-OR BE3 which has a stuck-at-1 fault at gate-3.

Tnput A | Taput B_| MAND C' | MOR ' | MCOR F~ } MXOR E' || ANDC || ORD_] XORE || XOK OR O~
A (Al B B e[ C; D[ A F {B Ef IC\[Cal DBl B[ BB 7 | D7 D3]
]o 1]o 1 0 1 1 1 1 ! 0 IR 1 1 TJoo 1 1
ot 1{ofo 1 ojofo 0 0 1 oo 1 1 0|1 1 1 1
0 1 0 1 1 o 0 1 0 1 0 1 01 01! {0 1 0 1
1jofo 1 0 1 1 1] 1 1 ;) 0 0jo0 1 1 o1 1 1 1

Toput A | Taput B ] MAND C* | MOR ¥ T MCOR 7 | WXOR E || ANDC
P TS T8 N I 2 O S I B R K2
T TION ] 0 [ 0 o '] rt]o
ol ofafofof v ffofofolr fof v faly
wlvfolvfol o fofofo]o ol v di]r
o dolofofol v fifofilofelo fols

Table D.7: The truth table of MF-OR BBB which has a stuck-at-1 fault at gate-4.

Top B[ SIAND [ NOR 77 [ NCOR 7 | W7 17 ] 5P C
LR 7% K A 2 2 I N R )
DD NEE R

] o 1 1 ofo o 0 o I [N

acfo vl o falofol o fof fol

tioafoefn 1 1 | | 1 ! I 3 £l

176



Tabie D.8: The truth table of MF-OR BBB which has a stuck-at-0 fault at gate-4.

Tupnt %] nput B[ MAND C* | WOR | MICOR | A0W & | ASDC [ OR D | YORE
T R 2 o A T 2 L M IV P 2N Y R
TIO o0t o [ o 1o '] 0 [ oftlofr]e
ofcfufalo)l v fofufol v fol v fojuifiiofols
ol ofolofol o fofofofofol v fufifolofife
vfofol ool v Qovfoloilofvfofofvfvfofafn

(o A | Tapit B [ MARD C [ WOR 7| YONE ] oD
A EAEA CIRE A GING <, AR PR
Tfoft]o 1 1 1 1 1 1 1 0 ]y 1 T]lofofo 1 il
011 1{oj)o 1 [ 0 1 % o1 tlofoft 01 Lo
oj1foft 1 1 01040 0 0 1 ofofoflo Liofo]o oo
1 ojojtrjo 1 1i0 1 0 1 0 ot 1jofojn 0! 1 0

Topat & | Tapet B ARD C | WOR T | WCOR 7| WXOR £ | ANDC | ORD | XORE | XORE | OR D"
M A BB 1G] G IO O AT A IE & [CCil D rl bl el G E D0
TT O T o o [ o o o o o ol o]0
of ool v fafefol i Jof v fofvfifofafifoli]i]o
of ool o ol ol fof v folafolvfifofi|ofols
idofojufol ol v i) o folofalifoie]iln '

Table D.11: The truth table of ME-OI BB which ias a stack-at-1 fault at gate-6.

[ Tyt A gt 0] MAND €7 [ MOR 07 [ \COR 7= [ VA0# 1" | ANDC | ORD [l YOI oW -
[N EAEA MR HEH R LY A n; [ m
T T T e e T T e T [
BRI RS R PR RA RS PANE FRi N
PN EARN SR R R M R RA R RN R R A
[N} 0jo ) 0 ! I 1 1 0 LI AU 0 (nifnj 1 1 0 ln
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Table D.12: The truth table of MI-OR BBB which has a stuck-at-0 fault at gate-6.

- - =555

WAND C”
[N
T[]0
of o
1l
of 1

Table D.13:

ol

—— =95

The truth table of MF-OR BB which has a stnck-at-1 Tault at gate-7.

MAKD C' |
M2 KA
1[0 0 1 0
o)1 0 o 1
o)1 1 1 0
1j0 1 0 1

‘Table D.14: The truth table of MF-OR BBB which has

WMAND ¢

1>

LG

oo -

T] 0
of o
1l
ol 1

a stuck-at-0 fault at gate-7.

=

— o=
o — = ol

PR




Table D.15: The truth table of MF-OR BBRB which has a stuck-at-1 fanlt at gate-

Topur B ] MAND (" ] \iH 7 ] NiCOR 77 [ VN0 K [ AND | On T | Vom i [ XORE | oR i
2% I G A 2 S A A Y T kY N A A A R IR R
BN ! BB REERNREEE AR
afof oot adol o fol o fal o legelofolifita

el oo fodot o Gol o fofodagdolafofofafs

o o

Tnpnt A_] Taput B ][ MAND (~ | MOR &7 TORE
ETH Y T 2 S A A (A
TIOf V][O [ 10 [0
ofifufololafofn 0l
ofltflofufulafals (K
ifofofifol v i ol

Table D.17: The truth table of MF-OR BB which has a stuck-at-1 fault at gate

[ [RARD & | WOR D | WEOR ¥ [ YO & | ARBC ] o 5]
A 1 G I | AT A IE] E JGTC A
1 1 [ 1 [} 1 0 1 0 1o
0 1 1 ofo0 0 0 0 1 1 1
0 1 0 oj1jo 1 0 1 0l
1 1 1 1 1 1 % 1 0 1 1

Toput A_| Tapet B | MAND C' | MOR [/ | MCOR F | WXOR & | ANDC | ORD |
A Al B Bl G I DD R A e & [CCa]Di]Ds
TIO T OO O [ ift] P J¢t] o Jojofr|?}
oftfufofof v fofsfol v o] v jojrdilo
oftfofrfofofojofulofo| v frfrfofo
tlofofufof v ffujofe]olfs]ofofefifo
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“Table D.19: The truth table of MF-OR BBI3 which fas a stuck-ar-1 fanlvar gare-10.

T I PSS IR LT RN B A NS AT YL
NN N HBE Bl i SN A
TTwp o] v, ii1 T TTrrfrfoe
al oot adol o tal o fol v Far o fafeln
a oo e jedata fof fodolafifo
N EE ERRN TR RN RN W vl

T A_] Togua 1 Wi T [ ORD [ XORE [ NOR ] OR b
A [ A AL A Y LA A R DA
A RE T ool re
oo ool ofofedabfin
alifol oftfolofofolrfafoln
ool ofodvfo eyl

Input A | Toput B | MAND C" ]| MOR O’ || MCOR F* XORE g@! E | ORD*
A4 ] BB G (DDA R ) CAGH EREA
jo 1o 1 0 3 1 1 1 1 0[0 1 1
ol 1]0fo 1 ojofo 0 0 1 1 1 1
ol o1l 1 0 0 1 0 1 1 1|0 0 1
tjojo]t 0 1 1 1 1 1 0 1 1 1 1

Table D.22: The truth table of MI-OR BB which has a stuck-at-0 fauit at gate-11.

Tnpi A_ Tnput B [ WAND ' | MOR b | MGOR | WXOR &' ]| ANDG | ORD |
MiMisTBIc] GIDIRIFRTF i Ci[CilDiIDi|l By
TTO T [oft[ O e [ofi[o fi]o fvfofrlofe
olif tfotuifof o fof v folrfrfafo
ofrdofadrfofofofoio ol v Jojofajofr
vdojolofof v frjofiifofuefofafififofo




Table D.23: The truth table of MI-OR BBB which s a stk ar-1 fanlt w

ate-12,

B TSI A ORI

[ T, T RN

T R NN

Pal al 1 o olifolvdi]o
alifolidi]ogo vhodatada |
vlofo gl ol fulidala

Table D.24: The truth table of MF-OR BBB which has a stuek-at-0 fault at gate- 12,

Tt A | Toput B [ MAND ¢ MOR ' | MCOR /" | VNORE [ ANDC || ORD | XORE | XOR 7
FN T T 7Y 2 N G S G S 9 I I Y I A
TIO Lo ] 0 o ] [ ] ¢t o] ofr]jef ]e
ofvfetafol v chol v dal cfafofofadolodoty
ol ool ool ool fof o Jofshofofojofifo
tdofof ool v fadofvfofvlogdojrgviofolifo]s

Table D.25: The truth table of MF-OR BB which has a stuck-at-1 fanlt at gate-13.

] B ANDC || ORD | XORE | NORE
4] BB [ C [ G [ D[] L0 [ i & [ By I
7o 1]o 1 0 r]o 0 1]o o [
LN 1jopo 1 o 1 1 1 ol 1
ot o1 1 L ofo 1 ofo 1[0 0
1(ojfof1 0 1 1 1 1 L 1 ol 1

Table D.26: The truth table of MF-OR BBI which has a stuck-at-0 fault at gate- 13,

[(Taput & | Tnput 8 | MAND C* | MOR 17 || MCOR £ | MXOR E' ]| ANDC || ORD_| NORF | NORE- || OR b
P T TN 7R K 2 2 0 P KA K Y P Y A I IR
TIo L [o 0o ]t ] Jel o ool oqeloneljoqrye?
afrfofofol v ool v Jol v fofrfaifofalifolijfi]a
of oo ool oot v flofurfolrfrfofrfofols
vjofofoifol v fvfode]ofofo fofrfetofojifofifilo
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1.

Table D.27: The truth table of MF-OR BBB which has a ~stuck-at-1 fault ar gate-

T Ao 0 [ NAND 7 [ MO 771 NiTOi 7 [ RO
I8 PR 178 7% I S S A
Vo o] ogprre "‘ N
ol dofugol o o deg ol
o dofofafo o tel o gal
idofofafof o frfogefofdi]o

Table D.28: The truth table of MI-OR BB whicl his a stuck-at-0 fault at gate-1

Tuput A | Tnpus 0 || MARD (" || MOR ¥ || MCOR /" | MXORE | ANDC | ORD | NORE [ NORE | OR O™ |
N EN A A GENSE A A EH A GG R A AR A
TTO O[O ot o ifo g i ofrjoJtijofi]eo
ol ofofol o folofolofol v fojofo]arfolifi|
oftfofrfuefofofjofolafol v fojofofofifogfolfa
vdofolofof v Ju el v fujofofofsfrfolrfifn

Table D.29: The truth table of MIF-OR BBB which has a stuck-at-1 fault at gate

Toput A | Taput B || MAND G C [ ORD [ XORE | XORE | ORD*
EEN ENES R Cil D[ Dy | B[ B[ Ef [ B [ D7D}
T[oJT1]ofL] 0 ST L JoJojofi]?
ofvfifofof NEREY AR BN BN R
ofrfofrfifo 1fofofr|ofolofofo
tlofofifof ifofofolifolififo

Toput A | Tnput B || MAND MCOR | MXOR E | ANDC || ORD || XORE | NORE" ] OR D°
TN BT N K AL A E] F lclcln[mlBlELE DR
K TIO 10 [TJof ot ofrTofr0
0 Lo L I 0 1 n I 1 0 ol 0 1 1 0
0 o " 1 0 1 0 I n 1 {0 1 L] 0 1
tjojol 1 I 1 0 ol 1 1 el 1 1 ! !
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Table D.31: The truth table of MI-OR BB which his a stack-at-1 fault at gate- 16,

o x (% ST KT ORI N E iy RO [ ORT
| T I A AR I A TS T DAY DR R
N L R A T N T N
IEERE ERER XN KRR al R F RS FAE
N HEH HEEH ol wod el
vlofol vyt e B [ ‘l,{;_“_ S 0

Tapat A_] Taput 11 [ WAND C* | WOR 17 | NiCOR # | WTXOR
T LA B ] o U B P ] 1 1
T

ANDC [ OR i [RORT

C Lo s Ry

TLOft[o) ] f¢t]o W T[ofefjofre]o
ofootofol vholafal o fol o fofold ool
afrfofefvfofofofalo ol fojvjolojrfe
tlodofi ol v fofofrfafufofofefrfofofy

Table D.33: The truth table of MIF-OR BBB which ha

Topwt A | Taput B | AND C' || MOR [’ || MCOR F* | WXOR E' | ANDC || ORD ]

Y EN A RS A A G G (=Y D

TTO O [0 o lofel o nr] o qefof oo jept[®
of i of v frfufol v fo] v fojaigojojoln oo
oftfofvfafoflofufol v fof v fofrfojrjfrfofijofolt
vlofofutfof v fofofifofiiofoftjojojofifurjifofo

‘Table D.34: The truth table of MF-OR BBI which has a stuck-ar-0 fanlt at g

Tt A | Tnput B ] MAND G OR F | MXORE || ANDC
A ] B B (] Cs ] F ]
Tofr[ofi]o oo e
ofifrfofoft [ N A
[ T [ K
tlofolrlo] v o fil o fuln
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Table D.35: The truth table of MF-OR BBB which has a stuck-at-1 £ an gate-13.

g W SAND T i 77 [N o T VN 2 [ aNh e O +_"\:4m1

FI7% L% O A 0 P I T N, Y LYY TR P Y
T

RN RN
vlodol oo e bafohaiaie
oo gl el e g g
oladol v Laded it tviw dalidalude

vt A Tnput 0] MAND (* | VORI | VICOR F*

WL [ ] (G ;
TJO V[0 ] " [O0]0]r]0
ofofufofof v fofifo]t
of ol o fofrjolt
vJoflofrfof v fJojofifo

at- fault at gate-19.

Topul A_| Tnput B | MAND C | MOR 7 || MCOR F* | MXORE' || ANDC | ORD | XORE | XORE || GR D™ |
N B [ BIG ] C DDA B & [ GGl Di[Da] Ea ] Er A
TJO Lo ] O i[0]¢ TL O r[ofrJofr]o 0
ofifafofol 1o of v fofrfifofolr 1
oftfofrfujofofifo of v fofrfufrfafo )
ifjofoftfol v frifofn 1o fofrfrijofoln !

it A ] Tapst B | WAND C | 3OR & | MCOR F| WO £ | ANDC | ORD | YORE [ FORE [ OR D]
Al BB |Gl GG ID DAL B L& £ 1GICi| DD Ealf | 56D D5]
TTO VO o o ] o] Jrrofofjentjoforofolo
tlofofifo vlefa] o e o ofoftfrfvfo]o
wlofofofo] o fofvgal ool v fofufofofif{afifaofofr
vfofofifol v folofilofifofolsfofofojrififrfofo




Table D.39: The truth table of MF-OR BBB which lis o stuck-at-1 fanlt at gate-20,

Topor A [ VAN~
[N U
BE
ool

wirfolififo

v ofjolifofs

Table D.40: The truth table of MIF-OR BB which his a stuck at-0 fanlt an gate-20.

Tt A ] oy MOR 0" | MCOR F [ VX0 £ [ ANDC || O [ SORT: | OR £
R A I I 5 N LY I DY A A A
1]o ] 1 o l o 1 [ NI IRl il ]
LR 1 L) ) L) 1 " | 0 e LR "
ol o v 1 0 1 o 1 ol 0o tlofo
tjofjo 1 0 1 0 1 L ol 1l ot 0

Table D.41: The truth table of MF-OR BBI whichhas a ~tue k at 1 fandt at gate

I B | MAND C | MOR O | MCOR F | WXOR & ND C OR D XORE
EREN EAE CANCE DA L GG CUGE Y E R
1l 110 1 [] 1 ] 1 ] 1 o irle tlo 1
o1 1{ojo 1 0 1 o 1 0 1 LER} 1 0 1
ol o1 1 o 0 1 o 1 1 ol ol 1
110 ol L] 1 1 0 1 n 2 ol 1l 1

Table D.42: The truth table of MF-OR BB which s o stick-at-0 Fault at gare-21.

Input A | Input B | MAND C* | MOR /> ]I MCOR " M XOR £ OR D
N A BB C PRl BRI R 'l_(
TTOJ O o o lofc] 0 B
LB} tiofo 1 0 1 0 1 0 1 I "
ol LB} 1 0 0 1 0 1 0 1 ! 1
tjojfof 0 1 1 0 i 0 ] 0 1 n




Table D.43: The truth table of MF-OR BBEB which has a stuck-at-1 fanlt at gate-22.

T LAYz IS TR LTI 7 T O
G GRS L T LR 5 AR A
I RS T SR S AN R
ol [T NN R ‘ ol
K [N ETEEE FARE RRER AU REE
0l e de e el gl a gl

Table D.44: The truth table of MF-OR BBE which has a stuck-a1-0 fault at gate-22.

ot & VAND ¢ AT ORD [ YORT R D
TN PN N N [¥REEY 2N 22 IR
TTO a0 T Jo] 10 110
ol Liofo 1 0 1|0 0lo olo
ofifolifi]o ofrfolifri|o o
vfofalifol s olififofofo ulo

Table D.45: The truth table of MI-OR BBB which has a stuck-at-1 fanlt at

Tnput A | Taput B || MAND C' | MOR D’ | MCOR F' | MXOR E' || AND C
Ghlada Bl o DR [CiTc: 3
1]To T7ofr 0 110 1 [ 1 0 1[0
01 10 1 oftfo 1 1 1 ol
o ot 1 1] [ 0 1 0 1 ol
1lo ofjti1feo 1 10 1 0 0 0 01
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Table D.46:

The truth table of MF-OR BBB which has a stuck-at-0 fault at

gate-23.
IS
Gk

T

o 1

K

L 1

‘Table D.47:
gate-24.

The truth table of MF-OR BBB which las o stuel

T 3] Tt 11

[ A

IRSIYG KT
L G T

Table D.43:

gate-24.

Tnput A | Topet B WAND (= | MO 77 § Wi 5 X TN R B
[N EN IR0 CANE EALA E; I R U
TIOQ o0 o0 1 "0 '] 0]l (o8 ']°f¢o[o@¢®
AHAHBHBEBHBHUEHHHBE
ofsfofvfvfodoledul v fof v fojafofi s of:

Table D.49:

gate-25.

Taput A | Taput B | WAND G | MOR O’ | MICOR F | WXOR £ | ANDC Fﬂxn OR
AJA: LB LG IO (DI FT F UE] F ICTGIDT0]F ARG
TIOTJo0fL]0 I! TIO1] 0 1o ]oft]® 110
ofvffufoffof v Pofrfot s dof v fofefifo [k
ofifofrfe]o n oflvflof v ol v fofrfofn [l &1
1Jojojtijo 1 1 1 ! 0 | 0 0l 1lo alo
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Table D.50: The truth table of MF-OR BBB which has a stuck-at-0 fault at

oA T Tager 8 [ WAND & | WoR &7 | NEOR | WXORE ] ARDT [XoRE oD |
WA B G oAl A IEL & (GG DR
TIo Lo o o ] t]° c|° 50
ofcfafofol v fofurfal v ol v ol 1|0
olofofoflo)ofofofaolfol o fofs o1
vjofofifel v fifofifofelofafs ilo ]

OR BBB which has a stuck-at-1 fault at

Table D.51:  The truth table of \
gate-26.

P e TR AT KNS A LA RS AT Ui QI
RS 77 DR O R A A A S R S IO D UHICH
TR oo T ngi e o o] a1 T 0 ;
‘ ol ffofoafo] v fofodep ol IR EREN KRR 1o
afafofofofofafofo] o jo oftfofifi]o iVl
Fofofolodof e folodofodi]ofofedefofoln [

Table D.52  The truth table of MI-OR BB which has a stuck-at-0 fault at
gate-26.

Tt AT nput B MAND " | MOR 17 | MCOR 7 | TXORE T ANDC || ORD_|| NORE | XOR £ ]| O D
(10 P 2N P 2 I T I Y KRN Y I N A A I A
TTO Vot o oo i et o eroqejogeole :
ofefdatolof o ool o fof v fofrfifofoltfofifofo §
oftfofefefofofifol o fof| v foltfgafrfriofifofoefn
ilofofifol s Jefofuilofi]ofofidvjafolifoflifojo
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Appendix E

6-bit diagnostic sequence pairs
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Table E.1: The table of 6-bit diagnostic sequetice pairs (W) = W),

W A W W A
wi [ W7 || wy [0 || wy [ 5 || wy |7 || ws | 75
170 Lo Lo o [
011 Lfofo]l 01 110
[ 01 Ljojo]t 0|1
tloffofrffolrjfolifrfo
o vfofurdffrjoffolfi ol
tjojdrjojrjojrjoji]o

Table E.2: The table of 6-bit diagnosti

Ws Wr Ws Wy [
we | Wo | wr | W7 || ws | Ws || wy | Wa || wno | Wia
Lyojtrijo 110 L]0 I 0
[ 01 Lfofoj! 0 I
o Ljoft 01 011 0 I
Li{o Ljojo|l 01 0 I
11001 110 [ I 0
OjLjo]1 01 0]l | 0

Table E.3: The table of 6-bit diagnostic sequence pairs: (Wi ~ Ws).

Wiy Wy, Wis Wiy Wis
Wi | Wi || Wiz | T3 || wia | Wig [t | T ] wis | T8
I 0 i 0 1 0 I 0 | 0
0 1 0 I 0 | 0 | 0 |
0 1 1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 | 1 0
1 0 0 | 0 1 I 0 0 1
1 0 0 1 1 0 0 1 0 1




Table E.: The table of 6-hit diagnostic sequence pairs (1¥ig = Vo).

Wi Wiz Wis [
wie | Wig || wir [ 77 || wis [ T | we | T
1 0 1 0 1 0 I 0
0 1 0 1 1 0 I 0
1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 I
0 1 1 0 0 L 1 0
1 0 0 1 0 1 | 0

Table E.5: The table of 6-bit diagnostic sequence pairs (11, = ¥ys).

[ Wy Wn Way Waq Was

W1 | Wai || Waa | W || Was | Wag || My | Wi [| W2 | s
1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 | 0
0 1 1 0 1 0 I 0 | 0
tjloflofrfofrfoltfr]o
tfofof|rfoljrl oo

0 1 0 1 1 0 0 I 0 I

191















	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	008_Dedication
	009_Abstract
	010_Abstract ii
	011_Acknowledgements
	012_Table of Contents
	013_Table of Contents v
	014_Table of Contents vi
	015_Table of Contents vii
	016_Table of Contents viii
	017_Table of Contents ix
	018_List of Figures
	019_List of Figures xi
	020_List of Figures xii
	021_List of Figures xiii
	022_List of Tables
	023_List of Tables xv
	024_List of Tables xvi
	025_List of Tables xvii
	026_List of Tables xviii
	027_List of Tables xix
	028_List of Tables xx
	029_List of Tables xxi
	030_List of Tables xxii
	031_List of Tables xxiii
	032_List of Tables xxiv
	033_Symbols
	034_Symbols xxvi
	035_Symbols xxvii
	036_Chapter 1 - Page 1
	037_Page 2
	038_Page 3
	039_Chapter 2 - Page 4
	040_Page 5
	041_Page 6
	042_Page 7
	043_Page 8
	044_Page 9
	045_Page 10
	046_Page 11
	047_Page 12
	048_Page 13
	049_Page 14
	050_Page 15
	051_Page 16
	052_Page 17
	053_Page 18
	054_Page 19
	055_Page 20
	056_Page 21
	057_Page 22
	058_Page 23
	059_Page 24
	060_Page 25
	061_Page 26
	062_Chapter 3 - Page 27
	063_Page 28
	064_Page 29
	065_Page 30
	066_Page 31
	067_Page 32
	068_Page 33
	069_Page 34
	070_Page 35
	071_Page 36
	072_Page 37
	073_Page 38
	074_Page 39
	075_Page 40
	076_Page 41
	077_Page 42
	078_Page 43
	079_Page 44
	080_Page 45
	081_Page 46
	082_Page 47
	083_Chapter 4 - Page 48
	084_Page 49
	085_Page 50
	086_Page 51
	087_Page 52
	088_Page 53
	089_Page 54
	090_Page 55
	091_Page 56
	092_Page 57
	093_Page 58
	094_Page 59
	095_Page 60
	096_Chapter 5 - Page 61
	097_Page 62
	098_Page 63
	099_Page 64
	100_Page 65
	101_Page 66
	102_Page 67
	103_Page 68
	104_Page 69
	105_Page 70
	106_Page 71
	107_Page 72
	108_Page 73
	109_Page 74
	110_Page 75
	111_Page 76
	112_Page 77
	113_Page 78
	114_Page 79
	115_Page 80
	116_Page 81
	117_Page 82
	118_Page 83
	119_Page 84
	120_Page 85
	121_Page 86
	122_Page 87
	123_Page 88
	124_Page 89
	125_Page 90
	126_Page 91
	127_Chapter 6 - Page 92
	128_Page 93
	129_Page 94
	130_Page 95
	131_Page 96
	132_Page 97
	133_Page 98
	134_Page 99
	135_Page 100
	136_Page 101
	137_Page 102
	138_Page 103
	139_Page 104
	140_Page 105
	141_Page 106
	142_Page 107
	143_Page 108
	144_Page 109
	145_Page 110
	146_Page 111
	147_Page 112
	148_Page 113
	149_Page 114
	150_Page 115
	151_Page 116
	152_Page 117
	153_Page 118
	154_Page 119
	155_Page 120
	156_Page 121
	157_Page 122
	158_Page 123
	159_Page 124
	160_Page 125
	161_Page 126
	162_Page 127
	163_Page 128
	164_Chapter 7 - Page 129
	165_Page 130
	166_Page 131
	167_Page 132
	168_Page 133
	169_Page 134
	170_Chapter 8 - Page 135
	171_Page 136
	172_Page 137
	173_Page 138
	174_References
	175_Page 140
	176_Page 141
	177_Page 142
	178_Page 143
	179_Bibliography
	180_Page 145
	181_Page 146
	182_Page 147
	183_Page 148
	184_Appendix A
	185_Page 150
	186_Page 151
	187_Page 152
	188_Page 153
	189_Page 154
	190_Page 155
	191_Page 156
	192_Appendix B
	193_Page 158
	194_Page 159
	195_Page 160
	196_Page 161
	197_Appendix C
	198_Page 163
	199_Page 164
	200_Page 165
	201_Page 166
	202_Page 167
	203_Page 168
	204_Page 169
	205_Page 170
	206_Page 171
	207_Page 172
	208_Page 173
	209_Appendix D
	210_Page 175
	211_Page 176
	212_Page 177
	213_Page 178
	214_Page 179
	215_Page 180
	216_Page 181
	217_Page 182
	218_Page 183
	219_Page 184
	220_Page 185
	221_Page 186
	222_Page 187
	223_Page 188
	224_Appendix E
	225_Page 190
	226_Page 191
	227_Blank Page
	228_Blank Page
	229_Inside Back Cover
	230_Back Cover

