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Abstract

Images obtained from coherent imaging s~tems such as laser, sonar, radar, syn­

thetic aperture radar (SAR) and ultrasound are oCten corrupted by a phenomenon known

as image speckle. Speckle is characterized as multiplica.tively signal dependent and may

be spatially highly correlated noise. It differs from other types: of noise sueb a.s the

additive white Gaussian noise (AWGN) most commonly found in digital images. Ob­

served from a bumAD oc computer vision point of view speck..le gives aga.nuJar patteroed

appearance to images, thus obscuring underlriDl im&&e details.

Gradient methods tiling differences between pixel values may give inconsistent es­

timates rega.rdinS true edse pixels and therefore an! not suited for usc with spedUed

images. By contrast, taking ratios between the pixel values tends to factor out the mul­

tiplicative noise effect present in speckled imagcs and to geoerate meaningful edge maps

for these images. But these methods generate thick and ambiguous edge maps, and

may also require gradient informa.tion supporting the ratio edge strength V&1ucs in order

to senera.te better edge maps on speckled images. This thesis investigates methods to

improve the performance of existing speck..le specific edge detection opera.tors. A ratio

edge detector based on maximum strength edge prunio& (MSPRoA) which uses both

edge strength tna&Ititude and direction is proposed.

The MSPRoA method is different from previous methods in that it uses the edge

orientation information that is implicitly expressed in some other ratio based meth­

ods,explicitly, thus enablinr; the generation of precise and well defined edr;e mapll for

speckled images. The MSPRoA method does not require either gradient information

or edge thinnillS operators And hence computational savings are a..cbieved. The use of

the MSPRoA at multiple scales in order to extra.t:t edge information at both micro and



macro levels is also suggested. The MSPRoA a.o.d multi-scale MSPRoA methods are

tested using both synthetic a.nd real airhorne SAR images of varying scene contents and

business. Test results which confirm the suitability of the method for use 011 speckled

images are presented. The use of the MSPRoA method is recommended for detecting

edges images in which speckle phenomena are manifest.

iii
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Chapter 1

Introduction

1.1 Motivation

Edge detection methods for speckled ima.ges ue import"nt a.5 tbese images a.re

found in a. variety of digital image processing appliation fields which U5e such images

u laser. sonar. r~a.r, synthetic aperture ra.dar (SARI and ultruound. etc.

Speckle is a common pbenomenJ. in almost aU i~es formed from coherent imaging

systems and some non-coherent irnasi0s systems (341 and may be re5ponsib~ for ausing

hindrances to humiUl or computer vision systems in extracting ioformi.tion from these

images (3. 531. Edge detection methods may help in COn\'eyiD& useful information on

image contents. Since speckled images may contain useful information for applications

such u remote sensing, medica.! imaging etc.. there is a necessity fOf operatofs to extract

accurate and pr«ise information from these images.

It has been found that the spe<:kle phenomena. observed in ima.ges ror coherent imag­

ing systems cannot be avoided completely [10_ 341_ Observed from the human vision

point of view. speckle gives a. granular texture a.ppearance to images and may suppress

true edge informa.tion or may trigger raise edge points [3. 61. 821. \Vhen analyzed stat is-



lica.lly speckle differs from other types of noise which are commonl:-' obsC"n-ed in digital

images such as additive white Ga.ussia.n noise (AWG:';). Several existinA: edge detection

methods used to extract information from non·coherently formed images are kss suit·

able for use \\'ith coherent imqing images due to the nature of speckle noi5e found in

these images [3, 82. 90]. In fact. most edge detection operaton are ben suited (or use

on noise-free images (ii].

Various edge detection methods have been developed for use on noise-degraded im·

ages but these are better suited for AWG:-.i environments. .-\ literature search reveals

that. although the nature and characteristics of speckle noise have been well studied and

well established [341, the problem of detecting edges on speckled images has lIot been

extensively studied. Relatively few edA:e detection methods have been proposed for use

on speckled images !3, 23. 82. 901.

EdA:e detection methods that use ratios between pixel values tend to generate rela·

tively better ed~ maps on spedcled imaA:e5 when compared to gradient based methods

that use differences between pixel v;s.!ues [3. 23. 82. 90]. However. ratio~ methods

generate thick edA:e edge maps a.nd require edge thinning post processing [3. 69]. Th~

methods may also require sradient information in order to generate precise edse maps

on speckled images [3, 90]. The performance of these edse detectors may be poor on

medium-te-low contrast ima.ses (891. In this thesis, research bas been conducted on edge

detection methods for speckled images. motivated by the following goals:

• Extending available methods to improve accuracy.

• Satisfaetory detection by extracting all true edge pixels.

• Lo..... error rate by reducing false edge pixels information.

• High oomputationa.l efficiency.



1.2 Edge Detection

1.2.1 Edges as scene descriptors

Edges in images are defined &.S transitiolU between regions ha.\;ng different in·

tensities. textures, c;olor or other image properties [iiI. Severa.! common types of edges

separate regions with different intensities. The edges may help in describing scene can­

teDts by giving definition to underlying image objects. Achieving the gOAl of edge de-

teet ion may simplify computa.tions in computer vision algorithms such as segmentation.

classification and pattern or object recognition.

When analyzing complex scenes it can be often useful to simplify the amount of

dat4 to be processed by disca.rding information regarding absolute gray levels and only

keeping a record of places where changes occur 10 the image. Several modC"rn theories

rely on pre-processing image:s with detection operators before image matching and object

recognition. For thelle reasons l!dge detection is often considerl!d to be one of the first

stqe:s in many image processing procedures [63. 651.

1.2.2 Edge detection on Doise-degraded images

The goal of l!dge detection for noise-degradl!d images may be achievl!d by follo.,,"in!

t\\"Odilferent approaches. They are:

• Direct methods: Use of edge detection operators on images available for use.

• Indirect methods: Use of edge detection operators on pre-processed images.

The direct methods of edge detection achieve the goal of edge detection by applying

edge detection operators directly to an image. These methods do not use pre-processing

operations such as noise filtering, image enhancement etc. In the case of noise-degraded



images, these methods require edge detection operators which have been desi1!;ned ac­

cording Lo a model of the interfering noise. ,..\ priori knowledge about the interfering

noise may help in selecting an appropriate edge detection operator in this case. The

design of new edge detection operator also benefits from knowledge of the nature and

characteristics of interfering noise. These methods provide dire<:t solutions to the prob­

lem of edge detection by reducing computational costs required for image enhancement

or noise smoothing pre-processing operations.

Indirect edge detection methods usually include one or more pre-processing opera­

tions before the actual edge detection is performed. Pre-processing may include image

enhancement. edge preserving noise smoothing or filtering operations. An edge detec­

tion operator is then applied to the pre-processed image. A. priori knowledge of the

characteristics of any interfering noise is required in this case. for selecting the filter to

be used for noise smoothing. Since edge detection is performed on noise filtered images,

the use of gradient edge detection methods may give better performance results. But

pre-processing operations may generate additional problems in this case such as edge

blurring, smoothing of fine details in the course of pre processing operations. etc. The

overall performance of the edge detection in this case depends on both the performance

of the pre-processing operators and the edge detection operator.

[n this thesis, edge detection methods for speckled images that use direct methods

without pre-processing operations are discussed. Concepts involved in the design of new

edge detection operators which improve the performance of the existing edge detection

methods are studied.



1.3 Problem Definition

Speckle is usually characterized as multiplicatively signal-dependent and may be

spatially highly correlated [341. Speckle varies with underlying image intensity i.e. the

speckle is significant in high intensity homogeneous regions compared to low intensity

homogeneous regions. As a result, the signal to noise ratio (SNR) of speckled images

may be low and these images may suffer from poor contrast ratios as well [1 1.23..'HI. All

these properties make automated extraction of edge information from speckled images

a difficult task to accomplish.

Gradient edge detection methods which are based on differences between pixel values

gi\"e inconsistent estimates regarding true edge pixels due to the signal dependent nature

of speckle noise. Gradient methods can provide computationally inexpensive solutions

to the problem of edge det~tion on noise-free images. But these methods have been

shown to generate spurious edges and thick edge maps when used on speckled images

[1.69.91].

Zero-crossing edge det~tors applied to sp~kled images have been shown to generate

thin and localized edge maps but also to generate a number of spurious edges [31. The

main disadvantage with these methods is that they are insensitive to the edge mag-

aitude strength [40J. Other methods using ratios between pixel values tend to cancel

out the multiplicative noise effect of the speckle in the speckled images and to generate

meaningful edge maps on these images [3, 821. Evaluations of edge dete<::tion methods

for speckled images ha\'e shown that ratio based methods perform better than gradient

based methods [69, 91, 32].

However. existing ratio based methods also tend to generate thick edge maps. Post-

processing edge thinning operators are required in order to generate precise edge maps.



ThC$C methods &Iso use e:r~ient edge $lrength measures for e:enerating wdl ddined

and meaningful edge ma.ps (3, 9lj. These methods trl.de off the number of spurious

edge pixels generated in homogeneous regions and the number of correct edge pixds

[901. Such edge detectors used with large mask sizes can be successful in suppressing

the spurioUJI edges in homogeneous regions. but also generate thick edge maps. On

the other hand. smaU mask sizes are suceesful in extracting fine details and also gh'e

thin and precise edge maps hut generate number of spurious edges [32. 69). Extracting

information regarding the fine structures in images is also another problem with existing

speckle specific edge detection methods [691.

1.4 Research Methodology

1.4.1 Selection of test data

Test data were selected to include a variety of lest ima.ge5 over a range from

simple J·D sign&ls to rul airborne synthetic aperture r~ar (SAR) amplitude images.

As a simple test catq;ory 1-0 signals are selected which have 15ra~' Ie\-el nlues between

0-255 and ....hich include low intensity homogeneous rq;ions. high intensity homogeneous

rq:ions and edge pixds. [n I. second catq:ory, 2-D simulaled speckled images with 256

gra~' levels varying between 0-255 are considered. Test examples in this Colse include

computer generated patterns and real outdoor scenes. In I. third category, SAR images

extracted from a datll set llre used with the permission of Canada Cenler for Remote

Sensing (CCRS), Ottawa, Canada. Test images consisting of a variety of scene contents

such as woods. farm land. dIy, highway. indUSlrial etc. are selected as tesl examples in

this category.



1.4.2 Experimental method

first. existing edge detection methods used for edge detection on speckled images

are studied. Then the perfonnance of different edge detection methods is e,'aluated

using the L-D signals and 2-D synthetic test images. Since the original test images

are noise-free with sharp edges the Sobel operator (771 is used to generate edge maps

representing ideal edge maps. Edge maps on the corresponding simulated speckled

images are obtained using several existing edge detection methods representing actual

edge maps. Quantitative and qualitative evaluation of existing edge detection methods

is made by comparing the corresponding ideal edge maps and the actual edge maps.

This \vork follows the the measures proposed by Zaman and ~Ioloney [89) which they

used in the study and analyze of edge preserving noise smoothing digital filters. A

similar evaluation of existing edge detection methods is also made using real airborne

SAR images to investigate the suitability of these methods on real data sets. The means

of improving the existing edge detection methods for extracting accurate and precise

edge maps for speckled images are investigated.

1.5 Thesis Outline

This thesis is arranged into six chapters. [n Chapter 2 a review of relevant litera-

ture is conducted. The nature and characteristics of speckle noise are reviewed. Public

domain edge detection methods in general and speckle specific edge detection methods

in particular are reviewed. Introductory concepts used in 5AR imaging systems are

briefly outlined.

In Chapter.1 an evaluation of existing edge detection methods for speckled images is

performed using qualitative and quantitative performance measures. The performance



of these methods on re&l airborne SAR images is ~lua.ted.

A ratio edge detector bued on maximum 5t~h ed,;e prunin,; (MSPRoA) (331 for

extracting accurate and precise edge maps on speckled images is proposed in Chapter

4. Th~ :\ISPRoA a.I,;orithm and test results using 1-0 test si,;nab~ presented.

The :\ISPRoA edge detection test results usin& images both syntbetic 2-D itnd rea.l

a.irborne SAR images &l1: presented. in Cha.pter 5. The penorma.nce of :\ISPRoA edge

detector on a variety of test images is eva.luated using qua.litative a.nd quantitatll'e meth·

ods. A simple and fast :\iSPRoA edge tracking algorithm to improve visual quality of

the \ISPRoA edge maps is proposed. The use of multi-scale :vISPRoA method for ex­

tracting information at both macro and micro levels on speckled images is suggested.

The multi-scale \ISPRoA method performance is \'erilied using synthetic and real SAR

images.

[n Chapter 6. conclusions and recommendations fot future studies are presented.



Chapter 2

Literature Review

2.1 General

This chapter presents a literature survey of several topics related to this thesis

notably: edge detection methods, the nature and characteristics of speckle noise and

S.-\R imaging systems. The nature of speckle noise. including its visual effect and statis­

tical characteristics are briefly introduced. Edge detection methods, in general. and in

particular methods that are better suited for use on speckled images are reviewed. Pre­

vious speckle-specific edge detection methods and their algorithms are introduced. S.-\R

imaging technology, SAR data processing, speckling effects observed in SAR images and

related background information are provided. Speckle noise models for simulating SAR

speckle using radar signals model a.re also reviewed.



Figure 2.1: One dimensional step edge

2.1.1 Conventional notation

• Edge

The most common type of edge in images separates regions with different intensity

le~·els. Figure 2.1.1 shows a one dimensional step edge in images. The step edge is

characterized by its height h indicating the difference between two intensity levels

of values Il and b respectively. An edge exists if the absolute difference between

two levels a and b is greater than a pre-set value which is considered to be the

threshold value separating edge and non-edge magnitudes and hence detecting

difference between edge and non-edge pixels.

• Processing window W

Edge operators in general select a set of pixels as a processing window or mask

which is used for the computation of edge strength values. The mask size m x n

determines the number of rows (m) and columns (n.) of the processing window

rr a processing window contains an equal number of rows and columns it may

10



3 x 3 Window

P(iL~

P(i.j) t11tJ
P(i+l.j+I)

5 x 5 Window

Figure 2.2: Edge detector processing window

be represented by a mask size N ( indicating that the processing window of size

.V x .V. where:-; is odd). Figure 2.2 shows two conventional processing windows

for mask size .V "" 3 and ,V == 5 with the center pixel P(l.il indicated by a circle.

In this thesis processing window (or window) or mask represents square matrix of

pixels as shown in Figure 2.2.

• Digital image

Figure 2.3 shows a digital image of size .'rf x N pixels arranged into .\-f rows and .V

columns. Pixel P(O. 0) located at top left corner and pixel P(,\;f - L.V - L) located

at the bottom right corner. The Figure 2.3 also shows a pixel of interest P(i.j)

(located at i row and j column indicated by the circle) where the edge strength

value is to be measured applying a 3 x 3 window. The digital images used in this

thesis are either gray scale image (intensity values represented by a-bits or levds

0- 255), Of binary (represented by two levels-black and white) to represent edge

maps.

II



P(M-l, N-l)

F'igure 2.3: A digital image grid
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2.1.2 Imaging systems

hnaging systems un be b~ly classified into coherent "-lId incoherent systems

based 00 the illumination SOUW! used in image formation. Differences exist be:t'fll'ee:n

coherent and incoherent im&3iD& in the wa.y imag~ are formed. Historically. imA&cs

bave been performed with incoherent illumination (4j such as su.olight. A variety of

optical and dectromagnetic (EM) instruments which require coherent illumination for

their applications have bee:o developed. The iovention of the laser in the early 1960's

opened Dew horizons for imaging systems using coherent iUumination. Holographic

imaging is a two step image ptoee55ing that uses coherent illumination. Radar systems

obtain images using coherent processing. Lasers used for illumination purposes use

highly coherent light.

Incoherent imaging systems are linear in intensity a.od the phase information associ­

aled with the obje<:t beiD.& illuminated is not retained in a.ay way. In these systems oUt

possible phases are represented. The human vision system a.nd photor;raphic systems

are most commoo examples of ima.t;ing systems that use: incoherent proc:essiD.&.

Coherent systems au Iineu in compleJt intensity and the phase information a.sso­

ciated with the object is ret&iDed. These: imaging s)'stems have illumination ener!)'

in whicb phases are aligned. The process beaJmes morl! complicated when images are

formed using coherent and reflected ener&,.v. With refle<:ted ener8Y signal there is a sec­

ond problem associated with the pha.se differences that are introduced into the reflected

bum due to the surface roughness of the object being illuminated. These parameters in

coherent imaging systems give rise to noise patterns called &peckle which may degrade

the images formed by the system. This thesis addresses images obtained using syn­

thetic aperture radar (SAR) which are formed using coherent processing and are further

discussed in section 2..5.



2.2 Speckle

2.2.1 Speckle origin

The operation of the first HeNe laser in [960 revealed a pe<:uliar granular pattern

called ios~r speckle phenomenon [341. It was found that the speckle patterns are produced

as a result of the scattering of coherent light from surfue5 which are rough on the scale

of optical wave lengths (5 x 1O-~ meters).

When objects are viewed in highly coherent continuous wave (eW) laser light the

response observed at a distant point consists of many coherent components each arising

from a different microscopic element of the surface being illuminated. The distances

tra,·eled by these coherent components may differ by several or many wavelengths if

the surface is truly rough. The resultant field will therefore consists of contributions

from several component waves which are in and out of phase. although coherent. thus

resulting in the appearance of a granular pattern.

If interference at any point is highly constructi~'e the resultant speckle pattern con­

sists of bright spots. If the interferences are highly destructive then the resultant pattern

consists of dark spots. Overall the speckle consists of random spots bright and dark in­

tensities and. of intensities in between these two extremes. (f the observation point

is shifted in space, the resultant speckle pattern will also change due to a new set of

components contributing to the resultant field.

A literature search shows that direct analogies of laser speckle are found in coherent

imaging such as radar astronomy, synthetic aperture radar (SAR) and acoustical imagery

[.141, In addition. speckle-like patterns are also observed in radio wave propagation.

temporal characteristics of incoherent light, the theory of narrow band ele<:trical noise.

ultrasound and general theory of random spe<:tral analysis [tal. The term speckle has

14



now raken on a far browr sense thOOlo when it 1V;U fint introduced as fuu spttHe.

2.2.2 Speckle classification

It is convenient to clusify speckle patterns into two pups, objecti\"e and subjec­

ti\"e speckle. The scattering of a rough surface illuminoated by ool coherent light source is

known as objecth"e speckle. A part of objective speckle un be observed by holding a

screen in front of the object being illuminated. Briefly, objective speckle is speckle ob­

served in free-space geometry. Subjective speckle patterns can be observed by focusing

the scattering of ool rough surface using a lens system u shown in Figure 2.4. [n other

Figure 2.4: Speckle geometric phenomena.

words. subjective speckle is objective speckle obtained by considering the lens pupil ;u

the scattering surface. Subjective speckle is different in that an image of the object is

formed by using lens system.

It may be considered thoat there is no difference between objective and subjecti\·e

15



speckl~ but th~y Are speckl~ put~ros aL differ~nt scales. i.~ th~y will ha\'~ diff~rent

visual patterns a.ppeara.oce. The speckle observed in ima!iIl& systeD'l5 Are examples of

subjective speckle pattel'l1$.

2.2.3 Visual effect

FiKUf'C 2.5 sho," speclde patterns produced from a reaected surface such as paper

(Goodma.o 134]). Dennis Gabor, who ~eived the 197L Nobel prize in physics for his

invention of holography says that the spedde is not really noise hut, it is information

which we do not want i.e the information on the microscopic unevenness of the paper in

which we may not interested.

The speckle patterns ca.o be used for beneficial purposes in apptica.tioos such as

meteorology, utronomy, stellar interferometry etc. A collection of en,;ineering uses

of the speckle can be found in [25, 261. The speckle patterns are used in measuring

surface roughness. non-destructive testing of finished mechanical components, detection

of cracks in aircraft winV, detection of distortion in enpne bea.rinp etc. An exten.si\'e

review 00 use of speckles in meuorolozy can be found in [27]. Another important

area covers applications in utronomy and stellAr interferometry. Speckles are used for

measuring the diameters of asteroids and plAnets [28], solar granulation [29], angular

separation ud position &Ogle of binuy stlLt3 1301.
However. speckle is most commonly treaud as noise or unwanted disturbance in

image processing and computer vision "ppliea.tion as it obscures observa.ble det&ils in

the underlying images. It is seen from figure 2.5. tha.t speckle patterns consists of

random bright IoJ1d dark patches of random widths distributed allover in a totally

chaotic m.a.nner. Though there may not be much information that image processing And

computer vision appliea.t.ioos from a surface such u plain paper (00 intensity changes
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Figure 2.5: A laser speckle pa.ttern visuaJ effect

Copied from Laser speckle and related phenomena,

J. W. Goodman and J.e D';nty (34), page. 10.
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or no objects to register. etc.,) but the speckles gi\'e impression that thero~ may be some

useful information. It may be difficult or ma.y be impossible in some C4SeS even for the

human vision systems to recognize fine detailed information in speckled images due 10

the \·isua.l effects created by tlte speckle noise.

2.2.4 Speckle statistical characteristics

The statistical clta.racteristiQl of speckle patterns have been well studied and ts­

ta.blished [34. 101. Goodma.n derived the first and second order statistical characteristics

of laser speckle patterns [341. Since the deri\'ations are lengthy and outside the scope of

this thesis. only a summary of these results is presented here.

The complex amplitude scattered light at a distance observation point in space is

gi\'en by the sum of a.mplitud.es of the contributions from e4Ch point source on the

scattering surface (Figure 2.4). Assuming tha.t the number ;V of e1ementuyconlributions

at is extremely large, i.e.V - :0. Goodma.n derived the joint probability density function

(PDF) Pi.} of the real (A.) and ima.&inary (A,) parts of Ihe speckle patterns as.

P... (.-1, . .-1.,) = 2r
1
(T2 exp( _ [A,1

2
2
;}A,!2) (1.1)

(2.1)

Where < a.. > is ensemble average of a. elementary contributions. The PDF p,.} is

eommonly known a.s a circularly Gaussian density function since CQntours of conSlarll

pdf are the circles in complex plane.

The quantity that is frequently considered in the field of digital image processing is

the intensity of the speekle patUrns. Goodman derived the equation for the marginal

18



PDF of the s~1e intensity alone pf(f) as:

1" { 60<p{--'-)Pt(l) "" Pf.lU.8)tlB =: 10' 26'

-. 0

I~O

otherwise
(l.:Jj

The PDF of the intensity P(I) which is greater than some set threshold \Ol.lue f is

exprused as:

P(f):;: ezp{<-/» (2A)

[n general speckle consists of sum of two or more polari~ speckle p4tterns. Thus the

total intensity of the irradiance ( may be composed of N speckled p4tterns.

[",t I (.!:) (2.51

where I(k) =1 A.•(kI 2 + ..4,(k)1 I. Thus speckle patterns may also express correlations

between underlying intensity fields.

GoodmNl deduced that speckle pOltterns obey negative exponential statistics. His re­

sults "'ere [aler confirmed experimentally by many other researchen (10. 67]. :\feKechnie

1671 who took 23.000 measurements reported in his experiment5 th ...t speckle e.xhibiu

negative exponential chara.eteristics. Figure 2.6(.1.) shows Goodrm.n's theoretical plOl

of speckle characteristics. figure 2.6(b) shows Mcla!chnie experimental results showing

speckle charKteristics. figure 2.6(a) aod (b) confirm that speckle intensity exhibits

negative exponential characteristics.
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Figure 2.6: Speckle statistic&'! characteristics

(a) Goodman theoretical plot; (b) McKechnie experiments. (Copied from ~aser speckle

dna related phenomena. l.W. Goodman aDd J.e. Dainty [341· pp. 19.
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2.3 Edge Detection Methods

2.3.1 Gradient edge detectors

Gradient ed,;e detectors in general calculate edge strength \'a.lue ba.sed on differ­

encn between pi:cd values. Thne operators use edge templates. which a~ proc~sin!);

windows but each element in the window is assigned a .-alue which i5 different for dilferomt

open.tors. At each pixel P{i.j) in the input image, the edge strength magnitude ..t(i.ll

is calculated as per the edge operator algorithm applying edge template..-\ pixel P(i.})

is classified as an edge pixel if the edge strength value A(i.j) is greater than a pre-set

threshold value. The image defined by the .4.(i,j) values is called the edge strength map

\vhile the corresponding thresholded version is caUed edge map E(i,j) which is a binat}'

image indicating edge and non.ed.&c pixel location by l'J &Il.d O'J respectively. If edge

map is obtained from noise-free image then it is refered all ideal edge map indicatin&

ideal edge pixel locations, If edge map is obtained on noise cocrupted image then. it is

refered as actual edge map which indica.tes actual edge pixel locations in the detected

edge map.

Different gradient edge operators based on edge templates ha\"e been suggested b~'

~archen in the past such &5 Sobel, Roben, Prewitt, Kinch etc. (171. Figure 1.. fa)

and (b) shows edge templates for Sobel and Prewitt operators, respectively. According

to these methods an edge strength magnitude is calculated by appl)'ing the appropriate

row and column gradient mules at each input image pixel. The square root of the sum of

row and column gradient muks computed and is considered as the overall edge strength

measure..-\n edge strength map so obtained is thresholded to separate the edge pixels

from the non-edge pixels.

That is. the Sobel operator measures edge strength value by applying the row and
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Row gradient Column gradient

(al Sobel operator

(b) Prewitt operator.

F'igure 2.7: Gradient edge detection operators



column Sobel edge templates (Figure 2.7(a») at each pixel Pli.j) in the input image

The Sobel operator calculates the overall edge strength value at each pixel P(i.j) using:

(2.6)

where GRand Gc are row and column edge strength magnitudes. respe<:tively. If L l

and L2 are left and right sum and differences of pixel intensity \'alues of the pixel P(i.j).

Sobel operator calculates Gn and Gc edge strength measures using the follolving set of

equations.

ROUI gradienC:

GR(i.j) = K~2[LI-L2J

Ll '" P(i - L.j) + K x P(i,j + t) + P(i + l,j + I)

L2::::: P(i - Lj - 1) + K x P(i.j - l) + P(i + Lj - 1)

CQlumn gradient:

Gdi.j)= K~2[£l-L21

£1 = P(i - l.j - 1) + K x P(i - l,j) + P(i - l.j + l)

£2 = P(i + Lj _ 1) + K x P(i + l,j) + P(i + Lj + L)

(2.7)

Similarly. an edge strength map can be obtained using the Prewitt operator edge

templates shown in Figure 2.7(a) and substituting k = 1 in the above set of e<juations.

There exist many different operators based on the computation of gradient edge strength

\·a!ues. but most of them use similar techniques based on local gradient information [77].

Gradient edge detectors are best suited for applications on noise-free images.

2.3.2 Zero-crossing edge detectors

The concepts involved in zero-crossing edge detector can be best described by

considering a simple one-dimensional continuous step edge as shown in Figure 2.8(a).
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Figure 2.8: Zero crossing Edge detector

(a) One-dimensional analog step edge; (b) The first deri\'ath'e

measured on (a); fc) The second derivative measured on (a).

Figure 2.8(b) shows the first derivative of the step edge which gives local maximum

at edge locations. Figure 2.S(c) shows the second derivative of the signal :LS(a) which

gh-es zero crossings at the places .....here the first derivath'e maxima are found. _-\ zno

crossing edge detector calculates: edge pixels at loations ....here the spatial gradi~t finds

its maximum \'alues i.e. a pixd is marked as an edge pixel if there is a -zero~ Hassing

of the second deri\'ati\,es at that pixd Iii). The generalization of the zero-<;rossing edge

detector in I·D domain leads to the Llplacian operator in t,,·o dimensional domain.

figure :?9(al shows t",o common :l )( :l Laplacian ma.sks used for comp"lint; rhc
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Figure 2.9: Zero crossing edge detector templates

(a) A 3 x 3 masks employed in calculating 2-D Laplacian

a b a

b e b

a b a

Figure 2.9(b) General pattern of it. J )( 3 mask used in computing it. 2-D

digital Laplacian. The constraints are: (i) e = -(4(1 + -1b) and (ii) 2a + b = I [;'l

2-D Laplacian operaLOr. :\ Laplacian operator detects edges by convolving an input

image with the laplacian mask and using a threshold value to separate edge pixels from

non-edge pixels.

Zero crossing edge detectors can be used to generate edge maps with sub-pixel acell-

racy and are successful in generating good localized edge maps. But one problem with

these operators is that they are insensitive to the edge magnitude. The masks used (or

computing digital Lapladan are not necessarily optimal. Various 3 )( 3 masks can cor·

rectly compute a digital Laplacian but may have different performance characteristics

under different noise environments.

\\ihen applied on speckled images zero-crossing operators have been found to be

succe:isful in generating thin and localized edge maps [31. However. the edge maps also
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included spurious edges giving poor definitions compared to an ideal edge map when

applied on speckled images [3. 891.

2.3.3 Ratio edge detectors

It has been found that edge detet:tion methods using ratios between pi:<el \"alues

tend to cancel out the effect of multiplicative noise present in speckled images and to

generate better edge maps when compared to the gradient methods for such images

[2.23.821. figure 2.10 shows a schematic used to describe ratio based methods.

boriwntal edge (S It S window)

Figure 2.10: General schematic for ratio based edge detectors.

The processing window of a selected size is divided into two non-overlapping regions

P and Q along one of the possible edge orientation o. The average pixel intensity P,

and QQ are calculated for each of the two regions. The minimum of the two ratio of

averages (PQ/QQ). (QQ/PQ) is considered as edge strength measure RQfor the selected
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edge direction o. The ratio-of.ll,\-eu.ges edge strength "alue is calculated for each of the

sel«ted edge directions. The minimum of aU tbe ri.tio-or.a~·erages R. is considered a.s

the oven.!1 edge urength measure of the image pixel under consideration.

If the area which includes regions P and Q is homogeneous. the ratio·or·averages

calculated for these regions will be appro"imately equal to unity which indicates a non·

edge condition. If regions P and Q represent different homogeneous a~as. then the

ratio-of'a'-erages measured will ha.ve a \"J.!ue other than I. based on the respecth-e relati\~

a'·era.ge pixel intensity value o\-er regions P a.nd Q. A pre-set ratio th~hold \'due T.

can be used to separate edge and non-edge pixels.

For speckled images. ra.tio based edge dt"tecton perform better tha.n gra..dient or zero·

crossing edge detecton (2. 23. 82_ 901. Ho",-e\·er. these methods trade-off the number

of fa.lse edge pixels and the number of correctly detected edge pixels when compared

with their corresponding edge maps obtained on noise-free images. These methods also

generate thick edge maps.

2.4 Speckle Specific Edge Detection Methods

[n this section severa.l existing speckled specific edge detection methods are reo

\'iewed in terms of their algorithms. advantages and disadvantages. The following edge

detection algorithms are reviewed:

• Coefficient of Variation (CoV) 1821 edge detector.

• Ratio of Averages [31 edge detector.

• Touzi Extended R.1.tio of A"erages [821 edge detector.

• :\lodified Ratio of Aver&&e5 (:\iRoA) 1901 edge detector.
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• Ratio and Gradient of A.verages (RGoA.) [90) edge detector.

2.4.1 Coefficient of Variation edge detector

Touzi [82) proposed the coefficient of variation (CoV) edge detector for speckled

images and used radar images as his application example. According to the statistical

nature of speckle, outlined above in section 2.2.4, the ratio of local standard de\·iation

to mean in homogeneous areas does not depend on local mean power. Touzi used this

fact and defined coefficient of variation (CoV) edge detector for use on radar images

An estimate of the CoV is computed for an image pixel of inter~t by selecting a

window surrounding the pixel of interest and using the standard deviation (q) and mean

(fl) of the pixels in the sel~ted window. According to Touzi. the CoY edge strength

value is measured using:

~
~/IJ=~

where. values 13 and IJ are computed using,

(2.9)

(2.10)

l '
131 = :v=Lt;(y;_p1) CUI)

For practical applications, value of tiff! is approximately equal to j(liLi o\·er a

homogeneous areas. where L is the number of independent looks used in forming the

radar image. This value could be higher over edge are&.'!. Hence a threshold value is set

using approximation T =If+ f. where (is very smaU quantity. Image pixel P(i.j) is

labeled as an edge pixel if the edge strength value is greater than the pre-set threshold

value. Hence. the CoY edge detector detected edges if:

(2.12)
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.-\11 other pixels are c1Msified OIS non~ge pi:t:ds. The luger the t7/p. \O!.lue the more

likely thu the pixel is an Nge pixd.

2.4.2 Ratio of Averages (RoA)

Bo\·ilc. [31 suggcsted the simple R..1.tio of ..h·erages method for detecting edges in

speckled images by considering horizontal and \"ertical Nge orienta.tions. figure 2.11

shows a. schema.tic dia.gram of Bovik's Ratio of Averages (RoA) edge detector. Accordin\!;

to the RoA edge detector. a selectN neighborhood (window W) surrounding the image

pixel of interest P{i,j) is dividN into two non-overlapping regions P and Q (Figure 2.1 L).

The average intensity value of the pixels in the two regions P and Q a.re calculated as

R(Lj) and [(i.j). respecti\"ely.

horizontaJ edge (0=1) vertical edge (0=2)

Figure 2.11: The schematic for Ratio of Averages (RoA) edge detector

The RnA edge strengtb \'alue for horizontal and "ertical edge orientations are calcu-



lilted using:

H{i.j) = maxIR(i.jl/L(i,jl, L(i.j)/R(i·jl]

I/(i.j) "'" rnu[R(i.j)/L{i.j),L(i.jl/R(i.j)]

The o"erall edge strength magnitude is calculated as.

R(i.j) = ,jH(i.j)l + V(i,j)2

eU")

CU.'l)

Edge strength map so obtained can be thresholded to separate edge pixels from non·

edge pixels. That is, an image pixel P(i.j) is classified as an edge pixel if R(i.j) > T.

otherwise it is classified as II. non.edge pixel.

Bovik noted that the conventional RoA method is successful in detecting edges in

speckled images since the method is invariant to intensity chUlges 13]. Howe~'er. the

RoA method generates thick edg;e mllp5. Bovik also showed vi... his experimental results

th ...t the Laplacian of G...ussian (loG) operator un be successful in generating good

localized edge map for sp«lded imag;e5. Howe~'er. the LoG method lenerates a number

of spurious edge pixels.

According to Bovik. the ~vaatages of RoA method are the disadvantages of loG

method and vice versa. The RoA method gh'e5 an optimal edg;e map for speckled

imag;es but, generates thick U1d ambiguous edge maps, where as LoG generates thin and

localited edge maps but results in number of erraneous edges. He suggested that these

two edge detectors be used in combination to give better results on speckled images. He

used the RcA method in combination with the loG method by combining the respective

two edge maps using a logical A~D operator.

BO\'ik demonstrated thllt the use of RoA and LoG methods in combination is suc­

cessful in generating meaningful edge maps on speckled images. But the RoA method
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uses only horizontal and vertiuJ edge orientattoD.$ which lnd to a poor quantization of

the possible edge orientations. A good edge detector should indude information on all

possible~e o~tations for extractirt& as many true edge pixels as possible [82[.

2.4.3 Touzi Extended Ratio of Averages CFAR

Touzi d. at. 1821 also proposed a statistiCAl and geometrical edge dete<tor for

SAR images considering ratios between pixel values. Their proposed edge detector uses

contrast ratio C. between two homogeneous regions in a sele<ted neighborhood. They

,uggested that in order to obtain better performance results an edge dete<tor must be

applied in all ponible directions. According!y, Touzi et. 4t. considered four main edge

orientations. namely, hr>ri:ontal. r;ertical. left slanled and right slanted. For each of these

edge directions. 01 window centered at given pixel P{i.j) is divided into two contiguous

non-overlapping rqions P and Q. figure 2.12 shows a Khematic used to describe the

Touzi tl. at edge detector.

Touzi d. 4t proposed extended ratio of a\"ttages edge detector which uses constaru

false ala.rm rate (CFARj concept. A contrast ratio C. is used to define edge and non·

edge conditions. A contrast ratio of C, == I is defined for homogeneous regions. For

non-homogeneous re,;ions contrast ratio value is determined usin,;:

C. = max(P../Q.. ,Q./ p.), 0='- .... 4. (2.16)

where p. and Q.. are average pixel intensity values of two selected regions in the edge

direction o. The conditional probability of detection within boundaries between two

homogeneous regions ha.ving contrast ratio C,. for a given threshold vo1lue T, is calculated

using:

Pd(T.C.) = Prob(r < T [C.l == loT p(r I C.)dr

31
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Horizontal Vertkal

left slanted Right slanted

figure 2.12: The schematic for Touzi CFAR edge detector

Touzi ct. al defined the probability of false alarm (Pia) as the probability that a pixel

of a homogeneous area is detected as an edge pixel. and hence.

PlaIT) = Pd(T. t) (2.18)

Touzi el. al also proposed a multi-scale CFAR detector using increasing mask sizes

and different threshold values for each mask size. Touzi ct. aJ obtained edge maps

using different mask sizes (3 x 3.5 x 5.7 x 7.9 x 9) and combined these edge maps

using logical OR operator thus producing final edge maps for speckled images. Touzi fl­

a/ suggested that the multi-scale CFAR edge detector be used for extracting fine and

large object detail on radar image5. Touzi d. al CFAR method also used edge thinning

post-processing in order to produce thin and precise edge maps.
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2.4.4 Modified Ratio of Averages (MRoA)

Zaman and \1010ney (90) modified the Bovik RoA method by takint; all four

edge oreintations into account. namely hor1;ontal. terHcaL left slanted and right ;;//Jnted.

in their \Iodified Ratio of A\'erage5 (orientations) edge detector. figure 2.11 shows

schematic of the \IRoA edt;e detection method.

•

•

•

•

figure 2.13: The schematic for the :\Iodified Ratio of Averages (\tRoA).

The processing window W of a given mask size .V centered around the image pixel

of interest P(i,j) is divided into two non-overlapping regions for each of the four edge

dirE:(;tions. Ratio of &.verages edge strength value is calculated for each edge of the edge

orientation 0 using:

~ '= min{P./Q•. Q./p.); 0=1 .... -1
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where P, and Q. are the averages of the pixel intensity ~... lues in the twO non-o,-erlapping

regions in dire<::tion 0, The overall edge strength \'alue is measured using:

{2.:201

An edge strength map so obtained is thresholded to separate edge pixels from non­

edge pixels, [f the ratio edge strength value R at any pixel is less than the pre-sel

ratio-threshold value T, then the pixel is classified as an edge pixel. All other pixels are

labeled as non-edge pixels.

The Zaman and y[oloney ylRoA edge detection method can detect accurate edge

maps including a number of correct edge pixels which may be missed by the Bovik RoA

which uses only the horizontal and vertical edge directions. Ho.....ever. the edge maps

generated using the ylRoA method are thick and required edge thinning post processing

operations to produce precise edge maps.

2.4.5 Ratio and Gradient of Averages (RGoA)

Zaman and :\'loloney further improved the ylRoA edge detector by including

gradient edge strength information in extracting correct edge pixels information fmm

speckled images. According to them. the ylRoA method detects more spurious edge5

in dark areas compared to bright areas even if the contrast ratio is held constant. This

becomes a problem if edges have to be detected from both bright and dark regions in

the same image, as is frequently required. Zaman and y[oloney hence suggested that

gradient edge strength information be included in calculating edge strength and hence

den~loped the Ratio and Gradient of Averages (RGoA) edge detector [901.

The RGoA edge detector calculates edge strength measure in terms of both ratio and

gTlldienl edge strengths. The Schematic of Figure 2.13 also applies to the RGoA edge



detection method. The ratio edge strength value is measured using the ~IRoA method

as explained in the previous section. The gradient edge strength value is calculated for

each of the four directions of Figure 2.13 using:

Go =abs(Po - Qo), 0=1. .... -1.

The overall gradient edge strength magnitude is calculated as:

G = max(G.), o=L, .... -1.

(:Ul\

(2.:n)

The overall edge map is obtained by combining ed.ge maps extracted based on ratio

and gradient edge strength measures using the logical OR operation. The RGo..\. method

detects edge pixels if:

R<T, OR G>T, (2.2:l)

where T. and Tg are pre-set ratio and gradient threshold values. respectively.

The RGo..\. method can successfully extract true edge pixels giving with better results

than the ~IRoA edge detection method. The edge pixels that are detected using ~lRo.-\

method are also included. in the edge maps obtained using the RGoA method because

the later method is an extension of the first method with the addition of gradient edge

strength information. The RGoA method also require edge thinning post-processing to

generate thin and precise edge maps on speclded images.

2.5 Synthetic Aperture Radar Imaging

2.5.1 SAR imaging technology

RA.DAR is an all-weather day/night sensor and has been used for a wide variety

of surveillance applications since World War II. Radars detect targets by sending pulses



of radio waves toward them. and detecting any reflected energy. Imaging radMs 115"

a moving platform, with the radar antenna pointed perpendicular to the direction of

the platfonn motion, to provide a second dimension (azimuth) and thereby build up a

two-dimensional strip image. Imaging radars have been used since 1960 in military and

civilian applications all over the world. An advanced signal processing version of these

radars. known as synthetic aperture radar (SAR) provides 2-D imagery.

Synthetic Aperture Radar (SAR) is an airborne or space borne imaging system that

uses coherent processing of returned radar signals. SAR provides an efficient means for

better understanding and monitoring of the Eartb environment and resources. SAR is

a microl'o'ave instrument that sends pulsed signals towards targets and processes any

reflected pulses from tbe targets. Optical satellite based remote sensing depends on

sunlight to illuminate targets. Hence their performance is limited to the presence of

clouds, hale. smoke and darkness. But SAR transmits and receives signals through

douds. hale. smoke and darkness providing an all-weather all-time means to obtain

high qualitr images of the Earth from remotely observed platforms.

SAR images are increasingly used in remote sensing applications such as geology.

mining, fishing, farming, forestry, sea ice mapping and hazardous monitoring [78 ..j. d6.

831. Several experimental satellite SARs such as SEASAT [921 and SIR-B [311 demon­

strated the usefulness of SAR. Canada Center for Remote Sensing (CCRS) launched

RADARSAT on November 4,1995, a. satellite SAR intended for civilian Earth observa·

tion applications.

2.5.2 Speckle noise in SAR images

SAR generates images by coherent processing of returned radar signals and hence.

the SAR images are subject to speckle effects. figure 2.14 shows a representative SAR



Figure 2.14: A typical SAR amplitude image

(A typicaJ SAR amplitude image in which the speckle patterns are evident. Used with

permission of the Canada Center for Remote Sensing (CCRS), Canada).
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image calculated from a flight by airborne SAR over a region near Ottawa. Canada.

The images in the data set include mixed terrain. farm land. industrial and frozen

river regions. It can be observed from this image that the speckle is significant in mixed

terrain and industrial (high intensity homogeneous) regions when compared to the frozen

ri\"er (low intensity homogeneous) regions as is characteristics of speckle. Such images

may require filtering operations such as speckle reducing filters [23...7. 52. 901 or edge

detection algorithms designed fot the particular interfering noise [3, 24. 821 environments

in order to achieve good performance in image processing applications.

2.5.3 SAR image data processing

(mages obtained using SAR can be grouped into different types based on data

processing techniques used in image formation. First, SAR images can be classified

based on the radar return signal component used in computing the response at a single

pixel (i.e. resolution element) in the recorded image. These a.re:

• Amplitude SAR images

• [ntensity SAR images

• Amplitude SAR image

[n theory, the received radar signal at a.n observation point consists of sums of

delayed and attenuated copies of the transmitted signal It was mentioned in Section

2.2.1 that coherent processing retains phase information, thus the received signal consists

of in phase and quadrature components. The sum of complex signals results in another

complex quantity and is referred as complex amplitude speckle signal. Derin [15) derived

the probability density function of the real complex amplitude SAR image expressed as·

P(.4)=AeXP(-:~~/2q~). A~O
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where x aDd yare the in-phase and quadrature components of the SAR signals and

A=~.

Derio derived the amplitude SAR image mean calculated over homogeneous regions

which is found to be ~A = u# and the variance u~ = 2 - ;t/2ul where u is the stan­

dard deviation of the normally distributed in-phase :x and quadrature y components.

The amplitude SAR image therefore exhibits a ratio of standard deviation to mean of

I7A/~A = 0.5227 over homogeneous regions [151·

• Intensity SAR image

SAR intensity images are formed by computing the sum of the in phase x and

quadrature y components yielding SAR intensity image resolution element equal to

I = :xl + yl. Derin !151 also derived the probability density function of the intensity

SAR image expressed as:

(:LB)

having mean ~l "" 2ul and variance of uJ = .(u4 where u is the standard deviation of the

normally distributed in-phase :r and quadrature y components. Thus an intensity SAR

image is characterized by its ratio of the standard deviation to mean over homogeneous

regions equal to unity (151.

Secondly, onother way of classif)'ing SAR imag~ is based on the number of looks

considered in image formation. These images are classified into:

• Single Look or One-Look SAR

• ~Iultilook SAR image

• Single-look and Multilook SAR

Single-look or one-look SAR images are obtained by considering a single realization



of intensity or amplitude SAR images. Y[ultilook SAR images are obtained by combining

realizations from several single. look images to form composite response. If.V single-look

SAR images are averaged on an intensity basis then the resulting SAR image is called

an .V~look intensity SAR image.

The probability density function of single-look amplitude and intensity images is

expressed by Equations 2.24 and 2.25, respectively. The probability density function

of -l - look amplitude SAR image denoted by A. found to be '( distributed [I·'l and is

expressed as:

(2.26)

where 17 equal to the standard deviation of the normaBy distributed in-phase I and

quadrature y radar return signal components. The ratio of the standard deviation to

mean over homogeneous regions is therefore 0"4(Al/Jf4(A) "" 0.2536 for -I -look ampli~

tude SAR images.

Derin [15] also derived the corresponding probability density function for'" - look

intensity f. is X2 distributed and is expressed as:

(2.27)

where 17 is the standard deviation of the normally distributed in-phase;r and quadrature

y components of the radar return signal. The ratio of the standard deviation to mean over

homogeneous regions is found to be equal to 174(f)/~4(f) = 0.5. For single-look intensity

SAR images mean and standard deviation over homogeneous regions are equal whereas

for multi· look (IV -look) amplitude SAR images these quantities are proportional.

In order to reduce the undesirable etre<:ts of speckle noise. several independent (single­

look) SAR images can be averaged thus producing a multi· look SAR image. \Vhile the

multi-look process reduces the speckle noise. it will also reduce image resolution due



10 spatial averaging. However, multi-look images are often better suited to applica­

tions. For example. Lee 155) suggested that multi-look SAR images are better suited

to image segmentation and classification applications despite their reduction in a.zimuth

resolution.

2.5.4 Speckle noise models

Image noise models are of particular importance for digital processing of images

In this section. models of speckled images are considered with particular reference to

radar images. Several researchers have proposed models for SAR speckled images as a

prelude to the development of different algorithms for SAR images. A brief review of

these algorithms is presented in this section.

Lee proposed that a multiplicative noise model can be used for simulating SAR image

speckle [.571 as.

y(i.}) "" r(i.j)·n(i.j) (2.28)

where. y(i.j) is the recorde<! SAR image. z(i.j) is the original noise-free signal and nli.j)

is the interfering ra.ndom noise field. The noise signal n(i.j) is Rayleigh distributed

with mean of one and standard deviation equal to [; - ljEn = 0.522. With the use of

multiplicative noise model represented by Equation 2.28 speckle corruption is a point

operation and hence y(i.j) is uncorrelate<! whenever z(i.j) is uncorrelated. Durand d.

aI. used multiplicative noise model similar to Lee for simulating SAR speckle which

they used for SAR data filtering and classification [171. Kuan el. al. suggested a non-

stationary mean and non-stationary variance (~~I~V) model for use in image restoration

algorithms for speckled images [511.

Tur d. al. noted that a simple multiplicative noise model may not be a good choice
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Figure 2.15: Speckle noise model

for modeling speckle noise as it fails to account for inter-pixel correlation effects due to

correlation in speckle itself. Frost tt. at [231 used a multiplicative-convolutional speckle

image model to eliminate fading effect (dominant source of randomness in radar images)

and hence deri\'ed minimum mean squared error (:V[l\ISE) estimates for use in SAR data

filtering. Frost ct. al. suggested that SAR images be modeled as,

yU.j) "" [x(i,j). n(i,j)] ... h(i.j) (2.29)

II,here .... indicates convolution with the SAR impulse response h(i.j).

Based on their model for speckled noise. Frost ct. aJ. also developed an edge detec·

tion algorithm for SAR images [241. Hudson and Jernigan [471 used a multiplicatively

convolved model similar to Frost but with a circularly Gaussian point spread function

(PSFl impulse response. Figure 2.15 !hows a speckle noise model used by F'rost d.

Ill. Zaman and ~{oloney [901 used models of single-look and 4 - look amplitude images

suggested by the Hudson et. al. [471 to generate simulated SAR speckle on which to

test edge preserving noise·smoothing quadratic volterra filters.



~{ore complex models for simulating speckle noise have also been proposed ~uch 4S

Derin [15.521 wllich are based on radar signal model. However. the model suggested by

Frost et. QI. have been found to be adequate for explaining the speckle noise observed

in images formed by coherent imaging systems [24,47, 891. Frost d. 0.1. noted that the

above multiplicative·convolved speckle image model also explains SAR image adequately

so that the speckled statistical properties images simulated according to Equation 2.29

are comparable to that of actual SAR imagery.

2.6 Summary

This chapter began with a review of the literature on speckle noise in images

A review of speckle noise nature and characteristics were outlined. A SUf\'ey into edge

detection methods in general and methods that are suited to use on speckled images was

conducted. Algorithms for speckle specific edge detection available in literature were

briefly introduced. The advantages and disadvantages of several speckle specific edge

detection methods were reviewed. Background information on imaging technology used

in SAR imaging systems was provided. SAR data processing methods and types of SAR

images along with their statistical models were outlined. Speckle image noise models

available in the literature were reviewed and a radar signal noise model is introduced.

The literature search into edge detection methods reveals that ratio based methods

are better suited for use on speckled images. Hence methods that use ratios between

pixel \'alues are considered for further investigation and analysis. An evaluation of edge

detection methods for speckled images using synthetic and real airborne SAR images is

presented in the next Chapter.



Chapter 3

Evaluation of Edge Detection

Methods for Speckled Images

3.1 Introduction

In this chapter. the procedure previously used by umao &lid Moloney [90. 91j

10 meuure the performomce of edge detection methods for speckled images is re~'iewed.

Since the previous eY<JJuillions by Zaman &lid Moloney [911 mainly used synthetic da.u..

a study of these methods using real airborne SAR inu.ges with permission £rom Ca.nad.

Center for Remote Sensing is conducted. An evaluation of existing edge det«tion meth·

ods using real images with real speckle is performed in this Chapter.

3.2 Edge detector performance measures

Since all edge detectors are not suitable for all appliutions. the performance of

a given edge detector must be carefully evaluated before sdecting it for a particula.r

application. \loreover. at times the use of a particular edge detector may be (amput"·



tionaJly inefficient u the sa.mc results ma~' be obtained usin!: a computationally simpler

C'dp;e detector. Edge detector performance measures are also important as they may

aid in dcsig~ new operators by providing xuiddines on how to impro\~ the e.~in·

ing edp;e detection operators. In tbis section measures u.scd in evaluating edge detector

performances in this thesis arc presented.

The evaluation of an e<I!e detector's performance is usually conducted based on

both qvl2litl2tivt: and qtJllnlitlltil!t: facton and this practice is follo.....ed in this thesis.

Qualitative evaluations are cooductm mainly based on human perception. Quantitative

evaluations are based 00 several appropriate edge detector quantitative performance

measures. Other evaluation methods used in computer vision applications which are

supported by knowledge base systems. artificial intdligence decision rules. fuzzy logic

etc.. are not addressed.

3.2.1 Qualitative performance measures

Ev.Lluation of an edge detector's output can yidd quick and obvKlUs :'l.sights into

the performance of ao edge detector. An edge map obtained using an edge detec:tion

operator is \·isua.lly compared with an ideal edge map obtained for the noise·free image

in order to determine ~'hether or not a. dose match exins between the two edge maps.

In ca..se of real test data for which the idea.! edge map is not available, qualitatiVl!: e\O\I·

uation is performed by comparing the detected edge map with a human perceived edge

map. Such qualitative inspection aids in evaluating an edge detector's performance by

providing rapid answers to questions such as:

• Does the edge map contain any spurious (false) edges ?

• Does the edge mllp gh-e II close estim/l.te to the ideal edge map?

4.')



• ~ the edge m..p ,;i\'e a close estimate to the human perc.ei\~ edge map?

• b the edge map missin! any true edge information '?

Qualitati\'e inspection un ut as a preliminary examination tool in the case of synthetic

test d..u. for which final enluation decisions can be mainly bued on quantitath'e e\"3.I·

uation measures. However, the qualitati\'e evaluation plays an important role in the

e\'aluation of an edge detection operator's performance on real data such as S.-\R for

which the information tegarding the ideiU conditions may not be available.

3.2.2 Quantitative performance measures

Pratt [HI suggests that &single figure of merit be used to measure edge displace-

ment. ambiguity <Uld incorrect clillSsification etc. :

nil

where .VA and .VI &re the total number of edge pixels in the utu&1 and ide," edge maps.

respecti\·e!.y. The pu&meter d is the perpendicular distance from an actu&1 edge pixel

to ideal ed!e pixel and 8 is a sc&1in! constant.

McLean and Jernig&n [661 suggested that edge detector performance: be meuured in

terms of ed!e pixd correctness. ambi!uity, displacement OI.nd missed edge pixels. which

can be expressed using four different parOl.meter values. Based on their work ZamOl.n and

:\loloney (901 suggested a new set of meMUtes for evaluating edge detector performance.

The measutes are named COrTect, ambiguo1l.5. mi$sed and u:rong. These factors are defined

C"" 2 X (#COrTect)
(#Iroe + (#found)

(3.2)

{3.31



\[ ""' #rniueJ
. #lnu

W:=: #foflle
#!otlnd

• #true: total number of edge pi,;els in the ideal edge map.

Fl.·'))

• #!otl"fld: number of edge pi,;els found in the detected edge map being evaluated.

• #cDrrt:d: number of true edge pi,;els found with either one or two detected edge

pixels within a 5x5 window centered on the true edge pi,;el location.

• #orn6ig14ov.s: number of true edge pi,;els found ...·ith more than one detected edge

pi,;el a 5x5 window centered on the true edge pixel location.

• #rniutd : number of true edge pixels found with at least a single detected edge

pixel within a 5x5 window centered on the true edge pixel location.

• #wrong: number of detected edge pixels not found within a .')x5 window of any

true edge pixel location.

PraU', figure of merit, R gi~"e5 a single value for An edge detectors performance

..hich may not be sufficient to completely describe the ~~rious facts of the opeA.tor·s

performance. This figure of merit tends to ra~'Or a small number of detected edge;.

even if there are large gaps between detected pixels {66j. :\loreover. such a single-qlued

measure may hil!ihlight only limited aspects of an edge detection operators performance.

Different upects of an operator's performance should be examined in order to know how

well the algorithm performs and to know the deficits of that particular algorithm etc. The

measures suggested by Zaman and :\ololooey have been found to be most appropriate in

the quantitative evaluation of edge detector performance 1901 and are used in this thesis.



3.3 Speckle noise simulation

Reviewed speckle noise models in Section 2.5.4-. show tha.t multiplica.tive-conn)h-erl

model suge:sted by frost et. a.l. is adequate to simulate SAR speckle imagery Accord·

ingly. the multiplicati\-ely convolved spatially correlated speckle noise model shown in

figure 2.15 and Equation 2.29, previously used by Frost [23. 24[, Hudson [Hl and Zaman

[891. are used for simulating speckle images in this thesis.

The procedure used by Zaman [891 to generate speclde image according to Equation

2.29 is brieRy outlined here. .-\ 2-D noise field of tbe image size to be corrupted with

each pixd \-alue dr..wu for a Xl distribution, with 8-degfCeS or rreedom is obt.t.ined. E..ch

image pixel in the original noise-free imit.!e is multiplied point-wise with samples from

the noise model file. The resulting multiplicative model of the image is then convoh'ed

with a circularly Gaussian PSF to obtain a 4 -look amplitude SAR image model.

The validity of the simulated speckle noise model is tested using two sample images

Spectrum and Ramp. The original test image Spectrum consists of three regions with

constant intensities 40. 80 and 160. respectively. The second test image Ramp consists

of three regions with left most and right most regions of constant intensities 40 ..ad

160 respectively ilIld .. middle resiorl5 of a gradually increuing intensity in X-direction

ranging from 40 to 160. The original sample test imit.!es Spectrum and Romp are then

corrupted by the previously described speckle simulation process_ from figure 3.1 it

un be seen that the simulued speckle is multiplicatively signal~depcndent in nature.

i.e speckle noise is more significant in high intensity homogeneous regions than in low

intensity homogeneous regions. For example, in the corrupted Ramp tcst image it can

be seen thaL the speckle noise is less prominent in low intensity region (left) and more

significant in the high intensity homogeneous regions (right) with a gradual change in



(a) (b)

(c) (d)

Figure 3.1: Generation of synthetic speckle image

(a) Original Spectrum; (b) Simulated speckled Spectrum

(c) Original /lamp; (d) Simulated speckled Ramp
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Estimates of the standard de\'iation to mean ratio on

the simulated spedkd Spedrtlm imase.

Sample r~ion ~Iean Std. Rho

Intensity { p : U I po

1:40 37.38 9.70 0.2597

1:40 -1.0.14 9.18 0.2287

(: 80 101./2 25.74 0.2S30

1:80 96.50 23.90 0.2416

[:80 92.72 21.9\ 0.2363

f: 160 195.52 39.95 0.2043

Table 3.1: Standard ratio test for simulated speckle noise.

speckle prominence in tbe middle region.

Table 3.1 shows speckle sisn..! to noise ratio (S/VRI p value akulated for imal!:e

samples coUected from the simulated speckled imal!:e SpedrtlJtl. fit;ure 3.1(b). Several

16 x 16 pixd image samples ate: extracted from different homogeneous intensity regions

of Fi,;ure 3.1(b). Standard deviation (u) and mean (po) \'alues ~ calculated for the

extracted image samples. As a standard measure of practice. the ratio of standard

deviation (a) to mean (po) is calculated indicating the speckle SNR Rho (p : d!ll) value

[23.551. Test results from Table 3.1 show that the ratio p is almost constant (equal to

0.2383). confirming speckle characteristics for simulated speckle ima.ge [23 ..,51.



3.4 Test data

Ten imat;es for C\-alulllins edge detector performance include both synthetic and

re~ airborne SAR images of \~rying saoe contents, structures and busin~. The term

structures Uft to refer to im;age objects or patterns in terms of their length and ....idth

a.s measured in units of single resolution clements or pixels. If input image Olnsists of

",n object 30 )( 40 pixels it may be referred to as it. large structure if image also consist

of an object 3 )( 5 pixels which is then referred to &S small structure. The term business

is used to refer how closely positioned or how repetitive the image structures art' in the

underlying image. These definitions are only mandatory and may not be the standard

definitions for ~structure" or ~busynes.s".

3.4.1 Synthetic speckled images

The performance of existing edge detection methods ha.s beeD e\"I.1uued on test

ima!;es simi!u to those of Fi!Ure 3.1 which have beeD corrupted accordin!; to the process

described in Se<:tion 3.3. The oripnal images used for synthetic test images include both

computer genenl.ted patterns and pboto!;rapbic images of outdoor scenes. The computer

t;enerated test im~es include the images Spectrum, Ri"9 and Strips. The Spectrum

original and speckled im~es are shown in Figure 3.1(a) and (b). The Strips and Rin.g

original and speckled images are shown in Fi!Ure 3.2{a), (b) and Figure 3.3(a). fbI

respectively. Test images Ships and Rirl,g consist of two regions of gray scale intensities

100 and 200 indicating duk and brigbt regions respectively. The test image Combine

consists of an outdoor scene image Balloon, combined with the test images Strips and

Rirl,g and allows testing using outdoor scene detail.

.jl



(a)

(b)

Figure 3.2: Synthetic test image Strips:

(a) Original Strip& ; (b) SimuJated speckled image based on (a.).
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(a>

(b)

Figure 3.3: Synthetic test image Ring:

(a) Original Ring; (b) Simulated speekled image based on (a).
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(a)

(b)

Figure 3.4: Synthetic test image Combine:

(a) Original Combine; (b) Simulated speckled image based on (a).
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3.4.2 Real airborne SAR images

Se\'C:ra1 real airborne SAR ima!;e:s obtained from Can..d.. Center for Remote Sens­

in!; (eeRS). Qtta...-a are also used u telt data conta..inin! re&1 speckle noise. The S.-\R

test images denoted .u JfoJeratcly Buy, Busy. Fields. Highway, fnJutrirli and Smooth

are ~IKt~ for testing and evaluation. These images represent a variety of s<ene con·

tents. The SAR test images .'Yfodcru/e/y Busy, Busy and Smooth ue introduced and

used in this Chapter. The other SAR test images Field4. Highway and {71dustrial are

introduced and used later in this thesis. Evaluation of previous speckle-specific edge

detection methods for SAR images was conducted using SAR test images .Hodcra/dy

Busy, Busy and Smooth.

The test image .\ifodera/ely Busy shown in Figure 3.3 consists of woods. fields and

ro.lds and represents images which consist of several low and high contrast regions and

definite edge information. Test image Bll.Syshown in Figure 3.6 contains predominantly

fine S!ructures and is ~busy~ as a consequence.. The underlying ima.ge is a suburban

city uea... which has sevenl straisht roads and rows of houses in the ordered manner

of m&n-made structures. The test inuge Smooth shown in the Fi~re 3.7 consisu of an

area of .. frozen rh~r ..nd hence hu only a few low conlrast details such as cracks in the

ice etc.

Standard ratio tests were applied to the SAR images of Fisures 3.5, Figure 3.6 and

Figure 3.7 over homogeneous regions. Small regiODS of size 8 )( 8 were extracted yielding

an estimate of the standard deviation to mean ratio of approximately 0.3238 which is

found to be close to the theoretical values (23) thus confirming these SAR images exhibit

speckle characteristics {54, 551.



Figure 3.5: Real airborne SAR test image Moderately Busy.
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Figure 3.6: Real airborne SAR test image Busy.
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Figure 3.7: Real airborne SAR test image Smooth.
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3.5 Evaluation of edge detection methods

3.5.1 Evaluation using synthetic test images

The synthetic test images Stn'p~, Ring and CombIne are used to evaluate the

performance of exisLing edge detectors performance. Ideal edge maps for these images

Me obt~ned by applying the Sobd operation of Equation 2.6 to the respecti\~noise· free

images. Existing speckle-specific cd&e detection methods <U"e used to generate edge maps

for the corresponding simulated speckled images. These e\~luations are similar to the

methods used by Zaman and ~Ioloney [90], however tests conducted here are mainly to

gi\"c insizht into the cl(isting speckle-specific edge detec::tion operators.

Figure 3.8(a) shows the ed!e map for the Strips image obtained on the noise· free

image of Figure 3.2{a.) using Sobel operator of Equation 2.6. Figure 3.8(b) shows the

Coefficient of Vari<J.tion (CoV) edge map for the speckled Sln·p.s of Figure 3.2{b) obtained

using Equation 2.9 with mask size N::: 5 and threshold T =0.29. Figures 3.8(c) to (f)

shows ed,!;e maps for speckled Slrips obtained using Bovik RoA (Section :2.4.2), Touzi

CFAR (Section 2-4.3), :\IRoA (Section 2.4.4) and RGoA (Section 2..1.5) edge detectors

respectively, with mask size N ::: 7and threshold ~lue5 as shown in Table 3.2. The mask

5ize (3) and threshold values U5ed here are 5elected after conducting several e:ocperiments

and represent the most prom.i5in,!; v<J.lues for each of the selec:ted edge detector for the

images under test. Figures 3.8(,) and (h) represent the edge maps obu.ined using the

MRoA and RGoA method followed by edge thinning recommended for the MRoA and

RGoA methods {891.

Similar tests conducted for the Ring (F'igure 3.3) test images and corresponding edge

maps obtained u5in,!; the parameter3 listed in Table 3.2 for different ed,!;e operators are

shown in Figure 3.9. The test results for the Combinl: im..,;es are shown in F'igures 3.10

"



and cited in the Table:].:].

Qualitative analysis: Evaluations of edge detedor performance by qualitative inspec.

tion based on human perception confirm that the MRoA and RGoA methods are better

relative to the other previous speckle specific edge detection methods. The methods gen"

erate edge maps with better suppression of spurious edge pixel information in non-edge

regions. Their edge maps are found to be better in giving better definition to bound·

aries between regions. However, several true edge pixels in the corresponding ideal edge

maps are missing in the y[RoA and RGoA edge maps fOI" the speckled images_ These

two methods also generated thick edge maps leading to a requirement for edge thin-

ning post-processing operations in order to produce thin and more precise edge maps.

Qualitative analysis test results obtained here confirm previous evaluation test results

obtained by Zaman and :\-Ioloney [91].

Quantitative analysis: The evaluation of the edge detection method's performance

using the quantitative meil,sures suggested by Zaman and Moloney [89] also found that

the y[RoA and RGoA methods generated meaningful edge maps when compared to the

other methods. The methods resulted high C values indicating edge maps with improved

number of correct edge pixels detected. The measures for W. _'vi and A are also found

to be relatively better (i.e. low values) when compared with the test results of the

other edge detectors cited in Table 3.2 and Table 3.3 indicating less number of wrong

edge pixels detected with low missing and ambiguous edge pixel measures. Quantitave

e\-aluation of edge detection methods conduted here confirm test results obtained by

Zaman and y[oloney (90] using synthetic test images.
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(a)

(0)

(b)

(d)

Figure 3.8: Edge maps obtained for the Strips images:

(a) Sobel edge map for Figure 3.2(a); (b) COY edge map for Figure 3.2(b);

(el RoA edge map for Figure 3.2(b); (d) Touzi edge map for Figure 3.2{b).
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(e)

(g)

(f)

(h)

Figure 3.8: Edge maps obtained for Sh-ips images:

(el MRoA edge map for Figure 3.2(b)j (fl RGoA edge map for Figure 3.2(b);

(g) Edge thinning on Figure 3.8(e); (b) Edge thinning on figure 3.S(f).

62



@
(a)

(e)

(b)

(d)

Figure 3.9: Edge maps obtained for RiTig images:

(a) Sobel edge map for F'i~re 3.3(a); (b) COY edge map for Figure 3.3(b);

(c) RoA edge map for Figure 3.3(b); (d) Touzi edge map for Figure 3.3(b).
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(I)

(h)

Pigure 3.9: Edge maps obtained for Ring images:

(el MRoA edge ma.p for Figure 3.3(b); (f) RGoA edge map for Figure 3.3(b);

(g) Edge thinning on Figure 3.9(e); (h) Edge thinning on Figure 3.9(f).
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<ol <dl

Figure 3.10: Edge maps obtained for Com~in~ images:

<al Sobel ed~e map for Figure 3.4(a); (b) Cod£. edr;e nap for Fir;ure 3.4(b);

(c) RoA edge map for Figure 3.4(b); (d) Touzi edge map for Figure 3.4(b).



(e) (f)

(g)
figure 3.10: Ed (h)

(el :\[RoA edg ge maps obtained for Ce map for Figure 3 ombine images'

(gl Edge th;,n;ng F' .4(b); (f) RGoA edge 'on 19ure 3.10(elj (h) Edge thiDni;a
p

for. figure 3.4{b);
gon figure 3.10(f).
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I T5'

1E4"~11'..... Detector :'l T, T. Cill'ir: \.fin'ii Win~ .4.'11<;\

TeS! lmap Sfnp! :

Ori&inal Sobo' 3.7(e) '" 100.00 0.00 000 0.00

Speclded Sobel 3.2(d) 240 "" 0.68 69..53 ~7.;8 I

CoV 3.2(e) 0.29 ';7.62 5.88 14.91 35.47

TOllzi 3.2(r) 0.63 i(l.SO 2.67 29.51

RoA 3.2(&1 1.95 52.39 9.02 39.52

3.2(h) 0.6\ 87.7S 6.11 1.39 16.36

RGoA 3.2{i) " 0.58 .8.9' 13.07 0.12 14.72

Te5tl/IL&&e Rill':

Ori(ill-.l Sobol 3.3(c) '" 100.00 0.00 0.00 0.00

Sp<dIod Sobol 3.3(d) 12.42 0.08 76.2;; 59.66

CoV 3.3{e) 0.32 63.159 14.89 9.31 28.10

Tou'li 3.3(1) O.sg 1U5 '.04 2.60 24.~

RoA 3.3(1) ,. 59.« 10.28 <.33 33.2<4.

~IRoA U(h} 0... ".32 13.14 0.27 16.13

RGoA 3.3(1) 7 " 0... 82.04 16.40 17.37

Table 3.2: Quantitative performance meUure5 on synthetic test images

C"" .1':';;;:'~4 .\f::~

W::~ .~=~

.,



T~' Edr;f fisurc :'Ia.sk~
Imal!:f :'I T, T. fl.found Cin% .\f in 'ili Win% .~ in <;( i

Test [mac" CDm"~e

Ori,inal Sobel 3.10(1) 100 13184 100.00 0.00 0.00 000

Speckled COY 3.IO(b) 0.35 J'746 49.SO 39.29 21.401

TOIlI' 3.10(d) 0.>8 7587 63.00 32.89 ·H8 IrA, I

fIoA 3.10(<:) "" 43.86 41.39 23.09

1.fRDA 3.10('1') O~ "'" 63.16 <1.7.70 1\.66 all

RGoA J.IO(!) 83 0.55 .." 62.73 43.80 11.;J

Ta.ble 3.3: Quantitative performance measures on 5ynthetic test images
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3.6 Evaluation of edge detection methods for real

airborne SAR images

Ed&1: detector e~ution us!n! real airborne SAR data set is ba.sed on the three

image$ Jlotieratefy 811$/1, BJt$y and Smooth. Edge maps were obtAined for all three

images using the :\>IRoA and RGoA edge dete<:tion methods only. These edge det«tion

operators WCIC selected for further cYoliuating, since, test results iUustrated in Figures

:J.8. 3.9. 3.10 confirmed that these operators perform better than the other existing edge

detectors.

Figure 3.11(b) shows the MRoA edge map for the Modera/ely Busy test image ob­

tained using mask size .V ::: 7 and ratio threshold T. ::::;: 0.475. The RGoA edge map for

this image [s obtained usinS ma.sk sizeN "= 1, ratio-threshold T, = 0.4i5 and gradient

threshold value T, = 50. and is sho.....n in Figure 3.lICe). Figures 3.12(h) and (el show

the correspondin,; edge maps on the Busy test imil&e using the same parameters lIsed

for the Jfoderddy BIlSJI test im&l;e.

The >lSPRoA ed8e map on Smooth image is obtained using mask size .Y = T. ratio·

threshold T. ::< 0.525. RGoA ed&e map for this SAR tell ima.ge is obtained using

.v = .. T. = 0.525 alld T, "'" 65. Test reults for the Smooth test image an: shown in

figures 3.13 (b) and (c). Tbe RGoA edge maps a~ followed by edge thinning post­

processing operations recommended to use Oil this method by Zaman and >Ioloney [901.

The corresponding edge RGoA edge thinning edge maps for }foderately Bllsy, BIl!.'"

a.nd Smooth test images are shown in figure J.5(d), Figure J.6(d) and figure ~.;(d)

respectively.

• Qualitative analysis

Since the test c.a.ses consist of real a.irborne SAR images, ideal edge maps are nOl
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a\"ailablc for compari50n. HOVo·c\'cr. from figures 3.11. 3.13. :J.12 it c:an ~ 5CCn that hOlh

thc :\{RoA and RGoA methods arc succ:essful in extractinll: &ccur&tc edge information

from tbc rea.! airborne SAR test im~es.

Small rcgions of sizc 16 lie 16 pixels extracted ovcr edll:e rqions in the J/oJerrt.tefy

Busy and Busy test images as shown in Figure 3.t4. The :\lRoA and RGoA edge maps

on these images are obt&ined and are also shown in Figures 3.14. These tcst results sholl.

that the RGoA method extracted some edge pixels that are missing in the y[RoA edge

maps. The better performance of tbe RCoA method may be attributed to the gradicnt

edge strength information included into this operator.

However. \'isual inspection of the edge maps for SAR test images Jfoderatdy Busy.

BlJ.Syand Smooth or extracted samples images on these images show tltat the ylRoA and

RCoA operators are not successful in extracting all true edges information from these

images. The edge map for Jloderotefy Bruy SAR imall:e found to be missing several edge

pixel information compared to the human percei\'ed edge map for this image. Where as.

lest resulls on SAR Busy show that extracted edgc map for Ibis image consist of 5e\'eral

false edge pixel information compared to human perceived edll:e map for this image.

Both methods penormed poorly on SAR test image Smooth, partly due to the lack

of contrast in this image. As with the synthetic test images. the edge detectors also

resulted in thick edge maps for the real a.irbome SAR images.

Quantitative analysis

A form of quantita.tive performance measure for tbe real SAR te3t images was ob·

tained by extracting small sample regions from homogeneous regions and edge areas.

,-\n edge detection operator is expected to detect zero edges over homogeneous regions.

Small areas of size 8 )( 8 samples were extracted from both high intensity and 10111 inten­

sity homogcneous regions of JfoJera!ely Busy and Busy test ima.ges. (n addition similar
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Region of # Edge Pixels ~Iean S,d p=

Interest Std/Mean

RaOA MROA

ylB, Dark 22.1279 5.7003 0.2576

~IB, Bright 63.7383 19.3530 0.3036

y[B, Edge " 47 56.2998 27.2472 OA840

B. Dark 15.2304 4.3115 0.2831

B. Bright 60.1289 24.0287 0.3996

B. Edge 28 37 56.6367 37.6114 0.6641

Table 3.4: Evaluation of edge detection methods for real airborne SAR images

test samples from edge areiUi were extracted from these images. The number of edge

pixels detected for these test samples by the MRoA and RGoA methods were calculated.

The test results ~bowing performan<;e of these edge detectors are shown in Table 3A.

These methods performed satisfactorily on SAR images but did miss some edge pixels

that can be detected by the h.uman vision systems. In addition edge maps resulted in

multiple responses to single edge resulting in th.ick edge maps.



(aJ (bJ

Figure 3.11: Edge maps for SAR image Modemtely BU!1Y :

(aJ SAR Mod.,.'ely Busy; (b) MRoA edge map fo, (a) IN ~ 7, T, =0.475J; (c) RGoA

edge map for (a) IN = 7, Tr = 0.475, T. = 50]; (d) Edge thinning on (c).
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Figure 3.12: Edge maps for SAR image Bu.sy:

(aj SAR lesl image Busy; (b) MRoA edge map fo, (aj IN = 7, T, = 0.4751; (c) RGoA

edge map for (a) [N = 7, Tr = 0.475, T.::::: 5O)i (d) Edge thinning on (c).
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(a)

(c)

(b)

(d)

Figure 3.13: Edge maps for SAR image Smooth:

(a) SAR test image SmoQth; (b) MRoA edge map for (a) [N = 11, Tr = 0.6); (e)

RGoA edge map for (a) [N = 11, Tr = 0.6, TIJ = 50]; (d) Edge thinning on (e).
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(aa) (ab)

II
(ac)

(ba) (bb) (be)

(ca) (cb) (cc)

Figure 3.14: Evaluation of edge detection methods for 16 x 16 SAR test samples:

(aa) Test sample #1 ; (ab) Test sample #2; (ae) Test sample #3 j

(ba) MRoA on (aa); (bb) MRoA on (ab) ; (be) MRoA on (ae) ;

(ca) RGoA on (aa) ; (cb) RGoA on (ab) ; (ce) RGoA on (ae) ;
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Chapter 4

Maximum Strength Edge Pruned

Ratio of Averages Edge Detector

4.1 Introduction

In this chapler a ratio edge detector for speckled inu.ges b~ed on maximum

strength edge pruning (MSPRoAj is de~loped which considers explicilly both edge

m~itude strcn!'-h a.nd orienu.tion information. The proposed edge detection method

is different from previous ratio-based methods in that it makes a more explicit U5e of

edge orie'ntation information thal is implicitly expressed ill other ratio based method.s.

This additional information is found to be helpful in confirming true edge pixels by the

:\ISPRoA edge detection operator. The ~tSPRoA algorithm is presented in this chapter.

along with worked examples based on I-D graphical illustrations and simple computer

generated images.
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4.2 The MSPRoA edge detection method

4.2.1 Terminology

This section defines ....rious terms necessary to charuterize and explain the

.\ISPRoA algorithm. Fis:ure 4.1 illustrates a gTaphical view of some of these terms.

Figure 4.1: A s:eneral pattern computing :\ISPRoA st~ngth..V "" 5. d "" 2.

• The )"ISPRoA edse stf'ftls:th mea.sure Rer.o) : The edge strength value mea.sured

lL5ing the .\ISPRoA method ill expressed as a vector quantity R(r.o) having both

magnitude R(r) ..nd direction R(o).

• The pruning (or correlation) distance parameter d: The pruning (or correlation i

distance parameter d is use<! in pruning candidate edge pixels based on maximum

edge strength values to obtain true edge pixels. This parameter is used in deciding

which edge pixels a.re to be selected into a sub-window D {defined later in this

5edion).
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• The sub-window D: If d is the prunin! distance p"runeter the sUD-windo"' D

consists of (2d - I) pixels arrUlS~ as a one-dimensionl.i array centered about the

P{i.j) pixel of interest. with orieotation perpendicular to the dir=tion R(o) of a

poteotial edge candidaLe at position P(i,j).

• The maximum edge Itrensth measure D(r): The prunins edge strength magnitude

D{r) is the minimum R{r) (the maximum edge stren!th) value of all the pixels

selected by a D suD-window.

4.2.2 The MSPRoA algorithm

Consider a given proceuing window W pixels of mask size .V centered on image

pixel of interest P(i,j). for each of the selected edge orient"tions as shown in figure -1.2.

image pixels within this processing window olle a.5Sisned as appropriate. to one of two

non-(werlapping regions P and Q. The ~SPRoA method uses the followins sequence of

steps to c1&.$Sify P(i.j) as either an edge or a non-ed!e pixel:

• For each ima!e pixel P(i. j) the ruio of aver~es ed!e strensth mq;nitude is calcu­

lated usio! the ~IRoA method as reviewed in Section 2.-1.-1. This \.uue is recorded

as the ~SPRoA edse strensth magnitude R(r) of the pixel P(i.j).

• The direction in which the minimum ~IRoA ed!e strength R(r) \'alue is found is

recorded as the :\OlSPRoA edge orienta.tion R(o) of the pixel P(i.j).

• The pixel P(i,j) is seletted as a candidate edge pixel if:

R(r) < T, where T. is a. user selected. ra.tio-threshold. (4.1)

• If P(i.j) is a candidate edge pixel then edge pixels neighboring P(i,j) within a. D

sub· window as shown in the figure 4.2 are examined. The minimum R(r) \'alue of
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1111
horizontal edge (0=1) vertical edge (0::2)

left slanted edge (0=3) right slanted edge (0=4)

Figure 4.2: Schematic of the \ISPRoA edge detector.
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all thr pixels within sub-window D is calculated and is usipM as the maximum

edge strength measure D(r) of the CGndidate edge pixel P(i.j) .

• A CGndidate pixel P(i,j) is selected as anedge pixel if:

R(r)= D(r)

Otherwise candidate pixel P(i,j) is rejected as an edge pixel.

• All other non-candidate image pixels are labeled u non-edge pixels.

4.2.3 Graphical illustration using 1-D signals

(01.2)

The operation of the MSPRoA edge detection method can be best explained by

considering \-0 graphical iUustrations as are presented in this section. figure 4.3(al

shows a simple computer generated 2-0 of size 20 )( 120 pixels representing several step

edges definiIl! boundaries between regions of alternating gray scale intensities 102 and

204. The corresponding speckled imil!e is obtained as described in s«tion 3.3 and is

shown in figure 4.3(b).

1-0 signals are obtained by extracting row #2 from Bars test image original of

figure 4.3(a) and speckled of Figure -l.3(b). A portion of the resulting 1-0 siJDals.

original and speckled are shown in Fi&ure 4.4(A). The original pixel intensity scale of

0- 255 llray levels is re-mapped in the graphs on to a scale 0 - I on y-axis in order

to maintain consistent representation for the signals shown in the two graphs Figure

H(A) and 4.4(B). The MSPRoA algorithm described. above ror the natural 2-0 domain

is restricted here to vertical edges only in order to calculate edges ror the \-0 signals.

i.e. in this case the edge orientation is a = 2.

Figure -lA(A) shows sampled 1-0 tcst signal original P(_,j) (indicated by 0) and

speckled (indicated by -) S(•. j) elt"tracted from test image Bars original (Figure 4.3(a))

80



(a)

~
....1:.: • ~ ~. ;To
'r, I... . .•. ...:- i •.... . ,... ." .

(b)

Figure 4.3: Synthetic test image Bars

(al O,ig;nal; (b) Simnlated ,peckled
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and s~ckled (Figure 4.3(b)) respecti,·e1y. From the graph shown in F'illure 4.4(A) it can

be seen that speckle exihihits signal dependent nature i.e speckle is significant in high

intensity regions (I.' "" 0.8) when compared to the low intensity regions (I.' "" 0.2) for the

speckled signal S(*.j).

The ratio of aver~es edge stensth value for spedled 1·0 s~nal pixels R(r) is calcu·

lated as explained in section 4.2.2 usin& mask size tV == 9 and edge orientation R(ol == 1

indicating '·ertica.l edge condition. The corresponding R(r) values plot is shown in Fillure

404(8) (indicated hy x). A ratio threshold value of T. == 0.45 is used to select candiate

edge pixels C(*,j). AU the pixels for which R(r) value is less than selected threshold

"alue T. == 0.45 are classified as candia.te edge pixels. The corresponding candiate edge

pixel locations C(.... j) are shown in Fi,;ure 4.4(8) using o.

The pruning dist&ltce parameter d :: 2 is used in pruning the c.andidate edlle pixels.

For d:=: 2 the D sub-window will have ((2d-l) =)3 pixels. The pixels P(".j). P(".j- t)

and P(".j+l) constitute the D sub-window pixels in this case. The pix-e! with maximum

edge strength (the minimum R(r)) value is detected and labeled as D(r). Pixel P(".})

is c!lmified as edge pixel if it satisfied condition that R(r) "" D{r) and labeled as edge

pixel E(".j). The corresponding ~SPRoA edge pruned pixel locations are shown in

the Figure 4.4(8) (indicated by 0). All other pixels. ie. pixels tbat were not selected u

candidate pixles And tbe ca.ndiate pixels which does not satisfy maximum edge strength

creteria a.re classified as non-edge pixels (not sbown in the graph).
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figure 4.4: D1ustratioa of the :\ISPRoA method usias: 1-0 sir;nw :

(A): Original 1-0 signa! P{ ... j){Q]; Speckled 1·0 sis:nal S(.... jWI.
(Gray-scale intensity values 0 - 255 are remapped on to a 0 - 1 scale).
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"~ 0.6

F'igurc 4.4 (8): [llustra,ion of the MSPRoA method using 1-D signal:

Original 1-0 signal P( ...,i)(o!; R(r) values for speckled t·O signal [x);

Thre:lholrl T, '= 0.45 value [--I; The candidate edge pixels q ,j)[+];

Locations of MSPRoA edge pixels for speckled 1-0 signal E( ,j)[el

(edge pixels locations arc important and y-axis values not significanl).
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4.2.4 The effect of mask size CV)

As shown in Seclioa 3.5.1 and Sectioa 3.6, ratio based methodsgen~'ra.te thick edge

m..ps u mask size is inc~a.sed. In this section the effect of muk size on the :MSPRo.-\.

edge detection method is studied using 1-0 test sign~1 used in Section ·U.3.

The MSPRoA method is used. to obtain edge pixels from speckled I·D signal of

Figu~ -I..I(A) by vary-ins the mask size for all odd values £rom .V ::;.5 to .V ::; [I. Figure

-1.5 shows the 1-0 sign~1 of FiSUre 4.4{A) ([oj). The plot of R(r) values. candidate edge

pixels and the ~ISPRoA edge pruning pixels are obtained for each mask size. :\ ratio

threshold value of TR ::; 0.4 and correl~tion distance value d == 2 is used in each case.

Figures -1.5(8), (C), (D) and (E) show corresponding the MSPRoA edge pixels plots for

mask sizes .V ::; 5 to N - tl respectively. The R(r) values ca1cul~ted 00 speckled 1-0

signal are represented usin! [xl. The candidate ed!e pixels f+1 and the ~ISPRoA edge

pixels [allocations (y - 4%is \'a1ues ~rc not significant) in the F'iSUre 4.5 detected using

different mask sizes.

From the test results in the Figures 4.5(A) to (E) show th~t. as ma.sk size is increased

the num~r of candida.te edge pixels detected is increased which m.ty ~ the reason for

thick ed,!;e maps produced usio,!; previous methods. Based on experimental results. the

MSPRoA method found to ~ successful in pruning the candidate edge pixels based

on ma.ximum edge strcns:th V1.lues (i.e. minimum R(r) values ) ,!;eoer~ting precise ~nd

~ccurate edge m~ps giving edge pixels information close to the ideal edge pixels. Based

on experimental re~iUlts. the MSPRoA method bu be-en found to be successful and

consistent in producing thio fond precise edge maps on speckled 1·0 signfol using different

mask sizes.
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Figure 4.5: The effect of mask size on the MSPRoA method:

(A) Original 1·0 signal [oj; Speckled [·0 signal H: ~{SPRoA edge pixels for speckled

[-D ~ignal usioS: (B) Mask IV::: .'i: eel :\-lask .'Ii ==;: (0) Mask N::: 9: {E) :\Iask

.Y "" II. (also shown R(r) ,,,,rue!' {)(J; Candidate edge pixels [+J).



4.2.5 The effect of correlation distance (d)

The y(SPRoA method uses pruning distance parameter d value to select the 0

sub-window pixels used in pruning candidate edge pixels. In this section, the effecl of

correlating distance parameter d value on the \ISPRoA edge detection method is studied

and results are presented considering 1·0 signals similar to those of -1..1.3.

F'igure ·1.6 shows a portion of an original 1-0 test signal with step edges located at

P(*. .-l.). P(*, B), P(*.C). P(*,D). P(*, E), P(,..F), and P(*.G). Since edge pixels lo­

cated at P(*..4.), P(*, B) and P(*, E). P(*, F) are separated by only a few image pixels.

these edges may represent very fine image detail. The remaining edge pixels (P(*.Cj.

P(*,Dj. P(*.G)) may represent medium or large structure detail. The corresponding

speckled 1-0 signal obtained using speckle noise model of Equation 2.29 is shown in

F'igureU using [*1.

The MSPRoA method is used to extract edge pixels for the speckled 1·0 signal using

mask size ."'" = 9. ratio-threshold T. = 0.45 and with correlation distance varying from

d =2 to d = .5. Locations of the edge pixels [01 detected using the MSPRoA method for

different d values are shown in the graph (only locations are important, y-axis scale

values not significant) of figure 4.6.

According to the MSPRoA method the candidate edge pixel is selected as an edge

pixel if its edge strength va.lues R{r) is minimum such values of all the pixels in the D

sub-window. A value of d = 2 selects (2 x d -I) = 3 pixels or P(*.j ± 1) pixels for

the D sub-window over which the minimum R(r) value is sought. F'or this ~'a1ue of d.

the ylSPRoA method is successful in detecting all true edge pixels, as no pixels in the

neighborhood of P(-t-.j ± 1) measured R(r) values that are lower than the R(r) values

measured at P( .... j) locations.

F'or d::: 3. sub-window D consists of P(*.j ±2) pixels. F'rom the F'igure .l.6. it can



be seen that the pixel located at P(.... B-1) is found to be haviDg R(r) ,'a!ue which is

less than the R(r) value calculated for P(*.B) pixel. Hence. pixel P(*. B) is rejected as

edge pixel using \ISPRoA edge pruning. The use of d =-I value found to have additional

edge pixel located at P(..., E) rejected and, a value of d =·5 rejecting P(*. .4). P(.... B).

P(*.C), P(*, E) and P(*, F) edge locations.

The use of correlation distance value d '= 2 was found to be successful in extracting

true edge pixel information on both images having fine and large structure. The usc

of large d \'a!ues (d ~ 4) was found to result in true edge pixels being missed on fine

details. A large d value Wa.:'! found to be acceptable in case of moderate or large image

structure. Howe"er, the use of large d values may increase computational costs required

in measuring D(r) values. The correlation distance value d = I provides edge maps with

no edge pruning (since D sub-window consists of only one pixel). and is equivalent to

the \fRoA edge detector.

Study and analysis of correlation distance effect on the \ISPRoA method using 1-0

tcst signal show that the ylSPRoA method is sensitive to the correlation distance d

,·alue. This parameter value must be carefully selected with a view to the underlying

image structure. A value of d = 2 for images that consists of fine detail. The use of

larger values d ~ 4 is found to be acceptable for achieving edge pruning without loosing

fine details information. For most of the applications a value of d =2 or d = :) provides

both edge pruning and also computational savings.

4.3 A 2-D example

The \{SPRoA edge detection method is tested using 2·D Bars test images. The

ideal edge map for the noise-free Bars image of Figure -I.3(a) is obtained using Sobel
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lIIustratiol1 of correlation dislance effect on the M$PRoA method

35
samplepixe!s

3025

[ , , I
"[ ..... • 1

!~~\\J~
J:oo..:f

r
""" :0.2 ;0,'; :0.3" ;I~

0 d ",S

-0.6r .0: M$PAoA edge pixels 1
-0.8 -

Figure ..1.6: The effect of correlo!tiol1 distance d or, the ;\ISPRoA method

Original t-D signal (oj. Rer) '..alues [x] and the ;\I$PRoA edge pixels [0] computed on

50eckled t·D signal using tV ==!i, T. == 0.45, a.nd d va.lues from d ==:2 to d == 5.
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The :\-ISPRoA edge detector qua.rttit~ti\·e performa.rt<:e eva.lui.tion

mea.surl:$ computed using edge maps for 2-D Bt!rs.

IT~, ",_
Image Operator .v T, T. #found Cin'lL .'01;,,% Win,", .-1 In 'if;

Oripnal ,."', 3 '" .. OOסס.100 OOסס.0 OOסס.0 OOסס.0

ISpeckled MSPRoA 13 US 132.41575 OOסס.0 OOסס.0 0.6493

T&ble 4.1; The :VlSPRoA performance evaluuion for test imqe Ban

operator of Equation 2.6 is shown in Figure 4.7(a). The :VISPRoA edge m&p on the

speckled BflN of Figure 4.3(b) is obtained using mask size .V = 13. r&tio thl"e$hold

T. = 0.63 &nd correlation distance d = 2. and is shown in Figure 4.7(b). The edge

detector quantit&ti\~ performance en.lu~tion measures of Section 3.2.2 are c.a.lcul.ued

from the edf!;e m&p obta.ined using the MSPRoA method &nd are listed in T&ble ·U.

The original Bar3 test image shown in Figure 4.3(a) of size 20 x 120 consists of 11

step edges and i. #3 - pixel border. IT the border pixels are excluded 2 x 3 - pinl.s =

6 - pixel& which does not include any edge pixel information the BaN image will be

of the size L4 x 114. The total number of true edge pixels measured will be equal to

11 x 14 = 154. Hence an edge detector must detect 154 edge pixels arranged into II

strips each consisting of 14 pixels each.
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(a)

(b)

Figure 4.7: Tbe MSPRoA edge detection test results on Bars

(a) Sobel edge map on original [T == 201; (b) The MSPRoA edge map

ror speckled Bars IN :::: 15, T. :: 0.64, d = 21·
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The Table ·1.1 shows that the Sobel operator on the original Bars image detected

the #found edge pixels equal to 308 and LI strips, hence the edge map which is a two

pixels wide (2 x 154 = 308). The MSPRoA edge map on speckled Bars image detected

edge map with the #found edge pixels and II strips and hence is. relative to the Sobel

operator. only one pixel wide (I x 154 = 154).

The quantitative performance measures C. W . .U. and A measured on the ~[SPRoA

edge map are all close to their ideal edge map parameter ~·alues. The qualitative eval­

uation of ~ISPRoA method for speckled Bars test image show that the method gives

close approximation to the corresponding ideal edge map obtained on noise· free Bars

test image. However. these values are some what misleading, due to the fact that the

Sobel edge map is two pixels ....·ide. [n fact, it can be visually noted in Figure ·Li(b) that

the ~ISPRoA is jagged within that 2·pixel width.

The :'olSPRoA method detected edge map on 2·0 speckled Bars test image with

single pixel accuracy. The method found to be successful in obtaining edge map on

speckled image which is thin and precise giving dose estimation to the corresponding

ideal edge map. The method also found to be successful suppressing spurious edge

pixel information in homogeneous regions. The edge detector quantitative performance

evaluation measures obtained on the ~ISPRoA edge map measured values close to the

ideal e<lge map measures. However. a few edge pixels detected using the ylSPRoA

methods are off the track and showed some deviations when compared with the ideal

edge maps.

Overall, the ylSPRoA method tested using the [·0 test signals and the 2-D Bars

image was found to be successful in generating precise and accurate edge maps on

speckled signals. The edge pixel detected for the speckled [·0 signal and 2-0 image

using the ~ISPRoA method are close to the corresponding ideal edge pixels, as reflected
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by their quantitati\'e performance measures.

l'sing this knowl~ge and information the ~ISPRoA method is further test~ in

Chapter 5. botn synthetic and real 2-D test images in order to furtner investigate its

performance on speckI~ images. The ).[5PRoA ~ge detection test results. comparative

study and discussion of the results based OD both quantitative and qualitative methods

is presented in the next Chapter.
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Chapter 5

Results and Discussion

5.1 Introduction

In this chapter. y[SPRoA edge dete<:tion test results on 2·0 speckled test im­

ages are presented together with discussion analyzing the performanc:e of the \ISPRoA

method on sp«kled images. Several 2-D test images &re considered for the purpose of

study and ...nilly,i, including both synthetic oUld real airborne SAR images of varying

scene contents. The results of MSPRoA edge dete<::tion Oil speckled images ,ue evuuated

using qualitative ..nd quantitative methods. A compan.tive study and an&1ysis of the

\ISPRoA edge detection method And of previous speckle specific edr;e detection methods

is conducted.

The test results and discussion presented in this chapter an: mainly divided into two

groups. In the first group, test results for synthetic lest images of viLrying scene contents

are presented and discussed. The ~(SPRoA edge detection results on these symhetic

test images are evaluated using qualitative and quantitative performance measures and

compared with similar results obtained for these test images in Chapter [3) by previous

speclde specific edge detection methods.



fn the second group, the \ISPRoA test results using airborne SAR images are <:on·

sidered. Several test images, some of which previously used in Chapter [31 are considered

for test and discussion. Edge maps generated from these real S.-\R images are evaluated

using qualitative analysis only since in this case ideal edge mapS are un,wailable. The

performance of the \fSPRoA method on the real airborne SAR images is compared to

that of previous speckle specific edge detector methods.

A fast edge tracking algorithm to improve the visual quality of the edge maps gen­

erated by the \,(SPRoA method is suggested. The .\i(SPRoA edge tracking algorithm

is tested on the synthetic and real airborne SAR test images and the test results are

presented. An analysis of test results using the \'ISPRoA edge tracking algorithm is

conducted.

The use of the .\itSPRoA algorithm at multiple scales is also addressed in order to

deal with the problem of extracting edge information from both fine and large structures

on speckled images. A simple multi-scale :\tlSPRoA algorithm is suggested which can ex­

tract true edge information at multiple scales. Performance of the multi-scale :\tISPRoA

algorithm is studied using the synthetic and real airborne SAR speckled test images.

5.2 The MSPRoA on synthetic test images

The synthetic test images Strips (Figure 3.2(a)), Ring(Figure 3.3(a)), and Combine

(Figure 3A(a)) and corresponding simulated speckled images. used in Chapter [31 are

used again here for the study and analysis of the MSPRoA method. Edge maps obtained

by applying the \,[SPRoA method on corresponding speckled images for Strips. RiTl9

and Combine are presented, The performance of the .\ilSPRoA edge detection method

for such speckled images is studied and analyzed by using qualitath'e and quantitati\'e
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methods.

The synthetic speckled image Slrip& (Figure 3.2(b)) and corresponding Sobel (Equa­

tion 2.6) ideal edge map obtained on noise-free image (Figure 3.9(c») are shown here in

Figures 5.1(a) and Figure 5.1(b). The y[SPRoA edge map on speckled Strip& is obtained

using .V == 15, T. == 0.63 and Ii == 2 and is shown in Figure 5.1(c). The y[SPRo"\ edge

map for speckled Strips is over laid on the ideal edge map for noise-free image to com­

pare the y!SPRoA detected edge pixel edge localization with respect to ideal edge pi;'l:els

and is shown in Figure 5.t(d). [n Figure 5.l(d), the :\t[SPRoA edge pixel are shown

using white pixels, the ideal edge pixels are shown using black pixels on a light-gray

background.

Similar tests were conducted for the test image Ring and are shown using Figures

.'l.2(a) to (d). The ),(SPRoA method is also tested on Combine test image which included

Strips. Ring and an outdoor scene BaIloon. The :\tlSPRoA test results for Combine test

image are shown in Figures 5.3(a) to (d). The corresponding y{SPRoA edge maps for

Ring and Combine are obtained using .V == 13, T. == 0.66, Ii == 2 and .V == 13. T. == 0.6.1

and Ii == 2. respectively.

5.2.1 Qualitative analysis of MSPRoA results on synthetic

images

Edge detection results obtained using the yISPRoA method are evaluated qual­

itatively mainly based on human per<:eption. Edge maps obtained using tbe :-'ISPRoA

method are compared with the corresponding ideal edge maps obtained under noise-free

conditions to evaluate how close tbe y[SPRoA edge maps are to ideal conditions edge

maps.

The :VISPRoA edge map for the test image Strips (Figure 5.1(c)) shows that the
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rigure 5.1: The MSPRoA test results on synthetic test image Stn"ps ;

(a) Speckled Strips i (b) Sobel edge map for Figure 3.2(a) [T=20j ;

(el The MSPRoA edge map for (a) {N =15, T.". 0.63, d = 21;

(d) Edge map (el in white pixels over laid on (b) in black pixels.
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Figure 5.2: The MSPRoA test results on synthetic test ima.ge Ring:

(a.) Speckle<:! Ring; (b) Sobel edge map on Figure 3.3(&) [T=20ji

(e) The ~fSPRoA edgl!: ma.p on (a.) IN = 13, T. = 0.66, d:::: 21;

(d) Edge map (e) in white pixels over laid on (b) in black pixels.
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Figure 5.3: The MSPRoA test results on test image Combine:

(a) Original Combine; (b) Sobel edge map for (a) [T=lOO].
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F;gme, 5.3 The MSPR (d) -oA test results on t .
(d) The MSPRoA est Image Combine"edge map for (c) (N = . (c) Speckled Combine·

13, T, ~ 0.63, d = 21. '
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method is successTul in generating thin and localized edges from the corresponding

speckled image yielding an edge map which approximates closely to the ideal edge map

( figure .5.Hb). The method is also successful in suppressing spurious (wrong) edge

pixels detected in homogeneous (non.edge) regions. There are no true edge pixels that

are missing when compared with the ideal edge map. Overall, these test results confirm

that the MSPRoA method is successful for the speckled Strips image in generating an

edge map giving close approximation to the ideal edge map.

The ~ISPRoA method on the test image Ring also generated an edge map for the

speckled image which is close to the corresponding ideal edge map. There are few and

/ or no spurious (wrong) edge pixels detected in homogeneous (non·edge) regions. The

generated edge map is thin and precise. However, a few edge pixels in the ideal edge

map are missing in the corresponding ~ISPRoA edge map giving rise to discontinuities

in the detected edge contours. Overall. the ~ISPRoA test results on the speckled Ring

test image shows that the method generated a thin and precise edge map which is a

dose approximation to the ideal edge map (figure 5.2(b).

Test results on the Combin~ show that the MSPRoA detected a clean and precise

edge map for the speckled image, suppressing spurious edge responses in homogeneous

regions. Regions and boundaries between regions are well defined in the generated edge

map. However, visual examination show that several true edge pixels in the ideal edge

map are missing in the corresponding ~ISPRoA edge map. Fine detail and low contrast

information. particularly in the balloon. are missing in tbe ~[SPRoA edge map. Overall.

tbe :\ISPRo"\ generated edge map shows well·defined object and regions boundaries with

few spurious edges in non-edge regions, but with several true edge pixels missing in area

which are finely detailed or of low contrast.

The above test examples confirm that the MSPRoA method can be successful in gen·
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crating thin and localized edge maps without the necessity of either gradient information

calculations or edge thinning post processing.

5.2.2 Quantitative analysis of MSPRoA results on synthetic

images

The :V[SPRoA edge detection results for synthetic test images are evaluated using

the edge detector quantitative performance evaluation measures proposed by Zaman

and :Vloloney (section 3.2.2). These evaluation results computed from the edge maps of

Strips. Ring and Combine are shown in Table .5.1.

The :VlSPRoA edge detector quantitative performance evaluation resutls shown in

Table 5.1 confirm that the ~ISPRoA method is successful in extracting edge maps on

speckled images with quantitative performance measures dose to those of the corre·

sponding ideal edge maps. The results for test images Strips and and Ring indicate

performance close to their ideal edge map measures. In the case of the third test im­

age Combine the quantitative performance measures were found to be better in terms

of edge pixel corre<:tness (high C), better suppression of spurious edge pixels (low W)

and good localization as indicated by low ambiguity (low A) values. However. the edge

map missed a number of true edge pixel information (high M) which is an undesirable

performance measure.

Regions on the balloon in the central part of Combine consists of several fine details

in two differing shades of gray. Due to the signal dependent nature of speckle noise. the

interfering noise is more significant in the lighter gray regions compared to the darker

gray regions. Speckle noise in the balloon central gray shaded region severely degraded

the underlying image information making it difficult to extract information [rom this

regIOn.
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Table 5.1: The ~ISPRoA edge detector quantitative evaluation measures
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rf the orill;inaJ noise-free imqe were not available the human \'ie\lo'er mill;ht also fail to

extract $Orne of the true edll;es from this region. lnformation in the da.rker !!:ray region in

the centra.! part of the baHooo was also partly degraded by the interfering !peckle noise

but a good edll;e detector could be expected to extract u-Ileast some of the underl~'in!

image information. The edges in this region were detected by the ~(SPRoA method but

may consists of missing pilC:els in!ormatioo when comp"red with the human percei\'ed

edge map.

Q\·erall. the ~ISPRoA method was found to be successful in elC:tracting true edge

information from speckled images having medium to large structures ( e.g. Strips. Ring

) ..... ith performance measures close to that of the ideal edge maps. The ~ISPRoA method

\\'&5 satisfactory on a. test image having a variety of scene contents (e.g. Combin~). For

all the test images used, the ~ISPRoAmethod generated ~!emaps were thin and precise

without requiring edge thinning post processing operations or gradient calculations.

However. the method performed relatively poorly in extracting the edges of fine del"ils

from imar;e'i when im.a.ge consined of fine, medium ud I"f!e structures inform"lion.

especiall~' in regions of low ima&e contrast and si!!:tlificant speckle.

These test resulu using 2-D synthetic test ima&e5 confirmed the suitability of the

:'oolSPRoA method for detectinll; edll;e5 in speckled image. Therefore, with knowledge

gained about the method's performance and appropriate parameter setting, the study

of the :'ooISPRoA method continued with SAR test images.
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5.3 The MSPRoA on airborne SAR images

5.3.1 Test Results

SAR test images Fi~fds (Figure 5.4(3)), Busy (Figure shown here Figure 5.5(a)).

In.dustrial (Figure 5.7(a)) and Highway (Figure 5.6(a)) are used for test and analysis of

the :\[SPRoA edge detector performance on real airborne SAR images.

SAR test image Fidds consists of woods and fields areas and is similar to test image

Jfoderately Busy (Figure 3.5) shown in Chapter [3J. This test image is an example of a

SAR image cootaining several low and high contrast regions and with large structures.

An :\'tSPRoA edge map is obtained on theSAR test image Fields using mask size ,'Ii = 9.

ratio threshold Tr = 0.6 and correlation distance value d = 2. The resulting edge map

is shown in Figure 5.4{b).

Test image Busy contains predominantly fine structures and is ~busy~ as a conse-

quence. The underlying image is a suburban city area. which has several straight roads

and rows of houses in the ordered. manner of man-made structures. The edge map

obtained using the MSPRoA method on the Busy SAR test image is shown in Figure

.'i.5(b). The edge map was generated using mask size .v = 9, ratio threshold Tr = 0.62

and d = 2 correlation distance parameter value.

The test image Highway (Figure 5.6(a)) contains infonnation on highway roads and

small objects such as cars on the highways which can all be classified as fine structures.

The test image Highway also contains some fields which are large structures. This

test image a150 suffers from a relatively poor contrast ratio sometimes obsen'ed in SAR

images. F'igure5.6(b) shows the :\-lSPRoA edge map on the test image Highwayobtained

using mask size N = 1, ratio threshold value T. "" 0.6 and correlation distance parameter

\'alue d "" 2.
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Test ima.~ InduJlrial(fisure S.i(a) is SAR ima!e containin! fine.i&tge and medium

structures varying from resi~n to repon. Test image IndutriGiis im:lllded as an example

of an image contaioing both \'ery busy and modera.tely busy rqions in one image. filUre

.j.'(b) sho....~ he ~ISPRoA edge map on In.dustrial test image. This edge map ,,'u

obtained llSing muk size N "" II. ratio threshold \'1Iue T. "" 0.63 and correlation

distance value d = 2.

5.3.2 Analysis of MSPRoA test results on SAR Images

The above edge detection rcslllts on rea.! a.irborne SAR images of varying scene

contenL~ confinn the suitability of the ylSPRoA method for lise on rea.! speckled images.

The test results also show tha.t the ylSPRoA method can be successful in generating

thin and precise edge maps on real SAR images.

The \fSPRoA edge map on the test image Fields resulted in well defined bound­

&Zies between regions with few spurious edges in non~ge rextons (figure .j.-!(b)). Test

results obtained on the SAR test image BltSy also found thin and precise edges with

a small number of wrooS edse pixels. The corresponding edse map also con\'eYs $Orne

information about the underlyiD& image objects as the edge map consists of well defined

roW$ indicating the possibility that the regions may correspond to Ul area of man-m~e

structures such as the houses and the st~s found in cities.

TC!i5t result$ 00 the SAR test image Highway also resulted in well defined edge map

confirming suitability of the ~ISPRoA method for detecting edges on speckled images.

The ~ISPRoA edge map (Figure 5.6(b)) on 5:\R test image Highway successfully ex­

tracted edges information on fine details such as closely locat.ed highway roads. Informa­

tion on large structures in the regions on either side of the highwa)· roads are also lI'ell

regi$tered with clean hounduies defined. Fine objects such as cars on highway roads
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Ca) (b)

Figure 5.4: The MSPRoA test results on SAR test image - Fields:

Ca) SAil image Field,; Cb) MSPlloA edge map fo, Ca) IN = 9, T, = 0.6, d = 2J.
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(a)

(b)

Figure 5.5: The MSPRoA test results on SAR test image Busy:

(a) SAR image Bu..; (b) MSPRoA edge map fo' (a) IN =9, T, ~ 0.62, d ~ 21·
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(a>

Figure 5.6: The MSPRoA test results on SAR test image Highway:

(a) SAR test image Highway;

109



(b)

SAR test ima.ge Highway:
. 5 6:The MSPRoA test result(, O)OIN '"" 7, T.::;; 0.6, d:= 21.Figure . d map for a

(b) The MSPRoA e ge
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(e)

(d)

Figure 5.6: The MSPRoA lest results on SAR image Highway:

(e) A zoom out from 5.6(a); (d) A zoom out from 5.6(b).
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<a)

Figure 5.7: The MSPRoA test results on SAR test image Industrial:

(a) SAR test image Industrial; (b) The MSPRoA edge map for (a)

using [N = 11, Tr = 0.63, d =2].
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could be dearly seen in extracted edge map. A zoom out of the ~ISPRoA edge map on

Highway is shown in Figure 5.6(d).

Analysis of the test results on SAR test image Industrial shows that the ~ISPRoA

method also extracted edge maps for this test image, suppressing spurious edge responses

in homogeneous (non-edge) regions. True edge pixel informil.tion was successfully regis~

tered from the regions consisting of fields and roads. However. boundaries were poorly

defined in the middle portion of the image consisting of the man-made structures of a

large industrial complex (Figure 5.7(a)). The ~ISPRoA edge map included reliHi,·ely

more spurious edges in this region compared to the other regions of the Industrial test

image.

The ~ISPRoA edge detection test results on real airborne SAR images confirmed the

test results observed on synthetic test images. The ~ISPRoA method was also found to

be successful on real SAR images in generating thin and localized edge maps without

requiring gradient calculations or edge thinning post processing. The performance of

the ~'[SPRoA method was found to be satisfactory 011 images having large, moderate.

fine andl or busy structures as observed from test results on Fields. Bu.sy and and

Highway. The method was also found to be successful in extracting information from

images having a variety of scene contents and poor contrast such as the Highway test

image. However, the method performed relatively poorly on test image Industrial which

contains a variety of image structures.

113



5.4 Discussion

5.4.1 Comparative study using synthetic test images

A comparative study and analysis of the MSPRoA edge detection method and of

previous speckle-specific edge detection methods is conducted in this section. based on

results obtained using synthetic test images. The speckle specific edge detection methods

previously investigated to in Chapter 3. are studied again, in terms of determining how

close their quantitati~'e performance measures can be to the ideal conditions values.

The test image Strips is first considered for this study and analysis. We attempt nrst

to optimize each edge detector's quantitative performance measure W (Equation :1 ..'»)

determining the number of wrong edge pixel information. Edge maps are obtained which

yield the W performance measure dose to the ideal conditions value (i.e. W:=:: 0) using

different edge detection methods. The corresponding quantitative performance measures

JI (Equation 3.4). A (Equation 3.3) and C (Equation 3.2) are measured. These values

indicating the performance of different edge detectors are shown in Table .'i,2. Similar

tests conducted to optimize primarily .lvf and A and the corresponding test results are

shown in Table 5.3 and Table 5.4, respectively.

As seen from Table 5.2. attempts to achieve values of the edge detector measure

W close to the ideal conditioo of W '" 0 found to be successful using the previously

studied speckle specific edge detection methods. The resulting edge maps also have

their performance measures close to ideal edge map values in terms of edge corree/ness

and ambiguity which mea.o;ured high C and low A values. However, the edge maps

missed a number of true edge pixels a.o; seen by their high .\of values. Therefore. the

existing speckle specific edge detection methods resulted in poor edge maps in terms of

missing true edge pixel information when an attempt is made to optimize the number
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Ori&inal Sobo' 20 ",,. 100.00 0.00 0.00 0.00

ea.•. O.~~ 106 23.06 .9.28 1M

Tool! • '" "." 23.0lI 0.00 6."~

floA '.3S 69.18 ".., 000 3.~8

MRoA O.~~ 100.00 25.61 0.00

RGoA 7 " O.~~ 98.63 23.39

Table 5.2: Optimizing edge detector quantitative performance measure W

or ICrong edge inrormation.

Test measures optimizing M "'ere found to be satisractory using the Touzi. ~IRoA

and RGoA methods in terms or their M and W measure. However. tbe results showed

poor performance measures in terms or edge CQl"redne.s.s (C) and ambiguity (A) values.

ThereCo~. the existing edge detection methods performed poocly ....hen attempts were

made to e.~tract "'I true edge pixel inrormation. The generated edge maps measured a

number or ambiguou.1 edge pixels and showed poor correctne.1.1.

The test results for optimizing the edge ambiguity (A ::::: 0) are sho....n in Table

.j.... The edge detector performance measure A is importllnt as it indicates a measure

or closeness bet....een a detected edge map and its ideal edge map. It also indicates

a measure or edge loulizalion. Thick edge maps in general mellliure high A values

indicating poor edge localization Table 5.4 shows that the resulting edge maps for the

~I RoA and RGoA methods ba~'e their perrormance measures Wand C values close to

the ideal edge map values. However. the edge maps also have high M values indicating
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T5' Edge ~rMk~
c,,% ISample o"t«tor :i T, T. #found .Win% Win% :tin'*:

Test [mageSI""

Original "'.., 20 i308 100.00 000 0.00 0.00

Coell'o 0.28 2353 20.70 0.45 70.56

Tou21 0.69 2042 25.31 0.00 6.41 67.58

RoA 1.69 3231 7.49 000 32.52 B7.ao

~IRoA 13 0.63 l737 32.<14 0.00 62.23

RGoA 13 85 0.62 1691 43.1)8 0.00 L.47

Table 5.3: Optimizing edge detector quantitative performance measure .\f

that these edge maps miss a number of tfue edge pixels and hence a relatively poor

match to ideal edge maps is achieved. Other previous speckle specific edge detector

performance measures shOll' relatively poor performance measures both in terms of edge

correctnes.5 (low C values) and missing true edge pixels (high J[ values) and hence

indicate poor performance compared to \IRoA and RGnA methods.

The performance measures of the existing spei:kle specific edge detection methods

are compared with the perfonnaoce measures of the MSPRoA method for the Strips test

image listed in Table 5.1. The measured performance measures show that the previous

speckle specific edge detection methods could achieve performance measure values dose

to the values measured 00 ideal edge maps only with one parameter selected at any time.

Attempts to improve anyone of the performance measure value were found to influence

other measures, modifying their measures in an undesirable manner.

The ~(SPRoA results (Table 5.1) show that the method achieved performance mea·

sures C . .VI. Wand A a1l close to their ideal edge map value simultaneously. Therefore.
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T~, Edge Ma.slr.~
Sampl" )i T, T,

T...t [m"l!i" SIn,s

Orit;inal SQbeJ " 1308 tOO.oo 0.00 000 000

Coelf. 0.44 " 21.99 86.54 3.57 1.98

Touzi 0,48 157 59.38 66.05 0.00 0.68

RoA 2.. ;, 29.79 82.26 1.33 1.98

:\oIRoA 345 81.87 45.02 0.00

RGoA ; 85 0.52 385 90.49 39.52 0.00 1.9\

Table 5.4: Optimizing edge detector quantitative performance measure .--1.

the :\>[SPRoA method is successful on the test image Strips achieving perfonnance mea-

sures close to its ideal edge map performance measure values.

OveralL the :'v[RoA and RGoA methods resulted in better performance relative to

the other previous speckle specific edge detection methods. Hence these edge detection

methods are selected for comparative study and analysis of the MSPRoA edge detection

results using qualitative analysis.

Figure ,l.8(a} shows the ideal edge map obtained on Strips noise-free image using

Sobel operator_ Figure 5.8(b) shows the :\-IRoA edge map obtained using mask size

.v = i, threshold value T =0.62 followed by edge thinning. Figure 5.8(c) shows the

RGoA edge map obtained using mask size N = 9, ratio thresbold T, = 0.6 and gradiem

threshold T1 = 65 followed by edge thinning. Figure5.8(d) shows the :\-ISPRoA edge

map obtained using mask size N = 15 ratio threshold T, = 0.63 and correlating distance

d::= 2. The corresponding edge maps for the Ring and Combine images are also obtained.

Figures 5.9(a) to (d) show these edge maps for the Ring and Figures 5.IO(a) to (d) show
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edge maps for the Combine image.

This comparative study and analysis of the edge maps obtained using the ~IRo.-\.

RGoA and Y1SPRoA methods show that the edge maps obtained using the \ISPRoA

method are relatively better compared to the edge maps obtained using previous edge

detection methods. Edge maps obtained using the ~1SPRoA method are well defined

with continuous lines between regions (test results on Strips and Combine). The sup'

pression of spurious edge pixel information is also relatively better using the ~[SPRoA

method as seen from the Strips. Ring and Comill-ne edge maps. The ~[SPRoA method

\\'as also found perform well on Ring, the edge map of which contains changing edge

orientations.

Qualitative analysis of the test results these on synthetic test images a.lso show that

the ~[SPRoA method performed better in detecting edges on sp&kled images as com­

pared to the existing edge detection methods. The Y1SPRoA edge maps obtained on

speckled images are seen to be precise and accurate. These edge maps suppress spurious

edge pixel information relatively better compared to edge detectioo methods. The edge

maps are also continuous and successful in giving well defined boundaries between re-

gions. These test results encourage the use of the MSPRoA method for detecting edges

on sp«kled images.
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(a)

(e)

(b)

(d)

Figure 5.8: The MSPRoA test results a comparative study using Slrips :

(a) Sohel for original{T=20j ; (b) MRoA for speckled (N::: 7; T~ =0.651 roUowed by

edge thinning; (c) RGoA for speckled [N:::: 9, T, ::: 0.65, T, = 75) followed by edge

thinning; (d) MSPRoA for !peclcled IN = 15, Tr =0.63, d =21·
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@@
(a) (b)

@@
(0) (d)

figure 5.9: The MSPRoA test results a comparative study using Ring:

(a) Sobel for origin,,1 [T==20]: (b) MRoA for speckled [N == 7, T == 0.651 follwed by edge

thinning; (el RGoA for speckled IN "" 7, T. == 0.65, T, == 851 foUowed by edge th.inning:

(d) ~SPRoA for speckled IN = 13, T = 0.66 and d = 2].
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Ed,. Mask
r2---~

WiQ':i/:tin'i\lI..... ""~~
, T. T, lJ/o1UUl Ci.. ~ .\lill~

0.wn&l ""'I 20 1J118 100.00 0.00 0.00 0_00.

"".101 }IRoA , 0.58 ,47 100.00 14.52 9.~ .l.•3

0.59 94.46 lUi 0.70 10.24, 0.59 971 90.21 8.33 0.30 13.0;

" 0.59 "20 82.20 5.0<1 18.6-1

13 0..39 "" 69,39 5.81 0.321 ""
RGoA 0.53 " 98.74 22.62 '" I 5.:.1'i

0.55 " 615 97.42 19.26 0.29 6."

0.57 " 83' 89.49 12.99 0.24 13.76

" 0.57 " '" 85.07 9.40 000 11.35

13 0.57 95 I'" i6.81 1.11 000 23.08

.\ISPRoA 0.60 d:><2 578 100.00 9.70 8.13 3.59

0.61 ;gO 100.00 U9 033 2.75

0./51 100.00 ",

" 0.63 MIl 100.00 0.91

13 0.63 100.00 O.:Ill 0.00

Table 5.5: The effect of nuk size on MSPRoA edse detector

5.4.2 Study on the effect of mask size

The effect of mask size on 1-0 test signal is studied in Chapter {4J. Further. study on

the effect of mlL'lk size on the ~ISPRoA method using 2-0 test images is conduct~ and

presented. in this section. Test images Strips, Ringand Combine where the corresponding

ideal edge maps are available are used for study and analysis purpose.

Edge maps are obtained on test images Strips. Ring and Combine using :\tiRoA. RGoA

and the ~ISPRoA methods by varying mask size from :V "'" S to ,v :=:: L3. Quantit4th-e

performance l"I1euures computed each case using Za.rnan Uld :\ioloDey edge detector
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performance measures (section 3.2.2 ). Test resulu showin& performance ll1ea.5Url!$ for

different mask sizes are shown in Table 5.5.

From the table it can be seen that as the mask size is increased from .V ::: .J to

.v ::: 13 ed,;e detector performance measure! .W a.nd Ware impro\·ed for all the three

methods (ex. ),IRoA: J( :z 14.52 to J( ::: 5.81. RGoA: .W "" 22.62 to .H ::: •. 11 and

~fSPRoA: .H ::: 9.i to .H ::: 0.38). HoweV(!r, the edge detector performance measures

C and A values are deteriorated as the mask size is increased. in case of ),1 RoA and

RGoA methods. In case of :VIRnA method as the mask size is increa.sed C value reduced

from C ::: lOO to C "" 69.39 and corresponding .4. values increa.sed from A. ::: 5.i3 to

A ::: 26.68. Similar effect could be observed in case of RGoA method. rn this ca.se the

corresponding values found to be changed from C =: 98.74 to C = i6.81 and.4. '" 6.88 to

.-\ '" 23.08. In case of the :VISPRoA method increase in muk size found to be improving

A value (from A '" 3.59 to A::: 0.61) without effecting C value.

The use of small mask sizes found to be better suited for extracting edge maps with

high correctness C values. However. these edge maps also measured high U'- ud .\l

\";llues. The use of large IlU.lIik sizes found to be useful in improvin,; Wand .\1 values

howc\~r. it has a netative effect on corresponding C and A. \'I1ues in usin,; :VIRoA and

RGoA method. In case of :VISPRoA method the use of lar,;e mask size found to be

useful in extractin,; in extractio,; number of true ed,;e pixeb without effectin,; other

parameter values in an undesirable manner. However. it is not recommended to use

\'ery large mask sizes as it may increase computational costs ill measuring edge strength

magnitude values.
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5.4.3 Comparative study and analysis using SAR images

A comparati\'e study and analysis of the MSPRoA edge detection results using

airborne SAR images is presented in this section. The :vIRoA and RGoA edge detec­

tion methods are selected for comparison with the MSPRoA method as these methods

reported better performance of the existi~ methods. The standard ~(RoA thinning

algorithm is used to produce thin a.nd precise edge maps for the :VIRoA a.nd RGoA

methods ...·hich can comp.ued. with the ~ISPRoA edge maps.

Figure .;.l1(a) shows the SAR test image Fields. Figure 5.II(b) shows the ~IRoA

edge ma.p on FieldJobtained using mask size .v = 7, ratio threshold T,:::: OASfollowed by

edge thinning. The RGoA edge ma.p. obtained using mask size N = 9. r&tio threshold

T, = 0.45. lI}"adient threshold T. :::: 50 follo...-ed by edge thinning, is ShO..... D in Figure

5.1I(e). The ~ISPRoA edge nap obtained using mask size _v ::::II: 9. threshold T:::: 0.6

and correlation distance d = 2 is shown in FigureS.II(d). The MSPRoA edge map with

parameten used in Figure S.5(b) is shown in Figure 5.12(d) for comparison purpose.

Simila.r tests conducted on Highway a.nd Industrial and test results with corresponding

operating parameters are shown in Figures 5.13 and Figures 5.14 respectively.

From the figures it can be seen that the MSPRoA generated edge maps are thin and

more complete when compared to t~ :\-(RoA or ReoA senerated edge maps. The figures

also show that the ~lSPRoA method generated edge maps for t!lese SAR images ue of

better quality than those generated by tbe MRoA or RGoA methods as tbe boundaries

are well defined a.nd lines are continuous for an the test images. The :VISPRoA method

achieved, improved performance without requiring edge thinning operations.

Although the edge map for the test image ,Iloderotely Busy missed several edge pixels.

the :\ISPRoA generated edge map indicates well defined. regions compared to the edge

maps of the other two method,. Simila.r results are observed. in the case or the Buy
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test irnat;e. The edge ma.p generated lUing the ).ISP RDA method resulted in .. greater

number of true edge pixels detected the lanes appearirtl in the original SAR images

are \\-eU rqistered using the ).{SPRo'\ method. The suppression of false edge pixels

in homogeneous regions is also better for this SAR image compAred to the RGoA and

).IRDA methods.

The performance of the ~SPRoA method was found to he successful for the test

image Highway. Roads and boundaries between regions in the fields are well registered

IIsing the ~ISPRoA method. The small objects visible on the roads which may indi­

cale moving cars were also registered using the .'vrSPRoA edge detection method. The

generated edge map was also found free from false edge pixels.

The test results on IndtlSlnal image are shown in F'igure 5.14. The results show

that the ).lSPRoA method generated good edge maps in the regiollS roads and fields.

Ho....e\-ef. the method resulted a number of spurious edge pixels in the middle regions

....here several busy structures Are closely placed. Howe\-er, test results indicate that the

:\ISPRoA method generated edge maps were better compAred to the :\IRoA and RGoA

edge maps.

The comparati\'e study ud analysis of ).lSPRoA edge maps on SAR images ll.;tb the

corresponding edge maps obtained using pre..ious edge detection methods show that the

:\ISPRoA method performed better on SAR images than the RGoA or .'vlRoA methods

The boundaries betw«n regions and fine details are well registered in the ~ISPRoA edge

maps. The contours and lines are continuous and precise. Its performance on Industrial

image was also found to be better compared to previous edge detection methods.
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(c)

(bl

(d)

Figure 5.11: The MSPRoA results a comparative study on Fields:

(a) SAR test image Fields; (b) The MRoA for (a) IN = 7, T, =0.45] followed by edge

thinning; (c) The RGoA for (a) IN = 9, T, = 0.45, T, =50J followed by edge thinning;

(d) The MSPRoA [0' (a) IN = 9, T, = 0.6, d = 21·
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(a)

(c)

(b)

(d)

Figure 5.12: The MSPRoA results comparative study for SAR Busy:

(a) SAR test image Busy; (b) The MRoA [N = 7, T, = 0.475J followed by edge

thinning; (e) The RGoA on (a) [N = 9, Tr = 0.475, Tj = 50] followed by edge thinning;

(d) The MSPRoA on (a) IN =9, T, = 0.62, d = 2J.
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I .. •

(a) (b)

Figure 5.13: The MSPRoA teflt results a comparative study on Highway

(a) SAR test image Highway j (b) MRoA edge map on (a) IN = 9, T~ = 0.451 followed

by edge thinning;
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(e) (d)

figure 5.13: The MSPRoA multi a. comparative study on HighwQY: (e) RGoA edge

map on (a) [N :: 9, T. ,., 0.45, T, "" 50] foUowed by edge thinning;

(d) The MSPRoA edge mllp on (a) [N "" 7, T. "" 0.6, d "" 21·
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(oj (d)

Figure 5.14: The MSRoA results a. compara.tive study for SAR Indus/rial'

(a) SAR :mage Industrial; (b) MRoA edge map on (a) IN"" 9, T. = 0.451 followed by

edge thinning: (c) RGoA edge map on (a) IN = 9. Tr =0.45, T, = 501 followed. by edge

thinning; (d) MSPRoA edge map 00 (a) {N = 11, T,::: 0.63, d = 2j.
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5.5 The MSPRoA edge tracking algorithm

The :\iISPRoA edge detection results studied further to determine conditions re·

quired to generate edge maps giving quality equal to the ideal edge maps. The ~ISPRo:\

test results Oil simple test image Bars are used for test and analysis.

Figure 5.15(a) shows test image Bars used which is previously used in Chapter [-I;

of Figure 4.3. Figure 5.15(b) corresponding speckled image. The Sobel edge map on

original Bars image is shown in Figure 5.15(c) and the :\tISPRoA edge map on speckled

image shown in Figure 5.15(d).

Edge detection test results show that the :\tISPRoA method on synthetic images

extracted edge maps with single pixel accuracy. Generated edge maps were thin and

precise giving dose approximation to ideal edge maps. Sobel operator on noise-free image

generated edge map which is two pixels wide. However, the ylSPRoA edge map shows

some deviations compared with ideal edge map figure 5.L5(d). The method selected

edge pixels from one of the two regions defining the edges.

This effect was not accounted as error using Zaman and ~oloney edge detectors

quantitati\'e performance measures since, these exists exact match in the corresponding

ideal edge map. The :VISPRoA method was also found to be sucessful according to

Canny [71 as it satisfies single response to singl!~ edge conditions. Although. the effect

was not accounted as an error, it has some effect on visual quality of generated edge

maps. In this section a. simple and fast ylSPRoA edge tracking algorithm is suggested

to improve visual quality of the MSPRoA generated edge maps.

The MSPRoA edge tracking algorithm:

If P(i,j) is the ylSPRoA detected edge pixel, then, the following sequence of steps

are used to verify if relocation is required for P(i,jl to improve visual quality of the
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Ca)

(b)

Figure 5.15: The MSPRoA edge traking algorithm test results for Bars

(a) Sobel edge mil.p for Bars; (b) The MSPRoA edge map for speckled Bars:
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~[SPRoA edge maps using the :\ISPRoA edge tracking algorithm:

• For K ~ track/eng/h, number of edge pixels found in the lanes 1- L. I and I + I

oriented in the direction i + 90 are measured where i is P(i,j) edge orientation, I

is lane (row/column) in which P(i,j) is located and K user selected integer.

• The lane (row/column) that gives miUimum number of edge pixels is considered

as the lane L with highest probability rate for edge pixel P(i.j) to be located.

• If L "" / edge pixel P(i,j) need not relocate. elJe P(i.j) is relocated to lane L

The :\'1SPRoA edge tracking algorithm test results on Bars image is shown in Figure

_').I6(h). The :>.[SPRoA edge tracking algorithm is also tested using Strips. Ring and

Combine images to study its effect in improving visual quality of the edge maps.

The ~{SPRoA edge tracking algorithm improves visual quality of the generated edge

maps by suitably changing those edge pixels positions that are off the track compared

with their neighboring edge pixels. The MSPRoA edge tracking algorithm found to

most successful on test image Strips reproducing edge map with quality equal to the

ideal edge map. Edge map is better compared to ideal edge map as edges separating

regions are extracted with single pixel accuracy ( Figure 5.i7(c) ). This test image used

track length k == 4 for edge tracking purpose.

Test results OD Ring image are obtained using track length k '" 2. Test results on

Ring test image are shown in Figure 5.17(d). Significant improvement in visual quality

of generated edge map was Dot observed in case of Ring image as these image contained

edge pixels that rapidly change their edge orientation.

Test results on Combine ( Figure 5.18(b) ) showed some improvement compared

to its corresponding the ~[SPRoA edge map (Figure 5.t8(a) ). This image also used

track length k "" 2 ~·alue. Test image Combine shows some improvement may be due to
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Ca)

(b)

Figure 5.16: The MSPRoA edge tracking algorithm on Bars

(a) Ideal edge map on noise-free Bars;

(b) The MSPRoA edge tracking algorithm:
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(aJ

«)

@
(bJ

(d)

Figure 5.[1: The :\t{SPRoA ooge tracking algorithm

(a.l Strips Ideal edge map: (h) Ring Ideal edge map;

The ~ISPRoA edge tracking algorithm on (c) Strips (d) Ring:



(b)

Figure 5.18: The MSPRo'\
(a) Ideal Comb _ . edge tracking Ime edge map; (b) Edge lracki: g:r:thm on Combine

g Combme MSPRoA.

1:16



the fact that image contained information that changes its edge orientation less often

compared to Ring test image.

The ~15PRoA edge tracking algorithm test results on synthetic test images show

that the method is useful and improves visual quality of the generated edge maps. for

effective use of this algorithm it is ret;Ommended to use small track length values in

case image contains information on edge pixels that rapidly change their orientations

compared with neighboring edge pixels.

The ~[SPRoA edge tracking algorithm is also tested using real airborne 5AR im­

ages. Edge maps.ue obtained applying the ~[SPRoA edge tracking algorithm on Fields.

Highway and Industrial using tra.ck lengths k :=: 2 for aU the three images. Correspond­

ing test images are shown in figures .'i.L9(b), .'i.2O(b) and .'i.21(b). The yl5PRoA edge

maps before applying edge tracking algorithm are shown in Figures 5.19(11.). ,').20(11.) and

,').21(11.).

Test results show that the Y1SPRoA edge tracking algorithm improves visual quality

of the edge maps generated using the ylSPRoA method on reaL airborne SAR images.

However. the effe<t was not significant i\5 it was found on synthetic test image Strips

(figure 5.17(c)). Edge maps visual quality improvement on SAR images found similar

to the test resuLts observed on synthetic test image Combine (Figure 5.18(b)) which

consisted variety of edge structures such as lines. wide arcs and sharp curves.

The Y15PRoA edge trading algorithm only provides a refined edge map on the

~15PRoA generated edge maps. The algorithm is not useful for extracting additional

information on images if edge map contains some true edge pixels information missing.

Hence. information regarding the edge pixels that are missing still remain missing even

after using the ~[SPRoA edge tracking algorithm. :Vlulti-scale approach would be more

suitable for extracting all true edges information simultaneousLy on both fine and large
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image structures. A simple multi·scale :-,·tSPRoA method for extracting all true edges

information on speckled images having variety of scene contents is suggested and is

presented in the next section.

5.6 Multi-scale MSPRoA edge detector

5.6.1 Multi·scale MSPRoA on synthetic test images

The use of multi-scale approach in order to detect underlying image information

has been used by several researchers in the pa.st [82, 61. The use of :-"rSPRoA method

for extracting edges at micro and macro levels is suggested in this section.

figure 5.19(a) shows extracted sub-image of Combine (Figure 3.4(a)) showing fine

details information on balloon in the Combine test image. The corresponding section of

the image is ell:tracted from speckled Combine (Figure 3.4{b)) and is shown in figure

.5.19(b). Test image shown in Figure 5.19(a) and (b) are used for test and analysis of

working of the multi-scale MSPRoA method. The multi-scale ~"SPRoA method is then

tested using synthetic and SAR test images. Test image shown in Figure .5.19{a) is

referred using Balloon in this thesis.

figure .5.19(c) shows ideal edge map on Balloon obtained using Sobel operator (equa­

tion 2.6). Figure 5.19(d) shows the :-"ISPRoA edge map obtained on figure .:U9(b) using

.v = 5. ratio-threshold value T, = 0.45 d = 2. Figure 5.19(e) shows tlte corresponding

~"SPRo"\ edge map obtained using N = 9, ratio threshold value T. = 0.6 and d =2. Fig·

ure 5.19(£) shows combination of Figure 5.19{d) and (el producing multi-scale ~ISPRoA

edge map for the test image shown in Figure 5.l9(b). Test results from figures .5.19c)

and (f) show that the use of ~[SPRoA method at different mask sizes is successful in

producing edge map on speckled Balloon producing edge map which also included find
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details information,

The suggested multi-scale \[SPRoA method uses different mask sizes and combines

resulting edge maps using OR operator. The judgment on what mask sizes are to be

selected and how many edge maps are to be used is to be made by the user keeping in

\·iew of the underlying image contents.

The multi-scale \[SPRoA method is tested using Combine (Figure 3.4(a)) image. Th~

corresponding test results are shown in Figure 5.20(b). figure 5.20(a) shows Sobel edge

map on original Combine. The multi-scale \ISPRoA edge map combined using mask

sizes .v == ·5..V == 7 and N == 13. Different ratio threshold values are used for different

mask sizes in order to obtain dean edge maps reducing spurious edge pixel information

in each case. Threshold values used are Tr == 0..15. Tr == 0.55 and T. = 0.63 for .V = ,J.

•"If == 7 and .V = 13 mask sizes respectively. The correlation distance parameter value

d =- 2 is selected for all the ma.sk sizes. The mask size N == 5 is selected for extracting

fine details information. \[ask size N ::< 7 is selected to support information extracted

using ."If = 5 mask size. The selection of N = 13 is made to extract large structures

information with clean boundaries.

The multi-scale MSPRoA edge map shown in Figure 5.20(b) shows additional in­

formation on edge pixels being extracted when compared to the ~ISPRoA edge map

shown in Figure 5.3(d) which used mask size N = 13 only. Hence it may he possible

to extract fine details and large details information simultaneously on speckled images

using multi-scale .'<ISPRoA method.

5.6.2 The Multi-scale MSPRoA on airborne SAR images

The multi-scale \ISPRnA method is tested using the SAR test images Fields.

Highway. and (nduslrial. Figure 5.21(a) shows the ~fSPRoA edge map on the Fields
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Figure 5.19: Multi-scale MSPRoA results for Balloon

(a) Original Balloon; (b) Speckled Balloon; (c) Sobel edge map for (a) [T=IOOI;

(d) ~ISPRoA edge map for (b) [N = 5, T~ = 0.45, d = 2J; (e) ~1SPRoA edge map

for (b) IN = 9, Tr = 0.6, d = 2J; (f) Multi-scale MSPRoA combining (d) and (e).
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(b)

(a.) Sobel ed Figure 5.20: Multi-scale MSPRoA
I(.v _ go m.p fo< 3.4(.) IT:lOO. ",ult fo, Comb;" ,

_ 13. T, "" 0.63, d::: 2 I, (b) Multi-scale MSP) OR (N::: 7 T. RoA for 3A(b) .
, • "" 0..55, d "" 2) OR {N _. usmg

d = 2)1. -~, T. ::: 0.45.

141



(figure -S.-1(a)) test image. figure 5.21(b) sholVs the muLti·scale ~ISPRoA edge map on

the Fields obtained using N = 5, T, = 0.45, iV = 9, T. '" 0.58 and .V = ll. T, = 0.62.

Correlation distance d = 2 is used for all mask sizes. The multi-scale ~ISPRoA edge map

on the Highway test image is obtained considering test image shown in F"igure 5.6(a).

The multi-scale ~ISPRoA edge map is obtained using ;V = .5. T, = 0.-15 and ."" = T.

T, = 0.6 is shown in Figure 5.22{b). The corresponding :V!SPRoA edge map obtained

using.'If = 7. T, = 0.6 and d = 2 is shown in Figure 5.22(a).

The multi-scale ~ISPRoA method is also tested using the SAR Indus/rial test image.

Figure 5.23(a) shows the ~-tSPRoA edge map on Industrial obtained using .Y = L3.

Tr = 0.62 and d '" 2. The ~[SPRoA edge map obtained using N = 5. T, = 0.45 is shown

in Figure .5.23(b). F"igure 5.23(c) shows the corresponding :'vrSPRoA edge map obtained

using .'Ii = 9, T, = 0.58, d = 2. Figure 5.23(d) shows multi-scale MSPRoA edge map

which is a combination of the e<lge maps in Figure 5.23(a), (b) and (c) edge maps.

The test results using the multi-scale :VISPRoA method on the SAR test images

show that the method is successful in extracting e<lge pixel information. and in giving

better definition on boundaries and details in these images. The method is found to

be relatively better on the SAR test images Fields and Industrial. However, the test

results on Highway did not show a significant improvement when compared with the

corresponding test results using only one mask size.

Hence these results indicate that the multi-scale ylSPRoA method may be used on

images which consist of a variety of scene contents and business in order to extract edge

maps with precision close to that of the human perceived edge maps.
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(.) (b)

Figure 5.21: The multi-scale ,-,[SPRoA en SAR test im~e - FiddJ

(a) The MSPRoA edge map for Fiel,u (N "" 9, T. "" O.6,d "" 2J; (b) The multi-scale

MSPRoA edge map for FieliU IN "" 7, T. =O.M, d =2; ,V :z: 9, T. "" 0.6, d '" 21;
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(a) (b)

figure 5.22: The multi-scale MSPRoA test results OD. SAR HighwtJy

(a) >(SPRoA edge map for Highway [N "" 7, T. _ 0.6, rJ '"" 21; (b) Multi-scale MSPRoA

edge ma.p for Highway (N:= 5, T.:: 0.45, d:= 2; N =7, T.:= 0.6, d"" 21;
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(,) (d)

Figure 5.23: The multi-sale MSPRoA test results OD. SAR InJu.stn"ol :

(a) ~tSPRoA edge map using [N .. 5. T. = 0.35, d - 21; (b) MSPRoA edge ma.p using

{.V"" 7. T. =O.M, J =21; (c) MSPRoA edge map using [N =11,T, "" 0.63, d::: 21; (a)

Multi-sale MSPRoA edge ma.p for Indu.striaJ using (a.), (b).nd (el·
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Chapter 6

Conclusions and Future Studies

6.1 Conclusions

Edge detection in the case of speckled images is important as these images a.re

found in a. variety of digital image processing application fidds using laser. sonar. radar.

SAR. ultrsound images etc.. Speckle noise differs from other types of noise ~uch as

additive white Gaussian noise (AWGN) commonly observed in digital images in that it

is multiplicativly signal dependent and may be spatially highly correlated. Speckle make!;

it difficult to extract true edges information due to its mulliplic:ali\'e signal dependent

Ordinary gradient edge detection methods which use differences between pixel values

tend to give inconsistent estimates when they wece applied to speckled images. For this

reason, such edge dete<tion methods perform poorly on speckled images [3. 23, 901. Ratio

based metbod which use ratios of pixels values as a measure of edge strength tend to

cancel out the multiplicative noise effect present in speckled images. When applied to

speckled images these methods are successful ill giving better estimates regarding true

edge pixels on speckled images.
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Ho""~\·er. previous ratio bued m~thods generate thick ~ge maps. E\'aluuions of

existing speckle specific edge detection methods show that these methods do not e:dract

all and onl)" true ~ge pixels information on speckle<! images. :\n attempt to extract

all true edge pixels information using existing ratio based methods may give thick edge

maps and may also include some wrong edge pixels. On the other hand. attempts to

reduce the number of wrong edge pixels result in an increase in the number of missing

edge pixels..-\lthough these previous rOltio based methods can give satisfactory results

on spedcled image. they may not be successful in seDerating edge maps that gh·e close

estimates to corresponding ideal edge maps.

SAR images with ac::tual. speckle noise ha~'C been used with permission from Canada

Center for Remote Sensing (CCRSl to study and analyze existing edge detection methods

for speckled images. Previous evaluations on edge detection methods for speckled images

used synthetic test images. The evaluation of edge detection methods for real airborne

SAR images presented in this thesis also confirm suitabilit>· of ratio methods for use on

speckled images. Zaman and Moloney (90] MRoA and RCoA edge detection methods

on real SAR images were found to perform relati~ly better compared with the other

speckle specific edge detection mahods. Ho"''Cver. these methods also generate tbick

edSe maps and require edge thinning operations. The edge rm.ps also consists of missing

edge pixel information compared to the human perceived. ed.ge maps for these images.

The previous ratio based edge detectors studied in this thesis utiliz.ed only edge

magnitude information in extracting true edge pixels information. However since the

most recent methods also determine edge orientation information, it is suggested that

edge orientation information may also be useful in extracting true edge information and

in providing better estimates regarding ideal edge pixel information.

The :\Iaximum Strength edge Pruned Ratio of Averages (:\ISPRoA) method attempts

IH



to ~xtract true edge information from speckled imilges by making effective use of ed!:e

orienution information. The ~tSPRoA successfully extracts true edge pixel information

by pruning edge pixels b~ on both magnitude and direction edge strength \"1llues. The

~ISPRoA method is successful in generating thin. locali:red and well defined edge maps

for synthetic speckled images. The edge detector quantitative performance measures

for these detected edge maps a.re close to the measures obtained for ideal edge maps.

The generated edge maps do not require edge thinning post-processing or gradienl edge

strength calculations and hence computational savings are achieved.

The :\,(SPRoA method was found to be successful in extracling true edge pixel in·

formation when applied to airborne SAR images of varying scene contents and business.

The method Willi found to be succesliful in extracting information for SAR images having

both fine and large structures (as seen from the results on the Field.s, BlI.syand Highl&ay

SAR images)_ Very fine detail information was also successfully extracted using the

MSPRoA method as can be seen from the edge maps for the Highv;ay SAR image which

yields information on cars mavin,; on the highway lanes.

The ~ISPRoA method extracts edt;e pixels from spcclcled images with single pixd

accuracy. At times. the method extril.cts edge pixds from the two rq;ions to f':ither side

of the edge. In such applications. a fast edge tracking algorithm is suggested for tt.se

with ~[SPRoA edge maps in order to improve the visual quality of the generated edge

maps. The :\'tSPRoA edge tracking algorithm improves visual quality of the edge maps

for images with edge pixels that do not rapidly change their edge orientation compared

with their neighhoring edge pixel edge orientations (as in the synthetic Strips image).

The edge tracking algorithm should be used .....ith a small track length value 1\' on

images containing image structures with rapidly changing edge orientations such as arcs

or sharp contours (ex. Comhine. Ring). The ~ISPRoA edge tracking tesl results on SAR



images improvement in the \·isual quality of the generated ed,;e maps by belter delinin!;

the boundaries between repons. Hence, the :\iSPRoA method mfoY be u5ed in im.a.!e

rqislruion. dusilication or object recognition in SAR images. Charles Robertson fond

~Ioloney used :'oISPRoA for automated registration of SAR images (791.

The \lSPRoA ed,;e detection method Wf,S found to perform relati\'ely poor on images

ha\'ing \'ery line details and large structures. Since. the ~ISPRoA edge tracking algo­

rithm only rearranges edge pixels found using the MSPRoA method. this method can

not extract true edge pixels not detected by MSPRoA method. The :'oISPRoA method

and ~'ISPRoA edge tracking a.lgorithm performed poorly on images having ..ariety of

ima.ge structures simultaneously (ex. Combine and SAR lnduslriaf). (n such cases the

use of .\ISPRoA method at multiple scales could successfully extract a number of true

edge pixels information at micro and macro scales simultaneously.

The \fSPRoA method at multiple scales-sca.les performed better than the simple

:\ISPRoA method when applied to images containing a variety of image information.

The multi-scale version of tbe :\ISPRoA method uses different mask sizes suitfoble 10

extract edge information for both fine and luge image structures. Hued on test results

the multi-scale \ISPRoA method is recommended on images containing variety of image

6.2 Future Studies

OveralL the MSPRoA method Wh found to be successful in detecting edges on

speckled images containing fine, moderate and large structures. The edge detection

results obtained using the \ISPRoA method on real airborne SAR images show that

the method determines precise edge maps. However, the method performed relati\~ly

'"



poorly on im.a.ges containing \'ariety of structures.

The multi-scale MSPRoA method performed well on the synthetic test image Com­

bine and SAR test image Highway. Although the ylSPRoA method at multi-scales

using different mask sizes performed well. some true edge pixel information continues

to be missing and can be seen from the test results for SAR Indu.strial test image. The

~[SPRoA method ma.y be improved in order to extract all and only true edge p];'(el

information on images having a variety of ima.ge structures.

The :VISPRoA edge detector performance may be improved further using multi res­

olution image pyramids or sub-o.a.nd decomposition of the input image [61. Cse of im­

age pyramids followed by contour following edge linking algorithms to join edge pixels

detected at different resolution scales may also improve existing ~"SPRoA algorithm

performance.
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