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ABSTRACT

In the present work the estimation of dynamic parameters and the trajectory

control of a two link planar manipulator is carried out. The derivation of system

involve the ki i such as joint positit ities and

accelerations. For both the dynamic imation and the traj control
an Artificial Neural Networks method called, Linear Programming (LP)-Neuro
Method, is used. In this algorithm, the weights are obtained by a combination of
linear programming having a sparse coefficient matrix and a single variable non-

linear optimization routine.

The training set values required for ion are g by

the Iterative Newton-Euler Dy i i The Artificial Neural Network is

trained to predict the dynamic parameters. The values of the forces and torques

are recomputed based on the estimated dynamic parameters. This method is

useful for the on line imation of the i naving odd mass
distributian, which is the case in actual practice.

For the control problem non-linear optimization method is used to evaluate
the gain parameters required for the manipulator to follow the desired trajectory.
Then the Linear Programming (LP)-Neuro Method is used to obtain the weight
matrix which relates the input (joint positions and velocities) and the output (gain
parameters). This weight matrix, for each point along the trajectory, can be used

on-line to evaluate the gain parameters thereby eliminating the time consuming



calculations at each point along the trajectory. Finally, the effect of the variation of

the maximum tangential velocity and general control law are sludied.
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CHAPTER 1
INTRCDUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION
In the recent years the robots have found an ever increasing use in the field

of industrial automation. Industrial robots are already assuming many hazardous,

unpleasant or monotonous tasks, while si ly improving the
of factories in the ir ized world. Robots p ially find ications in the
t or i ibl i such as, nuclear reactors, furnace

operations, mines, deep sea and outer space. Fig. 1.1 shows the Unimation PUMA
500 (Programmable Universal Manipulator for Assembly) in operation and Fig. 1.2
shows the rigid body model of the 6 Degree-of-Freedom (DOF) PUMA-560
manipulator. The study of mechanics and control of manipulators is not a new
science, but merely a collection of topics taken from classical fields. Control theory
provides tools for designing and evaluating algorithms to realize desired motions
or force application.

Although computers outperform both biological and artificial neural systems
for tasks based on precise and fast arithmetic operations, artificial neural systems
represent the promising new generation of information processing networks.

Advances have been made in applying such systems for problems found



Fig. 1.1  THE UNIMATION PUMA 500 IN OPERATION

[Spong and Vidyasagar, 1989]






intractable or difficult for traditional computation. Since, the area of robotics

requires numerous and complicated on-line calculations so, Artificial Neural

(ANN) find an i i ication in this area.

1.2 LITERATURE SURVEY

1.2.1 ARTIFICIAL NEURAL NETWORKS

The use of Artificial Neural has i tr usly in recent
years because of the availability of faster and parallel processors and the basic
learning algorithms (Grossberg, 1982; Hopfield, 1982; Rumelhart and McClelland,
1986; Kohonen, 1988). Neural network can learn mapping between the input and
output space and synthesize an associative memory that retrieves the appropriate
output when presented with an input, and has the atility to generalize with new

inputs. ANNs are being used to accomplish complex functions such as

ger ization, error ion, information recor ion, pattern analysis and
learning. Because.of their massively parallel nature, neural networks can perform
computations at very high speeds (Fukuda and Shibata, 1992).

Neural networks have also been used to successfully solve complex
problems like the Travelling Salesman r;roblem. It has been observed that neural
networks have often been opportunistic, i.e. the network model is customized to
serve the needs of the task at hand (Kulkami, 1991). They represent a new
approach that is robust and fault-tolerant.

Neural networks require basic algorithms for accomplishing the learning



task. Several algorithms are functional at present. One such algorithm which is

widely used is p ion (BP) ithm. In p { goril

during the learning phase, the observed outputs are compared with the desired
outputs, and the weights are optimized to minimize the error function. In
competitive learning, the weights are updated with each new input (Rumelhart and
McClelland, 1986). Barmann and Biegler-Kong (1992) discuss efficient learning
algorithms for neural networks.

Neural networks can perform functional approximations that are beyond the
scope of optimal linear techniques. Gulati et al., (1990) have introduced neural
formalism to efficiently learn non-linear mapping using a mathematical construct
called terminal attractors.

Neural networks have been found useful in the field of robotics in the recent

times. Forward and inverse di I of robotic i have

been done by Nyugen et al. (1990) and Gulati et al., (1990). Neural networks seem
to be a promising approach to solve non-linear control problems as well (Tabary
and Salaun, 1992). Some other interesting applications in the control of robotic

manipulators can be seen in Fukuda et al., 1991; and Akio et al., 1992.

1.22 ESTIMATION OF PARAMETERS
The kinematic parameter identification techniques were reviewed by
Hollerbach (1989). Many researchers [Maveda et al. 1984; Khosla and Kandate

1985; Kawasaki and Nishimura 1986; An et. al. 1986; Atkenson et. al. 1986] have



worked to estimate the dynamic parameters. The method of calculation of the base
inertial parameters of closed-loop robots through symbolic computations is given
by Khalil and Bennis (1995). A method of estimating the mass properties of a
manipulator by measuring the reaction moments at the base has been discussed
by Dubowsky and Cheah (1989). These estimates are not accurate enough for
dynamic control. A method of generating the variable forgetting factor for on-line

parameter estimation, has been studied by Weiping Li and Slotine (1988). These

are i to linearly ized models only. One of the ways
of ascertaining these (the dynamic parameters) would be by using Artificial Neural

Networks (ANN). The ication of Neural for the identification and

contro! of low order nonlinear dynamical systems is studied by Narendra and
Parthasarathy (1990). In the present investigation, an ANN method is used to

ti the dynamic and is di in detail in Chapter 2 of this

thesis. This would be using a faster i ped by B: 1anian and
Sharan (1993).
1.2.3 ARTIFICIAL NEURAL NETWORK CONTROL IN ROBOTICS

There has been recent trend within the robotics control literature to apply
neural networks for the control of robotic systems. In many applications reported
in the literature (Gu and Chan, 1989; Fukuda and Shibata, 1990; Helferty and
Biswas, 1990; Jamshidi et al., 1990; Karakasoglu and Sundareshan, 1990;
Yamamura et al,, 1990) the process of neural network leaming is conducted on-

line (i.e. the dynamics of the neural network is embedded in the closed-loop with



the dynamics of the robotic system), yet there appears to be lack of studies
focussing on the dynamic behavior of the neural network during learning and/or
control when the neural network is used in such context.

Kawato (1990) used feedback error leaming to compute the feedforward
torques required for a manipulator to follow a path. The neural network
implemented in this method uses the desired joint positions, velocities and

accelerations as inputs and adjusts the network weights using the feedback torque

as the error signal to a optimizing i Yuh
(1992) also used a neural network for manipulator control. He used a "critic"
equation, which is a function of the manipulator output error, to train the network
to directly compute the maripulator input torques.

Asada (1990) used a multilayered feedforward network to leam a non-linear
mapping for compliance control. From the measured forces and torques in an
assembly task he used the network to compule the required velocities, which

would allow the assembly task to be completed. Ozaki et. al. (1991) presents the

method of trajectory control of robotic r | usinga

The adaptive capability of neural network controller to compensate unstructured
uncertainties is discussed. A method of using two neural networks for the control
of a robotic arm is suggested by Shoham et. al. (1992). The neural network
weights which are usually chosen arbitranly have been determined in a systematic
way based on a geometric interpretation of the neuron function. Balasubramanian

(1993) used ANN over a limited range of trajectory control.



1.3 OBJECTIVES OF THE THESIS

We have seen in the last few sections that the neural networks are quite
versatile tools to solve problems in a wide variety of areas. With this in mind, it
was thought to apply this tool to solve problems in the areas of parameter
estimation and control of robotic manipulators. Also, based on the review of the

literature, the following are the objectives of this thesis:

1 The identification of the dynamic of robotic ip

2 The optimal control of the robotic manipulators using the Hookes and
Jeeves Direct Search non-linear optimization method over a practical range
of a trajectory.

3. Use of ANN method for the trajectory control over a practical range.

4, Study the effect of the variation of the maximum tangential velocity over a

trajectory on the controllability (error) of a manipulator.

5. Study the general control law in the trajectory control,

In Chapter 2 the inverse kinematic relationship is established between the

Cartesian and joint di wvelocity and 1 values on off-line basis

which reduces on-line computation time. The ANN method, linear programming -
neuro (LPN) method, is discussed in this chapter. This method is a non-linear
method where most, but not all, of the computations are done using linear
programming. This method is fast converging as compared to many other

methods. In this chapter the generation of Inertia Matrix {I] for an irregular shaped



link is discussed. Finally, in this chapter the results of estimation of dynamic
parameters are reported.

In Chapter 3 the various control issues for a two link planar manipulator are
studied. Here the optimal control method (non-linear optimization) and linear
programming - neuro (LPN) method is used in the on-line robotic control. The
effect of variation of the maximum velocity over a trajectory and general control

law are also included in this chapter.

Finally, ions and ions for future work are presented in

Chapter 4.



CHAPTER 2
ESTIMATION OF DYNAMIC PARAMETERS

2.1 INTRODUCTION

A ip isting of rigid links has highly non-linear
dynamics. The joint torques are related to the joint angles, velocities and
accelerations by a set of non-linear equations involving various constant
parameters such as link lengths, masses, inertias and so on. These parameters
are separated into two groups: the kinematic parameters, and the dynamic

The kil

ic p do not include any physical quantities such
as mass or inertia, while the dynamic parameters include them. To control the
robotic mechanisms it is required to know both groups of parameters.

In actual practice the mass distribution along any link is quite complex due

to the various hydraulic drives or other accessories attached to these links. The

values (dy i are not known as a result of

this. Therefore, for precision control one has to incorporate these quantities in the
model.

In this chapter, at first, the unknown dynamic parameters are identified

using ANN method. The network is trained by considering the forces and torques

acting on links as input parameters and position of the centre of gravity of the links

10



as well as the various moments of inertias as the output parameters. Then, the
training the unknown output parameters of the links are obtained using the trained

ANN.

2.2 ROBOT KINEMATICS
2.2.1 INVERSE KINEMATICS

Fig. 2.1 shows a planar two-link manipulator having revolute joints. In this
figure, (X,, Y,) represents the global coordinate system and (X;, Y,) represent the
local coordinate frame of link 'i’ (i = 1,2). The joint variables are given by 6,

In this figure the position of the end effector is represented by the
coordinates X and Y. The inverse solution at this point can be carried out by the
use of following equations, in sequence:

Defining ¢, = cos 8,; ¢,, = cos(8, + 8,); s, = sin 0,; 5,, = Sin(8, + 8,); ¢, = c0sB,; s,
= sinB,; we start with

2_j2
- X2+Y2-1P-13 - aid (2.1)

E
2,

(2.2)

From this, we get 6, as
6, = atan2(s,,c,) (2.3)

If we have two intermediate variables k, and k, as

1



Fig. 21 PLANAR TWO-LINK MANIPULATOR

Link 2

. il



Ky =1i=lc,

Ky = 18,

then we can obtain

, = Atan2(Y, X) -Atan2(k, k,)
The above inverse kinematic equations can be written in vector form as
X he, + ey,

Y] syt sy

where |, |, are the lengths of link 1 and 2 respectively.

Differentiating Eq. (2.7) with respect to time, we get

x [rl |] b

¥ he+he,, e, |16,

24

(25)

(2:6)

(27)

(2.8)

Finally, the equations for the acceleration of the end-effector can be expressed in

terms of both the first and second derivatives of 8, and 6, as

%l [t i)
¥ T herben b |6,
8, (8,0 Loig (6,48 8,

.

58, -158,5(6,+0,) -1,5,,(8,+6,)] |6,

(29)



2.3 ROBOT DYNAMICS
2.3.1 GENERATION OF INERTIA [i] - MATRIX
As discussed in the introduction, the inertia matrices of the robotic
manipulators are not known in most practical situations. In actual control of robotic
manipulators one has to compute forces and torques which can be calculated
using the Iterative Newton-Euler Dynarnics Algorithm shown in Table 2.1. As one
can see in this table, one needs to precisely know the numerical values of the
matrices [ | ] shown in Steps 6-8 in order to calculate the joint forces and torques.
Fig. 2.2 shows a link of regular geometry whose inertia matrices, in the

frame °{ } are given by [Rothbart, 1973]

T";(bz«cz) 0 0
o = 0 %(c‘*a“) 0 (2.10)
M (a24p?
0 0 @b

This matrix in frame *{ } will be given by [Craig, 1994}

AT = i)« m [4Ry7 Apali] - Apa AR @D
where A(Pc} = {X,, Y., Z}" locates the centre of mass relative to *{ } and [I'] is the
3 x 3 identity matrix.

In this figure we also have a frame ®( } which is obtained by rotating the
frame *{ } about X, by an angle v, then about Y, by an angle B and finally about
Z, by an angle 0. Hence, the transformation matrix, [C,}, relating the frames *{ }

14



TABLE 2.1 THE ITERATIVE NEWTON-EULER DYNAMICS ALGORITHM
[CRAIG, 1994]

FORWARD RECURSION

Step 11 {a), = [A {0}, + {306,

Step2: o} = [A (o + {26, + [AV o} x {2} &,
Step 3 {a}, = {AI ({ahy + {ody X {Phy + {0} % {Ph)
+ (36, + 2x (A {), x {2 6,

Step 4:  fal, = {a) + {o} x {s} + {o} x {0} x (s}
Step 5:  {F), = m,{a},
Step6: (M, = [ {o, + {w}x ([N, {a})

BACKWARD RECURSION

Step 7 {f, = {F + [Al Ky
Step 8 {n} = [Al {nh + (N +{shx {F, + {p} x (Al {fy)
Sep9: 1, = {A{n} = n,



Yp S

(B}

T —

Xa

Zc

Fig. 2.2 A LINK WITH REGULAR MASS DISTRIBUTION

Xc



and ®( } can be written as

8lC] = &[Revz(1.8.0)] = [Ro(e)] [Ry(B)] [Ry (0]

[cu~su0 cp 0 sBj|t 0 O
=[sa ca 0/|0 1 0ff0 cy -sy

2.
0o 0 1-sBoaB051cy(12)

- [cacB casPsy-socy casPey+sosy
sach sasPsy+cocy sasPcy-casy
-sp cpsy cBey

which can be used to transform a vector in ®{ } space into *{ } space.

To obtain the inertia matrix in frame °( } one has to use the equation [D'Souza and

Garg, 1988; Greenwood, 1970]

RURSCH R U oY (2.13)

Applying the same transformation matnx. [C, ], to the position vector of the centroid

of the link we get

®pc: = [C.)" 4fPc} (219)

For this link the inertia matnx {1} in both °( } and *{ } frames will be a
diagonal matrix. On the other hand. in the *{ } frame it will be a symmetric but full
matrix (all elements non-zero). A complex mass distribution of the robotic links
would also have its inertia matrix, a full matnx as expressed in °[i]. Fig. 2.3 shows
ths ®( } frame and irregular mass distnbution of a link. Thus, if the matrix B{1} is

known then one can compute forces and torques from Table 2.1.



9

Link 2

mz.[ll2

Fig. 2.3 PLANAR TWO-LINK MANIPULATOR WITH IRREGULAR MASS
DISTRIBUTION



2.4 PARAMETER IDENTIFICATION

2.41 THE LINEAR PROGRAMMING - NEURO (LPN) METHOD

Before describing the details of the parameter identification by using ANN

methods, let us discuss briefly one such method called the LP-Neuro method (LPN

method). The basic details about the Artificial Neural Networks can be seen in any

standard text such as [Hertz et al., 1991; Zurada, 1992]. This, the LPN method,

is a non-linear method where most, but not all, of the computations are done using

linear programming. This method utilizes the faster convergence property of linear

programming which results in better error minimization.

The LPN method is diagrammatically explained in Fig. 2.4. Here the weight

matrix [W] which relates {I) ard {H} is given by [Balasubramanian and Sharan,

1993]
h, Wiy Wig i

(H} = h, o | War W.zz |42

i i :

hy Wy W - W] L

The activation function used in this case Is

f(h) =m h +g

(2.15)

(2.16)

In Eq. (2.16), each variable h, has a corresponding scalar m, and a constant c;.

The relationship between {O} (output) and {I} (input) is therefore given by



DESIRED
OUTPUT

{H}

OUTPUT
LAYER

Fig. 2.4 DIAGRAMMATIC REPRESENTATION OF THE NETWORK

(LP-NEURO METHOD)
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(0} = [M][WI{} - (C} @1
where,
[M] is the diagonal slope matrix, which has scalar m; as its diagonal elements, and
(C} is the intercept vector.
A similar activation function for the desired output side (shown by the box
on the extreme Adght in Fig. 2.4) can be written as
{S} = [N)(D} ~ (G} 215
where [N] is a diagonal matrix. The matrices [N] and {G} are analogous to [M] and
(C} in Eg. (2.17). One of the ways to obtain the set of weight matrices with
minimum error would be by writing a cost function E, in the following form:
Minimize E, = [N}(D) + (G} - [MI[W}{} - (C}
subject to
[MIIW(1} + {C} = [N}{D} + (G}
or in the scalar form, it can be rewritten as
Minimize E, = n,d, + n,d, + ... + N, - My{Wyi + Wyaly + ... + Wed} - my{Wayy
+ Wy + oot Wl = o sMWiy + Wl + o + Wl )+ G + G+ + G- €y -
C-m )
subject to

MWy Iy + Wi g + o + Wy i} + € =nyd; + gy

mi{wy, iy + W lp+ .+ Wi i} +¢ =nd +g
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where d are the elements of the desired output vector and w,, are the weights. The

weights w, can be expressed in a single dimensional array or a vector as

Wiy w\
Wy = ("t (2.19)
w, WM

The weights w, ¢, and g, when replaced by two positive numbers (in the linear
programming, the variables are required to have non-negative values only) can be
written as
W=V -V,
=V, - V., and
G=vy-v, =125
1=13,.. (2.20)
After these substitutions, one arnves at
Minimize E, = n,d, + n,d, + ... + nd - M.V, - i\V, + Vg = 1V, + ...) = My(iV,y
= iVara # e ) = My Vars = Ve, + ) s Mk RV = V) + Vg -
Vg oo = Vg + Vp
subject to
[Al{V} = (D} (2.21)

where the coefficient matrix [A] is given by
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Imj, -mj, -m§ -mi 11110 0 00 0O 0000-0 000 00000
© 0 00 0 00 00my -my-my-m,1-1-11-0 000 000 00O
© 000 - 00000 000 - 0000O0-m -m-m-m1-1-11

(2.21a)

Here, the coefficient matrix [A], is a sparse matrix. In the above equation, d, are
the desired values and i, are the input values; v, v, and vy are the unknown
variables and so are m; and n. The problem shown in Eq. (2.21) is non-inear

because of the occurrence of product terms such as m,v, ... etc. However, if this

problem is with another multi-variabls problem containing
all m; only, then the problem involving the remaining variables can be solved by
the linear programming method. Since, the number of variables far exceeds the

number of constraints, it would be better to solve for m; using non-linear

and the i i which include weights, by linear method.
This method clearly differs from others because, for the majority of the variables
(other than m)), the linear method yields faster convergence as compared to a
totally non-linear method. The other details can be seen in [Balasubramanian,

1994).

242 ARTIFICIAL NEURAL NETWORK (ANN) IN PARAMETER ESTIMATION
In the Attificial Neural Network method one obtains the weight matrix [W]
mentioned in Eq. (2.15) by considering different set of vectors {H}, and {I}, and by

carrying out various calculations as given by Eq. (2.21). One must remember that
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the weights are expressed as the difference of two positive variables v, and v,,, in
Eq. (2.20). The training of the neural network can be carried out by observing
Table 2.2 where the parameters to be identified are shown as the output vector.
To train the network, one can generate an irregular link inertia values from a
regular link values using Eq. (2.13). It should be pointed out here that for different
number of training sets, i, for example if i = 3, Eq. (2.21) can be expressed as

[Sharan and Aggarwal, 1994}

o] [tal,
(o),[ - [1ak |} e
(o},] |[A],

Smx1 3mxn

For example, here the dimension of the vector (D}, is m x 1, the matrix [A], is m

x n and the vector {V} is n x 1, If we vary o, f, yin certain sequential manner we
would obtain different sets of inertia matrices in ®{ } space. For each of these sets,
for a given set of displacement, velocity and acceleration values of the end
effector, one can compute the forces and torques for that particular position of the
end effector, It should be clarified here that these forces or torques are
corresponding to a given point of the traversing end effector at a given position.

Therefore, the forces or torques are the dynamic values at a given paint on the
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TABLE 2.2 INPUT VECTOR, OUTPUT VECTOR AND WEIGHT MATRIX

USED FOR TRAINING

b,

I"v

lnv

by, F,
l"- FYI
L, F.
Pe, T
Pc, Win Wiz Wig = Wy T,

Wy, Wy, Wy = W,

ch‘ 21 22 23 212 1“
' =[Was Waz Wa: = War |]1p
o, o 5
I, F,
hid w|l.| wll.Z wllJ - wll‘! %
Le, F,
by, L3
I, L7
L T
Pc,

Pc,

Pc,,

Here, the subscripts 1 and 2 refer to the link number
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trajectory.

By varying o, B, yone can generate the output vector shown in Table 2.2,
whereas the input vector in this table can be calculated using Table 2.1 (for a
given set of displacement, velocity and acceleration values). These vectors are
then used to obtain the weights i.e. W] matrix shown in Eq. (2.17). These weights
can be used to identify the output vector of a manipulator whose dynamic
quantities are unknown by measuring the forces and torques and using Table 2.2.

It must be i here that the ki

ic p: i.e. link lengths, velocity,
acceleration, position, etc. must remain the same for both the known and unknown

manipulators, otherwise the training has to be done differently.

25 RESULTS AND DISCUSSIONS

To illustrate the theory developed, a two-link manipulator was used and the
various parameters for this manipulator are given in Table 2.3. At first, different
values of the inertia matrices were generated by varying o, p and y. Thereatfter, the

LPN method was used to identify the dynamic parameters. The comparison of the

values of the dynamic cor ing to one set of values of
o, B and y and the LPN Method are ciepicled in Table 2.4. In this figure, the
calculations using the known kinematic and dynamic parameters are done and it
includes the determination of [W] matrix. After the training, the input vector
mentioned in Table 2.2 for a manipulator whose [i] matrix was not known, was fed

to the ANN. Then, the unknown (output) parameters are predicted by these
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TABLE 2.3 VARIOUS PARAMETERS USED FOR A TWO-LINK
MANIPULATOR

PROPERTY NAME LINK 1 LINK 2

Link Lengths (m) 0.3 0.2
Mass (kg) 4.0 3.0

Height of Link ,b (m) 0.1

Width of Link ,¢ (m) 0.1

Radius of Circle (m) 0.2

Maximum Tangential 0.15
Velocity, V, (m/s)
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TABLE 2.4 COMPARISON OF ESTIMATED DYNAMIC PARAMETERS

Kinematic Values : X = 0.08m, Y =008 m, X = 0.6 m/s, Y = 0.6 mis, X = 0.4
m?s, Y = 0.6 m¥/s

S. No. DYNAMIC UNKNOWN SET LPN METHOD
PARAMETERS o, B,y =8 VALUES
LINK1 | UNK2 | LINK1 | LINK2
1 I, (kg-m?) 0011 | 000644 | 0.0097 -2.88
2 1,, (kg-m?) 0.121 00419 | 0095 | 00431
3 1,, (kg-m?) 0.12 00416 | 0.122 0.042
4 1,y (kg-m?) 0.0135 | 000436 | 0.0156 | 0.002
5 I, (kg-m?) | 0.00215 | 0.000693 | 0.000957 | 0.000671
6 I, (kg-m?) -0.0178 | -0.00573 | -0.0177 | -0.00572
7 Pc, (m) 0.147 0.098 0.146 | 0.0977
8 Pc, (m) 00178 | -00118 | -0.0178 | -0.0118
9 Pe, (m) 0.0233 | 00156 | 0.0238 | 00157
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weights, using Table 2.2. Its predicted inertia values were then used for the force
and torque calculations along the trajectory shown in Figs. 2.5 and 2.6. Figs. 2.7
and 2.8 show the various programming details. The results of these calculations
are shown in Figs. 2.9 to 2.14. These results clearly show the usefulness of the
ANN method. It is quite obvious that as the end effector is made to travel along
the trajectory, the errors in forces or torques are very small. The maximum error
is less than 2% for all points having significant and comparable torque values. The
only exception was the torque at point 3 for link 2 which was 0.015 N-m, and the

error was 0.0041 N-m. In this case the torque itself was negligible.

2.6 CONCLUSIONS

In this chapter the problem of the identification of the dynamic parameters
was carried out by using a link of regular geometry and associated inertia values.
The Inertia matrix of this link was then transformed to another set of axes to obtain

a full matrix which a link having i mass distribution is normally

to have. These matrices were then used to train an ANN. After the training, the
ANN was used to predict the dynamic parameters of an unknown manipulator. The
results obtained show that this technique of parameter estimation can be

successfully used.
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CHAPTER 3
CONTROL OF ROBOTIC MANIPULATORS

3.1 INTRODUCTION

Controlling a robot manipulator along a given trajectory can be divided into

two subtasks. The first one is an inverse ki i ion which

the trajectory, usually specified in a Cartesian coordinate, into a sequence of
required joint positions. The second one is the generation of the joint torques from
required joint angles and their derivatives. For the intelligent robots the inverse
kinematic calculations have to be done in real-time which is a time consuming
computational procedure. Also, any attempt to upgrade the existing industrial
robots controller imposes a much greater computational load on the control
computer.

Recently, significant efforts were made in developing ANN controllers
capable of controlling robotic manipulators. The ANN can be quite useful in this

respect because the training of the network can be done off-line, in most of the

where i ions can be done on a main-frame or fast
computers. Once the training is complete then these networks can enable the
manipulator to perform various tasks on the on-line basis.

In this chapter the ANN is successfully used by training the network by
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obtaining the gain values, namely position gain values (k) and velocity gain values

(k) ing to joint di (8), joint velocity (8), error in joint position

values (e) and error in joint velocity values (¢) by using non-linear optimal control
tachnique on off-line basis first. Then, the training of the network is performed
using an Artificial Neural Network Method called the Linear Programming - Neuro
(LPN) Method, which is faster and more accurate as compared to many other
methods. The results obtained are tested on a two link planar manipulator whose
end effector moves along a circular trajectory. The study includes the effect of the
variation of the maximum velocity along the trajectory. The effects of the sharp
changes in the velocity profile and the general control law are also included in this

work.

3.2 DYNAMIC EQUATIONS OF A PLANAR TWO LINK
MANIPULATOR

When the Newton-Euler equations are evaluated symbolically for any

manipulator, they yield the dynamic equation which can be written in the form

(x} = [M©)] (8) ~ (V(8.)} - {G(@)} @)
In other words, this is the dynamic equation written in matrix form for an n-link
manipulator. Here, [M(8)] is the n x n inertia matrix of the manipulator, (V(e.é)) is
an n x 1 vector containing centrifugal and coriolis terms and {G(6)} is an n x 1

vector having gravity terms. The term {V(6,6)}, appearing in Eq. (3.1) has both the
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position and velocity terms. In the case of a simple planar two-link manipulator
shown in Fig. 2.1, the matrices involved are:
1Fm, + 21,L,m,c, + I3(m, = m,) 12m, + Ll;mg,

M) = @z

13m, + 1,Lmgc, 1zm,
Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible [Craig, 1989). Similarly, in the vector
-m,\l,s,85 - 2m,l,1,5,6,6,

ve.H) = and (3.3)

m,l1,5,87
the term -myl,1,s,6,2 is caused by a centnfugal force, and is recognized as such
because it depends on the square of the joint velocity. The next term, -2m,l,l,s,9,6,
is due to the Coriolis force and always contains the product of two different joint

velocities. Finally,

!
m.l.ge,, - (m, -my)lge, (3.9)

G@) = !
el = m,igcs,

contains all those terms in which the gravitational constant, g, appears.

In all of these equations, Egs. (3.2). (3 3) and (3.4)

Cy = COS By; Cjp = COS(9, +8)); S, = SN K., 5., = sin(0, +8,)

These equations are derived using the Newton-Euler algorithm (shown in Table
2.1) based on the following assumptions.

1. All mass exists as a point mass at the distal end of the link.
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2. Inertial tensor written at the center of mass for each link is the null
matrix.
3. There are no forces acting on the end-effector.

The idea of inverse dynamics is to seek a non-linear feedback control law

T = f(6,6), (3.5)
which when substituted in Eq. (3.1), results in a linear closed loop system. It is

quite difficult, if not i ible to find control for general non-linear

systems. Since [M(8)] is invertible, we may solve for joint acceleration {6} of the

manipulator as

@ = MO ({5 - (VO-CON @36)
We then apply any of the several known numerical integration techniques, where
{6} and {8} are expressed in terms of {8} mentioned above, to integrate the

acceleration to compute the future positions and velocities.

3.3 TRAJECTORY CONTROL
3.3.1 INDEPENDENT PD CONTROL

Anindependent Proportional-Plus-Derivative (PD) Control scheme (classical
control scheme) is used to control the movement of the manipulator. While PD
schemes are adequate in most control applications, there is overshooting i.e. the
end-effector could go beyond the specified position before actually settling down.

Overshooting is quite undesirable, because in order to eliminate overshooting, an
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integrator is used which introduces damping and causes the end-effector to move
slowly through a number of intermediate set points, thus considerably delaying the
completion of the task, and the quality of the displacement etc. The controller
design can thus become more sophisticated on account of the involvement of non-

linear system dynamics. This type of control ithm is one class of

torque-like controllers.
3.3.2 EVALUATION OF GAIN PARAMETERS

in a PD control scheme, the torque equation is given by

(7} = K] {e} + [KJ (&} @7

where {8} = {8,(t+1)} - {6,(t)} and
{6} = (8(t+1)} - (8,(0}
From Fig. 3.1, the following observations can be drawn:

1. The ki i with the subscript d the desired

values on the trajectory. These values are computed based on Table 2.1. The
subscript a refers to the actual values of the kinematic parameters obtained by
solving the control equations which involve the finite difference scheme discussed
in Section 3.3.4.

2. It should be noted that the desired values obtained using Table 2.1 can
be computed in an off-line based trajectory planning. On the other hand, the actual
values and the errors etc., have to be computed on-line. One should try to

minimize the on-line computations to increase the speed with which the task is
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performed.
3. (K] and [K|] are diagonal matrices with diagonal elements consisting of

position gain k; and velocity gain k, values respectively. Mathematically, they are

written as
Kk, O
K] = [ ” ] and @8
o kDZ
K] = ke 0 (3.9)
1ok,
The use of a single value i for the entire traj y for k, and k,
»

may not be able to produce torques to follow the desired trajectory. The trajectory
control can be achieved by evaluating the set of gain parameters for the entire
trajectory using non-linear optimization method (the optimal control method) as
described in the Secticn 3.5 on a point by point basis. This requires the gain
values to be different for each point along the trajectory of the manipulator. The
objective of the optimal control is to minimize the errors in joint positions and joint
velocities between the actual values and the desired values, based on the gain
variables (K] and [K,].

3.3.3 HOOKES AND JEEVES NON-LINEAR OPTIMIZATION METHOD

The gain values are using non-li imization routine that
would minimize 19,(t+1) - 6,(t+1)l and B, (t+1) - B,t+1)l. (K] and [K] are

obtained using the Hookes and Jeeves method (Rao, 1978). The pattem search
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method of Hooke and Jeeves is a sequential technique each step of which
consists of two kinds of moves, one called the exploratory move and the other
called the pattern move. The first kind of move is included to explore the local
behaviour of the objective function and the second kind of move is included to take

advantage of the pattem direction.

Let us define
,
.
- (3.10)
X l
kd
and
F((X]) = {8,(t=1) - B,(t-1)) - (,(t+1) - §,(t+1)] (3.11)
The objective function can be mathematically written as
Xy = Fixn - iP.g.’H(g_) (3.12)

where {X} is the design vector, k constraits are represented as g, and H(g,) is the
Heavyside unit step function defined so that

H(g) =1 forg, 20 or.

H(g) =0 forg, < 0 (3.13)
In Eq. (3.12), P, are large penalty constants which are positive because the

present problem is a minimization problem. Next, one needs to solve for the
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minimum of U({X}) using the Hookes and Jeeves method and the step-by-step
procedure for a design vector {X} having n components is mentioned below:

(i) Start with an initial estimate of the design vector
X, (3.14)

and choose Ax;, i = 1,2,...,n as step lengths in each of the coordinate directions u,,
i=12..n

(il) Set temporary base point {Y, o} = {X}

(iif) Start the exploratory move by perturbing one design variable at a time in order

to find the improved value of the objective function. Set:

(Yigad = x{u} i U = UL} + Ax{u})

< U=UlY,.h
Yol - (Yt - Axfu} iFU = U{Yyq) - Ax{u)) (3.15)
< U=UlY,.)
< U = ULY,,.}+ax{ul)
(Yab i U = ULY,]) < min (UU7)
In this way, all the design vari X, are pi and the imp position

{Yy,} found.
(iv) If the point {Y, .} is not different from {X,}, reduce the step lengths Ax; set i =

1 and go to step (iii). if {Y, .} is different from {X,} obtain the new base point as
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Ktk = {Yiad (3.18)
(v) Find the pattern direction {S} using
{8} = (X} - X @.17)
Find the point {Y,., o} as
Yiro) = Xt = A {8} (3.18)
Find X', the optimum step length in the direction {S} and use A" in Eq.(3.18).
(vi) Set k = k+1, U, = U({Y,,}) and i = 1; repeat step (iii). If at the end of step (iii),
U({Y,q}) < U(X,) use the new base point as {X,,,} = {Y, .} and go to step (v). If
U({Y,0)) >= U({X ), set {X,,,} = {X,} and reduce step lengths; set k = k+1 and go
to step (ii).
(vii) The process is terminated if the step lengths become less than &, a very small
quantity.
3.3.4 NUMERICAL INTEGRATION TECHNIQUE
3.3.4.1 RUNGE-KUTTA METHOD FOR A SECOND ORDER DIFFERENTIAL
EQUATION
The Runge-Kutta method is self-starting and gives quite accurate results.

If we have a single second order differential equation as

% = % [F(t) -cx-kx] = f(x,%,9) (3.19)

By defining X = y. This can be written as two first order equations:
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K=y (320

y = f(x,y.t) (3.21)

By defining
o)
)= el @2

the following recurrence formula is used to find the values of X(t) at different grid

points t, according to the fourth order Runge-Kutta method.

b = )+ i) <20 -2 (k)] @24)
where
fi) = h Ex) 25)
(K =h F[(X‘) ‘lz(m.nﬁ%h) (3.26)
Ky =h F((X,) ~%(K2).l‘~%h] @327
) = Flx}-idn) a28)

In the variable form the Runge-Kutta Method is shown in Table 3.1.

These quantities evaluated in the table are then used in the following recurrence
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TABLE 3.1 RUNGE-KUTTA METHOD IN VARIABLE FORM

t X y=x
Ty=t Xy =% Yy=v F, =T, X, Yy)
Tyt + 2 | Xo=x+Y.(V2) | Y=y +Fu(2) | Fp=1f(T, Xp Ya)
Ty=t+h2 Xy=%+Yu(h2) | Yy=y +Fu(hf2) | Fy=f(Ty X, Ys)
=t+h Xe=%+Ya(h2) | Yy=y,+Fa(h/2) | Fy=H(T,, X, Y,)
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formula to calculate the values of x and x at the next time step as:

Xy =X - %[Y‘ -2Y,-2Y,+Y,| (3.29)

et

Vo =Y, - %[F, -2F,-2F, F)| (3.30)

3.3.4.2 RUNGE-KUTTA METHOD FOR THE CONTROL PROBLEM

Rewriting Eq. (3.6), the differential equation for the present problem is given by

@ = MON (e - (VM -(GEN (38

here the quantities [M(6)], {V(8,8)} and (G(8)} are given by Egs. (3.2), (3.3) and
(3.4) respectively. After substituting Eq. (3 7) into Eq. (3.6) one can write Eq. (3.6)

for the planar two link manipulator as [Aggarwal et. al., 1995]

5, [a0)) bee,) o ) o, -6, ] 16,.8) G‘(e,.ez)}
" x Kl o [©
,)  [c8) d(8,) To, 8,-8,] | [ V00 | (Cald
(3.31)
“am ) bm.)"
Where * lis (M(e)]! (3.32)
_cm; 1(0:)}

and [M(8)]" can also be written as



5 tim, (iim, - Lmee,)
det[M(8)) —(I:m, - LLmyc,) 12m, - 21,l,m,c, - 17(m, ~m,)
(3.33)

M)

Eq. (3.31) is a combination of two second order differential equations so, we will
use the fourth Order Runge-Kutta Method discussed in Section 3.3.4.1. Defining:

6, =¥, and &=, (334)

the two second order differential equations in Eq. (3.31) can now be written as four

first order differential equations as

6, =¥,

W, =6, =F(8,.0,¥,¥,) (@38)
6, =%,

W, = 6, = G(8,8,,%,,¥,)

Therefore, one can define



6,(t)

{x@) = \;‘((:)), and (3:36)
()
\v|
ok = fy: @7
:
\i‘z

along the similar lines as in Egs. (3.22) and (3.23). Finally, using Eq. (3.24) with
Egs. (3.25), (3.26), (3.27) and (3.28) we numerically integrate to calculate {X(t)} for

the next time step.

3.4 TRAJECTORY GENERATION

In robotic applications, a desired task is usually specified in the work space
or Cartesian space, as this is where the motion of the manipulator is easily
described in relation to the external environment and workpiece. However,
trajectory-following control is easily performed in the joint space as this is where

the arm ics is more easily Theretore, it is important to be able

to find the desired joint space trajectory given the Cartesian trajectory. This is
accomplished using the inverse kinematics.
Fig. 2.1 shows the planar two link manipulator. For this investigation we

have chosen a circular arc as the desired trajectory (Fig. 3.2). In Fig. 3.2 the
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manipulator end effector starts at point 1 and goes to point 25 on the trajectory
with the variation of angle from 5° to 53° with increments of 2°. The radius of the
circular arc is 0.2 m. Table 3.2 shows the various link parameters used. Fig. 3.3
shows the variation of tangential velocity along the trajectory.

If 8 (5° to 53°) is the angle with which the end effector moves along the
trajectory then the Cartesian coordinates of the end effector of the two link

manipulator is given by

X = rcos() (3.38)

y = rsin(8)

where r is the radius of the circular arc.
Knowing the tangential velocity V, the Cartesian velocities of the end effector

are given by

Xt _[cos® -sin® 0 (3.39)
sin® cos® ||V,

The radial and tangential accelerations are given by

(3.40)

where V,,, is the tangential velocity at the next time step and V, is the tangential

velocity at the previous value of time. Therefore, the Cartesian acceleration values
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Table 3.2 VARIOUS PARAMETERS USED FOR A TWO-LINK

MANIPULATOR
PROPERTY NAME LINK 1 LINK 2
Link Lengths (m) 0.3 0.2
Mass (kg) 4.0 3.0
Height of Link ,b (m) 0.1
Width of Link ,c (m) 041
Radius of Circle (m) 0.2
Maximum Tangential 0.15
Velocity, V, (m/s)
Initial Position Gain K., = 150.0; K,, = 150.0
Values
Initial Velocity Gain K., =150.0; K, = 150.0
Values
Step Size in Time, AT 0.001
(s) for RK Method




TANGENTIAL VELOCITY, V; (m/s)

0.15m/s

I\

ACCELERATING

!
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Fig. 3.3 DESIRED TANGENTIAL VELOCITY PROFILE
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are given by

%) |cose -sin@ A, (3.41)
y] [sine cose J|A,

Finally, knowing the Cartesian di velocity and ion

values, we use the inverse kinematic calculations as described below to calculate

the joint di: 1t, velocity and ion values which are to be usedin Eq.

(3.31). The variation of joint displacement values for links 1 and 2 is shown in
Table 3.3. Fig. 3.4 shows the orientation of the end effector of the planar two link
manipulator following the desired trajectory in accordance with the joint
displacement values given in Table 3.3.

Abriet review of the computation procedure which for the sake of clarity can
be stated in the step-by-step forms as:
STEP 1: Compute the left hand side terms in Egs. (3.38) to (3.4 1) in a sequential
manner.
STEP 2 : Compute 6, and 8, using Egs. (2.1) to (2.6).
STEP 3 : Use X and Y from Eq. (3.39) and compute 8, and 6, from Eq. (2.8) which

linear

is a set of two si
STEP 4 : Similarly use X and Y from Eq. (3.41) and compute 8, and 8, using Eq.
(2.9). One has to remember that 6, and 6, have already been calculated in step

3 above.
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Table 3.3 VARIATION OF JOINT DISPLACEMENT VALUES

POINTS | 6, (rad) 6,(deg) | 6, (rad) | 6,(deg)
1 -0.64 -36.4 2.4 138.59
-0.60 -34.4 g 138.59
-0.57 -32.4 . 138.59
.53 -30. X 138.59
-0.50 -28.4 X 138.59
-0.48 -26.4 . 138.59
-0.43 -24.4 X 138.59
-0.39 -22.4 X 138.59
-0.36 -20.4 g 138.59
-0.32 -18.4 . 138.59
-0.29 -16.4 138.59
| -0.25 41 138.59
-0.22 41 138.59
-0.18 41 138.59
-0.15 -8.4 % 138.59
-0.11 -6.4 . 138.59
-0.08 -4.4 138.59
-0.04 2.4 . 138.59
-0.01 .4 X 138.59
20 .03 .59 X 13859 |
21 .06 .59 .4 138.59
22 .1 .59 . 138.59
23 .1 .59 .4 138.59
24 0.1 .59 X 138.59
25 020 ! 11.59 . 138.59
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Fig. 3.4 DESIRED CARTESIAN TRAJECTORY ACCORDING TO TABLE 3.3
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35 OPTIMAL CONTROL METHOD (NON - LINEAR
OPTIMIZATION)

Optimal Control (non-linear optimization) method is a method used to
achieve the trajectory control and obtain the position and velocity gain values on
the offfine basis using the Hookes and Jeeves direct search non-linear
optimization method. This method minimizes the error inthe joint displacement and
joint velocity values in accordance with Eq. (3.7). It makes use of the fourth order
Runge-Kutta method (section 3.3.4) to calculate the actual joint displacement and
velocity values at the next time step. The calculated gain values are then used for
training the ANN as discussed in section 3.6. The various steps involved in the
optimal control method are shown in Fig. 3.5. The various steps involved in this
method are as follows:

STEP 1:Read the link parameters (Table 3.2) and let the end-effector be at some
initial position having coordinates (x.y)

STEP 2: Uss the inverse kinematic equations (Section 2.2.1) to calculate the
actual joint position and joint velocity values.

STEP 3 : Calculate the joint torque using Eq. (3.7) based on the error in the
desired and actual joint displacement and joint velocity values and thereafter
compute the joint acceleration from Eq (36) It should be noted here thatwe use
the actual values of 8, §, etc. in Eq. 13 6)

STEP 4 : Numerically integrate lorward in steps of AT and calculate the joint

position and joint velocity values at the next time step.
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STEP 5 : Finally use the Hookes and Jeeves direct search (non-linear
optimization) method to minimize the error in the actual (obtained in Step 4) and
the desired joint position and joint velocity values. Record the gain values. Here,
we use [K]and [K/as design variables as shown in Eq. (3.10), and the objective
function for the present case is given by Egs. (3.11) and (3.12).

These gain values when substituted in Eq. (3.7) would result in the desired
torque. The Steps 2to 5 were repeated for the entire trajectory and a set of gain
values was obtained. The objective here wasto havethe position control primarily,
which was successfully attained. The gain values for a trajsctory are shown in
Figs. 3.10 to 3.13 (Section 3.6). Here, the gain values change quite significantly
along the trajectory. This Is because the matrices [M(Q)], {(V(©,0)} and {G(6)}
undergo continuous change from position to position which also includes the

changes in the velocity vector.

3.6 ARTIFICAL NEURAL NETWORKS IN TRAJECTORY
CONTROL

Neural network method has been widely used in many control applications.
In the present case we are using the LP-neuro method which was foundto be very

effective in the

problem di: in Chapter 2. It would be
quite beneficial to have a weight matrix which relates the input vector
(1} = (6,0,,8,0,01.05818,)" (342)

and the output vector
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{0} = (kKo kil (3.43)
Several sets of {I} and {O} can be computed by starting with different initial
conditions of 8,, 8, 8, and 8, but the same trajectory as shown in Figs. 3.2 and
3.3. The training was done in such a way that different weight matrices were
generated for all the 25 points along the trajectory. These weight matrices [W]
were obtained from the 9 sets of {I} and {O} using the Optimal Control Method.
The problem of trajectory control computationally becomes a lot simpler with the
known weights [W]. The steps involved in obtaining the weight matrix as shown
in Fig. 3.6 are as follows:
STEP 1: Let the end-effector be at some initial f osition having coordinates (x,y).
STEP 2 : Use non-linear optimization method to evaluate gain values off-line for

different trajectories.

STEP 3 : Note the input and output parameters for various trajectories.
STEP 4 : Compute [W] separately for each point along the trajectory using the LP-
neuro method
STEP 5 : Use [W] on-line to evaluate the output parameters (gain values ky, k.,
Kk, K 6tc.).

Here, the weight matrix relates the input and output vectors as
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0
kp‘ 1
Koz - 0, (3.44)
Kot e
Ke e,
€
@,

Figs. 3.7 to 3.9 show the variation of the desired 8,, 8, and 6, along the
trajectory. Since, 8, has a constant value along the trajectory so, 6, is zero. Finally,
knowing the weight matrix, [W), we fed a new set of input vector not used in the
training {1}, to the trained neural network and obtained the corresponding output
vector, {O} of gain values. Table 3.4 gives the gain values obtained using optimal
control method and the ANN method corresponding to this new set of input values.
These gain values have been compared graphically in Figs. 3.10 to 3.13. These
results clearly show the applicability of neural network method for on-line control
of robotic manipulators. After this a trajectory control was achieved which is
shown in Fig. 3.14. The results in this figure very clearly demonstrate the use of
both the optimal control and ANN control method. It should be stated here that in
Fig. 3.14, the initial starting point was deliberately chosen to the different from the
first desired point because such a situation can be expected in real practice.
Having established the ability to such situations, the initial error was not introduced

in subsequent work (Figs. 3.16 - 3.22).
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Table 3.4 COMPARISON OF GAIN VALUES OBTAINED USING OPTIMAL
CONTROL (NON-LINEAR OPTIMIZATION) AND ANN METHOD

NON-LINEAR OPTIMIZATION | LPN METHOD
| Points  Kp1 .| Kp2 Kvi Kv2 | Kpl Kp2 Kvi Kv2
2 381.45 | 1325.24 | 1325.69 | 167.125 | 1381.45 | 1317.55 | 1320.36 | 167.125
3 486.22 | 1358.2 | 1 195.325 | 1486.28 | 1358.2 | 1323.85 | 195.325
4 493.42 200.725 | 1361 323.24 | 200.725
5 500.42 205.525 322.59 | 205.523
507.82 211.325 321.79 | 211.325
572.99 222.925 4 320.16 | 222.925
1509.62 | 214.325 | 1509.62 | 13 320,88 [ 214.325
1514.01 216.725 | 1514.02 | 1376.98 [ 132058
10 1572.3 | 1 1319.56 | 227.125 | 1572.3 413.86 | 1319.56 | 227.125
11 1540.4 1320.77] 214.525 | 1540.4 | 1397.77 1320.77 | 214,525
12 1609.48 1 218,926 1320.25 | 214.41
1 1709.64 | 1 1319.61 | 223.127
1 1706.05 | 1 |1 1318.81 | 226.927
1703.4 | 1 1318.72 [ 227.127
709.44 | 1 1 1321.21] 219.127
710.64 1321.21 | 220,727
697.45 | 1 1320.8; K 221.527 |
685.05 | 1 1318.22 X 236.526
677.31 1320. 677.31 1320.08 | 228.677
696.65 | 1527.71 | 1320.01 | 1696.65 1320.01 | 226.327
611.27 | 1460.54 | 1319.24 611.27 | 1460.54 | 1319.24 [ 219.327
1722.44 | 1547.7 | 1320.8 1320.8 | 214.927
24173583 1564.3 | 1320.2 | 221 13202 | 221.727
1690.64 | 1517.91 | 1319.41 | 222527 | 1690.64 | 1517.91 1319.41 | 222,527
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3.7 THE EFFECT OF VARIATION OF MAXIMUM TANGENTIAL
VELOCITY

The effect of variation of maximum tangential velocity for the given trajectory
is studied in this section. For the desired trajectory (Fig. 3.2) the maximum value
of the desired tangential velocity was varied according to Table 3.5. Fig. 3.15
shows the variation of the maximum tangential velocity for some of the values
according to Table 3.5. The variation of the maximum velocity values of 0.001 m/s
and 0.0008466 m/s have not been shown in Fig. 3.15 but they follow the same
trend. In this figure the effect of sharp and smooth change in velocity is made
clear. Using these maximum tangential velocity values and the link parameters
given in Table 3.2, the desired joint displacement and joint velocity values were
computed. Then, following the optimal control method using a fixed starting value
of 8,, 8, 8, and 6, as discussed in Section 3.5, the corresponding actual joint
displacement and joint velocity values are calculated. Corresponding to these
velocity values the desired and actual trajectory variation is given in Figs. 3.16 to
3.22.

Figs. 3.16 to 3.22 indicate that the desired and actual (Optimal Control
Method) trajectories become closer as the maximum value of the tangential
velocity decreases. Also, from the figures and Table 3.5 it is obvious that the
smoothing of the corner i.e. with gradual change in the velocity from accelerating

to the constant velocity region, gives better results for trajectory control.
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Table 3.5 VARIOUS MAXIMUM TANGENTIAL VELOCITY VALUES

S.No. fAAXIMUM MAXIMUM PROPERTY
TANGENTIAL TANGENTIAL
VELOCITY (m/s) VELOCITY
1 0.15 354.6 Sharp Corner
2 0.15 354.6 Smooth Comer
3 0.1 236.4 Sharp Corner
4 0.05 118.2 Sharp Corner
5 0.001 2.36 Sharp Corner
6 0.0008466 2.0 Sharp Corner
7 0.0008466 2.0 Smooth Comer
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3.8 THE GENERAL CONTROL LAW

In the previous sections we have achieved the trajectory control of a two link
manipulator where torque equation was given by Eq. (3.7). The computations for
the position and the velocity gain values using the optimal control method were
done taking the difference between the desired and actual joint position and joint
velocity\wvalues in the control law. During this non-linear optimization control
(Section 3.5) we had four design variables k;,, k;,, k,, and k.

In this section we use the general control law for the torque equation as

(@ = K (e - K] (3.45)
Here N, and N, are the exponents of the error in joint position and joint velocity
values respectively. Using this as the torque equation and then following the
optimal control method discussed in Section 3.5, we achieved the trajectory control
and recorded the position and velocity gain values. In this general control law,
while using the optimal control method, we had six design variables as k,, kg, Ky,
k.2 N; and N,. Tables 3.6 and 3.7 show optimal values for the design variables at
each of the points along the trajectory. In Table 3.8 U(4) and U(6) refer to the
objective function for the four and six design variable control laws respectively.
Corresponding to the four and six design variable cases the optimal objective
function values (Egs. (3.11) and (3.12)) are given in Table 3.8. The bottom row of
Table 3.8 shows that the sum of the objective function values at all the points for
the general control law is less than that of the four design variable control law.
The normalized errors in the objective functicn values is plotted in Fig. 3.23. The
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Table 3.6  GAIN VALUES OBTAINED USING OPTIMAL
~  CONTROL METHOD WITH 4 DESIGN VARIABLES

| Points | Kp1 Kp2 Kv1 Kv2

| 1381. 45' | 1325.24 | 1325.69 | 167.125

486.22 1323.85 | 195.325
4 493.42 1323.24 | 200.725
500.42 | 1322.59 | 205.525
6 507.82 1321.79 | 211.325
7 572.99 1320.16 | 222.925
8 509.62 1321.39 | 214.325
9 514.01 1320.58 | 216.725
15723 ! 1319.56
1540.4 1320.77
1609.48 1320.25

1709.64 | 1530.91 | 1319.61

4 1706.05 | 1525.71 | 1318.81

1703.4 | 1524.32 | 1318.72

709.44 | 1539.11 | 1321.21 | |

71064 | 1542.11 | 1321.21
697.45 | 1542.72 | 1320.82
22

685.05 | 1535.12 |

20 677.31
21 696.65
22 611.27
722.44
735,
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Table 3.7 GAIN VALUES OBTAINED USING OPTIMAL CONTROL
T METHOD FOR THE GENERAL CONTROL LAW

Points!| Kp1 ' Kp2 |
2 1388.4030 | 1312.9910
609.9450 | 1378.4970
435.9910 | 1333.5750
438.7900 | 1335.9740 5680
452.5840 | 1343.7680 | 1325.5620 |
455.5830 | 1346.1670 | 1325.5610
459.3810 .9650 | 1325.1590
489.5730 1560 | 1323.3480
492.5720 77.1559 | 1323.14€0
1528.5590 | 1402.5400 | 1322.3330
1530.9580 | 1404.7390
3 1564.7430 | 1

201.9998 4§
213.9998 | 2.1308 | 2.1202

1320.5150
1320.3130
1320.8850
1321.2830
1320.6840
1485.7980 | 1317.6900
1487.3940 | 1319.0860
1492.9970 | 1319.2880
1514.9870 | 1320.0770
1482.2030 | 1319.6930

[Z1654 | 51504
24 618.7210 | 1483.4020 | 1319.6920
25 622.7190 | 1486.6500 | 1319.0400 | 2
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Table 3.8 COMPARISON OF OBJECTIVE FUNCTION VALUES OBTAINED
USING 4 DESIGN VARIABLE AND GENERAL CONTROL LAW

POINTS| U@) | U(®6) ; U(6)»-U4)
11545.81 | 11462.97 | ___-82.84
9083.952 | 2926145 | 2917061.048
8271521 | 8915.702 | __644.181
7605.531 | 8226.428
7084.709 | 7595.758 ¥
176.813 | 7174.384 z
420.974 | 6851.461
~|'6201.063 | 6380.96
10 (708232.3 | 6198.987
11| 5759.045 | 5826.917
12| 5237.813 | 5751.221
13 | 4696.467 | 5584.335
14| 4774.192|5609.491 | _
15 | 4813048 5617.618 |
16| 6877855 | 4038835
17 | 9250850 | 1.28E+07
18| 7751353 | 7563552
19 | 7670226 | 2700556
20 | 1.22E+07 | 5869258
21| 9153188 | 8427011
22| 5065.401 | 1.16E+07 | 11594934.6
23 | 3738899 | 4905.289 | -3733993.711
|24 | 6375608 | 4779.574 | -6370828.426
25 | 2638160 | 4649.015 | -2633510.985
SUM [ 66457108 56030889 | -10426218.53
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NORMALIZED ERROR IN THE OBJECTIVE FUNCTION
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0.4 -
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2 3456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25
POINTS ALONG THE TRAJECTORY

Fig. 3.23 VARIATION OF THE NORMALIZED ERROR BETWEEN THE
OBJECTIVE FUNCTIONS
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curve is obtained by dividing each of the numbers in the fourth column of Table

3.8 by the number in its bottom row. The percentage improvement is defined as

(3.46)

Referring to Table 3.8, the improvement of 15.68% was achieved in the objective
function when using the general control law.
3.9 CONCLUSIONS

In this chapter the various control issues of a planar two link manipulator
have been discussed. The optimal control method (non-linear optimization) was
used to achieve the trajectory control and compute the position and velocity gain
values off-line. The training sets for the ANN method were generated using the
optimal control method. Also, the on-line trajectory control of the same two link
manipulator was achieved using the LPN (ANN) method. The results show that the
LPN method can be successfully used for the on-line trajectory centrol. The effect
of the variation of the maximum tangential velocity along the trajectory was also
studied and it was found that better control is achieved if the maximum velocity is
lower. The general control law for the trajectory yields better results.

The optimal control method was done off-line, and it has possibility of
numerous computations. On the other hand, in the ANN method, the weights were
obtained on the off-line basis, but the gain valuas were obtained on-line, which
were approximate. Thus, the optimal control method yields accurate results but

cannot be used on-line due to the computational requirements.
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CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

4.1 DISCUSSION AND CONCLUSIONS

The objective of this work was to estimate the dynamic parameters and the
on-line trajectory control of the planar two link manipulator. This objective was
achieved through the use of an ANN method called Linear Programming Neuro
(LPN) method. The identification of dynamic parameters was carried out by using
a link of regular geometry and associated inertia values. The inertia matrix of this
link was then transformed to another set of axes to obtain a full matrix which a link

having mass distribution is normally

pected to have in actual
practice. These matrices were then used to train the ANN. After, the training, the
ANN was used to predict the dynamic parameters of the unknown manipulator. In
this thesis the various control issues of a planar two link manipulator are also
discussed. The optimal control method (non-linear optimization) was used to
achieve the trajectory control and compute the position and velocity gain values,
off-line. Also the on-line trajectory control of the same two link manipulator was
achieved using the LPN (ANN) methad. The results show that the LPN method can
be successfully used for the on-line trajectory control. The effects of the variation

of the maximum tangential velocity and the general control law were also studied
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in relation to the control aspect of the manipulator.

Based on this work, the following conclusions are drawn:

1.

Neural networks can be used for the i ification of dynamic

of robotic manipulators.

C ing to the esti dynamic and their desired

values the input values, forces and torques, were recomputed. From the
present work it was shown that as the end effector is made to travel along
the trajectory, the errors in forces and :orques are very small. The
maximum error was less that 2% for all the points having significant and
comparable torque values.

One can achieve very accurate trajectory control using the non-linear
optimal control method.

The ANN method was used to compute the weight matrices for all the
points along the trajectory by the training sets obtained from the optimal
control method. These weight matrices can then be used for the on-line
trajectory control of the manipulator.

One can also achieve sufficiently accurate on-line trajectory control using

the ANN method.

The accuracy of the control results impi as the d j Y
velocity is decreased.
The use of general control law (six design variables) yields better control

results as compared to the control law using four design variables. An
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improvement of 15.68% was achieved in the objective function when using

the"general control law over the four variable control law.

4.2 RECOMMENDATIONS FOR FUTURE WORK

Future research work can be pursued on the following topics:

1.

LP-neuro method can be extended to many applications in the on-line

conirol of robotic manipulators.

Efficient i like K r's can be applied in Linear

F ing for faster

g to p! i ing a large number
of design variables.

It may be possible that the Optimal Control Method can be used in the on-
line control of manipulators having more degrees of freedom if computations
are done on parallel processors and faster computers.

The neural network method can also be used to solve problems involving

friction and other inties in the traj ies of robotic
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APPENDIX A

INERTIA TENSOR

The inertia tensor describes the mass properties of a body with respect to

rotations about the centroid. Fig. A.1 shows a rigid body with an attached frame.

The inertia tensor relative to frame {A}, attached to the rigid body, is expressed in

the 3 x 3 symmetric matrix form as:

where the scalar elements are given by

= [ b2 ooy

b - [ 29 pa

be = I, ey pow
b = [l 2y oo
bo = Jff, w2 oe
b [ff, veoaw
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Fig. A1 RIGID BODY WITH AN ATTACHED FRAME
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where the rigid body is composed of differential volurne elements, dv, containing
material of density p. Each volume clement is located with a vector, *P =[x y 2]’
as shown in Fig. A.1. The elements |, ,,, and |,, are called the mass moments

of inertia. The elements with mixed indices are called mass products of inertia.



APPENDIX B

FORMULAS FOR ROTATION ABOUT THE PRINCIPAL AXES BY 6

1.0 o0
R,(6) = [0 cos® -sin®
|0 sin® cose |

(8.1)

cosd O sine
RO =|0 1 0
{~siné O cos6

(8.2)

= _
cos -sind O
R,(6) = |sind cosd O
Lo o 1]

(B.3)




APPENDIX C

ITERATIVE NEWTON-EULER DYNAMIC ALGORITHM

The Iterative Newton-Euler Dynamics Algorithm is for puting the torques

that correspond to a given trajs yofa i A ing that we know the
position, velocity and acceleration of the joints, (8, 6, 8). With this knowledge and

with the

ge of the ki ics and mass distribution i ion of the
robot, we can calculate the joint torques required to cause this motion.
OUTWARD ITERATIONS TO COMPUTE VELOCITIES AND ACCELERATIONS

In order to compute inertial forces acting on the links it is necessary to
compute the rotational velocity and linear and rotational acceleration of the center
of mass of each link of the manipulator at any given instant. These computations
are done in an iterative nature starting with link 1 and moving successively, link by
link, outward to link n.

The rotational velocity for joint 1+1 1s given by

Mo, c Row 8,12, (€.1)
The equation for transforming angular acceleration for one link to the next

is given as,
“igy = PR R0 1240, 2, (C.2)
When joint i + 1 is prismatic, this smplifies to
.- Row, (C.3)

The linear acceleration of each hink rame origin is obtained by:
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- "N, = '."R[ @ x P 'e x (o x ‘Pm)o '\7.] (€4

which, for prismatic joint i + 1, becomes

"Wy = '."R( b x Py x (0 x 'P--:)' “") (c.5)
+2 “‘(Il“| x d‘.' |-|2‘_"a‘.‘ |.|2h‘
We also will need the linear acceleration of the center of mass of each link,

which also can be found as:

We, = iy x Pg+ oy x ( o x 'Pc}o W, (c.6)

where we imagine a frame, {C}, attached to each link with its origin located
at the center of mass of the link, and with the same orientation as the link frame,
{i}. Eq. (C.6) doesn't involve joint motion at all, and so is valid for joint i + 1
revolute or prismatic.
THE FORCE AND TORQUE ACTING ON A LINK

Having computed the linear and angular accelerations of the mass center
of each link, we can apply the Newton-Euler Equations to compute the inertial

force and torque acting at the center of mass of each link. Thus we have
F = myg €7
N = %ld o x %o (c.8)

where (C} has its origin at the center of mass of the link, and has the same

orientation as the link frame, {i}.



INWARD ITERATIONS TC COMPUTE FORCES AND TORQUES

Having computed the forces and torques acting on each link, it now remains
to calculate the joint torques which will result in these net forces and torques being
ay»lied to each link.

We can do this by writing a force balance and moment balance equation
based on a free body diagram of a typical link (Fig. C.1). Each link has forces and
torques exerted on it by its neighbours, and in addition experiences an inertial
force and torque. Defining:

f, = force exerted on link i by link i - 1,

n, = torque exerted on link i by link i - 1.

By summing forces acting on link i we arrive at a force balance relationship,

Fo= h- LR, ©9
By summing torques about the center of mass and setting them equal to

zero we arrive at torque balance equation:

N,

-y (- Pe) x -(Pr- PG) x oy (C.10
Using the result from the force balance relation Eq. (C.9) and adding a few

rotation matrices we can write Eq. (C.10) as
N, = - LR - Pox IR - P xR (cn
Finally, we can rearrange the force and torque equations so that they

appear as iterative relationships from higher-numbered neighbour to lower-

numbered neighbour.

107



Fig. C.1 FREE BODY DIAGRAM OF A LINK
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f = LR, - F, (C.12)

o= N lGRUIN,= Pex Fe P x LR (C.13)
These equations are evaluated link by link starting from link n and working
inward toward the base of the robot. These inward force iterations are analogous
to the static force iterations, except that inertial forces and torques are now
considered at each link.
As in the static case, the required joint torques are found by taking the 4

component of the torque applied by one link on its neighbour:

5= (c.19)

For joint i + 1 prismatic, we use

T (C.15)
where we have used the symbol < for a linear actuator force.

Note that for a robot moving in free space, “'f,,,, and *'n,,,, are set equal
to zero, and so the first application of the equations for link n is very simple. If the
robot is contacting the environment, the forces and torques due to this contact may
be included in the force balance by having non-zero “'f,, and “'n,,,. These

equations are summarized in Table 2.1 for the case of all joints rotational.
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APPENDIX D
PROGRAM LISTINGS

D.1 Trajectory Generation

The trajectory generation of the planar two link manipulator is done as:

1. This program the i i velocity and
acceleration values for the 25 points along the trajectory for the planar two
link manipulator knowing the radial velocity, radial acceleration and
tangential acceleration values (D.1.1).

2. This program uses the inverse kinematic calculations to calculate the joint

velocity and values for the 25 points along the

trajectory (D.1.2).
These programs are wntten in FORTRAN. The link parameters are
known for the planar two link manipulator. For all these programs OPTIVAR

Designer's optimization subroutines [Siddall, 1982] are widely used.
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D.1.1

of Cartesian velocity and values

PARAMETER (Pl = 3.1415927)

DIMENSION R(22).VTAN(2,1)VEL(2,1),RACC(25),TACC/(25)
DIMENSION ACC(2,1),ATAN(2,1),BTAN(2,1)

OPEN(UNIT = 1, FILE =

OPEN(UNIT =2, FILE

'oLD)
OLD)
alues.out, STATUS = 'OLD’)
= ‘circ.dat, STATUS = 'OLD')

Th(deg)  Th(Rad) X Y
2.0

THETA = TH * (PI/180.0)
X = RAD*COSD(TH)

Y = RAD*SIND(TH)

WRITE(",") RAD,TH,THETA, X,Y
WRITE(4,") RAD,TH,THETA, X.Y
WRITE(3) X.Y

CONTINUE

WRITE(*,)
WRITE(*,") 'XDOT YDOT RADIAL VEL. TANGENTIAL VEL.

DO 10 TH = 5.0,53.0,2.0
HEAD(1 *) (VTAN(IIL1

R(2 2) = COSD(TH)

CALL MATMUL(R,VTAN,VEL,2,2,1)
WRITE(*,") (VEL{J,1),J=12), (VTAN(J,1),J=1,2)
WRITE(@3,") (VEL(J,1),J=1,2)

CONTINUE

CALL CALRACC(RACC)
CALL CALTACC(TACC)

DO 151=1,25

AN(2,1 ACC(H)
WRITE(2,*) (ATAN(J,7)J=1,2)
CONTINUE
REWIND(2)

WRITE(",") 'XDDOT YDDOT  RADIAL ACC. TANGENTIAL ACC.'
DO 17 TH = 5.053.0,2.0

m



30

[eke}

40

READ(2,") (BTAN(J,1).J=1,2)
R(1,1) = COSD(TH)

R(2,2) D(TH)

CALL MATMUL(R,BTAN,ACC,2,2,1)
WRITE(*,*) (ACC(J,1),J=1,2), (BTAN(J,1),J=1,2)
WRITE(3,") (ACC(J,1),J=1,2)

CONTINUE

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)

END

***** Calculates the radial acceleration *************
SUBROUTINE CALRACC(RACC)

DIMENSION RACC(25),V(25),JUNK(2,1)
COMMON V

RAD =02

DO 301=125

READ(1,") V(1)

HACC(I) ((V(I))"2 0)/RAD

COl

RETURN
END

***** Calculates the tangential acceleration *************
SUBROUTINE CALTACC(TACC)

DIMENSION TACC(25),V(25)

COMMON V

The number 3.49065e-3 is 's' i.e. r.d_theta
s = 0.2 * pi/180*(2 deg)

DO 40 | = 1,2
TACC(I) = (V(M)"z 0-V(1)**2.0)/(2.0'6.981317e-03)

TACC(25) 0.0
RETURN
END

fresesetes Multiplication of two matrices ***********

SUBROUTINE MATMUL(A,B,C,| J,K)
DIMENSION A(l,J),B(4,K),C(1,K)
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D.1.2

DO 88 lI=1,|

DO 88 KK=1,K

SUM=0.

DO 77 Ju=

SUM-SUM+A(II JJ)'B(JJ,KK)
CONTINUE

C(I|,KK)=SUM

CONTINUE

RETURN

END

of Joint velocity and values

PARAMETER (PI = 3.141593)
DIMENSION VEL(2,1),ACC(2,1),VELJ(2,1),ACCJ(2,1),R1(3,3),R2(3,3)

OPEN(UNIT = 22, FILE = ‘int.dat',STATUS ='OLD’)
OPEN(UNIT = 32, FILE = 'desired.out’, STATUS = 'OLD’)
OPEN(UNIT = 33, FILE = all_joint.out', STATUS = 'OLD')

READ(22,) AM1, AM2, AL1, AL2, B, C

DO 10 JLOOP = 1,25

READ(22,") X, Y, (VEL(I,1),1=1,2), (ACC(1,1),I=1,2)

WRITE(*,*) X,Y,(VEL(1,1),I=1,2),(ACC(l,1),1=1,2)

CALL INV(AL1,AL2,X,Y VEL ACC,TH1,TH2 VELJ,ACCJ.R1,R2)

WRITE(*, ') 'JOINT ANGLES (degrees)'
WRITE(","
WRITE(*,") 'JOINT VELOCITIES‘

Ef
WRITE(*,") 'JOINT ACCELEHATIONS'
WRITE(*,*) (ACCJ(l1,1),l1=1,2)

TH_RAD1 = (PI/180.0) * TH1

TH_RAD2 = (P1/180.0) * TH2

WRITE(32,") TH_RAD1,TH_RAD2,(VELJ(II, 1) I=1,2)
WRITE(33,") TH_RAD1,TH_RAD2,(VELJ(I,1),l1=1,2),
(ACCJ(lI,1),11=1,2)

CONTINUE
CLOSE(22)
CLOSE(32)

CLOSE(33)
8sTOP
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45

END
Inverse kinematics of a two-link planar manipulator

SUBROUTINE INV(AL1,AL2,X,Y,VEL,ACC,TH1,TH2 VELJ,ACCJ,R1,R2)
DIMENSION AM(2,2),AMINV(2,2),VEL(2,1),VELJ(2,1),ACC(2,1),ACCJ(2,1)
DIMENSION BM(2,2),BMINV(2,2),VINT1(2,1),VINT2(2,1),R1(3,3),R2(3,3)

€2 = (X*2.0 + Y**2.0 - AL12.0 - AL2°2.0)/(2.0°AL1*AL2)
S2 = SQRT(1.0-C2"'2.0)

THETA2 = ATAN2(S2,C2)

TH2 = ATAN2D(S2,C2)

AK1 = AL1 + (AL2 * C2)

AK2 = AL2 * S2

THETA1 = ATAN2(Y,X) - ATAN2(AK2,AK1)
TH1 = ATAN2D(Y.X) - ATAN2D(AK2,AK1)
S1 = SIN(THETA1)

C1 = COS(THETA1)

$12 = SIN(THETA1 + THETA2)

C12 = COS(THETAT + THETA2)

AM(1,1) = -AL1'S1-AL2'S12

AM(1,2) = -AL2'S12

AM(2,1) = AL1°C1 + AL2°C12

AM(22) = AL2'C12

DETER1 = AM(1,1)'AM(2, 2) AM(1 2)'AM(2,1)
AMINV(1,1) = AM(2,2)/DETE

AMINV(2,1) = -(AM(2, 1)/DETER1)
AMINV(1,2) = -(AM(1,2/DETER1)
AMINV(2,2) = AM(1,1/DETER1

CALL MATMUL(AMINV,VEL VELJ,2,2,1)

1)
-AL1*C1*VELJ1-AL2C12* (VELI+VELJ2)
BM(1,2) = -AL2'C12*(VELJ1+VELJ2)
BM(2,1) = -AL1'S1°VELJ1-AL2'S12*(VELJ1+VELJ2)
BM(2.2) = -AL2'S12*(VELJ1+VELJ2)
CALL MATMUL(BM VELJ,VINT1,2,2,1)
DO 4
vm*rz(n 1) = ACC(I 1) - VINTA(,1)
CONTINI
CALL MATMUL(AMINV VINT2,ACCJ,2,2,1)
CALL RMAT(THETA1,R1
CALL RMAT(THETA2,R2)
RETURN

114



88

END

eseeseeet® Multiplication of two matrices **********
SUBROUTINE MATMUL(A,B,C,|,J,K)
DIMENSION A(l,J),B(J.K),C(1.K)

DO 88 lI=1,1

DO 88 KK=1,K

SUM=0.

DO 77 JJ=

5UM-SUM+A(II ) B(JJ KK)

CONT!

c(l, KK)-SUM

CONTINUE

RETURN

END

** Rotation matrix *
SUBROUTINE RMAT(THETA,R)
DIMENSION R(8,3)

R(1,1) = COS(THETA)
SIN(THETA)

.0
SIN(THETA)
COS(THETA)

.0
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D.2 Generation of Training Sets for Parameter Estimation

1. This program generates the input and output training vectors (Table 2.2) for
the training of the Artificial Neural Network. This program makes use of the
Iterative Newton-Euler Dynamics algorithm for the calculation of the force,

torque and the inertia matrix values (D.2.1).
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D.2.1 Generation of training sets for parameter estimation problem
DIMENSION ALPHA(10), BETA(10), GAMMA(10)
DIMENSION AIFIN1(3,3),AIFIN2(3,3),PCFIN1(3,1),PCFIN2(3,1)
DIMENSION VEL(2,1),ACC(2,1),VELJ(2,1),ACCJ(2,1),R1(3,3),A2(3.3)

CALL ABG(ALPHA, BETA, GAMMA)
OPEN(UNIT = 22, FILE = 'inf.dat',STATUS = 'OLD")
READ(22,") AM1, AM2, AL1, AL2, B, C

DO 5 ILOOP = 1,10

CALL IMAT(AM1,AL1,B,C,ALPHA,BETA GAMMA,AIFIN1,PCFIN1,ILOOP)
DOI=13

WRITE(",") (AIFIN1(11,JJ),JJ=1,3)
END DO

DOl =13

WRITE(*,") (PCFIN1(ll, 1))

END DO

CALL IMAT(AM2,AL2,B,C,ALPHA BETA,GAMMA AIFIN2,PCFIN2,ILOOP)
DOll=13

WRITE(",") (AIFIN2(I1,JJ),JJ=1,3)
END DO

pDoOI=13

WRITE(*,*) (PCFIN2(II,1))

END DO

DO 10 JLOOP = 1,1

READ(22,") X, Y, (VEL(I,1),1=1,2), (ACC(l,1),I=1,2)

CALL INV(AL1,AL2,X,Y,VEL,ACC,TH1,TH2,VELJ,ACCJ,R1,R2)

WRITE(",) TH1
WRITE(*,") TH2
DOl =12
WRITE(",") (VELJ(IL,1))
END DO

DOli=12
WRITE(",") (ACCJ(Il, 1))
END DO

DONl=13

WRITE(",") (R1(11,0),JJ=1,3)
END DO

DOl=13
WRITE(*,") (R2(11,0J),JJ=1,3)
END DO
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CALL DYN(AM1,AM2,VELJ,ACCJ,AIFIN1,AIFIN2,PCFIN1,PCFIN2,R1,R2)

CONTINUE
CONTINUE

CLOSE(22)
STOP
END

sssesesee Variation of the values of alpha, beta and gamma **********
SUBROUTINE ABG(ALPHA, BETA, GAMMA)
DIMENSION ALPHA(10), BETA(10), GAMMA(10)
ALPHA(1) = 5.0
5.0

DO 111=19
ALPHA(I+1) = ALPHA(1) +20 * |
BETA(I+1) = BETA(1) + 2.0 * |
GAMMA(I+1) = GAMMA(1) +2.0 * |
CONTINUE

RETURN

END

** Generation of inertia matrix *****sesseeseesaeees

SUBROUTINE IMAT(AM,AL,B,C, ALPHA,BETA,GAMMA AIFIN,PCFIN,ILOOP)
DIMENSION ALPHA(10), BETA(10), GAMMA(10)

DIMENSION AIC(3,3),PC(3,1),PCT(1,3),A1(1,1),C1(3,3),AIA(3,3),AIFIN(3,3)
DIMENSION AI(3,3),B1(3,3),01(3,3),E1(3,3),CM(3,3),CMT(3,3),F1(3,3)
DIMENSION PCFIN(3,1)

XC = AU2.0
YC =00

2C=00

AIC(1,1) = (1.0/12.0)"AM*(B**2.0+C**2.0)
AIC(1,2) = 0.0

AIC(1,3) = 0.0

AIC(2,1 .0
AlC(2,2) = (1.0/12.0)'AM*(C**2.0+AL**2.0)
AIC(2,3) = 0.0
AIC(3,1 .0

PC(31)=2C
Al(1,1) = 1.0
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AI(3,3) = 1.0

CALL TRANS(PC,PCT,3,1)

CALL MATMUL(PCT,PC,A1,1,3,1)

SC = A1(1,1)

CALL SCALARMUL(AI,SCB1,3,3)

CALL MATMUL(PC,PCT,C1,3,1,3)

CALL MATSUB(B1,C1,01,3,3)

CALL SCALARMUL(D1,AM,E1,3,3)

CALL MATADD(AIC,E1,AlA,3,3)

CM(1,1) = COSD(ALPHA(ILOOP))*COSD(BETA(ILOOP))

CM(1,2) = COSD(ALPHA(ILOOP))*SIND(BETA(ILOOP))*SIND(GAMMA(ILOOP))-

SIND(ALPHA(ILOOP))*COSD(GAMMA(ILOOP;

)
CM(1,3) = COSD(ALPHA(ILOOP))*SIND(BETA(ILOOP))*COSD(GAMMA(ILOOP)+

SIND(ALPHA(ILOOP))*SIND(GAMMA(ILOOP))
CM(2,1) = SIND(ALPHA(ILOOP))*COSD(BETA(ILOOP))

CM(2,2) = SIND(ALPHA(ILOOP))*SIND(BETA(ILOOP))* SIND(GAMMA(ILOOP))+

COSD(ALPHA(ILOOP))*COSD(GAMMA(ILOOP))

CM(2,3) = SIND(ALPHA(ILOOP))*SIND(BETA(ILOOP))*COSD(GAMMA(ILOOP))-

COSD(ALPHA(ILOOP))*SIND(GAMMA(ILOOP))

CM(3,1) = -SIND(BETA(ILOOP))

CM(3,2) = COSD(BETA(ILOOP))*SIND(GAMMA(ILOOP))
CM(3,3) = COSD(BETA(ILOOP))*COSD(GAMMA(ILOOFP))
CALL TRANS(CM,CMT,3,3)

CALL MATMUL(CMT AIAF1,3,3,3)

CALL MATMUL(F1,CM,AIFIN,3,3,3)

CALL MATMUL(CMT,PC,PCFIN,3,3,1)

RETURN

END

Inverse kinematics of planar two link manipulator

SUBROUTINE INV(AL1,AL2 X,Y,VEL,ACC,TH1,TH2,VELJ,ACCJ,R1,R2)
DIMENSION AM(2,2), AMINV(2,2),VEL(2,1),VELJ(2,1),ACC(2,1),ACCJ(2,1)
DIMENSION BM(2,2),BMINV(2,2),VINT1(2,1),VINT2(2,1),R1(3,3),R2(3,3)
C2 = (X"2.0 + Y’ - AL1*°2,0 - AL2""2,0)/(2.0°AL1°AL2)

82 = SQRT(1.0-C2°°2.0)

THETA2 = ATAN2(S2,C2)

TH2 = ATAN2D(S2,C2)

AK1 = AL1 + (AL2 * C2)
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AK2 = AL2 * S2

THETA1 = ATAN2(Y,X) - ATAN2(AK2,AK1)
TH1 = ATAN2D(Y.X) - ATAN2D(AK2,AK1)
S1 = SIN(THETA1)

C1 = COS(THETAY)

§12 = SIN(THETA1 + THETA2)

C12 = COS(THETA1 + THETA2)

AM(1,1) = -AL1*S1-AL2'S12

AM(1,2) = -AL2°S12

AM(2,1) = AL1°C1 + AL2'C12

AM(2.2) = AL2'C12

DETER1 = AM(1,1)'AM(2,2) - AM(1.2)'AM(2,1)
AMINV(1,1) = AM(2,2)/DETER1
AMINV(2,1) = -(AM(2,1)/DETERT)
AMINV(1,2) = -(AM(1,2)/DETER1)
AMINV(2,2) = AM(1,1)/DETER1

CALL MATMUL(AMINV,VEL,VELJ.2.2.1)

VELJ1 = VELJ(1,1)
VELJ2 = VELJ(2,1)

BM(1,1) = -AL1*C1*VELJ1-AL2'C12°(VELJ14VELJ2)
BM(1,2) = -AL2*C124(VELJ1+VELJ2)

BM(2,1) = -AL1*S1*VELJ1-AL2°S12°(VELJ1+VELJ2)
BM(2,2) = -AL2"S12*(VELJ1+VELJ2)

CALL MATMUL(BM,VELJ,VINT1.2.2.1)
DO451=12

VINT2(1,1) = ACC(L1) - VINT1(L.1)

CONTINUE

CALL MATMUL(AMINV,VINT2.ACCJ.22.1)

CALL RMAT(THETA1,R1)

CALL RMAT(THETA2,R2)

RETURN

END

Iterative Newton-Euler dynamics algorthm

DYN(SMASS1,SMASS2,VELJ ACCJ. XMAT1,XMAT2,PCFIN1,PCFINZ,R1,R2)
DIMENSION R1(3,3),R2(3.3).RTi3.3). XMAT(3,3)

DIMENSION OMEGA(3),OMEGAI3) ALPHA(3), ALPHAI(3),A(3),P(3)
DIMENSION X4(3),Al(3),OMEGAI1(3).ST1(3),ST2(3),ST3(3)
DIMENSION QDTDTV(3),QDTV(3).X 113).X2(3),X3(3)

DIMENSION S11(3),S12(3),Y 1(3).Y2(3),X(3), ALPHAI1 (3)
DIMENSION Y4(3),ACI(3).F1(3).213).22(3).23(3), XNI(3),Y3(3)
DIMENSION RMAT(3,3), O(31FORCE(3).TT(3),FORI(3),RNN(3)
DIMENSION TOR(3),PC(3).POS(3).E 1(3).E2(3),E3(3),E4(3)
DIMENSION E5(3),E6(3), TORQI3). RESF(3).CHECN(3)
DIMENSION VELJ(2,1),ACCJ(2.1)
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20

30

40

DIMENSION PCFIN1(3,1), PCFIN2(3,1)

DOJ=13

Sl1(J) = PCFIN1(J,1)

END DO

DO J=13

Si2(J) = PCFIN2(J,1)

END DO

WRITE(",")

WRITE(","yFORWARD RECURSION FOR A TWO LINK MANIPULATOR'

WRITE(*,") THE JOINT IS ROTATIONAL'
WRITE(*,")

WRITE(*,") FORWARD RECURSION FOR LINK # 1'
WRITE(*,") 'STEP 1: '

OPEN(UNIT = 1, FILE = 'fr1.dat’, STATUS = 'OLD)
OPEN(UNIT = 3, FILE = 'frint.dat’, STATUS
OPEN(UNIT = 9, FILE = 'lfint.dat', STATU

DO201=13
D020J=13
RT(1J) = R1(J))

woveane OMEGA[I -1] VECTOR *stssssssss
DO 3

READ(! ') OMEGAU)

CONTINUE

CALL MATMUL(RT,OMEGA,OMEGAI1,3,3,1)

QDTDT1 = ACCJ(1,1)

QDT1 = VELJ(1,1)

QDTDTV(1) =

QDTDTV(2) = 0.

QDTDTV(B) QDTDT1
)

CALL VECSUM(OMEGAI1,QDTV,OMEGAI)
WRITE(*,) 'ANGULAR VELOCITY OMEGA[] IS *
WRITE(",") (OMEGAI(J),J=1,3)

DO 4

13
WRITE(S W) OMEGAI(J)
CONTINUE
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60

80

90

WRITE(*,") 'STEP 2
WRITE(",")

wenasen OMEGADOT{I-U VEGCTOR *#+sssesss
DO 5

READU ') ALPHA(I)

coil

CALL MATMUL(RT,ALPHA,ALPHAI1,3,3,1)
CALL MATMUL(RT,OMEGA,ST1,3,3,1)
CALL VECCROSS(ST1,QDTV,ST2)

CALL VECSUM(ST2,QDTDTV,ST3)

CALL VECSUM(ALPHAI1,ST3,ALPHAI)
WRITE(",") ' ANGULAR ACCELERATION OMEGADOT[] IS’
WRITE(*,*) (ALPHAI(J), J = 1,3)
WRITE(*,")

DO 60J =

WRITE(3,*) ALPHAI(J)

CONTINUE

WRITE(") ' STEP 3:"'
WRITE(",*)

* VDOT[M] VECTOR ****
DO701=13

READ(1,%) A(l)

CONTINUE

tsssessises P[L{] VEGTOR *tstssesss
DO801=13

READ(1,*) P(l)

CONTINUE

CALL VECCROSS(OMEGA,P X)
CALL VECCROSS(OMEGA.X,X1)
CALL VECCROSS(ALPHA,P,X2)
CALL VECSUM(X1,X2,X3)

CALL VECSUM(

CALL MATMU! (RT,X4,A1,33,1)
WRITE(*,") ' THE VDOT!) VECTOR IS : *
WRITE(") (Al())4 = 1,3)

WRITE("")

TX
3

J=13
WRITE(3,") Al(J)
CONTINUE
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110

11

121

WRITE(",')’ STEP 4: '
WRITE(",")

ssessuss PO VEGTOR **#sveseee
CALL VECCROSS(OMEGAISI1,Y1)
CALL VECCROSS(OMEGAIY1,Y2)
CALL VECCROSS(ALPHAI,SI1,Y3)
CALL VECSUM(Y2,Y3,Y4)

CALL VECSUM(AI,Y4,ACI)

WRITE(",") ' THE VDOT(CI] VECTOR IS *
WRITE("")(ACI(), J = 1.3)

WRITE(","

WRITE(*,*) " STEP5"'

WRITE(",")

DO 1101=13

FI(1) = SMASS1 * ACI(l)

WRITE(*,*) ' THE FORCE VECTOR IS : '
WRITE(*,") (FI()), | = 1,3)

DO 1111=13
WRITE(9,") FI())
CONTINUE

WRITE(",") ' STEP 6
WRITE(*,")

sssess | MATRIX [3X3] ***e0e0eees
CALL MATMUL(XMAT1,0MEGAI,Z1,3,3,1)
CALL VECCROSS(OMEGAI,Z1,22)
CALL MATMUL(XMAT1,ALPHAI,Z3,3,3,1)
CALL VECSUM(Z2,23,XNI)

TE(".") ' THE TORQUE VECTORIS : *
WRITE(*,*) (XNI{J), J = 1,3)
WRITE(*,")

DO 12111=13
WRITE(9,") XNI(ll)
CONTINUE

DO 12211 =13
WRITE(9,") Sl1(l)
CONTINUE

CLOSE(1)

CLOSE(3)
CLOSE(9)
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150

160

OPEN(UNIT = 2, FILE

='fr2.dat’, STATUS = 'OLD')
, FILS rint.dat’, STATUS LD
, FILE = "I2int.dat’, STATUS = 'OLD")

E(*.")
WRITE(",'yFORWARD RECURSION FOR LINK # 2'
WRITE(*,") 'STEP 1:

*+++* ROTATIONAL MATRIX [R] NOT ITS TRANSPOSE ***++**

DO1401=13
DO 140J=13
RT(J) = R2(J.)

ssessses OMEGA(I-1] VECTOR **#+ewseses
DO 1501=1,23

READ(S ') OMEGA(I)

Col

CALL MATMUL(RT,OMEGA OMEGAI1,3,3,1)
QDTDT2 = ACCJ(2,1)

QDT2 = VELJ(2,1)

QDTDTV(1) =0.

QDTDTV(2) = 0.

QDTDTV(3) = QDTDT2

QDTV(1) = 0.

QDTV(2) = 0.

QDTV(3) = QDT2

CALL VECSUM(OMEGAI1,QDTV,0OMEGAI)
WRITE(*,") 'ANGULAR VELOCITY OMEGA[1] IS *
WRITE(",") (OMEGAI(J).J=13)

WRITE(", -) 'STEP 2"
WRITE(","

OMEGADOT[I-1] VECTOR *
601=13

READ(3,") ALPHA()

CONTINUE

CALL MATMUL(RT,ALPHA ALPHAI1,3,3,1)
CALL MATMUL(RT,OMEGA,ST1,3,3,1)
CALL VECCROSS(ST1,QDTV,ST2)

CALL VECSUM(ST2,QDTDTV,ST3)

CALL VECSUM(ALPHAI1,ST3,ALPHAI)

WRITE(",") ' ANGULAR ACCELERATION OMEGADOT[)] IS *

WRITE(",") (ALPHAI(), J = 1,3)
WRITE(",")
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170

180

200

201

WRITE(",") * STEP &:'
WRITE(",*)

sessserses YDOT[I-1] VECTOR *+#+0ee=*
DO 1701=13

READ(3,") A(l)

CONTINUE

sevssesins PIL{] VEGTOR ***+seeee
DO 1801=1,3

READ(2,") P(l)

CONTINUE

CALL VECCROSS(OMEGA,P X)

CALL VECCROSS(OMEGA,X,X1)

CALL VECCROSS(ALPHA,P.X2)

CALL VECSUM(X1,X2,X3)

CALL VECSUM(X3,A X4)

CALL MATMUL(RT X4,A1,3,3.1)
WRITE(*,") * THE VDOT[I] VECTOR IS :*
WRITE(,") (Al()l = 13)

WRITE(*,")

WRITE(",") STEP 4: '
WRITE(",")

tssssess pO[I] VEGTOR *+*+eee
CALL VECCROSS(OMEGAL.SI2,Y1)
CALL VECCROSS(OMEGALY1,Y2)
CALL VECCROSS(ALPHAISI2,Y3)
CALL VECSUM(Y2,Y3,Y4)
UM(ALY4,ACI)

THE VC .T[CI) VECTOR IS "
WRITE(*,")(ACI{J), J = 1,3)

WRITE(

WRITE(*,) ' STEPS5'
WRITE(",")

DO 2001=13

FI(1) = SMASS2 * ACI()

WRITE(*,") ' THE FORCE VECTOR IS *
WRITE(",") (FI(l), | = 1,3)

DO 2011=13

WRITE(4,*) FI(l)

CONTINUE

WRITE("") ' STEP 6

125



212

WRITE(",")

sessi | MATRIX [3X3] *#oerseree
CALL MATMUL(XMAT2,0MEGAI,Z1,3,3,1)
CALL VECCROSS(OMEGAI,Z1,22

CALL MATMUL(XMAT2,ALPHAIZ3,33,1)
CALL VECSUM(Z2,23,XNI)

WRITE(",") ' THE TORQUE VECTORIS : *
WRITE(®,*) (XNI(J), J = 1,3)

WRITE(*,")

11=
WHITE(4 %) XN((!)
CONTINUE

DO2121=13
WRITE(4,°) SI2(1)
CONTINUE

CLOSE(2)
CLOSE(3)
CLOSE(4)

WRITE(",")
WRITE(*,*) 'FORWARD RECURSION IS OVER'
WRITE(*,) 'BACKWARD RECURSION STARTS HERE'
WRITE(",")

WRITE(",) 'BACKWARD RECURSION FOR LINK # 2'
WRITE(",")
OPEN(UNIT = 4, FILE =
OPEN(UNIT = 10, FILI dat’,
OPEN(UNIT = 8, FILE = 'brintdat, STATUS
WRITE(*,”) 'STEP 7: '

WRITE(",")

'0LD")
'OLD")
'OLD")

'I2int.dat, STATUS =

wesenne ] MATH,X FOR | TO 4] *sesssreess
DO2201 =

READ(10 ~) (RMAT(I J)J=1,3)

CONT

DO 230
READ(10,*) fo(l)
CONTINUE

sesssnnss VECTOR F OF LINK | *****se
DO 2401 =13
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240

241

2344

250

260

270

280

READ(4,*) FORCE(l)
CONTINUE

CALL MATMUL(RMAT,FO,TT,3,3,1)

CALL VECSUM(TT,FORCE,FORI)

WRITE(",' ')' { VECTOR OF LINK I’
ITE(*,*)(FORI(I),1=1,3)

WRITE(*,")

41 1=1,3
WRITE(B )FORMI)
CONTII

WRITE(",") CROSS-CHECKING OF FORCE RESULTS'
WRITE(,") eqn (6. )."

WRITE(",") L HS R HS =000y

DO 2344 IM 13

RESF(IMK) = FOFII(IMK) TT(IMK) - FORCE(IMK)
CONTINUE

WRITE(*,"Y CORRECT IF RESIDUE VECTOR IS ZERO'
WRITE(",")

WRITE(*,")PRINTING RESIDUE VECTOR BELOW:'
WRITE(",")(RESF(MK),JMK = 1,3)

WRITE(",")STEP 8

WRITE(",")

esssssers (1) VECTOR *Hesseeee

swseveess (141) VECTOR *oeeseeeee
DO2601=13

READ(10,*) TOR(l)

CONTINUE

ssssssssese pO(l) VECTOR *t4004ses
DO2701=13

READ(4,") PC(l)

CONTINUE

tssssssenses P(|) VEGTOR ***040+0e
DO2801=13

READ(10,") POS(l)

CONTINUE

CALL MATMUL(RMAT,FO,E1,3,3,1)
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CALL VECCROSS(POS,E1,E2)
CALL VECCROSS(PC,FORCE,E3)
CALL MATMUL(RMAT,TOR,E4,3,3,1)
CALL VECSUM(RNN,E4,E5)

CALL VECSUM(ES,E3,E6)

CALL VECSUM(ES,E2, TORQ)
WRITE(*,*)'n(l) vector is ?'

WRITE(*,")(TORQ(I),1=1,3)
WRITE(",")
DO2811=13

WRITE(8,") TORQ(l)
281  CONTINUE

WR|TE('.')‘CROSS-CHECKING OF TORQUE RESULTS'
WRITE(",")' eqn (6.

WRITE(*,*) LH.S -RH.S = {000}

'ORRECT IF RESIDUE IS ZERO'

ITE(*,")

WRITE(", ')‘PRINTING RESIDUE VALUE BELOW'

DO 5746 IUK

CHECN(IUK) = TOF!Q(!UK) -ANN(IUK)-E4(1UK)-E3(IUK)-E2(IUK)
5746 CONTINUE
WRITE(*,")(CHECNWUK) JUK=1,3)
WRITE(",")
CLOSE(4)
CLOSE(10)
CLOSE(8)

WRITE(",")
WRITE(
WRITE(",")

OPEN(UNIT = 9, FILE = 'Ifintdat’, STATUS
OPEN(UNIT = 7, FILE = 'br2.dat,, STATUS
OPEN(UNIT = 8, FILE = 'brint.dat, STATUS = 'OLD')
WRITE(",") 'STEP 7:"

WRITE(*,*)

BACKWARD RECURSION FOR LINK # 1"

O wewmes VECTORf41)
DO 300 |
READ(8,") 10(1)

300 CONTINUE

c ssssssesee VECTOR F OF LINK | *oosoesese
DO3101=13
READ(S,") FORCE(l)

310  CONTINUE
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320

CALL MATMUL(R2,FO,TT,3,3,1)
CALL VECSUM(TT,FORCE,FORI)
WRITE(*,")" f VECTOR OF LINK I’
WRITE(*,")(FORI(1),1=1,3)
WRITE(",*

'CROSS- CHECKING OF FORCE RESULTS'
)’ eqn (6.

s LHS RHS {oooy

DO 320 IMK =
RESF(IMK) = FOFlI(IMK) TT(IMK) - FORCE(IMK)
CONTINUI

WRITE(' ')‘CORRECT IF RESIDLE VECTOR IS ZERO'
WRIT!

WRITE(' *)'PRINTING RESIDUE VECTOR BELOW:'
WRITE(*,’ ')(HESF(JMK) JMK = 1,3)

WRITE(*,*)'ST!

WRITE(*,)

sesnenen N(l) VEGCTOR *sessesesss

+** n(l+1) VECTOR *
DO 3401 =1,3
READ(8,") TOR()
CONTINUE

v BO(l) VEGTOR *esessssss
DO 3501=1,3

READ(9,") PC(l)

CONTINUE

* P(l) VECTOR *
DO 3601=13

READ(7,*) POS(l)
CONTINUE

CALL MATMUL(R2,FO,E1,3,3,1)
CALL VECCROSS(POS,E1,E2)
CALL VECCROSS(PC,FORCE,E3)
CALL MATMUL(R2,TOR,E4,3,3,1)
CALL VECSUM(RNN,E4 ES)
CALL VECSUM(ES5,E3,E6)

CALL VECSUM(ES,E2,TORQ)
WRITE(*,*)'n(l) vector is ?'
WRITE(*,*)(TORQ(l),|=1,3)
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WRITE(",")

WRITE(' ')‘CROSS CHECKING OF TORQUE RESULTS'

WRITE(",")’ eqn (6.

WRITE(",")’' LHS - RHS={000})

WRITE(*,*)’CORRECT IF RESIDUE IS ZERO'

WRITE(",")

WRITE(*,*)’PRINTING RESIDUE VALUE BELOW'

DO 370 IUK =1,3

CHECN(IUK) = TOHQ(IUK)-RNMIUK)-E4(|UK)-E3(IUK)-E2(IUK)
370 CONTINUE

WRITE(",")(CHECN(JUK) JUK=1,3)

WRITE(",")

CLOSE(?)

CLOSE(8)

CLOSE(9)

RETURN

END

[¢] #essvertet Multiplication of two matrices ******"****
SUBROUTINE MATMUL(A,B,C.1J.K)
DIMENSION A(1,J),B(J,K),C(1.K)

DO 88 li=1,1
DO 88 KK=1,K
SUM=0.

DO 77 J=1

SUM-SUM+A(II JJ)*B(JJKK)

77 CONTINUE
C(I1,KK)=SUM

88 CONTINUE
RETURN
END .

** Addition of two vectors
SUBROUTINE VECSUM(A.B.C)
DIMENSION A(3),8(3),C(3)
DO991=13

99 C(l) = A() + B(I)

RETURN

END

* Cross product of two vectors **
SUBROUTINE VECCROSS(A.B.C)
DIMENSION A(3),B(3),C(3)
C(1)=A(2)'B(3)-A(3)'B(2)
C(2)=A(3)'B(1)-A(1)'B(3)
C(3)=A(1)'B(2)-A(2)'B(1)

RETURN
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44

99

66

END

wesssnees Rtation malfix STereeeeeeseeee
SUBROUTINE RMAT(THETA,R)
DIMENSION R(3,3)

of a matrix
SUBHOUTINE TRANS(A B/lIJJ)
DIMENSION A(I1,JJ), B(JJ.Il)
DO 44 ROW = 1,1
DO 44 COL = J

B(COL, ROW)—A(ROW COL)

CONTINUE
RETURN
END

*+e***** Multiplication of a matrix by a scalar *******
SUBROUTINE SCALARMUL(A,B,C,1.J)
DIMENSION A(1,J),C(1J)
9Ql=1)
D099 =1d
C(lJJ) = B*A(I1,JJ)
CONTINUE
RETURN
END

sessassens Quibtraction of two matrices ****Htstsese
SUBROUTINE MATSUB(A,B,.C,I,J)

DIMENSION A(l,J),B(1J).C(1.J)

DO66 Il =1,

DO66JJ=1J

C(I1,40) = All,JJ) - B(ll,JJ)

CONTINUE

RETURN

END

131



ssessssses pdition of tWO Malrices **+++**+see
SUBROUTINE MATADD(AB,C.I.J)
DIMENSION A(1,J),B(1.J).C(1.J)

DOS54=1J

C(I1,4J) = A(I1,4J) + B(I1,4J)
CONTINUE

RETURN

END



D.3  Control of a planar two link robotic manipulator using Optimal Control

Method

1. This program is used to achieve the trajectory control and obtain the
position and velocity gain values on the off-line basis using the Hookes and
Jeeves non-linear optimization method. It makes use of the fourth order

Runge-Kutta method (D.3.1).
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D.3.1 Optimal control method (Non-linear optimization)

DIMENSION XX(4)

DIMENSION XSTRT(4),RMAX(4),RMIN(4),PHI(2),PS|(2),W(7000)
DIMENSION RX(4), TH_DE1(25),TH_DE2(25), THD_DE1(25), THD_DE2(25)
COMMON /LINKD/ RL1,AL2

COMMON /RMASS/ RM1,RM2

COMMON /DESIRED/ TH_DE1,TH_DE2,THD_DE1,THD_DE2

COMMON /RK4C/ T,NEQ,DT, XX

COMMON /SEEKC/ IDATA IPRINT NSHOT NTEST,MAXM,F,G,TOL,
ZERO,R,REDUCE

COMMON ILOOP

OPEN (UNIT = 11, FILE
2, FILI
3, FILI
4, FILI
5, FILI
6, FILI kpkv.out', STATU!
7, FILE = 'xstart.dat, STATUS
OPEN (UNIT = 18, FILE = "inp.out', STATUS = 'OLD')

****** Other variables ********

=00

XX(1) = -0.6354678
XX(2) = 2.418859
XX(3) = 0.0

XX(4) = 0.0
NEQ=4

DT = 0.001

“**** Optimization variables ****
IDATA =0
IPRINT = 0

MAXM = 25000
DATA RMAX/1.0E3,1.0E3,1.0E3,1.0E3/
DATA RMIN/-1.0E3,-1.0E3,-1.0E3,-1.0E3/
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[o] DATA XSTRT/150.0,150.0,150.0,150.0/

DO 10IP=1,25

READ(11,*) TH_DE1(IP),TH_DE2(IP), THD_DE1(1P),THD_DE2(IP)

WRITE(*,*) TH_DE1(IP), TH_DE2(IP), THD_DE1(IP), THD_DE2(IP)
10 CONTINUE

DO20IN=1.1
READ(17,*) (XSTRT(J),J=1,4)
WRITE(",*) (XSTRT(J) J=1,4)

(¢} ***** Taking care of point 1 on the trajectory *********
WRITE(13,*) -0.6354678,2.418859.0.0.0.0
WRITE(14,) 0.0,0.0
WRITE(15,*) 0.0,0.0
WRITE(16,*) (XSTRT(1),I=1,4)
WRITE(18,") -0.6354678,2.418859.0.0,0.0,0.0,0.0,0.0,0.0

DO 30 ILOOP = 1,24
CALL SEEK(N,NCONS,NEQUS.NPENAL,AMAX,RMIN,XSTRT,RX,U,PHI,PSI,
1 NVIOLW)
CALL ANSWER(U,RX,PHI,PSI.N.NCONS NEQUS)
WRITE(12,*) ILOOP
WRITE(12,') U
WRITE(12,") (RX())}
WRITE(12, )(xxa)
WRITE(13,") (. 4
WRITE(14,) (TH DE1(1LO0P~|) XX(1)).(TH_DE2(LOOP+1)-XX(2))
WRITE(15,") (THD_DE1(ILOOP+1)-XX(3)).(THD_DE2(ILOOP+1)-XX(4))
WRITE(16,") (RX(I).I=1,4)
WRITE(18,) (XX(1),)=1,4).(TH_DE 1(ILOOP+1)-XX(1)),
1 (TH_DE2(ILOOP+1)-XX(2)).(THD DE 1(ILOOP+1)-XX(3),
1 (THD_DE2(ILOOP+1)-XX(4))
30  CONTINUE
20  CONTINUE

CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE(16)
CLOSE(17)
CLOSE(18)
STOP
END
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+eeee*4+* Definition of objective function *********

SUBROUTINE UREAL(RX,U)

DIMENSION XX(4),F(4),YI(4),YJ(4),YK(4),YL(4),UU(4)

DIMENSION RX(1), TH_DE1(25),TH_DE2(25), THD_DE1(25), THD_DE2(25)
COMMON /DESIRED/ TH_DE1,TH_DE2,THD_DE1,THD_DE2

COMMON /RK4C/ T,NEQ,DT, XX

COMMON ILOOP

WRITE(",") (XX(1)I=1,4)

DO 50 LOOP = 1,1000

CALL RK4(T,DT,NEQ,XX,F,Y1,YJ,YK,YL,UU,RX,ILOOP)
CONTINUE

QW1 = ((TH_DE1(ILOOP+1) - XX(1))'10.0)**2

QW2 = ((TH_DE2(ILOOP+1) - XX(2))*10.0)"*2

QW3 = (THD_DE1(ILOOP+1) - XX(3))**2

QW4 = (THD_DE2(ILOOP+1) - XX(4))**2

U = (QW1+QW2+QW3+QW4)*i.0e6

EDISP = 100.0*((TH_DE1(ILOOP+1)-XX(1))**2+(TH_DE2(ILOOP+1)-XX(2))**2)
EVEL = 100.0*((THD_DE1(ILOOP+1)-XX(3)}**2+(THD_DE2(ILOOP+1)-XX(4))**2)
U = (EDISP + EVEL)*1.0e5

RETURN

END

Fourth order Runge-Kutta method ***
SUBROUTINE RK4(T,DT,N,XX,F,XI,XJ,XK,XL,UU,RX,ILOOP)
DIMENSION XI(N),XJ(N),XK(N),XL(N),UU(N), XX(N),F(N)
DIMENSION RX(4)

DO10I=1N

uu(l) = XX(1)

CALL FUN(XX,F,N,T,RX,ILOOP)

DO20I=1N

XI(l) = F() * DT

XX(1) = UU(I) +Xi(1y2.0

T =T+DT/2,

CALL FUN(XX F.N,T,RX,ILOOP)

DO30I=1N

XJ(l) = F (1)*DT

XX(1) = BU(I)+XJ(1)2.0

CALL FUN(XX,F,N,T,RX,ILOOP)

DO40I1=1N

XK(l) = F()*DT

XX(1) = UU()+XK()

T =T+DT/20

CALL FUN(XX,F,N,T,RX,ILOOP)

DO50I=1N

XL(I) = F(1)*DT
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50

[o]

1

1

1

XX(l) =
RETUR!

END

UU+(XI(1)+2.0°XJ(1)+2.0°XK(1)+XL(1))/6.0
N

******* Function definition for the Runge-Kutta method **********
SUBROUTINE FUN(XX,F,N,T,RX,ILOOP)

DIMENSION XX(N),F(N)

DIMENSION TORQ(2),RX(4)

DIMENSION QM(2,2),QV(2), QG(Z) QT1(2),QT2(2)
DIMENSION THDDTI(2),QMI(2,2

DIMENSION TH_DE1(25),TH. DE2(25) THD_DE1(25),THD_DE2(25)
COMMON /LINKD/ RL1,RL2

COMMON /RMASS/ RM1,RM2

COMMON /DESIRED/ TH_DE1,TH_DE2,THD_DE1,THD_DE2
WRITE(",") (RX(l),I=1,4)

GH =9.81

TH_CP1 = XX(1)

TH_CP2 = XX(2)

THD_CP1 = XX(3)

THD_CP2 = XX(4)

TORQ(1) = RX(1)*(TH_DE1(ILOOP+1) - TH_CP1) +
RX(3)*(THD_DE1(ILOOP+1) - THD_CP1)
TORQ(2) = RX(2)*(TH_DE2(ILOOP+1) - TH_CP2) +
RX(4)*(THD_DE2(ILOOP+1) - THD_CP2)

QM(1 1) = AL2**2'AM2 + 2.0*AL1"RL2*'RM2*'COS(TH_CP2)
RL1*"

(RM1 + RM2)

RL2**2*RAM2 + AL1*RL2*RM2°COS(TH_CP2)
L2"2‘HM2 + RL1*RL2'RM2°COS(TH_CP2)
L2**2"RM:

QV(1) = -RM2°RL1"| RLZ'SIN(TH CP2)*'THD_CP2"*2 -
2.0'RM2*RL1*RL2*SIN(TH_CP2)*THD_CP1*THD_CP2
QV(2) = AM2*RL1*RL2*SIN(TH_CP2)*THD_CP1**2
QG(1) = RM2*RL2*GH'COS(TH_CP1+TH_CP2) +
(RM1 + RM2)*RL1*GH*COS(TH_CP1)

QG(2) =

RM2*RL2*GH*COS(TH_CP1 + TH_CP2)

CALL QMINV(QM,QMI)

CALL VECADD(QV,QG,QT1,2)

CALL VECSUB(TORQ,QT1,QT72,2)
CALL RMATVEC(QMI,QT2,THDDTI,2,2)

F(1) =
= XX(4)

= THDDTI(1)

THDDTI(2)

RN

F(2)
F(3)

F(4) =
RETUI

END

XX(3)
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410

4256

4169

4440
4430

***** Subroutine to find the inverse of a 2 x 2 matrix ******
SUBROUTINE QMINV(QM,QMI)
DIMENSION QM(2,2),QMI(2,2)

DO 4101=12

DO410J =12

QaMi(l,J) = 0.0

CONTINUE

QMP = QM(1,1)"QM(2,2) - QM(1,2)*QM(2,1)
QMI(1,1) = QM(2,2)/QMP

QMI(1,2) = -QM(1,2)/QMP

QMi(2,1) = -QM(2,1)/QMP

QMI(2,2) = QM(1,1)/QMP

END

“**** Addition of two vectors ******
SUBROUTINE VECADD(A,B,C,M)
DIMENSION A(M),B(M),C(M)

DO 4256 | = 1,M

c(l) = A() + B())

CONTINUE

RETURN

END

***** Subtraction the two vectors
SUBROUTINE VECSUB(A,B,C,M)
DIMENSION A(M),B(M),C(M)

DO 41691 = 1M

() = A(l) - B{l)

CONTINUE

RETURN

END

***** Multiply a matrix with a vector ******
SUBROUTINE RMATVEC(A,B,C,M,N)
DIMENSION A(M,N),B(N),C(M)

DO 44301 =1M

C(h =00

DO 4440 J = 1,N

C(l) = C(l) + A(l,J)*B(J)

CONTINUE

CONTINUE

RETURN

END

“****** Inequality constraints ********
SUBROUTINE CONST(RX,NCONS,PHI)
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DIMENSION RX(1),PHI(1)

RETURN

END

**+**** Equality constraints ********
SUBROUTINE EQUAL(RX,PSI,NEQUS)
DIMENSION RX(1),PSI(1)

RETURN
END
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Control of a planar two link robotic manipulator using Artificial Neural

Network Method (LPN Method)

Several sets of input and output vectors are computed using the optimal
control method. This program uses the LPN method and does the training
in such a way that different weight matrices are generated for all the 25
points along the trajectory. Then the weight matrix [W] is used on-line to
evaluate the output parameters (gain values) corresponding to unknown set
of input values. The following program depicts the generation of the weight

matrix (W] for one point along the trajectory (D.4.1).
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D.4.1 A LP approach for neural networks

YW = N + 4°(N + NCONS + NEQUS)
WHERE N = NUMBER OF DESIGN VARAIBLES = 1
NCONS = NUMBER OF INEQUALITY CONSTRAINTS = 1
NEQUS = NUMBER OF EQUALITY CONSTRAINTS = 1
YW =1+4"(14141) =13
L.P.

ZW = M(5+M)
- WHERE M IS NUMBER OF CONSTRAINING EQUATIONS = ROWS
WHICH IS DEFINED BELOW

ZW = 36°(5+36) = 1476

DIMENSIONS FOR [A] MATRIX
ROWS = (NO.OF OUTPUT)'TOTAL.NO.OF TRIALS

=4%(9)=

COLUMNS_= (NO.OF INPUT*2 + 4)"NO.OF OUTPUT
=(8'2 +4)*4 =80

0000000000000000000

DIMENSION YX(1),YXSTRT(1),RMAX(1),AMIN(1),PHI(1) PSI(1)
DIMENSION YW/(50),2X(80),2A(36,80).2B(36).2C(80)
DIMENSION ZAP(36,80),ZCP(80),ZBP(36), ZW(1476)
DIMENSION BBW(4,8),BBC(4),BBD(4),ZTOB(8)
COMMON

1 /SEEKC/IDATA,IPRINT,NSHOT,NTEST,MAXM,F,G,TOL.ZERO,

2 RAEDUCE
COMMON /BL1/ZC,ZX,ZW,ZAP,2CP,ZBP
COMMON /BL3/ZB
COMMON /BL2/MZ,NZ,NUTS NT,NI,NOUT NOI
COMMON /FAL/ZTOB
COMMON /ANT/ZA
OPEN(2, FILE = 'scout.dat’, STATUS = 'OLD)
OPEN(3, FILE = 'clpga.out, STATUS = 'OLD)
OPEN(14, FILE = lindat', STATUS = 'OLD")
READ(14,9MZ
READ(14,NZ
READ(14,)NUTS
READ(14,)NT,NI
READ(14,"NOUT,NOI
MAXM = 10000
CALL ALPG

1 WRITE(",)

DO 196 | = 1,MZ
READ(2,)Z8(1)
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196

-

CONTINUE
READ(3,")(ZC(l),} = 1.NZ)
F =0.001

IDATA =0

DATA RMAX/0.10/

DATA RMIN/-0.10/

DATA YXSTRT/0.0013427/
NOISE = 1

CALL
SEEK(NY,NCONS,NEQUS,NPENAL,RMAX,RMIN,YXSTRT,YX,YU,PHI,
PSI,NVIOL,YW)

CALL ANSWER(YU,YX,PHI,PSI,NY,NCONS,NEQUS)

WRITE(*,*)’'DO YOU WISH TO CONTINUE 7"

WRITE(’ YES'

WRITE(*,*)2:
READ(*,")NDEC
IF(NDEC.EQ.1) THEN
GOTO1

ELSE

END IF

STOP

END

SUBROUTINE UREAL(YX,YU)

DIMENSION YX(1),YXSTRT(1),RAMAX(1),RMIN(1),PHI(1),PSI(1)
DIMENSION YW(50),2X(80),ZA(36,80),2B(36),2C(80)
DIMENSION ZAP(36,80),ZBP(36),ZCP(80)

DIMENSION ZW(1476),ZTOB(8)

DIMENSION BBW(4,8),BBC(4),BBD(4),D(2)

DIMENSION SAK(4),RT3(4),ZZTOB(4)

DIMENSION RAJ1(8),RAJ2(4)

COMMON /BL1/2C,ZX,ZW,ZAP,ZCP,ZBP
COMMON /BL3/ZB

COMMON /BL2/MZ,NZ NUTS,NT,NI,NOUT NOI
COMMON /SIMPLEC/NSTOP IDATA,NNDEX
COMMON /PAKS/BBW,BBC,BBD

COMMON /FAL/ZTOB

COMMON /ANT/ZA

COMMON /DEPUT/D,RMX,RMN

OPEN(15, FILE = 'scinp.dat’, STATUS = 'OLD’)
OPEN(9, FILE = 'scoutdat’, STATUS = 'OLD")
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30
20

40

50

501

OPEN(18, FILE = 'obj.mat, STATUS
OPEN(21, FILE = 'myinp.dat’, STATU:

OPEN(19, FILE = 'perc.mat, STATUS = 'OLD')
OLD")

OPEN(22, FILE = 'myout.dat’, STATUS = 'OLD’)
OPEN(23, FILE ='compare.out’, STATUS = 'OLD")
IDATA = 0

DO 20 | = 1,MZ

KA =1

DO 30 J = 1,NZ
IF(J.GT.(20°KR)) THEN
KR = KR + 1

END IF
IF((J.GE.(1+20°(KR-1))).AND.(J.LT.(17+20*(KR-1)))) THEN
ZAP(1,J) = YX(1)*ZA(I.J)
ELSE

ZAP(1,J) = ZA(1J)

END IF

CONTINUE
CONTINUE

SQM 0.0

DO 40 1 = 1,MZ
ZBP(I) = YX(1)'ZB()
SQM = SQM + ZB())
CONTINUE

KR =1

DO 50J =

IF(J.GT. (20‘KR)) THEN
KR =KR + 1

END IF

IF((J.GE.(1 + 20*(KR-1))).AND.(J.LT.(17+20*(KR-1)))) THEN
ZCP(J) = YX(1)°ZC()
ELSE

2CP() = ZCW)

END IF

CONTINUE

CALL SIMPLE(NZ.MZ,ZAP.ZBP,ZCP.ZX.ZU,ZW)
DO 501 J =1,NZ

XX = XX + ZCP(J)'ZX(J)

CONTINUE

YYU = SQM - XX

WRITE(*,*)'L.P. OBJECTIVE FUNCTION IS',YYU
CALL WASS(ZX,BBW,BBC,BBD)

YT1 =00

YT2 =00
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YT3=0.0
DO 55 NM = 1,16,2
DO 60 MM = NM,80,20
YT1 = YX(1)*(ZC(NM)*ZX(MM)) + YT1
60  CONTINUE
55  CONTINUE
DO 65 NM =2,16,2
8 DO 70 MM = NM,80,20
YT2 = YX(1)*(ZC(NM)*ZX(MM)) + YT2
70  CONTINUE
65  CONTINUE
DO 75 NM = 17,20
DO 80 MM = NM,80,20
YT3 = (ZC(NM)*ZX(MM)) + YT3
80  CONTINUE
75  CONTINUE
YT4 = YX(1)*'SQM
c CALL RMIXD(BBW,BBC,BBD,YX, ZTOB RT3)
YU = (YT1 + YT2 + YT3 - YT4)"*4
WRITE(*,*)'SLOPE I8",YX(1)
WRITE(*,*)'SEEK OBJECTIVE FUNCTION IS',YU
IF (NSW.EQ.1) THEN

IF(YU LT (6.0E- 6)) THEN
881 ISK =
DO 884 1=1 8
READ(15,")ZTOB(l)
884  CONTINUE

DO 886 | =1,4

READ(9, ')ZZTOB(I)
886 CONTINUI

DO 887 1=18

READ(21,*) RAJ1()
887  CONTINUE

posees =14

READ(22,) RAJ2(l)
888 CONTINUE

CALL WASS(ZX,BBW,BBC,BBD)
CALL RMIXD(BBW BBC,BBD,YX,RAJ1,RT3)
DO 923 JK =
WRITE(23, )HAJZ(JK) RT3(JK)
WRITE(18,")RT3(JK)

923  COMTINUE

881  CONTINUE



4440
4430

714
780

SUBROUTINE CONST(YX,NCONS,PHI)
DIMENSION PHI(1),D(2),YX(1)
COMMON /DEPUT/D,RMX,RMN
NOISE = NOISE + 1

RETURN

END

SUBROUTINE EQUAL(YX,PSI,NEQUS)
DIMENSION YX(1),PSi(1)

RETURN

END

SUBROUTINE RMATMUL(AB.CMN)
DIMENSION A(M,N),B(N),C(M)

DO 4430 | =

cl) = 00

DO 44 1IN

() = cu) + AlDBW)

CONTINUE

CONTINUE

RETURN

END

**** Generation of [A] matrix for inear programming *******
SUBROUTINE ALPG

DIMENSION X(8),ZA(36,80)

COMMON /ANT/ZA

OPEN(17, FILE = 'scinp.dat’, STATUS = ‘'OLD')

DO 1050 NI = 1,36,4

KNI =NI

NS

NT =16

DO7141=18

READ(17,")X(1)

CONTINUE

CONTINUE

IF(NT.GT.80) GOTO 7100
=1

DO 710 | = NSNT,2

ZA(KNLI) = X(MT)
MT =MT +1
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710  CONTINUE
MT =1
DO 720 | = NS+1,NT.2
ZA(KNL) = -X(MT)
MT = MT 4+ 1
720  CONTINUE
DO 730 | = NT+1,NT+4

730  CONTINUE
DO 740 | = NT+2,NT+3
ZA(KNL)) = -1.0

740 CONTINUE
KNI = KNI + 1
NS = NS + 20
NT = NT + 20
GO TO 780

7100 CONTINUE

1050 CONTINUE
RETURN
END

SUBROUTINE WASS(ZX,BBW,BBC,BBD)
DIMENSION 2X(80),BBW(4,8),BBC(4),BBD(4)
ND =1
RAMYA = 0.0
DO 432 | = 1,4
DO 433J = 1,8
RAMYA = ZX(ND) - ZX(ND + 1)
BBW(,J) = RAMYA
ND =ND +2
433  CONTINUE
BBC(l) = ZX(ND) - ZX(ND + 1)
ND =ND +2
BBD()) = zxmn) ZX(ND + 1)
ND =ND +
432 com'mue
RETURN
END

SUBROUTINE RMIXD(BBW,BBC,BBD, YX,ZTOB,RT3)
DIMENSION YX(1),CBC(4),CBD(4),RT1(4),RT2(4),RT3(4)
DIMENSION ZTOB(8),BBW(4,8),BBC(4),BBD(4)

DO 2339 = 1,4

©BC() = 0.0
cBD|(
RT1()) = 0.0
RAT2() = 0.0
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2340

4256

4169

ocoo

RTA() = 0.0

CONTINUE

CALL RMATMUL(BBW,ZTOB,RT1,4,8)
DO 2340 | = 1,4

CBC(l) = (1.0/YX(1))'BBC(1)
CBD(l) = (1.0/YX(1))*BBD(1)
CONTINUE

CALL RMATADD(RT1,CBC,AT2,4)
CALL RMATSUB(RT2,CBD,RT3,4)
WRITE(18,")(RT3(JK),JK=1,4)
RETURN

END
tesets+ Addition of twe vectors ******

SUBROUTINE RMATADD(A,B,C,M)
DIMENSION A(M),B(M),C(M)

DO 4256 1 = 1,M
C(l) = A() + B()
CONTINUE
RETURN

END

*+***** Subtraction of two vectors ******
SUBROUTINE RMATSUB(A,B,C,M)
DIMENSION A(M),B(M),.C(M)

DO 4169 I = 1,M
c(l) = A() - B())
CONTINUE
RETURN

END

GENERATION OF [C] MATRIX FOR LINEAR PROGRAMMING

DIMENSION X1(8),X2(8),X3(8),X4(8),X5(8)
DIMENSION X6(8),X7(8),X8(8),X9(8)
DIMENSION A(1,80),Y(8)

OPEN(1, FILE = 'scinp.dat', STATUS = 'OLD")
OPEN(2, FILE = 'clpga.out’, STATUS = 'OLD")
DO 141=18

READ(1,*)X1(l)

CONTINUE

DO151=1,8

READ(1,*)X2(1)

CONTINUE

DO16(=18

READ(1,)X3(1)
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21

22

310

320

CONTINUE
DO171=18
READ(1,*)X4())
CONTINUE
DO 181=18
READ(1,)X5())
CONTINUE
DO191=18
READ(1,")X6(1)
CONTINUE
DO201=18
READ(1,X7(1)
CONTINUE
DO211=18
READ(1,)X8(1)
CONTINUE
DO221=18
READ(1,X8(1)
col NTlNUE
DO 44K =

Y(K) = X1(K)+ (2(K)+X3(K)+ XA (K)+X5(K)+X6(K)+X7(K)
+ xs(x) 0

NS = !

NT =16

CONTINUE
IF(NT.GT.80) GOTO 100
MT =1

DO 310 | = NSNT.2
At = Y(MT)

MT =MT +

OONTINUE

MT =1

DO 320 | = NS+1,NT,2
A(1)) = -Y(MT)

MT = MT + 1
CONTINUE

DO 330 | = NT+1,NT+4

DO 340 I = NT+2,NT+3
A(1))) =-9.0
CONTINUE

NS =NS +20

NT =NT + 20

GO TO 80

CONTINUE
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1050 CONTINUE
WRITE(2,*)(A(1,J)J = 1,80)
STOP

END
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