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Abstract

Implementat ions of the most popular scheme of indirect field-oriented control

for AC induc tion motor drives still suffer from difficulties due to the sensitiv ity of

rotor parameters in decoupling torque and flux and control algorithm complexity

in meeting real-time contr ol requirements .

This thesis present s soluti ons to some of these problems. A new parameter

adaptat ion control scheme, nam ed rotor flux orien ta tion contro l, is propos ed and

verified by digita l simu lations which show a very good result in dy namically cce­

reet ing t he mismat ched value in t he slip frequency calculat or t hat usually occur

when temperature rises or flux satu rates. Thi s method is base d on th e princip le of

feedback control which uses the detected rotor flux orient ation as a feedback contr ol

signal.

For processing complex cont rol algorithms in real-Lime, a new parallel processor

architecture, using T800 Transputers, is proposed. Implementa tion result s show

that with this parallel processing controller complex cont rol algorithms such as

field-oriented contr ol and param eter adaptive control toget her can be handled in

very short processing times thus meeting fast dynamic control demands.

In addition, the design of indirect field-oriented control of AC induction mot or is

st udied. A design meth od for linear control of AC induction motor control based on

the indirect field-oriented control scheme is proposed. Decoupling of torque curren t

and flux current is achieved by applying feed-forward controll ers.

A new control scheme, named extended indirect field-orien ted control , is pro­

posed and verified by simulation results which show an excellent control perfor­

mance that can not be achieved by a linear control scheme.



Furthermore. t he inccrpcrat icn of Iault to lerance (or Transputer com mulli"atinn

link failu res and processor r.llil u r~ is studied and some slmula rlcn tes ts have 1'1...·1\

carr ied out . As a resul t of t he fault tolerance mec hanisms incorpo rate..l, coru rol

system rd iability is imp roved.

iii



Acknowledgement

The author wishes to acknowledge the financial support from the School of Or.idu ­

ale Studies , Dr. R. Venkatesan's research grant and the graduate support from t he

Faculty of Engineering and Applied Science of Memoria l University of Newfound.

land which made this work possible.

Special thanks and sincre appreciation to Dr. R. Venkatesan , for act ing as my

research supervisor and providing advice, guidance and encouragement thro ughout

the study.

Many thanks to Dr. J. E. Qualcoe and Dr. C. R. Moloney, for many valuable

discussions and useful suggestions .

I also wish to thank Dr. R. Venkatesa n and Dr. C. R. Moloney for t heir

assist ance in prepa ring this thes is.

Help from the technical staff at Computer Aid Engineering Center for using

Iacilltlcs is gratefully appreciated.

Finally, the dedication is due to my wife and my parents, (or their constant

encouragement and support.

iv



Contents

Abstract

Acknowledgeme nt

List of Figures

List of Tab lel

N ota t ion

1 Int roduction

2 Review of Ind irect Pleld-O zlen ted Cont rol or Ind uct ion Motor

2.1 PrineipleaoC("direct Fleld-Deiented Control

2.2 Fteld-Orleet ed Control Using Microprocesson

2.3 Para meter ldenrificerion and Adept ive Control . ..

3 Mo deling and Simulat ion of Indir ect Field-Or ient ed Control Sys-

lem

3.1 Introduction . . . . . . . .

3.2 System Analysis and Modellinll .,

iv

ix

ltvi

"
21

2.

21

2'



3.2.1 Analysis and Modelling of Flux Curren t and Torque Current

Control Loops .. 27

a.2.2 Analysis and Modelling of Speed Control Loop . . 32

3.2.3 Modelling of Ind irect Field-Orient ed Control of Voltage-Fed

Squirrel-Cage Induction Motor . 32

:1.:1 Simulation Results of Indirect Field -Oriented Contro l of AC lnd uc-

t ion Moto r . 37

:lA Extended Indirect Field -Oriented Control of AC Induc tion Motor ·12

.1.5 Discussions 45

3.5.1 Condit ions for a Truly Linear Control System of AC Induc­

t ion Motor Drives . .

3.5.2 Extension of Fie ld-Orient ed Contro l

3.6 Summary

4 Rot or Flux Orien t ati on Co nt ro l

.1.1 Introd ucti on ..

·1.2 T he Principl e of Rotor Flux Orientation Control.

·1.2.1 Cont rol Str ategy

·1.2.2 Stab ility Analysis .

4.2.3 Detecti on of the Departu re Angle .

4.3 Realiza tion of F lux Orientation Control .. .

4.
,16

46

72

72

7,1

74

76

77

79

·1.5 Discussion .

4..1 Simulation and Results . . .. .. 82

8'
·1.5.1 Advant ages of the Rotor Flux Orient ation Cont rol . 85

-1.5.2 Limitations and Solut ions 86



4.6 Comparisons . .

5 P a rall el Pr oceu in g and Transp ute n

5.1 Introduction . . . .. . .. .. . • . • .

5.2 Fundmental Pr inciples or Paral lel P recessing

5.3 Tra nsputers T800

ss

103

10:)

10·1

illS

6 P ar all el P rocelllin g Cont rolle r Icr t he Ind irect Fie ld-Orien te d Con-

trol o r AC I ndu ction Mo to r

6. 1 Int roduction .

II2

II :!

6.2 T wo Transpute r Based Simu lation of Field -Oriented Contro l Sj-stem 11·\

6.2.1 Hardware Implementation

6.2.2 SOft are Des;sn .

6.2.3 Execution Times

us

118

I''''

6.3 '-fult i-Trans put cr Hued Simulat ion of Field-Oriented Cont rol S)·5tcfTlI25

6.3.1 Hard.....are Implementa t ion

6.3.2 Parallel Processing Software Desisn . . . . . . 128

6.3.3 Execution Times . . . . . . . . • . IJI

6.4 Fault Tolerance . . . . . . . . . . . I:I.S

6.4.1 Link Failure . . • . . . . . . . . la6

6.4 .2 Transpute r Failure 101 2

6.5 Effects or Sampling T ime On Control System Performance 1·16

7 Co nclusions 150

8 Suggest ion. fer Future Work 153

vii



Re ferences

Bibliograp hy

u,

161

Append ix A: C P rogram Simu latio n or Ind irect P leld- Or lented

Cont rol o( AC Mo tor 16 '

Appendix B: C Progra m Simul at ion of In direct Fie ld-O riente d

Cont ro l of AC Mot or 172

Appendi x C: Simulati on of Ind ir ect Fi eld-O riented Co nt ro l of AC

Mo t or using T wo Tra nsp uters 178

App en di x D: Sim ulation of Parallel Process ing by Five Tr a nspu t-

ers (or Ind irect Field-Oriented Cor.t rol of AC Motor 188

Ap pend ix E: C Pr ogram Simul at ion for Ch.n'. sehem e 20,.

viii



List of Figures

1.1 Motion control system-An inter disciplinary technology

2.1 Phasor diagram for indirect field-oriented control

2.2 d-q reference frame equivalent circuits . a) q-axia equivalent circuit ,

b) d-axis equivalent circuit 10

2.3 Block diagram of machine model with decoupling control 13

2.4 Posi tion servo system with indirect field-oriented cont rol [35/ . 1-1

2.5 8086·Microcomputer cont rol of AC motor 16

2.6 Hardware configuratio n of experimen tal system 18

2.7 Contigurat ion of speed regulator for AC motor 18

2.8 Transputer-based implementations of induct ion motor contra!' (3)

V.type , (b) l-typc 20

3.1 Flux current and torque current closed-loop control. (a) Flux current

control. (b) Torque current control. 30

3.2 Compound control. a) Flux current with feed forward controller, b)

Torque current control with feed forward controller 31

3.3 Block diagram of speed loop control end pole location. (a) Speed

control loop, (b) Pole location 33



3.4 Time domain simulation model of indirect field-oriented control system 36

3.5 System response (or step chang~ in the reference speed. a) Rotor

speed, b) Motor torque . .. . . . . . • •. • • . . . . 18

3.6 System response for step change in the reference speed, a.) Torque

current, b) Flux current .. . .. •. ••...... ... .... .• -19

3.7 System response for step change in the reference speed, a.) Stato r

current in alpha axis, b) Stator current in beta axis . • . • . . . .. SO

3.8 System response lor atep change in the reference speed, a] Sta tor

voltage in alpha axis, b) Stator voltage in beta axis . . . . .51

3.9 Rotor 8u x response for step change ill th e reference speed. 52

3.10 System response for ste p change in the lo&d, e) Rotor speed, b)

Motor torque . . . . •. .. .• .. •. • . .. •.. .. ... .53

3.11 System response for step change ln the load, a.) Torque current , b)

F!uxcurrent . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . M

3.12 System response for step change in the load, a.) Stator current in

alpha axis, b) Stator current in beta axis. • • . . . . . . . . . . . . 55

3.13 System response for step ch&ngein the load, a.) Stator voltage in

~pha axis, b) Stater voltJ.&e in beta &Xis . • . . . . • . . . . • . • . 56

3.14 Rotor ftux response (or step change in the load . • • . . . . • . . . . 57

3.1.5System response for speed reversal. a) Rotor speed, b) Motor torque 58

3.16 System response for speed reversal. a) Torque current, b) Flux current 59

3.17 Sy!tcm response for speed reversal. a) St ator current in alpha axis,

b) Stator current in beta axis . . . . . • . . . . . . . . . . . . . . • 60



3.18 Syste m response for speed reversal. a) Stator voltage in alpha axis,

b) St at or voltage in beta axis

3.19 Rotor flux response Cor speed reversal . . . . . . . . • ..

3.20 System response for step change in the reference speed. a ) Rotor

speed, b) Motor torque . . . .

62

63

6·\

us

3.21 System response for step change in the reference speed, a) Torque

current, b) Flux current

3.22 System response for step change in the reference speed, a ) Stator

current in alpha axis, b) St ator current in beta axis

3.23 System response for step cha nge in the reference speed, a) Stator

voltage in alpha. axis, b) St ator volt age in beta axis . . . 66

3.24 Rotor flux response for ste p cha.nge in the reference speed . 67

3.25 Syst em response with extend ed field-orien ted control, a) Rotor speed,

b) Motor torque, .. . . . . .. .

3.26 Syst em response with extended field-oriented cont rol, a) Torque cur ­

rent , b) Flux current

3.27 System response with exten ded field-oriented contro l, a) Stator cur­

ren t in alpha e-ts, b) Rotor flux . .

3.28 Syst em response with field-oriented contr ol .

68

10

11

4.1 Flux and torque current vectors in d-q axes. a) Flux orientat ion

aligned to d-axis, b) Flux orientation departed from d axis 7.'i

4.2 Stato r-oriente d model for esti mat ing torq ue 79

4.3 Paramet er ada.ptat ion contro l for indirect field-oriented control of

AC induc tion motor

xi

80



H f1lJxorienu tionCOlJlrollcr . .. . • . .. • .

.c.5 Motor rotor m istancevarjations . • . • . . .

H Response o( indirect field-oriented control, (a) Rotor speed,(b) Rotor

speed . . . .

4.7 Response or indirect field-oriented control, (a) Mo(or torque, (b)

~fotor torque • . . . . " ... .. • .

81

iW

91

92

U Responseof indirect field-oriented control, fa) Torque current, (b)

To"l.ue current • .. • . . • • . • .• • . • • . . • . . . . . .. . . . 93

.e.g Retporae or indired field·oriented control, (a) Flux CUrmlt, (b) n ux

current • • ... . . . .• . . . ...• •..•.•• .....•.

4.10 Heepcnse orindirect field-orientedtontrol, (a) Rotor flux, (bJ Rotor

flux.

4.11 Response ofindirect field-oriented control with fluxorientationcon­

trol, (a) Rotor speed, (b) Motor torque . ..

4.12 ikspoose orindired field-orieeted centre! with fluxorientation ton-

95

trol, a) Torque current, (b) Flux current • ... ... • . .. . . .. 97

U 3 RcspolUe ofindirect field-orem ed control with flux orientationcon-

trol, (a) RotorFlu, (b) Corrected rctcr resbtence .• .• . . • • . 98

4.14 Response of indirectfid d-orienledeeetrcl, (a) Identifiedstator resis-

tance, (b) Rotor speed . . . • . • . • • • . • . . . . . • . . 99

US Reepcnse oCindirect field·oriented ccnercl, (a) Motor torque, (b)

Flux current • .•.• • • , , • 100

4.16 Simulationmu lts by Chan a) Rotor speed response, b) Estl-

mated valueof rotorresistance. . .• .

xii

101



4.17 Simulation results by Chan , a) Torque, b) Torque current 102

5.1 Distributed and shared resource systems 105

5.2 INMOS T800 architecture 10!)

6.1 Parallel processing hardware configuration for simulati on of AC mo­

tor control . 116

6.2 Transputer based simulation of indirect field-oriented control system

of AC induction motor. a) Real motor control , b) Real-time emula-

tion of motor cont rol . . Ii i

6.3 Software st ructure for simulation of AC moto r control system 119

6.4 Five Transpu ter based parallel processing architect ure fOTreal-time

simulat ion of AC motor control 126

6.5 Pa rallel processing program structure for simulation of AC motor

control . . . . 129

6.6 Control task dependency in AC motor control . . 132

6.7 Reconfigurab le communicat ion channels in Transputer network . 137

6.8 Recovery of multi-communication channel failures . 139

6.9 Reliable communicat ion times . . . 140

6.10 Communicat ion time with auxiliary channel 14\

6.11 Para llel processing program str uctur e incorporated with processor

fault tolerance . . .

6.12 Transputer 1 failure .

6.13 Transpute r 2 failure .

6.14 Transputer 3 failure .

xiii

11.1

144

144

1<5



6.15 Transputer 4 failure,

IU6 Transputer 5 failure

6.17 Multi-voting for t ransputer failure .

6.18 Motor torq ue current response .

xiv

145

146

147

149



List of Tables

3.1 Param eters of contro ller . :18

3.2 Parameters of Cont roller and Slip Frequency . . . . . . . . . . . . . j.j

6.1 Execution t imes in single Transputer . . 12J

6.2 Exeeution t imes in con venti onal single procenor 12·1

6.3 Execut ion t imes in five t ranspute rs ... 133

6.4 Execution times in multiprocessors (microseconds) . 13-1



i" ,io :

u"o:

lIo, Uo:

Notation

dir ect- and quadra ture -axis stator curren ts in thesynchr onous reference
frame.

di rect- and quadrature-axis rotor curren ts in the syn chronous reference
frame .

direct- and quadrature-axis stator vol tages in the synchronous reference
frame.

direct- and quadrature.axia rotor voltages in the synchronous reference
frame.

alpha-bet a axes cu rrent in the stat ionary re ference frame

alpha' and beta-axis stator currents in the stationar y referen ce fram e.

alpha-beta axee voltage! in the sta tio nal re ference frame

alpha- and beta-axis stator voltages in the s tationary reference frame .

[~(k).19(k) : discrete d ire ct- an d quadra tu re-axis stator c ur rent s in the synchronou s
reference frame

U..(k), U,(k ) : discrete d ir ect- and quadratu re-axis stator voltages in the sy nchrono us
reference frame

w. : stator ang ular frequency

xvi



w, : rotor angular frequency

W,f: slip a.ngular frequency

1/J~ : rotor flux

>Pd. : rotor flux com ponent in d axis

1/Jq. : roto r fluxcomponent in q axis

tPoa : st ator flux in Q - fJ axis

Wa : stator flux component in a axis

>Po : st ator flux component in 13 axis

tPa. : rotor flux component in Q axis

.,pOr: rotor flux component in 13 axis

fJ, : st ator elect rica l angle

8. : rotor angle

xvii



0.1: slip a ngle

suffix denoting the refe rence va lue

11. , rotor re sistance

R. , stator resistance

L. , rotor inductance

L. , stator inducta nce

M: mutua l induct an ce

D , viscous friction coefficient

J, wtal ine rtia

T, motor torque

TL : load tor que

T : eetimated terque

xviii



n,. : nu mber of pole pairs

N : nu mber of pole

p : differential operato r

Laplace op erator

mmf :

T~ :

1( , :

rnegnetcrno uve force

u:
R .

controller proporti on al gain

ftux orient a t ioncontroller proport ional gain

con troller in tegra l t ime const ant

controller input

y : controller output

xix



To : sampling lime

rpm : rcvolution minute per

Nm : Newlon meter

6 : departure angle



Chapter 1

Introduction

Electric machin es have been a wo rkhorse of industr y for many yea rs. The three

basic elec tr ic machines . DC, inductio n, and synchronous . have se rved industrial

needs for neArly a.century [I). Alth ough t he induction machine is su perior to the

DC machine with respect to site , weight, rotor inert ia, efficiency, m ax imum !lpt't.·d.

reliabili ty, cost. ete. , because of t he forme r' , highly non-linear dyna.mic st r ucture

with st rong dynamic interactions, it requires more complex contro l schemes thlR

a sepa.rat ely excited DC machine . As for DC muhines, torque cont rol is ach ieved

by cont rol1ing the moto r current . However, in con tra.st to DC machines, in AC

machines , both the phase angle a nd the modulus of the current h ave lo be con­

t rolled. or in otbe r words, the cu rrent vecto r has to be controlled. Fur therm ore, in

DC machi nes, t he orienta.tion of th e field flux And armat ure mmf is fixed by the

commutato r and the brushes, while in AC machines the field flux an d the s patial

angle of the arma tu re rn.m.L require external cont rol. In the abse n ce of th is con­

trol, the spatial angles between t he various fields in AC machines vary with the

load an d yield an unwanted oscill a ting dynamic response [2). Wit h field-oriented

contro l of an AC machine, the to rque-end flux-producing char acteristiC!are similar



to those of a separately excited DC machin e and the system will adapt to a.nyload

distur-bances and /or reference value variations as fast as a DC machine.

In the past such control techniques would have not been possible becau se of

the complex hardware and software requ ired to solvethe complex control pr oblem .

Field-oriented control techniques incorporating fast microp rocessorshavemade pos­

sible the application of AC motor drives for high nerfcrmence applications where

traditionally on ly DC motor d rives were applied.

Fie ld-oriented cont rol techn iquesare nowbeing accepted.almost universally for

high. pe rformance control of AC machines. Such control methods weredeveloped

in Germany in the early 1970's. Blaschke [3) developed the direct method of field­

oriente d cont rol and Hasse 14J invented t he indirect meth od. At present, th e field ­

oriente d cont rol techniques have been implemented in terms of four types (rotor

flux-oriented control, magnetizing-flux-oriented control, rolor-orientedcon t rol,and

state r flux-orienled control). The most popula r method is the rotor flux -oriented

contro l because of its easy implementat ion, robus tness and fast dynamic response

{5/. In rotor Bux-oriented control, there are two schemes: direct and indirect field­

oriented control. As it has easy implementation , practical use and ro bustness ,

indirect field-oriented control has been given extensive attent ion in recen t years

(6117J(81191·

However. the syet-rm response of indirect field-oriented contro l is limited by t he

accuracy wit h which the rotor time constant is known. Unfor tunately, the roto r

time constant varies with bot h airgap flux and tempera ture so that it is difficult

to keep the cont roller in tune. Means for estima tingan d adjust ing the rot or tim e

constant in the slip frequency calculator is current ly an areaof int ense ac tivity [6].



The researchers are a.ttempting to find a suitable parameter-adaptation scheme for

optimum decoupllng torque and fluxunder various operating conditions.

On the bas is offield-oriented contro l , modern control techniques have been em­

ployed for obtaining a higher dynamic control pe rformance. Modern cont ro l theory

is cert.alnly more difficult to apply for AC drives. However, for t he ACdrives with

field-oriented control used in the inner core, there is no difference in the dynamics

between the AC and DC drives. Therefore, it is expected that modern control

theory will be applied to AC drives wi th field-oriented control in the inner loop

{2]. Applying modern control theory to AC motor drive control remains a challenge

because of the large t ime crit ical comput ation work requirement. Increased compu­

tation al speed is, of course, the primary benefit o( parallel processing. T his allows

the syste m to be controlled more quickly and gives the choiceof added complexit y

in the cont rol algorithm.

Fau lt tolerance ca n be rea lized in a paralle l processing system by o rganizing

comp utational operations in a distribute d sense, so that an operation failure result s

in performance degradation rather tha n a complete breakdown of the con troller,

Today , motion control is an areaof technology that embraces many dive rse disci­

plines, such as electrical machines, power semiconductor devices, converter circuits ,

dedicated ha rdware signal electrcnice, control theory, microcomputers, LSI/VLSI

circuits, sophisticated computer-aid desi gn techniques and system reliabili ty tech ­

uiquea (10][F tg.Ll], Eachof the compo nent disciplines is undergoing an e volut ion­

ary p rocess, an d is contributing to the to tal advancement of mach ine drive cont rol

technology.

T he a.im of this th esis is to invest igate the characteristics of indirect field-
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Figure 1.1: Mot ion cont rol syste m-An Inter disclplinery tech nology (10]

orient ed contro l of an AC indu ction motor and to devel op new schemes for solving

problems in indited field-oriented.control of AC induct ion moto r.

Due to the complexity of algorithms (Of indirect field-ceiented control, most

rcceutly developed.pu a.:neler adapta t ion cont rol schemes are restricted to motor

..teadyoperation (or correct ing the mism atch ed. value in the slip calcula tor .

In this thesis, a new easily implemented rotor parameter adaptat ion control

is expected to correct the mismatched value in both motor steady operation end

tran sient operation.

Considering the complexity of indirect field-oriented control and modem con­

trol in AC drives, a new VLSI product, known as a Transputer, is chosen .u the

paralle l processing controller for the real-t ime cont rol requirement . Simu lations of

indirect field-oriented control on multi-transp uter network' have been carri ed out

to exami ne t he parall el processing effectiveness. Th e corresponding execu tion times



for control algorithms and some fault tolerance test results for improving cont rol

system reliabili ty have been obtained.

A linea r control model of an AC induction motor based on indirect field- oriented

control have been studie d for the purpose of design of PI or PID controllers by using

the classical methods such as root-locus app roach or frequency domain scheme.

This thesis is organized in eight chapters . In Chapter 2, the principle of in­

direct field-oriented contro l is described. An overview of the state-or-the-art of

microprocessor-based imp lernentatio neof field-oriented control of AC induction mo­

tor and the development of rotor parameter adapta tion control for indirect fleld­

oriented control of AC induction motor is presented.

In Chapter 3, in order to investiga te the characterist icsof indirect field- oriented

contr ol, an analytical model of indi rect field-oriented cont rol of Ae induction motors

has been set up and a series of simulations have been carried out. On the basis of

field-orient ed control, the condit ions for obtaining a t ruly linear control model or

the AC induction motor are studied. Finally, a new proposal for achievingexcellent

propert ies from field -oriented cont rol is made and the corresponding simulation hllll

been carried out for verifying this proposal.

In Chapter 4, a new paramet er adapta tion scheme for indirect field-oriented

control of AC induction mot ors is developed and simulation results are presented,

Finally, results are discussed.

In Chap ter 5, a brief introducti on to the principles of parallel processing and

the transputer is presented .

In Chapter 6, a parallel processing cont roller using five Transpute rs for indirect

field-oriented control of AC induction motor is implemented and corresponding



simulat ions ere carr ied out. Execut ion t imes a.nd some fault to lerance tests are

exam ined.

Chapter 7 presents conclusions.

The IMt Chapter proposes suggest ions for luture stu dy.



Chapter 2

Review of Indirect Field-Oriented
Control of Induction Motor

2.1 Principles of Indir ect Field-Oriented Co n­
trol [35]

In recent years, t he problem of obt ain ing fast torque response from A.C . machines

has received considerable atten tion. However , unlike the D.C. mach ines, the volt -

age, curren t, to rque and speed of an A.C. moto r a re all int erdepen dent , which

results in a highly non-line ar dynami c struct ure. T he possibilit y of obta ining high

perfor mance from the A.C. motor is very desirab le. A control st rategy for achiev­

ing th is is termed vectoror field.oriented cont rol. Thi s was originally der ived from

Blackshc; exte nded and genera lized earlier work done by Hasse; similar ideas were

exp ressed by several oth er researchers: Abbondan ti , Nabee et al., Plu nkett , Bose

and Leonhard [j I].

In principle, the st rat egy involves t he transformat ion of the machine dynami cs

int o those o£a pseudo.DC machine equivalent in which a torque a nd field component

o£ma chine current are obtained. These current components are indepen dent , i£th ey

are measured in the so-called fidd co·ordinales. In th is way, th e AC motor may



be cont rolled in the same manner a.s the DC motor, thus leading to an imp roved

transien t repense. Fisure 2.1 explains the indirect field-oriented control with the

help of a ph&$Or diat;ram. The a-Daxes are fixed on the st ator while the d.q axes

rotate at synchronous ant;ular velocity w. as shown. At any instant , t he q electrieal

..xis is at angular position D. with respect to the /3axis. The angle D. is given by

the sum of rotor angular position D.and slip angular position 901, where 8. =to,I ,

O. = w.l. and 8., =Wal t . The rotor flux 1/J~ . consisting of the air gap fl.ux and

the rotor leakage flux, is aligned to the d axis as shown. Therefore. for decoupling

cont rol, the sta tor nuxcomponent ofcurrent iJ and the torque component of current

it are to be aligned to the d and q axes, respectively.

We can write the following equations front rotat ing frame d-q equivalent circuits

a.sshown in Fig. 2.2:

cl:; +~if" + (w, - w.J.p.. = 0

d~. + R.i. _ (w, - W.)W'" =o.

t\t;ain,

From equation (2.3) and (2.4),

i 9. = *,p, . - ~i,

i"· = t"'''· - ~i,, .

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



Figufe 2.1: PhllSOf dillgfilm fer indirect fi cJ (l,of i(~n tcd control [3.5J
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Figure 2.2: D·Q re ference frame equivalent circuits . iLl Q axis equivalent circuit,
b) D axis equivalent circuit [351



II

The rotor current from equations (2.1) and (2.2) can be eliminated h~' subsri­

lut ing equat ions (2.5) and (2.6) as

d:t - ~R,. i, +~"·9. +W., l,.~J. = 0

d:t -~R.i.r +I:-'.".-10"",. := 0,

where 10. 1 =W . - 10• •

For decoupling con trol, it is desirab le that

¢'9.=~ "" O

!P.r.= i. = constant

~ =O.

(2 .7)

Substitu t in ~ the nrst one condi tion, equat ions (2.1) end (2.8) can besirnplifit-u a.~

(2.9)

12.101

A!a.in, th e torque a.s a func t ion of rotor !lux and sta tor cu rrent ca n derived as

follows: T he stawr flux linkage relat ions can be written from Fig. 2.2 as:

(2.1I )

(2.12)

Subs tituting equat ions (2.5) a nd (2.6) in equatio ns (2. 11) and (2.12), t he following

eq uati ons arc obt ained:

(2 .13)
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(2.14)

Th e torque equation as a function of st ato r current and fluxes is

(2.15)

Equa tions (2.13) and (2.14) can be substi tuted in equation (2. 15) to eliminate

the stator fluxes, therefore

(2.16)

Substituting "-'v< "" 0 and !/J~. = $" the torq ue exp ression is:

(2.17)

or, using equat ion (2. 10),

(2.18)

T he equat ions above, together with the mecha nical equat ion (2.19) describe th e

machine model in decoupling cont rol as shown in Fig. 2.3.

(2.19)

The developed torque T. responds instantan eously with current ;9' but has delayed

response due to i" in equati on (2.10). T he analogy of the model with a separate ly

excited DC ma chine is ob vious.

For implementation of indirect field-oriente d cont rol, it is necessary to ta ke

equat ions (2.9) and (2.18) into consideration . As an example, Fig, 2.4 shows a

posit ion servo system using the indi rect me thod of field-oriented cont rol. The flux



Figure 2,:.1 : Block diagrrnn of ll1a( hine uunlelwith d" <"'.)I]pll 11 .1.( contro l 1:1.')1

componen t of curre n t i j for IIll' ll•..;irl'll l'olo l' t1IlX 1:7, i .~ d"lel'ln illed frolll "'1I1i1Lion

(2,10) and is m ain taine d nlll~1 .1 111 lu-re. Ti l l ' l o r ' llI l' rumpnncut of ("l l r n' l l l. i; is

de rived from th e speed control loop as usual. Til l' 'id valuo uf s lip "';1 is n~ l;it1'd

to curren t i~ by equat ion (:!,!IJ, T il" slip -nllgle vectors .o;i " I):1 M il l <:II,sO;" whh-h

de te rm ine th e desired elec trica l axis with res pect to t he ro tor-mechn rticul axis, MP

gene ra ted in a Ieed.fcrwn rcl 11I.1I111,'r from til<'n';, sigllal lhr ollgh a vea, it couuu-r ,

and a ROM - base d .sin./co,. gen era tor. The rotor-poshion vec tor s co,sO, alld ,~ i ll ().

a re obtained from ang!... encoder and are i111,le<1 with L ll '~ sl ip vect ors to ob tain t h , ~

cosO. and sin O. signals as follows:

iJinO; =.sin(O, +O:J) =siIlO,cosO:, +cosO,sinO:, f2,21)



I I

Figure 2..1: Poshion M:rnl system with Indirec t field -orient ed cont rol [351
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2 .2 Field-Orient ed C ontrol Us ing M ic ro p roces­
sors

Control of t he AC machin e is considerab le more comp lex tha n control of t he DC

mach ine. The complexity increases for higher performance requirements. T Ilt'

reason is t hat AC ma chine dynamics are more complex. intricate signal processing

is required , and the variable frequency supply requires more complex contrcl t.han

docs the DC converter.

Recent achievements in LSI and VLSllechno!ogy led to practica l utilia ation of

t he microprocesso r. The microprocessor makes it poss ible to real ize very ccmpli-

car ed cont rol st rategy that is difficult or even im possible to realize with con ventio nal

at,alag circuitry. When th e microprocessor is used in variable speed mot or drives,

it gives hig h accuracy surmou nting the nonlince rlties involved in motor character­

istics, power conversion equipment an d sensing devices, and provid ing against th e

dr ifts of tem peratu re and source voltage.

T he control syste m shown in Fig. 2.5 has been implemen ted on an Intel 8086

microcompute r to which a signal processor NEe 7720 was attached as a high spe ed

arit hmetic unit . T his makes it possible to comput e th e nux model , t he t rans forrna­

t ion and the inner control loops with 125 IJS sampling time which is adequate even

for high speed control [111.

[t is obvio us, of course, that wit h faster dyn amics of the sys tem imple ment e­

tio n of optimal control and adap tive contro l of multi-variabl e systems will become

more and more complex. In th is respec t, th e uniprocessor based motor control is

limit ed in offering higher computing speed. In recent years , mult iprocessor based

motor cont rol systems have received considerable att ention. Increased comput e-



Ilotl1lC""fI'#.. .r; ... ...d ......

I-"-r---I

Figure 2.5: S086·Microcomputer control of AC motor [11\
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tional speed is • of course, the primary benefit of p.rallel processing. This ellc....·s

Jester systems to be controlled and gives the control choice of added complexity ill

the control als:orithm. Ea.syexpansion, within . uniform hardware end software en­

vironment , is another feature of concurrent control system because it is possible to

add more processors as required. Parallel proceui ng alsoolfo,!!lI a closer relat ionship

between the inherent parallelism expressed at the design st age and the hardware

implementa tion.

One of the typical applicati ons using mult iprocessor applicat ions for field-ceicntcd

control was developed in 1985 by Fumio Hareshima et a\ (121. Tn their proposa.l,

a t hree microprocessor baaed AC motor controller wa.:s used a.:s shown in Fig. 2.6.

With th e parallel controller, two single-chip microcomputers Inle1·8031 (12 Mlh)

are assigned for 36/ 26 to 26/3~ signal conversions, respect ively. These signal con-

versions are initiated by the interrupt signal every I ms. One 16-bit microprocC"Or

Inte l·8086 (5 MH,,) executes both the vector contro l and speed cont rol programs.

The execution time for one cycle of the control program is about 2.2 m" . This

multiprocessor configuration reduces the work l~ of the main processor Intel·8086

and permits the realization of more sophisticated control such as adaptive control,

opt imal control, and so on. Another advanta ge from this configuration is that it is

very flexible to be used in various control types, such as V-type control and I-type

control.

In the same year, Kenji Kuho et al (13) proposed & fully digitized AC motor

controller by using multip rocessor system. The configuration of the proposed con­

t roller is shown in Fig. 2.7. The motor drive system is ccmpceed of a power supply,

PWM inverter, induct ion motor , and speed controller.



Figur e 2.6: Hardware configurat ion of experimen tal system [12]

Figure 2.7: Configu rati(ln of speed reg ulator for AC motor [13]
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Based on a speed reference and detected si~nals of motor current and speed.

PWM gate pulses arc generated according to the control processing. The P\VM

inverter operates followin~ these gate pulses to regulilte motor speed. Four micro­

processors &J'e used in the speed controller as indicated by the dotted line in Fig.

2.7. Two microprocessors are assigned to control processing, and other two arc

used for gate pulse generation and detection processing, respectively.

The execution times of SMC 1, SMC 2, SMC 3 and SMC" were 750, 700, 380

and 600ps, respectively 113].

With the development of VLSI. the 32-bit transputer systems have been used

as promising parallel processing systems for real-lime digita l cont rol applicatio ns,

such as DC motor or AC motor control.

The first att empt in using Transputer for AC motor control was made by D.1.

Jones and P.J . Fleming (141. Another Trensputer-besed high performance AC mo­

tor control ayetem, Wall developed by G.M. Asher et al (15]. In their proposal,

a. parallel processing controller has been exploited so that very complex control

all;orithms could be implemented in real-t ime to improve the AC molar control

performance. Thr ee vector control types are presented and implemented by a uni­

form Transputer-based parallel processing system. The three vector control types

are V-type, current-controlled.V-type and l-rype. Implementa tions using paeal­

lei processing system are illustra ted in Fig. 2.8{a.) and 2.8(b) . The Transputer

T1 handles speed and line current acquisition, speed control, slip and inverter fre­

quency calculat ion, open-loop stato r dynamic compe nsation and current acquisition

fer monitoring. Speed is sampled every 5m.!l while current i, sampled a.l 250 la .

Consequently, we can conclude that the functions of a generalized drive controller
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Figure 2.8: Treneputer-besed implementations of induction motor control. (a) V·
type (b) l-type Itsl
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exhibit a. nat ural parallelism. In particular, a three-way parallelism exits between

control, supe rvisor/communication and background computing funct ions.

2.3 P a ra m et er I d entification and Adap t ive Co n­
t ro l

The indirect field-oriented control basically involves a feed-forward control scheme

in which the motor slip frequency is calculated from the estimated (commanded)

stator current and an estimate of the rotor time constant. The desired slip frequency

is added to the measured rotor speed to form the frequency command which is fed

to the inverter. When properly adjusted, the indirect field-oriented control method

provides torque response which can exceed the equivalent DC motor [I]. However,

the speed of response is limited by the accuracy with which the rotor time constant

varies with both air gap flux and temperature so that it is difficult to keep the

controller in tune. Means for estima ting and adjusti ng the rotor time constant in

the slip frequency calculator is currently an area of intense activ ity.

L. J. Garces [17] and M. Koyama et 301.125] proposed the correcting function for

progressively estimating the rotor ti me constant in tr ansient state. The drawback

of this metho d is that a long correcting time is needed for obta ining the actual

rotor time constant .

K. Ohnishi et 301.(26] and Y. Veda et aL(27] developed the model reference edep-

tive control system . Th ese two schemes involve much more computatio ns for ceti-

mating the adaptive gain. The estimated results are affected by load disturbances.

L. C. Zalend T. A. Lipo [19]proposed a method which used an extende d K alman

F iller approach to estima te the rotor time constant . The draw back of this scheme
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is that the act ual comp uta.tion for estimatin g the rotor time const ant took about 30

seconds of CPU t ime on a hie:h processing speed MC68000-bMed microprocessor.

T. Mwuo ~d T. A. Lipo 118) developed another met hod in which & prescribed

negative sequence curren t pert urb ation sisn aJ.was injected into the AC motor and

then the ccerespcnding negat ive sequence voltage wu detec ted for obtainine: the

rotor parameters . Th is scheme requhee additional hardware end may induce a

~t rOfig second ha rmonic to rque pulsat ion due to the interac tion of the posit ion and

negative rotating compon ents of mmf. 17}.

The recently reported results have still been concentrated on paramet er identifi ­

cation or model reference ada ptive control. As an example, C, C. Cha n (7) proposed

an effective met hod ror rot or resistance identi ficat ion. Th is method is based on th e

proper selection of coordina te axes: the d axi, of the rotating fram e i, set to be

coincident wit h t he sta to r current vector. A direct estima te of roto r resistance can

be derived from t he reference fra me. T he advantage of this approa ch lies in its

simplicity and accuracy for rotor resistance identification. However, correct results

from t his identification method can only be obtained when mote- is working in

steady state and a load should he applied.

M. B. Zhou a nd W. Qu 124) developed a scheme where the rotor time con,ta nt

is derived from th e vect or diagram of T· I type equiv alence . T his scheme is more or

less similar to that or c. C. Chan which can beapplied only when motor is working

in stea dy state.

R. D. Lorenz and D. B. Lawson (8J proposed a simp lified approach of model

reference adapt ive cont rol system to continuous en-line t uning for field-oriented

control. Due to its simplicity, the prima.ry adva.ntage of t he proposed technique is



the ease of implement ation of the adaptive control methodolo gy given the _ This

method could be aJrected by applied load (91and takes long time for control eee -

vergency ,

Based on the ahove review of microprocessor-based controller implemcntal ion

and parameter adaptat ion control for field-oriented cont rol. it can he concluded

that complex field-orien ted contro l or AC induction moto r can be realized with the

help of microprocessors. tn addi tion, va.riou! parameter ad ap tation control !cheme'

have been developed and applied to solve the problem of parameter sensitivity in

indirect field-oriented control.

However, microprocessor-based controllers reported to da te in the field-oriented

control of AC induct ion motor have not been developed adequately to meet higher

performance requirements. Meanwhile, the developed parameter ada ptation control

schemes can only be applied when motor works in study sta le.

Witb an intent to solve these problem" some solutions are proposed in the

subsequent chapte rs.



Chapter 3

Modeling and Simulation of
Indirect Field-Oriented Control
System

3. 1 Introduct io n

In Chapte r 2, recent developments in the theor y of indirect field-oriented co nt rol

of AC induction motor and its app lications have be en reviewed. In this chapter,

modeling and simulation of indirect field-oriented control of induct ion motor with

sq uirrel-cage structure are studied . The mo del of indirect field-oriented control

o f AC induction moto r is used for t he study of paramete r ad aptatio n control and

parallel processing control ler which are intended to sa tisfy the requirementeof h igh­

performance control of AC motor.

The dyn amics of the AC mach ine drive control system is extremely comp lex

a nd the subj ect is receiving wide attention in recent years. The complexity arises

because of t he nonli nearity of AC mo tor dynami cs. For this r eason, when " contro l

st ra tegy is developed, it is the usu al practice to simula te t he drive system on the

digi tal comp uter an d study the perfo rmance in deta il before p roceedin g to buil d an

24
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experiment . The electrical dynamies of an induction motor can be represented by

a fourth-order nonlinear differential equation which may be either in a stationary

reference frame (Stanley equation), or in a synchronous ly rota t ing reference frame

{2} . The advantage of the latt er mode l is that the steady stat e sinusoidally varying

parameters appear as DCquanti ties. The establi shed model wi th a means of feed­

back control can be simulated on comp uter and control parameters. such as P I or

P ID, can be fine tu ned until the desired performance is obtaine d.

Models of AC induction motor and field-oriented control of AC induction moto r

have been developed and studied by researchers {7]. [29], (31] . 120]. and [301. A

common method of modeling is tha t the indirect field-oriented cont ro l of AC in­

duction motor can be linearized about a steady state operat ing point using small

signal pert urbation principle.

In tbis chapter, the design and simulatio n for indirect field-oriented control

system are studied. A linear control system is achieved by app lying feed-forward

cont rol scheme so that design of PI or PID controlle rs does not depend 0 11 system

operat ing point. In additio n . a new control scheme has been dev eloped to improve

cont rol performance.

3 .2 System Analysis and Modelling

Th e AC drive with field-oriented control is a well-known alternative to the DC

drive. To implement the field-oriented control , the sufficien t condi tions fe r the

quick torque cont rol or an in duction motor are summa rized as follows (12]:

ie secondary fluxis controUed to be consta.nt, which is equivalent to keeping

iu ta nt.
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2. The AC power supply fre quency w. i! determine d by:

(3.1)

.1. The prtme rycur rents iq a nd iJm ust beadjusted instantaneo uslya nd precisely

according to the reference values i; and i j .

Consequently, the arb it rary qu ick torq ue cont rol without unnec essary t ransients is

realized byadjusting the torque current i, while keeping t hesecon dary flux consta nt

(or i<l, ccnatanj.]. However, the followin g problems preve n ting the satisfactio n of t he

foregoing conditions should be t aken into conside ration:

I . The secondary flux level may be changed by the paramet e r variation in th e

induction motor suchas the change ofroto r resistance due to the tempe ratu re

rising in the windings.

2. T he slip freque ncy W,t d etermin ed by equation (3.1) may have some error

when the time constant value of t he secondary ci rcuit use d in t he controller

is mism atched wi th the actual value. This error causes t he coordination of

the secondary flu x to dep art from the d-axis.

3. The ins ta ntaneous and p recise adjustment of the pri mary c urrent n ecessitates

some co ntrol me ans, such as the current feedback control loops.

To ach ieve instant aneous and pr ecise ad justment ofth e primary current , design for

the inn er curr ent cont rol loops plays a n impor tant role.

As usual, for the considerat ion ofsystem st a bility, the inner loo p (cur rent cont rol

loop) design should be carried out firs t. After the inn er cont r ol loops have b een
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des igned sa tisfacto rily, the designo f outer control loop (speed cont ro l loop) C An be

ca.r ried ou t.

3 .2 .1 Analysis an d Modelling of Flux Current and Torque
Cu rrent Control Loops

To au lyse the indirect field-orient ed cont ro l for AC induction moto r , some neces-

sa.ry aJsump tions are live n below [38J:

ASSU M PTI ONS ,

1. Symmetrica l armatures

2. Cons ta nt lI.irgll.p

3. Sinusoidal ind uction repart iti on

4. Sat ura tion. hysteresis and ed dy effec t s n~ligible

5. Indirect field -oriented cont rolled (th is means that the direction or t he rotor

flux is aligned to the synchronous ro t ating axis 0').

BesedOD the above usu mptions, t h e dyna.micequa tions or a squirrel-cage induction

mo tor in t he d - q referen ce frame are give n 17):

[
" 1 [R.+ pL. -w,L. pM
II , _ w. R . +pL, w.M
o - pM 0 R..+pL .
o wo/M 0 wJLp

(3.2)

Accord ing to the d - q equivalent circu ih, shown in Fig. 2.2, the following

eq uations art' derived:

(3.3)
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(3.4)

By solving equation s (3.1)·(3.4), the following equations are obtained:

I'd == R,id + f (I:T.p)id - w.pL.i , (3.5)

. . M 2 ill .
u, == R. l , +pL.m, +w.( L; (I +T.p)) + pL.W,11l (3.6)

Uol =R.(l + T.p \ :P~~)id - w.pL.i, (3.7)

u, == R.(l + pT.p)i, + L, ( \ :P~;)w.iJ' (3,8)

In order to cont rol the flux cu rren t i" and torq ue current i,. fee d back co ntrol

is used favorably. The purpose or feedback control is to improve the dynam ic

performance of controll ed currents such t hat the torque current if follows the ref-

erence values as quickly as possible . white the flux cu rrent ill keeps constant . From

the equations (3.7) - (3 .8), it is dear that even though the field-oriented control

s cheme linearizes and decouples t he relat ions between rotor flux and electromag­

ne tic torque, the coupled relations between d-exis current and q-a x ia curre nt or

d - q cu rre nts and rotor speed tv r st ill exist , which p resent s a non-linear and multi-

variab le struct ur e to t he current control.

In ord er to app roach the desig n of current controllers by using classical m ethod

such as root-locus or frequency do m ain an a lysis, it is proposed here t o use in te rac-

ti ve can cella tion techniqu es for de coupling the inter actions between i, and iii or if

an d i" a nd tv,.

It is noted t hat iCthe interactive varia b les tv,i, and w,iil as shown in equations

(3.7)-(3.8) Meconsidered as external distu rbances t o the cont rol ot id and if, th e lI.ux
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cu rrent and torque current control can be configured as a linear cont rol structure

and, therefore, the transfer function can be used to ana lyze the closed-lo op cont rol.

as shown in Fig. 3.1, where:

Gd(.J) '= pT,TrR, .J2+/T~:r: f , R, ).J+ R, (3.9)

G. (8) '= R.O :PT,.J) (3.10)

Dds) = pL, (3 . 11)

D2(8) = L,( \ : p;'·ss ). (3.12)

It is obv ious that the disturban ces lIJ, i q and w,i d are easily computable from

the measured quantit ies id , i 9 and w. ; therefore, an effective control approach Cor

cancelling this kind of disturbances is to use the feed-forwardcontro l technique .

Feed-forward control means the control of undesirable effects of measu rable dis-

turbence by approximately compensating for it before it mater ializes. This feature

is advantageous, because, in a usua l feedback control system, the corrective act ion

st arts only after the output has been affected. This technique achieves the objcc-

tive of instan taneous compensation control of externa l disturbances i"w. and i9w,

an d minimizes the transient error . When feedback control is combi ned with the

feed-forward control, it is expected that the feedbackcontrol compensates for any

im perfections in the functioning of the feedback control and provides corrections

for unmeasurable disturbance, and meanwhile the feed-forward control minim ize!

the transient error caused by measurable distu rbances such as the w, i9 and w.i J.

The block diagram of th is compo und control is shown in Fig. 3.2 , where:

(3.13)
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<aJ

(b)

Figure 3.1: Flux cu rrent and torque current closed-loop control. (a.) Fl ux current
control. (b) Torquecurrent control.



"

ij

(a )

(b )

Figure 3.2: Compound Control. a ) Flux current with feed forward cont rolle r, Ii)
Torque cu rrent control with feedforward controller
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(3.141

It can be seen tha t the disturbances tV.ill on i ll and w,i.. on i, l J.O be cancelled

com pletely by the feed-forward contro llers G/ (s) and Gl(s), while t he P I controllers

effect the curren t loop con tro l.

3.2 .2 Analysi s and Modelling of Speed Control Loo p

By taking advantage of t he feed-forward control, the dis tu rbances can be cancelled

so that a linear cont rol structure of AC motor speed control can be simplified as

shown in Fig. 3.3.(a ),

where:

(3.15)

To design the speed loop, several met hods arc availab le. The root-loc us based ap-

proach is popular. In general , according to design specificat ions, dominant complex

poles (-a +hj) and (-a - hj) with a far away real pole (-c) can he specified as

shown in Fig. 3.3{b). The parameters of PI controllers can be easily obtained from

t he locations of dominant poles which provide a desirable control performance.

3.2.3 Mod elling of Indirect Field-Oriented Control of Voltage­
Fed Squirrel- Cage Induction Motor

For the pu rpose of analysis of indirect field-orient ed control of AC inductio n moto r,

it is essent ial to run simulatio ns oran overall AC induction motor cont rol syste m

model instead of a simplified cont rol mode l. As a. result, the simulat ion results do

not only give cont rol variables in synchronous reference frame, but also give the

co ntrol variables in stationary reference frame which provides analysis of alternate
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(, )

(b)

Figure 3.3: Block <!iagralll of s lwc-d loop contrcl illl, l pole IOCil.t ion. (a) Spf!<:d ((," lr ol
loop, (b l Pole loc a t ion



variables sueh as sta tor currents, voltages and rotor flux.

In the limula.tx:lD set up, the voltage-fed PWM invert er is defined as an ideal

sinusoidal power supply. The gain of t he inverter is assumed as Ko = 30. The

current feed.b«k coefficient ADd the speed feedback coefficient are defined I.lI K,

and K•• respectively,

As usual, the motor model is represented in the two-axis system, oop reference

frame. An N-pole induction motor with a short-circuited rotor circuit is character-

izcd by the following cqua~ ionll:

[
.. ] [R.+pL. 0
Up 0 R, +pL.
o = pM w. M
o - IL,. M pM

o ] [ ;.]pM io
w. L. i 12•

~ + pL. ip.

(3.16)

!....~ ""T - TL - D~
np Jt np

T = i Mnp(i,i ... - i ..i,. )

~.,..=1.1.. - R.i 12

~J/;... = - R..i... - W.¢II.

f, rPtJ.= - R,itJ. +w.!/J...

~rPtJ =l.l tJ -R.ill '

where:

(3.l i)

(3.18)

(3.19)

(3.2<1)

(3.21)

(3.22)

(3.23)



Based on equations (3.16) - (3.23), the time domain simulation model for indirect

field-oriented control of AC induction motor can be constru cted iL!I shown in Fig.

3.4. The VAX 8530 digita l compute r is chosen for studying the dynamics of AC

motor control. Under the indirect field-oriented control, the required stator voltages

u., and UQ are obtained by the following coordinate t ransformat ions:

(3.24 1

Thr ee pheee variables in AC motor can be easily transformed Irom two axes

variables by the following tra nsformati ons:

[ : : ] = [ ~l ~ ] [::].
«, - t -If

(3.25 )

The stator current io and io in the a - fJ reference frame can bc t ransformed

to field-oriented unidirect ion quantitie s i,Jand i , with the following coordinate

transformations:

and

[;0] [' 0 01[ ;' ]
iQ = 0 ~ -* ::

[
i, ] = [co~D, 'inO,][;.].
I, - sm9. coslJ. 117

(3.26)

(3.27)

The frequency and phase of the voltage components Uo and UQ in the stat ion­

ary reference frame for establishing the required rotor flux and stator current are

cont rolled by the slip frequency W,I which can be calculated from equat ion (3.1).

The controllers applied in the ind irect field-oriented control of AC induction

motor include speed and current feedback PI controllers as well a.s flux and torque

current feed-forward controllers. The transfer function th at approx imates the Action
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Figure J..l: Time- ,!omai ll model or indirect field-orient ed control system
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of a feedback continu ous PI controller is given by:

(3.28)

where T is the time consta nt, K, is the cont roller gain.

A difference equation of t his type of controller is characte rized by :

Un =Yn_1 +K, (t n - t n_I) +To* K, * t ... (J .2!l)

where K i = ~; To is the samp ling time.

All the feedback quant ities are comp ared wit h the corresponding reference quanti­

ties. and t he error quanti ty e forms the input to the controll er . The feed- forward

controller of the flux current is expressed by the following equa tion:

(3.30)

The feed-forward cont roller of torque curre nt is expressed by the following equatio n:

(3.31)

A difference equat ion of t he torque current feed-forward cont roller is eharaeteeized

by:

Yn= (T~ . Yn_1 +To *L. *p . T.(t" - t ,,_d )! (1o+T. ). (3.32)

For different load simulat ions, th e load-sett ing unit is used to change the appl ied

load to t he motor.

3.3 Simulation R esults of Indirect F ield-Orient ed
Control of AC Induction Motor

A C program for the simula t ion of time domain model WM designed for simulation

purposes (see appendix A-I ), The parameters of the AC motor given in [7J are
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Table :}.I : Pa rameters olco n/roller
type "i controlJer P I
Speed cont roller 8 0.003

Flux current controller O.S 0.01
Torqul' current conlroller 0.6 0.01

Tab le 3.1: Parameters of controller

listed in appendix A·2. Using the MatLab to simulate th e linea rized and simpli­

lied AC motor cont rol system as shown in Fig. 3.3{a), t he proporti onal gain and

t he integral time constant of PI contro llers can be dete rmined. Th e parameters or
current controJlen an d speed controller are listed in Tab le 3.1. For studying t he

dy namic properties of indir ect field-oriented. control of AC mot or , a aeries of sim-

ula tions have been carried out . By viewing the simulation results, it can be seen

that, when the compound cont rol of feed-back and reed forwiU'dcont rollers were

applied, t he flux current was controlled bett er than that oC only feedback control.

In these!simulations, the dynamic response oCthe control system for the Collowing

disturba.nces were studied:

I . Step change in the referen ce speed

2. Ste p change in t he load



3. Speed rever sal.

Step Change in the R efer e nce Speed

The step response of a cont rol system is usually app lied to evaluate t he control

system performance in its respon se t ime, overshoot, transient or steady errore And

sta bilit y.

Nine mot or variabl es were chosen in this simulation for stud ying the dynamic

perform ance . They are the d - q coordinate com ponents, such as the torque current

and flux curren t, a-/1 coordina te components, such as stato r currents and volt agc9,

and motor st ate variable s, such as elect romagnetic torque, rotor flux and speed. T he

behav iour of the field coord inates and the cont rol variables are plotted in Figs. :t 5

·3.9.

Fig. 3.5(30) shows t he rotor speed response with starting speed of 1040 rpm.

At t ::: 23, the speed referen ce was changed to the speed of 512 rpm. H can he

seen that the rotor speed is accelerated or decelerated smoot hly by contr olling the

motor torque which is propo rtional to torque current. Fig. 3.5(b) shows the motor

torque respons e. At the beginning, it is obvious that the tor que was not linearly

propo rtional to the torque current, because th e flux current was not constant due

to dynamic t ransience as shown in Fig. 3.6(b ). At I ::: 0.63, a 2Nm load waa

appli ed, the corresponding torque and torque current , as illust rated in Fig. 3.5(b)

and 3.6(30), show the linear response to the input load because t he constant nux has

been set up at tbis time. Th is proves that und er t he field-orie nted cont rol if the

flux is constant, the machi ne to rque is linearly proportional to the torque current .

In thi s simu lation , as the feed-forward controller was oot appl ied, the flux curre nt
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was distu rbed by changes in speed or load, as indicated in Fig. 3.6(b ).

Figs. 3.7· 3.9 show t he corresponding responses of stato r currents, stato r volt­

ages and rotor flux when input speed and load were changed. In orde r to sat isfy

the conditions of field-oriented control. the corresponding stator current or voltages

change d their magnitude and phase, and the roto r flux kept const ant .

Step C ha: Ige in th e Load

The ability to withstand distu rbances in a cont rol system is another importa nt

feature. A step change in the load is considered as a typical exte rnal disturbance .

A high performa nce control system should have a fu t dyna mic response in adjusting

its cont rol variables so tha t the system outputs affected by the distu rba nces will

recover to their original sta tus as soon as possible. The dropped apti tude of system

outp ut such as rotor speed and its recovering time are the import ant performance

specifications.

Figs. 3.10 ·3.14 show the control system response when a step load was applied.

In this simulation, the feed-forward cont roller was applied. In Fig. 3.l 0(b), a 2N m

step load was ap plied to the motor at t = 0.6". T he corresponding motor torque has

emerged to balance the load (or keeping speed constant as shown in Fig. 3.II (a).

When the load was changed from 2 Nm to the rated value of 8Nm at t = 25, the

motor torque quickly followed the load applied to atta in a new equilibrium point .

The rotor speed, as shown in Fig. 3.10(a), dropped a littl e at t = 0.6" and ! =2",

and t hen raised quickly to its original value. In this time, due to the Ieed-Iorward

control. the Bux current remained ccnst ent withou t being disturbed by changes in

load.
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Figs. 3.12 - 3.14 show the corres pondi ng respo nses of stator cu rrents, ste tcr

voltages and roto r flux when input load were changed.

Speed R eversal

With the field-or iented contro l. AC moto r can be operated in four q uadrAnt! like

the DC motor.

Figs. 3.15 · 3.19 show the system response for speed reversal. According to

input command, the rotor speed reversed al l = 23 from positi ve rated speed to

negative tilled speed a.s shown in Fig. 3.15(&). The stiller currents and voltegce,

as shown in Figs. 3.17 • 3.19, changed their phase, frequency and amplitude when

speed re-vcued. A negative curre nt , as shown in Fig. 3.16(&), occu rred to produce

negative torque, a.s shown in Fig. 3.15(b), for speed revcrsel. T he nux current

and rotor Dux are kept constant with speed reversal. In th is simulat ion, t he feefl

forward control was &Iso applied, therefore, the flux current remained cons~AlI t

without bein&disturbed by speed. reversal.

Figs. 3.5 - 3.19 demonstrate the field-oriented control mechanism of the lin­

ea rized control of decouplcd flux and torque currents in an AC induction motor.

T he control performance of AC induct ion motor is found to be like that of DC

motor. The moto r speed was been controlled to regain the original speed after a

small dip for a short duration when load wu applied. It also shows that an AC

drive of this kind permits operation in four quadran ts and allows the motor to be

loaded continuously with rated torque at stand still. Because of the slow response

of the rot or flux, there is a small dip in magnitude during speed reversal which is

regained subsequently.



For the purpose of comparison between feedback cont rol and compo und control,

Fig. 3.20 · 3.24 present the corresponding simulation results.

fig . 3.20(11.) shows the rotor speed response a.ta sta rting speed of 512 rpm . At

L = 2", the speed reference was changed to rated speed of 1710 rp m. Fig. 3.20(b)

shows the motor to rque response when a 2Nm load was applied at t = 0.6". The

corresponding torque and torque current, as illust rate d in Fig. 3.20(b) and 3.21(11.),

show the linear response to the input lced, In th is simulation, a.s the feed-forward

controller was applied, the flux curre nt remained constant without being disturbed

by changes in speed or load, as indicat ed in Fig. a.21(b).

Figs. 3.22 · 3.24 show the corresponding changes of stato r currents, stat or

voltages and rotor flux when input speed and load were in changes.

It can be seen that with feed-forward controller, the /lux current is controlled

more constan t, as shown in Fig. 3.21(h), than tha t without Ieed-Iorwsrd controller ,

as shown in Fig. 3.6(b).

3.4 Extended Indirect Fi eld-Oriented Control of
AC Induction Motor

T he concept of series-shunt excited cont rol is well-known in DC motor cont rol

techniques. The series-shunt excited control takes advant ages of coupled torque

and flux current cont rol to enhance the ability of withst anding disturbances and to

increase the maximum torque. Implementation of the series-shunt excited control in

DC motor is made by connecting flux winding and torque current circuit to let flux

current contain some or torque current. The DC moto r control theory has proved

that a series-shunt excited cont rol system can provide higher tor que response than
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separ ately excit ed control. T his pe rforma nce shows a st rong rcbus rncss and fi\.'ll

contro l response.

In AC motor control, the natu rally coupled torq ue and flux cur rent could he

easily realized as a series-shunt excited control model. if a proper value of slip is

foun d. However, the coupled torque and flux cu rrent characterist ics makes t he

analysis of contro l performa nce very complex beca use of its non- linear and multi.

variable struct ure.

To exploit the possi bility of series-shunt excited cont rol in AC moto r, first let the

AC moto r be controlled in field-oriented coordinates, which presents a separa tely

excited ty pe and th en t he slip is reduced to a.sm aller value than that for completely

decoupling to rque and flux. In this case, we can expect to obtain a series-shunt

excited control in AC motor like in DC motor.

The proposed series-shunt excited control in AC motor has been simulated in a

digital computer to verify the validity and feasibility of this method . The simulation

programs and moto r para.meters[ 13] are listed in Appendix B-t and Appendix B·

2, respectively. The paramete rs of PI controller and slip frequency are listed in

Table 3.2. Simulation results arc illustr a ted in Figs. 3.25 ·3.27, which indicate an

excellent robustness and fMt response with almost no overshoot . The features of

this control performance can be summa.rized as follows:

1. There is almost no overshoot during motor transient speed response (sec Fig.

3.25(.».

2. The tra nsient speed response ti me is equal to tha t of separately excited cont rol

of AC motor (compared Fig. 3.25(a) with Fig. 3.IO(a)).



d SI' FIeT bl J ) pa ea.;..: nmnuiers o on/ro er fl1I 'p requf 1lcy
ly pe P I Normal Small

Speed controller 8 0,003
Flux current controller 0.8 0.01

Torque current controller 0.6 0.01
Slip Frequency lOa/.' IO:{

Table 3.2: Pa rameters of Controller and Slip Frequency

3. There is almost no drop or increase in speed (Fig. 3.25(a)) when rated load

was applied or removed (20Nm, see Fig. 3.25(b)),

'1. Rotor flux current is not constant when control system is working in t ransient

status (Fig. 3.26(b ), which is similar to the series-shunt excited DC motor

cont rol).

5. The stator current is still sinusoidal which can be provided by power electronic

devices (Fig, 3.27(a» .

For comparison, Fig. 3.28 shows the linear control response by regular field­

oriented control method. The motor is started at a speed of 680 rpm and changed

to the rated speed of 1710 rpm at t ""2". It can be seen tha t, with 20 Nm rated

load applied at t "" 0.7s and removed at t "" 3s, the rotor speed dropped much

lower or higher than that of series-shunt excited control scheme.



3.5 Discussions

3.5.1 Condition s for a Tr uly Li near Co ntrol System of AC
Induction Motor Drives

Generally, an AC induction motor can be cont rolled linearly by applying the ind irect

field-oriented cont rol scheme . However , it is a fact tha~ the indirect Iiold-orionted

control is onl y a necessary condition in realizing a linear AC induct ion motor cont rol

syst em. In other words, the indire ct field-or iente d cont rol only provides the solution

that if the fiux current is constant and the rotor nux orienta tion is aligned to the

d-ax is in synchro nous reference frame, a linear cont rol of AC motor torque can he

realized by controlling the torque curr ent .

But the field-oriented control scheme docs not ensure that the JInx and torque

current can he controlled linearly and separately.

In fact , under indirect field-oriented control. the torque current is produced not

only by the voltage in the q-axls but also by the voltage in the d-axis and by the

rotor speed . The 8ux current is also produced by both voltages in the d and the q

axes as well as by rotor speed.

The coupled relations between flux curre nt and torque current are expressed

in equation s (3.5) • (3.6). According to the study in this chapter, a linear control

model for an Ae induction motor under the indirect field-oriented control can be

obtai ned if the feed-forward controller is applied, which results in dccoupling the

torque current from flux current as shown in Fig. 3.2. Therefore, it can be said

that the necessary and sufficient conditions for obta ining a linear control system

of AC induction motor is to employ both field-oriented control and feed-forward

control.
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3.5.2 Ext ension of Pield-G r -iented Co nt ro l

Realizat ion of high-perfcemance control of AC ind uction motor using field-oriented

control is required to pti. ey both flux curr ent con stant and t he alignme nt between

d-uis and rotor flux orient ation.

However. high-performance control of AC induct ion motor could be achieved by

an ex tend ed field-o riented cont rol that a departure or roto r flux orientation from

the d.axis is allowab le. In addi tion, constant rot or flux is not necessary in tran sient

st al e.

In this, such an extended proposal of field-oriented control has been verified

hy a series of simulation results which show exce llent charact eristi cs o( AC motor

cont roL Obviously, t he proposed control scheme behaves non-linearly because of its

ncn ccnstent rotor flux and the coupling of torque and flux. The princip le of such a

scheme is simila r to that of & series-shunt excited DC motor control. However. the

simulat ion results have shown that the control pe rforman ce obtained is superior to

t hat of DC motor control. These resul ta probably hint that an AC motor control

under t he extended field-eeiented control could he the m~t favourable choice over

others due to its several excellent characteristics a.sdescribed in th is chapter.

To prove this conject ure. experimental work a nd further theoret ical work should

be carried out .

3 .6 Summary

In this chapter, based on t he model of indirect field-oriented control of voltage-fed

squirre l-cage inductio n motor. a series of simulations have been carried out to verify

t he control performa nce which i! usually exhibited. by DC motor control.



Feed -forward control scheme for decoup ling t heinteraction s between flux current

contr ol loop and torque curre nt cont rol loop can lineari ze and sim plifr th e design of

AC motor cont rol eysre m and, therefore, improve the cont rol dyn amie pc rfcrma nee.

f inall y, the series -shunt excited cont rol technique is proposed to be ~ppliCII.bll·

to AC moto r cont rol. Th rough simu lat ions. excellent robust control per fcnnxnec

was obtained by using this technique .

It is note d that only part of simulation results have been present ed in litis

chapter to limi t th e number of figures. Actu ally, we have t ried two d iffewnt typc~

of motors for each simulation. Simulation result s have shown a good i\grL't:llICnt ill

control behaviour on these two different motors .
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Figure 3.11: System response for st ep change in the load, a ) Torque current , b)
Flux current
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(a)

Figurt' :1. 1i: Sysl elll r('sponS{' fur spr'cd reversnl. a ) Stator curren t in alpha axis, b)

Stator cur ren t in [ll' t il axis
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Chapter 4

Rotor Flux Orientation Control

4. 1 I n t r oduction

In Chapter 3, a simulation model of indirect field-oriented control of induction

motor with squirrel-cage structu re was set up. Th is model has been used to study

the control performance of AC motor. It is known that if the rotor parameters

keep constant, a linear, decoupled, simplified model of inducti on moto r control

system can be derived under the ind irect field-oriented control. To implement

the indited field-oriented control. the effects of parameter variations should be

considered M discussed in Chapter 2. Efforts to solve this problem are continued

hy many researchers 11] 16) [21.

In general. the proposals developed so fa r for adapting parameter variations in

the indirect field-oriented control may be divided into two groups, One focuses on

the ident ification of rator parameters which could be obtained from eith er indirectly

measuring rotor resistance [7] [2,1] or parameter identificat ion scheme (18] [19); an­

other is based on the model reference adap tive control scheme which adjusts the

control system gain when errors occur between the actual model and the reference

mod, I IS)(261[27).

72



The purpose of these two approaches is to change the parameters u:«:d in slip

frequency calculato r or to tune the contro l system gain when rotor parameters

change with rising tem perature so lhat the rotor flux can be oriented to the d-ax]x,

which is t he essenti al condition in indirect field-oriented control. Th e esttma te...1

values of rot'lr parame ters obtained from parameter identificat ion arc J ircl:l1}"used

to correct t he slip frequency calculation. However, any error resulting from the

identificat ion met hod may lead to a wrong correction. Although t he second group

makes the control results checkable by feed back cont rol, usually it needs a 101111

time for control convergency, and also th e result ing control is ajlcct cd by load

disturbances [61 [9].

So far, most of the schemes developed to cancel the effects orparame te r vari­

ations on indirect field-oriented control work well in motor steady ope ratio n state

but not in motor tr ansient operatio n stat e, which limits t he dynamic control per­

formance.

In this chapte r, a new scheme has been pr oposed to expeclctlly work (or indirect

field-oriented cont rol not only in motor steady operat ion state but a lso in motor

transie nt operati on slate.

To describe th is new proposal, th e principle of t he scheme, realization and aim-

ulation will be disc ussed in the subsequent sections,
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4 .2 The Principle of Rotor Flux Orienta tion Con­
t r ol

4 .2 .1 Cont ro l Strategy

It is well-known that in the ind irect field-oriented control the rotor nux orient.at.ion

will depart from thed axis if the rotor resistance or inducta nce changes with increase

in rotor temperature or roto r nux satu ratio n. T he quant itative descript ion of rotor

nux depa rtu re from d axis has been studied by Mln-Ho, cl al [281 and the phasor

diag ram is presente d here ( Fig. 4. l) {or explanation pur poses. Fig. ,Uta) shows

the case where the flux is aligned to d-axis. Fig. 4. I(b) presents t he case where

the flux departed from d-exis . Defining the angle between flux and d-axis as 0, the

following torque and Rux current equat ions can be derived {rom the vector variable

relatio ns as shown in Fig. 4.1(b ).

iF = id(coso + ~sino)

"
iT ,,= iq(coso + ~ .'JII,b)'.

(1.1)

« .:1)

where iF and ir are t he nux and torq ue current components in d - q coordinate

syste m; id• and iq• are t he motor stator currents in two phase d, q axis. Due to the

depart ure of flux from d-axis, t he developed torque is characterized as:

(<A)

In Fig. 4.1{a), as the rotor flux orient ation and d-axis coincide, t he developed torque

is characterized all t he same as shown in equa tion (2.18), In this case, it is de ar lha t
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Figure 4.1: Flux and torque current vectors in d-q axes. a) Flux orientation aligned
to d-axis, b) Flux orientation departed from d axis [28}.
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t he departure angle 6 is equal to zero. However, if the rotor flux orientation and

d-axis do not coincide, th e depa rture angle is nonzero . T he correspond ing torque

is a complex non-linear function of iq , iJ and o.
For controlling t he depar ture angle to zero, a proper feedback contr ol is proposed

here. The principle is that when a departure angle occurs due to c1mnges in rotor

resistance or ll.uxsaturatio n, th is angle is compared with the reference angle (idN lly,

it is zero) . If the re is any difference from the compar ison, an error signal is fed

back to a controller. named /lux orientation cont roller, which sends prope r cont rol

signals to adjust the rotor time constant T. used in slip frequency calculator until

the departure ang le cbecomes zero. Before implementing the proposed scheme, two

thin gs have to be stud ied: one is to ana lyze the stabil ity of this feedback cont rol

syste m; another is to find a way of detecting the departu re angle 6.

4 .2 .2 St ability An alysis

From the phasc r diagram Fig. 4.1(b) and equation s (4.1), (4.2) and (3. 1), the

following eq uation is obtai ned [281:

_or.
0= 'an-I(~ + (1 :.~)~ ),

where:

l. Tr = Lr / R.. (rotor time constant)

2. T; : norma l value of rotor tim e const a.nt

3. 6Tr=T.- T: .

('.5)
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From equa tion (4.S), it can be seen that the departu re angle is a funct ion of flux

current , torque current and rotor ti me coosta.nt , which present! a nonlinear and

complex problem. Obviously. an accur ate a.nalysis is very difficult.

However, in practice, since the time const ant of t he rotor parameter variation is

much lu ger th.a.nthat of the induction motor , the departure angle can be adjusted

instantaneously by controlling stator current . Therefore, the equation (4.5) can be

simplified as in equatio n (4.6) because depart ure angle willbe instantaneously cor-

rected by adjust ing motor ,t ator curr ent. In other words, the presence of depart ure

angle is very small (.6.T.« I) due to fMt current adjustment .

-"'"6- , T.

- ;: + ( l + ~)~ '

Rewriting th e equat ion (4.6), it becomes as th e following:

5 - -r i,iJ
- i3 + i, i,, + ~ '

(4.6)

(U)

As the flux current and torque current can becontrolled instant.aneously,Cor t he

depart ure angle cont rol, the i" and i, can be comparatively considered a.5 consta.nts.

Th erefore, the rela.t ions between depart ure a.ngle and rotor time constant can be

simply considered u a linesr and non-inertia l process. DC course, at the transient

adjustment. the relatioDs are much more complex.

4.2 .3 Det ect ion of the Depar t ure Angle

By viewing equation (404), we see tha.t the developed torque T. is composed of

twc parts: one is the motor torque by regular field-oriented control, which presents

no parameter variations in rotor; anoth er is a.n undesirable motor torque which is
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caused by rotor parameter variat ions. The motor torque by regular field-oriente d

cont rol can be easily obtained using d-q current variables as shown in equation

(2.8).

Now, it is clear that if the actua l moto r torque can be obtained, then the

departure angle call be dete cted by using equation (4..4). There ate many met hods

to obtain act ua l mot or to rque . But a simp le, easy and accurate scheme introduced

by Lorenz lBJis to est imate the motor torque from stator flux, which takes adva ntage

of the low paramet er sensitivity of the stator voltage in estimating stator flux:

(0\.8)

T his solution allows t he stator flux to be calculated from te-mina l voltages and

phase current. The actual torque can then be directly estimat ed from the stator

nux and sta tor current according to:

("-9)

(' . 10)

Fig. 4.2 shows the approach which is well-known as a means of estimat ing motor

torque from termin al variables only and is the basis of thc robuetncea of stator flux

oriented control . Now using equation (4.4) and (4.10), the depa rture angle can be

obtained by computing the following equations :

t - T == I::.T"" ~nJlf- idiq.!lin6CO"C(t -~) (1.11)
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Figure 4.2: Stat or-oriented mode l fot esti mating to rque {SI

then

6= 2!"in-C, M'~(~;P "2) } 'n, I, - I,.

4.3 Reali zation of Flux Orien tat ion Cont r ol

('.13)

Based on the depart ure &Dgle detec tio n, a feedb ack control technique could be ap­

plied for the control of Dux orient at ion. The prop osed contr ol syst em and contro ller

structure are shown in Fig. 4.3 and Fig. 4.4. In Fig. 4.3, the departure angle

is calculated from torque difference (.1.T) and is then sent to Bux orientati on con­

troller in which the slip frequency calcu lati on is corrected. Th e controller is chosen

all a. proportio nal regulator:

(4.1')

where KF is t he gain DCthe controlle r. Th e cont roller out put y is then added wit h

the normal rotor time constant Cor adjusting the rotor time constant used in the
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Figure 4.3: Parameter adapt ation cont rol for indirect field-oriented cont rol of AC

induction motor
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figure-1.1: Flux orit'nlatiOIl controller
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slip calculator. The corrected rotor time consta.nt U'K"l ! in slip ca.lculAlor ...,lj\l!th t h.,

motor stator currents such tha t the nux orientation is controlled to Alignro in t he

direct ion of d.exi s ev~nthough t he rotor time constan t keeps rh angt"S. The ( unlrul

process can be explained t hat when t he departure angle is zero, the addition i!t

equa l to the v-ilue of normal rotor t ime constant: when nonzero depart ure allll;l.,

is resulted by the rotor parameter variarions, the addi tion is equa l to th e vahu- tl f

norm&!rotor time const&Jlt and the value of depa rt ure angle. This K'llulh ill t h.'

changes of the slip frequency and, th us corrects the llcx departure.

It is noted th at the controller may not jo:st be a proportlcnal cont roller. It could

be a PI or PID cont roller. However, t he simulat ion results show th a.tt hc rCC(lh;,,~ k

cont roller works well in both steady and dynamic sta tes for control of the departu re

angle. If the corrected rotor resistance resulted from the flux orientation control

goes to a filter, a bett er accurac y result can be achieved {3!l1 ,

4 .4 Sim u lation a n d R esults

In order to verify the validity and the feasibility of this method, th e mat hemat ical

model or the indirect fieid-criented ccntr cl system with rotor flux orientation cont rol

is set up by equations (3 .~ 6 · 3.23) and (4.10· 4.14), and a ~riC!l of digital computer

simulations have been carried out . In the simulat ion, t he motor WM operated unde r

variable load and variable speed condit ions which verified that whenever the system

is working in variable load or constan t load and variable speed or constant speed.

the proposed scheme for elimina ting t he effects of rotor parameter variations arc

correct .

In order to teet a worse-esse in roto r re5istance va.riations, the ~ setting unit is
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set a.s given by eq uatio n (4.13). In Chan 's simulation 16). t he rotor resista nce W&:i

assumed la. change from 0.3 ohm to 0.1 Ch Ili in about 12 secono. In Lora.oz·, fil.

t he rotor resista nce was assumed to change from high to low in 25 seconds. In our

lest, the rotor resistance is assumed to change from high to low and then comes

b;u;k from low to high in only 4.5 seconds. Such a fast er change in rotor resistance

could test a worse-case for rot or flux orient at ion contr oller. Since the higher rotor

resistance t he less elTecton performance (see Chan 's simulat ion), variat ions of rotor

resistance in our test are supposed to change from a normal value to a smaller value

and then retu rn back to its original value, a.s illustrat ed in Fig. -1. 5.

R, =0.08 . ( t - 3)2+ 0.125 (4.l~)

Simul. lion progra m ..nd parameters of the motor are t he same as in Appendix A· I

and Appendix A-2. Simulation results are shown in Figs. 4.6 - 4.13.

f igures 4.6(&1, 4.7!a ), 4.8(.1.), 4.9(a.l. and 4.10(.1.) show t he responses of indirect

Iield-crjented cont rol system in the condition of no changes in rotor resistance.

Figures 4 .~b) , 4.7(b), 4.S(b), " .9(b), and 4.10{b) show the responses of indirect

field-oriented control system in the condition of changes in rotor resist ance without

nux orientat ion cont rol. The results indicate tha t when It. changes, th e Dux cur rent ,

flux level, stater cu rrent and motor torque also change with a result of non-linear

resp onse in the moto r torque and rotor speed . Th e system behaves non-linearly

and the cont rol performance is degraded drama t ically.

Figures 4.11 - 4.13 show that the system responses arc unaffected by rotor

resistance variati ons when the flux orienta tion feedba ck control is applied . The

syst em is linearl y cont rolled as the same with the properties of convent ional field­

oriented cont rol system a.sshown in Figures 4.G!..), 4.7(1.), 4.S{a), 4.9(.1.) and 4.10(a ).
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The corrected rotor resistance is shown in Fig. 4.13(b) which is very close to the

actual rotor resistance all shown in Fig. 4.5. As it can seen that the corrected rotor

resistance has certain dynamical errors becouscof the feed-back control adjustment .

4.5 Di scussio n

4.5. 1 Ad vantages of t he Rotor Flux Orientation Contro l

Parameter identification applied in indirect field oriented control for parameter

adaptive control has a feature of forward calculation. The calculation result from

parameter ident ification method is directly sent to the slip frequency calculator for

correct ing the mismatched value tha t are used for coordinate transformation calcu­

lations. Therefore, if any errors resulted from parameter ident ification calculation

or were caused by some uncertain factors, the calculation of field coordinates will

not be accurate .

Techniques developed to date 11}[181(24) [8]have a limita tion to solve uncerta in

paramete r variations or external distur bance such as variable load and unstable

power source caused by PWM inverter.

The flux orientation control scheme proposed in this thesis provides solution for

these problems, because a feedback control system not only call instantaneously

adjust the controlled system outputs to the desired target but also can overcome

uncertai n Iactors which may be harmful to control system. For example, if the

power frequency is changed by external disturbances, the nee -zero departure angle

is detected and compared with the reference value th rough the feedback controller.

Then the depart ed flux orientation caused by power frequency variation can be

corrected by feedback cont roller.
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The feat ures of t he proposed scheme for correcting flux orientation errors call

be summarized as follows:

1. The method considers not only the effects of rotor resistance and rotor s<'lf

lnductence variations , but also any effects which may result in nuxorientat ion

depart ure from its desired position due to its feedback control properties,

2, Implementation of the flux orientation feedback control is easy, because only

terminal variables are needed,

3. Regardless of whether the motor is working under fuUload or no load, teen­

sient sta te or steady state , variable speed or constant speed, this method is

suitable

4. This method works not only for high speed motor control but also for low

speed operation when it is incorporated with motor stator resistance identifi­

cat ion which will he discussed in next section.

Obviously, these feat ures are excellent and valuable, The proposed parameter

adaptation control scheme is expected to be applied widely for indirect field-oriented

control systems.

4.5.2 Limit at ions and Solu iions

As a result of stato r Ilux based torque estimation for detecting depar tu re angle,

the proposed scheme is limited to high performance velocity-cont rolled appiica­

tions that do not require lew-speed operation, The reason is that with stato r flux

based torqu.e estimation this technique loses accuracy and becomes unreliable at

low speeds due to the increased dependency of stato r voltage on stato r resistance
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[81/9J. To overcome such a problem . a. simple stat or resista nce iden t ification can

be used i f edaprion at low operating frequencies is requited.

Stator Re sistan ce Identi fication

To dircct.ly obtain t he dynamic value of stator resistan ce dur ing syste m oper at ion

is difficult . So far, no effect ive me t hods have been repor ted in the literat ure for

ident ifying the dynamic sta tor resist ance. Obv iously, th is lim its t he appl ication of

st ato r flux orienta tion control and stator flux-based.estimation of mot or torque.

In orde r to solve this problem, a new and simple approach for dynam ic st ator

res istance identificati on is developed here.

In ChapterJ, it is known that t he torque curr ent control loop can be simplified , if

a feed-forwa rd cont roller is e mployed. From equation (3.6), th e following equations

are derived:

Uq = R.( I +pT.S)iq

T hen the st ato r resistance can be simp ly expressed as:

R. = U q - (L. ,- fl*.
'.

(4.16)

(4.17)

(4.18)

Viewing equa tion (4.18), we see that th e ident ified stator resistance R. is dependent

on stater inductance L" mutu al induct ance M and rotor inducta nce L~ as well as

119 and iq• Item M' { L. has been shown not to change with tempe rature {24]. In

ge neral, variations of stator inductance is dependent on sta ter flux saturation which

is ca used by a high voltage to stator . As the stato r resistance identification is only
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t un ed in at low speed oper ation wh ich is corres pond ing to low stator voltage. R.

ca n be conside red on ly as a funct ion of U q an d i f .

Simulation and R esule s

Th e simu lat ion results have been sho wn in Fig. 4.J.I - ·1.15. Th e simu la t ion pro gram

and mot or par am eter s are listed in Appen dix B- 1 and Appen di x 8 ·2, respecti vely.

T he controlled motor was work ing at low and variable speed. T he load was cha nged

fro m 0 to 5 Nm and 5 Nm to 2 Nm du ring the tests. Fig..1.l 4(a} p resents the

identified motor stator res istance in t he cond ition of variable speed and load. Fig.

4.14(h ) gives the mot or speed respon se. F ig. 4.15(a) indic a tes the motor to rque

induced by variable load. F ig. .j.15(b ) prese nts th e rot or flux cu rrenL. T he idcnt ilied

stator resistance R. is very accu rate whic h is very close to the ori ginal value of 2.1O.

It ca n be seen that t he ident ified st a tor resist ance is not affected by speed varia t ions

and changes in load .

4.6 Comparisons

As a relatively easy and inex pensive implement ation , the indir ect fie ld-or-iented

con trol has been used to achi eve ill high pe rform ance contro l of an Ae induct ion

motor in va.rious ap plica tio n fields . However , t his favo urab le sche me suffers from

rot or parameter variations with ris ing tem pe ratu res and flux n turation. Many

scheme s to overcome such problem have bee n tried ou t . Unfort unately, the efforts

to d ate have not prov ided satis facto ry resul ts.

Th e pr esent work applied to indirect fie ld-oriented cont rol place emphasis on

th e pa ram ete r ident ificat ion an d mo del refe rence ada ptive contro l. The pa eame -
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let identification is limited to the estimation of an expected variable. such oM the

rotor time constant. Any unknown factors will lead to a mis-cor rect ion in slip fre­

quency calculation. Model reference adaptive control application is restric ted due

to complex des igns, complex calculations and long convergence times. So far. a

wide acceptance of parameter adaptation control scheme bM not been found [6] [I}.

A standard version {or using parameter adaptive control has been suggested

by some researchers [241[61as described in this chapter. The proposed scheme in

this study has shown results very close to the standard version. In order to give a.

further proof of the proposed scheme , another simulation has be carried out using

Chan's scheme.

Chan[7] proposed an identificat ion method in which the rotor resistance can

be estlrnated in motor steady operation. In this simulation, the rotor resistance

variat ions with rising temperature stand Cor the worst case as defined in equation

(4.15).

Figs . 4.16 · 4.17 show the simulation results . The simulation program is listed

in Appendix-E and motor parameters are the same as in Appendix A-2.

It can be seen that in the tra nsient response of the rotor speed, cont rol perfor­

mance is affected by variations of rotor resistance even when C.C. Chan's parameter

identification scheme is incorporated as shown in Figs. 4.16 - 4.17.

Fig. 4.16(b) shows a wrong identification result of rotor resistance when the

contro l system is operating in transient state. The resulting non-linear control

charact eristics between torque current and motor torque are shown in Figs. 4.17(11.)

. ' .17(b) .

Compared with Chan's proposal, the new scheme proposed in th is thesis is
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much bette r in obta ining dyna mic identifica tion results iI3 shown in Fig. -i.13(h).

The steady identification result s are the same as Chan's. The proposal by Chan

is only suitab le in the motor steady operation for the adaptive control of rotor

resist ance varia tions, but not roto r induct ance. The proposal here is not only

suit able to correc t the roto r time consta nt in both dynamic and steady stale, but

is also suit ab le to correct the rotor time constant variat ions induced by un known

factors with the help of applied feedback control of flux orienta tio n.
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Chapter 5

Parallel Processing and
Transputers

5.1 Introduction

T he range of processor hard ware to handle complex reel-time problems of which

the field-orien ted control of AC motors is an exam ple, can be categorized into t he

following groups 1161115J:

I. Single conventional rnicroproussor: In its baseline form , this constitutes the

memo ry 1oI1d Arithmetic unit of the contro l system. A high inte rface chip

count , together with an external coprocessor or analogue processing, is usua lly

necessary if fast real-tim e process ing is requi red .

2. Microconlro/ler. Cont rol-orien ted processor in which commo n int erlace ce rn-

ponents (A/D, timer , interru pt controllen and pulsewidth-rnoduleted ou t­

puts) a re carried onboard chip, so redu cing off-processor chip count .

3. ASICs (opplictd ion specific integrtltt d circlJil,,) : An extension of micrc con­

tro ller which minimizes off-processor chi p count a.nd onch ip silicon for a spe ­

cific applicatio n.

103



10·\

4. Digital signal processor: A high-speed development of (I), ut ilizing high clock

rates and specific onchip architectu re for fast multiply-shirt. a.ddoperations.

5. Concurr ent or Paral/d processing architecture,,: Eithe r a number of convcn­

tional processors or Transputers are used in an effort to obtain increased speed

and/ or flexibility of control processing.

However, as the requirements of high dynamic control, flexible architecture, self­

tuning, fault tolerance and user interface in high performance AC motor control

increase , an ASIC, microcontroller or signal processor based system is not suitable.

Parallel processing is a plausible alte rnative to meet these requirements .

5. 2 Fundmenta l P r inciples of P arall el Process­
ing [40J

Most compute r applications , such as adaptive cont rol, speech recognition and neu­

ral networks, are explicit models of systems in the real world. Any system that

can be viewed as a collect ion of interconnected parts or events is said to possess

Virt ually, all known systems have some degree of concurrence because the mo­

tion in the world, by its very natu re, is immensely parallel.

Events occur in both time and space. Usually mult iple events within a system

occur at the same time . Rarely do they happen indiv idually it! nice sequential

order. Therefore, the most workable approach for accurately modelling reel-world

systems is parallel processing.

Para llel computers achieve their speed by dividing up the ccmpoaite par ts of a.

problem and working on them simulta neously as they occur.
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Figure 5.1: Distributed and shared resource systems [401

Conventional processors, both RiSe (Reduced Instruction Set Computer ) and

else (Complex Instruction Set Computer) , are not parallel machines and coo­

sequently are not equipped to exploit the parallel nature of many applications.

Instead, they are sequential architectures, one task must be completed before the

next can begin. This means that the parh of a problem are handled one at a time,

even i( they actually occur together and are interrelated. When parallel systems

are modelled with sequential computer s, the impac t of real-time interactions be-

tween events is lost. Artificial constraints and assumptions must be imposed to

obtain approximation" . The magnitude of thi s comput ing limitation increases as

applications grow in size and complexity.

Parallel processing can be divided into two basic architectures: Shared Resource

and DistributedResourceSystems, as shown in Fig. .5.1.Shared Resource Systems

execute the components of a problem on conventional CPUs. They are connected
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by a common bus (a channel over which data a nd programs can be moved) to

shared memory. Concurrence is achieved by time sharing the memory. Sequenti al

processors used in Shared Resource Syste m have a Von Neuma nn architectu re.

Altnough processor performa nce has increased dramatica lly with improvements ill

circuit technologies over the last thirty years, th e underl ying design of all CISC

and RISe devices has remained Von Neumann. [t is the basis for virtually all of

today's comput er designs and software programs, a single inst ruct ion st ream being

sequentiall y decoded by one processing engine.

Conversely, a Distribute d Resource System ga ins speed by part itioning the par­

allel parts of a problem among hardware nodes. Each node runs its own program

and includes a. CPU with local memory and fecilines t hat support concurrence.

Inherent drawbacks oCVon Neumann machines severely const rain t he parallel pro­

cessing pe rformanc e of Shared Resource Systems. Each machine operates sequen­

tia lly by fetchin g an instruct ion from memory, rea ding an operand, execut ing the

inst ructi on, and storing the result . Delays first occur because of demand s placed on

system memory - a processor can only access th is shared memory when no ot her

processor is accessing it .

The performance improvement of Shared Resou rce Systems may stop at just

th ree or four processors because memory access times begin to limit the speed at

which a program can execut e. It is only possible to speed up a Shared Resource

System by using expa nsion memory t hat is very much faster tha n the CPUs . A

Shared Resource System might attempt to overcome its memory access limit ation

by giving some dedica ted memory to ead:. processor, in addition to global mem­

ory. This st rategy is not a permanent solut ion bec ause the inte rconnectio n data
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bus quickly becomes a rat.J bottleneck. Conventiona.Imicroprocessors, in order to

communicate with each other. send out messages on a common interlace bus. This

bus has a finite bandwidth, which means that only a fixed number or tr amactions

can lake place neD. second. When one CPU is sending a message. u bitration is

required and the other CPUs are added, the communications bus becomes satu­

rated by simultaneous requests. Contention fer the bus and increased capacitance

degrade performance.

Shared Resource System may atte mpt to overcome band width problems by

adding buses. A du ster or processors, each with local memory, could share some

clu.3 ter memory via.one common bus. More buses could be used to inte rconnect

clusters, perhaps to shared memory again.

The major problems or Van Neumann based architectures , communicating via

a common resource, a bus or shared memory. have the rollowing limitations (15J

1. A shared resource becomes a bottleneck limiting system expansion.

2. Expansion of tbe sy.t em is difficult due to complexity.

3. Bus arbitrat ion logic is necessary, which increases complexity, cost ead chip

count.

4. Mult iprccesecr bus layout suffers from high track densities . capacitance and

cost problems.

5. Software development is cumbersome and it i. left to the programmer to

establish the parallelism using languages inherently designed for sequential

processors and progriUJls.
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5.3 Transputers T800 [39J

The Transputer suffersfrom none of the disadvantages listed in the prevlourssubsec­

tion. It is a. parallel microprocessor, generally categorized as a Multiple Instruction

Multiple Data (MIMD), with four standard serial communication links. Trans­

puters do not share a common bus, but instead exchange messages through their

own high-speed serial links. Ea.chlink is a fast, asynchronous, full-duplex channel

used to p,rovide pairwise connection of Transpute r nodes. These connections can

be configured in a variety of topologies such as rings, arrays, and pipelines.

The bandwidth of a Transputer system rises linearly with the number of t rans­

puters added. Each of the four bidirectional link engines on the IMS T800 can

t ransfer serial data to and from the transputer at a selected rate or 5, 10, or 20

:"'[egabits/second. The total bandwidth of just one IMS TaOO is 4 x 2.3 or 9.2

MBytes/ second of real data. This dat a tbroughput is equivalent to 8-27 Ethernets.

Another key point about the links is that ongoing data communication between

transputer nodes requires zero processor overhead. Each link has its own DMA con­

t roller so it can operate autonomously, in parallel with the other three links, CPU

and FPU. This enables communication to take place simultaneously with compu­

tation. Transputers can be easily added as building blocks to transputer networks

because their modularity and synchronized point-to-point communication create a

unified system st ructure. This flexibilityenables transputers to large multiprocess­

ing networks. Some systems today use over 1000 Transputers .

The INMOS T800 t ransputer is a 32 bit CMOS microcomputer with a 64 bit

floating point unit and graphics support , as shown in Fig. 5.2. It ha.s 4 Kbytes

on-chip RAM for high speed processing, a configurable memory interface and four



Figure5.2: INMOS TSOO architecture {ag]
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standard INMOS communication links. The instr uction set achieves efficient imple­

ment ation of high levellacguegee net work. Procedure call1f, p rOCC5 S swit ching and

typ ica l int errup t latency are sub-microsecond ope ratio ns. The processor speed of

a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed

for the part. A device running at 30 MHz achieves an instr uction throughput or;10

).UPS peak and 15 MIPS susta ined. The INMOS T800 provides high perfonnancc

ari thmetic and float ing point operations. Th e 64 bit floating poin t unit provides

single and double length operation to t he ANSI· IEEE 754· 1985 stand ard for floal­

ing point ar ith metic. It is abl e to per form Heating point operat ions concurrcnlly

with the processor, sust aining a rate of 2.2 MFLOPs at a processor speed of 20

MHz:and 3.3 MFLOPs at 30 :-'lHz, High perform ance graphics support is provided

by microcoded block move instructions which operate at t he speed of memory. The

two-dimensional block move inst ruct ions provide for contiguous block moves as well

as block copying of either non-zero byt es of dat a only or zero bytes only. Block

move instruct ions can he used to provide graph ics operatio ns such B.9 text manip­

ulation, windowing, panning, scrolling and screen updat ing. Cyclic redundan cy

checking (CRC) instructions are available for use on arbitrary length serial dat a

st reams, to provide error detection where dat a integrity is crit ical. The INMOS

T800 can directl y access a linear address space of 4 Cbytes. The 32 bit wide memo

ory interface uses multiplexed data and address lines and provides a da ta rate of

up to 4 bytes every 100 nanoseconds (40 Mbytes/ sec) under a 30 MHz clock. A

configurable memory contr oller provides all t iming, cont rol and DRAM refresh sig­

nals for & wide variety of mixed memory systems. System service include processor

reset and bootst ra p cont rol, together with facilit ies for error analysis. Error signals
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may be d_ity-chained in mu lt i-trans puter systems .

The stiUldard INMOS commun icat ion links allow networks of transputer family

products to be constructed by direct point to point connection s with no exte rnal

logic. The INMOS T800 links support the sta ndud operati ng speed of 10 Mbit

s/see, but also operate at 5 or 2Q Mbits/s et . Each link un transfer da t.i.bidirec­

tionally at up to 2.35 Mbytes! sec.

In recen t yeau, Tn.n sputer· based teal- time proce"in~ controller ha.a bee n ap-

plied in many control appli cat ion fields [14J jl 5] {16J [231(32) [331.T he result s show

that the Transpute r is a high speed processor which can be used for complex con­

trol in rea l-time requ irement . In next chapter, Tremputer-based parall el proce ssing

cont roller has been proposed for the requirement. or high.p er{orma.o.ce control or

AC induction motor d rives and fault toleran ce iaauea. The effectiveness or par allel

processing on the AC inductio n motor control i. examined .

It i, .uggested t hat the cost comparison between u. ing conventio nal miereeem ­

puten an d Transp ute r, be performed .uter experiment ,



Chapter 6

Parallel Processing Controller for
the Indirect Field-Oriented
Control of AC Induction Motor

6.1 In t roduction

In Chapters 3 and 4, the design of field-oriented cont rol for AC ind uction motor

and the solution to the moto r parame ter sensi tivity in field-oriented cont rol due to

temperature rising or B.ux saturation have been studied.

In this chapter, to achieve fast processing for field-oriented cont rol, a parallel

processing contro ller using one and four T800 Transpu teu has heen proposed. Sim-

ulat ion has been carried out to investigate the effectiveness of parallel processing

tn implement the field-orie nted contro l. Estima tion times of cont rol process in one

Transpu ter and four Trans puters are investigated. T he effects of sampli ng time on

cont rol system performan ce are studied. Furthermore, rome fault to lerance issues

for Transpute r failures or link failures are propoeed and test ed.

As a.digita l control of high performance AC inductio n mot or using field-oriented

control stra tegy requires controllers with sigBificantl y high comput ation al power
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a.nd through put, many AC induct ion motor cont rol 'Y'lems La date are controlled

by multi-processors. Custom ASIC" microcontrollen end signal processors have

also been used effectively in embedded 'ystem,. Some cont rol ' y, tems. LUch as

servo drives, oCteDrequire add ition&!features of teU·tu ning, fault tolerance, ce-llae

diagnOll ties protect ion, data capturing, and ueer interface (16). These additional

requirements &te difficult \0 be met by ASIC" microcontro ller or signal processor

based system s due to their inftexible har dware architectures, small mem ory ' pace

and inconvenient soft w &rC development tools. Existing multip roeeesor solutions

based upon Von Neuman architect ure, communicat ing via. a common resource, a.

bus or , hared memory. beve many disadvaDtages L'l discussed in Chapte r 5. The

Transputer does not have any of these di,a.dvantages And is proved to be the most

suitable faat protestor in real-t ime digit al cont rol (lSJlI61{141l33J.

To st udy the effectiveneu of parallel proc.essinS 0 0 the field-oriented control sy",

terns. the parallel processioS environment for real-time simulations is pro posed. In

this cese, real-time response of the motor control system from the paralle l process­

ins simulation has edveaced t he digit al control syltem development, performance

studies, ch«lcout and troublesboo tioS.

The approach that hal been proposed is to connect aeveral processon in a paral­

lel &f1'.IlrJI.gement and to provide a means or commun ication between the peoceeecra.

The software i8 t hen par tit ioned over the several processors formin g th e paral­

lel pr0ces8ing control. However, par titioning neceesitates a careful and thorough

consideration in th e dy namic coupling relations within th e cont rol algori thms to

dete rmine t he opt imal breakdown of the sy,tem Iunctione, In some case, inherent

parallelism in the syalem may simplify the p.vtit ioning. The issue of how many
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processors to use then can he addressed. For efficientoperation, the portions of the

simulation that are allocated to the individual processors should use approximately

the same amount of compute time per procesecr, This willensure correct updat ing

of system variables and avoid wasted time in the calculation cycle. The updating of

variables withiu the partit ioned simulat ion will require not only careful t iming con'

sideration but also efficient da ta tran sfer between processcra to avoid inadvertent

pheae shift .

6.2 T wo Transputer Based Simulation of Field­
Oriented Control System

To study the effectiveness of parallel processing on field-oriented control of AC

motor, it is helpful to check the control algoritbmexecu tion times in single processor

for comparison with multip rocessors.

In this section, two Transp uter are employed to simulate the motor control

system. one Transputer functions a.sthe controller; another funct ions es the motor

by executing ill dynamic equations. Based on the experiment , various execution

times of control algorithms, such a.s the PI controller, slip frequency calculation

and the coordinate transforma tion, are examined in one Transputer , Ccmperisona

in control algorithm execution times between conventional single processor and

single Transpute r are presented . The results show that the Transputer is a higher

processing speed controller.



115

6.2 .1 Hardware Imp lement at ion

In the simulation set up, an I B ~[· PC microcomputer (386 model) and two TSOO

Transputers are used to Corm the eimulaticn system. T he IBM-P C microcomputer

is connected with the two Transputers, and funct ions 311 a compiler.

[0 the simulation, the executable files compiled and linked by the IBM-PC

microcompute r were loaded down into each Transputer. Ttanapute r with loaded

executable files worked individually un less communications were required bet ween

Trans puters. Th e Transputer commun ication works such that when 6. p rocessor

perform s input or output to a communication channel, t he processor is blocked

until t he corresponding processor performs its respective output or input. Chan­

nels can be used as a synchronization mechanism in additio n to a communication

mechanism.

Fig . 6.1 shows the hardware struct ure (or the simulation oCcontrol system. In

Transp uter 1, the motor speed w, was samplt d (rom Transputer 2, which represents

the AC induct ion moto r, through channell. The motor Q' - fJ current I .. and f(J

Me sampltd Cram Transputer 2 through channel 2. Transputer 2 works like a real

motor , if the dy namics computa tion time is less than the required current sampli ng

time. In this way, at each dynamics campu tatio n loop, Transputer 2 calculates

all the motor sta te variables and sends them out to Trac eputer I fer closed-loop

control.

In Fig. 6.2. it shows that the twoparallel processors can simul ate the real-time

motor control system. Fig. 6.2(a) indica tes a real motor control system in which

the dyn amic processes of AC motor can be emula ted by a. Transpu ter as shown in

Fig. 6.2(b). Th e Trans puter computa ti on time (or motor dynami cs is obviously
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Figure 6.1: Parallel processing hardware coufigura rion fer rea l-time simulat ion of

AC motor contro l
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Figure 6.2: Transput er based real-t ime emulat ing of indirect field-orient ed cont rol
of AC induction motor. a) llel\J motor control. b) Real-time emulat ion of motor
cont rol
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longer than the real motor response time, but it is OlCuptable if it is equal to 16-20

times of the moto r stator time const ant (16).

6.2 .2 Soft ware D esign

The simulation software ftowchart is illustrated in Fig. 6.3 in which the programs

consist of three subrou tines: set -up rout ine , process control routine a nd motor dy·

namics com puta tion routi ne. In Transpute r I, the current I.. and I" are sa m pled

from Transputer 2, and t hen t he Ia and l a are transformed to I , an d f~ in d _ q

coordinate. According to the values of I, And l d' the current cont roller algorithms

as expressed in equa tion (6.1) <lore comput ed. The caleub ,tion result s of curren t

controller are th en traQsformed back to V.. and Yo in Q·tJ coordinate a.ccor ding

to equa tion (3.24). These two variebles axe then sent to the Transpu ter 2 a.ll the

required st.tor vollages. The PWM ca.lcu la.tion is not included here as it is be­

yond the scope of th is research topic. The control algorit hm program and motor

dynami cs progra.m are listed.in Appendix C l aad Appendix e-2, respectively. The

parame ters of motor ue the MIne &J in Appendix A·2.

Set -Up Routi ne

This routine ena.bles Tr&nsputefS to get comm.md. from t he IBM·PC micro com­

put er and to set up the motor speed reference, computing step size, load se tt ing

time, adaptive contr ol tuning time and the starti ng time for rotor resist ance change.

All the contro l syste m , tate variables are reset to the initial values.
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Figure 6.3: Softwue structure lor simulation of AC motor control system
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Speed Con t r oller and Slip Fr equency Calculation Routi ne

The purpose of th is rout ine is to calculate t he speed PI control algorith m . current

limitation and slip frequency. The difference equat ion of the PI controller in the

increment approxi mation of equ ation (3.29) can be expressed as:

l ,(k) = K, ... (e(k) - elk -1)) + K, ... K . _e(k) + It (k - I) , (6. ll

where:

1. K, :::: f. ;

2. To is the sam pling time;

3. r is the int egration time constant .

The PI control algorit hm is computed in Transputer I when rotor speed w. is

sampled . The output of PI cont roller is compar ed with the current limitat ion value

OI.IId goes through the limi talion function which produces t he final PI cont roller

out pu t. Following the cal cula tion of i" the calcula tions of sl ip bequency a.nd a.ngle

are handled. The difference equa.tions of .li p freq uency and angle equation are

writt en u :
1, (0 ) . R,

w.(O) = L.o/, (k) (6.2)

S(k) =(w,,( k) + w. (k) + w,,(k - 1) + w,(O- 1)) . T, f2 + S,,(k - I). (6.3)

The calculat ed slip frequen cy i. added to the rotor frequency as the required motor

stet or frequency for field-oriented control. T he c..lculeted slip angle is adde d to the

rotor a.ngle for field orient ation coordinate tra.nafor mat ion.
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Curre nt PI Co ntrolle r an d Coordinate Transfor m at ion Calcu lat ion ROll-

t ine

The difference equations of flux current controller and torque current controller

from equation (3.28) are written as:

U,,(k ) .:= K~ . (e( k) - e(k - 1)) +K,J'"K1 • e(k) +U..(k - 1) (6.4)

U,I') = K,' ('(' ) - ' I' -1)) +K,' K,. '( k) +U,(' - 1), (6.5)

where:

3. To is the sampling time .

T he coord inate t ransformation for changing I.. and /4 to 1.1 and I, is expressed in

equat ion (3.27). The coord inate transformation for changing U,J and U. to Uo and

Uo is expressed in equation (3.24).

Flux Orientation Feedback Contro l

The actual and reference motor torques are calculated according to the motor ter­

minal variables . such as the stator voltages, stator current and motor rotor speed.

The torque error results from the difference between actual and reference torque is

fed back to the field orien tation controller that adjus ts the slip frequency.
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M otor D y n amics Calcu lation

The difference equa.tiotlJ for motor dyu miu equ~tiont (3.16) _(3.2J ) arc ex pr~

in software prol!lra.m (lee A ppendix C·2). To obtain .. high ..ccuracy of motor

dyn amics calculation, the pr edictor- corrector ~ll:ori thm it used ror solvinl:the lint

order differential equ ations . The simulat ion shows that t he compu tini!l ste p size

de termines the accu racy of motor dynamics calcula tion. With a proper choice in

computing atgorithm~ , the computing step size cou ld be in creased without losing

com putat ion accuracy. This helps the eirnulation not to take so much CPU t ime.

6.2 .3 E x ecution T imes

To measure di fferent calcula tion times for different co ntrol a lgorithm s and channel

communications, t he TSOO Tn. nsputer interna l hil!lh p rivilege t imerwit h IllSresole-

tion it used. The execution ti mesare measured byus in&Trans puter t imemeeauring

inst ructions. The meas ured executio n times ar e listed in table 6.1. In order to make

compariso n with conventional 16 or 32 bit mi crocomputers. the lypical cont rol Ii­

I!l0rit hm execution time in 16 0r 32 bit microcomputenare gi~n. iQ Table 6.21221.

It ill obvious from compar ing table 6.1 and ta ble 6.2 that t he preeeseiag spee d by

Tra.nsputer is mucb Casr.tr than that of convent ional microcomput~.

If the field-oriented cont ro l syste m ieecrpcretee Dux crie nteticn feedback con­

trol, the overall control system execu tion tim e it found to be 260pt. It ca.n be lIetn

tha.t, even though the Tra.nspuler h a.1very fat t processin.g speed, one Transput er

cont roller is still not fut eno ugh to meet th e requirement in high dyn amic serve

~ontrol system in wh ich 100 JlI current samplini!l time i. needed (16).



'l'ab~. S!Dql e t'r.n.put.~ Execu tion T i mu
(Time I n Mic rosecond')

Al.qor ithm Ezacut ioft Tim.

A44 i tion 0.35

Substraction 0.35

Multiplication 1

Dl'115lol1 1.65

On_ Li n k COIlUllUll.l atioll ...
Coo r dina t e Tra ftll fortll.a tioll ' 0'

'l'rianq le FUnc tioD COlllputinq ••
8p. a d Controller 15 .5

CUrr a nt. Con t r ol l e r 9.'
ria14-orbllh d. Cont r ol 161.5

ridd.-orle n t a" Con tro l wi tb
,ia l d orie ntaUon r.adback 2 3.
Contro l

Table 6. 1: Execution t imes in single Tr a.nsputer
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6 .3 Multi-Transputer Based Simulation of F ield­
Oriented C ontrol System

One Transputer controller is not suitable in servicing very fast dynami c servocon trol

systems. Owing to their speed of computi ng and flexibilit y {or real- time digital

control, parallel processing systems have made imp lementation of complex con trol

a.lgorithms feasible for critical time requirement. T he fiLSt processi ng speed and

hardware flexibility provided by mu lti-tran sputer also make it possib le for system

fau lt tolerance.

6 .3 .1 Hardware Implementation

To simula te the field-oriented cont rol with incorporat ion of faul t toleran ce in a par-

aUel processing environment, five Transputers named Transp uter 1, Transpu ter 2,

Transpute r 3, Tra.nsputer 4 and Transpu ter 5 have been employed. This para llel

processing hardware architecture is shown in Fig. 6.4. Eac h Transputer has four

communication links named link I , link 2, link 3 and link 4. Each link is a bidirec­

tion transmission line with 20Mlnt j "ec. The IBM·PC (model 386) mic rocomputer

compi les and link, a\l C-coded pa ralle l programs and loads t hem down into each

Transputer for concurrent processing . Results are reported back to the IBM-PC

m icrocomputer from each T ran,put er for d isplay or storage.

Transputer 1, connected to Transpu ter 2, Transpute r 4, T ransputer 5 and IBM·

PC microcompute r through Channel 0, Channel 1, Channel 4, Channel 5, respec-

fively u shown in Fig. 6.4, pet'forms two functions: (1) it wor ks a.s an interac tive

interfacewhich receivesany inform ati on from other Tran,puters and sends it t o the

IB M-PC m ia ocomp uter, or transfers any co mmand from IBM -PC m icrocomputer
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Figure 6.4: Five Transp ut er based parallel processing architecture for real-time
s imulation of AC mete r con trol
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to other Transputers; (2) it also incorpo rates system fault tolerance by a.cting a.sa.

redundant prOCe9S0 r which will make the paralle l process ing ar ch i tecture reconfig­

urable . This provides the possibility to improve the sys t em relia bility . T ransputer

2 is connected to Tran sputer 1, Transputer 3, Transpute r " and Transputer 5. It

hand les the motor speed controller, sli p calculation an d sine tri angle {unction of

slip angle calculation. The cal culated result! in Transputer 2 are sent to Trans­

pute r 3 fot comp uti ng the curr e nt PI control algori thm. Transpu ter 3 is connected

to Transputer 2, Trans puter 4 a.nd Transputer 5. The 6ux and torque cu rrent PI

contr ol algorit hms, samp led I", and Ill. and coord inate transform a t ion ar e handled

in Transputer 3. The control outp uts U.. and Upare sent to th e motor which is

represented by Transputer S. Tr ansput er 4 is connected to Tran sputer I , Trans­

pute r 3 and Transpute r S. It performs the flux orientat ion feedback cont rol. The

feedback control will adjust the slip frequencyso that the field-oriented cont rolcon­

dition as indicated in equation (3.1) is always sati sfiedeven when the mo tor rotor

resistanc e is changed with rising temperature or flux satu ration. The actua l and

referen ce torques are calculated in Transputer 4 at first. Any errore resulting from

comparing actual and reference torque will result in correcting the flux orientation

errors. Transputer 5 is connecte d to Tr ansputer 1, Transputer 2, Tra nspu ter 3 and

Transput er 4. It performs the dynamics calculation of the motor, as expressed in

equations (3.16)· (3.23). The calculated reaults of motor speed, 6.uxand torque

currents, stator currents and voltages are sent to other Transputers for control

purposes.
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6. 3.2 Parall el Processing Softwar e Design

Proper design of parallel processing software is important to achieve minimum

exec ution tirne, Based on the inherent parallelism in motor con trol , the control

algo rithm programs are assigned to Transput er 2, Tran sputer 3 and Tr ansputer .\

such that the total execution time expected is less t han 100 ps which can meet

ve ry fast dynamic servo con trol requirements. The designed parallel processing

program How-chart for real-time motor control simulat ion is illustrated in Fig. 6 .5.

The programs are coded in C an d operated in Transputers feat u ring 54-b it float ing

po int operations. The C codes for thes e program s are listed in Appendi ces D-L to

0-5. The parameters of motor are the same as in Appendix A-2 .

As shown in Fig. 6.5, the parallel processing programs consist of se t- up rout ine

and five parallel processing routines run in five Transputer s. Th ese five paralle l

pr ocessing programs are named as perallel-t , par&lIel-2. parallel-a, par allel-4 and

pa rallel-5. All sub-programs ar e concurrently executed in the co r responding Tra ns-

puters.

Set-Up Routine

The function of the set-up rou tine is to initialize each Transp uter. Comma.nds

from host compute r (IBM-PC) are passed to each individual Tra.nsp uter for set t ing

motor speed reference, lluxcurrent reference, timing for loading and field orientation

feedback control tuning. All the cont rol and motor st ate variables are initialized

at th is time. The comput ing step size and the starting time for roto r resistance

variation are also defined here .



Figure 6.5: Parallel processing program struc ture for simulat ion of AC motor con­
trol
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Paralle l-! Ro utine

T h.e main pur pose of this routine run in Transputer I is to work as an interactive

interface which passes host computer commands to other Transputers and receives

calculated results and status information from any of the other Transputers and

then sends them to hoot computer, Thle program is listed in Appendix D-l.

Pa ralle l_2 Rout ine

Tl ~ listing for this routine is givenin Appendix 0·2 . T his routi ne run in Transputer

2 performs the speed PI controller, torque current limitation and slip frequency

calculation. The sine triangle funct ion of slip angle is also included in this routine.

The calculated speed PI controller output, slip frequency and sine funct ion arc sent

to Transput er 3 through Channel 2 as shown in Fig. 6A .

Parallel-3 Ro uti ne

This routine run in Transpute r 3 handles the flux and torque current PI control.

In addition, it calculates coordinate transformations of Q.(J to d.q and d.g 10 o:.p

as well as t he cosine triangle function of slip angle as shown in equations (3.26)

and (3.27). The processing speed of this routine plays a critical role in determining

the overall control system sampling time. According to data dependency in the

field-oriented cont rol. this routine is carefully decomposed from system control 11.1 ·

gcrithms. It is expected that the Transputer 2 takes tasks as much as possible so

that the Transputer 3 works aa little as possible to achieve a fallt cont rol of stator

currents. In the simulation, it shows that the triangle funct ion takes most of the

processing time . The listing of this routine is given in Appendix D-3.
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Parallel-.. Routine

This routine run in Transp ute r 4 performs the flux orient ation feedback control. The

calculated control signal is sent to Transpu ter 3 {or correctin g th e slip frequ ency.

The listing of this routine is given in Appendix 0-4.

Par allel-S Routine

This program is run in Transp ute r 5. It simulates the moto r dyn amic behaviour .

For each computing loop. it sends out all the necessary motor state variables to

other Transputers for the control purposes. In each computing loop, Transputer .5

responds nearly a.9 fast all a real motor does. Thi s means t hat for each comput ing

loop in Transputer 5 the othe r Transputer should have alrea dy prepa red to sample

the mot or st ate variab les, such a.s the motor speed, stat or current and voltages.

Otherwise, the processing speed maybe not high enough to match such fast dynamic

motor contro l. The listing of the motor dynamic program is given in Appendix D·S.

6.3,3 Execution Tim es

Execution times are measured using the l lolS timer provided in each Transpute r

board. The execution time at Transputer 3 which performs the inner loop current

contro l gives the min imum bound for the sampli ng time. To explain the method­

ology of mult i-Transputer processing time measurement, Fig. 6.6 shows the task

dependent relations among processes on different Transputers in which the mini­

mum execution time can be easily calculated. PI , P2 and P3 represent different

control processes. In Transputer 2, PI is t he motor speed controller, slip frequency

calculation an d communication to motor. P2 is the sine funct ion computat ion and



Figure 6.6: Cont rol t~ _,k dependency in AC motor control
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( Ti Mi c r os econ ds )m. an

Processes T2 T J T.

P1 3 4 .5 1 7 2 7 .5

P ' 5 0 24 .S 3 7 .5 Exc:utioJl,

PJ 50 . 5 Tillles

To ta l 84 . 5 " OS

Table 6.3: Execution times in five transputers

communicat ions to Transputer 3. In Transputer 3, PI represents the current sam-

pling, the (l.p to d-q transformation, flux current and torque current controller .

P2 is the cosine function calcula tion. P3 is the coordinate transfo rmation of d'q

to (l.p for motor stato r voltages. In Transpute r 4, PI and P2 represent the flux

orienta tion feedback controller. In Fig. 6.6, The lines between processes indicate

the data. depende ncy. For examp le, The process P2 in Transputer 3 can not start

until the precess Pl in Transpute r 2 has been completed. The Table 6.3 illustrates

t he execut ion time! Coreach process; the minimum processing time Icr the indirect

field-oriented control is showo as 92ils. In order to compare to othe r multiprocessor

based parallel processing system, Table 6.4 presents the execution times in different

parallel processors. Compared with single Transpute r and other multiprocessors.

the proposed multi-Transpute r cont roller system offers the rastest processing speed

(92ilS) .



Cn lrollu SG !h u e Pmaelfr S~Ii·C
F1m.lh lJ AdlphliOi Time

Type Dm loptleDl COltrol
[lltl -8QUt

M. 125illll~,ulI.r CIO~U!OIlC N.
m71720 !8

1;:1~!~~:3: tee Cu=ben ome N. 2200

lou
ClmbersotJleIller-31m y" K. 100,

nUt
lt lllpgbn y" 2U1 N. 250
\T4MI[7}

rin
frlup.tu y" EUJ y" 92 or 83
moo I

Table 6.4: Execution times in multiprocessors(microseconds)
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6.4 Fa u lt To lerance

Another major advanta ge of parallel processing that can explicitly improve the

reliability for real-time control systems is the possibility of incoporating the fault

tolerance. The fault-tolerant control system bas the abili ty to continue performing

its tasks after the occurrence of faults. The most common technique used to achieve

fault tolerance is design redundancy, which is the addit ion of hardware, resources,

or t ime in excess of that needed for norma l system operat ion [37]. Hardware redun­

dancy requires two or more processors which offers a very high processing speed

but requires a high cost . Time redundancy needs no additional hardware processors

that are required in hardware redundancy, but it t akes ext ra time for fault detee­

lion, avoidance and isolation. Considering the advantages of both hardware and

time redundancy, a hybri d fault -tolerant architect ure using Transputers for field­

oriented control is proposed. The proposed architectu re is fully based on the parallel

processing controller as indicated in Fig. 6.4. [t takes advaniagee of Trans puter's

fast processing speed, which gives possibility for time redundancy, ILDd Bexible ar­

chitecture, which offers the ability for reconfiguring the communication links and

processors when faults occur. According to the Transputer' s high processing speed,

the execution t ime in one sampling is divided into two par ts: one is for control

algorithm computation; the other is for the purpose of fault tolerance.

Based on above concepts, the link failures and processor failures are studi ed in

the following subsections.



6.4 .1 Link Failure

~rost frequently, fa.ilures in a multi-Tr ansputer system can be att ributed to (ailures

in communicatio n links. For example, broken links. unreliab le connections belwl'Cn

Transputers and loosen pin contacts will result in a communication failure. For

overcoming these problems, Transput er instruction set s provide special link com­

municatio n inst ructions which use the time-out concept to improve communication

reliabi lity. Having examined Transpu ter-based parallel processors for field-orienteJ

control, it is clear that the Transputer 2 and Transpute r J play a very importa nt

role in achieving high performance real-time motor cont rol.

Fig. 6.7 shows the principle of reconfigurat ion of Transputer link! for rault

tolerance concerns where t he dotte d lines represent the reconfigured communication

channel pat h. The four communication links in each Tra nsputer make the dynamic

reconfigurat ion possible. The strate gy in the motor control system hi that the

system should survive an y link failure between Transputer 2 and Transpute r 3 35

well a.s the links to Tra nsputer 5 which represents the motor. As shown in Fig.

6.7(a), Channel 2 formed by link 1 of Transputer 2 and link 0 cf Transputer 3

will be taken over by Channel 9 formed by link 3 of Tran sput er 2 and link 3 or

Transp uter 3, if Channel 2 failed. The principle is that the link failure would result

ill communication lime-out cousing the Transputer to reconfigure its communication

through other channels. The failed Chan nelS will be taken over by Channel l and

Channel 8 as the dotted line shown in Fig. 6.1(b). Similarly, t he failed Channel

6 will be serviced by Channel 3 and Channel 7 as shown in Fig. 6.7(c). By

implement ing this scheme, any single link failure among t he Chann el 2, Chancel 5

and Channel 6 is isolated and recovered by other links.
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Figure 6,; : Heconlignrnbb- communication channels in Transputer network
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Another significant feature of this parallel architectu re is its multi-fault toler.

ance which allows Channel 2, Channel 5 and Channel 6 to fail at the same time.

This case is shown in Fig. 6.8 in which the Channe12, Channel 5 and Channel 6 are

replaced by Channel I , Channel 8, Channel 3, Channel 7 and Channel g, reapec­

lively, as shown in the dotted lines. Obviously, the communication rcccnflgurarion

in Transpute r is superior to tnat of bus-snared parallel processor architectur e. 111

the lat ter, the failure in the common snared bus will result in a lotal system com-

munication failure.

It is noted that , fOf the rest of communication link failures, the strategy is

to give up any communication among failed links instead of trying to reconfigure

existing channels. The failed links with Transputer 4 results in no correction (or

slip calculation when motor resistance changes due to temperature. The failed links

with Transputer 1 will shut down the communication between working Transputen

and IBM-PC microcomputer, but motor control is kept going by Transputer 2 and

Transputer 3.

Syst em Testing

The fault-tolerant cont roller for the indirect Held-oriented control of AC molar is

tested by disconnecting anyone of Channel 2, Channel 5 or Channel 6 during

the simulat ion. The results show that the communication reliability is improved

by dynamic channel reconfiguration. It should be noted that reliable communi­

cation instructions do take more time than general communication instructions.

U.'Iing the reliable communication inet ructicns, processing time in each Transputer

is increased. The increase, in execution t ime depend on how many times of th e
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f igure 6.$; Recovery of multi-communication channel failures
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Figure 6.9: Relia.ble comm unication t imes

relia ble communica.tion are needed in one sampling peri od . In Tran sputer '1'800.

one gen eral com municat ion ti me between two Tra nsput ers is 5.5IJs. One reliable

communica t ion time be twee n two Tr anspu ters take s about 10-1.5 IJs. The commu -

nication tim e out is chosen as 8~s which should be equal to or longer than one

genera l communication t im e. Th e following form ula gives th e calculation of one

relia ble communication ti me.

R eliabl e Oo m m. Time = G en . C omm. T ime + Time O u t .

Let us t ake the proc ess in Tr ans puter 3 as an exam ple to explai n how much ex­

t ra t imes is taken by reliab le com mun ica t ion . In ParaHeI-3 rou t ine, there ar e four

tim~ of Ch annel 6 commu nication, as shown in Appe ndix D-3. Fi g. 6.9 sho ws one

Channel 6 communication ealeul attcu. Fig . 6.9{a) ind icates the no rmal communi ­

cat ion case wit hout link failu re . The sqUlI.l'erepresents t he norm al communication

t ime. The diamond rep rese nts time-out com munication. Th e comm unica tio n lime
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Figure 6,10: Commu nica.tion time with auxiliary channel

of Channel 6 without r~.iIure is totally 15 ~I. Fig. 6.9(b) indicates the communi·

cation with Channe l 6 failure. The circle represents the ccmmu nicaticn t ime for

channel reconfiguration. So the communication time when ChttneL 6 is failed is

about 19ps. For four Chanoel 6 failure communiutions, the total commun ication

time for channel reconfiguration is 76 JJI. Fig. 6.10 show, one Channe12 commu­

nication time calculation . There are four Channel 2 communicatio ns in Paralle l-S.

For normal communication, the four Channel 2 communication' take 44 pl. For

Channel 2 failure, the 10t,,1reconfiguredchannel communication time is 54IJS which

is different from the result s shown in Fig. 6.9 because the auxiliary Channel 9 is

used. It is clear th at the improved communication reliability is a benefit, but the

processing speed slows down by channel reconfiguration and channel time out .



6.4 .2 Transputer Failure

To improve the reliability in presence ofa processor failure, t he proposed software is

illustrated in Fig. 6.11. Before control algorit hm programs start . the diagnosis pro­

grams in each Transputer (for fault "detection, voting, and isolation) are executed .

Methods to achieve fault tolerance in presence of different Transputer failures are

shown in Figures 6.12, 6.13, 6.14, 6.15, and 6.16.

The diagnosis results are reported to the Transputer which performs the task of

a voter; it determine! which processor is failed and marks the failed one and then

sends its decision to each working Transputer . The failed Transputer would not

get information from the voter and is isolated as the other Transputers reconfigure

their communicat ion channels according to voter's decision.

Fig. 6.12 shows the case when Transputer 2 is failed. TI , T2 and T3 execute

diagnosis programs and then send th eir results to the fourth Tra nsputer 'f 5, a voter.

In T5, the three inputs from TI, T2 and T3 are compared with each other. Ir there

is any difference (only a single fault is assumed), the failed one (Transputer 2) can

be allocated and isolated. The function of the failed Transputer will be taken over

by the voter, 'Ireeeputer 5. Fig. 6.12 alsoshowsthe reconfigured software programs

for the failure of Transputer 2. Anyone of th e Transputers is possible to be a voter

or a substi tute. The principle of fault tolerance illustrate d in Piguree 6.13, 6.14,

6.15 and 6.16 is similar to that of Fig. 6.12.

It is noted that , in order to improve the voter reliability, at leeat three voters are

available for detecting the same raulty processor, if time is allowed. For exam•.iJ, if

the T2 is assumed to be failed, the three possible volers, namely T5, T3, and TI,

can be applied. These three voters also can be compared with each other before
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Figure 6.16: Transputer 5 failure

passing a verdict on the fai led processor T2 . Fig. 6.17 shows such a st rategy.

6. 5 Effect s of Samplin g Ti me On Co nt ro l Sys­
t em Performance

In real-time digital control, sampling time is 11.performance factor. To evalua te the

samplin g effects on the performance of field-oriented control system, a simulation

based on t he parall el processing archi tecture with five Transputers, was carried out.

The motor dynami cs algorithm is performe d by Tr an sputer 5. In each processing

loop, Tran sputer 5 sends out the motor state variables, such as motor speed, stato r

currents and voltages. If the Transputer 3 is not fast enough to catch up with

the Transp uter 5 in every processing loop, ODe or two more sample values may be

lost. For example, if the processing time for one loop in Trec sputer 5 is lOO/Js,

losing t wo processing loops in Transputer 3 means that sa.mpling t ime becomes
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300p. To indicate the sam pling time effects, four sampling time s ( 100~~ . 150/1.'1.

200ps and ,\0011.'1) are selecte d for tes ting. The simulat ion results are shown in Fig.

6.18. In Fig. IS{a ), by using 100 ps sampling time. t he motor to rque is contro lled

instantaneously and the contr ol behaviour is satisfactory. ln Fig. 6.18{b) (150 11.'11.

the cont rolled torque current presents somewhat highe r overshoot compared with

Fig. 6.18(<\). ln Fig . 6.18(c). the controlled torque current overs!' ..:It \.'1 dramatically

increased due to a relati vely slow sampling time (200 Jls). This high torque current

overshoot may be not acceptable. In Fig. 6.18(d), the torque current is totally out

of control due to a very slow sampling (,\00 ~s ) .

The simulation for sampling time effects on control performance has indica ted

th at the stability of digital control system not only depends on the cont rol system

gain. but also depends on t he contro l system sampling time. To insure a sta ble

control system, the system gain has to be reduced if the sam pling time is not short

enough due to proce ssor speed. We know th at reduced control system gain can

result in a slow dynamic contro l response. Usually, t he current sampling time is

chosen be 11).20 t imes the st ator time consta nt to sat isfy a high dynamic response

[161. In or der to obtain a very fast system dynam ic control, high processing speed

processors are necessary so t hat a very short sampling time is achievable.
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Chapter 7

Conclusions

The objec tive o f achiev i nga hig h per{orman,e AC induct ion motor contecl ha.:l been

approache d t hrough the following three major orig inal con tribut ions:

I. In v6 tigation of the cont r ol characterin ics of AC induction moto r based o n

t he principle of indirect field-orient ed cont rol.

·1 De velopme nt of a. new pa r ameter adapta t io n cont ro l metho d .

3. Proposal of a par allel precessing controlle r for co m plex co n trol an d system

relia bility require m ents in the tim e critica l condit io n.

An ana lyt ical model for indirect field-ori ented ce ntre! o f AC ind uct ion motOfha.s

been deve loped . A series of dig ital compu ter !i m ulatioRs have bee n car r-ied 0111 t o

verify tbat using the field-o rient ed contro l the control pe r formance of AC inducti on

motor is similar to tha t of DC mo tor.

The necessa ry and ,ufficient conditio ns for ob ta ining a linear model o f indirec t

field-oriented control o f AC ind uction motor have been derived and ver ified by

simulat ion results, wbic.h can su ppor t th e design o r PI or PID co n t rollers for field ­

oriented control o r ACind uction motor by \Ising t be clu s ical Nyq u ist, Bc d e or roo t

' 50
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locus tech niques.

In ad dition, the definiti on of field-orien ted cont rol has been extended in a broad

sense to show thAt a high performance control can also be realized. Excellent

dynamic control response using such an extende d scheme hM been shown hy co r­

responding simulation lelah . In principle, the extende d field-orie nted control is

similar to the series-shunt excited DC motor control, but the resulting perfo rmanc e

is super ior to tha t of DC moto r, which CaD be seen from a series of simulation

results .

Next , a.new parameter adaptation scheme te rmed /lu.:r oritnt ation feedback con ­

trol for indirect field-oriented control of AC induction motor has been developed .

T he simulation results of the prop osed method show an excellen t performance of

parameter adaptive cont r ol when the sim ulated rotor resiataece is varied in a won t

case and under various op eration cond it ions, such as step chan ge in rotor spee d

o r in load. It is expected that incoepcrated wit h the proposed stater res lstanc e

dynamic identi fication, euch a sch eme can work well unde r zero o r crawli ng spee d

conditions. Furt hermore , the va riations of rotor parame ter can be identified dy­

namically 50 that the actual ro tor parame ters can be o btai ned. The simu lation

resul15of the proposed scheme of dynamic correction for rotor fiux orienta.tion and

dynamic identifica tion.for rotor paramet er s have dearly shown t h at the meth od is

sup erior to any other rec ently reported schemes [71(811241.

Last ly, a Transputer based pa.rallel processing contro ller bas been proposed for

indirect field-oriented con trol, an d a set o f experiment has been carried ou t for par ­

allel prcceseing simul ation purposes. R.e9ultsshow that wi th the parallel p rocessing

contro ller very complex con trol a lgorithms, such as the field-crieu ted cont rol and
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paramet er adllpta.t ioll con t r ol, can be handl ed in a very ehcr t time which is enough

t o sa~isfy a ras~ d ynamic co ntrol sys tem.

The potential of parallelism in a task dep ende nt AC drive control system has

bee n stud ied. Simulation result s sho w tha t if sam pling time is small enough, t he

m odi ficat ion of teak depe n dency in an AC drive control system migh t provide a

fur t her dec omposi tion of control a.lgorithms, so ~bat the pa rallel processing speed

could be increased again.

It is belie ved t hat the Transputer system has significant advantages, par~icu la.rly

if a flexib le archit ecture to meet multi fario us spec ifications is the m ain criterio n.

Fur thermore , teal -t imesimulations can be realized with a pa ra llel processing envi­

ronment, which le ads to a mo re practical design of a parallel pr ocessing controller .

The effec t of link failu res and pr ocessor failures have been studied . As a resu lt

of flexible a nd rec onfigurab le archi tecture. system reliability can be increased by

incorpora t ing fau lt tolerance techniques.

A simulation tes t shows t hat any link fa ilure can be recovered by dynamically

reccu figuring the lin k netwo r k.

A combination of hardware redundancy en d time redundanc y haa been pr oposed

to improve the pr oc essor reliability such th at the failed processor could be found

ou t and replaced by a voter _

F ilially, it is expected tha.t all the result, in thi, study will be furt her exam ined

by ex perimen tal test ing.



Chapter 8

Suggestions for Future Work

The present res earch contribut es simulati on result s related to indirect field -oriented

contro l of AC induct ion motors. Dbvio ualy, all the simulation results sho uld be

further verified by exper imenta.l work. Th e prop osed schemes also need more the­

oretica l analysis. The suggestions are outlined as follows:

1. It is stron gly recommended that the propos al of th e extend ed field-o riented

contro l he verified by ext e nsive ex periment al works. Theore tical an alysis of

t he effect iveness of lower sli p freque ncy on field-oriented con t rol is required.

2. T he truly linear control st ructure of the AC induct ion motor should be ex­

arn ined by experimental wo rk. To validate the linear design of the PI or pm

co nt roller for AC inductio n motor control, compariso ns shou ld be carried out

betw een t he para me ters of t he PI or PID contr oller from the linearized model

and the parame ters of the PI or P IO contr oller from an expe rimental model.

3. It is strongly recommended that th e proposed paramete r adaptation control ,

named ro tor flux orientation feedback control he verified by expe rimental

study. T he theoretical analysis of t he contro l stability is required.

153
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4. A £ull experi mental set-up fer t he indirect field-oriented cont rol of Ae indue­

t ion me te rs usinS puallel processing conrrcller . Transputer network • ~hOlll,1

be put togeth er to verify th e feasibili ty and df ecli\'encsso f parallel pfO(" cs Jill1;

control under a t ime critical ecndition .

Modem control techniques , such as the adaptive control, model ref ere nce

adaptive ece rrel , paramete r ident ification, sliding model cont rol an,1 optimal

control a re expected to be realized by such a parallel processing controller for

t he real-r ime control requirement,

In addit ion, the incorporat ion of f. ul t tolerance techniques could heat tcmpterl

in the parallel processing e nvironment to meet th e increased requirement of

sys tem reliab ility_ Analys is of the lncreesed controller reliabil ity ~ I I<JII IJ he

studied by using a Ma.rkov model.
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Appendix-A!

T hj~ pr ogram i!l designed for the limulation of indirect field -oriented co nt ro l
of AC indu ctio n mcroe.

#i ncl ude<.tdi o . h>

#i nclude <ut h . b>

maine )

FI LE -fp ;

int i, T3 , T4, T5 , T, Np- 2 , Kp-a, T6, T7;

fl oa.t Rs=O.49, Ls-O,03Ba, Lr -O .035 4, Lb- O.00 21, H- O. 0354 ,

;-0 .0 24 ,0-0 .00 11 , TR, 5i , o, ua, Rs O.45, n,pba.i ,

Rr , t , WtI, 1:9, T2 , TL, Nl , H2, Kd , Kq , Ki, Kl, K2,

Ka , Q, yl , y2, y9, y14 . y15, y 16 , y17, y18,y19, y20 , y21 ,

y22 , y~,y24,~S ,y26,~7, y~.y29 , y~,y31 , y32 ,y33 .

y39,y3( 50010], y4 (500 1e], y5(50010], y6 (50010] , y7[50010] ,

y8[50010], y l0[50010] , yll [50010] , y12 [500 10] , y13 [50010] ,

y34[50010], y35 [500 10] , y.36[5 001 0], UTl [50010] , 51[50010] ,

y37[50010] , y38 (5 0010], y40[50010] , UT[50010], TH(5 0010] ,

y41(50010], y42 [50010] , Ud(50010] , Uq [50010] , V[5001 0],

U[50010], X[50010] , T,, [50010] , ph[5 0010] , 5[5 0010] .

1a (500 10] . y [S00 10] ,e(50010] , p [5D010] j

print f("Enter input T ,T3,T4 ,T5, T6,T7\n") ;
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scanf("%d Y,d %d Y,d %d Y.d",.kT•.l:T3.lT4 •.l:TS•.l:T6,1:T7) ;

pr1 nt f ( "T- ;':d . T3-%d. T4-Y,d.TS-Y,dI T6-%d ,T7- %d\ n",T ,13 ,1 4 ,15 ,16, TI ) ;

pr i nt t( " Ent er i nput 12 , TL, Nl . li2\n ") ;

scant( ";':t Y,t 'I.t Y,t" , t.T2 , I:TL,.tNl. t N2);

pri nt f("12- U , TL-Xf , Nt ..%f, N2- U\n" ,T2,n,Nl,N2) ;

i =l; Kd"'0 .8; Kq=O. 6 ; Rr"O.4S; Ki>=O .00 3 ; Ka-O .Ol ; KI-0 . 0 1 ;

K2"0 . 01 ;

y I4 -0; 1 15- 0 ; 1 16- 0; y17-0 ; y24-0 ; y25-0 ; y26-0; y27 - 0 ; 128-0;

y29- 0; y30-0; y31 - 0 ; 132 -0 ; S(i ] -O ;S I( i] " O;e [i] - O;p(i] ..o;

y3 [ i ] -0; y4[i] "0; y5(1] -0; y6[1] "0 ; y7(1]"0 ; y8 (i]>=0; y10(i] "0 ;

y11 [i ] .O; yI 2[ i)-0 ; yI3[ i ]-0 ; y35 [ i) - 0 ; y36[O-0; y37[ 1] -0 ;

y38[i) =0 ; y40 [i)"0 ; y41[i] -0 ; y42 (O ,,0; UT [ i ] =O; TK[ i]>=O;

it (! ( f p- f ope n( " ud. d" , "vb "»)

{p r intf ( ltc ann o t open file\n ");

exit (I) ;

t =o ;

wh ile (t <-n

i f ( i >13)

TL"4;

else TL"O;
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i f (i>T6)

TL"2;

else TI....TL;

if (i>14 )

Rr,,0 ,08 "'(t-3)* (t -3 )+0 , 12!::j '" Rotor r es i s t anc 9 va ri a.t ions •

else Rr"Rr;

y l"Nlj y2:oN2j

it ( i>T7)

y2:o10 j

else y2-N2;

y3 (i] "yl-142[i- l ) .0 .5 85652;

y4[ i)"y2-y 40[ i - l )* 0 . 027922 ;

y5[i) "Xp* (y 4[0 -y4 Ir-r l ) +Xp. Kl *y4 (1)+y5[i -l) j

y6 [ i ) "Kd*( y3 [ i ]-y3 [1- 1] ) +Kd.Kl *y3 (i) +y6(i - 1] j

if (y5 [ i] >10)

y 5( i ] " 10 ;

else if (y5 [ i ) « - 10 »

y5(i)= ( -1 0);

else y5 [ i) "'Kp. (y 4 ( i]-y4 (i~ 1]) +Kp*Ki *y4 [ i) +15(i- I] ;

y7 [i) "y5( i] - y41 (i - l] *0 , 5856 52 ;

y8[ i ]-Kq-(y7(i] -sr (1 - 1] ) +Kq*K2. y7 [ i ] +18 (1-1] ;

y9"yS [i]*R! (yl *Lr ) j

yl0 (1 ) -y 9+y40 [ i -l] j

y ( I ]" (y l 0[1 ]+ yl 0[i - l] ) . T2I2+y[i- 1] i



yl1[i)-y (i] ;

Ud[i) - ,.6[i}-(Ls -(H*H/Lr» *yl0 [ O *y41 [i - I)/30 ; * Feed· ( Or IlU d

Uq[il-y8 [ i ] +LI *)'10[i] *)'42 [ i - 1]/30 j c ontroll e r •

)'12[ i}*(Ud [ i) *c os (y 11[i l ) - Uq [ i) *s in (y11[ il » *30 ;

y13(1) - (Ud tu*1in (y11 [i) ) +Uq [ i) *COI (y1 1[1] » *30 :

ylS*y l'2 [i)-Rs*( Lr *y14- K*y15) *Q:

y1S1 *(-1) *Rr* (LlI*y15-H*y I4) *Q-y40 [ i - I] *y17 ;

y20*y 13 ( il - R.I* ( Lr *yI 6- H*yI 7) *Q;

; 1*(-I) *Rr* (Ls *yI7- H*y16) *Q+y40 [1- I) *)'15:

122-y I 4+yI 8*12;

y23- yI5+yI9 *12 ;

y24-1 16+)'20*T2;

y25-y 17+121*12;

y26-,. 12[i) - Its* ( Lr *y22- H*y23 ) *0 ;

y27*( - I ) *Rr* (u*y23-H* ,.22) *Q- y40 ( i - I) *),25 ;

y2S- ,.13 [i] - Its* (L r *y24 - H*y25 ) *0 ;

y29*( - I ) *Rr* (Ls *y25- H*y24) *Q+y40 [ i - 1] *y23 ;

y30-114+12* ()'18+y26) /2 ;

131-,. 15+12* (yI 9+y27)/2;

y32*y16+11 * (y20 +y28) /2 ;

133 - y17+r:z*(y21+129) / 2;

yI 4- y30 ; ),15- y31 ; y I 6-y32 ; y I7 - y33 ;

y34 rn- (Lr *y30- H*y31) *0 ;

y35 (1) - (Ls *y31- H*y30) *0 ;
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y36 [ i J,,(Lr *y32- 11*y33) . Qj

y37[i]-n ,s*y33-Il*y32) .Q;

n"sqrt (y31 .y31'ty~ .y33 ) ;

phai - n*sin( y33/n ):

y3B[i) .3.H. (y36 [ i] .y35 (i] ~y34(i] .y37 [i ] ) ;

y39- (y38[ i ] -TL) .llp ;

y40 m -T2.y39 / (T2*O+J)+J*y40(i - l] /(T2- 0+J ) j

y41 [ i J"y36 (i] *coll(y l 1[iJ) -y 34[i ) *s in( yl 1(iJ);

y42W·y34 (i ]*cos (y l1[i] )+y36(i] *siu(yl 1(i} ) ;

llT[ i ] -yI3[ i ] -y36[i] *Rsj

UTl [ i) -y 12(i) -y34(i) *Raj

S(i J- (UT (i ] "IJT(i - l]) . r 2/ 2+S(i -1] j

SI [iJ - (UTI ( i ) -un u - 1] ) "TI /2 t S1[ i ~ 1] j

TI!Ci) -3 *(Sl [ i] *y36{iJ -S ( i ] *y34[i ) j

if ( i <15) , Fl ux or i ent a.tion cont r ol ..

{TI\-O, Si -O,o - O,e[i- l ] -O ,p[ i - l] -() j}

els e {

TR-3 . H*6 .83..y5[i] /0 . 585652- TM[i] ;

Si -TR*4/ (3*Np*/i' (YoU[ I] . y41 [i] -y42 (il ' y42[i]» j

if (Si>O.1 5)

{Si - O,TS:}

eh e {Si- Si :}

a[i].O-o i p(i l - O.2-e {i] i \. Thl cont r oll er lIlay be PI
or PIO . /



1.1I

R=O.4 5+p (i) ;

fp riotf{f p ,"Xl %f %f Y.t Xf Y.t Xl Yot %t\o" , y40 ( i ] ,y38[i] ,y4 1[i] , y42 [ i ] ,
y34[i] , y36 (i] , y12 (i ] , y13[i] ,ph ai);

t -t+T2 :
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Appendix-Az [6]

T his parameten are used in t he s imulation or indi rect f1.eld·orie nted co nt,.o l
o r A C in d ud ion mot or .

r ll.ted po ve l:'
n ted sp ..d
nuber of po l es

••Rr
L.
Lr
H
total i ner'ti a J

I ' W
1710 rp.
4
0 .4 9 0ha
0 . 45 O~

0 .03 88 H
0 .0 354 H
0 ,0 354 H
0.0 24 Nil sInd
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Appendix-Bl

T his program is desi gne d rcet he sim ula tio n or indir ect field -o rie nted co ntr ol
or AC induction motor .

#i nclude<. t di o . h>
#i ncl ude<llath. h>
main ( )

{ FIL~ t< fP i

int i , T3, T4 , 15 , 1, Np-3 , Kp"8 , T6, T7;

f l oa t Rs"'2.0, Ls-O .235, Lr - 0 . 234 , Lb"O.0021 , li·O . ~24,

J-0.051, 0-0. 0011, R-2.1,D, RS,

Rr ,t , Ws .I s ,n, n. Nl ,N2,~,Kq ,Ki ,Kl,K2 ,

Ka, Q, yi , y2 , ys , y14, y15 , , 16 , , 17, , 18 , ,19, , 20, y21 ,

y~,y23 ,y24 ,y25 ,y26.yU,y~,y29,~,~1 ,~2, ~3,

,39 . ,3[50010] , y4(50010], ,5(50010], y6(50010], ,7 (500 10],

, 6 [500 10] , yl 0[500 10] , y11 (500 10] . y12[50010], y13 [50010 ] ,

y3 4 [50010] , y3S [50010] , y36 [500 10] , UT1[500 10] , 51 [50010] ,

,37[50010] , y38[50010] , y40 [50010]. UT[50010], TM[50010] ,

y4 1[500 10] , ,42[50010] , Ud(500 10] , Uq( 500 10] , V(5001 0],

U(5001 0), X(500 10], Ta[50,)10], ph [50010], 5 [500 10] ,

R2 (500 10] . R3[50010] , R4(50010] , la[50010] ;

printt( "Ente r i nput T ,13,T4 ,TS,T6,T7\n") i

sc anf( "X,d Y,d rod Xd Y.d Xd", a:T,a:T3 ,1:T4 ,.lT6, .tT6 ,.lT7) ;

pr intf (" T..X,d ,T3=1,d,T4..1,d ,T5"%d,T 6..l,d ,T7-l,d\n", T,T3 ,T4, 15,T6,17) i



17:1

printf ("Enter input T2 ,TL, Nl ,N2\n" ) j

sca.nf("y't Y.f U Xf",U2,UL,tNl,tN2 )j

printf("T2"Y.f, TL"'Xf, Nl "'Xf ,N2"Xf\n", T2 ,TL, Nl , N2) ;

i "l; Kd..3; Kq"6 j Rr"2 .1; Ki-O.0007j Ka.=O .Ol j Kl"O ,Ol j

K2"O.Ol;

Q"1 .0/(Ls-Lr- H-H) j

y14"0; y15"O j y16 "0 ; y17"Oj y24"O; y25"'Oj y26"O; y27"Oj y2f\'<'.l;

y29 "O; y30"O j y31 "0 ; y32-0j s[i] -O jS1[i]-O jR2[i]-2.1j

y3 [ i]"Oj y4[i]"O j yS[i]-O j y6 [ i] -O ; y7[i]"Oj y8[i] "Oj yl O[i] ..O;

yll[i)"Oj yl2 [i)-Oj y13 [ i)"O j y35[i)-Oj y36[i)-Oj y37[i ) "Oj

y38[O ..Oj y40[i]-O j y41[i)-Oj y4 2[i)-O; UT[i) -O j TH[il-O;

if ( !( f p- f op en ( "vd. d" , "__b") ))

(printf("cannot open file\n");

exit(1) j

t ..O;

__hile (t<"T)

if (i>T3)

else TL-O;

if ( i>T6)

TL" 2 ;



l i -l

, h i rt-n. .
i t (i>14)

Rr -(0 .47) -(t· J) -( t - J) +0 .1; - R.otor r is iitanci va-riations ­

eh e R.r sRr ;

) l-Hl ; 72sN2 ;

i t (i >T7)

72-1;

'ls ' y2-1I'2:

73{i ]-yl·742 (i- I] ;

74[I] - J 2-740 u-n- 0. 027922 ;

75 [ i]-Kp- (y4 {i] - y4 [ i - l ] ) +Kp-Ki-y4 [ i ] +1S[ i · l ] :

16 [I ]-Kd- (y3[i] - yJ [ i+ l ]) +Kd- Kl-yJ [i] +16[i+I] :

it ( y5 [1]>10)

y5[i] s10:

I lse if (, 5 [i] « - 10»

y5[1]-(·10);

else yS(i]-K p- (y4[i] -y4 [i+1l )+Kp- Ki -y4[i]+y S[i - I] ;

y7 [1 ] -y S[i] - y41(i - l ];

y8 ( i] - Kq- (y7 (i ] -y7 [i- l] ) +Kq- K2. y7 [ i ] +18 [ i - l ] ;

19-y5 ( U -R/(y ltLr):

yl0(1] -y9+y40(1 - 1] ;

yl l [1] - (y10 [1 ] +yl 0 (i· l] ) aT2/ 2+yll ( i · l ] ;

Ud[I ] ·,6 (i ] - (Ls-(H. H/ Lr ) ) - yl0 [ i J - y41U'-1] / 30 ; - F8. d-forllud

Uq(iJay8[i] +Ls. yl 0 ( i] _y42 (1 - 1] / 30 ; controller ...



y12[i] - (Ud tu.ces (y 11 [1]) - Uq[i] . s i n (yl 1[ ll » *30 ;

y13 [i] -(Ud [ i ] *s i n (y 11[i] ) +Uq[i ] *c c. ~ (y11 [ i ] » *30;

y18"y12[i] -Rs* (Lr . y14-M*y15).Q;

y 19'"( - 1) . Rr. (Ls .ylS-M*y I4) . Q- y40 [i -0.y17 ;

y20"y13[i] - Rs* (Lr.y16-M.yI7) *Q;

y2 1- ( -t)*Rr *(Ls *y17 -M*yI 6) *Q+y40[i -1] . y I5 ;

y22-y 14+y1S*T2 ;

y23 -y15+y19 *T2;

y24 -y I6 +y20 .T2 ;

y2S- y17+y21*T2;

y26 -y12 tu-R s- (Lr.y22-H*y23 ) - Q;

y27=(-t) -Rr- (Ls *y 23- H- y22 ) _Q_y40[i-0 . y25 ;

y28 -y13 [i] - Rs . (Lr *y24 - M*y2S) *Q;

y29- (-t) .R r . (Ls*y2 S- M.y 24) . Q+y40[i - 0-y23 ;

y30-y14+T2* (y18+y26)/2 ;

y31 "y1&+T2* (y I9 +/27) /2 j

y32-y16+T2 . (y20 +y28, /2 j

y33 -y17+T2* (y21 +y29) /2 j

y14- y30; y lS - y31 ; yI6 - y32 ; y17 ..y33 ;

y34 [U -(Lr. y30- H.y31) *1:1 j

y3S [ i] - (Ls* y31-H.y30) *1:1;

y36 [u-(Lr *y32 - H.y33) -1:1 j

y37 [i] - (Ls *y33 - H*y 32) - Qj

n-sqrt(y31*y3 1+y33 - y33) ;

Ii,;



138 [i] - 4 . S- H- {136 ( U *13S(i] -13 4 ( i] *y37 ( i] ) ;

,39- (,:;8(1] - TL) *Np ;

)'40(i] - n*, 39/ (T2*O+J )+J*, 40 Ci-1) / (n-D+J) ;

141 ( U - ,36 [i] *cos (y11 (i) - y34(i] *s i n (! 11 [ i ) ;

142 [i] *134 (i] *cos (y 11[i ] ) +y36 [i) - s i n eyl 1 (i]) ;

f p r i nU (f p, "Xf %f Xf Xf Xi Xi Xf Xf Xf Xf \n " .y 4o Ci) , y38 [ i ) , y41(i] .

y42(i) . 134 (i) .y3 6 (i] , y12 (i ) ,y 13(i) ,n ) i

t - t +T2j

rrs
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Appendix-HI [I3J

This parameterl are used in the limulation or indi rect field-o rient ed tontr ol
o r AC indutt ion mo to r.

ratad po"ar
DWlbar ot polliul
R,
R,
C,
C,
M
t otlll in artiaJ

5 KW
5
, 0""
2 . 10hll
0 . 235 H
0 . 234 H
0 . 224 H
0 .32 Kg III
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Appendix-Cl

T his pl·ogram run in Transputer 1 is designed ror the simulation or ind ire ct
fleld -or iented c:ontrol or AC ind ucti o n motor.

#include <stdio . b>
Iinclude<llatb .h >
' i ncl ude< conc . h>
#undef Tille
'undef Set Tillie
mai ne )

FILE *fp j

in t i - l,j - l , T3 , T4, T5, T, Np"'2 , T6 , T7, z ,

Pro cToH:.gh(void) , Kp-S, s tll r t , end;

a "0 .45 , u , Rr, TL, Nl, N2, y40'1, y4 0 , y l S, y4 1 , y42 . t ,

Ud , Uq, y l , y2 , y9 , ya, vl , v2 ,

y3 , yae , y4a . y4 . yse , y5, y7 , y7a , y8a, ya , yl 0a , yl0,

y42a, y , y4 1a, Kd , Kq, Ki, Kl , K2, T2 , yll, Ka, yse , y6 ,

Rs· 0 . 49 , Ls -0 .038S . Lr - 0 .0 354 , Lb"0 . 0021 , H"0.0354 ,

J-0.024, O"O.OOl1 ,Si .o ,ua , 'tIs, h,

Q, y14 . y15 , y16, y17, y19 , y20 . y21 ,y22,

yn,y24,y25,yU,y~. y2S,y29,~,~l,~2,~3,

y3 9, y12 , y13 , y34 , y35 , y36, y37 , y38 , TR,

Sh., ur ra, y34a , yaea , S . ss-c.urr , 51, UT, TH, V,

UTa-C . re, 'I , p, X;



I';'!)

5"0 : 5la"0 : e. O; p" O: y12 ..0 ; y13" 0 ; y36"0; y34-0 ; 5 1"0 ;

UT1; UTl a" O: UT"O: TH"O: Rr " 0 .45 ; t " Oj ya'-O;

y14- 0: yI5-0: y I 6"0 : y17" 0 : y24" 0 : y2S-0; y26" 0 ;

y27-0; 126-0: y29 "0: y30-0 ; y31" 0 ; y32"0 ; y40 a" 0;

y418o-0: y423." 0 ; y12"'0 ; y13 =0: y3S-0 ; y36"0; y37"0; t=O;

Rr " 0 .4S : Q" 1. 0! (Ls.Lr-H .H ) ; y34 a- 0: y36a- 0;

Kd"O . B; Kq" 0 .6; Ki- 0 .00 3; KazoO .Ol; KI - 0 . 01 ;

K2=0 .0 1: y4 1a"'0 : y42 8o-0 : y7 a-0; yBa- O; y4a"0:

y5a=0 : y3a=0; y6a"0: LrsO .0354; y l 0a" O: R"0.4S ;

pri nt t( "Ente r input T ,T3, T4, T5,T6 ,17\n") :

scant( "Y.d %d %d %d:4d Y,d", .tT,J:T3 , .tT4, J:TS,.tT6,.tT 7) ;

pr i nt! ("T- Y,d ,T3" Y, d ,T4..Y, d, TSsY,d ,T6zo Y.d ,17"'Y,d \ n" ,
T, T3, T4 , TS, T6, T7):

printf("Ent er i nput T2, TL, Nl ,N2\ n" ) ;

s cant("Xt Yo! Y.! %!", .tT2, t TL, t Nl, &N2) ;

printf( "T2"U , TL..Y,f, Nl "'U , N2- Y.f\n" , T2 , TL, Nl , N2) :

i f ( ! (tp"fo pen("ud. d" ," ",b"»)

( printf("clI.nnot ope n f ile\ n" ) ;

exit ( i) ;}

ChanOut(LINKICUT, (c har .) ar, s izeof (T» :

ChanCut(LI NK ICUT, (c har . ) tT2 ,si z eo f (T2» :

ChanCut(LI NKICUT, (c har . ) tT 3, aizeof (T3» :

ChanCut(LI NKI0UT, (c ha r .) tT4 , s i z eof(T4» :

ChanOut(LI NKI0UT, (cha r -) US , si z eo f (TS»;



Cha.nOut(LI NK I 011T , ( ch ar-) .iTS , . i uoi (n» :

Cha.nOut(LI NKI011T. (ch ar-) t TL•• iuoi (n.» :

Pr ocToHigh 0 :

vhih ( t <- T)

SetT ill e (o):

y2 -N2 : y l -Nl ;

it' ( i >T7)

y2-3 :

ehe , 2- N2:

i t (j<6)

{j - j +1: }

el .. {

Cha.nln (LIh1tlIH, ( ch ar-) t y40a , . i u ot ( y40lL» :

j - l: }

Cba.nln (LU:XI IN, (-:h ar_) . y34&,.izl ot (, 34&» ;

Cha.nl u (LlHKllN, ( char - ) t y3Sa •• izl ot (y 36a» :

y4-y2-,40 a-0 . 027922:

yS-Xp- (y4- y4a ) . Kp. Ki _y4. , 5a :

y4.-y 4:

i t (y 5>10)

15- 10 :

180



else if ( y5« - 10))

y5-( - 10) ;

e h e J 5- y5 ;

J 9- J 5. R/( ,.1 -Lr } i

,5..-y5 ;

yl0 - y9+y40 ..;

y- (y lO+yl 0..) - T2/2 +ya ;

yl0 a - yl0 ;

y11-y;

wl -s i n ( yl 1} i

v2- c os (yl 1}:

y41..- y36a_ ,,2·y34.._vl ;

y42a- y34a _v2+y36a _v l :

y3- yl - y42a- O. 585652 :

y6- Kd. (y3- y3.. ) +Kd-Kl -y 3+y 6a :

y3..- y3;

J 6a- ySi

, 7-,5-,. 41&-0 . 5856 52 ;

y8- Kq ill (y7- y7a.) +Kq- K2.y7 _y8..:

y7a -y7 ; y8a -y8 ;

start - Till.eO:

end - TiIllIlO;

z· end - s t art ;

lSI



y 12- (y6 *v2-y8*vO ·30;

y13-(y6*v1+y8*v2) *30 ;

ChanOut(LINK 10Ur. (ch ar *) ly12. s izeof (y12»;

Chit~Out(LINK10UT. (ch ar*) ll.y 13 . s izeof (y13 » ;

Ur- y13- y36a* Rs ;

Un-y12-y34a .Rs;

5"(UT +UTa)*T2/2 +5a ;

51-(Un +UTla) . T2/2 +S1a ;

TM-3 .(Sl*y36a-S*y34a) ;

Sa-S ilT'l'a-UT;UT1a-Un ;Sla-S l ;

i f (i<T5)

e l s e {

rn-3 *M*6 . 83 .ySa/0 . 5a5652- TM;

Si-TR *4! (3 *Np*H*(y41 a .y41a-y42 a*y42a» ;

i f (5i>0 . 75 )

{5i"0 .75 ;}

else {5i·Si; }

0-0 ,5 *a3io(S i);

R-Rr+p;

p rintf("diff time.Xd\n" , z );

Cha.nl n( Ll:NK1IN. ( cha r *) I:Rr -,s izeot' (Rr» ;

182



IS3

tpriutt (tp , "tt tt t f tf tf\u\r " ,y40a .,4h. y42i11., y34a , Rr ) ;

t-t +12 ;
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Appendix-C2

T his p rogram tun in Tr an sputer 2 ill deaigned for the sim ula.ti on or ind irect
fie ld-orient ed control of AC induction motor.

ltinclude<ll tdio .h>
#i nc l ude<lIat h .h >
#i nclude<CQnc .h >
#undef Tilll ll

'und.ef SetThi .e
mai ne )

int i - l, j '"l ,Np- 2 . T, 16,13 ,14 ,15 j

float Rs" O. 49 , [.9"'0 .0 388 , Lr"' O, 0354 , L'o- 0 . 0021 , H- O. 0354 .

J.O.0 24 , 0"0 .0 011 , TR, Si , 0 , ua , R- O.45 , n , 'ls, I s ,

12, w2, Q, y14 . y15. y16 , 1 17, y18 . y19 , y20, y21.

y23 ,y 24, 125 ,12 6, y27 , y28, y29, y30 , y31 , y32, y33 ,

y39, 111 , y12 , 113, y34, y35 , y3 6, y37 . 13B, y40 , t ,

140a, y41 , y'11a, y42 , y42&. Rr , y34a , y36a , TL, y22 ;

y14- 0: y15· 0; y16- 0 j yI 7=0; y24-0 ; y25;o0; y26.0 :

y27- 0 ; y28-0 : y29- 0 ; y30-0 ; y31 - 0j y32-0: y40a- Oj

y4h.- Oj y42a-0 : 112-0: y13-0 j y35-0 j y36- 0 j y37- 0 :

t-O: Rr-O .45 : Q- l. 0! (Ls.Lr- H*H): y34a- O; y36aOlO:

Chanln(LI NKO IN, (char .) .n , sizQof( T» :

Chan l n( LI UKOIN, (char. ) .tT2 ,sizeof (T2»;

Chan l n (LI NKOIN, (char .) A:T3,sizeof (T3» :



ChanIn(LINKOIN, (ch ar -) lT4 , s izeof (T4»;

ChanIn (LI NKOI N• (ch ar - ) l TS, si z eof(TS» ;

ChanIn( LINKOIN, ( cha r _) lT 6 . s i z eof (T6» ;

Cha..1In(LINKOI N, (char -) lT L, s i z aof (TL» ;

wllil e (t<"'T)

SetTillle(O)j

i f (j <6)

{jwj+1 ;}

els e (

ChanOut(LINKOOUT, (char «) l y40a , sizeof(y40a»;

j-1; }

ChanOut(LINKOOUT, (char_) ly34a,s i zeof(y34a»;

ChanOut(LINKOOUT, (char -) l y36a,s i z acf (y36a» ;

ChanIn(LINKO I N, (char -) l y12 , s i zeof (y12» j

ChanI n (LI NKOIN. (char-) l;.y13 , 9i zo01 (y13» ;

if (i<T5) {Rr-O.4S;}

else ( Rr - O.es-«-» - ( t - 3) +O. 125 ; }

Y1S-y12 -R s - (Lr_y14- H"y 15) "Q j

y19- (~1) . R.r"(Ls _y1S- H_y14) _Q-y40a.y1 7 ;

y20 - y13-R s - (Lr _y16- H.y17) - Q;

y21 - ( - 1) -Rr . (Ls _y17- M_y16) - Q+y40a.y1 5 j

y22-y14+y1S- T2;

IS5



y23 -yI5+yI9.T2 :

y24 -yI6+y20.T2 :

y25 -y17+y2 1.T2:

y26 -y12 -Rs . (Lr .y22-H.y23) .Q ;

y27- ( - 1) .R r. (Ls.y23-H.y22) .Q-y40Il.y25 :

y28 -y 13- Rs . (Lr .y24-H. y25 ) .Q :

y29-( - 1) . Rr. (Ls . y25- H. y24) . Q+y40a.y23;

y30"'y14 +T2. (y18 +y26) /2;

y3 1-y 15+T2. (y19 +y27) / 2 ;

y32-y16+T2. (y20+y28) / 2 ;

y33- y17+T2 . (y21+}'29) / 2 ;

y14-y30 : y1 5-y31 : y16-y32 : 1 17=y33 :

y34- (Lr.y30 - H.y31 ).Q:

y35-(LII.y31- H.y30 ) .Q :

y36-(Lr'.y32~H.y33 ).Q :

y36a=y36: y34a.=y34 :

y37-(Ls . y33- M. y32) "'Q;

:l,- s qrt (y31. y31+y33. y33) :

y38-3*H.(y36.y35 -y34.y37 ) :

i f ( i <T3) {TL=O:}

else {TL-2 :}

y39- (y38 -T L).Np;

y40-T2.y391 (T2. 0+J) +J . y40a/ (T2. D+J ) :

y40 a"'y40:

186



Cha.nQut (LINX OOUT . (ch a.r - ) lR r . 31 izeCl f ( Rr»;

t -'t+T'2:

IS;
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Appendix-Dl

Th is prog ram r un in Transpute r 1 is designed for t he simula ti on of in direct
field-o r ient ed contro l o f A C ind udion mo to r in parallel p .roceu ing

enviro nment .

'include< atd io .h>
' i ncl ude<lIat h . h>
'include<conc . h>
' unde ! Ti lDe
. unde f Se t Tim8

uin( )

FIL E - i p ;

i nt i - I , T3, T4, 15, T. Np·2. 16, T7,z ,z l ,z 2,

Pr oeTo Hi gh(void) . start ,end j

float

a -O.45,ll,Rr . 1 2, TL, Nl, H2. 112 , yI3.y5 ,18.y34 ,

,40a ,1 11, y38 , y40 . y 18, J41&. y42&, t i

printfC-Enter i nput T,T3, T4.TS , T6,T1 \ntt
) ;

s c.lll.f C"U td Xd %d %d U ", U •.tT3, 1:T4, tTS,1:T6.1T7)i

pr i ntf ( ''T. Xd. T3-U .T4-U ,TS-'Xd.rs-U .T7"Xd\n " •
T.13 .1 4, 15 .16,T7) j

pr i nt f ( "Enter input 12, TL,Nl, 1I2\ n") ;

sca.nf (" r,t Xt Yof Xl" ,U2 . 1TL, l Nl , l N2);

pr i nt f ("T2- Xf, TL"Xt ,NI-X! ,N2. r.t \ n". 12 .fL .NI ,N2) ;

if (! (fp.fopen (" ud . d", "vb"»)

(printf ("cUl no t open tih\n") ;



u it ( 1) i}

Ch&n Out (LI NKI 0UT, ( ch ar t) I:T,s i zeof (T) i :

ChanOut (LI NKI0UT, ( char t) t n , s i ze of (T7» :

Chan Qut (LINK10UT. ( c har t ) tN 1 .lizeof CIn» j

ChanOut(LINKI0UT, ( c har -) t N2,lIIize of (N2» :

ChanOut(LI NKI 0UT, ( char t ) l T2 . s i z eof (T2» :

ChanOut(LI NKI0 UT. ( char t ) US , lizeof(TS» j

ChanOut (LINK20UT, ( chart) I:T,size of( T» :

ChanOut (LINK20UT, ( ch ar t ) lT 2 ,size of (T2» i

ChanOut (LINK20UT, ( c har - ) .t:t3 , lizeof (T3» ;

ChanOut (LI NK20UT, ( ch ar t ) .tT4,liz e of(T 4 » i

ChanOut (LINK20UT, (char -) 1:T5. sizeof (TS» i

ChanOut(LI NK20UT, ( chu -) tT 6 , s i z eof (T6 » ;

ChanOut(LI NK20UT, ( chu t) lTL ,sizeaf (TL» ;

ChanOut (LINK30 UT, ( c har t) tT5, sizeof (TS» ;

ChanOut(LI NK30tTT, (char t) otT,size of (T» ;

ChuOut(LI NK30UT. ( char t ) .tT2 , sizeof (T2» ;

Pr ocToHigh O;

Ilh ile (t <- T)

Set Ti me (O) ;

Chanln(LINKlIN, (ch a r .) t Z, sizeof (z » :



pr intf ( Mdif f t ise- %d \ n M,1.) ;

Cha.nI u(LIKK1I N, (ch a r -) lz l , d zeo f (1.ll )i
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pr in t !(M di f ft i• • -X d\ n- , z l);

CIIa.nI n( LIKItJ I N, (ch ar. ) ly41., d z Qof (,4 1a» :

Chu I u(LIIlItJ I N, (ch a.r _) l y4 2. , tizQof (742a»;

Cha.nIu(LINK2 I N, (ch a r _) l y4 0 , l1zeof (,4 0»;

Cbu I n(LINK2 I N, (ch a r _) l y38 ,lizeof (,38 » i

Cba.nI n(LINIt2 I N, (char_) ly34 , I12.8ot (134» i

Cba.nI n( LINK2I N, (char- ) In , a iuat(n) ) :

Cban I n ( LINK2 I N, (ch a.r -) l Rr ,si zeof (Rr )) ;

if ( i <T5) {R- 0. 4S; }.h.{ChlllIn (LINK3 I N, (ch a r _) l R.ain af(R» ;}

Chan I n (LI NK3 I N, (ch a.r -) lz2 , si zeaf (z 2» ;

pr i ntf ( M difft 1lD...Xd\ n - ,:t2) ;

f printf (t'p , " Xf \n\r lO . y41. ) ;

t - t +T2 ;
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Appendix-D 2

T his pro gr am ru n in Tr an.puter 2 iI de. igned for t he .i mu lation Qf ind irect
aeld-o rien ted control of AC induction motor in par allel pro cess ing

e nv iro nmen t .

'includ41<.~dio . b.>

'include<lDath .h>
'inc lude <con c .h :>
' un d ef n llO

'undef Set Time

n i ne )

z1, Pr oc:ToHi gh ( voi d ) , s t art ,ID d;

fl oa t:

e , T2, TL, N1, H2,Ud,Uq . yl , y2 , 19 , ya ,v1, v2 ,y36,

y3 , 13a, y41.,14 , 15a ,1 5 , y7,J7a , J8a ,y8 . y10. ,y I0 ,

111, 112, J1 3 ,y34 ,R,Lr ,Ki ,,38 ,J40a, y40, y6 ,14 h .,J 41 ,

J42. , , 42. y :

141. - 0;142. - 0: t-O:y40.-0 :,1.-0 :y4a- 0: J 10. - 0 :y5.-0;

Xi- O.00 3 j Lr "0 . 0354jR"0 .45;

Cha.nID.(LINKOIN, (char _) J:T. s i z.eof (T» :

Chan l n( LINKOI N, (char-) t T7, Iizlof(T7» j

Chan l n(L I NKOIN. (char *) tN l ,siuof (Nt) :



Chan In(U HKOIlf , (c h a.:r-) .l:N2, . izeof (J12»;

Chan I n( LINKOI N, (c h &r-) .t:T2 , . ize o f (n )) ;

Chan In CLIJlKOI JI, (c h a r -) I:T S , l iz e of (TS)) :

Chan Out(L UIKI 0UT, (char - ) I:JIl,liuof (Hl» ;

Ch&nOut(LIIlKI 0UT, (char-) 1:J12,lizeof (N2»;

Cha.nOut(LIIlKI 0UT, (char-) l:T.l izeof(T):

ChanOut (Ll tlK10tJT, (ctlar-) .t:T2,a i zeof (T2» ;

Chan Out(LI tlKI OUT, ( ctlar-) A:T1,aizeof (T7» j

ChUlOut(LI IlKI 0UT, (char. ) I:TS, aizlllof (TS » ;

Pr oc:ToHig hC) ;

whi l e ( t C- T )

S'tTb, (O) ;

J2- K2 ;J I-H1 ;

i f ( i >T1)

1 2 - 3 ;

else 12-N2;

Cba.nln (LINK2IN, ( ch ar- ) .t:y40ll.,s i%e of (y40a» ;

y4-y2 ~140a.o . 021922 ;

yS- Kp. ( y4~y4a) +Kp. Ki -y4+y5a;

y4ll.- y4,

if (y5)10)
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15- 10 ;

et .. if ( y5« - 10»

15- ( - 10 ) j.1.. 15-15 ;

ChanOut (LlIiUOUT . (cha r .) 115. siuo! ( 15» j

y 9 - 1S-R/ (yl .l. r ) ;

y Sa-)'S j

y l0 -)'9 +y40ai

y. (y IO+y l Oa) .i2/2+)'a j

y l 0. -yl 0 ;

y 11-Yj

y a -1 ;

Ch anOut ( LIft,'Kl0UT. (c ha r .) ~1 1 1 ,.h:.of(11 1» ;

vl-. in(yl1 ) j

Chan Dut (L l liXl0UT. (ch a r . ) awl . siu of( vl)) ;

. n d - i i ••O j

Ch anOUt(LlIiXOOUT. (cha r -) I Z . lIIizlof(z» j

CbanID (LINKIl Ii. (ch ar .) .zl. si zlOt (z l » ;

Ch illlOut (LlIiXOOUT. (ch a r- ) Iz 1 , s iz.of (%1» ;
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Ap pe nd ix-D3

"r hi, progu m ru n in 'Tr ansp ut er :I j, desi sn ed for the simulation or in direct
fie ld -orie nt e d control of A C induc tion mo t o r in p a r. Del p ro<:fl:ling

eoviro n ment•

• i nclud e <. t di o .h>
hnclude<.at h . b >
' i nclude<collc .h>
' unde! The
Iun def SetTime

lIIain( )

into i - l,T ,T7 . l S, . t a rt , end , ProcToHigh(Yoid) I

j - l ,Kp-e ,z,zl:

f loat

Nl . B~. Kd , Kq, Ki , Kl . K2, t . T2 . yll , y3 4a , y3h .,

Ka , 11, y41. y4 1&,1 42. y 4 21.,17 . y7• •18 .,. 8&, y5 ,

y3. y31., J 6&, J6 ,y2.y4. y4 a.y Sa. yil.,Lr ,y 40..,

y l0 .r 10a . y ,11. , 19 ,v l ,v2 . y 12,113 ;

Kd- O.8 ; Kq1l0 . 6 ; Ki-O. 0 0 3 ; Ka - a .OI: KI - 0 . 01 :

K2- 0.01 ; y4i a- O;y42a-O ; y7a-0 ; y8&-0;141.-0;

y5 . -0; y3 a-O; y6a -0 ;Lr - O . 0354 ;1 10Ol-0 ; R-O.45;

Y8o- O:y34.-0 i y36a aOilll- 0 ;v2- 0 ; taOi

CbanIJ1(LINKOIN. (ch ar.) lll t ,s i zeof(N I » i

ChuIn(LINKOIK. (char . ) J:N2 ,lI izeof(K2 »;



ChanIn (LIHKOIH . (chu - ) .tT. s i u of (T» ;

CunIn (LIHKOIJI, (chu - ) I n . sizeof (n» ;

ChIUllD.(LINKOIH.( chu -) I TT.siuof (17 » ;

Cha.o.lD.(tIHKOIM. (ch u - ) l T5 . s iuof (TS» ;

Proc ToHigh O ;

uhih ( t <- T)

SetTillle (O) :

i f (j!-5l)

{j-j+ l j}

ChlJl.ln(LIHK2IIl'. ( cb a.r .) l y34 .... izeof (y34 ..)) ;

ChIJl.In(UIl'K2IH. (cb a.r e ) ly36a , s izeof (y36a»;

j " l; }

s t art · Till e O ;

,41-y36... v2-y34a-vl ;

y42· y34I.ev2+y36a- vl ;

y41..·y41j1" 2...· , 42;

yl.Nl :

, 3· 11-,42I.eO. 585652;

, 6-Kd- (y3~y3a) +KdeK 1_y3+y6l1.;

y3a·,3 ;

y61.· y6 :

HI!)



Chan In( LINKOIN, ( c h ar *- ) l:y 6, s i7:8 of (y5» j

yr .yS-y41a -O. 58565 2 j

yS- Kq'(yT- y7a.,+Kq* K2*yT+yBa ;

17a - y7 ;y8&- y8;

Chan l n( LINKOIN, ( c h ar t) l:y11,1 1Z 80{(y11 » ;

V2-C 08(yll ) j

Cha.nIn (LINKOIN, (c h ar t) Itvl , siz8af (1I1» j

112 " ( y6*v2 - , 8*\ll) *30 i

113. (y6*1I1+y8+112) *30 i

lind" TilDa 0 j

zt-end-lltart i

ChanOut (LINKODUT• ( char .) .tz l . sizeof (zl » ;

Chan Out (LI NK20UT• (ch ar .) 1:,12 , &12:80f ( y I 2» ;

ChanOut (L I NK20UT• (ch ar -) a yl3 . s i%eof (y 13» ;

ChanOut (LI NKI0UT• (char -) l:y41a . s izlilof(y41a» :

ChanDut (LI NKI0UT• (char -) l:y42a. . s lze of ( y42a» ;

ChanDut (LI NKI0UT. (c har _) .tyS, 8iz80f(y5» j

i f (i<15)

{R- O.45 : }

el s e {ChuIn(LINKlIN . (chllr') l R,sizeoHR» ;}
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App endix - D4

T h i!ll progr a m rUD in Trlnlputer '" ia desig ned Ioe- t he .i m ub. tion o f indire c t.
field-o r ie nted control o r AC in d uctio n m otor in pl t. lIe l process inl

env iro nme n t .

' i nclude<. tdi o.h >
' in e lud e<. a.th .h>
' incl ude<con c.h>
' und ef Ti llie
' \lndet Set T i ll1

mai n e )

i nt i - l . j - t ,Hp- 2. T,T6. T3 tT" ,TS ,ProcToHigb(v oid) , s t a r t ,

Ind,z ;

floa.t JU- O.49, LllI- O. 0388, Lr-G.oa s"" Lb - O. 002 1 , K- O. 0 3S4.

J-O . 024 , 0-0 . 0011, TR, Si. o , 'Il&,R-O .4S , n , WI, I s, n .

n ,v 2, Q. 1 14, 115 . J16 . y 17. 118 ,y19. y20, 12 1.122,

J23 . y24, 12 5, 126, 1 27 , J 28 , 129 , 130 . y 3 1, 132 , 133 ,

139. JI1 . 1 12 , 113 , , 34.y 3 5. ,.36 , y 37 , J 38 , 140 , t , , 40. ,

141 . 141&, y42,y42a..R r ,y34a.. y36a ;

114 - 0 ; J IS- 0 ; Jl S- 0; 117- 0 : J2 4- 0 : y25- 0; y26- 0;

y27-0 : ),28- 0 ; y29- 0: y30-0 , y31- 0 ; y32- 0 :y40a- O j

y41..-0 ;y42a -0 j y12-0; y13-0 : y34&-0 j y36as O j y37"0 : t · O;

Rr -O. 45; Q-l . 0/ (Ls* Lr -HtH ) ;

ChanID(UNK2IN. (ch a r t ) otT,11 Z8of(T»;

.1



Chan In (LINK2IN. (char .) t:T2.sizeo f (T2 » j

ChanI n (LI NK2IN. (char. ) t:T3"izeof (T3»i

ChanI n ( LI NK2I N, (char*) U 4 , s i z eof (T4» ;

Ch an In( LINK2I N. (char .) U S, sizeof (TS» j

ChanIn( LI NK2I N. (char.) U6 , sizeof (T6» ;

ChanIn(LINK2IN, (c har .) lTL,s izeof (TL» ;

ProcT oHigh O ;

\lldle (t <"T)

Set Ti llle (O) j

i f (j !-St)

{j"j+1;}

else

ChanOut (LINK 1DUT. (char.) l y34a .siZllot (y34a) } j

Ch anDut(LI NK 10UT. (char.) ly36a.dzeot (y36a » j

j"1j }

ChanDut (LIHK30UT. (c har . ) &y40a .sizeof(y40a» j

Chanl n(LINKlIN . (char.) &y12.sizeof(y12»i

Chan I n( LI NKlIN. (c har *) &y13. s i zeof ( y13» j

i t (i<TS ) (Rr ..O.45 j}

Illee { Rr ..O. 08*( t - 3) *( t - 3) +O.1 2S j}

y lS-y12-R• • (Lr *y14- H. y15) *Qj

y19- '-1 ) *Rr* (Ls . y15-H*y 14) .Q- y40a*y 17 i

J9B



y20 -y 13- RilI "( Lr .ylS-H-y 17) .Q ;

y2 1- (-1) . Rr" (Ls "y17- M" y16) "Q+y40a. y15 ;

y2 2-y~4"'y18*T2 ;

y23 -y15 "'y19-T2 ;

y24-y16+y20_T2,

y25-y17"'y21"T 2 ,

y26-y12- Rs* (Lr "y22-H- y23) - Q;

y27- ( -1) "Rr_ (Ls "y23- H- y22) .Q - y40a. y25,

y28 -y13-Rs . (Lr-y24-H"y 25) *Q;

y29- (- 1) "Rr- (Ls "y25- H*y24) "Q"'y40a. y23 ;

y30 -y14...T2*(y1 8"'y26) /2 ;

y3 1-y15+T2* (y 19"'y27 ) /2 ;

y:32-y 16+T2*(y20"'y28) /2,

y3 3'"y17 +T2*(y21 +y29) /2:

y14-y30; y15-y3 1; y16-y32 , y17 -y33 :

y34- (Lr - y30- H*y3 1) - Q;

y35- (Ls *y31- H_y30) - Q;

y36-(Lr *y32 ·H*y33 ) _Q;

y37- (Ls .y33-H-y32) .Q;

y3 4a-y34 : y36a -y36,

n- sq rt(y31*y31 "'y33-y33) ,

y3 8-3 _H* (y 36_y35·y34*y37) ;

if (i<T3) {TL-Oi }

el se {TV"2;}

tsu



y39- (y38 -TL) "'Up;

y40-T2*y39/ (T2.0+J ).J.y40a/ (12 . 0+J) ;

y40a -y40:

ChanOut (Ll nKOOUT, (char.) ty36 , sizeof (y36 » ;

ChanOut (LlnKOOUT , (char. ) ly34,sizeof(y34» ;

ChanOut (LINKOOUT , (char.) .ty13 , sizeof (y13» ;

ChanOut (LINKOOUT , (char.) &:y12 ,sizeo1' (y12 » j

ChanOut (LINK20UT , (char.) .l:y40, sizeo1' (y4 0»;

ChanOut(LI NK20UT, (char - ) ly38 , sizeo1' (y38 » j

ChanOut (LINK20UT , (char- ) .ty34 , sizeof (y34» :

ChanOut(LI NK20UT, (char.) In ,s izeof (n ) ) ;

ChanOut(LI NK20UTJ (c har. ) lRr, sizeof(Rr»;

t-t.T2 j
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Appendix-D5

This p roge a m l'u n in Transp ute l' IS i. des igned rOl' the lIimula tion or in dil' cct
field -oriente d control of AC in d uction moto r in paralle l peoeesairrg

e nv iron me nt .

#includo<etdio .h>
#include<math .h>
#includlil<conc . h>
#undef Ti .a
#undaf SatTime

mai ne )

int i '"'1 ,T ,T5 , Pr ocToHi gh( voi d) , s t ar t ,and ,z , z2 ;

f lo at Rs-O. 49 , Ls-0 . OJ88 , Lr-0 . OJS4.M-0 .OJS 4 , TR,S i , 0, ua ,

R-O .45,n ,Rr ,Ws, Is , Ka, Np, 51a. ySa ,y 41 a , y42a, l1Tla ,

y12 , y13 ,5 ,5;\ -O,y3 4, y36 , UT1,S1 ,t,T2 , UT,TM,V,

UTa-O,Ia, y,e,p:

5-0: Sla.-O: a- Oj p-O j y12-0 ;y13-0; y36-0 j y34-0 ; 51-0 j

un :UTia-a ; ur ..O;TM- Oj ar ..o. 45 ;1:..0 j

Chan ln(LINK2IN , (c har.) U S, s i zeof (TS) ) ;

Chan ln(LINK2I N, (char *) U,sizeof(T)) j

Chanln(LINK2I N, (c har.) U2, s izeof (n) j

ProcToHigb.O;

while (t<-1)



Set Ti me(O);

i - i +1;

ClIanln( LINKOI N, (c har.) l:y4 1a,si z80 ! {y41a»;

Chan l n( LINKOI N, ( chu _) l:y4201, , iZ80! (y42a» j

Cha.nln (LI NKOI N, (char _) l:ySa ,siz80f(y5a»;

Chanln(LINKlIN, (char.) l:y36. siuof (y36» ;

Chan ln(LINKlIN, (c har.) l:y34 ,5iz80 f(y34 » i

Chanln(LINKlIN, (ch ar-) ty13 ,5i%.8of(y 13»;

Chanl n( LINKlIN , (c har .) ty1 2 , sizeof (y12 »:

ChanOut(LINK20UT, (char .) l:y41&,5 iz80t (y411.» :

ChanDut(LINK20UT, (ch ar.) l:y42a ,size of( y42 a» ;

s t art • Time ();

ur - y13- y3/'i-Rs ;

UTl - y12-y 34- Rs;

5- (UT+UTa) .1'2 12+Sa;

51- (UT1+1J1'la ) .T2f2+S1a ;

TM-3- (S 1.y36-5.y34) ;

Sa-S: UTa-ur j UT1a-UT1: 51a- S1;

if ( i<TS)

{TR- O, Si-O,o- O,e - O,p-o ;}

ela. {

TR-3 .H*6 .83*15a/0. 585652-TM;

Si-ra*4/ (3*Np*H*(y41&*y41&-142a. y42&» ;

i t (5i >0 . 75)
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{ Si - O.7 S ;}

.ls. {Si - Si:}

o- O. S- ., i n ( Si) ;

R-O.4S +p: / - Th. cont ro lle r lIlay b. PI or PI D . /

Cha.nOut(LI NKOOUT , (c har -} 1ft , l izeof (R» ;

Cha.nOut (LI NK20UT. (chu- ) 1ft, . izeof (R}) ;

end - Tillle(} j

:t.2- . lld-st artj

Chan Out ( LI NK20UT, (ch ar_) h 2 . sizeof (z2 » :

t - t +T2:
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Appendix-E

This p rogram is desi gned for t he simulation of indir ect fie ld-orien ted control
of AC indu ct ion motor.

#include<stdio . h>
" include<llath. h>
md n ( )

FILE _fpj

int i , 13, 14 , 15, T, Np- 2 . Kp.a, 16 , 17;

flo at RlI- 0 .4 9, Ls-O.Q38 8 . Lr-O. 0354 . Lb -O . 002 1 , H-O. 03 54 .

Ja O.024, 0-0.0011, R-O .45,n,

~,t. ~.~.n,n.Hl , N2.~.~.Ki .Kl .K2 ,

Kat Q. , t, y2 , y9 , y14 , y15, y16 . y17 , , 18, y19, y2 0 , 121 ,

y22.y~.y~ .y25. y26,~7 .yU.y29.y30.~1,~2 ,y33 .

y39.y3{S0010]. , 4 [500 10], ,5 [500 10], ,6(50010], ,7(50010],

, 8 [50010], , 10 (50010], , 11(50 010], ,12(50010], , 13 (50010],

,34 (50010) , , 35 [50010], ,36 [50010] . UTi [500t O] , Sl [50010] ,

, 37[50010] . ,38 [50010 ] . ,40 [50010] . UT(500 10] , TM[S0010] ,

,41[50010], ,42[5001 0] I Ud [SQOI0] . Uq [S001 0J, V(50010] .

U(500 10l, X(500 10] . Ta (500 10], ph[S 0010J, S [5001 0] .

R2( 50010] , 11.3 (50010] , R4(500 10] , Ia(50010] j

pr intf ( "Ent Gr in put T.T3,T4,TS.T6,T7 \ n" ) ;

I Cll.Ilf("Xd X,d %d Xd Xd Xd",.tT ,tT3,1:T4,tTS,1T6,tT7) ;



printf ( "1-Xd ,13- Xd, T4-td" TS-Xd , T6- Xd, n-Xd\ u",T, T3 ,T4, 15 , TS, T7) :

priutf ( " EDter i uput T2 ,TL,N l ,~2\Q" ) ;

scanf ("U X1 %,f Xf " , l T2 , l n. , lH 1 , l N2 ) :

pr i ntf ("T2 -Xf , TL-Xf ,N1-Xf ,N2- Xf\o" ,12,TL , Hl ,~2) :

i-1 ; Kd-O .8: Kq- O.S: Rr-0 . 45 : Ki - 0 . 003 : Ka-O . 01 : K1- 0 . 0 1:

K2-0.01 :

Q-1 . 0/(Ls.Lr-H. H) :

y14- 0 : y1S- 0: y1S-0: y17-0 : 124-0 : y2S- 0 : y2S- 0 : y27,.0: y28-0 :

y29 - 0 ; y30 "O; 13 1- 0 : 132 -0 : S(i] -0 :S 1(i]-0:R2 [ il·O . 45 ;

y3[i] - 0 ; y4 [i] -0: y5[ i].O : yS ( i ] - O: y7(i] · O: y8 ( i] -0: y10( i ] · O;

yll ( i)-O ; y 12(i]-0; y13(i],.O : y35(i) -O ; y36 (il ·O ; y37[i] .O :

,.38 (i]-0: y40 (i) ..O: y4 1(i)"O; y4 2(1 ) - 0 ; UT(iJ - O; TM[i] - O:

if (! ( f p- f opeo.( "ua . d " , "vb"»)

(pr iDtf( "cannot epen file\n " ) :

eIit ( l) :

t -O:

vh ile ( t <- T)

X[i)- t :

i f (i>T3)

TL-2 ;

if ( i >T6)



n-4 :

else n-n.j

i t (i>T4 )

Rr- O. OS. ( t-3) " ( t - 3) +0 . 125:

,I-HI : y2- N2j

if (i>T7)

y2-3;

abe y2-N2j

y3[i) - y l -y 42 ( i - l ] . 0 . 585652 i

,4[1] - y 2-,40[1-1) _0. 027922 :

, 5 Ci] - Kp- (, 4 (i] · y4 [i- I) )+Kp_Ki _y4 [i] +,5(1-1) ;

16(i] - Kd- (y3( il - y3 [1-n ) +Kd- Kl - y3[ i) . y6a-u ;

if (y5 [1 ] >10)

y5 (i l - l0:

.I.. yS[ i) -Kp-(y4 (i] -y 4[i- l )+Kp- Ki -y 4[i ] +yS(i- t] ;

if (, 5 [1] <- 10)

y5(U · · I0i

el.. y5[i]-Kp- (y4(i] - y4[i-tJ)+Kp-Ki - y4[i ] +yS [ i-t] ;

y7 (1) . yStn·,41 u - u -0 .585652 ;

y8[i) -Kq- (y7[i] · , 7[ 1- 1] )+Kq-K2-y7(i)+y8 (i- l ] ;

,9·y5 (1] -a/(yl-Lr);

y l 0(1) -y9+,40[1-1) :

yll(i) - (yl0(i)+yl0 (i- 1l )'T2!2+yll[1-1l ;

2M



Ud [l) - , 6 U ) ;

Uq[i) - y8[i) ;

y12[i) - (Ud (1 ) -Cos ( ,l1 [ i) - Uq [ i) - lin (J l1 [i) ) . 30 ;

J13 (1 ) - (Ud (1 ) *s1 n ( J ll (1 ) ) +Uq U ) *COI (J l1 (1) ) · 30 ;

J 18· , 12 (1) - R.* (Lr+ ,14-H*y15) *Q;

y19- (-1) *Rr+ (La. y l S- H*y14) . Q-J40 [ i -I] *y17 ;

y20 -y 13[ i ) - Rs+(Lr . y16-H*y17) +Q;

y21- (- 1) +Rr . (Ls +y17-H*yI 6) +Q+y40 [i- i) *y15 ;

y22-yI4+y lS .T2:

y23-y15 +yI9.T2:

J2 4-J16+y20+12 ;

J 25- J 17+, 21+12:

J26 - J 12[i) -Rs +(Lr . J2 2- H+y23 ) +Q:

J 27-( -1 ) +Rr+ (Ls +y23- H*y22) +Q-, 40 [ i - I) *y25 ;

y28-J1! [i l - Rs*(Lr +y24- H. , 25) +Q:

y29 - (-1) *Rr +(Ls +, 25- H+y24) . Q+J40 [ i - 1) +y23 :

,30- )'14+12. (J 18+),26) /2 ;

J31 +y15+n. (, 19+, 27) / 2 ;

)'32-yI6+n+(, 20+y28) / 2 :

,33-)' 17+T2+(,21+,29)/2;

)'14- )'30: J 15+, 31: yI6-y32 : y17 -y3 3 ;

y34 (1) - (Lr.y30- H. , 3l) +Q:

y35 (1) - (La* , 31- H+, 30) . Q:

y36 (i] - (Lr . , 32- H+, 33) *Q;
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137 [i] - (t..'y33-H*y32) *Q;

n_sq rt(y31*y31+y33*y33) ;

y38[i] " 3.H" (y36 [1] . , 35 [ i] - , 34 [ i) * 'f37 rn ;

y3.' · (y38 (1] -T L) ooNp j

y40[i) -T2*y39/(T2*D+J)+) . y40 [1-1] / (12 -D+J ) ;

y41(i) -y36 [i)*coa(yl1 [1] ) - y34 [1) . sin er 11 (i] );

y42 ( O . y34 [ i ) *coI (y11 [ i} ).y36[i] • • 1n(,11 [iJ ) ;

UT(i ) - ylJ(i] - y36 [1 1*Rs ;

UTI[iJ.Y12 [il-y34 [i] "Rs;

S[i) -(UT(i) +UT[i -t] )* T2!2+S (i -1J :

51 ( i)-Curi (i] -en [i-I] ) *T2I2 +S1[i-l] :

TH[il-a-,s t [i] *y36[i) -5 [1] ' y34( i ) ;

it (i<T5)

{R2 [i) -0.45 i WS- Oj Is -O j U[i ) -O; h.[i] . O; R3[i]-O ; R4( i ) " O: }

ehe {W. -Iqrt (y9*y9);

1."' 141 (i] . y41 [i] +6 . 83*6. 83 :

U[i]*y13[i) *y34 [i] -y12 [i) *y36[i] j

1\2(i ) -W. '.qrt (Lr*yl0 [i] -0. 0013. r./ (yl0 [i] *L.*! s-U[il) -Lr *Lr) ;

i f (R2 [i] <O. 1)

{R-O.l ,)

el s8

1l.-1\2[i] ;

)
fp riDtf(fp , "Y.f Xt Xf Xf %:t Xt Xl \ n ", y40 £1] ,y38(i),y41( i ],



,,42 (i] ,,,34[ i],II. ,R2[i]) ;
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