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Abstract

A systematic study of the behaviour of a plate with a surface crack is carried

out using the finite element method. Static, steady state, resonant and transient

responses of the cracked plate are d. Strain, displ and accel

responses without/with the crack are computed. Modal analysis is performed to
determine the natural frequencics, mode shapes and strain/displacement frequency
response functions. Frequency response functions without/with the crack are com-
puted. Strain mode shapes, as well as displacement mode shapes, are oblaiued. The

difference of the strain mode shapes between the uncracked plate and the cracked

plate is calculated. Each of the ioned above is ined to deter-

mine the sensitivity of this parameter to the crack that occurs in the structure,

By using all the methods of analysis mentioned above, and comparing the sen-
sitivity of different parameters to cracking, it is found that the surface crack in the
structure will affect most of the dynamic characteristics such as strain/stress field
around the crack, natural frequencies of the structure, amplitudes of the response
and mode shapes. Some of the most sensitive parameters are the difference of the

strain mode shapes and the local strain frequency response functions. By monitoring

the changes in the local strain frequency response functions and difference of strain



mode shapes, the location and severity of the crack that occurs in the structure can
he determined. Based on these results, suitable procedures for detecting the crack

in real structures are suggested.
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Chapter 1

Introduction

Structures under repeated regular/irregular loadings inevitably develop cracks. For
instance, offshore structures are subjected to repeated loadings due to ocean waves
which impose a large number of cyclic stresses; under these varying cyclic stresses
fatigue cracks develop at critical welded junctions of offshore structures. Therefore

the prediction, detection and itoring of cracks in structures have been the sub-

ject of intensive investigations during recent years. Its importance is shown in the

strict guidelines enforced on the design of and 1 ts, as

well as on the maintenance and repair carried out on in-situ structures for maxi-

mum effecti at mini cost. Many th ical

and i 1 studies of

the behaviour of structures with cracks have been carried out to develop a feasible

hodol Thousands of th ical and experi 1 studies have been carried



out in the allied area of fracture machanics. Meanwhile, many techni have been

developed to quantify cracking in structutes, such as acoustic emission, magnetic

particle insp current field cddy current, ul-

trasonics and modal testing.
In recent years, Non-Destructive Evaluation (NDE) has gained a greater atten-

tion for monitoring and detecting cracks developed in operating structures, and

h Jeveloisad

several have been as ioned before. Each of these meth-

ods has its own advantages and disadvantages. New techniques are being developed
to meet the new requirement of structures in more and more severe environments.
Among these newly emerging techniques, the procedure for modal analysis and test-
ing is being explored by many rescarchers to determine whether it can be used as
an efficient technique, especially if the modal strains around the critical zones could

be monitored. Earlier studies on modal analysis proved to be ineffective since the

} idered only the fr shifts and these shifts could be caused by a
number of factors such as cracking and damage, erosion and strength degradation of
the foundation, addition of extrancous mass to the sub/super structure, etc. Recent
studies in modal analysis has been focussed on the total dynamic behaviour.

The physical properties of any structure can be expressed in term of its mass,
stiffness and damping. Any damage that occurs in the structure will cause changes

in theses physical properties; and these changes will be reflected in the change of the



ics of the structure, such as natural frequencies, mode shapes,

dynamic characteri
displacements, strains/stresses, and damping. This study investigates the sensitiv-
ities of the dynamic characteristics of any structure to crack development so as to
develop a new technique to monitor and detect cracks or damages in structures,
especially in offshore/onshore structures. As an initial study in this area of crack
detection and prediction for small cracks using modal analysis, the scope of this
study is to determine the change in the dynamic characteristics and modal param-
cters of a plate with a surface crack. How do these parameters change as the depth
of the crack increases? Different modes of response have been examined to relate
the global and local changes shown as a consequence of cracking. Static, steady

idered as a small

state, resonaunt and transient (d i p have been
crack increases in depth due to stress cycling. Greater emphasis has been laid on
the examination of strain frequency response functions (FRF's) and strain modal
shapes, which are independent to the amplitude of applied forces, and give a better
and more sensitive indication of the location and severity of the crack.

The subject matter of the above study is developed further in this thesis as

mentioned below, viz.,

L. Literaturereview of earlier studies on damage detection, and the latest method-

ology of examining the modal strain development are given in Chapter 2.



©
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. The static analysis of the structure using finite element analysis is detailed in

Chapter 3. Strain, displacement and rotation developed around a location,
wherein the possibility for cracking exists, is investigated in detail for the case
of a structure without/with the crack to determinc the limits of changes that

could occur in these parameters.

The fourth chapter deals with the steady state analysis of a structure with-
out/with a crack. Frequency response functions of surface strains near the

crack, and the leration and displ q response functions

away from the crack ate computed and compared as the crack grows through

the thickness.

The resonant and the transient response analyses are detailed in Chapter 5 to
outline the modal information that could be obtained from these investigations
to identify and localize cracking zones and extent of cracking. Power spectral

response is also analyzed to determine the changes that occur duc to cracking.

The salient conclusions from the above studies are summarized in Chapter 6

and possible areas for further detailed investigation are also outlined.




Chapter 2

Literature Review

2.1 Nondestructive Evaluation and Damage

Detection by Modal Analysis

The d ion of cracks in of in service is very essential

and important to ensure the integrity of structures since these cracks tend to
propagate and cause sudden failures which are usually very costly in terms of
human life and property damage. Therefore nondestructive evaluation (NDE)
techniques are widely used for damage detection. Some of the well-known tech-
niques are acoustic emission, magnetic particle inspection, alternating/direct

current field measurement, eddy current and ultrasonics. Each of these tech-

5



niques has its own advantages and disadvantages. As pointed out by Gomes ¢l
al. (1990) the use of most of the well known NDE techniques may be inconve-
nient in many situations due to the need for the investigator to have access to
s

the under Therefore a new NDE technique

using the vibrational characteristics of structures via modal analysis has been

recently considered by many rescarchers.

Shahrivar et al. (1986) determined the natural frequency shifts in an offshore
structure due to the presence of damages in structural clements. Modal testing

of an offshore framed platform model, with grossly cracked structural members

b £ i

(severed ), was d and a in natural fre ics and

increase in structural responses were reported.

Springer et al. (1990) reported that a boxbeam structure was built and tested
at the Marshall Space Flight Center (MSFC) for the purpose of evaluating the
ability of the modal test to detect the presence of structural faults in space
flight hardware. A finite element model of this structure was also developed
and used to simulate the modal test results. The results of finite clement
analysis compared favourably with the test data. No further results were

presented in the paper.

Gomes and Silva (1990, 1991 and 1992) conducted a series of studies using



modal analysis for crack identification in simple structures. Modal tests of
cantilever beams with fatigue cracks at different locations for different crack
depths were performed. The influence of 2 lumped mass, which was attached
to the structure (to simulate the end loads in structures), was also studied.
The main modal parameters that were monitored were the natural frequencies
of the vibrating beam. A series of nondimensional curves and tables depicting
the changes in natural frequencies for various depths of the crack, location
of the crack, and the lumped mass were presented. Use of these tables and
figures would lead to the identification of the probable depth and location of
the crack in any cantilever beam.

Richardson and Mannen (1991) developed modal sensitivity functions for the

location of structural faults due to a change of mass, stiffness and/or damping

of 1 Equations of motion consid; modes of vibration
and structural response were given by:
[MU{X(O)} + [CHX (W)} + [KI{X ()} = {F(1)} (2.1)

where [M] is the mass matrix; [K] is the stiffness matrix; and [C] is the damping
matrix.

For a lightly damped structure, the following orthogonality conditions are



valid:
(U] = [m]mosat (22)
[UTICIV] = [elmodst (2.3)
(U ENY] = [Kmodat (24)

where [M]mo is the diagonal modal mass matrix; [Kjmedat is the diagonal
modal stiffness matrix; [c]modat is the diagonal modal damping matrix, and [U]

is the modal displacement matrix.

Two other relationships which result from the orthogonality conditions are:

ki
fof=k (2.5)
2y, = ;—"k (2.6)

where: Qof = wof + dof
and: wo?, do? = frequency and damping of the uncracked structure.

If only stiffness changes occur in the structure due to cracking, then Eqns.

(2.4), (2.5) and (2.6) become:

[U +dU)"[K +dK)[U + dU) = [k + dk]modat (2.7)
ks + dk,
mi=2= (28)

Ck
- 2.9
2dy » (2.9)



where: 07 = w2 + di}

and: w?,d? = frequency and damping of the cracked structure.

Scaling the mode shapes to get unity modal masses so that my = 1 for all
modes (k), and subtracting Eqn. (2.4) from Eqn. (2.7), the stiffness sensitivity

equation can be obtained as:

{Uk + dU K { Ukt dU +2{aU) T (KU (Ui }TIKHAURY = =i
(2.10)

For small stiffness changes, where the fault is small enough so that the mode
shapes don’t change substantially (i.e., dUj = 0), the stiffness sensitivity equa-
tion given in Eqn. (2.10) is simplified as:

(UY@K NUL) = wie® - woi® (211)
Using Eqn. (2.10) or (2.11), when the change in natural frequency of kth
mode is known, the corresponding change in stiffness can be obtained, and
vice-versa. Normally cracks in the structure tend to reduce thie stiffness of the
structure. From Eqn. (2.10), a natural frequency reduction is predicted. For
mass and damping changes, similar sensitivity equations were derived in their
paper.
Stubbs et al. (1990) also derived expressions for changes in modal stiffness in

terms of modal masses, modal damping, eigenfrequencies, eigenvectors, and



their respective changes.

Most researchers have stated that damages in structures tend to reduce the
natural frequencies; consequently knowing the changes in natural frequencies
i 1s possible to:debermine the extent of eracks or damages fn a structure; Buy
it is hard to determine the location of the crack by this procedure since cracks
at two different locations, associated with certain crack lengths or depths, may
cause the same amount of frequency shift at certain modes. However Hearn
et al. (1991) have pointed out in their paper that the magnitudes of changes
for different natural frequencies is a function of the severity and the location
of flaws in the structure. Therefore ratios of changes in natural frequencies,
normalized with respect to the largest frequency change, are independent of
severity for small flaws and can serve to indicate the location of flaws di-
rectly. The theory was based on the concept that a single crack will affect
each vibration mode differently, having a strong affect on certain modes and
a weak effect on others. This dissimilarity of effect on various modes, since
it can be predicted, is the basis for the identification of damaged members,
The procedure was stated as follows: Natural vibration frequencies are to he
measured periodically. When changes in natural frequencies are observed, the

set of ratios of changes are computed and compared with the various member




characteristic ratio ensembles obtained from the equation:

r
2 eTBknen(s
Dwi (RN

7= e el (212)
Auvy 6, TM®,

s

where Aw; and Aw; are the changes of the natural frequency of ith mode and
jth mode, respectively, due to cracking. en are the Nth member deformations
and have the following relationship with displacement mode shape and stiffness

of the whole structure:
ST K g =Y en™($i)knen(di) (2.13)

where @ is the ith displacement mode shape; M is the mass of the structure;
K is the stiffness of the whole structure; and ky is the stiffness of Nth member.
The location of the crack is determined by selecting the member characteristic
ensemble that most closely match the observed ratios of frequency changes.

This method can identify the location of cracked members of the structure.

Pandy cl al. (1991) used changes in curvature mode shapes to determine
the location of the damage. They examined a cantilever beam and a simply
supported beam. Instead of displacement mode shapes, curvature mode shapes
were calculated. Absolute differences between the curvature mode shapes for
the intact and the damaged beam were calculated. The largest differences

occurred at the damaged point. Therefore they stated that absolute differences
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of the curvature mode shapes between the intact and the damaged structures

could serve to indicate the location of damage in the structure.

Recenily a study concerning both the severity and location of the crack in
offshore structures was carried out by Swamidas and Chen (1992). They
used strain gauges in the modal testing, monitoring both the global and local

changes in fi and

of strain i response functions,

Also they carried out a finite element analysis for the modal response of the

and d ined the fi response functions for displacements
and accelerations. The results showed that local surface strain frequency re-
sponse functicns were very sensitive to the presence of cracking in the structure

and was strongly recommended for the detection of cracking in structures.

2.2 Strain Modal Testing

As pointed out in the previous paragraph, modal strains are very sensitive

to local damage. Chen and Swamidas (1992) ducted an i which

showed that the amplitude of the strain frequency response function near the
crack zone decreased considerably when the crack size increased. They re-
ported that in the main column of a tripod tower platform model, with a

diameter of 300 mm and a thickness of 3 mm, the amplitude of the local
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strain FRF at the first resonant frequency decreased by more than 60 % when
the crack became a through crack, with a length of 90 mm (45° inclination).
They used accelerometers, linear variable displacement transducers (LVDT),
and strain gauges in their experiment. They proposed a procedure to detect
cracks in offshore structures: from the global sensors such as accelerometers
determine the natural frequency changes that occur in the structure. When
there is a change in the natural frequencies of the structure, there is a pos-
sibility that a crack has started to grow in the structure. Then monitor the
local sensors (strain gauges applied in the critical areas of the structure) to
find out the location and magnitude of the crack.

0. Bernasconi and D.J. Ewins (1989) have examined in detail the behaviour
of modal strain/stress fields. They defined "modal strain” from the general
theory of solid elastodynamics. It is assumed that any displacement field for

the body may be expanded as a convergent series of mode shapes:
u=3Y Cé (2.14)
where C, = [,Mu¢,dV and ¢, is the rth mode shape.
For small displacements, the strain field can be defined as:
e=Du=YC.D(¢,) (2.15)

where D is a linear differential operator.



The modal strain can then be defined as
& = D(¢r) (2.16)
Using this definition, the strain frequency response function is derived as:
Si(w) = T #kel/(@,? - w?) (2.17)
where k is the excitation point and j is the response point.

Later on, they used this theory and applied the strain modal testing on real
structures which included: (i) a discontinuous cantilever beam, (ii) a curved
plate, and (iii) a steam turbine blade. The conclusion they reached in their
study was that the mass-normalized modal strains could be either computed

using finite element method, ¢r measured using strain gauges.

Tsang (1990) proposed a governing equation for strain response function which

was obtained in a manne: similar to that used for determining a set of struc-

tural system matrices from i | inertance on a vibrat-
ing structure. Using a form similar to the displacement response function,
viz.,

(@' [M]+ [KD{U()} = {/(w)} (2.18)

he proposed using the following form:

(=w*(G)+ [H]){e(w)} = {f(w)} (2.19)
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where (M) and [K] are mass and stiffness matrices, respectively, [G) and [H]
are defined as system matrices for strain which did not have any physical
interpretation yet, ¢(w) is the strain response function and f(w) is the forcing
function used in the investigation. The proposed methodology was verified
using finite element analysis theory and an algorithm to formulate the system
matrices (G] and (H] from experimental strain data was derived.

Li et al. (1989) also derived an expression for the strain transfer function.
Their derivation was also from the vibration equation which was the same
as Eqn. (2.1). Then based on the relationships between strain and displace-
ment, a theoretical expression [or the strain response was derived. For one

dimensional problems, it has the form as follows:
{e} = WA [B){F) = [HU{F) (220)

where [H*] is the force-strain transfer matrix or strain transfer function; [¢]
the displacement mode shape matrix, [¢] the strain mode shape matrix, and
[A] the transfer function matrix for displacements. Using this theory, they

obtained the strain transfer function of a plate and a beam from the strain

gauge readings. Co ively, they identified the modal and the

displacement and the strain mode shapes. The displacement mode shape ob-

tained by the strain transfer function was compared with the displacement



!
i
3
i

16
mode shape obtained by using the accelerometers, and a good match was

found.

In the study cited earlier Pandy et al. (1991) had used changes in curvature
mode shapes to determine the location of the damage; since the curvature is
proportional to the surface strain, the strain mode shape would as well give a

similar information on the damage that occurs in the structure.

2.3 Miscellaneous

Besides the literature reviewed above, many other researchers have carried
out studies on the behaviour of structure with cracks. Collins et al. (1992)

studied the free and forced longitudinal vibrations of a il bar with a

crack, and the effect of the crack location and compliance on the fundamental
natural frequencies was determined. Rajab et al. (1991) examined the vibra-
tional characteristics of cracked shafts, derived relationships between the crack
depth and location on the shaft to changes in the first few natural frequencics.
Collins et al. (1991) reported the response of a rotating Timoshenko shaft with
a single transverse crack under axial impulses. The relationships between the
maximum displacement and the crack depth was presented. Chondros et al.

(1989) studied the change in the natural frequencies and modes of vibration of
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the structure with a given geometry of a crack. Earlier Chondros et al. (1980)
had investigated the relationships between the change in natural frequency
of vibration of a cantilever beam and the crack depth that occurred at the
welded junctions. Besides these many other researchers have carried out stud-
ies on frequency changes that occur in structures using conventional vibration
studies. Most of these studies considered only the frequency shifts that occur
due to the existence and growth in crack depth and width; and most of these

studies were on gross cracking in members such as severing of members, etc.

2.4 Summary

Earlier studies which have been reviewed above have investigated the be-
haviour of cracked structures in a global sense. Most of these studies have
examined the change in natural frequencies of the cracked structure. Some
have studied the change in the curvature mode shapes and the maximum dis-
placement. The size of the crack considered in these studies is relatively large.
The use of strain modal analysis and testing, for the detection of cracks in
the structure, is a relatively new concept and very few studies have been re-
ported so far using this technique. The study presented in this thesis is focused

on a small crack and the consequent changes that occur in the structural re-




sponse. Besides the natural fi ies, displ. modal displ

amplitudes and displacement mode shapes which have been examined in the

earlier studies, other such as strain litudes, modal strains and

strain mode shapes are examined. Local parameters, as well as global parame-
ters, have been examined to monitor the changes that occur during the growth

in crack depth.




Chapter 3

Static Analysis of a Plate with

a Surface Crack

3.1 Finite Element Modelling

In order to have a better und: ding of the behaviour of with

surface cracks, a finite element model of a simple cantilever plate, with a
surface crack, was investigated in this thesis; the plate was fixed at one end,
and free at all other three edges. Fig. 3.1 shows the geometric dimension of

the plate and the location of the surface crack. The choice of this boundary

condition was to satisfy the i for an
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Figure 3.1: Geometric dimensions of the plate
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Figure 3.2: Finite element mesh of the plate
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which will be carried out in the near future on a similar plate. The material
of the plate is steel with a thickness of 9.525 mm, Young’s modulus E =
207%10°N/m?, mass density p = 7860kg/m?, and Poisson’s ratio u = 0.29.
The coordinate system is shown in Fig. 3.2, with the x-axis along the long
side of the plate, and the y-axis along the short side. The finite element mesh
is also shown in Fig. 3.2. In order to get better results around the crack,
a finer mesh was introduced around the crack area. The general purpose
finite element computer software ABAQUS was used to carry out the finite
clement analysis. Quadrilateral shell elements with 8 nodes and a 2x2 reduced
integration, and 6 nodes line spring elements were used. The surface crack was
simulated by the line spring elements. In this part of the study, the cantilever
plate is analyzed for its static response to identify patterns for nondestructive

evaluation.

3.1.1 Basic Finite Element Equations

In finite element analysis, the displacement at any point is given by:

uxii =Y Nig; = Na* (3.1)

where N, the shape function matrix, is dependent on the position of the node

in the xy-plane and a* is a list of nodal displacements.
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With displacements known at all points the strain at any point can be deter-

mined as:
€ = Su~Y Bia; = Ba" (3.2)
B; = $N; (33)
also,
B=SN (34)

where § is a suitable linear operator.
Then for the general linear elastic behaviour, the stresses can be determined
as:
o=D(e~e)+ 00 (3.5)
where D is an elasticity matrix containing the appropriate material properties;
€ is the initial strain and oy is the initial stress.
From the principle of virtual displacements, the following approximate equi-
librium equations can be obtained:
Katf=r (3.6)
K= f | BADB;dY (.7
where K is the stiffness matrix; r is the external concentrated nodal forces;
and f represents forces due to body forces, surface forces, initial strain, and

initial stress (Zienkiewicz and Taylor, 1989).




3.1.2 Shell Element

The element type used in this study is S8R, with 8 nodes; it is a doubly

curved shell element. [t has a 3x3 middle surface integration for mass, body

forces and surface pressure calculation and a 2x2 i ion for
calculation and output. Five integration points are chosen through the shell
thickness. They are located from the bottom to the top surface of the shell,
with equal distances between two adjacent points (Hibbitt et al.'s ABAQUS
manuals, 1989). The strain and stress cculd be output at any of these five
points through the shell thickness. In this study, surface strains are focused
on to compare the measurernents from strain gauges. Therefore, only the

surface strain values are chosen for the output.

For displacement output, S8R type shell element of ABAQUS can only out-
put nodal displacements at the reference surface, which is the middle of the
shell section (if the thickness is equal throughout the whole model, which
is the situation for the problem considered in this study). But in practical

1

to measure the displ at the middle

it is i

surface. Since this study is trying to develop a technique to detect cracking

in structures, and under practical situati only surface di could

be measured, only the surface displacements should be calculated and output.
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The ABAQUS shell element formulation is based on the Kirchhofl constraint
assumptions of the "thin” shell theory. The constraints requirc a material line,
that is originally normal to the shell’s reference surface, to remain normal to
that surface throughout the deformation state. So the surface displacement is
equal to the displacement at reference surface plus the corresponding rotation

multiplied by the thickness of the shell section.
Upur = Ures + GXTH/2 (3.8)

where u,y, is the displacement at the surface of the plate, u,.; is the displace-
ment at the reference surface, ¢ is the rotation at the reference surface, and
TH is the thickness of the plate.

‘When the displacement at reference surface is very small (it is equal to zero in
pure bending) in comparison to the rotation times the thickness of the plate,
then the first term on the right hand side of the Eqn. (3.8) can he ignored.

The surface displacement can be calculated by:

U xTH/2 (3.9)

3.1.3 Line Spring Element

Line spring elements provide a computationally inexpensive tool for the mod-

elling of surface cracks in plates and shells. The basic concept was first pro-
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posed by Rice (1972) and has been further discussed by Parks and White
(1982). The line spring” is a series of one-dimensional finite elements placed
along the part-through flaw, which allows local flexibility of one side of the
flaw with respect to the other ( point A and B in Fig. 3.3.). This local flexibil-
ity is calculated {rom existing solutions for single edge notch specimens under
plane strain conditions (by means of fracture mechanics) ( Fig. 3.4). The

\l} in ison to full three-

whole approach is p
dimensional models of the vicinity of the flaw. It is also pointed out in the
ABAQUS manual that the practical experience with this method on typical
geometries has shown that, for several important geometries, th; method pro-
vides acceptable accuracy. The major approximation occurs in the vicinity of
the flaw as it penetrates a surface, if the results are compared with the results
of a full three-dimensional model. Since this study was to develop a practical
method to detect cracking in structures, and in the actual application, it is
impossible to apply sensors (strain gauges) very close to the crack, therefore
the output values which are not in the vicinity of the crack, would be better
represented by results from the model using the line spring elements. The
geometric profile of the surface crack is taken to be a semi-elliptical one, as

shown in Fig, 3.5.

In this study, the depth of the crack means the maximum crack depth in the



Figure 3.3: Line spring modelling

Figure 3.4: Line spring compliance calibration model




d = maximum fiaw depth

TH =shell thickness

Figure 3.5: Geometric profile of the surface crack
middle of the crack. The surface length of the crack to be sensed is taken as
40 mm. The depth of the crack varies from zero to 6.667 mm (70% of the
thickness of the plate). The increment of the change of the crack depth is

taken as 5% of the thickness.



3.2 Analysis and Results

3.2.1 Surface Strain/Stress

A concentrated vertical load was applicd at the centre of the free end of the
plate. The location of the crack, as could be noted from Figs. 3.1 and 3.2, is
close to the fixed end. Thercfore, the concentrated load will not have a local
effect on the strain/stress field around the crack. In the following discussions
the cracked plate means that the plate has a maximum crack depth of 6.667

mm and a surface crack length of 10 mm. The applied load was 500 N.

Figs. 3.6 and 3.7 show the contours of the normal stress o of the plate with-
out/with the surface crack. A heavy stress concentration is observed around
the two ends of the crack; while away from the crack, there is almost no dil-
ference for the stress of the plate with and without the crack. It shows that
the use of line spring elements for simulating a surface crack is successful in
showing the actual stress variation around the crack zone.

In this study, a major concern is the nature of surface strains which could he
measured by strain gauges in the real structure. Since the concentrated load
is applied vertically at the free end, the bending stresses/strains o./c. are

dominant. The largest values of the stresses/strains occur along the x-axis.
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Figure 3.6: Contours of the normal stress o without a surface crack

Figure 3.7: Contours of the normal stress o, with a surface crack



Consequently e, at the surface of the plate, is calculated and comparcd.

Fig. 3.8 shows the contours of the surface strain ¢; without the surface crack,
and Fig. 3.9 shows the contours of the same strain component with the surface
crack. The crack depth is 6.667 mm, which is 70% of the thickness of the
plate. It can be observed that at the tip of the crack there are heavy strain
concentration areas; while at the middle of the crack there are some strain
release areas. It is also noticed that with this crack size and depth, a large
portion of area around the crack are aflected; hence a strain gauge, located at.
a suitable distance (around 16 mm) away from the crack will be able to sense
the presence of the crack showing a change of 8.8% in strain (scc Table 3.1).
Fig. 3.10 shows the decrease of the normalized strain level as the depth of the
surface crack increases. The measurement points are 1.6 mm, 7.8 mm and 15.8
mm away from the crack. It is observed that when the crack depth is equal to
70% of the thickness of the plate, the strain level decreases arc around 37.4%,
20.9% and 8.8% for the measurement points 1.6mm, 7.8 mm and 15.8 mm
away from the crack, respectively. This shows that even when a crack is small,
it is possible to identify the crack in the structure using static measurements.
It must be emphasized here that the strain gauge must be located around the
shadow region of the crack to sense an appreciable level of strain changes due

to crack growth. It should also be pointed out that the static measurements
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Table 3.1: Strain values e, for the uncracked and cracked plate around the crack

x coord(mm) [ dis to the crack(mm) | ex(ue)(uncracked) | e-(st¢)(cracked) | changes(6)
15.4 47.1 5.4 5.20 A
32.8 29.7 194 4.79 3.04
46.7 15.8 4.66 4.25 8.80
5.7 7.80 4.46 3.53
60.9 1.60 4.41 2.76
67.2 4.70 .35 3.07
73.4 109 4.31 3.71
84.8 22.3 4.22 4.17
100. 37.5 4.13 1.18
120. 57.5 4.02 .08
156. 93.5 3.80 3.83

note: the origin of x-axis is at the fixed end; x coordinate for the crack z. = 62.5mm.

Normalized strain level

sold line: 1.6 mm away from the crack
dashed line: 7.8 mm away from the crack

dashdot line: 15.8 mm away from the crack \

Ratio of the strain of the cracked and uncracked plate

1 2 3 4 5 6

Crack depth X

Figure 3.10: The normalized strain level decrease as the depth of the surface crack

increases
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are dependent on the amplitude of applied forces. In order to get a good and
reliable results from experimental measurements, the applied forces must be
large enough; also the applied forces must be the same for the uncracked and

cracked structure.

3.2.2 Out-of-plane and Surface Displacements

The largest displacement component of the plate with the vertical load at the

end is the out-of-plane displ: w; hence displ w is studied first.

Figs. 3.11 and 3.12 show the displacement contours of w of the uncracked and
cracked plates. It is observed that there is very little difference between these
two sets of contours; this indicates that the out-of-plane displacement is not

sensitive to the presence of a small surface crack.

Corresponding to the surface strains considered early, the in-plane surface
displacements u, at the surface of the plate, are determined. The in-plane
surface displacements u, with and without the surface crack, are calculated
and output. As mentioned before, ABAQUS cannot compute the surface
displacements of shell element directly. So Eqn. (3.8) or (3.9) is used. In this
particular case, the displacement at reference surface (which is the neutral

axis) is almost zero; consequently Eqn. (3.9) is used. Since the thickness
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Figure 3.12: Contours of displacement w of the cracked plate
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of the plate is a constant, the surface displacements are proportional to the

or ding rotations at the ref hence the contours of rotation,
at the reference surface, tend to show the same pattern as the corresponding
surface displacement.

Figs. 3.13 and 3.14 give the contours of the rotation about the y-axis at the
reference surface without/with the surface crack (which are proportional to
the surface displacement u and show the same pattern). The crack depth is
taken to be 70% of the thickness of the plate. It is observed that there are some

increases in the x-axis surface displ

(given by the ional degree of
freedom of the element) at the center of the crack. In comparison to the surface
strains (shown in Figs. 3.8 and 3.9), the change in the surface displacement
field is small. Therefore for practical measureinents, strain measurements give
a better method for crack detection.

Fig. 3.15 shows the contours of the in-plane displacenent u at the reference
surface due to the presence of a crack. It is observed that there are many
displacement contours around the crack; this is due to the change of in-plane
displacements, after the surface crack was introduced. It should be pointed out
that these values are very small compared to the corresponding rotations at
the reference surface and the in-plane surface displacements. Moreover, even

though the middle plane displacements u show quite a few interesting details



36

Unit: rad
Unit: rad

T
Figure 3.13: Contours of the rotation ¢, without the crack

Figure 3.14: Contours of the rotation ¢, with the crack




Unit: m

Figure 3.15: Contours of displacement u at the reference surface for a cracked plate
in displacement variation, this cannot be sensed by any sensing device; also

these values are very small,

3.3 Summary

Cracks occurring in a structure change the stress/strain and displacement
ficlds around the cracks. Among these changes a large decrease of surface
strain, within a certain area around the crack, has been observed in this study.
Thercfore it is possible to apply strain gauges to real structures to detect

cracks occurring in the structure, Further investigation involving dynamic
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measurements and modal analysis are carried out in the following chapters to

find out the best method for crack detection in real structures.



Chapter 4

Steady State Analysis of a

Plate with a Surface Crack

4.1 Modal analysis and Frequency Response

Function

4.1.1 Theoretical Basis

The modal analysis deals with the method of determining the basic vibration
properties of a general linear structure. It is based ou the concept that the

structure’s behaviour can be described by a set of vibration modes: the modal

39



10
model. This modelis defined by a set of natural frequencies with corresponding

vibration mode shapes and modal damping factors.

For the typical theoretical route to vibration analysis (by modal analysis), one
begins with the description of the structure’s physical characteristics, usually
in terms of its mass, stiffness and damping properties. Then an analytical
modal analysis is performed, and the modal model is determined. Finally, the

response of the structure to a given excitation is obtained.

The governing equations of vibration for the structure are expressed as:
[MI{X) + [CHX) + [KI{X} = (F()} (.0)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respec-

tively, {X} is the displacement vector and F(t) is the applied time-dependent

force.
Applying Laplace transform to the equations:
L(MI{X} +[CI{X} + [KI{X}) = L{F()}) (4.2)
one obtains:
(IM1s* +[Cls+ K){X(8)} = {F(s)} +(IM]s +[CD{X(0)} +M]{X(0)} (4.3)
or

[BEHX(9)} = {Flo)} + ((M]s + [CD{X(0)} + [MI{X (@)} (4.4)
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Rearrangement of the above equation leads to
(X()) = [HEI{P) +(Ms + [CDX(©) + MUX©O))  (45)
where (li(s)] = [B1(s)] is called the transfer function matrix.
For the homogencous solution:
[B(s)){X(s)} =0 (4.6)
The characteristic polynomial equation is obtained from:
pls) = det{B(s)] = 0 (1)
Here the Laplace variable s = o + jw

The roots of the characteristic equation (s;) are called eigenvalues. Substi-
tuting an eigenvalue into the equation of motion and solving for U yields the
associated cigenvector:

[B(s)){U:} = {0} (4.8)

where s; is the eigenvalue and Uj is the associated eig . The eigenval
5 (or sometimes called complex natural frequency) has two pats: (i) the
imaginary part which gives the damped natural frequency; (ii) the real part
which gives the damping factor.

It can be shown that modal vectors are orthogonal with respect to one an-

other if they are weighted with respect to the stiffness matrix K] and mass
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matrix [M]. It can also be shown that modal vectors are orthogonal to one
another if they are weighted with respect to the damping matrix [C], when
the damping matrix is proportional to the mass matrix and stilfness matrix

(the proportionally damped system).

Eqn. (4.1) can be written in the modal space. The transformation from

physical space to modal space is given by
{X}xs = [Ulnxm{p} (1.9)
where:
{X}: displacement of the physical degrees of freedom.
{U]): modal matrix. (U] = [Uy, Uz, ...Un].
{p}: displacement in modal space.
n: number of physical degrees of freedom.
m: number of modes evaluated.
Using Eqn. (4.9), Eqn. (4.1) can be written as:
(M)[U]{8} + [ClIUN{p} + [KI[U}{p} = {F(t)} (4.10)
Pre-multiplying by [U]7, we get:

WITMIUI(E) + I CIVI5} + U KIVIRY = WIT{F©}  (4.11)
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For the proportionally damped system, using the orthogonality properties of i
the modal vectors weighted with respect to the mass, stiffness and damping

matrices, one can define the diagonal modal mass matrix as:

[Mlposer = VI (MIIV]

diagonal modal damping matrix as:

[Clrtar = WITICIIV]

diagonal modal stiffness matrix as: :
(Rlasat = [UIT(K)[V)
and modal force vector as:
{(Flozas = WIT{F)
Rewriting Eqn. (4.1) as:
[Mnxm {Blmxt + Clmxm (Bl + Klmxm {PYmxt = {F}m (412)

one can notice that each equation is uncoupled from the other equation and

represents an individual modal response of the system (Ewins, 1984).

4.1.2 Frequency Response Functi

From Eqn. (4.5), if one assumes a zero initial condition, one obtains:

tacan = 45 (113)



Let the Fourier variable s = juw, then we have:

{UGw)}

G =GRy

(1.14)

where [H(jw)] is called the Frequency Response Function (FRF)

The [requency response function has many forms in terms of input (excitation)

and output (response). The traditional forms include:

(a) receptance, in the form of (displacement)/(force), where displacement s

the output.
(b) mobility, in the form of (velocity)/(force), where velocity is the output.

(c) inertance, in the form of (acceleration)/(force), where the acceleration is

the output.

In all cases, the input is the excitation force.

Recently, the consideration of surface strains has been introduced into modal
analysis. The strain frequency response function means the transform func-
tion between input (the excitation force) and output (the strain level at a
certain point) in frequency domain. The strictly theoretical definition can he
found in the articles of Bernasconi and Ewins (1989), and Li (1989). In this
study, the strain FRFs are analyzed in the same manner as the displacement

or acceleration FRFs. An unit force is applied to the plate, then steady state
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linear dynamic analysis is performed by assigning a specific range of frequen-
cies. The exciting force will be varying within the range of the frequencies
considered in the study. The strain response, as well as the displacement and

lerati will be ds ined in the fi domain. Thus the

1

and acceleration are ob-

response functions of strain, di
tained. The modal strains are defined as the strains measured at the different
response points of the structure, when the structure is excited by a unit force

at a resonant frequency.

4.2 Change of Modal Parameters Due to the

Growth in Depth of the Surface Crack

4.2.1 Global Changes of the Modal Parameters

It is known that any crack or damage occurring in the structure will affect the
physical properties of the structure. The changes in physical properties will
be shown by the changes in modal parameters. These modal parameters are
independent of the amplitude of applied forces. Earlier studies on cracking
of structures had focused only on the natural frequency changes. But these

changes of natural frequencies are very small, although not impossible to mon-

'
{
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Table 4.1: Frequency changes due to the growth of the depth of the surface crack

Crack depth D(mm) [ wi(Hz) | ws(Hz) [ ws(Hz) | wa(Hz) [ ws(Hz) | we(Hz) | ws(1lz)
0 18.991 | 118.62 | 125.57 | 332.65 | 367.75 | 391.99 | 653.02

0.00048 18.989 | 118.62 | 125.57 | 332.64 | 367.75 | 391.97
0.00095 18.985 | 118.61 | 125.56 | 332.63 | 367.75 | 391.96
0.00140 18.979 | 118.59 | 125.56 | 332.62
0.00191 18.971 | 118.57 | 125.55 | 332.61 | 367.74
0.00238 18.961 | 118.55 | 125.54 | 332.59 | 367.73
0.00286 18.951 | 118.52 | 125.54 | 332.58 | 367.73
0.00333 18.939 | 118.49 | 125.53 | 332.56 | 367.72 | 391.88
0.00381 18.923 | 118.45 | 125.53 | 332.53 | 367.71
0.00429 18.915 | 118.43 | 125.53 | 332.52 | 367.70
0.00476 18.903 | 118.40 | 125.52 | 332.50 | 367.69
0.00523 18.890 | 118.37 | 125.52 [ 332.48 | 367.68
0.00571 18.880 | 118.35 | 125.52 [ 332.46 | 367.67
0.00619 18.870 | 118.32 | 125.51 | 332.44 | 367.65 | 391.82
0.00667 18.862 | 118.30 | 125.51 | 332.43 | 367.43 | 391.82 | 653.00

itor. A certain amount of frequency shift would occur only when a large crack

has formed in the structure.

In this study, natural frequencics of the plate are determincd through the

eigenvalue extraction procedure given by ABAQUS. The natural frequency

shifts due to the growth of the depth of the surface crack (each crack depth

increase constitutes a 5% change in crack depth) are calculated and shown

in Table 4.1. It is observed that even for the largest crack depth change,

which occurs for the first mode, the frequency changes by less than 1%. The

corresponding surface crack is 6.667 mm deep, 40 mm long; the plate is 650



mm long, 200 mm wide, and 9.525 mm thick.

The mode shapes cor ding to these natural fi ies are shown in Fig.

4.1 (uncracked plate). It is observed that the first, second, fourth and seventh
modes are bending modes; and the third and sixth modes are torsion modes;
the fifth mode is the transverse mode.

The analytical modal analysis is also carried out to determine the global
changes of modal parameters due Lo increase in crack depth. The frequency
range is chosen to vary from | to 700 Hz, which includes the first seven resonant

i ies. The lerations and displ obtained at the free end, far

away from the surface crack, are chosen to represent the global parameters.

The leration FRFs and displ t FRFs at the centre of the free end are

calculated and plotted. In the modal analysis, a unit vertical excitation force
is applied to the corner of the free end of the plate. The response measure-
ments for the acceleration and displacement are obtained at the centre of the
free end. Therefore, in the frequency response functions, the bending modes
will be dominant while the response corresponding to the torsion modes will
be small, and the response corresponding to the transverse mode will be al-
most zero. Figs. 4.2 and 4.3 show the acceleration and displacement FRF's of
uncracked plate and the plate with the largest crack depth. In the calculation

of the FRFs, a damping ratio of 1% was introduced into the system.
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Figure 4.1: Mode shapes of the uncracked plate
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Figure 4.2: Acceleration FRFs of uncracked and cracked plates

Amplitude of the displacement FRF at the entre of the free end
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Dashed line: cracked plate.
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Figure 4.3: Displacement FRF's of uncrackzd and cracked plates
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Table 4.2: Changes of the litude of displ and leration FRFs at
resonant frequencies at the centre of the free end

Ist mode | 2nd mode | 3rd mode [ ‘ith mode

Acc. Ampl(m/s*/N) (uncracked) | 10.220 | 15617 | 12450 | 9.4495

Acc. Ampl.(m/s?/N) (cracked) 19.187 15.638 12.479 9.448

Change (%) 0.22 -0.11

Dis, Ampl.(mm/N) (uncracked) | 1.3506_| 0.0281

Dis. Ampl.(mm/N) (cracked) 1.3660 0.0283

Change (%) -1.11 -0.71

As could be seen from Figs. 4.2 and 4.3, it is observed that there is almost
no difference between the two curves for cases of with and without the crack.
Table 4.2 gives changes of the amplitude of displacement and acceleration
FRFs at each resonant frequency. The largest amplitude change occurs at
the first resonant frequency of the displacement FRF, and the change is less
than 1.2%. Also as seen from Table 4.1, the largest frequency shift is less
than 1%. However from an earlier study on a more complex structure (Chen
and Swamidas, 1992) with a larger crack, it was observed that it was possible
to monitor the global changes from global sensors such as accelerometers or
linear variable displacement transducers. In that experiment, a 2% of natural
frequency shift was observed. From that experimental investigation and other
similar studies considered earlier (Chondros et al. 1980 and 1989, Collins et

al. 1991 and 1992, Ilanko et al. 1991, Gomes ct al. 1990 and 1991, and
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Guigne et al. 1992), one can conclude that it is possible to sense the cracking
in any structure by observing the changes in natural frequencies that occur
in the global sensors. In the present study since the cracking is very small, a
shielding of its presence occurs in the overall vibration response; the structure
vibrates in a global manuer as if no crack is present in it. Hence the changes
in the FRF are very marginal,

It has been stated by earlier researchers that damping ratios of the structure, at
different resonant frequencies, change considerably due to cracking. Sanliturk
et al. (1991) reported a theoretical study of the damping produced by fatigue
cracks. The damping increase due to a fatigue crack in beam-like structures
was predicted. A rubbing damping model of energy dissipation was considered

in their study. However, from the earlier experiment conducted in the Strength

Laboratory at Memorial University (Chen and Swamidas, 1992), the change

of damping ratios did not always increase, but sometimes it also decreased.
It was concluded from that experiment that damping changes due to crack
growth needed more studies owing to the complex mechanism of damping
in real structures. It was also shown that the other modal parameters such
as amplitudes and mode shape undergo changes due to cracking in structures.
Based on the fact mentioned above, a constant damping ratio of 1% was chosen

for all resonant frequencies in this study.
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Once the frequency shifts are observed from the global sensors, the next step
will be to determine where the crack is located and how severe it is. But for
the determination of the location and severity of the crack that occurs in the
structure, monitoring of the global changes in the modal parameters such as
natural frequencies alone is not enough. Because the same amount of frequency
shift may be caused by cracks at different locations having different depths or
lengths, one needs to have a procedure to determine the location and severity

of cracking. Hearn et al. (1991) proposed a method by comparing the ratio of

changes in natural fi ies to the member ch istic ratio bl

However, this method is limited to skelelal structures such as welded frames
or bridges, and only the damaged member of the skeletal structure can be
identified. From the literatures reviewed and the experimental study carried
out earlier at Memorial University, it appears that the most sensitive set of
modal parameters will be the set of local modal parameters; and one of these

local parameters will be the strain level around the crack and the ncarby arca.
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4.2.2 Local Changes of the Modal Parameters

‘The crack in the structure will change the dynamic properties of the structure.

This effect will be more significant in the local area around the crack than in
any other arca of the structure. Since modal parameters, whether at the
local or global level, represent the structural properties, monitoring of the
local changes of the modal parameters will give a more direct and significant
indication of the crack occurring in the structure. In the classical modal theory,
modal parameters normally mean natural frequencies, damping factors and
displacement mode shapes. Normally, these parameters have only a global

meaning. For example, the natural frequencies usually mean the resonant

frequencies for the whole structure,

Since strain modal testing has been used in this study, the local strain values
can also be designated as an important local parameter. When one observes
the strain FRFs, the locations of the peaks indicate the resonant frequencies
of the structure. These resonant frequencies will be the same throughout the
structure. The local effects will affect only the amplitudes of the peaks of the
strain FRF functions. The amplitude of the strain FRFs measured from a
local area close to the crack is different from the FRFs from any other area

in the structure. This local strain FRFs contain information of the particular



crack and can be utilized to indicate the location and severity of the crack.
Therefore by performing strain modal analysis or testing, recording the strain
FRFs in the local area at different times, or at different crack depths in an
analytical investigation and comparing the new FRFs with previous ones, it
is possible to find out the location and severity of the crack in the structure,
Based on the method discusscd above the strain response functions of the plate,

wich and without crack, are calculated. Steady state analysis is performed with

h

a whose fr ies range from 1 to 700 Hz. The response

is calculated in the frequency duimain, with a unit force input, and thus the
strain frequency response functions are obtained.

Three measurement points for strain response outputs are chosen. The dis-
tance from the measurement points to the crack are 1.6 mm, 7.8 mm and
15.8 mm, respectively. Figs. 4.4, 4.5 and 4.6 show the strain FRIs for the
uncracked plate and for the plate with the largest crack depth (70% of the
thickness of the plate). Figs. 4.4, 4.5, and 4.6 are the FRFs determined at
distances of 1.6 mm, 7.8 mm and 15.8 mm away from the crack, respectively.
Significant changes of the amplitude of the strain FRFs are observed. This
indicates that the local effect has a strong influence on the amplitude of the
strain FRFs. Table 4.3 gives the changes of the amplitude of strain FRFs at

each resonant frequency. It is observed that for the point 7.8 mm away from



Amplitude of the strain FRF, 1.6 mm away from the crack
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Figure 4.4: Strain FRFs, 1.6 mm away from the crack

Amplitude of the strain FRF, 7.8 mm away from the crack
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Dashed line: cracked plate.
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Figure 4.5: Strain FRFs, 7.8 mm away from the crack
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o Amplitude of the strain FRF, 15.8 mm away from the crack
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Solid line: un-cracked plate;
Dashed line: cracked plate.
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Figure 4.6: Strain FRFs, 15.8 mm away from the crack
the surface crack, the changes of the amplitudes of the strain FRFs are 21.0%,
20.9% and 18.6% for the first, sccond and third bending modes, respectively.
From the earlier static analysis, the same crack depth at the same measure-
ment point caused a static strain decrease of 20.9%. Hence from the results
of the first three modal responses, there dose not seem to be any appreciable
difference between the results of static and dynamic strain gange testing. Re-
sults from the measurement point 15.8 mm away from the crack, show changes
of 9.25%, 14.8%, 22.1% and 36.3% for the first four bending modes, from the
results of modal analysis given in Table 4.3. The static measurements given

earlier show a 8.8% change at this point. Therefore, strain modal testing gives
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Table i.;. Changes of the amplitude of strain FRFs

Dis. from the crack 1.6 mm 7.8 mm 15.8 mm

Bending mode  [uncr. [ cr. [ % [unc. [ er. | % [uncr.| cr

| %
Ist (pe/N) 48.14 | 30.06 | 37.6 | 49.00 | 38.73 | 21.0 | 51.69 | 46.91 | 9.25

2nd (pe/N) 4.819 | 2.955 | 38.7 [ 5.223 | 4.129 | 21.0 | 6.287 | 5.356 | 14.8

3rd (pe/N) 0.816 | 0.498 | 39.0 [ 1.031 | 0.839 | 18.6 | 1.592 | 1.240 | 22.1
4th (ue/N) 0.004 [ 0.004 | 0.0 |0.130 | 0.128 | 1.54 | 0.471 {0.300 | 36.3

a better indication of the crack occurring in the structure at this measurement
point.

It must also be observed from Figs. 4.4-4.6, that the changes in the strain
levels of the FRF in the nonresonant regions due to cracking are appreciable
as shown in Table 4.4. The changes at nonresonant points indicates changes
similar to the static values at the two points nearest to the crack, viz., at 1.6
mm and 7.8 mm away from the crack; but at 15.8 mm away from the crack,
the changes are once again much higher than the static ones. Probably an
acoustic mode of crack detection during modal testing may be able to sense
these changes due to cracking better in the nonresonant regions.

Fig. 4.7 gives the waterfall plot of the strain FRF changes against the increase
in the depth of the crack for the first three bending modes. The modal strain
value is normalized against the corresponding pezk modal strain FRF of un-

cracked plate. The measurement point is 7.8 mm away from the crack. It is



Table 4.4: Changes in amplitudes of strain FRFs at nonresonant. points

Dis. away from the crack | Freq. (Hz) | 69.86 BL6
uncracked 5.1271e-8
1.6 mm cracked 3.1682¢-8
change(%) 39.4:4
uncracked 6.5248c-8
7.8 mm cracked 5.155¢-8
change(%) 2114
uncracked | 2.481%-7  8.5760e-8 1.Z
158 mm cracked | 2.1502c-7  6.9926c-8
change(%) 13.36 18.46

Figure 4.7: Waterfall plot of strain FRF's, 7.8 mm away from the crack

Normalized sirain FRF ampltude
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observed that a clear trend of decrease of the amplitude of the strain FRFs
occurs as the surface crack depth grows.

When carrying out an analytical investigation, one knows where the crack is
located; consequently one can state confidently where the local area is. But
in a real structure, the location of the crack is unknown and one needs to
determine where it is located from transducer measurements. Fortunately,
for most of the structures, we can expect the cracks to occur around certain
defined critical locations. These critical areas can be determined by an earlier
finite clement analysis carried out for the structural response. For example,
in offshore platforms, the critical arcas will be the highly stressed welded
Jjunctions of the structure. Thus we can define a certain amount of these areas
as critical "local” arcas. Monitoring of the strain FRF' in these critical "local”
areas using strain gauges will give a clear indication of the location and severity

of cracks that occur in the structure,




Chapter 5

Resonant and Transient
Responses of The Plate With a

Surface Crack

5.1 Sinusoidal Excitation

5.1.1 Time History

The procedure used to calculate the time history of the plate subjected to a
sinusoidal or impulsive excitation is the modal superposition technique. As
mentioned in the previous chapter the response of the structure can be ex-

60
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pressed in terms of ei les and the lized modal displ. of

the system. Only eigenmodes that are close to the frequencies of interest are
required. In this study, the first seven modes are included in the modal su-
perpusition. For the linear dynamic response of the structure, the inclusion of
seven modes are considered to give results which are accurate enough.

A sinusoidal excitation force with a constant frequency and amplitude is cho-
sen for the excitation; when this frequency coincides with one of the natural

[{ ics of the the excitation becomes a resonant one. The three

natural frequencies corresponding to the first three bending modes are used
as these resonant frequencies at which the structure is excited. Theoretically,
when excited at the natural frequency, the structure will be resonant at this
frequency, and will have the corresponding displacement mode shape; accord-
ing to the definition of the modal strain given in the previous chapter, the
normalized strain mode shape can also be obtained by calculating the corre-
sponding strain values and normalizing them.

In order to obtain the bending modal strain shapes the excitation force is
applied at the centre of the free end. The strain measurement points are
located along the centre line of the plate. The strain respense at the centre
line of the plate 7.8 mm away from the crack, and the displacement response

at the free end, are plotted in Figs.5.1-5.3 for the three resonant frequencies,
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respectively. It can be observed from these response curves that there is an

oscillating phenomenon associated with the responses at the second and third

model responses. The excitation fi ies were chosen as the corresponding
eigenvalues of the uncracked or cracked plate given in Table 1.1, In spite of

the best effort made in the numerical signal analysis procedure, the oscilla

3
behaviour persisted. Further discussions on this aspect are made in the next

section.

Fig. 5.4 shows the strain response of the uncracked and cracked plate, when the
plate is excited at the first resonant frequency (bending mode). The measure-
ment point is 7.8 mm away from the crack. It is observed that the amplitude of
the strain response decreases for the cracked plate from that of the uncracked
one. This behaviour is as expected since from the static analysis, it is alrcady
known that there will be s ain release in this arca as the crack grows in depth.
Since the response is directly related to the excitation force, any change in the

excitation force will affect the response. Therefore the method which uses the

strain response directly to detect cracking in the structure is less precise than
the method using modal analysis, because modal parameters are independent,

to the amplitude of the excitation forces.
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Figure 5.1: Displacement and strain responses for the first resonant excitation fre-
quency
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Figure 5.2: Displacement and strain responses for the second resonant excitation
frequency
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oY Strain time history of un-cyacked and eracked plate

solid fine: un-cracked plate
dashed line: cracked plate

Strain (m/m)

Figure 5.4: Strain responses of the uncracked and cracked plate, at a point 7.8 mm
away from the crack, for the first bending modal frequency
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5.1.2 Power Spectrum

From Figs.5.1-5.3, it is observed that besides the excitation frequency, the
responses consist of other frequencics which cause an oscillating behaviour
when the plate is excited at the second and third bending natural frequencics.
This hehaviour is clearly shown in the displacement responses of the fige s
cited above. Figs. 5.5-5.7 show the power spectrum of the responses given
in Figs. 5.1-3.3, respeetively. It is noticed that when the plate is excited at
the first natural frequency, the responses occur only at that [requency: svhen
the plate is excited at the second bending resonant frequency, the responses
contain contributions from both the first and second natural frequencies, but
the power for the second natural frequency is much higher than that for the
first onie; when the plate is excited at the third bending resonant frequency. the
responses contain contributions from the first and second resonant [requencies
besides the excitation frequency. Once again the power for the excitation

frequency is higher than others. It is believed that these phenomena are caused

by ical errors in the ional d ‘The time i for
the time history calculations are 0.002633 sec, 0.0004215 sec, and 0.0003006
sec for excitation at the first, second and third bending resonant frequencies,

respectively. In order to get the steady state response of the structure, the

JRr———
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time history must be calculated for a certain length of time. The time duration
used in this study for the three excitations are 0.473909 sec, 0.2103285 sec,
and 0.1635264 scc. respectively. When the excitation frequency is high, the

time increment must be small to guarantee the results with a certain a

curacy.
Moreover the time required for the response to reach the steady state does not
change much. This requirement causes difficulties for the computation of the
time history for the high frequency excitation, when the available computer

disk storage space and the CPU time are limited. Hence the time increments

v

and time durations listed above. are based on the compromise of the accura
due to the limitation on the computer disk storage space and the CPU time.
It should be pointed out that the frequency resolutions in the power spectra
determination are coarse because of the limitation in the calculation of time
histories. For the first mode. the resolution is 2.1218 Hz; while that for the
second and third mode are 1.7450 Hz and 6.1152 Hz, respectively. That will
explain why the peaks in the power spectra are not located exactly at the reso-
nant frequencies. But to draw the power spectral distribution and to examine
the trend of changes of the power spectrum as the crack depth develops, these
resolutions are good enough.

From the power spectral responses, it is observed that for the strain responses,

the power for the excitation frequency is much high than the others, even when




Pawer spectrum of the displacement response

w0 —— ——— e ey
i
i
10 4‘
E
= H
A i
L ;
5 \
3 1
H k 1
10!
i
;!
101 S NE—
ol - A
W e 8 10 10 140 10 180 20
Frequency (Hz)
Pawer spectrum of the strain tesponse
0 —
101
£ o
5‘
v
£ 109
£
104)
108
108 ]
W4 & 8 10 10 w0 10 10 20

Frequency (Hz)

: Power spectrum of the responses when excited at wy



Power spectrum of the displicement respanse

Power (m?)

107
S I S
» 500 100 150 200 250

Frequency (Hz)

Power spectrum of the strain respanse

Power ((m/m)?)

1010

Frequency (Hz)

S6 10 10 200 %o 300 30 40

T4 s

Figure 5.6: Power spectrum of the responses when excited at wy




Power spectrum of the displacement response

wsf | \

104

!
1
]
i

\

Power (m?)
g
N

Mol
» S0 10 T 150 200 2% 300 350 400 450

Frequency (Hz)

Power speetrum of the strain response

108

Power ((m/m)?)

10|

113 I

30 100 10 200 %0 300 350 400 40 3
Frequency (Hz)

Figure 5.7: Power spectrum of the responses when excited at w3



the plate is excited at the third bending frequency.

As in the case of frequency response functions, the power spectrum of the strain
response will also show a large decrease in the amplitude of peaks at resonant
frequencies when there is a crack in the structure. The power spectrum of the
displacement response shows very little change due to the crack. Figs. 5.8 and
5.9 show the change in power spectra of the strain and displacement responses
due to the crack. Therefore the power spectrum of the local resonant strain
response can also serve as an indicator of cracking occurring in the structure, [t

must be remembered that in this study, the excitation forceamplitude s a fixed

value and does not change throughout the whole duration of analysis. Since the
response is directly related to the amplitude of excitation, different excitation
forces will show varying values of structural responses. In real structures, the
excitation (applied) forces generally varies from time to time. So it would be
difficult to tell whether the changes in the power spectrum of the response

is caused by changes in applied forces or caused by the presence of cracks.

Therefore the practical usage of this method is limited.




Power ({r/m)?)
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Figure 5.9: Power spectrum of the displacement response, with/without the crack
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5.2 Strain Mode Shapes

5.2.1 Definition and Method of Extraction

The displacement mode shapes are obtained during the eigenvalue extraction
process and are shown in chapter 4. Since the strain mode shape is a relatively
new concept, the techniques for its calculation are not well developed in the
general purpose computer software available in open market. ABAQUS does
not have the option to do so. In this study, similar to the displacement mode
shape, the strain mode shape is defined as the surface strain response of the
structure when it vibrates at a certain resonant frequency; the surface strain
values of the structure ar normalized to a unit maximum value to obtain the
steain mode shapes:

In this study, only the lowest bending modes are considered; so only the surface
strain values along the centre line of the plate are required to be calculated to
get the approximate bending strain mode shapes. Fig. 5.10 shows the three

strain mode shapes corresponding to the first three bending modes.
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5.2.2 Strain Mode Shape Changes Due to the Growth

of the Depth of the Crack

Since local strain values are very sensitive to the crack, strain mode shapes
may also be very sensitive to the crack. Actually, it is shown to be one of the
best method to find out the location and severity of the crack in the structure.
Fig. 5.11 shows the strain mode shape changes for all the three bending modes
as the depth of the crack grows . It is clear from these figures that around
the crack there is a big drop in strain mode shape amplitudes for all the three
modes. As the depth of the crack increases, the drop become larger. It is
obvious that this change in strain mode shape can be used as a clear indicator

of the location and severity of the crack in the structure.

All the strain mode shapes here are normalized with respect to the largest
strain amplitude. We find that by plotting the differences of the normalized
strain mode shapes, it is much casier to show the changes that occur, and to
identify the location of the crack that occurs in the structure. Fig5.12 gives the
differences of the normalized strain mode shapes between the uncracked and
cracked plate (for the first three bending frequencies). It is observed that for
all the three modes, a large peak occurs at the position where the crack occurs.

This peak can be used for detecting cracking in structures. The location of the
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peak in the difference of the strain mode shapes indicates the position of the
crack, and the amplitude of these peaks can be used to indicate the severity of
the crack. A higher amplitude of the peak in the difference of the strain mode
shape indicates a more severe crack that has occurred in the structure. For
the same crack, different modes will have different amplitudes of the peak in
the difference of the strain mode shape. If the crack is close to the nodal point

of one mode, the

litude of the peak cor ding to that mode will be
small. From the strain mode shapes shown in Fig. 5.10, it is observed for the
third bending mode that the crack is close to the nodal point. Therefore the
changes in that strain mode shape are small around the crack in comparison to
the other two mc ‘es (Fig. 5.11); the amplitude of the peak in the difference of
the strain mode shape is also small(Fig. 5.12). Another important observation
that can be made from Fig. 5.12 is that the modal strains undergo significant
Cuc nges even at positions away from the crack. Hence strain gauges tend to be
better indicators of cracking even at distances very far away from the crack.

The complete procedure for detecting cracks in the structure by monitoring of

the difference of the strain mode shapes can be summarized as follows:

(a) Strain modal analysis is performed and normalized strain mode shapes

are calculated and stored.
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(b) After a crack has occurred in the structure, the first step is repeated once
again.

(c) Compare the strain mode shapes obtained in steps | and 2. Find the
difference and plot it. Thus the difference of the strain mode shapes is
obtained.

(d) Find the peak in the difference of the strain mode shape. The location
of the peak indicates the position of the crack, and the amplitude of the

peak indicates the severity of the crack.

5.3 Impulse Excitation

5.3.1 Time History

An impulsive force is defined as a large force that acts for a very short duration

it can be d in terms of the delta function:

of time.
Y

F = I§(t). In the numerical analysis, this "very short duration of time” has to

be given. In our case, it is chosen to be 0.0006 scc. As in the case of sinusoidal

excitation, this value is a ise for idering the i d freq
range, the accuracy in describing the response, and limits in the computer disk

space and the CPU time. The time history of the excitation force is shown in
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Figure 5.13: Time history of the excitation force
Fig. 5.13. The method and procedure for the calculation of the time history
for the impulse excitation are similar to the ones for the sinusoidal excitation.
The impulse excitation force is applied at the centre of the frec end. When the
structure is under the impulse excitation, the structure will have two types of
responses; during the period of the impulse the sructure will respond under
the influence of the force; thereafter, the structure will vibrate freely with the
defined boundary conditions and the imparted initial conditions at the ceasing
of the impulsive force excitation. The responses will contain all the natural

and the fund, 1fx ies will contain more power. In this

case, the first three bending modes will be the major frequency components in




Table 5.1: Changes in the displacement and strain responses

time (sec) 0.0380 | 0.0952 | 0.1480
Strain (jec) (7.8 mm away from the crack)

uncracked 23.004 | 21.546 | 15.304
crack 18.435 | 17.240 | 12.879

change (%) 19.9 20.0 15.9

displacement (mm) (at the free end)

uncracked 0.6099 | 0.4971 | 0.4603
cracked 0.6034 | 0.5123 | 0.4760

change (%) 1.1 -3.1 -3.4

the responses. Figs. 5.14 and 5.15 show the displacement response and strain
response of the plate with and without the crack. The measurement point for
the displacement response is at the free end of the plate. The measurement
point for the strain response is at the centre line 7.8 mm away from the crack.
Table 5.1 gives the displacement and strain responses at 0.038 sec, 0.095 sec,
and 0.15 sec, for the uncracked and cracked plates.

Similar to the previous studies, the amplitude of the strain response for the
cracked plate is smaller than for the uncracked plate, when the applied forces
are the same, the changes are around 20.0%. The displacement response

changes are very small for the cracked and unsracked plates.
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Figure 5.15: Strain response under the impulse excitation




84

5.3.2 Power Spectrum

Figs. 5.16 and 5.17 show the power spectra of Figs. 5.14 and 5.15, respec-
tively. The frequency resolution for the power spectra is 5 Hz. The use cf this
coarse resolution is due to the limitation in the computer disk space and the
CPU time. Although it will not give a very accurate estimation of the power
spectrum, it will be enough for the understanding of the trend and the power
distribution in the frequency domain.

From Figs. 5.16 and 5.17, it is observed that the first peak (corresponding
to the first bending mode) is the largest; the second peak (corresponding to
the second bending mode) is smaller than the first peak; and the third peak
(corresponding to the third bending mode) is smaller than the second une. It
indicates that the power utilized for the fundamental mode vibration is larger

than that for the higher modes in the impulse excitation. It is also observed

that there are signi d of the litudes in the power spectrum
of the strain response when the crack is introduced; the power spectrum of

the displacement response has almost insignificant changes. It is similar to

the case of si and static behavi Again this method
has its limitation in the practical usage because the power spectrum is only

based on the response, and the responses would change when the amplitude
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Table 5.2: Changes in amplitudes of the power spectrum of the strain response at
nonresonant points. 7.8 away from the crack

Frequency (11z) 50 215

uncracked 3.2367e-11 | 3.5943¢-12

cracked 2.1755¢-11 | 2.3190¢-12
change (%) 32.19 358

of excitation is changed. Another important fact to be observed is that the
strain levels decrease considerably fer the cracked structure in the regions away
from resonance as shown in Table 5.2. This could be used to advantage in the

procedure using acoustic intensity methods for crack detection.




Chapter 6

Conclusion

When there is a surface crack in the plate the physical propertics, as well
as modal properties, of the plate change. From this study, we know that
these changes in physical properties and modal properties are reflected in the
stress/strain fields around the crack in static case; and in the shifts of natural
frequencies, changes in the frequency response function and strain mode shapes
in the dynamics cases. Further more, we find that local strain frequency re-
sponse functions and strain mode shapes, as well as static strain level in these
areas, are the most sensitive parameters to the crack occurring in the plate.
Although the experimental set up for modal testing is more complicated than

the static ones, it has the advantage that the modal parameters are indepen-
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dent of the amplitude of the applicd forces. Modal parameters are obtained
when the structure is under resonant conditions. Therefore the applied force
conld be smaller than that in the static measurement, when good and reliable
response outputs arc obtained. In the arcas which are not close to the crack,
maodal testing at high modes may give larger changes in the amplitude of the
strain FRFs than changes from static measurements.

Based on this systematic study of the mechanical behaviour of the plate with

a surface crack, the following conclusions can be made:

(a) Modal analysis which monitors the modal parameters such as natural

frequencies, mode shapes, modal displacements and modal strains, can

bhe used as an efficient technique for crack detection.

(b) Cracks in the structure will cause the reduction of the natural frequen-
cies, which can be used as a global indicator of cracks occurring in the
structure; but it must be used cautiously since these changes are very

small.

z

Performing the strain modal analysis and focusing on the local strain
frequency response function, is a sensitive and practically useful method

for detecting and localizing the surface cracks occurring in a structure.

(d) From the strain modal analysis, the strain mode shapes can be obtained.

:
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By calculating the differences of the strain mode shapes and obtaining
the location of the largest dilference (peak), the location and the depth

of the crack can be determined.

Although the study is only carsied out for a rectangular plate, it is believed
that the conclusions stated abuve can be ex*ended to more complex structures,
Therefore, it is believed that modal testing can be used for crack detection in
real structures. First the natural frequencies should be monitored. This can
be done by performing the modal testing with accelerometers or strain gauges
which have been located at any convenient position of the structure, 1f there is
a reduction in natural frequencies, cracks could have occurred in the structure
(as mentioned earlicr in Chapter 1, other causes such as soil erosion around
the base of the structure, strength degradation of the foundation soil, marine
fouling, incidental weight increases in the platform deck weight, etc., will also
cause a shift in the frequency to occur; these causes must be eliminated before
using this procedure for crack detection).

For more accurate detection of the crack, it is suggested that strain gauges
be attached to several critical reference peints where the structural behaviour
can be represented from carlier numerical analysis. Then the strain modal

testing should be performed and difference of the strain mode shapes, as stated
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above be calculated. Locating the largest difference between the modal strain
response the position of the crack can be determined.

For more comple:. structures. it would be difficult to attach strain gauges all

along the structure to get the strain mode shapes. In this case, it is suggested
that the strain gauges be located in the critical areas. The strain modal
testing should be performed and the local strain frequency response functions
obtained. Find the largest drop in the amplitude of the strain frequency
response function, and the location of the crack is determined to be located
near the corresponding strain gauge.

In order to get the strain frequency response function and strain mode shapes,
the excitation force has to be measured. For the case of single excitation, it

is casy to attach a force transducer to record to the excitation force. For real

structures, in many cases the forces are applied all along the structure and
are continuously distributed. For example, in offshore platforms, the forces
are distributed along the depth of the structure under water. In these caszs,
multiple input output techniques may be needed to get the frequency response
function in the proper simulation for modal analysis. More studies are needed

in these areas in the future.

Damping of the structure under the dynamic excitation is also a very impor-
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tant parameter in the determination of the structural response. This study did
not address the change in damping as the crack depth grows. If the relation-
ship between the damping and crack depth and/or location could he derived
theoretically or experimentally, it could also be used in the detection of eracks

in the structure. Therefore, examination the damping changes in

structure could also be investigated in future studies.
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