CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)













INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
i jons and print margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper lefi-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6”x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI

ABell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/7614700  800/521-0600



EDGE DETECTION METHODS FOR SPECKLED IMAGES

by

© Ganugapati Seshu Srilakshmi, B.Tech.,

A thesis submitted to the School of Graduate

Studies in partial fulfillment of the
requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science
ial University of land
July, 1996

St. John’s Newfoundland Canada



L |

National Library
of Canada

du Canada
saliors ad ———

Orawa ON KIA ONG
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

35, gt
Otawa ON K1A ONS.
Canada

Your e Vore riece

Our s oo tbance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celleci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-23137-2

Canadi



Abstract

Images obtained from coherent imaging systems such as laser, sonar, radar, syn-
thetic aperture radar (SAR) and ul d are often d by a ph known

dent and may

as image speckle. Speckle is ch ized as multiplicatively signal d
be spatially highly correlated noise. It differs from other types of noise such as the
additive white Gaussian noise (AWGN) most commonly found in digital images. Ob-
served from a human or computer vision point of view speckle gives a granular patterned

to images, thus i ing image details.

Gradient methods taking differences between pixel values may give inconsistent es-
timates regarding true edge pixels and therefore are not suited for use with speckled
images. By contrast, taking ratios between the pixel values tends to factor out the mul-
tiplicative noise effect present in speckled images and to generate meaningful edge maps
for these images. But these methods generate thick and ambiguous edge maps, and
may also require gradient information supporting the ratio edge strength values in order
to generate better edge maps on speckled images. This thesis investigates methods to
improve the performance of existing speckle specific edge detection operators. A ratio
edge detector based on maximum strength edge pruning (MSPRoA) which uses both
edge strength magnitude and direction is proposed.

The MSPRoA method is different from previous methods in that it uses the edge
orientation information that is implicitly expressed in some other ratio based meth-
ods,explicitly, thus enabling the generation of precise and well defined edge maps for
speckled images. The MSPRoA method does not require either gradient information
or edge thinning operators and hence computational savings are achieved. The use of

the MSPRoA at multiple scales in order to extract edge information at both micro and



;
\
:
\

macro levels is also suggested. The MSPRoA and multi-scale MSPRoA methods are
tested using both synthetic and real airborne SAR images of varying scene contents and
business. Test results which confirm the suitability of the method for use on speckled
images are presented. The use of the MSPRoA method is recommended for detecting

edges images in which speckle phenomena are manifest.

iii



Acknowledgements

I would like to express my sincere thanks and gratitude to my supervisor Dr. Cecilia
Moloney for her guidance, constant encouragement and moral support which helped me
in completing my programme. [ also thank Dr. C. Moloney for the financial support she
has provided me. [ would like to express my deep gratitude and sincere thanks to Dr.
Cecilia Moloney, Dr. Jim Sharp, Associate Dean, Faculty of Engineering for granting
me leave in order to cope up with my most difficult situation in life to continue my
programme. I will be grateful to them throught my life for their act of kindness.

I would like to express my gratitude towards Dr. Seshadri, The Dean, Faculty of
Engineering, MUN for his kind ideration and financial assi: I would like to

thank Dr. Morin for his guidelines in successfuly presenting my thesis results and his
suggestions on thesis contensts. I also would like to thank Dr. Jeyasurya for his co-

and i ions on thesis material organization. I also like to

thank Dr. Venkateshan, Dr. Quaicoe, and Dr. T.R. Chari for their encouragement and
support.

Personally, I would like to thank Dr. Christopher Sharp, Associate Dean, School
of Graduate Studies for granting me the leave specially near the end of my graduate
programme and also for the financial assistance. I also thank all staff members, The
School of Graduate Studies, MUN, for their pleasent and helful nature.

I sincerely acknowledge Mr. Tony Parsons, and Marzia Zaman the former graduate
students of Electrical Engineering, Faculty of Engineering, MUN for their resource ma-
terial. I also would like to acknowledge C-CAE for their co-operation and support. [
would also like to acknowledge all examiners of my thesis for their useful comments and

suggestions.



[ express my deep love to my mother, my brother Giri Prasad and my sisters Janaki
Devi, Vijaya, Vidya who are always in my heart where ever [ am. I acknowledge my
thremendous love for my father who is watching me and blessing me through the doors
of heaven. Finally, I acknowledge my thanks to Dr. Kasinadhuni Satyanarayana for his
true love, support and encoragement. Thanks also to all who helped me in making this

work a successful completion.



Dedication

With love to my father and mother.



Contents

-

Abstract

Acknowledgement

Dedication

Contents

List of Figures

List of Tables

List of Abbreviations and Symbols

Introduction

L. MOUVEYION & - 5 civvio o o w3 5iaea & & 3 sTsidis & slkient o v wiais

1.2 [Edge DORThioN. «v.o:6 » s svevn o & Risiipin v o & sibiens s s & o sheys
1.2.1  Edges as scene descriptors . . . . . . . ..ot aiiaaaa ..

1.2.2  Edge detection on noise-degraded images .

1.3 Problem Definition: s« 5 v o0 & 5 Sieeis 5 & €otein €+ 588w 8 aaiae
14 ‘Research Methodology « oisies & < aiweis s & israie s & gjacs & o aiginrs

iii

xiv



»

15

14.1 Selectionoftestdata . . .. ....... ...,
142 Experimentalmethod. . ........c0cencecccceann
Thems Outlne: s 35 58 oas v wimds G s s §E5F0E S350

Literature Review

2.1

22

23

24

v
o

General

2.1.1 Conventional notation . .......................
212 Tmagingeystems .........c.coisenioieasions
Speclen = 5 s min s s ST SR B &
DL SPeckIBGHEIN. o s + v wrsiio s wasERGE ¥ aLg wimE R N e
222 Speckle classification . . .. .. .. ..aa. il
223 Visualefect s s cvcwvawie swsaaes sasimss o v oo
2.2.4 Speckle statistical characteristics . . . ... ............
Edge Detection Methods . . .. .......................
23.1 Gradient edgedetectors . . .. ... .............ann

.2 Zero-crossing edge detectors

233 Ratioedge detectors . ... ..« civivens s snimoinin e o s min
Speckle Specific Edge Detection Methods . . . . .. ............
24.1 Coefficient of Variation edge detector . . . . .. ..........
242 Ratio of Averages (ROA) . . . .« oo eneenen ...
2.4.3 Touzi Extended Ratio of Averages CFAR . . . . .. ........
244 Modified Ratio of Averages (MRoA) . ...............
24.5 Ratio and Gradient of Averages (RGoA) . . . . .. .. ......
Synthetic Aperture Radar Imaging . . .. ... ..............
25.1 SAR imaging technology . . .. .. .. ...............

viii




|
[
|
!
|
|

of Edge Detection Methods for kled Images

&1 IRPORUCAIOR v .50 wis snwmraamsionona & S1Erat & EEE eies o & & §

3.2 Edge detector performance measures . . . .. ... .. ...l

3.2.1 Qualitative performance measures . . . . .. .. .. .. ......

3.22 Quantitative performance measures . . . .. .. .. .. ... ...

3.3 Speckle noise SIOUlAtION . . . o cvir v v vieie s s e s s s ey
& Tetdata o5 swmeies dnpey dasiss Baews

3.4.1 Synthetic speckled images

342 Realairborne SARimages . . .. ..................

3.5 Evaluation of edge detectionmethods . . . . .. ..............

35.1 Evaluation using synthetic test images . . ... ..........

3.6 Evaluation of edge detection methods for real airborne SAR images . . .

Maximum Strength Edge Pruned Ratio of Averages Edge Detector

41 Introduction s 5 5 £45:83 3 % fed 5 Teiesda v BnEe @8 @ =iy Semee

4.2 The MSPRoA edge detection method . . . . . ... ............
H2T | TRIOOIORY oo o s SR S S B 8 8 GRS
4.2.2 The MSPRoA algorithm . . . . ...................
4.2.3  Graphical illustration using 1-D signals . . . .. ..........
4.2.4  The effect of mask size (N)

425 The effect of correlation distance (d) . .. ... ..........

76



o

L3

4.3 A 2-D example . .

Ry :ults and Discussion

5.1 Imtroduction . .. ....c.iciiiiiiiiiiaiei i

5.2 The MSPRoA on synthetic test images . . .. . ..............
5.2.1 Qualitative analysis of MSPRoA results on synthetic images . . .
5.2.2 Quantitative analysis of MSPRoA results on synthetic images

5.3 The MSPRoA on airborne SAR images . . .. . ..............
531 TestResults . . .......co00uecueneeesiosessss
5.3.2  Analysis of MSPROA test results on SAR Images . ........

54 DISCHRSION « = « svmminiie v woaziors @ & wiwn % @ SbTew & 8 v EELeTes B 8w
5.4.1 Comparative study using synthetic test images . .
5.4.2 Study on the effect of mask size . . .. ...............

5.4.3 Comparative study and analysis using SAR images . . ......

o
o

The MSPRoA edge tracking algorithm . . .. ...............
5.6 Multi-scale MSPRoA edge detector . . .. .. ...............
5.6.1 Multi-scale MSPRoA on synthetic test images .
5.6.2 The Multi-scale MSPRoA on airborne SAR images . .. .....

Conclusions and Future Studies
6.F Conclusions’ « wcovvmmn & & svis & % o o @ SHosTe 5 @ F SR 6 6 8 B 6

6.2 FutureStudies. . .. ............... ...

References

148

146
149

151



List of Figures

21
2.2
23
24
25

26

28
29
2.10

2

1
212
213
214
2.15

One dimensional step edge - . . . . . .. .................. 10
Edge detector processing window . . . ... ................ 1
A GGl ARage G o s ¥ Wsiam B simes B s % Y 88 Ee 12
Speckle geometric phenomena . . . .. .. ... ... ..., 15
A laser speckle pattern visualeffect . . .. ... .............. 17
Speckle statistical characteristics . .. ................... 20
Gradient edge detection operators . . . . . ... .. ............ 22
Zero crossing Edge detector . . . ... .. ... .............. 24
Zero crossing edge detector templates . . . ... . ... .......... 2
General schematic for ratio based edge detectors. . . ... ........ 2%
The schematic for Ratio of Averages (RoA) edge detector . . . . . . . . . 29
The schematic for Touzi CFAR edge detector. . . . .. .......... 32
The schematic for the Modified Ratio of Averages (MRoA).. . . . . . . . 33
A typical SAR amplitude image . . . . .. ... .............. 37
SpecklenoBemodilc s s 4 5 smiad b & SELE S SRS E b S 12
Generation of synthetic speckleimage . . . .. ............... 49
Synthetic test image Strips: . . .. .. .. ... .. ... ... 52
Synthetic test image Ring:. . . . ... ...oaeniiaa .. 53



34 SynthetictestimageCombine: .. ..........c.ccccuncenn 34

3.5 Real airborne SAR test image Moderately Busy . . . . . ... ....... 56
3.6 Real airborne SAR test image Busy. . . .................. 57
3.7 Real airborne SAR test image Smooth . . . .. ... ............ 58
3.8 Edge maps obtained for the Strips images: . . ... ............ 61
3.9 Edge maps obtained for Ringimages: . . . .. ............... 63
3.10 Edge maps obtained for Combine images: . . . . . ............. 65
3.11 Edge maps for SAR image Moderately Busy:. . .. ............ 7
3.12 Edge maps for SAR image Busy: . . . .. ................. 73
3.13 Edge maps for SAR image Smooth: . . . ... ... ... ... ... 4
3.14 Evaluation of edge detection methods for 16 x 16 SAR test samples: . . . 75
4.1 A general pattern computing MSPROA strength, N =5,d=2.. . . . . . 7
] 42 Schematic of the MSPROA edge detector. . - « « - « « «  + o v o\ ... 7
4.3 Synthetictestimage Bars ... .. ..................... 81
4.4 Ilustration of the MSPRoA method using 1-D signals : . . . . ... ... 83
i 4.5 The effect of mask size on the MSPRoA method: . .. .. ........ 36
; 4.6 The effect of correlation distance d on the MSPRoA method . . . . . . . 89
f: 4.7 The MSPROA edge detection test results on Bars . .. .. ........ 9
2 5.1 The MSPROA test results on synthetic test image Strips :. . . . . . . . . 97
| 5.2 The MSPROA test results on synthetic test image Ring: . . - . . . . .. 9%
? 5.3 The MSPROA test results on test image Combine : ... ......... 99
) 5.4 The MSPROA test results on SAR test image - Fields: . . .. ... ... 107
5.5 The MSPRoA test results on SAR test image Busy: .. ......... 108



E
P
|
:
1
\

The MSPROA test results on SAR test image [ndustrial :

The MSPROA test results a comparative study using Strips : . . . . . . . 119
The MSPROA test results a comparative study using Ring: . . . . . .. 120
The MSPRoA method a comparative analysis using Combine : . . . . . . 121
The MSPROA results a comparative study on Fields : . . . . . ... ... 126
The MSPROA results comparative study for SAR Busy: . .. ... ... 127
The MSPROA test results a comparative study on Highway . . . . ... 128
The MSRoA results a comparative study for SAR [ndustrial : . . . . . . 130
The MSPROA edge traking algorithm test results for Bars . . . . . ... 132
The MSPROA edge tracking algorithm on Bars . . . ... ........ 134
The MSPROA edge tracking algorithm . . . . . . ... .. ........ 135
The MSPRoA edge tracking algorithm on Combine . . . . ........ 136
Multi-scale MSPRoA results for Balloon . . . ... ............ 140
Multi-scale MSPROA result for Combine : . . . .............. 141
The multi-scale MSPRoA on SAR test image - Fields . . . .. ... ... 143
The multi-scale MSPRoA test results on SAR Highway . . . . ... ... 144
The multi-scale MSPRoA test results on SAR Industrial:. . . ... ... 145

xiii



List of Tables

31
32
3.3
34

Standard ratio test for simulated speckle noise. . . . . . .. .. ... ... 50
Quaantitative performance measures on synthetic test images . . . . . . . 67
Quantitative performance measures on synthetic test images . . . . . . . 68
Evaluation of edge detection methods for real airborne SAR images . . . 71
The MSPRoA performance evaluation for test image Bars . . . . . . . . %
The MSPROA edge detector quantitative evaluation measures . . . . . . 103
Optimizing edge detector quantitative performance measure W . . . . . 115
Optimizing edge detector quantitative performance measure M . . . . . . 116
Optimizing edge detector quantitative performance measure 4 . . . . . . 17

The effect of nask size on MSPRoA edge detector . . . .




List of Important Abbreviations

AWGN : Additive White Gaussian Noise
CFAR : Constant False Alarm Rate

CoV  : Coefficient of Variation
cw : Coontinuous Wave
LoG  : Laplacian of Gaussian
LR : Likelihood Ratio

MMSE : Minimum Mean Squared Estimate
MRoA : Modified Ratio of Averages

MSPRoA Maximum Strength edge Pruned Ratio of Averages
NMNV : Non-stationary Mean Non-stationary Variance

Pd  : Probability of detection

PDF  : probability density function

Pfa  : Probability of False Alarm

PSF  : Point Spread Function

RGoA : Ratio and Gradient Of Averages

RoA  : Ratio Of Averages

SAR  : Synthetic Aperture Radar

SNR  : Signal to Noise Ratio

SSNR  : Speckle Signal to Noise Ratio

xv



List of Important Symbols

c : “correct” edge factor
d : Pruning (or correlation ) distance

D : edge pruning sub-window

D(r) : Maximum edge Strength

F : “false” edge factor

G : gradient magnitude

G. : gradient magnitude for the oth set of pair of the neighbourhoods
K : edge tracking pixels

] : edge tracking track length

L : number of independent looks

o : “missed” edge factor

N : window size

R : ratio magnitude

R, : ratio magnitude for the oth set of pair of the neighbourhoods
R(r) : MSPRoA edge strength magnitude

R(o) : MSPRoA edge strength orientation

i : threshold

A : gradient threshold

T. : ratio threshold

w : “wrong” edge factor

h : PSF of the imaging system

n : noise process

z(i,5) : original or un-corrupted image at pixel (i, )



¥(i. )  noisy image at pixel location (i, j)

i
i
i
b



Chapter 1

Introduction

1.1 Motivation

Edge detection methods for speckled images are important as these images are
found in a variety of digital image processing application fields which use such images
as laser. sonar. radar, synthetic aperture radar (SAR) and ultrasound. etc.

Speckle is 2 common phenomena in almost all images formed from coherent imaging
systems and some non-coherent imaging systems [34] and may be responsible for causing
hindrances to human or computer vision systems in extracting information from these
images [3. 53]. Edge detection methods may help in conveying useful information on
image contents. Since speckled images may contain useful information for applications
such as remote sensing, medical imaging etc.. there is a necessity for operators to extract
accurate and precise information from these images.

It has been found that the speckle phenomena observed in images for coherent imag-
ing systems cannot be avoided completely [10, 34]. Observed from the human vision
point of view. speckle gives a granular texture appearance to images and may suppress

true edge information or may trigger false edge points [3. 61. 82]. When analyzed statis-



tically speckle differs from other types of noise which are commonly observed in digital
images such as additive white Gaussian noise (AWGN). Several existing edge detection
methods used to extract information from non-coherently formed images are less suit-
able for use with coherent imaging images due to the nature of speckle noise found in
these images [3. 82. 90]. In fact. most edge detection operators are best suited for use
on noise-free images [77].

Various edge detection methods have been developed for use on noise-degraded im-
ages but these are better suited for AWGN environments. A literature search reveals
that. although the nature and characteristics of speckle noise have been well studied and
well established [34], the problem of detecting edges on speckled images has not been
extensively studied. Relatively few edge detection methods have been proposed for use
on speckled images (3, 23, 82. 90].

Edge detection methods that use ratios between pixel values tend to generate rela-
tively better edge maps on speckled images when compared to gradient based methods
that use differences between pixel values [3. 23. 82. 90]. However. ratio based methods
generate thick edge edge maps and require edge thinning post processing [3. 69]. These
methods may also require gradient information in order to generate precise edge maps
on speckled images [3, 90]. The performance of these edge detectors may be poor on
medium-to-low contrast images [89]. In this thesis, research has been conducted on edge

detection methods for speckled images. motivated by the following goals:
o Extending available methods to improve accuracy.
o Satisfactory detection by extracting all true edge pixels.
« Low error rate by reducing false edge pixels information.

« High computational efficiency.

w



1.2 Edge Detection

1.2.1 Edges as scene descriptors

Edges in images are defined as transitions between regions having different in-
tensities. textures, color or other image properties [77]. Several common types of edges
separate regions with different intensities. The edges may help in describing scene con-
tents by giving definition to underlying image objects. Achieving the goal of edge de-
tection may simplify computations in computer vision algorithms such as segmentation.
classification and pattern or object recognition.

When analyzing complex scenes it can be often useful to simplify the amount of

data to be d by discarding infc i ding absolute gray levels and only

keeping a record of places where changes occur in the image. Several modern theories
rely on pre-processing images with detection operators before image matching and object
recognition. For these reasons edge detection is often considered to be one of the first

stages in many image processing procedures [63. 63.

1.2.2 Edged ion on noise-degraded i

The goal of edge detection for noise-degraded images may be achieved by following

two different approaches. They are:
@ Direct methods: Use of edge detection operators on images available for use.
« Indirect methods: Use of edge detection operators on pre-processed images.

The direct methods of edge detection achieve the goal of edge detection by applying
edge detection operators directly to an image. These methods do not use pre-processing

operations such as noise filtering, image enhancement etc. In the case of noise-degraded

3



images. these methods require edge detection operators which have been designed ac-
cording to a model of the interfering noise. A priori knowledge about the interfering
noise may help in selecting an appropriate edge detection operator in this case. The
design of new edge detection operator also benefits from knowledge of the nature and
characteristics of interfering noise. These methods provide direct solutions to the prob-

lem of edge detection by reducing computational costs required for image enhancement

or noise ing pi

Indirect edge detection methods usually include one or more pre-processing opera-
tions before the actual edge detection is performed. Pre-processing may include image
enhancement, edge preserving noise smoothing or filtering operations. An edge detec-
tion operator is then applied to the pre-processed image. A priori knowledge of the
characteristics of any interfering noise is required in this case. for selecting the filter to
be used for noise smoothing. Since edge detection is performed on noise filtered images.
the use of gradient edge detection methods may give better performance results. But

re- ing operations may generate additional problems in this case such as edge
P! & 12 5

blurring, smoothing of fine details in the course of pre processing operations. etc. The
overall performance of the edge detection in this case depends on both the performance
of the pre-processing operators and the edge detection operator.

In this thesis, edge detection methods for speckled images that use direct methods

without p i ions are discussed. Concepts involved in the design of new

edge detection operators which improve the performance of the existing edge detection

methods are studied.



1.3 Problem Definition

Speckle s usually ch ized as multiplicatively signal-dependent and may be

spatially highly correlated [34]. Speckle varies with underlying image intensity i.e. the
speckle is significant in high intensity homogeneous regions compared to low intensity
homogeneous regions. As a result, the signal to noise ratio (SNR) of speckled images
may be low and these images may suffer from poor contrast ratios as well [17. 23. 54]. All
these properties make automated extraction of edge information from speckled images
a difficult task to accomplish.

Gradient edge detection methods which are based on differences between pixel values
give inconsistent estimates regarding true edge pixels due to the signal dependent nature
of speckle noise. Gradient methods can provide computationally inexpensive solutions
to the problem of edge detection on noise-free images. But these methods have been
shown to generate spurious edges and thick edge maps when used on speckled images
3.69, 91].

Zero-crossing edge detectors applied to speckled images have been shown to generate
thin and localized edge maps but also to generate a number of spurious edges [3]. The
main disadvantage with these methods is that they are insensitive to the edge mag-
nitude strength [40]. Other methods using ratios between pixel values tend to cancel
out the multiplicative noise effect of the speckle in the speckled images and to generate
meaningful edge maps on these images [3, 82]. Evaluations of edge detection methods
for speckled images have shown that ratio based methods perform better than gradient
based methods [69, 91, 32].

However, existing ratio based methods also tend to generate thick edge maps. Post-

processing edge thinning operators are required in order to generate precise edge maps.



These methods also use gradient edge strength measures for generating well defined
and meaningful edge maps [3, 91]. These methods trade off the number of spurious
edge pixels generated in homogeneous regions and the number of correct edge pixels
[90]. Such edge detectors used with large mask sizes can be successful in suppressing
the spurious edges in homogeneous regions. but also generate thick edge maps. On
the other hand. small mask sizes are successful in extracting fine details and also give
thin and precise edge maps but generate number of spurious edges [32. 69]. Extracting
information regarding the fine structures in images is also another problem with existing

speckle specific edge detection methods [69].

1.4 Research Methodology

1.4.1 Selection of test data

Test data were selected to include 2 variety of test images over a range from
simple 1-D signals to real airborne synthetic aperture radar (SAR) amplitude images.
As a simple test category 1-D signals are selected which have gray level values between
0-255 and which include low intensity homogeneous regions. high intensity homogeneous
regions and edge pixels. In a second category, 2-D simulated speckled images with 256
gray levels varying between 0-255 are considered. Test examples in this case include
computer generated patterns and real outdoor scenes. [n a third category. SAR images
extracted from a data set are used with the permission of Canada Center for Remote
Sensing (CCRS), Ottawa, Canada. Test images consisting of a variety of scene contents
such as woods. farm land. city, highway, industrial etc. are selected as test examples in

this category.
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1.4.2 Experimental method

First, existing edge detection methods used for edge detection on speckled images
are studied. Then the performance of different edge detection methods is evaluated
using the 1-D signals and 2-D synthetic test images. Since the original test images
are noise-free with sharp edges the Sobel operator [77] is used to generate edge maps
representing ideal edge maps. Edge maps on the corresponding simulated speckled
images are obtained using several existing edge detection methods representing actual

edge maps. Qi itative and qualitati ion of existing edge detection methods

is made by comparing the corresponding ideal edge maps and the actual edge maps.
This work follows the the measures proposed by Zaman and Moloney [89] which they
used in the study and analyze of edge preserving noise smoothing digital filters. A
similar evaluation of existing edge detection methods is also made using real airborne
SAR images to investigate the suitability of these methods on real data sets. The means
of improving the existing edge detection methods for extracting accurate and precise

edge maps for speckled images are investigated.

1.5 Thesis Outline

This thesis is arranged into six chapters. In Chapter 2 a review of relevant litera-
ture is conducted. The nature and characteristics of speckle noise are reviewed. Public
domain edge detection methods in general and speckle specific edge detection methods
in particular are reviewed. Introductory concepts used in SAR imaging systems are
briefly outlined.

In Chapter 3 an evaluation of existing edge detection methods for speckled images is

d using qualitative and itative measures. The performance



of these methods on real airborne SAR images is evaluated.

A ratio edge detector based on maximum strength edge pruning (MSPRoA) [33] for
extracting accurate and precise edge maps on speckled images is proposed in Chapter
1. The MSPROA algorithm aad test results using 1-D test signals are presented.

The MSPRoA edge detection test results using images both synthetic 2-D and real
airborne SAR images are presented in Chapter 5. The performance of MSPRoA edge

detector on a variety of test images is using qualitative and itative meth-
ods. A simple and fast MSPRoA edge tracking algorithm to improve visual quality of
the MSPRoA edge maps is proposed. The use of multi-scale MSPRoA method for ex-
tracting information at both macro and micro levels on speckled images is suggested.
The multi-scale MSPRoA method performance is verified using synthetic and real SAR
images.

In Chapter 6. conclusions and recommendations for future studies are presented.



Chapter 2

Literature Review

2.1 General

This chapter presents a literature survey of several topics related to this thesis
notably: edge detection methods, the nature and characteristics of speckle noise and
SAR imaging systems. The nature of speckle noise, including its visual effect and statis-
tical characteristics are briefly introduced. Edge detection methods, in general. and in
particular methods that are better suited for use on speckled images are reviewed. Pre-
vious speckle-specific edge detection methods and their algorithms are introduced. SAR
imaging technology, SAR data processing, speckling effects observed in SAR images and
related background information are provided. Speckle noise models for simulating SAR

speckle using radar signals model are also reviewed.
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Figure 2.1: One dimensional step edge

2.1.1 Conventional notation

« Edge
The most common type of edge in images separates regions with different intensity
levels. Figure 2.1.1 shows a one dimensional step edge in images. The step edge is
characterized by its height h indicating the difference between two intensity levels
of values a and b respectively. An edge exists if the absolute difference between
two levels a and b is greater than a pre-set value which is considered to be the
threshold value separating edge and non-edge magnitudes and hence detecting

difference between edge and non-edge pixels.

Processing window W

Edge operators in general select a set of pixels as a processing window or mask
which is used for the computation of edge strength values. The mask size m x n
determines the number of rows (m) and columns (n) of the processing window.

If a processing window contains an equal number of rows and columns it may

10
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Figure 2.2: Edge detector processing window

be represented by a mask size V ( indicating that the processing window of size
 x V. where N is odd). Figure 2.2 shows two conventional processing windows
for mask size .V =3 and .V = 5 with the center pixel P(z, ;) indicated by a circle.
In this thesis processing window (or window) or mask represents square matrix of

pixels as shown in Figure 2.2.

Digital image

Figure 2.3 shows a digital image of size M x V pixels arranged into M rows and V'
columns. Pixel P(0.0) located at top left corner and pixel P(M —1. .V —1) located
at the bottom right corner. The Figure 2.3 also shows a pixel of interest P(i. ;)
(located at i row and j column indicated by the circle) where the edge strength
value is to be measured applying a 3 x 3 window. The digital images used in this
thesis are either gray scale image (intensity values represented by 8-bits or levels
0 — 253), or binary (represented by two levels-black and white) to represent edge

maps.
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Figure 2.3: A digital image grid
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2.1.2 Imaging systems

Imaging systems can be broadly classified into coherent and incoherent systems
based on the illumination source used in image formation. Differences exist between
coherent and incoherent imaging in the way images are formed. Historically, images
have been perfc d with incoh il ination [4] such as sunlight. A variety of

optical and electromagnetic (EM) instruments which require coherent illumination for
their applications have been developed. The invention of the laser in the early 1960's
opened new horizons for imaging systems using coherent illumination. Holographic
imaging is a two step image processing that uses coherent illumination. Radar systems
obtain images using coherent processing. Lasers used for illumination purposes use
highly coherent light.

Incoherent imaging systems are linear in intensity and the phase information associ-
ated with the object being illuminated is not retained in any way. In these systems all
possible phases are represented. The human vision system and photographic systems
are most common examples of imaging systems that use incoherent processing.

Coherent systems are linear in complex intensity and the phase information asso-
ciated with the object is retained. These imaging systems have illumination energy
in which phases are aligned. The process becomes more complicated when images are
formed using coherent and reflected energy. With reflected energy signal there is a sec-

that are i into the reflected

ond problem associated with the phase
beam due to the surface roughness of the object being illuminated. These parameters in
coherent imaging systems give rise to noise patterns called speckle which may degrade
the images formed by the system. This thesis addresses images obtained using syn-
thetic aperture radar (SAR) which are formed using coberent processing and are further

discussed in section 2.5.
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2.2 Speckle

2.2.1 Speckle origin

The operation of the first HeNe laser in 1960 revealed a peculiar granular pattern
called laser speckle phenomenon [34]. It was found that the speckle patterns are produced
as a result of the scattering of coherent light from surfaces which are rough on the scale
of optical wave lengths (5 x 10~ meters).

When objects are viewed in highly coherent continuous wave (CW) laser light the
response observed at a distant point consists of many coherent components each arising
from a different microscopic element of the surface being illuminated. The distances
traveled by these coherent components may differ by several or many wavelengths if
the surface is truly rough. The resultant field will therefore consists of contributions
from several component waves which are in and out of phase. although coherent. thus
resulting in the appearance of a granular pattern.

If interference at any point is highly constructive the resultant speckle pattern con-
sists of bright spots. If the interferences are highly destructive then the resultant pattern
consists of dark spots. Overall the speckle consists of random spots bright and dark in-
tensities and. of intensities in between these two extremes. If the observation paint
is shifted in space, the resultant speckle pattern will also change due to a new set of
components contributing to the resultant field.

A literature search shows that direct analogies of laser speckle are found in coherent
imaging such as radar astronomy, synthetic aperture radar (SAR) and acoustical imagery
[34). In addition, speckle-like patterns are also observed in radio wave propagation.
temporal characteristics of incoherent light, the theory of narrow band electrical noise.

ultrasound and general theory of random spectral analysis [10]. The term speckle has
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now taken on 2 far broader sense than when it was first introduced as laser speckle.

2.2.2 Speckle classification

It is convenient to classify speckle patterns into two groups, objective and subjec-
tive speckle. The scattering of a rough surface illuminated by a coherent light source is
known as objective speckle. A part of objective speckle can be observed by holding a
screen in front of the object being illuminated. Briefly, objective speckle is speckle ob-
served in free-space geometry. Subjective speckle patterns can be observed by focusing

the scattering of a rough surface using a lens system as shown in Figure 2.4. In other

i Figure 2.4: Speckle geometric phenomena

words, subjective speckle is objective speckle obtained by considering the lens pupil as
the scattering surface. Subjective speckle is different in that an image of the object is
formed by using lens system.

It may be considered that there is no difference between objective and subjective



speckle but they are speckle patterns at different scales, i.e they will have different
visual patterns appearance. The speckle observed in imaging systems are examples of
subjective speckle patterns.

2.2.3 Visual effect
Figure 2.5 shows speckle patterns produced from a reflected surface such as paper
(Goodman [34]). Dennis Gabor, who received the 1971 Nobel prize in physics for his

invention of holography says that the speckle is not really noise but, it is information

which we do not want i.e the i jon on the mi i of the paper in
which we may not interested. )

The speckle patterns can be used for beneficial purposes in applications such as

I stellar i etc. A collection of engineering uses

of the speckle can be found in [25, 26]. The speckle patterns are used in measuring
surface roughness, non-destructive testing of finished mechanical components, detection
of cracks in aircraft wings, detection of distortion in engine bearings etc. An extensive
review on use of speckles in meteorology can be found in [27]). Another important

area covers applications in and stellar i y. Speckles are used for

measuring the diameters of asteroids and planets [28], solar granulation [29], angular
separation and position angle of binary stars [30].

However, speckle is most commonly treated as noise or unwanted disturbance in
image processing and computer vision application as it obscures observable details in
the underlying images. It is seen from Figure 2.5, that speckle patterns consists of
random bright and dark patches of random widths distributed all over in a totally
chaotic manner. Though there may not be much information that image processing and

computer vision applications from a surface such as plain paper (no intensity changes
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Figure 2.5: A laser speckle pattern visual effect

Copied from Laser speckle and related phenomena,

J.W. Goodman and J.C Dainty [34], page. 10.



or no objects to register. etc.,) but the speckles give impression that there may be some
useful information. It may be difficult or may be impossible in some cases even for the
human vision systems to recognize fine detailed information in speckled images due to

the visual effects created by the speckle noise.

2.2.4 Speckle statistical characteristics

The statistical characteristics of speckle patterns have been well studied and es-
tablished [34. 10]. Goodman derived the first and second order statistical characteristics
of laser speckle patterns [34]. Since the derivations are lengthy and outside the scope of
this thesis. only a summary of these results is presented here.

The complex amplitude scattered light at a distance observation point in space is
given by the sum of amplitudes of the contributions from each point source on the
scattering surface (Figure 2.4). Assuming that the number V of elementary contributions
a, is extremely large. i.e V — 50, Goodman derived the joint probability density function

(PDF) p,, of the real (A,) and imaginary (4,) parts of the speckle patterns as.

L A+ [AP
Pl 40 = s exp(- AL AT, @1
A B L )i <lae|>? (22)

Nex V

=1 2
Where < ax > is ensemble average of a. elementary contributions. The PDF py, is
commonly known as a circularly Gaussian density function since contours of constant
pdf are the circles in complex plane.

The quantity that is frequently considered in the field of digital image processing is

the intensity of the speckle patterns. Goodman derived the equation for the marginal



PDF of the speckle intensity alone py(/) as:

shesp(—zk) 120

pill) :[:pu(l.ﬂ)dﬂ - { ; (23)

otherwise
The PDF of the intensity P(I) which is greater than some set threshold value / is
expressed as:

-1

2
<I>) (2.4)

P(I) = exp(

In general. speckle consists of sum of two or more polarised speckle patterns. Thus the

total intensity of the irradiance / may be composed of .V speckled patterns.
~
I1=3 I(k) (2.3)
=t

where /(k) =| 4.(k)? + Ai(k)? |. Thus speckle patterns may also express correlations
between underlying intensity fields.

Goodman deduced that speckle patterns obey negative exponential statistics. His re-
sults were later d lly by many other [10. 67). MeKechnie
[67) who took 23.000 reported in his i that speckle exhibits

negative exponential characteristics. Figure 2.6(2) shows Goodman’s theoretical plot

of speckle characteristics. Figure 2.6(b) shows Mckechnie experimental results showing
speckle characteristics. Figure 2.6(a) and (b) confirm that speckle intensity exhibits

negative exponential characteristics.
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Figure 2.6: Speckle statistical characteristics

(a)

(b)

(a) Goodman theoretical plot: (b) McKechnie experiments. (Copied from Laser speckle
and related phenomena, J.W. Goodman and J.C. Dainty [34]. pp. 19.
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2.3 Edge Detection Methods

2.3.1 Gradient edge detectors

Gradient edge detectors in general calculate edge strength value based on differ-

ences between pixel values. These use edge which are
windows but each element in the window is assigned a value which is different for different
operators. At each pixel P(i.j) in the input image, the edge strength magnitude A(:. )
is calculated as per the edge operator algorithm applying edge template. A pixel P(i. )
is classified as an edge pixel if the edge strength value A(i, j) is greater than a pre-set
threshold value. The image defined by the A(i, j) values is called the edge strength map
while the corresponding thresholded version is called edge map E(i. ) which is a binary
image indicating edge and non-edge pixel location by 1's and 0's respectively. If edge
map is obtained from noise-free image then it is refered as ideal edge map indicating
ideal edge pixel locations. If edge map is obtained on noise corrupted image then. it is
refered as actual edge map which indicates actual edge pixel locations in the detected
edge map.

Different gradient edge based on edge have been by

researchers in the past such as Sobel, Robert, Prewitt. Kirsch etc. [77]. Figure 2.7 (a)
and (b) shows edge templates for Sobel and Prewitt operators, respectively. According
to these methods an edge strength magnitude is calculated by applying the appropriate
row and column gradient masks at each input image pixel. The square root of the sum of
row and column gradient masks computed and is considered as the overall edge strength
measure. An edge strength map so obtained is thresholded to separate the edge pixels
from the non-edge pixels.

That is. the Sobel operator measures edge strength value by applying the row and
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Figure 2.7: Gradient edge detection operators
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column Sobel edge templates (Figure 2.7(a)) at each pixel Pli.j) in the input image.
The Sobel operator calculates the overall edge strength value at each pixel P(i. j) using:

E(i,j) = VIGREI? + [Ge (i, )1 (2.6)
where G and G are row and column edge strength magnitudes, respectively. If L1
and L2 are left and right sum and differences of pixel intensity values of the pixel P(:. ;).
Sobel operator calculates G and G edge strength measures using the following set of
equations.

Row gradient:

Gaii)s A—'lﬁ(“ — 19 2.1
Ll=Pli—Lj)+KxPi.j+1)+Pi+1.j+1)
L2=Pi-1.j—1)+KxP@Ej=1)+Pli+1,j~1)

Column gradient:

Geli.f) =ﬁ[u ~19) (2.3)
Ll=Pli—1j—1)+KxPli~L1j)+Pli-1j+1)
L2=Pi+1.j-1)+KxP(i+1,j)+Pi+1.j+1)

Similarly. an edge strength map can be obtained using the Prewitt operator edge
templates shown in Figure 2.7(a) and substituting & = 1 in the above set of equations.
There exist many different operators based on the computation of gradient edge strength
values. but most of them use similar techniques based on local gradient information [77].

Gradient edge detectors are best suited for applications on noise-free images.

2.3.2 Zero-crossing edge detectors

The concepts involved in zero-crossing edge detector can be best described by

a simple one-dimensi i step edge as shown in Figure 2.3(a).




Step edge signa!

Second derivative

©

Figure 2.8: Zeto crossing Edge detector
(a) One-dimensional analog step edge; (b) The first derivative

measured on (a): (c) The second derivative measured on (a).

Figure 2.3(b) shows the first derivative of the step edge which gives local maximum
at edge locations. Figure 2.8(c) shows the second derivative of the signal 2.8(a) which
gives zero crossings at the places where the first derivative maxima are found. A zero
crossing edge detector calculates edge pixels at locations where the spatial gradient finds
its maximum values i.e. a pixel is marked as an edge pixel if there is a “zero™ crossing
of the second derivatives at that pixel [77). The generalization of the zero-crossing edge
detector in 1-D domain leads to the Laplacian operator in two dimensional domain.

Figure 2.9(a) shows two common 3 x 3 Laplacian masks used for compnting the
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Figure 2.9: Zero crossing edge detector templates

(a) A 3 x 3 masks employed in calculating 2-D Laplacian

a b|a
b e|b
a b|a

Figure 2.9(b) General pattern of a 3 x 3 mask used in computing a 2-D

digital Laplacian. The constraints are: (i) e = —(4a + 4b) and (i7) 2a + b = | [77]

2.D Laplacian operator. A Laplacian operator detects edges by convolving an input
image with the Laplacian mask and using a threshold value to separate edge pixels from
non-edge pixels.

Zero crossing edge detectors can be used to generate edge maps with sub-pixel accu-

racy and are successful in generating good localized edge maps. But one problem with

these operators is that they are insensitive to the edge magnitude. The masks used for
computing digital Laplacian are not necessarily optimal. Various 3 x 3 masks can cor-
i rectly compute a digital Laplacian but may have different performance characteristics
under different noise environments.

When applied on speckled images zero-crossing operators have been found to be

successful in generating thin and localized edge maps [3]. However. the edge maps also

9
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included spurious edges giving poor definitions compared to an ideal edge map when

applied on speckled images [3. 89].

2.3.3 Ratio edge detectors

It has been found that edge detection methods using ratios between pixel values
tend to cancel out the effect of multiplicative noise present in speckled images and to
generate better edge maps when compared to the gradient methods for such images

[2. 23. 82]. Figure 2.10 shows a schematic used to describe ratio based methods.

(m-i, 0-)
Window W
Region P
Region Q
P(i;
(man)
horizontal edge (5 x 5 window)

Figure 2.10: General schematic for ratio based edge detectors.

The processing window of a selected size is divided into two non-overlapping regions
P and Q along one of the possible edge orientation o. The average pixel intensity P,
and Q, are calculated for each of the two regions. The minimum of the two ratio of

averages (P./Q.). (Qu/P,) is considered as edge strength measure R, for the selected
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edge direction o. The ratio-of-averages edge strength value is calculated for each of the
selected edge directions. The minimum of all the ratio-of-averages R, is considered as
the overall edge strength measure of the image pixel under consideration.

If the area which includes regions P and Q is homogeneous. the ratio-of-averages
calculated for these regions will be approximately equal to unity which indicates a non-
edge condition. [f regions P and Q represent different homogeneous areas. then the
ratio-of-averages measured will have a value other than 1. based on the respective relative
average pixel intensity value over regions P and Q. A pre-set ratio threshold value T,
can be used to separate edge and non-edge pixels.

For speckled images. ratio based edge detectors perform better than gradient or zero-
crossing edge detectors [2, 23, 82. 90]. However. these methods trade-off the number
of false edge pixels and the number of correctly detected edge pixels when compared
with their corresponding edge maps obtained on noise-free images. These methods also

generate thick edge maps.

2.4 Speckle Specific Edge Detection Methods

[n this section several existing speckled specific edge detection methods are re-

viewed in terms of their d and disad ges. The following edge

detection algorithms are reviewed:
o Coefficient of Variation (CoV) [82] edge detector.
« Ratio of Averages [3] edge detector.
« Touzi Extended Ratio of Averages [82] edge detector.
® Modified Ratio of Averages (MRoA) [90] edge detector.
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o Ratio and Gradient of Averages (RGoA) [90] edge detector.

2.4.1 Coefficient of Variation edge detector

Touzi [82] proposed the coefficient of variation (CoV) edge detector for speckled
images and used radar images as his application example. According to the statistical
nature of speckle, outlined above in section 2.2.4, the ratio of local standard deviation
to mean in homogeneous areas does not depend on local mean power. Touzi used this
fact and defined coefficient of variation (CoV) edge detector for use on radar images

An estimate of the CoV is computed for an image pixel of interest by selecting a
window surrounding the pixel of interest and using the standard deviation (o) and mean
(1) of the pixels in the selected window. According to Touzi, the CoV edge strength

value is measured using:

= 29

e =Yg (2.9)
where. values o and u are computed using,

(2.10)

(2.11)

For practical applications, value of /u is approximately equal to \/{L/L) over a
homogeneous areas, where L is the number of independent looks used in forming the
radar image. This value could be higher over edge areas. Hence a threshold value is set
using approximation T = \/E + ¢, where e is very small quantity. Image pixel P(i. ;) is
labeled as an edge pixel if the edge strength value is greater than the pre-set threshold

value. Hence. the CoV edge detector detected edges if:

oluz (/L) +¢ (2.12)



All other pixels are classified as non-edge pixels. The larger the o/ value the more

likely that the pixel is an edge pixel.

2.4.2 Ratio of Averages (RoA)

Bovik [3] suggested the simple Ratio of Averages method for detecting edges in
speckled images by considering horizontal and vertical edge orientations. Figure 2.11

shows a schematic diagram of Bovik’s Ratio of Averages (RoA) edge detector. According

to the RoA edge detector. a selected neighborhood (window W) ding the image
pixel of interest P(i, j) is divided into two non-overlapping regions P and Q (Figure 2.11).
The average intensity value of the pixels in the two regions P and Q are calculated as

R(i.j) and L(i. j). respectively.

PGij)

horizontal edge (0=1) vertical edge (0=2)

Figure 2.11: The schematic for Ratio of Averages (RoA) edge detector

The RoA edge strength value for horizontal and vertical edge orientations are calcu-
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lated using:

H(i.j) = max{R(i. j)/ L(i. j). L{i. )/ R(. 3] (2.13)

V(i.j) = max{R(i, j)/ L(i, ), L(i. 1)/ R(i. )] (2.14)

The overall edge strength magnitude is calculated as,

R(i.j) =/ H(i.))?+ V(i,j)? (2.13)

Edge strength map so obtained can be thresholded to separate edge pixels from non-
edge pixels. That is, an image pixel P(ij) is classified as an edge pixel if R(i.j) > T,
otherwise it is classified as a non-edge pixel.

Bovik noted that the ional RoA method is in detecting edges in

speckled images since the method is invariant to intensity changes [3]. However. the
RoA method generates thick edge maps. Bovik also showed via his experimental results
that the Laplacian of Gaussian (LoG) operator can be successful in generating good
localized edge map for speckled images. However. the LoG method generates a number
of spurious edge pixels.

According to Bovik, the advantages of RoA method are the disadvantages of LoG
method and vice versa. The RoA method gives an optimal edge map for speckled
images but, generates thick and ambiguous edge maps, where as LoG generates thin and
localized edge maps but results in number of erraneous edges. He suggested that these
two edge detectors be used in combination to give better results on speckled images. He
used the RoA method in combination with the LoG method by combining the respective
two edge maps using a logical AND operator.

Bovik demonstrated that the use of RoA and LoG methods in combination is suc-

cessful in generating meaningful edge maps on speckled images. But the RoA method
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uses only horizontal and vertical edge orientations which lead to a poor quantization of
the possible edge orientations. A good edge detector should include information on all

possible edge orientations for extracting as many true edge pixels as possible [32].

2.4.3 Touzi Extended Ratio of Averages CFAR

Touzi et. al. [82] also proposed a statistical and geometrical edge detector for
SAR images considering ratios between pixel values. Their proposed edge detector uses
contrast ratio C, between two homogeneous regions in a selected neighborhood. They
suggested that in order to obtain better performance results an edge detector must be

v, Touzi et. al. d four main edge

applied in all possible directions. A
orientations. namely. horizontal, vertical, left slanted and right slanted. For each of these
edge directions. a window centered at given pixel P(i. ) is divided into two contiguous
non-overlapping regions P and Q. Figure 2.12 shows a schematic used to describe the
Touzi et. al edge detector.

Touzi et. al proposed extended ratio of averages edge detector which uses constant
false alarm rate (CFAR) concept. A contrast ratio C, is used to define edge and non-
edge conditions. A contrast ratio of C, = 1 is defined for homogeneous regions. For

non-homogeneous regions contrast ratio value is determined using:
C, =max(P,/Q0,Qo/ Po), o0=l.....4. (2.16)

where P, and Q, are average pixel intensity values of two selected regions in the edge
direction 0. The conditional probability of detection within boundaries between two
homogeneous regions having contrast ratio C.. for a given threshold value T, is calculated
using:

Pd(T.C,) =Prob(r < T |C,) = /;Tp(r | C.)dr (2.17)
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left slanted Right slanted

Figure 2.12: The schematic for Touzi CFAR edge detector

Touzi et. al defined the probability of false alarm (P fa) as the probability that a pixel

of a homogeneous area is detected as an edge pixel. and hence.
Pfa(T) = Pd(T.1) (2.18)

Touzi et. al also proposed a multi-scale CFAR detector using increasing mask sizes
and different threshold values for each mask size. Touzi el. af obtained edge maps
using different mask sizes (3 x 3.5 x 5,7 x 7.9 x 9) and combined these edge maps
using logical OR operator thus producing final edge maps for speckled images. Touzi ct.
al suggested that the multi-scale CFAR edge detector be used for extracting fine and
large object detail on radar images. Touzi et. al CFAR method also used edge thinning

post-processing in order to produce thin and precise edge maps.
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2.4.4 Modified Ratio of Averages (MRoA)

Zaman and Moloney [90] modified the Bovik RoA method by taking all four
edge oreintations into account, namely horizontal, vertical. left slanted and right slanted.
in their Modified Ratio of Averages (orientations) edge detector. Figure 2.13 shows

schematic of the MRoA edge detection method.

horizontal edge =1) ventical edge (=2)

Figure 2.13: The schematic for the Modified Ratio of Averages (MRoA).

The processing window W of a given mask size .V centered around the image pixel
of interest P(i. j) is divided into two non-overlapping regions for each of the four edge
directions. Ratio of averages edge strength value is calculated for each edge of the edge
orientation o using:

R, = min(P,/Qo.Qo/P.); o0=l.....4 (2.19)
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where P, and Q, are the averages of the pixel intensity values in the two non-overlapping

regions in direction o. The overall edge strength value is measured using:
R = min(R,. Ry, Rs, Ra) (2.20)

An edge strength map so obtained is thresholded to separate edge pixels from non-
edge pixels. If the ratio edge strength value R at any pixel is less than the pre-set
ratio-threshold value 7, then the pixel is classified as an edge pixel. All other pixels are
labeled as non-edge pisels.

The Zaman and Moloney MRoA edge detection method can detect accurate edge
maps including a number of correct edge pixels which may be missed by the Bovik RoA
which uses only the horizontal and vertical edge directions. However. the edge maps
generated using the MRoA method are thick and required edge thinning post processing

operations to produce precise edge maps.

2.4.5 Ratio and Gradient of Averages (RGoA)

Zaman and Moloney further improved the MRoA edge detector by including
gradient edge strength information in extracting correct edge pixels information from
speckled images. According to them. the MRoA method detects more spurious edges
in dark areas compared to bright areas even if the contrast ratio is held constant. This
becomes a problem if edges have to be detected from both bright and dark regions in
the same image, as is frequently required. Zaman and Moloney hence suggested that

gradient edge strength i ion be included in calculating edge strength and hence

developed the Ratio and Gradient of Averages (RGoA) edge detector [90].
The RGoA edge detector calculates edge strength measure in terms of both ratio and

gradient edge strengths. The Schematic of Figure 2.13 also applies to the RGoA edge
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detection method. The ratio edge strength value is measured using the MRoA method
as explained in the previous section. The gradient edge strength value is calculated for
each of the four directions of Figure 2.13 using:

G, = abs(P, - Q,), o=L..... 4, (221)

The overall gradient edge strength magnitude is calculated as:

G =max(G,), o=l,....4.

The overall edge map is obtained by combining edge maps extracted based on ratio
and gradient edge strength measures using the logical OR operation. The RGoA method

detects edge pixels if:

R<T, OR G>T, (2.23)
where T, and T, are pre-set ratio and gradient threshold values. respectively.

The RGoA method can successfully extract true edge pixels giving with better results
than the MRoA edge detection method. The edge pixels that are detected using MRoA
method are also included in the edge maps obtained using the RGoA method because
the later method is an extension of the first method with the addition of gradient edge
strength information. The RGoA method also require edge thinning post-processing to

generate thin and precise edge maps on speckled images.

2.5 Synthetic Aperture Radar Imaging

2.5.1 SAR imaging technology

RADAR is an all-weather day/night sensor and has been used for a wide variety

of surveillance applications since World War II. Radars detect targets by sending pulses
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of radio waves toward them, and detecting any reflected energy. Imaging radars use
a moving platform, with the radar antenna pointed perpendicular to the direction of
the platform motion, to provide a second dimension (azimuth) and thereby build up a
two-dimensional strip image. Imaging radars have been used since 1960 in military and
civilian applications all over the world. An advanced signal processing version of these
radars. known as synthetic aperture radar (SAR) provides 2-D imagery.

Synthetic Aperture Radar (SAR) is an airborne or space borne imaging system that
uses coherent processing of returned radar signals. SAR provides an efficient means for

better unds ding and itoring of the Earth i and resources. SAR is

a microwave instrument that sends pulsed signals towards targets and processes any
reflected pulses from the targets. Optical satellite based remote sensing depends on
sunlight to illuminate targets. Hence their performance is limited to the presence of
clouds, haze, smoke and darkness. But SAR transmits and receives signals through
clouds. haze. smoke and darkness providing an all-weather all-time means to obtain
high quality images of the Earth from remotely observed platforms.

SAR images are increasingly used in remote sensing applications such as geology.
mining, fishing, farming, forestry, sea ice mapping and hazardous monitoring [78. 5. 86.
83]. Several experimental satellite SARs such as SEASAT [92] and SIR-B [31] demon-
strated the usefulness of SAR. Canada Center for Remote Sensing (CCRS) launched
RADARSAT on November 4, 1995, a satellite SAR intended for civilian Earth observa-

tion applications.

2.5.2 Speckle noise in SAR images

SAR generates images by coherent processing of returned radar signals and hence.

the SAR images are subject to speckle effects. Figure 2.14 shows a representative SAR
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Figure 2.14: A typical SAR amplitude image

(A typical SAR amplitude image in which the speckle patterns are evident. Used with

permission of the Canada Center for Remote Sensing (CCRS), Canada).
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image calculated from a flight by airborne SAR over a region near Ottawa. Canada.
The images in the data set include mixed terrain. farm land. industrial and frozen
river regions. It can be observed from this image that the speckle is significant in mixed
terrain and industrial (high intensity homogeneous) regions when compared to the frozen
river (low intensity homogeneous) regions as is characteristics of speckle. Such images
may require filtering operations such as speckle reducing filters [23. 47. 52. 90] or edge
detection algorithms designed for the particular interfering noise [3, 24, 82] environments

in order to achieve good in image li

2.5.3 SAR image data processing

[mages obtained using SAR can be grouped into different types based on data
processing techniques used in image formation. First, SAR images can be classified
based on the radar return signal component used in computing the response at a single

pixel (i.e. resolution element) in the recorded image. These are:
o Amplitude SAR images
o Intensity SAR images

« Amplitude SAR image
In theory, the received radar signal at an observation point consists of sums of

4 in Section

delayed and attenuated copies of the signal. It was
2.2.1 that coherent processing retains phase information, thus the received signal consists
of in phase and quadrature components. The sum of complex signals results in another
complex quantity and is referred as complex amplitude speckle signal. Derin [15] derived
the probability density function of the real complex amplitude SAR image expressed as:

—A2/20%)
a? J

plA) = AZRL Az0 (2.24)



where z and y are the in-phase and quadrature components of the SAR signals and
A= JFER
Derin derived the amplitude SAR image mean calculated over homogeneous regions

/7/2 and the variance 0% = 2 — 7/20? where o is the stan-

which is found to be p 4
dard deviation of the normally distributed in-phase z and quadrature y components.
The amplitude SAR image therefore exhibits a ratio of standard deviation to mean of

4/p4 = 0.5227 over homogeneous regions [15].

o Intensity SAR image
SAR intensity images are formed by computing the sum of the in phase z and

quadrature y components yielding SAR intensity image resolution element equal to

[ = z* + y2. Derin [15] also derived the probability density function of the intensity

SAR image expressed as:

serenp(=1/2%), 120

3)

p(1)

having mean ;1 = 20 and variance of 0 = 40* where o is the standard deviation of the
normally distributed in-phase z and quadrature y components. Thus an intensity SAR
image is characterized by its ratio of the standard deviation to mean over homogeneous
regions equal to unity [15].

Secondly, onother way of classifying SAR images is based on the number of looks

considered in image formation. These images are classified into:
@ Single Look or One-Look SAR
o Multilook SAR image

o Single-look and Multilook SAR

Single-look or one-look SAR images are obtained by considering a single realization
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of intensity or amplitude SAR images. Multilook SAR images are obtained by combining
realizations from several single-look images to form composite response. If .V single-look
SAR images are averaged on an intensity basis then the resulting SAR image is called
an V-look intensity SAR image.

The probability density function of single-look amplitude and intensity images is
expressed by Equations 2.24 and 2.25, respectively. The probability density function
of 4 = look amplitude SAR image denoted by A found to be y distributed [15] and is

expressed as:
pa(A) = 16A7exp(—A?/0?)/30%. A >0 (2.26)

where o equal to the standard deviation of the normally distributed in-phase z and
quadrature y radar return signal components. The ratio of the standard deviation to
mean over homogeneous regions is therefore o4 A)/Mq(A) = 0.2536 for + — look ampli-
tude SAR images.

Derin [15] also derived the corresponding probability density function for 4 — look

intensity /. is x* distributed and is expressed as:
pa(l) = 81%xp(~21/c2)/30%, [>0 (2.27)

where o is the standard deviation of the normally distributed in-phase z and quadrature
y components of the radar return signal. The ratio of the standard deviation to mean over
homogeneous regions is found to be equal to a4(I)/p4(I) = 0.5. For single-look intensity
SAR images mean and standard deviation over homogeneous regions are equal whereas
for multi-look (V — look) amplitude SAR images these quantities are proportional.

In order to reduce the undesirable effects of speckle noise, several independent (single-
look) SAR images can be averaged thus producing a multi-look SAR image. While the

multi-look process reduces the speckle noise, it will also reduce image resolution due
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to spatial averaging. However, multi-look images are often better suited to applica-

tions. For example. Lee [53] suggested that multi-look SAR images are better suited

to image ion and classificati ications despite their reduction in azimuth

resolution.

2.5.4 Speckle noise models

Image noise models are of particular importance for digital processing of images.

In this section. models of speckled images are considered with particular reference to

radar images. Several researchers have proposed models for SAR speckled images as a

prelude to the development of different algorithms for SAR images. A brief review of
these algorithms is presented in this section.

Lee proposed that a multiplicative noise model can be used for simulating SAR image

speckle [57] as.
y(i.j) = =(i.j) - nli.j) (2.28)

where. y(i. j) is the recorded SAR image. z(i. j) is the original noise-free signal and n(i. j)
is the interfering random noise field. The noise signal n(i.j) is Rayleigh distributed

with mean of one and standard deviation equal to [* — 1]'/? = 0.522. With the use of

iplicative noise model d by Equation 2.28 speckle corruption is a point
operation and hence y(i. ;) is uncorrelated whenever z(i.;) is uncorrelated. Durand et.
al. used multiplicative noise model similar to Lee for simulating SAR speckle which
they used for SAR data filtering and classification [17]. Kuan et. al. suggested a non-
stationary mean and non-stationary variance (NMNV) model for use in image restoration
algorithms for speckled images [51].

Tur et. al. noted that a simple multiplicative noise model may not be a good choice
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Figure 2.15: Speckle noise model

for modeling speckle noise as it fails to account for inter-pixel correlation effects due to
correlation in speckle itself. Frost et. al [23] used a multiplicative-convolutional speckle
image model to eliminate fading effect (dominant source of randomness in radar images)
and hence derived minimum mean squared error (MMSE) estimates for use in SAR data

filtering. Frost et. al. suggested that SAR images be modeled as,

y(i.j) = [2(2,5) - n(i, )] = (3. )

where = indicates convolution with the SAR impulse response A(i. j).

Based on their model for speckled noise. Frost et. al. also developed an edge detec-
tion algorithm for SAR images [24]. Hudson and Jernigan [47] used a multiplicatively
convolved model similar to Frost but with a circularly Gaussian point spread function
(PSF) impulse response. Figure 2.15 shows a speckle noise model used by Frost eL.
al. Zaman and Moloney [90] used models of single-look and 4 — look amplitude images
suggested by the Hudson et. al. [47] to generate simulated SAR speckle on which to

test edge preserving noi: hing dratic volterra filters.
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More complex models for simulating speckle noise have also been proposed such as
Derin [15, 52] which are based on radar signal model. However. the model suggested by
Frost et. al. have been found to be adequate for explaining the speckle noise observed
in images formed by coherent imaging systems [24, 47, 89]. Frost et. al. noted that the
above multiplicative-convolved speckle image model also explains SAR image adequately
so that the speckled statistical properties images simulated according to Equation 2.29

are comparable to that of actual SAR imagery.

2.6 Summary

This chapter began with a review of the literature on speckle noise in images.
A review of speckle noise nature and characteristics were outlined. A survey into edge
detection methods in general and methods that are suited to use on speckled images was
conducted. Algorithms for speckle specific edge detection available in literature were

briefly introduced. The advantages and disad of several speckle specific edge

detection methods were reviewed. Background information on imaging technology used
in SAR imaging systems was provided. SAR data processing methods and types of SAR
images along with their statistical models were outlined. Speckle image noise models
available in the literature were reviewed and a radar signal noise model is introduced.
The literature search into edge detection methods reveals that ratio based methods
are better suited for use on speckled images. Hence methods that use ratios between
pixel values are considered for further investigation and analysis. An evaluation of edge
detection methods for speckled images using synthetic and real airborne SAR images is

presented in the next Chapter.
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Chapter 3

Evaluation of Edge Detection
Methods for Speckled Images

3.1 Introduction

In this chapter. the procedure previously used by Zaman and Moloney [90. 91]
to measure the performance of edge detection methods for speckled images is reviewed.
Since the previous evaluations by Zaman and Moloney [91] mainly used synthetic data.
a study of these methods using real airborne SAR images with permission from Canada
Center for Remote Sensing is conducted. An evaluation of existing edge detection meth-

ods using real images with real speckle is performed in this Chapter.

3.2 Edge detector performance measures

Since all edge detectors are not suitable for all applications, the performance of
a given edge detector must be carefully evaluated before selecting it for a particular

application. Moreover. at times the use of a particular edge detector may be computa-



tionally inefficient as the same results may be obtained using a computationally simpler
edge detector. Edge detector performance measures are also important as they may
aid in designing new operators by providing guidelines on how to improve the exist-
ing edge detection operators. [n this section measures used in evaluating edge detector
performances in this thesis are presented.

The evaluation of an edge detector’s performance is usually conducted based on

both qualitative and quantitative factors and this practice is followed in this thesis.

Qualitati luations are cond mainly based on human perception. Quantitative
evaluations are based on several appropriate edge detector quantitative performance
measures. Other evaluation methods used in computer vision applications which are
supported by knowledge base systems. artificial intelligence decision rules. fuzzy logic

etc.. are not addressed.

3.2.1 Qualitative performance measures

Evaluation of an edge detector’s output can yvield quick and obvious insights into
the performance of an edge detector. An edge map obtained using an edge detection
operator is visually compared with an ideal edge map obtained for the noise-free image
in order to determine whether or not a close match exists between the two edge maps.
In case of real test data for which the ideal edge map is not available, qualitative eval-
uation is performed by comparing the detected edge map with a human perceived edge

map. Such qualitative i ion aids in ing an edge detector’s performance by

providing rapid answers to questions such as:
o Does the edge map contain any spurious (false) edges ?

® Does the edge map give a close estimate to the ideal edge map ?



« Does the edge map give a close estimate to the human perceived edge map ?
o Is the edge map missing any true edge information ?

Qualitative i ion can act as a preliminary ination tool in the case of synthetic

test data for which final evaluation decisions can be mainly based on quantitative eval-

uation measures. However, the qualitati ion plays an i rale in the
evaluation of an edge detection operator’s performance on real data such as SAR for

which the information regarding the ideal conditions may not be available.

3.2.2 Quantitative performance measures

Pratt [77] suggests that a single figure of merit be used to measure edge displace-
ment. ambiguity and incorrect classification etc. :

3.1)

where V4 and .V} are the total number of edge pixels in the actual and ideal edge maps.

ly. The dis the dicular distance from an actual edge pixel

to ideal edge pixel and J is a scaling constant.

McLean and Jernigan [66] suggested that edge detector performance be measured in
terms of edge pixel correctness, ambiguity, displacement and missed edge pixels. which
can be expressed using four different parameter values. Based on their work Zaman and
Moloney [90] suggested a new set of measures for evaluating edge detector performance.
The measures are named correct, ambiguous, missed and wrong. These factors are defined
as:

¢ o _2x(Heorrect)
~ (#true + (#found)

#ambiguous
ke (33)

(3.2)
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_ fmissed

= 34
. _ #false R
W ond (35)

o #truc : total number of edge pixels in the ideal edge map.
« #found : number of edge pixels found in the detected edge map being evaluated.

® #correct : number of true edge pixels found with either one or two detected edge

pixels within a 5x3 window centered on the true edge pixel location.

e #ambiguous : number of true edge pixels found with more than one detected edge

pixel a 5x5 window centered on the true edge pixel location.

o #missed : number of true edge pixels found with at least a single detected edge

pixel within a 5x5 window centered on the true edge pixel location.

® #wrong : number of detected edge pixels not found within a 5x5 window of any

true edge pixel location.

Pratt’s figure of merit, R gives a single value for an edge detectors performance
which may not be sufficient to completely describe the various facts of the operator’s
performance. This figure of merit tends to favor a small number of detected edges.
even if there are large gaps between detected pixels [66]. Moreover. such a single-valued
measure may highlight only limited aspects of an edge detection operators performance.
Different aspects of an operator’s performance should be examined in order to know how
well the algorithm performs and to know the deficits of that particular algorithm etc. The
measures suggested by Zaman and Moloney have been found to be most appropriate in

the quantitative evaluation of edge detector performance [90] and are used in this thesis.
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3.3 Speckle noise simulation

Reviewed speckle noise models in Section 2.5.4. show that multiplicative-convolved

model suggested by Frost et. al. is adequate to simulate SAR speckle imagery Accord-

ingly. the multiplicativel Ived spatially speckle noise model shown in

Figure 2.15 and Equation 2.29, previously used by Frost [23, 24], Hudson [47] and Zaman
[89]. are used for simulating speckle images in this thesis.

The procedure used by Zaman [89] to generate speckle image according to Equation
2.2 is briefly outlined here. A 2-D noise field of the image size to be corrupted with
each pixel value drawn for 2 x? distribution, with 8-degrees of freedom is obtained. Each

image pixel in the original noise-free image is multiplied point-wise with samples from

the noise model file. The resulting multiplicative model of the image is then convolved
with a circularly Gaussian PSF to obtain a 4 — look amplitude SAR image model.

The validity of the simulated speckle noise model is tested using two sample images
Spectrum and Ramp. The original test image Spectrum consists of three regions with
constant intensities 40, 80 and 160, respectively. The second test image Ramp consists
of three regions with left most and right most regions of constant intensities 40 and
160 respectively and a middle regions of a gradually increasing intensity in X-direction
ranging from 40 to 160. The original sample test images Spectrum and Ramp ace then

pted by the i described speckle si ion process. From Figure 3.1 it

1 TSI S WO (F Ve

d speckle is multi g in nature.

can be seen that the si
i.e speckle noise is more significant in high intensity homogeneous regions than in low
intensity homogeneous regions. For example, in the corrupted Ramp test image it can
be seen that the speckle noise is less prominent in low intensity region (left) and more

significant in the high intensity homogeneous regions (right) with a gradual change in



(e) ()

Figure 3.1: Generation of synthetic speckle image

(a) Original Spectrum ; (b) Simulated speckled Spectrum
(c) Original Ramp ; (d) Simulated speckled Ramp .
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Estimates of the standard deviation to mean ratio on
the simulated speckled Spectrum image.

Sample region | Mean | Std. | Rho
Intensity [ | o |p=olu
I= 40 37.38 | 9.70 | 0.2597
I= 40 10.14 | 9.18 | 0.2287
I= 80 101.72 | 25.74 | 0.2530
I= 80 96.50 | 23.90 | 0.2476
I= 80 92.72 | 21.91 | 0.2363
=160 | 19552 |39.95 | 0.2043

Table 3.1: Standard ratio test for simulated speckle noise.

speckle prominence in the middle region.

Table 3.1 shows speckle signal to noise ratio (SVR) p value calculated for image
samples collected from the simulated speckled image Spectrum Figure 3.1(b). Several
16 x 16 pixel image samples are extracted from different homogeneous intensity regions
of Figure 3.1(b). Standard deviation (o) and mean (u) values are calculated for the
extracted image samples. As a standard measure of practice, the ratio of standard
deviation (o) to mean () is calculated indicating the speckle SNR Rho (p = o/u) value
[23, 35). Test results from Table 3.1 show that the ratio p is almost constant (equal to

0.2383). confirming speckle ch istics for si speckle image [23, 53).




i

3.4 Test data

Test images for evaluating edge detector performance include both synthetic and
real airborne SAR images of varying scene contents, structures and business. The term
structures used to refer to image objects or patterns in terms of their length and width
as measured in units of single resolution elements or pixels. If input image consists of
an object 30 x 40 pixels it may be referred to as a large structure if image also consist
of an object 3 x 3 pixels which is then referred to as small structure. The term business
is used to refer how closely positioned or how repetitive the image structures are in the
underlying image. These definitions are only mandatory and may not be the standard

definitions for “structure” or “busyness”.

3.4.1 Synthetic speckled images

The performance of existing edge detection methods has been evaluated on test
images similar to those of Figure 3.1 which have been corrupted according to the process
described in Section 3.3. The original images used for synthetic test images include both
computer generated patterns and photographic images of outdoor scenes. The computer
generated test images include the images Spectrum, Ring and Strips. The Spectrum
original and speckled images are shown in Figure 3.1(a) and (b). The Strips and Ring
original and speckled images are shown in Figure 3.2(a), (b) and Figure 3.3(a). (b)
respectively. Test images Strips and Ring consist of two regions of gray scale intensities
100 and 200 indicating dark and bright regions respectively. The test image Combine
consists of an outdoor scene image Balloon, combined with the test images Strips and

Ring and allows testing using outdoor scene detail.



Figure 3.2: Synthetic test image Strips :
(a) Original Strips ; (b) Simulated speckled image based on (a).




Figure 3.3: Synthetic test image Ring :
(a) Original Ring ; (b) Simulated speckled image based on (a).
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Figure 3.4: Synthetic test image Combine :

(a) Original Combine ; (b) Simulated speckled image based on (a).



3.4.2 Real airborne SAR images

Several real airborne SAR images obtained from Canada Center for Remote Sens-
ing (CCRS). Ottawa are also used as test data containing real speckle noise. The SAR
test images denoted as Moderately Busy, Busy. Fields, Highway, Industrial and Smooth
are selected for testing and evaluation. These images represent a variety of scene con-
tents. The SAR test images Moderately Busy, Busy and Smooth are introduced and
used in this Chapter. The other SAR test images Fields, Highway and [ndustrial are

introduced and used later in this thesis. Evaluation of previous speckle-specific edge

detection methods for SAR images was conducted using SAR test images Moderately
Busy, Busy and Smooth.

The test image Moderately Busy shown in Figure 3.5 consists of woods. fields and
roads and represents images which consist of several low and high contrast regions and
definite edge information. Test image Busy shown in Figure 3.6 contains predominantly
fine structures and is “busy” as a consequence. The underlying image is a suburban
city area. which has several straight roads and rows of houses in the ordered manner
of man-made structures. The test image Smooth shown in the Figure 3.7 consists of an
area of a frozen river and hence has only a few low contrast details such as cracks in the
ice etc.

Standard ratio tests were applied to the SAR images of Figures 3.3, Figure 3.6 and
Figure 3.7 over homogeneous regions. Small regions of size 8 x 8 were extracted yielding
an estimate of the standard deviation to mean ratio of approximately 0.3238 which is
found to be close to the theoretical values [23] thus confirming these SAR images exhibit

speckle characteristics (34, 53].



Figure 3.5: Real airborne SAR test image Moderately Busy .



Figure 3.6: Real airborne SAR test image Busy .



Figure 3.7: Real airborne SAR test image Smooth .



3.5 Evaluation of edge detection methods

3.5.1 Evaluation using synth test i

The synthetic test images Strips, Ring and Combine are used to evaluate the
performance of existing edge detectors performance. Ideal edge maps for these images
are obtained by applying the Sobel operation of Equation 2.6 to the respective noise-free
images. Existing speckle-specific edge detection methods are used to generate edge maps
for the corresponding simulated speckled images. These evaluations are similar to the
metheds used by Zaman and Moloney [90], however tests conducted here are mainly to
give insight into the existing speckle-specific edge detection operators.

Figure 3.3(a) shows the edge map for the Strips image obtained on the noise-free
image of Figure 3.2(a) using Sobel operator of Equation 2.6. Figure 3.8(b) shows the
Coefficient of Variation (CoV) edge map for the speckled Strips of Figure 3.2(b) obtained
using Equation 2.9 with mask size N = 5 and threshold 7' = 0.29. Figures 3.8(c) to (f)
shows edge maps for speckled Strips obtained using Bovik RoA (Section 2.4.2), Touzi
CFAR (Section 2.4.3), MRoA (Section 2.4.4) and RGoA (Section 2.4.5) edge detectors
respectively, with mask size N = 7 and threshold values as shown in Table 3.2. The mask
size (s) and threshold values used here are selected after conducting several experiments
and represent the most promising values for each of the selected edge detector for the
images under test. Figures 3.8(g) and (h) represent the edge maps obtained using the
MRoA and RGoA method followed by edge thinning recommended for the MRoA and
RGoA methods [89].

Similar tests conducted for the Ring (Figure 3.3) test images and corresponding edge
maps obtained using the parameters listed in Table 3.2 for different edge operators are

shown in Figure 3.9. The test results for the Combine images are shown in Figures 3.10
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and cited in the Table 3.3.

Qualitative analysis: Evaluations of edge detector performance by qualitative inspec-
tion based on human perception confirm that the MRoA and RGoA methods are better
relative to the other previous speckle specific edge detection methods. The methods gen-
erate edge maps with better suppression of spurious edge pixel information in non-edge
regions. Their edge maps are found to be better in giving better definition to bound-
aries between regions. However, several true edge pixels in the corresponding ideal edge
maps are missing in the MRoA and RGoA edge maps for the speckled images. These
two methods also generated thick edge maps leading to a requirement for edge thin-
ning post-processing operations in order to produce thin and more precise edge maps.
Qualitative analysis test results obtained here confirm previous evaluation test results

obtained by Zaman and Moloney [91].

Q itati lysis: The evaluation of the edge detection method’s performance

using the quantitative measures suggested by Zaman and Moloney [89] also found that
the MRoA and RGoA methods generated meaningful edge maps when compared to the
other methods. The methods resulted high C values indicating edge maps with improved
number of correct edge pixels detected. The measures for W. M and A are also found
to be relatively better (i.e. low values) when compared with the test results of the
other edge detectors cited in Table 3.2 and Table 3.3 indicating less number of wrong
edge pixels detected with low missing and ambiguous edge pixel measures. Quantitave
evaluation of edge detection methods conduted here confirm test results obtained by

Zaman and Moloney [90] using synthetic test images.
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Figure 3.8: Edge maps obtained for the Strips images:
(a) Sobel edge map for Figure 3.2(a); (b) CoV edge map for Figure 3.2(b);
() RoA edge map for Figure 3.2(b); (d) Touzi edge map for Figure 3.2(b).
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Figure 3.8: Edge maps obtained for Strips images:
(e) MRoA edge map for Figure 3.2(b); (f) RGoA edge map for Figure 3.2(b);

(g) Edge thinning on Figure 3.8(e); (h) Edge thinning on Figure 3.8(f).
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(a) (b)

(c) (d)

Figure 3.9: Edge maps obtained for Ring images:

() Sobel edge map for Figure 3.3(a); (b) CoV edge map for Figure 3.3(b);

(c) RoA edge map for Figure 3.3(b); (d) Touzi edge map for Figure 3.3(b).
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Figure 3.9: Edge maps obtained for Ring images:

(e) MRoA edge map for Figure 3.3(b); (f) RGoA edge map for Figure 3.3(b);

() Edge thinning on Figure 3.9(c); (h) Edge thinning on Figure 3.9(f).
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Figure 3.10: Edge maps obtained for Combine images:
(a) Sobel edge map for Figure 3.4(a); (b) Coefl. edge map for Figure 3.4(b);
(c) RoA edge map for Figure 3.4(b); (d) Tousi edge map for Figure 3.4(b).
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(8) (h)
Figure 3.10: Edge maps obtained for Combine images:
() MRoA edge map for Figure 3.4(b); (f) RGoA edge map for Figure 3.4(b);
() Edge thinning on Figure 3.10(e); (h) Edge thinning on Figure 3.10(f).




Test | Edge | Figure | Mask | Threshold ! ]
Image umm;" 1 N [n,]% |ca% Min%|Win%|:\m%
Test Image Strips :
Original Sobel || 3.2(c) -1 20 - | 100.00 0.00 0.00 0.00
Speckled Sobel || 3.2(d) - | 240 ~ 22.38 0.68 69.53
CoV || 3.2(e) 3 - 1029 57.62 5.88 14.91
Touzi || 3.2(F) 7] -losa| w50 267 1.49
. Roa || 3.2(g) 7| -|1es| 5239 9.02 277
MRoA | 3.2(h) 7 - | 061 87.75 6.11 1.39
W RGoA 3.2(%i) 7| 8 |038 88.96 13.07 0.12
Test Image Ring :
Original Sobel || 3.3(c) -1 2 — | 100.00 0.00 0.00 0.00
Speckled Sobel || 3.3(d) - | 140 - 1242 0.08 76.25 39.66
CoV | 3.3(e) 3 -|032 63.69 1489 931 28.10
Touzi | 3.3(f) 7 - 0359 7445 9.04 260 2455
RoA || 3.3(g) 7 -| 20 39.44 10.28 433 33.24
- MRoA || 33(h) 7 -]0358 85.32 13.74 0.27 16.13
- RGoA 3.3(i) 7| 8|03 82.04 16.40 072 17.37

i

Dxcorrect

Table 3.2: Quantitative performance measures on synthetic test images



g
i
%

Test Edge || Figure | Mask | Threshold !
Image [Dﬂ.eclor N | T, | T | #found | Cin% | Min% i Win % | Ain % |
Test Image Combine
Original Sobel || 3.10(a) 3 | 100 — 13184 | 100.00 0.00 0.00 0.00
Speckled CoV || 3.10(b) 3 - | 035 7746 49.50 39.29 4.71 21.40
- Touzi || 3.10(d) 5 - | 058 7587 63.00 32.89 548 1747 |
RoA || 3.10(c) 7 -] 20 9974 43.86 41.39 375 23.09 1
- MRoA || 3.10(e) 3 - | 0355 6506 63.16 47.70 11.66 !
- RGoA || 3.10(f) 5| 83|055 6827 62.73 43.80 421 1153 |

Table 3.3: Quantitative performance measures on synthetic test images

-2 o
Cc= Firuer@found
W= #irue
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3.6 Evaluation of edge detection methods for real
airborne SAR images

Edge detector evaluation using real airborne SAR data set is based on the three
images Moderately Busy, Busy and Smooth. Edge maps were obtained for all three
images using the MRoA and RGoA edge detection methods only. These edge detection
operators were selected for further evaluating, since, test results illustrated in Figures
3.8.3.9. 3.10 confirmed that these operators perform better than the other existing edge
detectors.

Figure 3.11(b) shows the MRoA edge map for the Moderately Busy test image ob-
tained using mask size .V = 7 and ratio threshold 7, = 0.475. The RGoA edge map for
this image is obtained using mask sizeV = 7, ratio-threshold T, = 0.475 and gradient
threshold value T, = 50, and is shown in Figure 3.11(c). Figures 3.12(b) and (c) show
the corresponding edge maps on the Busy test image using the same parameters used
for the Moderately Busy test image.

The MSPRoA edge map on Smooth image is obtained using mask size V = 7. ratio-
threshold 7, = 0.525. RGoA edge map for this SAR test image is obtained using
N =7.T. =0.525 and T, = 65. Test results for the Smooth test image are shown in
Figures 3.13 (b) and (c). The RGoA edge maps are followed by edge thinning post-
processing operations recommended to use on this method by Zaman and Moloney {90].
The corresponding edge RGoA edge thinning edge maps for Moderately Busy, Busy
and Smooth test images are shown in Figure 3.5(d), Figure 3.6(d) and Figure 3.7(d)
respectively.

o Qualitative analysis

Since the test cases consist of real airborne SAR images, ideal edge maps are not
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available for comparison. However. from figures 3.1, 3.13. 3.12 it can be seen that both

the MRoA and RGoA methods are sful in ing accurate edge infc

from the real airborne SAR test images.

Small regions of size 16 x 16 pixels extracted over edge regions in the Moderately
Busy and Busy test images as shown in Figure 3.14. The MRoA and RGoA edge maps
on these images are obtained and are also shown in Figures 3.14. These test results show
that the RGoA method extracted some edge pixels that are missing in the MRoA edge
maps. The better performance of the RGoA method may be attributed to the gradient
edge strength information included into this operator.

However. visual inspection of the edge maps for SAR test images Moderately Busy.
Busy and Smooth or extracted samples images on these images show that the MRoA and
RGoA operators are not successful in extracting all true edges information from these
images. The edge map for Moderately Busy SAR image found to be missing several edge
pixel information compared to the human perceived edge map for this image. Where as.
test results on SAR Busy show that extracted edge map for this image consist of several
false edge pixel information compared to human perceived edge map for this image.

Both methods performed poorly on SAR test image Smooth, partly due to the lack
of contrast in this image. As with the synthetic test images. the edge detectors also
resulted in thick edge maps for the real airborne SAR images.

Quantitative analysis

A form of quantitative performance measure for the real SAR test images was ob-
tained by extracting small sample regions from homogeneous regions and edge areas.
An edge detection operator is expected to detect zero edges over homogeneous regions.
Small areas of size 8 x 8 samples were extracted from both high intensity and low inten-

sity homogeneous regions of Moderately Busy and Busy test images. In addition similar
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Region of # Edge Pixels Mean Std p=
Interest Std/Mean
RGOA | MROA

MB, Dark 2 1 22.1279 | 5.7003 0.2576
MB, Bright 0 0 63.7383 | 19.3530 | 0.3036
MB, Edge 36 4T 56.2998 | 27.2472 0.4840
B. Dark 0 0 15.2304 | 43115 0.2831
B. Bright 1 3 60.1289 | 24.0287 0.3996
B. Edge 28 37 56.6367 | 37.6114 0.6641

Table 3.4: Evaluation of edge detection methods for real airborne SAR images

test samples from edge areas were extracted from these images. The number of edge

pixels detected for these test samples by the MRoA and RGoA methods were calculated.

The test results showing performance of these edge detectors are shown in Table 3.4.
These methods performed satisfactorily on SAR images but did miss some edge pixels

that can be detected by the human vision systems. In addition edge maps resulted in

multiple responses to single edge resulting in thick edge maps.

s




Figure 3.11: Edge maps for SAR image Moderately Busy :

(a) SAR Moderately Busy ; (b) MRoA edge map for (a) [N =7, T, = 0.475]; (c) RGoA

edge map for (a) [N =7, T, = 0.475, T, = 50}; (d) Edge thinning on (c).
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(b)

(c) ()

Figure 3.13: Edge maps for SAR image Smooth :
(2) SAR test image Smooth ; (b) MRoA edge map for (a) [N = 11, T, = 0.6]; (c)
RGoA edge map for (a) [N = 11, T, = 0.6, T, = 50]; (d) Edge thinning on (c).
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(aa) (ab) (ac)
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Figure 3.14: Evaluation of edge detection methods for 16 x 16 SAR test samples

(aa) Test sample #1 ; (ab) Test sample #2 ; (ac) Test sample #3 ;
(ba) MRoA on (aa); (bb) MRoA on (ab) ; (bc) MRoA on (ac) ;

(ca) RGoA on (aa) ; (cb) RGoA on (ab) ; (cc) RGoA on (ac) ;



Chapter 4

Maximum Strength Edge Pruned
Ratio of Averages Edge Detector

4.1 Introduction

In this chapter a ratio edge detector for speckled images based on maximum
strength edge pruning (MSPRoA) is developed which considers explicitly both edge
de strength and orientation information. The proposed edge detection method

is different from previous ratio-based methods in that it makes a more explicit use of
edge orientation information that is implicitly expressed in other ratio based methods.
This additional information is found to be helpful in confirming true edge pixels by the
MSPRoA edge detection operator. The MSPRoA algorithm is presented in this chapter.
along with worked examples based on 1-D graphical illustrations and simple computer

generated images.



4.2 The MSPRoA edge detection method

4.2.1 Terminology

This section defines various terms necessary to characterize and explain the

MSPRoA algorithm. Figure 4.1 illustrates a graphical view of some of these terms.

(mei, )
Window W
Window D
Region P
- Region Q

PGj)
(m.n)
Horizootal edge (o=1); 5 x S Window:; d=2.

Figure 4.1: A general pattern computing MSPRoA strength, V =35.4d

The MSPRoA edge strength measure R(r.o) : The edge strength value measured
using the MSPRoA method is expressed as a vector quantity R(r.o) having both
magnitude R(r) and direction R(0).

o The pruning (or correlation) distance parameter d : The pruning (or correlation )
distance parameter d is used in pruning candidate edge pixels based on maximum
edge strength values to obtain true edge pixels. This parameter s used in deciding
which edge pixels are to be selected into a sub-window D (defined later in this

section).



|
!
|

o The sub-window D: [f d is the pruning distance parameter the sub-window D
consists of (2d — 1) pixels arranged as a one-dimensional atray centered about the
P(i. j) pixel of interest, with orientation perpendicular to the direction R(o) of a
potential edge candidate at position P(i, ).

o The maximum edge strength measure D(r): The pruning edge strength magnitude
D(r) is the minimum R(r) (the maximum edge strength) value of all the pixels

selected by a D sub-window.

4.2.2 The MSPRoA algorithm

Consider a given processing window I’ pixels of mask size .V centered on image
pixel of interest P(i, j). For each of the selected edge orientations as shown in Figure 4.2.
image pixels within this processing window are assigned as appropriate. to one of two
non-overlapping regions P and Q. The MSPRoA method uses the following sequence of
steps to classify P(i. j) as either an edge or 2 non-edge pixel:

« For each image pixel P(i, j) the ratio of averages edge strength magnitude is calcu-
lated using the MRoA method as reviewed in Section 2.4.4. This value is recorded
as the MSPRoA edge strength magnitude R(r) of the pixel P(i. ).

o The direction in which the minimum MRoA edge strength R(r) value is found is
recorded as the MSPRoA edge orientation (o) of the pixel P(i. ).

® The pixel P(i,]) is selected as a candidate edge pixel if:
R(r) < T. where T, is a user selected ratio-threshold. (1)
o If P(i. ) is a candidate edge pixel then edge pixels neighboring P(i,j) within a D
sub-window as shown in the Figure 4.2 are examined. The minimum R(r) value of
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i
| left slanted edge (0=3) right slanted edge (0=4)

Figure 4.2: Schematic of the MSPRoA edge detector.



all the pixels within sub-window D is calculated and is assigned as the maximum

edge strength measure D(r) of the candidate edge pixel P(i. ).
o A candidate pixel P(i, j) is selected as anedge pixel if:
R(r) = D(r) (4.2)
Otherwise candidate pixel P(i, ) is rejected as an edge pixel.

« All other non-candidate image pixels are labeled as non-edge pixels.

4.2.3 Graphical illustration using 1-D signals

The operation of the MSPRoA edge detection method can be best explained by

1-D graphical ill ions as are presented in this section. Figure 4.3(a)
shows a simple computer generated 2-D of size 20 x 120 pixels representing several step
edges defining boundaries between regions of alternating gray scale intensities 102 and
204. The corresponding speckled image is obtained as described in section 3.3 and is
shown in Figure 4.3(b).

I-D signals are obtained by extracting row #2 from Bars test image original of
Figure 1.3(2) and speckled of Figure .3(b). A portion of the resulting 1-D signals.
original and speckled are shown in Figure 4.4(A). The original pixel intensity scale of
0 — 235 gray levels is re-mapped in the graphs on to 2 scale 0 — 1 on y-axis in order
to maintain consistent representation for the signals shown in the two graphs Figure
4.4(A) and 4.4(B). The MSPRoA algorithm described above for the natural 2-D domain
is restricted here to vertical edges only in order to calculate edges for the 1-D signals.
i.e. in this case the edge orientation is O = 2.

Figure 4.4(A) shows sampled 1-D test signal original P(x, j) (indicated by o) and
speckled (indicated by =) S(«. j) extracted from test image Bars original (Figure +.3(a))
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(b)

Figure 4.3: Synthetic test image Bars

(a) Original; (b) Simulated speckled



and speckled (Figure 4.3(b)) respectively. From the graph shown in Figure 4.4(A) it can
be seen that speckle exihibits signal dependent nature i.e speckle is significant in high
intensity regions (y = 0.8) when compared to the low intensity regions (y = 0.2) for the
speckled signal S(x. j).

The ratio of averages edge stength value for speckled 1-D signal pixels R(r) is calcu-

lated as explained in section 4.2.2 using mask size V = 9 and edge orientation R(o)

indicating vertical edge condition. The corresponding R(r) values plot is shown in Figure
4.4(B) (indicated by x). A ratio threshold value of T, = 0.43 is used to select candiate
edge pixels C(x,j). All the pixels for which R(r) value is less than selected threshold
value T, = 0.45 are classified as candiate edge pixels. The corresponding candiate edge
pixel locations C(«. j) are shown in Figure 4.4(B) using o.

The pruning distance parameter d = 2 is used in pruning the candidate edge pixels.
For d = 2 the D sub-window will have ((2d—1) =)3 pixels. The pixels P(x.j). P(x.j—1)
and P(x.j+1) constitute the D sub-window pixels in this case. The pixel with maximum
edge strength (the minimum R(r)) value is detected and labeled as D(r). Pixel P(x.})
is classified as edge pixel if it satisfied condition that R(r) = D(r) and labeled as edge
pixel E(+.j). The corresponding MSPRoA edge pruned pixel locations are shown in
the Figure 4.4(B) (indicated by o). All other pixels, ie. pixels that were not selected as
candidate pixles and the candiate pixels which does not satisfy maximum edge strength

creteria are classified as non-edge pixels (not shown in the graph).
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Figure 4.4: Nlustration of the MSPRoA method using 1-D signals :

(A): Original 1-D signal P(s. j)[o]: Speckled 1-D signal S(=.j)["].

(Gray-scale intensity values 0 — 255 are remapped on to a 0 — 1 scale).
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Figure 4.4 (B): lustration of the MSPRoA method using 1-D signal:

Original 1-D signal P(x, j)[o}; R(r) values for speckled 1-D signal [x];

Threshold T, = 0.45 value [—; The candidate edge pixels C(x, /)[+];
Locations of MSPRoA cdge pixels for speckled 1-D signal E(x,j)[e]

(Edge pixels locations are important and y — azis values not significant).



4.2.4 The effect of mask size (V)

As shown in Section 3.5.1 and Section 3.6, ratio based methods generate thick edge
maps as mask size is increased. In this section the effect of mask size on the MSPRoA
edge detection method is studied using 1-D test signal used in Section 4.1.3.

The MSPRoA method is used to obtain edge pixels from speckled 1-D signal of
Figure 4.4(A) by varying the mask size for all odd values from V =5 to .V = L1. Figure
4.5 shows the 1-D signal of Figure 4.4(A) (fo]). The plot of R(r) values. candidate edge
pixels and the MSPRoA edge pruning pixels are obtained for each mask size. A ratio
threshold value of T = 0.4 and correlation distance value d = 2 is used in each case.
Figures 4.5(B), (C), (D) and (E) show corresponding the MSPRoA edge pixels plots for
mask sizes V = 5 to V — L1 respectively. The R(r) values calculated on speckied 1-D
signal are represented using [x]. The candidate edge pixels [+] and the MSPRoA edge
pixels [o] locations (y — azis values are not significant) in the Figure 4.5 detected using
different mask sizes.

From the test results in the Figures 4.5(A) to (E) show that. as mask size is increased
the number of candidate edge pixels detected is increased which may be the reason for
thick edge maps produced using previous methods. Based on experimental results, the
MSPRoA method found to be successful in pruning the candidate edge pixels based
on maximum edge strength values (i.e. minimum R(r) values ) generating precise and
accurate edge maps giving edge pixels information close to the ideal edge pixels. Based
on experimental results, the MSPRoA method has been found to be successful and
consistent in producing thin and precise edge maps on speckled 1-D signal using different

mask sizes.
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Figure 4.5: The effect of mask size on the MSPRoA method:
(A) Original 1-D signal [o]; Speckled 1-D signal [+];
L-D signal using: (B) Mask ¥ = 5: (C) Mask ¥
N=

MSPRoA edge pixels for speckled

7: (D) Mask V = 9: {E) Mask
1L (also shown R(r) walues [x]: Candidate edge pixels [+]).
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4.2.5 The effect of correlation distance (d)

The MSPRoA method uses pruning distance parameter d value to select the D
sub-window pixels used in pruning candidate edge pixels. In this section, the effect of
correlating distance parameter d value on the MSPRoA edge detection method is studied
and results are presented considering 1-D signals similar to those of 4.1.3.

Figure 4.6 shows a portion of an original 1-D test signal with step edges located at
P(x.A). P(x, B), P(x.C), P(%,D), P(x.E), P(x.F), and P(x.G). Since edge pixels lo-
cated at P(x. 4), P(x, B) and P(x, E), P(x, F) are separated by only a few image pixels.
these edges may represent very fine image detail. The remaining edge pixels (P(x.C).
P(*,D), P(+.G)) may represent medium or large structure detail. The corresponding
speckled 1-D signal obtained using speckle noise model of Equation 2.29 is shown in
Figure 1.6 using [+].

The MSPRoA method is used to extract edge pixels for the speckled 1-D signal using
mask size .V = 9. ratio-threshold T, = 0.45 and with correlation distance varying from
d =2tod=5. Locations of the edge pixels [o] detected using the MSPRoA method for
different d values are shown in the graph (only locations are important, y — azis scale
values not significant) of Figure 4.6.

According to the MSPRoA method the candidate edge pixel is selected as an edge
pixel if its edge strength values R(r) is minimum such values of all the pixels in the D
sub-window. A value of d = 2 selects (2 x d — 1) = 3 pixels or P(x.j % 1) pixels for
the D sub-window over which the minimum R(r) value is sought. For this value of d.
the MSPRoA method is successful in detecting all true edge pixels, as no pixels in the

ighborhood of P(.j £ 1) d R(r) values that are lower than the R(r) values

measured at P(«. ) locations.

For d = 3, sub-window D consists of P(x.j +2) pixels. From the Figure 4.6. it can
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be seen that the pixel located at P(x. B —2) is found to be having R(r) value which is
less than the R(r) value calculated for P(«. B) pixel. Hence. pixel P(. B) is rejected as
edge pixel using MSPRoA edge pruning. The use of d = 4 value found to have additional
edge pixel located at P(x, E) rejected and. a value of d = 5 rejecting P(. A). P(x. B).
P(x.C). P(+,E) and P(=, F) edge locations.

The use of correlation distance value d = 2 was found to be successful in extracting
true edge pixel information on both images having fine and large structure. The use
of large d values (d > 4) was found to result in true edge pixels being missed on fine
details. A large d value was found to be acceptable in case of moderate or large image
structure. However, the use of large d values may increase computational costs required
in measuring D(r) values. The correlation distance value d = I provides edge maps with
10 edge pruning (since D sub-window consists of only one pixel). and is equivalent to
the MRoA edge detector.

Study and analysis of correlation distance effect on the MSPRoA method using 1-D
test signal show that the MSPRoA method is sensitive to the correlation distance d
value. This parameter value must be carefully selected with a view to the underlying
image structure. A value of d = 2 for images that consists of fine detail. The use of
larger values d > 4 is found to be acceptable for achieving edge pruning without loosing
fine details information. For most of the applications a value of d = 2 or d = 3 provides

both edge pruning and also computational savings.

4.3 A 2-D example

The MSPRoA edge detection method is tested using 2-D Bars test images. The

ideal edge map for the noise-free Bars image of Figure 4.3(a) is obtained using Sobel



llustration of correlation distance effect on the MSPRoA method
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Figure 4.6: The effect of correlation distance d on the MSPRoA method

Original 1-D sigaal {o], R(r) values [x] and the MSPRoA edge pixels [o] computed on

speckled 1-D signal using ¥ =G, T, = 0.45, and d values fromd=2to d = 3.
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The MSPRoA edge detector quantitative performance evaluation

measures computed using edge maps for 2-D Bars .

Test Edge
Image | Operator | ¥ |7, | T, | #found | Cin% | Min% |Win% | Ain%
Original | Sobel | 3[20] - 308 | 100.0000 [ 0.0000 | 0.0000 | 0.0000
Speckled | MSPRoA || 13 - | 0.65 154 | 132.4675 0.0000 0.0000 | 0.6493

Table 4.1: The MSPRoA performance evaluation for test image Bars

xgbcorrect . yy _ #miss .y _ $wrong . 4 _ fambig
C=#4:u+#/aumt M= #T::-W“ #2"17.'2 A= #4’:..: <

operator of Equation 2.6 is shown in Figure 4.7(a). The MSPRoA edge map on the
speckled Bars of Figure 4.3(b) is obtained using mask size NV = 13. ratio threshold

T. = 0.63 and correlation distance d = 2. and is shown in Figure 4.7(b). The edge

detector quantitative performance evaluation measures of Section 3.2.2 are calculated
from the edge map obtained using the MSPRoA method and are listed in Table 4.1.
The original Bars test image shown in Figure 4.3(a) of size 20 x 120 consists of 11
step edges and a #3 — pizel border. If the border pixels are excluded 2 x 3 — pizels =
6 — pizels which does not include any edge pixel information the Bars image will be
of the size 14 x 114. The total number of true edge pixels measured will be equal to
11 x 14 = 154. Hence an edge detector must detect 154 edge pixels arranged into 11

strips each consisting of 14 pixels each.



(2)

(b)

Figure 4.7: The MSPROA edge detection test results on Bars
(2) Sobel edge map on original [T = 20]; (b) The MSPRoA edge map
for speckled Bars [N = 15, T, = 0.64, d = 2].
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The Table 4.1 shows that the Sobel operator on the original Bars image detected
the # found edge pixels equal to 308 and 11 strips, hence the edge map which is a two
pixels wide (2 x 154 = 308). The MSPRoA edge map on speckled Bars image detected
edge map with the # found edge pixels and 11 strips and hence is. relative to the Sobel
operator. only one pixel wide (1 x 134 = 154).

The quantitative performance measures C. W. M. and A measured on the MSPRoA
edge map are all close to their ideal edge map parameter values. The qualitative eval-
uation of MSPRoA method for speckled Bars test image show that the method gives
close approximation to the corresponding ideal edge map obtained on noise-free Bars
test image. However. these values are some what misleading, due to the fact that the
Sobel edge map is two pixels wide. In fact, it can be visually noted in Figure 4.7(b) that
the MSPRoA is jagged within that 2-pixel width.

The MSPRoA method detected edge map on 2-D speckled Bars test image with
single pixel accuracy. The method found to be successful in obtaining edge map on
speckled image which is thin and precise giving close estimation to the corresponding
ideal edge map. The method also found to be successful suppressing spurious edge
pixel information in homogeneous regions. The edge detector quantitative performance
evaluation measures obtained on the MSPRoA edge map measured values close to the
ideal edge map measures. However, a few edge pixels detected using the MSPRoA
methods are off the track and showed some deviations when compared with the ideal
edge maps.

Overall, the MSPRoA method tested using the 1-D test signals and the 2-D Bars
image was found to be successful in generating precise and accurate edge maps on
speckled signals. The edge pixel detected for the speckled 1-D signal and 2-D image

using the MSPRoA method are close to the corresponding ideal edge pixels. as reflected
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by their quantitative performance measures.

Using this knowledge and information the MSPRoA method is further tested in
Chapter 5. both synthetic and real 2-D test images in order to further investigate its
performance on speckled images. The MSPRoA edge detection test results. comparative
study and discussion of the results based on both quantitative and qualitative methods

is presented in the next Chapter.
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Chapter 5

Results and Discussion

5.1 Introduction

In this chapter. MSPRoA edge detection test results on 2-D speckled test im-
ages are presented together with discussion analyzing the performance of the MSPRoA
method on speckled images. Several 2-D test images are considered for the purpose of
study and analysis including both synthetic and real airborne SAR images of varying

scene contents. The results of MSPRoA edge detection on speckled images are evaluated

using i and itative methods. A ive study and analysis of the
MSPRoA edge detection method and of previous speckle specific edge detection methods
is conducted.

The test results and discussion presented in this chapter are mainly divided into two
groups. In the first group, test results for synthetic test images of varying scene contents

are presented and discussed. The MSPRoA edge detection results on these synthetic

test images are evaluated using qualitative and itati measures and
compared with similar results obtained for these test images in Chapter [3] by previous

speckle specific edge detection methods.
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In the second group, the MSPRoA test results using airborne SAR images are con-
sidered. Several test images, some of which previously used in Chapter [3] are considered
for test and discussion. Edge maps generated from these real SAR images are evaluated
using qualitative analysis only since in this case ideal edge maps are unavailable. The
performance of the MSPRoA method on the real airborne SAR images is compared to
that of previous speckle specific edge detector methods.

A fast edge tracking algorithm to improve the visual quality of the edge maps gen-
erated by the MSPRoA method is suggested. The MSPRoA edge tracking algorithm
is tested on the synthetic and real airborne SAR test images and the test results are
presented. An analysis of test results using the MSPRoA edge tracking algorithm is
conducted.

The use of the MSPRoA algorithm at multiple scales is also addressed in order to
deal with the problem of extracting edge information from both fine and large structures
on speckled images. A simple multi-scale MSPRoA algorithm is suggested which can ex-
tract true edge information at multiple scales. Performance of the multi-scale MSPRoA

algorithm is studied using the synthetic and real airborne SAR speckled test images.

5.2 The MSPRoA on synthetic test images

The synthetic test images Strips (Figure 3.2(a)), Ring(Figure 3.3(a)), and Combine
(Figure 3.4(a)) and corresponding simulated speckled images. used in Chapter [3] are
used again here for the study and analysis of the MSPRoA method. Edge maps obtained
by applying the MSPRoA method on corresponding speckled images for Strips. Ring
and Combine are presented. The performance of the MSPRoA edge detection method

for such speckled images is studied and analyzed by using qualitative and quantitative



methods.

The synthetic speckled image Strips (Figure 3.2(b)) and corresponding Sobel (Equa-
tion 2.6) ideal edge map obtained on noise-free image (Figure 3.9(c)) are shown here in
Figures 5.1(a) and Figure 5.1(b). The MSPRoA edge map on speckled Strips is obtained
using .V = 15, T, = 0.63 and d = 2 and is shown in Figure 5.1(c). The MSPRoA edge
map for speckled Strips is over laid on the ideal edge map for noise-free image to com-
pare the MSPRoA detected edge pixel edge localization with respect to ideal edge pixels
and is shown in Figure 5.1(d). In Figure 5.1(d), the MSPRoA edge pixel are shown
using white pixels, the ideal edge pixels are shown using black pixels on a light-gray
background.

Similar tests were conducted for the test image Ring and are shown using Figures
5.2(a) to (d). The MSPRoA method is also tested on Combine test image which included
Strips. Ring and an outdoor scene Balloon. The MSPRoA test results for Combine test
image are shown in Figures 5.3(a) to (d). The corresponding MSPRoA edge maps for
Ring and Combine are obtained using V = 13, T, = 0.66, d = 2 and V = 13. T, = 0.63

and d = 2. respectively.

5.2.1 Qualitative analysis of MSPRoA results on synthetic
images
Edge detection results obtained using the MSPRoA method are evaluated qual-
itatively mainly based on human perception. Edge maps obtained using the MSPRoA
method are compared with the corresponding ideal edge maps obtained under noise-free
conditions to evaluate how close the MSPRoA edge maps are to ideal conditions edge
maps.

The MSPRoA edge map for the test image Strips (Figure 5.1(c)) shows that the
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Figure 5.1: The MSPRoA test results on synthetic test image Strips :
(a) Speckled Strips ; (b) Sobel edge map for Figure 3.2(a) [T=20] ;
() The MSPRoA edge map for (a) [N = 15, T, = 0.63, d = 2;
(d) Edge map (c) in white pixels over laid on (b) in black pixels.
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(a) (b)

(e)
Figure 5.2: The MSPROA test results on synthetic test image Ring :
(a) Speckled Ring ; (b) Sobel edge map on Figure 3.3(a) [T=20};
(c) The MSPRoA edge map on () [V =13, T, = 0.66, d=2];
(d) Edge map (c) in white pixels over laid on (b) in black pixels.
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Figure 5.3: The MSPRoA test results on test image Combine :
(a) Original Combine ; (b) Sobel edge map for (a) [T=100].
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(d)
Figure: 5.3 The MSPRoA test results on test image Combine: (c) Speckled Combine
(d) The MSPRoA edge map for (c) [N = 13, T, = 0.63, d = 2].
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method is successful in generating thin and localized edges from the corresponding
speckled image vielding an edge map which approximates closely to the ideal edge map
( Figure 5.1(b)). The method is also successful in suppressing spurious (wrong) edge
pixels detected in homogeneous (non-edge) regions. There are no true edge pixels that
are missing when compared with the ideal edge map. Overall, these test results confirm
that the MSPRoA method is successful for the speckled Strips image in generating an
edge map giving close approximation to the ideal edge map.

The MSPRoA method on the test image Ring also generated an edge map for the
speckled image which is close to the corresponding ideal edge map. There are few and
/ or no spurious (wrong) edge pixels detected in homogeneous (non-edge) regions. The
generated edge map is thin and precise. However, a few edge pixels in the ideal edge
map are missing in the corresponding MSPRoA edge map giving rise to discontinuities
in the detected edge contours. Overall, the MSPROA test results on the speckled Ring
test image shows that the method generated a thin and precise edge map which is a
close approximation to the ideal edge map (Figure 5.2(b)).

Test results on the Combine show that the MSPRoA detected a clean and precise
edge map for the speckled image, suppressing spurious edge responses in homogeneous
regions. Regions and boundaries between regions are well defined in the generated edge
map. However, visual examination show that several true edge pixels in the ideal edge
map are missing in the corresponding MSPRoA edge map. Fine detail and low contrast
information, particularly in the balloon, are missing in the MSPRoA edge map. Overall.
the MSPRoA generated edge map shows well-defined object and regions boundaries with
few spurious edges in non-edge regions, but with several true edge pixels missing in area
which are finely detailed or of low contrast.

The above test examples confirm that the MSPRoA method can be successful in gen-
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erating thin and localized edge maps without the necessity of either gradient information

calculations or edge thinning post processing.

5.2.2 Quantitative analysis of MSPRoA. results on synthetic
images
The MSPRoA edge detection results for synthetic test images are evaluated using
the edge detector quantitative performance evaluation measures proposed by Zaman
and Moloney (section 3.2.2). These evaluation results computed from the edge maps of
Strips. Ring and Combine are shown in Table 5.1.

The MSPRoA edge detector quantitative performance evaluation resutls shown in
Table 5.1 confirm that the MSPRoA method is successful in extracting edge maps on
speckled images with quantitative performance measures close to those of the corre-
sponding ideal edge maps. The results for test images Strips and and Ring indicate
performance close to their ideal edge map measures. In the case of the third test im-
age Combine the quantitative performance measures were found to be better in terms
of edge pixel correctness (high C), better suppression of spurious edge pixels (low W)
and good localization as indicated by low ambiguity (low A) values. However, the edge
map missed a number of true edge pixel information (high M) which is an undesirable
performance measure.

Regions on the balloon in the central part of Combine consists of several fine details
in two differing shades of gray. Due to the signal dependent nature of speckle noise. the
interfering noise is more significant in the lighter gray regions compared to the darker
gray regions. Speckle noise in the balloon central gray shaded region severely degraded
the underlying image information making it difficult to extract information from this

region.
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Image Edge | Figure | MSPRoA
Sample | Operator ’ parameters | #found [ Cin% | Min% ‘ Win% | Ain%
Test mage Strips
Original Sobel | 5.1(b) | T=20 1308 | 100.00 0.00 000 | 000
Speckled | MSPRoA [ 3.1(c) | N=15 652 | 100.00 030 000| 038
Tr=0.63
d=2
Test Image Ring
Original Sobel || 5.2(b) 1128 | 10000 0.00 000 | 000
Speckled | MSPRoA || 5.2(c) 465 | 100.00 386 021 780!
Test Image Combine
Original Sobel || 5.3(b) 13556 | 10000 0.00 0.00| 000
Speckled | MSPRoA | 5.3(c) 3038 | 7307 | 3032 286 | 494
Table 5.1: The MSPRoA edge detector quantitative evaluation measures
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If the original noise-free image were not available the human viewer might also fail to
extract some of the true edges from this region. Information in the darker gray region in
the central part of the balloon was also partly degraded by the interfering speckle noise
but a good edge detector could be expected to extract at-least some of the underlying
image information. The edges in this region were detected by the MSPRoA method but
may consists of missing pixels information when compared with the human perceived
edge map.

Overall. the MSPRoA method was found to be successful in extracting true edge
information from speckled images having medium to large structures ( e.g. Strips. Ring
) with performance measures close to that of the ideal edge maps. The MSPRoA method
was satisfactory on a test image having a variety of scene contents ( e.g. Combine ). For

all the test images used, the MSPRoA method generated edge maps were thin and precise

without requiring edge thinning post ing operations or gradient
However, the method performed relatively poorly in extracting the edges of fine details
from images when image consisted of fine, medium and large structures information.
especially in regions of low image contrast and significant speckle.

These test results using 2-D synthetic test images confirmed the suitability of the
MSPRoA method for detecting edges in speckled image. Therefore. with knowledge

gained about the method’s and setting, the study

of the MSPRoA method continued with SAR test images.



5.3 The MSPRoA on airborne SAR images

5.3.1 Test Results

SAR test images Fields (Figure 5.4(a)), Busy (Figure shown here Figure 5.5(a)).
Industrial (Figure 5.7(2)) and Highway (Figure 5.6(a)) are used for test and analysis of
the MSPROoA edge detector performance on real airborne SAR images.

SAR test image Fields consists of woods and fields areas and is similar to test image
Moderately Busy (Figure 3.5) shown in Chapter [3]. This test image is an example of a
SAR image containing several low and high contrast regions and with large structures.
An MSPRoA edge map is obtained on the SAR test image Fields using mask size V = 9.
ratio threshold T, = 0.6 and correlation distance value d = 2. The resulting edge map
is shown in Figure 5.4(b).

Test image Busy contains predominantly fine structures and is "busy” as a conse-
quence. The underlying image is a suburban city area. which has several straight roads
and rows of houses in the ordered manner of man-made structures. The edge map
obtained using the MSPRoA method on the Busy SAR test image is shown in Figure
5.5(b). The edge map was generated using mask size V' = 9, ratio threshold T, = 0.62
and d = 2 correlation distance parameter value.

The test image Highway (Figure 5.6(a)) contains information on highway roads and
small objects such as cars on the highways which can all be classified as fine structures.
The test image Highway also contains some fields which are large structures. This
test image also suffers from a relatively poor contrast ratio sometimes observed in SAR
images. Figure 5.6(b) shows the MSPRoA edge map on the test image Highway obtained
using mask size V = 7, ratio threshold value T, = 0.6 and correlation distance parameter

value d = 2.



Test image [ndustrial (Figure 5.7(a)) is SAR image containing fine, large and medium
structures varying from region to region. Test image [ndustrial is included as an example
of an image containing both very busy and moderately busy regions in one image. Figure

(b) shows he MSPRoA edge map on Industrial test image. This edge map was

obtained using mask size N = 11, ratio threshold value 7, = 0.63 and correlation

distance value d = 2.

5.3.2 Analysis of MSPRoA test results on SAR Images

The above edge detection results on real airborne SAR images of varying scene
contents confirm the suitability of the MSPRoA method for use on real speckled images.
The test results also show that the MSPRoA method can be successful in generating
thin and precise edge maps on real SAR images.

The MSPRoA edge map on the test image Fields resulted in well defined bound-
aries between regions with few spurious edges in non-edge regions (Figure 5.4(b)). Test
results obtained on the SAR test image Busy also found thin and precise edges with
a small number of wrong edge pixels. The corresponding edge map also conveys some
information about the underlying image objects as the edge map consists of well defined
rows indicating the possibility that the regions may correspond to an area of man-made
structures such as the houses and the streets found in cities.

Test results on the SAR test image Highway also resulted in well defined edge map
confirming suitability of the MSPRoA method for detecting edges on speckled images.
The MSPRoA edge map (Figure 5.6(b)) on SAR test image Highway successfully ex-
tracted edges information on fine details such as closely located highway roads. [nforma-
tion on large structures in the regions on either side of the highway roads are also well

registered with clean boundaries defined. Fine objects such as cars on highway roads
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Figure 5.4: The MSPROA test results on SAR test image - Fields :

() SAR image Fields; (b) MSPRoA edge map for (a) [N =9, T, = 0.6, d = 2].
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Figure 5.5: The MSPRoA test results on SAR test image Busy
(a) SAR image Busy ; (b) MSPRoA edge map for (a) [N =9, T, = 0.62, d = 2].
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(a)

Figure 5.6: The MSPRoA test results on SAR test image Highway :

(a) SAR test image Highway ;
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Figure 5.6:The MSPROA test results on SAR test image Highway:
(b) The MSPRoA edge map for () [N =7, T, =06,d =2].
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Figure 5.6: The MSPROA test results on SAR image Highway

(c) A zoom out from 5.6(a); (d) A zoom out from 5.6(b)
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Figure 5.7: The MSPROoA test results on SAR test image [ndustrial :
() SAR test image Industrial ; (b) The MSPRoA edge map for (a)
using [N =11, T, = 0.63, d = 2].
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could be clearly seen in extracted edge map. A zoom out of the MSPRoA edge map on
Highway is shown in Figure 5.6(d).

Analysis of the test results on SAR test image Industrial shows that the MSPRoA
method also extracted edge maps for this test image, suppressing spurious edge responses
in homogeneous (non-edge) regions. True edge pixel information was successfully regis-
tered from the regions consisting of fields and roads. However. boundaries were poorly
defined in the middle portion of the image consisting of the man-made structures of a
large industrial complex (Figure 5.7(a)). The MSPRoA edge map included relatively
more spurious edges in this region compared to the other regions of the Industrial test
image.

The MSPRoA edge detection test results on real airborne SAR images confirmed the
test results observed on synthetic test images. The MSPRoA method was also found to
be successful on real SAR images in generating thin and localized edge maps without
requiring gradient calculations or edge thinning post processing. The performance of
the MSPRoA method was found to be satisfactory on images having large. moderate.
fine and/ or busy structures as observed from test results on Fields, Busy and and
Highway. The method was also found to be successful in extracting information from
images having a variety of scene contents and poor contrast such as the Highway test
image. However, the method performed relatively poorly on test image Industrial which

contains a variety of image structures.
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5.4 Discussion

5.4.1 Comparative study using synthetic test images

A comparative study and analysis of the MSPRoA edge detection method and of
previous speckle-specific edge detection methods is conducted in this section. based on
results obtained using synthetic test images. The speckle specific edge detection methods
previously investigated to in Chapter 3, are studied again, in terms of determining how
close their quantitative performance measures can be to the ideal conditions values.

The test image Strips is first considered for this study and analysis. We attempt first

to optimize each edge detector’s quantitative performance measure W (Equation 3.3)

determining the number of wrong edge piel information. Edge maps are obtained which
vield the W performance measure close to the ideal conditions value (i.e. W = 0) using

different edge detection methods. The ce measures

M (Equation 3.4). A (Equation 3.3) and C' (Equation 3.2) are measured. These values

indicating the performance of different edge detectors are shown in Table 5.2. Similar
tests conducted to optimize primarily M and A and the corresponding test results are
shown in Table 5.3 and Table 5.4, respectively.

As seen from Table 5.2, attempts to achieve values of the edge detector measure
W close to the ideal condition of W = 0 found to be successful using the previously
studied speckle specific edge detection methods. The resulting edge maps also have
their performance measures close to ideal edge map values in terms of edge correctness
and ambiguity which measured high C and low A values. However, the edge maps
missed a number of true edge pixels as seen by their high M values. Therefore. the
existing speckle specific edge detection methods resulted in poor edge maps in terms of

missing true edge pixel information when an attempt is made to optimize the number
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Test Edge | Mask | Threshold |
SamkaDdzclm N |T,| T. | #found |Cin % .ww;sﬂw..:%l.a...%
Test Image Strips
Original | Sobet| -[20] -] 1308 w0000| o000 o0o] o000
Coefl. 7 -| 042 166 23.06 79.28 1.80 772
L] Towi| of -] oss 627 9520 2308 o000 sa2
RoA 5 -] 235 201 69.18 56.80 0.00 3.28
- MRoA 7 - | 035 554 | 100.00 25.61 0.00 3.21
“ RGoA 785 | 052 600 98.63 23.39 0.00 4.66
Table 5.2: Optimizing edge detector itative perf measure W

of wrong edge information.

Test measures optimizing M were found to be satisfactory using the Touzi. MRoA
and RGoA methods in terms of their M and W measure. However, the results showed
poor performance measures in terms of edge correctness (C) and ambiguity (A) values.
Therefore. the existing edge detection methods performed poorly when attempts were

made to extract all true edge pixel i i The edge maps a

number of ambiguous edge pixels and showed poor correctness.
The test results for optimizing the edge ambiguity (A ~ 0) are shown in Table

5.4. The edge detector perf measure A is i as it indicates a measure

of closeness between a detected edge map and its ideal edge map. [t also indicates
a measure of edge localization. Thick edge maps in general measure high A values
indicating poor edge localization Table 5.4 shows that the resulting edge maps for the
MRoA and RGoA methods have their performance measures W and C values close to

the ideal edge map values. However, the edge maps also have high M values indicating
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Test | Edge [ Mask | Threshold I i
Sample | Detector | N [T, | T, | #found | Cin | Min%h | win% | 4in% |
Test mage Strips

Original | Sobel | -[20] -] 1308] 10000] o00] o00] 000

.“ Coeff. T -] 028 2353 20.70 0.45 17.33 70.56

5 “Touzi 9 ~-| 069 2042 25.31 0.00 6.41 67.58

o RoA 7 -1 1.69 3231 749 0.00 3252 87.00

| Mroa || 13| -| 063 umr| s2aa| oo uis| 6223

“w RGoA 13|85 | 062 1691 43.68 0.00 147 49.92

Table 5.3: Optimizing edge detector quantitative performance measure

that these edge maps miss a number of true edge pixels and hence a relatively poor
match to ideal edge maps is achieved. Other previous speckle specific edge detector
performance measures show relatively poor performance measures both in terms of edge
correctness (low C values) and missing true edge pixels (high M values) and hence
indicate poor performance compared to MRoA and RGoA methods.

The performance measures of the existing speckle specific edge detection methods
are compared with the performance measures of the MSPRoA method for the Strips test
image listed in Table 5.1. The measured performance measures show that the previous
speckle specific edge detection methods could achieve performance measure values close
to the values measured on ideal edge maps only with one parameter selected at any time.
Attempts to improve any one of the performance measure value were found to influence
other measures, modifying their measures in an undesirable manner.

The MSPRoA results (Table 5.1) show that the method achieved performance mea-

sures C, M, W and A all close to their ideal edge map value simultaneously. Therefore.
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Test | Edge | Mask | Threshold T |
Sample | Detector | N [, ] 7, | #found [c in %J i | wins ﬂ Ain%
Test Image Strips
Original | Sobel | -120] -| 1308 10000] o000] o000] o000
a0 Coeff. 3 - 044 36 21.99 86.54 3.57 1.98
Touzi 7 -1 048 157 59.38 66.05 0.00 0.68
RoA T = 2.4 75 29.79 82.26 1.33 1.98
MRoA 7 -| 052 345 87.87 45.02 0.00 0.42
RGoA 7|8 | 052 385 90.49 39.52 0.00 191

Table 5.4: Optimizing edge detector quantitative performance measure A

the MSPRoA method is successful on the test image Strips achieving performance mea-
sures close to its ideal edge map performance measure values.

Overall. the MRoA and RGoA methods resulted in better performance relative to
the other previous speckle specific edge detection methods. Hence these edge detection
methods are selected for comparative study and analysis of the MSPRoA edge detection
results using qualitative analysis.

Figure 5.8(a) shows the ideal edge map obtained on Strips noise-free image using
Sobel operator. Figure 5.8(b) shows the MRoA edge map obtained using mask size
.V = T, threshold value T = 0.62 followed by edge thinning. Figure 5.8(c) shows the
RGoA edge map obtained using mask size .V = 9, ratio threshold T, = 0.6 and gradient
threshold T, = 65 followed by edge thinning. Figure5.8(d) shows the MSPRoA edge
map obtained using mask size V = 15 ratio threshold T, = 0.63 and correlating distance
d = 2. The corresponding edge maps for the Ring and Combine images are also obtained.

Figures 5.9(a) to (d) show these edge maps for the Ringand Figures 5.10(a) to (d) show
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edge maps for the Combine image.

This comparative study and analysis of the edge maps obtained using the MRoA.
RGoA and MSPRoA methods show that the edge maps obtained using the MSPRoA
method are relatively better compared to the edge maps obtained using previous edge
detection methods. Edge maps obtained using the MSPRoA method are well defined
with continuous lines between regions (test results on Strips and Combine). The sup-
pression of spurious edge pixel information is also relatively better using the MSPRoA
method as seen from the Strips, Ring and Combine edge maps. The MSPRoA method
was also found perform well on Ring, the edge map of which contains changing edge
orientations.

Qualitative analysis of the test results these on synthetic test images also show that
the MSPRoA method performed better in detecting edges on speckled images as com-
pared to the existing edge detection methods. The MSPRoA edge maps obtained on
speckled images are seen to be precise and accurate. These edge maps suppress spurious
edge pixel information relatively better compared to edge detection methods. The edge
maps are also continuous and successful in giving well defined boundaries between re-
gions. These test results encourage the use of the MSPRoA method for detecting edges

on speckled images.
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Figure 5.8: The MSPROA test results a comparative study using Strips :

(2) Sobel for original[T=20] ; (b) MRoA for speckled [N =T7; T, = 0.65] followed by
edge thinning; (c) RGoA for speckled [N = 9, T, = 0.65, T, = 75] followed by edge
thinning; (d) MSPRoA for speckled [N = 15, T, = 0.63, d = 2].
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(c) (d)
Figure 5.9: The MSPROA test results a comparative study using Ring :

(a) Sobel for original [T=20]; (b) MRoA for speckled [N = 7, T = 0.65] follwed by edge
thinning; (c) RGoA for speckled [V =7, T, = 0.63, T, = 85| followed by edge thinning;
(d) MSPROA for speckled [N = 13, T = 0.66 and d = 2].
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(b)

Figure 5.10: The MSPRoA method a comparative analysis using Combine :
(a) RGoA for speckled [V = 7; T, = 0.58; T, = 85] followed by edge thinning;
(b) MSPRoA for speckled [V = 13; T =0.62; d = 2].
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Test Edge Mask | Threshold !
Image Detector N T T, |#found |Cin% |Min% |Win%|Ain%
Original Sobel -| 20 = 1308 | 100.00 0.00 0.00 0.00
Speckled MRoA 5|058 - 747 | 100.00 14.52 9.50 573
7|059 s 851 | 94.48 11.77 0.70 10.24
- 9059 = 971 | 9021 8.33 030 | 1307
% 11 | 0.59 = 1120 | 82.20 5.04 044 | 1865
o 13 | 0.59 - 1237 | 69.39 5.81 0.32 26.68
RGoA 5| 033 85 602 | 98.74 2262 5.64 5.27
w 7| 0.55 85 675 | 97.42 19.26 0.29 6.88
- 9 | 0.57 95 833 | 89.49 12.99 0.24 13.76
w 11 | 0.57 95 943 | 85.07 9.40 0.00 17.35
13 | 0.57 95 1069 | 76.81 7.11 0.00 23.08
MSPRoA 5| 060 | d=2 578 | 100.00 9.70 8.13 3.59
7| 061 - 590 | 100.00 489 0.33 2.75
9| 061 - 614 | 100.00 359 0.32 145
11| 063 5 650 | 100.00 081 0.15 152
13 | 063 o 654 | 100.00 038 0.00 0.61
Table 5.5: The effect of nask size on MSPRoA edge detector

5.4.2 Study on the effect of mask size

The effect of mask size on 1-D test signal is studied in Chapter [4]. Further. study on

the effect of mask size on the MSPRoA method usi

-D test images is conducted and
presented in this section. Test images Strips, Ringand Combine where the corresponding
ideal edge maps are available are used for study and analysis purpose.

Edge maps are obtained on test images Strips, Ring and Combine using MRoA. RGoA
and the MSPRoA methods by varying mask size from V = 5 to V = 13. Quantitative

performance measures computed each case using Zaman and Moloney edge detector
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performance measures (section 3.2.2 ). Test results showing performance measures for
different mask sizes are shown in Table 5.5.

From the table it can be seen that as the mask size is increased from V = 5 to
V = 13 edge detector performance measures M and W’ are improved for all the three
1, RGoA: M = 22,62 to M = 7.11 and

methods (ex. MRoA: M = 14.52t0o M =
MSPRoA: M =9.7 to M = 0.38). However. the edge detector performance measures
C and A values are deteriorated as the mask size is increased in case of MRoA and
RGoA methods. In case of MRoA method as the mask size is increased C value reduced
from C = 100 to C = 69.39 and corresponding A values increased from 4 = 5.73 to
A = 26.68. Similar effect could be observed in case of RGoA method. In this case the
corresponding values found to be changed from C = 98.74 to C = 76.81 and A = 6.88 to
A =23.08. In case of the MSPRoA method increase in mask size found to be improving
A value (from A = 3.59 to A = 0.61) without effecting C value.

The use of small mask sizes found to be better suited for extracting edge maps with
high correctness C values. However, these edge maps also measured high W and M
values. The use of large mask sizes found to be useful in improving W and M values
however, it has a negative effect on corresponding C and A values in using MRoA and
RGoA method. In case of MSPRoA method the use of large mask size found to be
useful in extracting in extracting number of true edge pixels without effecting other
parameter values in an undesirable manner. However, it is not recommended to use
very large mask sizes as it may increase computational costs in measuring edge strength

magnitude values.



5.4.3 Comparative study and analysis using SAR images

A comparative study and analysis of the MSPRoA edge detection results using
airborne SAR images is presented in this section. The MRoA and RGoA edge detec-
tion methods are selected for comparison with the MSPRoA method as these methods
reported better performance of the existing methods. The standard MRoA thinning
algorithm is used to produce thin and precise edge maps for the MRoA and RGoA
methods which can compared with the MSPRoA edge maps.

Figure 5.11(a) shows the SAR test image Fields. Figure 5.11(b) shows the MRoA
edge map on Fields obtained using mask size V = 7, ratio threshold T, = 0.43 followed by
edge thinning. The RGoA edge map. obtained using mask size .V = 9, ratio threshold
T, = 0.45, gradient threshold T, = 30 followed by edge thinning, is shown in Figure
5.11(c). The MSPRoA edge map obtained using mask size V = 9, threshold T = 0.6
and correlation distance d = 2 is shown in Figure 5.11(d). The MSPRoA edge map with
parameters used in Figure 5.3(b) is shown in Figure 5.12(d) for comparison purpose.
Similar tests conducted on Highway and Industrial and test results with corresponding
operating parameters are shown in Figures 5.13 and Figures 3.14 respectively.

From the figures it can be seen that the MSPRoA generated edge maps are thin and
more complete when compared to the MRoA or RGoA generated edge maps. The figures
also show that the MSPRoA method generated edge maps for these SAR images are of
better quality than those generated by the MRoA or RGoA methods as the boundaries
are well defined and lines are continuous for all the test images. The MSPRoA method
achieved improved performance without requiring edge thinning operations.

Although the edge map for the test image Moderately Busy missed several edge pixels.
the MSPRoA generated edge map indicates well defined regions compared to the edge

maps of the other two methods. Similar results are observed in the case of the Busy
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test image. The edge map generated using the MSPRoA method resulted in a greater
number of true edge pixels detected the lanes appearing in the original SAR images
are well registered using the MSPRoA method. The suppression of false edge pixels
in homogeneous regions is also better for this SAR image compared to the RGoA and
MRoA methods.

The performance of the MSPRoA method was found to be successful for the test
image Highway. Roads and boundaries between regions in the fields are well registered
using the MSPRoA method. The small objects visible on the roads which may indi-
cate moving cars were also registered using the MSPRoA edge detection method. The
generated edge map was also found free from false edge pixels.

The test results on /ndustrial image are shown in Figure 5.14. The results show
that the MSPRoA method generated good edge maps in the regions roads and fields.
However, the method resulted a number of spurious edge pixels in the middle regions
where several busy structures are closely placed. However, test results indicate that the
MSPRoA method generated edge maps were better compared to the MRoA and RGoA
edge maps.

The comparative study and analysis of MSPRoA edge maps on SAR images with the
corresponding edge maps obtained using previous edge detection methods show that the
MSPRoA method performed better on SAR images than the RGoA or MRoA methods
The boundaries between regions and fine details are well registered in the MSPRoA edge
maps. The contours and lines are continuous and precise. Its performance on /ndustrial

image was also found to be better compared to previous edge detection methods.

125



V/A;//..m«,:)\
i Y
7'2 TN “a )
h \‘:"‘/ ¥ 5
Tj / e
v oyl o
u«‘/{(, i
| ,)(/&1 - ) .
(b)
Ve
/’J‘;’[\\% &
?l—“_‘ e }"\\ o
1 ATy
A
{E}'..w 4{,’ i‘ﬁ
V%/
r [ A
(c) (d)

Figure 5.11: The MSPRoA results a comparative study on Fields :
(a) SAR test image Fields ; (b) The MRoA for (a) [V =7, T, = 0.45] followed by edge
thinning; (c) The RGoA for (a) [N =9, T, = 0.45, T, = 50] followed by edge thinning;
(d) The MSPRoA for (a) [N =9, T, =0.6,d = 2|.



5.12: The MSPROA results comparative study for SAR Busy :

Figure

7, T, = 0.475] followed by edge

The MRoA [N =

(b)
v
d) The MSPRoA on

a)

(a) SAR test image Busy ;

0.475, T, = 50] followed by edge thinning;

a) [N=9,T, =0.62,d=2].

9, T, =

(

thinning; (c) The RGoA on
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(a) (b)

3: The MSPRoA test results a comparative study on Highway

Figure 5.
(a) SAR test image Highway ; (b) MRoA edge map on (a) [N =9, 7, = 0.45] followed
by edge thinning;



(d)

()

Figure 5.13: The MSPRoA results a comparative study on Highway : (c) RGoA edge

9, T, = 0.45, T, = 50] followed by edge thinning;

map on (a) [V

=2

7,7, =06,d

(d) The MSPRoA edge map on (a) [N



Figure 5.14: The MSRoA results a comparative study for SAR Industrial

(2) SAR image Industrial ; (b) MRoA edge map on (a) [V = 9, T, = 0.45] followed by

edge thinning; (c) RGoA edge map on (a) [V =9, Ty = 0.45, T, = 50] followed by edge
thinning; (d) MSPRoA edge map on (a) [V = 11, T, = 0.63, d = 2].
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5.5 The MSPRoOA edge tracking algorithm

The MSPRoA edge detection results studied further to determine conditions re-
quired to generate edge maps giving quality equal to the ideal edge maps. The MSPRoA
test results on simple test image Bars are used for test and analysis.

Figure 5.15(a) shows test image Bars used which is previously used in Chapter [4]
of Figure 4.3. Figure 5.15(b) corresponding speckled image. The Sobel edge map on
original Bars image is shown in Figure 5.15(c) and the MSPRoA edge map on speckled
image shown in Figure 3.15(d).

Edge detection test results show that the MSPRoA method on synthetic images
extracted edge maps with single pixel accuracy. Generated edge maps were thin and
precise giving close approximation to ideal edge maps. Sobel operator on noise-free image
generated edge map which is two pixels wide. However, the MSPRoA edge map shows
some deviations compared with ideal edge map Figure 5.15(d). The method selected
edge pixels from one of the two regions defining the edges.

This effect was not accounted as error using Zaman and Moloney edge detectors
quantitative performance measures since, these exists exact match in the corresponding
ideal edge map. The MSPRoA method was also found to be sucessful according to
Canny [7] as it satisfies single response to single edge conditions. Although, the effect
was not accounted as an error, it has some effect on visual quality of generated edge
maps. In this section a simple and fast MSPRoA edge tracking algorithm is suggested
to improve visual quality of the MSPRoA generated edge maps.

The MSPRoA edge tracking algorithm:
If P(i.j) is the MSPRoA detected edge pixel, then, the following sequence of steps

are used to verify if relocation is required for P(i, j) to improve visual quality of the
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Figure 5.15: The MSPRoA edge traking algorithm test results for Bars
(a) Sobel edge map for Bars ; (b) The MSPRoA edge map for speckled Bars :
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MSPROoA edge maps using the MSPRoA edge tracking algorithm:

o For K < tracklength, number of edge pixels found in the lanes [ — 1. { and { + |
oriented in the direction i + 90 are measured where i is P(i.j) edge orientation. {

is lane (row/column) in which P(i. ) is located and K user selected integer.

® The lane (row/column) that gives maximum number of edge pixels is considered

as the lane L with highest probability rate for edge pixel P(i. ) to be located.
o [f L =1edge pixel P(i,;) need not relocate. else P(i.j) is relocated to lane L

The MSPRoA edge tracking algorithm test results on Bars image is shown in Figure
5.16(b). The MSPRoA edge tracking algorithm is also tested using Strips. Ring and
Combine images to study its effect in improving visual quality of the edge maps.

The MSPRoA edge tracking algorithm improves visual quality of the generated edge
maps by suitably changing those edge pixels positions that are off the track compared
with their neighboring edge pixels. The MSPRoA edge tracking algorithm found to
most successful on test image Strips reproducing edge map with quality equal to the
ideal edge map. Edge map is better compared to ideal edge map as edges separating
regions are extracted with single pixel accuracy ( Figure 3.17(c) ). This test image used
track length k = 4 for edge tracking purpose.

Test results on Ring image are obtained using track length k = 2. Test results on
Ring test image are shown in Figure 5.17(d). Significant improvement in visual quality
of generated edge map was not observed in case of Ring image as these image contained
edge pixels that rapidly change their edge orientation.

Test results on Combine ( Figure 5.18(b) ) showed some improvement compared

to its corresponding the MSPRoA edge map (Figure 5.18(a) ). This image also used

track length & = 2 value. Test image Combine shows some improvement may be due to
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Figure 5.16: The MSPROA edge tracking algorithm on Bars
(a) Ideal edge map on noise-free Bars ;

(b) The MSPRoA edge tracking algorithm;
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Figure 5.17: The MSPRoA edge tracking algorithm

(a) Strips Ideal edge map: (b) Ring Ideal edge map;

The MSPRoA edge tracking algorithm on (c) Strips : (d) Ring :
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(b)

Figure 5.18: The MSPRoA edge tracking algorithm on Combine
(2) Ideal Combine edge map: (b) Edge tracking on Combine MSPRoA.



the fact that image contained information that changes its edge orientation less often
compared to Ring test image.

The MSPRoA edge tracking algorithm test results on synthetic test images show
that the method is useful and improves visual quality of the generated edge maps. For
effective use of this algorithm it is recommended to use small track length values in
case image contains information on edge pixels that rapidly change their orientations
compared with neighboring edge pixels.

The MSPRoA edge tracking algorithm is also tested using real airborne SAR im-
ages. Edge maps are obtained applying the MSPRoA edge tracking algorithm on Fields.
Highway and Industrial using track lengths & = 2 for all the three images. Correspond-
ing test images are shown in Figures 5.19(b), 5.20(b) and 5.21(b). The MSPRoA edge
maps before applying edge tracking algorithm are shown in Figures 5.19(a). 5.20(a) and
5.21(a).

Test results show that the MSPRoA edge tracking algorithm improves visual quality
of the edge maps generated using the MSPRoA method on real airborne SAR images.
However. the effect was not significant as it was found on synthetic test image Strips
(Figure 5.17(c)). Edge maps visual quality improvement on SAR images found similar
to the test results observed on synthetic test image Combine (Figure 3.18(b)) which
consisted variety of edge structures such as lines. wide arcs and sharp curves.

The MSPRoA edge tracking algorithm only provides a refined edge map on the
MSPRoA generated edge maps. The algorithm is not useful for extracting additional
information on images if edge map contains some true edge pixels information missing.
Hence. information regarding the edge pixels that are missing still remain missing even
after using the MSPRoA edge tracking algorithm. Multi-scale approach would be more

suitable for extracting all true edges information simultaneously on both fine and large
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image structures. A simple multi-scale MSPRoA method for extracting all true edges
information on speckled images having variety of scene contents is suggested and is

presented in the next section.

5.6 Multi-scale MSPRoOA edge detector

5.6.1 Multi-scale MSPRoA on synthetic test images

The use of multi-scale approach in order to detect underlying image information
has been used by several researchers in the past (82, 6]. The use of MSPRoA method
for extracting edges at micro and macro levels is suggested in this section.

Figure 5.19(a) shows extracted sub-image of Combine (Figure 3.4(a)) showing fine
details information on balloon in the Combine test image. The corresponding section of
the image is extracted from speckled Combine (Figure 3.4(b)) and is shown in Figure
5.19(b). Test image shown in Figure 5.19(a) and (b) are used for test and analysis of
working of the multi-scale MSPRoA method. The multi-scale MSPRoA method is then
tested using synthetic and SAR test images. Test image shown in Figure 5.19(a) is
referred using Balloon in this thesis.

Figure 5.19(c) shows ideal edge map on Balloon obtained using Sobel operator (equa-
tion 2.6). Figure 5.19(d) shows the MISPRoA edge map obtained on Figure 5.19(b) using
V = 5. ratio-threshold value T, = 0.45 d = 2. Figure 5.19(e) shows the corresponding
MSPRoA edge map obtained using ¥ = 9, ratio threshold value 7, = 0.6 and d = 2. Fig-
ure 5.19(f) shows combination of Figure 5.19(d) and (e) producing multi-scale MSPRoA
edge map for the test image shown in Figure 5.19(b). Test results from Figures 5.19c)
and (f) show that the use of MSPRoA method at different mask sizes is successful in

producing edge map on speckled Balloon producing edge map which also included find

138



details information.

The suggested multi-scale MSPRoA method uses different mask sizes and combines
resulting edge maps using OR operator. The judgment on what mask sizes are to be
selected and how many edge maps are to be used is to be made by the user keeping in
view of the underlying image contents.

The multi-scale MSPRoA method is tested using Combine (Figure 3.4(2)) image. The
corresponding test results are shown in Figure 5.20(b). Figure 5.20(a) shows Sobel edge
map on original Combine. The multi-scale MSPRoA edge map combined using mask

5,.N =7and vV = 13. Different ratio threshold values are used for different

sizes V'
mask sizes in order to obtain clean edge maps reducing spurious edge pixel information

in each case. Threshold values used are T, = 0.45, T, = 0.55 and T, = 0.63 for .V

N =1Tand .V = 13 mask sizes respectively. The correlation distance parameter value
d = 2 is selected for all the mask sizes. The mask size V =3 is selected for extracting
fine details information. Mask size V = 7 is selected to support information extracted
using .V = 5 mask size. The selection of .V = 13 is made to extract large structures
information with clean boundaries.

The multi-scale MSPRoA edge map shown in Figure 5.20(b) shows additional in-
formation on edge pixels being extracted when compared to the MSPRoA edge map
shown in Figure 5.3(d) which used mask size N = 13 only. Hence it may be possible
to extract fine details and large details information simultaneously on speckled images

using multi-scale MSPRoA method.

5.6.2 The Multi-scale MSPRoA on airborne SAR images

The multi-scale MSPRoA method is tested using the SAR test images Fields.
Highway, and Industrial. Figure 5.21(a) shows the MSPRoA edge map on the Fields
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(d) (e) (f)

Figure 5.19: Multi-scale MSPRoA results for Balloon
(a) Original Balloon ; (b) Speckled Balloon ; (c) Sobel edge map for (a) [T=100};
(d) MSPRoA edge map for (b) [V = 5, T, = 0.45, d = 2; (¢) MSPRoA edge map
for (b) [N =9, T, = 0.6, d = 2]; (f) Multi-scale MSPRoA combining (d) and (e).
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Figure 5.20: Multi-scale MSPRoA result for Combine :

(a) Sobel edge map for 3.4(a) [T=100]; (b) Multi-scale MSPROA for 3.4(b) using

[(V=13,T,=063,d=2)OR (N =7,T, =0.35,d=2) OR (N =5,T, = 045,
d=2).
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(Figure 5.4(a)) test image. Figure 5.21(b) shows the multi-scale MSPRoA edge map on
the Fields obtained using N =3, T, =043, ¥ = 9, T, = 0.38 and V = 1. T = 0.62.
Correlation distance d = 2 is used for all mask sizes. The multi-scale MSPRoA edge map

on the Highway test image is obtained considering test image shown in Figure 5.6(a).

. T, =045 and V = 7.

The multi-scale MSPRoA edge map is obtained using V =
T. = 0.6 is shown in Figure 5.22(b). The corresponding MSPRoA edge map obtained
using .V =7. T, = 0.6 and d = 2 is shown in Figure 5.22(a).

The multi-scale MSPRoA method is also tested using the SAR ndustrial test image.

Figure 5.23(a) shows the MSPRoA edge map on [ndustrial obtained using V = 13.

T, = 0.62 and d = 2. The MSPRoA edge map obtained using .V = 5. T, = 0.45 is shown

in Figure 5.23(b). Figure 5.23(c) shows the corresponding MSPRoA edge map obtained

using V =9, T, = 0.58, d = 2. Figure 5.23(d) shows multi-scale MSPRoA edge map
which is a combination of the edge maps in Figure 5.23(a), (b) and (c) edge maps.

The test results using the multi-scale MSPRoA method on the SAR test images
show that the method is successful in extracting edge pixel information, and in giving
better definition on boundaries and details in these images. The method is found to
be relatively better on the SAR test images Fields and [ndustrial. However. the test
results on Highway did not show a significant improvement when compared with the
corresponding test results using only one mask size.

Hence these results indicate that the multi-scale MSPRoA method may be used on
images which consist of a variety of scene contents and business in order to extract edge

maps with precision close to that of the human perceived edge maps.
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(a) (b)

Figure 5.21: The multi-scale MSPRoA on SAR test image - Fields
(a) The MSPRoA edge map for Fields [N =9, T, = 0.6,d = 2]; (b) The multi-scale
MSPRoA edge map for Fields [V =7, T, =055, d =2% ¥ =9, T. =06,d = 2|;



(a) (b)

Figure 5.22: The multi-scale MSPRoA test results on SAR Highuay
(a) MSPRoA edge map for Highway [NV = 7, T, = 0.6, d = 2]; (b) Multi-scale MSPRoA
edge map for Highway [N =5, T, =045,d=2 N =7,T. =0.6,d=2};



Figure 5.23: The multi-scale MSPRoA test results on SAR [ndustrial :

(a) MSPRoA edge map using [N = 5, T, = 0.35, d = 2]; (b) MSPROA edge map using

[V =7 T =055 d=2] (c) MSPRoA edge map using [V = 11,7, = 0.63, d = 2]; (a)
Multi-scale MSPROA edge map for /ndustrial using (), (b) and (c).
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Chapter 6

Conclusions and Future Studies

6.1 Conclusions

Edge detection in the case of speckled images is important as these images are
found in a variety of digital image processing application fields using laser. sonar. radar.
SAR. ultrsound images etc., Speckle noise differs from other types of noise such as
additive white Gaussian noise (AWGN) commonly observed in digital images in that it
is multiplicativly signal dependent and may be spacially highly correlated. Speckle makes

it difficult to extract true edges i due to its multiplicative signal d

nature.

Ordinary gradient edge detection methods which use differences between pixel values
tend to give inconsistent estimates when they were applied to speckled images. For this
reason, such edge detection methods perform poorly on speckled images [3. 23, 90]. Ratio
based method which use ratios of pixels values as a measure of edge strength tend to
cancel out the multiplicative noise effect present in speckled images. When applied to
speckled images these methods are successful in giving better estimates regarding true

edge pixels on speckled images.
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However, previous ratio based methods generate thick edge maps. Evaluations of
existing speckle specific edge detection methods show that these methods do not extract
all and only true edge pixels information on speckled images. An attempt to extract
all true edge pixels information using existing ratio based methods may give thick edge
maps and may also include some wrong edge pixels. On the other hand. attempts to
reduce the number of wrong edge pixels result in an increase in the number of missing
edge pixels. Although these previous ratio based methods can give satisfactory results
on speckled image, they may not be successful in generating edge maps that give close
estimates to corresponding ideal edge maps.

SAR images with actual speckle noise have been used with permission from Canada
Center for Remote Sensing (CCRS) to study and analyze existing edge detection methods
for speckled images. Previous evaluations on edge detection methods for speckled images
used synthetic test images. The evaluation of edge detection methods for real airborne
SAR images presented in this thesis also confirm suitability of ratio methods for use on
speckled images. Zaman and Moloney [90] MRoA and RGoA edge detection methods
on real SAR images were found to perform relatively better compared with the other
speckle specific edge detection methods. However, these methods also generate thick
edge maps and require edge thinning operations. The edge maps also consists of missing
edge pixel information compared to the human perceived edge maps for these images.

The previous ratio based edge detectors studied in this thesis utilized only edge

de inf in ing true edge pixels i ion. However since the

most recent methods also di ine edge orientation il fon, it is d that
edge orientation information may also be useful in extracting true edge information and
in providing better estimates regarding ideal edge pixel information.

The Maximum Strength edge Pruned Ratio of Averages (MSPRoA ) method attempts
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to extract true edge information from speckled images by making effective use of edge

i ion. The MSPRoA extracts true edge pixel information

by pruning edge pixels based on both magnitude and direction edge strength values. The
MSPRoA method is successful in generating thin. localized and well defined edge maps
for synthetic speckled images. The edge detector quantitative performance measures
for these detected edge maps are close to the measures obtained for ideal edge maps.
The generated edge maps do not require edge thinning post-processing or gradient edge

strength and hence fonal savings are achieved.

The MSPRoA method was found to be successful in extracting true edge pixel in-
formation when applied to airborne SAR images of varying scene contents and business.
The method was found to be successful in extracting information for SAR images having

both fine and large structures (as seen from the results on the Fields, Busy and Highway

SAR images). Very fine detail infc ion was also fully d using the
MSPRoA method as can be seen from the edge maps for the Highway SAR image which
vields information on cars moving on the highway lanes.

The MSPRoA method extracts edge pixels from speckled images with single pixel
accuracy. At times. the method extracts edge pixels from the two regions to either side
of the edge. In such applications, a fast edge tracking algorithm is suggested for use
with MSPRoA edge maps in order to improve the visual quality of the generated edge
maps. The MSPRoA edge tracking algorithm improves visual quality of the edge maps
for images with edge pixels that do not rapidly change their edge orientation compared
with their neighboring edge pixel edge orientations (as in the synthetic Strips image).
The edge tracking algorithm should be used with a small track length value K on
images containing image structures with rapidly changing edge orientations such as arcs

or sharp contours (ex. Combine, Ring). The MSPRoA edge tracking test results on SAR
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images improvement in the visual quality of the generated edge maps by better defining
the boundaries between regions. Hence, the MSPRoA method may be used in image
lassification or object ition in SAR images. Charles Robertson and

Moloney used MSPRoA for automated registration of SAR images [79].

The MSPRoA edge detection method was found to perform relatively poor on images
having very fine details and large structures. Since, the MSPRoA edge tracking algo-
rithm only rearranges edge pixels found using the MSPRoA method. this method can
not extract true edge pixels not detected by MSPRoA method. The MSPRoA method
and MSPRoA edge tracking algorithm performed poorly on images having variety of
image structures simultaneously (ex. Combine and SAR I[ndustrial). In such cases the
use of MSPRoA method at multiple scales could successfully extract a number of true
edge pixels information at micro and macro scales simultaneously.

The MSPRoA method at multiple scales-scales performed better than the simple
MSPRoA method when applied to images containing a variety of image information.
The multi-scale version of the MSPRoA method uses different mask sizes suitable to
extract edge information for both fine and large image structures. Based on test results
the multi-scale MSPRoA method is recommended on images containing variety of image

structures.

6.2 Future Studies

Overall, the MSPRoA method was found to be successful in detecting edges on
speckled images containing fine, moderate and large structures. The edge detection
results obtained using the MSPRoA method on real airborne SAR images show that

the method determines precise edge maps. However, the method performed relatively

49



poorly on images containing variety of structures.

The multi-scale MSPRoA method performed well on the synthetic test image Com-
bine and SAR test image Highway. Although the MSPRoA method at multi-scales
using different mask sizes performed well, some true edge pixel information continues
to be missing and can be seen from the test results for SAR [ndustrial test image. The
MSPRoA method may be improved in order to extract all and only true edge pixel
information on images having a variety of image structures.

The MSPRoA edge detector performance may be improved further using multi res-
olution image pyramids or sub-band decomposition of the input image {6]. Use of im-
age pyramids followed by contour following edge linking algorithms to join edge pixels
detected at different resolution scales may also improve existing MSPRoA algorithm

performance.
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