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Abstract

This is a simple but comprehensive study of the dynamic behavior of a shaft
with a crack on elastic supports. The analysis is restricted to the single span
shaft with uniform circular cross-section. The natural frequency and modes of
vibration of a shaft having a transverse crack are investigated using the finite
element method. The local flexibility due to the crack is evaluated using the
theory of fracture mechanics. The effect of crack depth on the natural behavior is
discussed. The results show that an increase in the depth of the of crack magpifies

de and dk the natural fr ies. The effect of elastic

the response
supports on the dynamic behavior of the shaft is presented through computation.
The range of maximuin effect is given.

The element stiffness matrix of a cracked shaft considering the longitudinal
translation and axial rotation is first presented. This makes it possible to analy-
size the dynamic response of a practical shaft by FEM. A Fortran-77 program is
developed which can be used to calculate the two and three dimensional vibration
of a shaft containing more than one transverse crack, concentrated mass and elas-
tic foundation. It can also be used in multi-span shaft with different cross-section

and applied to some loads.
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Chapter 1

Introduction and Literature
Survey

A propeller shaft is an important part of ship propulsion. Shaft vibration mon-
itoring has been receiving increasing attention in recent years. The failures of
shafts due to fatigue cracks makes it imperative to have an accurate estimation of
shaft natural vibration characteristics in the design stage. Vibration monitoring
has the greatest potential in crack detection since it can be carried out without
dismantling any part of the machine and be done usually even under operating

condition.

1.1 Literature Survey

Fatigue cracking in a shaft is one of the main causes of catastrophic failure which
is described by Jack and Patterson ( 1976). Since a crack changes the stiffness that
influences the dynamic behavior of the shaft , vibration monitoring could be used
as a means of detecting crack initiation and growth. Kolzow (1974) first pointed
out that the vibration monitoring could be useful in detecting crack initiation

and growth, Therefore a detailed study of the vibrational behavior of shaft with

1



transverse cracks is necessary.

Since the middle 1970s, many researchers have realized the importance of this
problem. The first work done by Dimarogonas (1970) and Pafelias (1974) intro-
duced the bending stiffness description of a rotor crack which is determined from

The i ion of the stiffness change caused by a

crack into the equation of motion was dealt with in the literature by Dimarogonas
(1976).
Gasch (1976, 1993) developed a hinge model for Laval rotors (massless shaft),

e s

1 crack fi and

in which he replaced the crack hanism by an
switched it on and off according to whether the crack was closed or open. He
discovered that resonances would occur as the rotation reached %, 1, etc., of the
shaft bending frequencies.

Henry and Okah-Avae ( 1976) employed the equations of motion with a shaft
section interia unequal to that of the cracked shaft, and concluded that there
would be resonances due to the crack when the rotational speed equal to L of the
first critical speed where n is an odd integer. They also found that the vibra-
tion response due to the crack was hardly detectable when the rotational speed
exceeded the first critical speed.

Mayes and Davies ( 1976) Mayes (1977) performed a detailed analytical and
experimental investigation of turbine shafts with cracks. They derived a rough

ly imation of the crack li based on the energy principle. Al-
though they considered the nonlinear equation for a simple rotor, they obtained
analytical solutions by considering an open crack which led to a shaft with dis-

similar moments of inertia in two perpendicular directions.



Grabowski and Mahrenholtz (1982; 1980) argued that in a shaft of practical
interest the shaft deflection due to its own weight is orders of magnitude greater
than the vibration amplitude. Therefore he suggests that non-linearity does not
affect the shaft response since the crack opens and closes regularly with the rota-

tion.

Using the concept that a crack in a member i
local flexibility due to the strain energy concentration in the vicinity of the crack

tip under load, Dii and Papad los (1983), Di: and Paipetis

(1983) and Papadopoulos and Dimarogonas ( 1987) derived the complete local
flexibility matrix of a cracked, rotating shaft and verified it experimentally. They
observed the local flexibility of the shaft due to the crack and developed an an-
alytical expression for the crack Jocal flexibility in relation to the crack depth.
They also showed the influence of the crack on the dynamic response of the rotor.

Ziebarth and Baumgartner( 1981) established their crack model on the basis
of detailed (but istati i 1 i igation. They ly for-

mulated the equations of motion in stationary coordinates and applied them to

practical turbine rotors. Then they compared the analytical results with the re-

sults of model test. As practical crack indi they peaks

in vibration amplitudes, shifting of natural frequencies, unstable vibrations, and

changes in the double-fi vibration

Dirr and Schmalhorsts ( 1987) described the crack more accurately than others
by a 3-dimensional finite element analysis and successfully simulated the vibra-
tions of a cracked test rotor on the basis of measured crack shapes.

Qian et al ( 1990) derived the element stiffness matrix of a beam with a crack



from an integration of the stress intensity factors and then established a finite
element mode (FEM) of a cracked beam.

Most of the investigators concentrated on the stiffness changes due to a crack,
and these researchers only considered the case that the-crack is perpendicular to

the axis of shaft.

1.2 Objective

In this study, a finite element model is employed to analyze the dynamic behaviour
of a shaft having a crack and supported on elastic bearings. Through the inves-
tigation, some relationships between natural frequencies of shaft and crack depth
and stiffness of elastic supports should be found. This work will also provide some

useful results for experimental investigation in the next stage.

1.3 Methcdology

In this study, the first step is to give a theoretically description of the free vibration
of a beam. Furthermore, a finite element 1:10del is formulated to analyze the effect
of elastic supports on the dynamic behaviour of a non-crack shaft and give an
approximate evaluation of propeller effect.

In order to derive the stiffness matrix of cracked element, a fracture mechanics
approach is used to study the effect of the presence of a crack on the dynamic
characteristics of the shaft.

At last, a Fortran-77 computer program was developed.



Chapter 2

Stiffness Matrix Derivation of
Space Beam Element with a
Crack

2.1 Introduction

The element stiffness matrix of a beamn with a crack was derived from an inte-
gration of the stress intensity factors and then a finite element model(FEM) of a
cracked beam was established by Qian et al( 1990). Sekhar and Prabhu (1992)

also presented a similar approach .

2.2 Crack-Tip Stress Fields for Linear-Elastic
Bodies

2.2.1 Crack Tip Stress Intensity Factors
Fracture studies of structural elements have been revolutionized in the recent
twenty years by the analysis of their sensitivity to flaws or cracklike defects.

Within these studies an essential ingredient is reasonable and proper stress anal-

ysis including especially the flaw with its high local elevations of stresses from
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corrosion, fatigue,etc.).

Full studies of fracture behavior cover both the stress analysis aspects and the
material behavior in terms of resistance to the stresses imposed. The redistri-
bution of stress in a body due to the introduction of a crack or notch may be
begun by methods of linear-elastic stress analysis. Of course the greatest atten-
tion should be paid to the high level of stresses at or surrounding the crack tip
which will usually be accompanied by at least some plasticity and other non-linear
effects. Nevertheless linear-elastic stress analysis properly forms the basis of most
current fracture analysis for at least "small scale yielding” where all substantial

non-linearity is confined within a linear-elastic field surrounding the crack tip.

Consequently, the character and signi of li lastic crack tip
fields will be given first attention.

The surface of a crack has the dominating influence on the distribution of
stresses near and around the crack tip. Other rsmote boundaries and loading
forces affect only the intensity of the local stress field at the tip.

The stress fields near crack tips can be divided into three basic types, each
associated with a local mode of deformation as illustrated in Figure 2.1.(Tada et
al, 1973)



Model
y
x
z
Modell
y
z
Modelll

Figure 2.1: The Basic Modes of Crack Surface Displacements.



Mode 1 is the opening mode which is associated with local displacement in
which the crack surfaces move directly apart (symmetric with respect to the x-
y and x-z planes). Mode II is the edge-sliding mode, which is characterized by
displacements in which the crack surfaces slide over one another perpendicular
to the leading edge of the crack (symmetric with respect to the x-y plane and
skew-symmetric with respect to the x-z plane). Mode III is tearing mode, finds
the crack surface sliding with respect to one another parallel to the leading edge
(skew-symmetric with respect to the x-y plane and x-z plane). The superposition
of these three modes is sufficient to describe the most general 3-dimensional case
of local crack-tip deformation and stress fields.(Tada et al,1973)

‘The most direct approach to di ination of th and displ fields
associated with each mode follows in the manner of Irwin ( 1957), based on the
method of Westergaard ( 1939). Modes I and II can be analyzed as 2-dimensional
plane-extensional problems of the theory of elasticity which are subdivided as

ic and ske: i pectively, with respect to the crack plane.
Mode III can be regarded as the 2-dimersional pure shear (or torsion) problem.
Referring to Figure 2.2 for notation, the resulting stress and displacement fields

are given below:



ipsie
o

Figure 2.2: Coordinates Measured from the Leading Edge of a Crack and the
Stress Components in the Crack Tip Stress Field



Mode I

For plane stress

6 . 36 1
(—2—)5 085 [1 smi.sm?]-{-vm.-{- 0(r?)

oy = o )%cns [l+sm—s1n—-]+ o(rh)

(2:?)* oS % 9smyalzs + O(rl)

and for plane strain (with higher order terms omitted)

Tzy =

0= {0+ 0y)

Tee=0

T =0

e %[G%]*wag[l P mﬂg]
v=—[( ’r)]um-[Z 2v ~cos —]

Mode I1

@1

(22)

(23)

(24)

(25)

(26)

(27

@8)

29)



For plane stress

oz =— Ku 8in | [2+ co.s-co.s—] +0m+0(r1)

(2nr)

5 Ko )1 smocoagcaag— +0(rt)

(21\' 2

—_ #m;u - aingsin:—gi] e

and for plane strain (with higher order terms omitted)

o =vos +2,)
Ter =10

=0

_ Ku

[(2")]151'11%[2 - + cus? g]

_Ku vy 0 )
[(Zr)] wsi[-1+2u + sin’ El
w=0

Mode III

For plane stress

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



- (2’:[")3 sing + 7usg +O(r) (@19)
e = (2 ) % + oty 7 (2.20)
— (2:21)

=0 @.2)

a=0 (2.23)

ey =0 (2.24)

u=0 (2.25)

v=0 (2.26)

- K’"[”]i ing (2.27)

Equations for Mode I and Mode II have been written for the case of plane
strain (that is ,w=0 ) but can be changed to plane stress easily by taking o, = 0
and replacing Poisson’s ratio, v, in the displacements with an appropriate value,

i+
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In equations for modes I, I and III, higher order terms such as uniform stresses
parallel to the crack, 00 and 7y, and terms of the order of square root of r, O(r¥),
are as indicated. However, normally these terms are omitted since as r becomes
small compared to planar dimensions (in the x-y plane) these higher order terms
become negligible compared to the leading J» term. Therefore these leading terms
are the linear-elastic crack tip stress (and displacement) fields.

The parameters K7, Ky and Kjy; in these equations are called crack tip stress
(field) intensity factors for the corresponding three modes. Since K7, K17 and Kyir
are not functions of the coordinates, r and 0, they represent the strength of the

stress fields ding the crack tip. Al ly they may be mathematically

viewed as the strengths of the 7‘; stress singularities at the crack tip. Their
values are determined by other boundaries of the body and the loads imposed,
consequently formulas for their evaluation come from a complete stress analysis
of a given configuration and loading. d
2.2.2 Evaluation of K, Ki; and Ky of The Single Edge
Notch
From H. Tada, et al ( 1973), K1, K;r and Kjz; can be evaluated for the single
edge notch specimen by following formulas:
L K

The loading condition and size are shown in Figure 2.3



h
|
——
é]
b h

Figure 2.3: The Single Edge Notch Test Specimen Under Tension Load



K= ﬂ‘ﬁr—aF(%) (2.28)
The numerical values of () can be calculated by following empirical Formu-

las.

F(p)=112- oz:u(%) +1085(3)" - 2.72(5)° +30.39(3)* (2.29)

The accuracy is 0.5% for § less than 0.6.

P = 02651 )+ —————,—AO‘S?Z + ?')2:5' (2.30)
7
The accuracy is better than 1% for § less than 0.2 and 0.5% for ¢ greater than
or equal 0.2
o _ (2 7a(0.752 +2.02(3) +0.37(1 — sin)®
F( b) " Vw2 cose (231)
The accuracy is better than 0.5% for any §

For the loading condition shown in Figure 2.4

K= m/ﬁF(%) (2.32)

Numerical values of F((§) can be obtained by following empirical formulas.
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Figure 2.4: The Single Edge Notch Test Specimen Under Bending Load



Sy —1.40% Gy _ 2y3 Oy
F(5) = 1122 - 1407 +7.33(3)" ~ 13.08(3)° +140(3)

The accuracy s 0.2% for & less than or equal 0.6.

.923 +0.199(1 — sinZ2)!
F(2) = 1 Poran 12 (09234019901 - singy)
b o "% coshy
The accuracy is better than 0.5% for any §
2. Ky and Kt

For loading condition shown in Figure 2.5
2
K= Q‘/—;‘;Fu(%)
2 a
K= Tﬁﬂu(;)

_ 13— 065(3) +0.37(3)? +0.28(3)°
-3

o [ F
FrEY=\ g
b

The accuracy of Fiz is better than 1% for any §

a
Fu(z)

Fyyp is exact.

(2.33)

(2.34)

(2.35)

(2:36)

(237)

(238)



Figure 2.5: The Single Edge Notch Test Specimen Under Shear and Torsion Load



For loading condition shown in Figure 2.6
Kn= n/rap,,(g)

Kin= ﬂmFm(%)

1122 — 0.56(2) + 0.085(2)° + 0.18(2)°

Fu(%) = \/l—j
;

26, Ta
Fm(%)= 7ai®gg

The accuracy of Fy is better than 2% for any §

Fiyr is exact.

(2.39)

(2.40)

(2.41)

(2.42)



Figure 2.6: The Single Edge Notch Test Specimen Under Torsion Load
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2.3 Local Flexibility

Consider a shaft with given stiffness properties, radius R=D/2, where D is the
diameter of the shaft, and a transverse crack of depth a ,shown in Figure 2.7(a)
and (b). The shaft is loaded with axial force Py, shear forces P; and Ps, bend-
ing moments P4 and P; and torsional moment Fs. The dimension of the local
flexibility matrix depends on the number of degree of freedom, here it is 6 x 6.
H. Tada’s equation ( Tada et al, 1973) gives the additional displacement u;

due to a crack of depth a, in the i direction, as

a a
oo jn J(a)da (2.43)
where J(a) is the Strain Energy Density Function (SEDF) and P is the corre-
sponding load. The SEDF is ( Dimarogonas and Paipetis ,1983)

7= K+ (5 K+ (3 K] (240

Where E' = E or E/(1 — v?) for plane stress and plane strain respectively, E

is the modulus of elasticity, m =1 + v , v is the Poisson ratio ( v =0.3 for steel)

and K; are the Crack Stress Intensity Factors (SIF) for the i = I, II, Il modes
and for j =1,2,...,6, the load index.
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Figure 2.7: (a) A cracked shaft element in general loading; (b) the crack section
of the shaft.
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‘The local flexibility due to the crack per unit width is, by definition ( Dimarogonas

and Paipetis, 1983 )

(2.45)
That is
p
% = 5pap| L J(A)dA] (2.46)
or, after integrating along the width 2b of the crack,
67 b ra
% = 5355 / ) /o J(a)dadz) (2.47)

The value of SIF in equation(2.44) are well known from the literature ( Tada
et al, 1973) for a strip of unit thickness with a transverse crack. Since the energy
density is a scalar, it is permissible to integrate along the tip of the crack it
being assumed that the crack depth is variable and tﬁat the stress intensity factor

is given for the elementary strip. It is known that this approximation yields

bl

results for engineering accuracy ( Di and Paipetis, 1983 ) .
From reference ( Tada et al, 1973 )

Kn= g,\/ﬁn(g) (2.48)
J;
o= ﬁ (2.49)

Kn=o/man(3) (2.50)



oy = % (2.51)
Kis= .m/ﬁp,(%) . (2.52)
o5 = %m’ — otk (2.53)

Kp=Kp=Ke=0

Kiny = osv/maFuu(3) (250)
kP

%= (2.55)

Kie= ﬂun/ﬁl"n(%) (2.56)

Te11 = 2:;? (2.57)

Kin =K =Km=Kis =0

Kun= vz\/!‘_ﬂFm(%) (2.58)
kP,

o=ip (2.59)

Kie = ﬂum/!nFm(%) (2.60)

(2.61)

2Py(R? - 22}
o1l = —_’rR‘—‘

Kun = Kns = Ki = Kyis = 0



‘where
F,( )= ("""‘) o752 + 2.02(%) +0.37(1 ~ sin))?)/cos)

A= ("';'*)‘[n 923+ 0.199(1 — sinA)*]/cosA

Fu(3) = 1122 - 0561(3) + 0.085(} )+01s( D -

Fm( )= (@)

25

(2.62)

(2.63)

(2.64)

(265)

Here k = 6(1 + v)/(7 + 6v) is a shape coefficient for circular cross section,

Combining relations (2.44), (2.47) and (2.48)-(2.65) yields the dimensionless

terms of the compliance matrix:

ER a b .
G o= {open =4  2FiMzdg

i} ER? Y
G ;’_ s =16 /D j) (1 = )R (R) Fy(R)dzdg

(2.66)
(267)

(2.68)
(2.69)
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& = =t [ [50-FRzag

ER® . -
= B cw=n[ [ foriisag

2

ER? F I
G = ;’_ =8 L /: 2gFA(R)dzdy

=ER®

1-02

& = B cuma [ [ TR

TER 2 (F\dxda
A /: 2F}(R)dzdy

"

S
"

=ER = ‘/:_[ FFfy(h)dzdy

1-0?

(2.70)
(2m)

(2.72)
(2.73)

(2.714)
(2.75)

(2.76)
(2.17)

(2.78)
(2.79)

(2.80)
(2.81)
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_ TER b —5 2 [T\
@ = T =8 /0 /o VI= @ F}y(h)dzdg (2.82)
(2.83)

ER? a B__ B i

= P2l cn=8 [ [ aarhbizdy (284)
(2.85)

ER 5 b -
G = TElas=16 /ﬂ /D [A1 + mAy)dzdy (2.86)
(2.87)

Whete Ay = 8% Fh(R)As = (1 = 205} (F) and & = 2/R,g = y/R, h =
y/hb=b/R.

The dimensionless compliance matrix it then.

1 0 0 @4 Gs 0

0 & 0 0 0 &
|0 0 & 0 0 &
= " (2.
E=lan 0 0 @ ds O [288)

G 0 0 &4 &5 0
0 % % 0 0 G
The elements of this matrix are computed and plotted in Figure 2.8.
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Then the local flexibility matrix due to the crack equations (2.66)-(2.87) and

equation (2.88) yields

@B 0 0 &y s 0
0 &&pR 0 0 0 G2
_1| 0 0 @R 0 0 &
Coue=F| &y 0 0 eu/R as/R 0 (2:89)
G 0 0 &u/R &s/R 0
0 & & 0 0 /R
where ¢; (ij = 1,2,...,6) are the di ionll Jit fici and

Fo=xER(1-1?).
When neglecting the axial translation and rotation, the local flexibility matrix

becomes

@R 0 0 0
col]| 0 @R 0 0

“=TF| 0 0 /R @s/R
0 0 &R &/R

(2.90)

2.4 Stiffness Matrix of the Cracked Element

According to the principle of Saint-Venant, the stress field is affected only in the
region adjacent to the crack. Therefore, the element stiffness matrix, except for
the cracked element, may be regarded as unchanged under a certain limitation of

element size ( Qian et al, 1990) . The additional stress energy of a crack has been

studied th hly in fracture hanics and the flexibility coeffici d
by astress intensity factor, can be easily derived by means of Castigliano’s theorem
in the linear-elastic range.

Considering a shaft divided into elements as shown in Figure 2.9 . The behavior

of the elements situated to the right of the cracked element may be regarded as
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external forces applied to the cracked element, while‘ the behaviour of elements
situated to its left may be regarded as constraints ( Qian et al,1990; Sekhar and
Prabhu, 1992). Thus, the flexibility matrix of a cracked e!euunt with constraints
may be calculated.



Figure 2.9: Simply supported shaft with a cracked element
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With the shearing action neglected, and by using the strain energy, the flexi-
bility coefficients for an element without a crack (see Figure 2.9 ) can be derived

in the form
o 0 0 A
|0 22 —a0
Co=gEr{o0 -3 6 0 (291)
3 0 0 6

Here EI is the bending stiffness and 1 is the element length.
The additional flexibility matrix due to the crack is shcwn in equation(2.90 )
The total flexibility matrix for the cracked element is given as

[C] = [Co] + [Cle] (2.92)

From the equilibrium conditions (Figure 2.9 )

Q@ =-g

9% =3s
9r=4qr
9% =38

That is
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(91,9201 98)" = [T)(gs» 96, 97, 95)" (2.93)

where the transformation matrix [T] is

-
|
Looco

7] =

|
ccor~lool
coroco~lo
orococoloo
—~ococo

So the stiffness matrix of the cracked element can be written as

(K] = [T Ty (2.94)



Chapter 3

Test of the Program to Solve the
Beam Vibration(No Crack)

According to the model described in A dix A , a FORTRAN-77 program is

written. The program flow chart is shown in Figure 3.1. To check the program,
a comparison with the analytical solution for beams having different boundary
conditions (Weaver and Johnston ,1987) is made. The comparison is shown in
Table 3.1.

Five cases are considered. These are simple support, free, fixed, cantilever and
propped beams which are shown in Figure 3.2. The beam is divided into four

elements, each of which has the same properties E,],p and A.

34



Produce Element Stiffness and Mass Matrices I

1

Put the Element Stiffness and Mass Matrices
into Global Stiffness and Mass Matrices

Apply the Boundary Con:

[ cali Subroutine of Solving Eigenvalue |

l Output of Frequencies and Shape Mcdes] .

Figure 3.1: Flow Chart of the Program

3
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Figure 3.2: (a) Simple supported; (b) Free; (c) Fixed; (d) Cantilever; (e) Propped



Table 3.1: Comparison of Natural Frequencies

Structure [ Mode | Exact Solution | Solution of the Program
1 2.560 E6 2.563 E6
Simple 2 4.100 E7 4.130 E7
3 2.050 E8 2.150 E8
1 1.316 E7 1.318 E7
Free 2 9.999 E7 1.013 E8
3 3.843 E8 3813 E8
1 1.316 E7 1.311 E7
Fixed 2 9.999 E7 1.013 E§
3 3.843 E8 4.009 E8
1 3.250 E5 3.256 E5
Cantilever 2 1.276 E7 1.279 E7
3 1.001 E8 1.016 E8
1 6.252 E6 6.258 E6
Propped 2 6.656 E7 6.646 E7
3 2.855 E8 2.986 E8

From the Table, it is found that there is a very good agreement between

analytical solution and calculated results.



Chapter 4

The Effect of Elastic Supports
and Propeller Inertia on the
Dynamic Behaviour

In the dynamic calculation of a propeller shaft, the bearing supports can be con-
sidered as elastic supports. The difference of the stiffness of bearings and their
distribution may affect the dynamic behaviour of shaft greatly. This is important
for the designer to uptimize the alignment of the shaft.

Figure 4.1 shows a one span of shaft with elastic supports at two ends. The
boundary supports are expressed by two springs in two directions pendicular to
each other. In the figure, K; and K represent the stiffnesses of the elastic springs

at the two ends.

38



Figure 4.1: (a) shaft; (b) Mesh of elements

39
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Table 4.1: First Three Frequencies

w3
0.5375E8
0.5316E8
AT61E8
1926E8
5042E7
3463E7
0.3314E7

0.4637E4

4.1 K=K,

‘When the stiffnesses of the springs at the two ends of the shaft are the same as
K, the different value of the stiffnesses have great effect on the natural behaviour
of the shaft. The results are shown in Table 4.1. In the calculation, the shaft is
divided into four elements. The value of stiffnesses varies from finite value to a
infinite value(rigid). Figure 4.2 - Figure 4.4 show the curves between the value of

K and first three natural frequencies wy, wp and wa.
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Figure 4.2: the curve between first frequency and K



Second Frequency w2(rad/s)
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Figure 4.3: the curve between second frequency and K
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Figure 4.4: the curve between third frequency and K

1

16



Table 4.2: First Tlree Frequencies

Ky[K> | wi/wor | wy/wes | ws/wos
1 1.000 1.000 | 1.000
2 1.030 | 1.1143 [ 1.2113
3 1.040 [ 1.1523 | 1.2965
4 1.0454 | 1.1711 | 1.3390
5 1.0482 [ 1.1822 | 1.3645
6 1.0508 | 1.1895 | 1.3806
10 1.05489 [ 1.2040 | 1.4123

4.2 K #K,

In a practical engineering problem, the bearings at the two ends of the shaft
are different. So the effect due to the different values of springs on the natural
behaviour should be considered. In this part, I use the value of '?f: to represent the
difference between K; and K. The results are shown in Table 4.2. In the table,
Wo1, Wz and wy are the first,second and third frequencies respectively when K,
equal to K;. Figure 4.5 ~Figure 4.7 show the curves between - and £, %2 and

Js w ¢
&4 and, 35 and §2.
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Figure 4.5: the curve between first frequency and K



w2/w02

1.25

5 6
Ki/K2

Figure 4.6: the curve between second frequency and K
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5 6
K1/K2

Figure 4.7: the curve between third frequency and K



4.3 Effect of The Propeller Inertia

The effect of propeller inertia will be considered in the boundary conditions to

the propeller.

8w(z,t) 8uw(z, t)
BTt 4 a2l = (1)

For a shaft shown in Figure 4.8, the boundary conditions become

(1) x=0, y=0 and M=0
B B,

(@) z=1h,y=0, 5+ =5~

and

Sy, _ Puy
EZ i

(8) x=

By _ _ M8

= ~Erat

and

Py _ _J 8%

54 = ~t1oan

Where

J is the mass polar moment of inertia of propeller.

The natural frequencies of following example is carried out.

the lumped mass is 32500kg. and lumped inertia moment is 16300kgm?. The
diameter of shaft is .25m.

The results are:

(1) No lumped mass and inertia moment

w,=0.1908x10%(rad/s)

wp=0.8366x10%(rad/s)



Figure 4.8: Diagram of a tailed shaft

1,=0.4363x10" (rad/s)

(2) Only consider the lumped mass
0,=0.1138x10*(rad/s)

w,=0.4923x10%(rad/s)

0, =0.3977x10" (rad/s)

(3) Both lumped mass and inertia moment are considered
w,=0.6604x10°(rad/s)

w,=0.1376x10°(rad/s)

w,=0.5202x10°(rad/s)

4.4 Discussion of The Results

Results of the calculation show that :
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A. Results of the calculations shown in Figures 4.2 to 4.4 show that for a
certain range of the values of the bearing stiffness, the natural frequencies of the
shaft are very sensitive to variations in the bearing stiffness. Within that range
the natural frequencies increase rapidly as the stiffness increases. For values of
bearing stiffness outside that range the natural frequencies remain almost un-
changed as the stiffness changes. When the bearing stiffness is below a certain
range, the bearing becomes as a "simple” support, while above that range, the
bearing behaves as "fixed” support.

B. When the stiffnesses of elastic supports at the two ends of shaft are not
same.

1. With the increase of the value of K;/Kj, the natural frequencies also
increase. However, the effect on lower mode frequencies is less than higher mode
frequencies.

2. When the value of Ky/K; is larger than a certain number(for example,
larger than 6 or 7), with the increase of K3 /K3, the natural frequencies have very
little change.

C. Consideration of the inertia of the propeller decreases the natural frequen-
cies of the system. From the results, it can be found that the frequencies will

decrease by considering of lumped mass and inertia moment.



Chapter 5

The Effect of A Crack on the
Dynamic Behaviour

5.1 Calculation Results

According to the finite element model described in Chapter 4, a program is written
to calculate the natural dynamic behaviour of a cracked shaft.

When the crack is assumed to ;\ffect only stiffness, the natural frequencies are
obtained by solving the eigenvalue problem [K] — w?[M]=0.

Take a one span of beam with a crack at the middle of the beam. The diameter
of beam is D, and the depth of crack is a. The mesh of elements are shown in

Figure 5.1
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(1) (2) 3 (4) (5)

Figure 5.1: (a) shaft with a crack; (b) Mesh of elements
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Table 5.1: First Three Frequencies Corresponding to Different Crack Depth

a/D wy wy

0.0 [ 0.6406E6 | 0.1033E8

0.1 | 0.6276E6 | 0.1032E8

0.2 [ 0.5350E6 | 0.1029E8

0.3 [ 0.4156E6 [ 0.9918E7 [ 0.3387E8

0.4 | 0.2935E6 | 0.1012E8 [ 0.2813E8
0.5 | 0.1624E6 | 0.1000E8 | 0.2365E8

The results are shown in Table 5.1, Figure 5.2 - Figure 5.7. In the table and
figures, w;, w; and w; are the first,second and third frequencies respectively, wo;,
woz and wes are the first,second and third frequencies respectively when the depth
of crack is zero, delta w;, delta w, and delta w; are wy-wor, Wy-woz and wa-wos.
The first mode shapes cooresponding to different crack depth are shown in Figure

5.8
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Figure 5.2: Variations of first frequency with different crack depth
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5.2 Conclusions

From the results, we can get conclusions as follows:

1. As expected, the natural frequencies decrease when the crack occurs, and
the maximum amplitudes of the mode shapes become larger.

2. As the crack depth becomes larger, the amplitudes of the mode shapes
become larger, and the values of natural frequencies become smaller. The general
trend of the decrease in natural frequencies with the increase in crack depth is
also observed at higher frequencies.

3. When the crack occurs close to the middle of the shaft, the maximum

amplitude of the mode shape occurs.



Chapter 6

Stiffness Matrix Derivation of
Space Beam Element with a
Crack Considering the Axis
Translation and Rotation

In practical engineering, the shaft is rotating under the normal operation at some
rotation speed. Therefore it is necessary to study the the crack effect on the shaft

torsional vibration. Figure 2.7 depicts a typical cracked shaft in general loading.

6.1 Local Flexibility

Consider a shaft with given stiffness properties, radius R=D/2, where D is the
diameter of the shaft, and a transverse crack of depth a ,shown in Figure 2.7(a)
and (b). The shaft is loaded with axial force P,,shear forces P, and Ps, Bending
moment Py and P; and torsional moment Ps. The dimension of the local flexibility
matrix depends on the number of degrees of freedom, here 6 x 6.

From Chapter 2, the dimensionless local compliance matrix is then.



& 0 0 &y & O
0 & 0 0 0 &
|0 0 @ 0 0 &
€=)e 0 0 G @s 0 (6.1)
G 0 0 %4 &s 0
0 &2 % 0 0 e
The values of elements of this matrix are computed according to equation

(2.66) - (2.87).
Then the local flexibility matrix due to the crack is shown in following equation.

@R 0 0 Cu G5 0
0 0 0 Cae

_1 0 0 mR 0 0 & 62)
Fol @ 0 0 /R &s/R 0 i
0 &s/R Es/R 0
0 0 /R

g

and

where ¢; (ij = 1,2,...,6) are
Fo=rER(1-17).

6.2 Stiffness Matrix of the Cracked Element

Consider a shaft divided into elements as shown in Figure 6.1 .
With the shearing action neglected, and by using the strain energy, the flexi-

bility coefficients for an element without a crack can be derived in the form



Figure 6.1: Shaft with Cracked Element
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& 0 0 0 0 0o
035 0 0 o &

[0 0 & o0 —& o

G=lo o 0 % 0 0 (63)
093 0 0 0 £

Here El is the bending stiffness, G is torsional shear modulus, J is torsional
inertia moment and | is the element length.

The additional local flexibility matrix due o the crack is shown in equa-
tion(6.2).

The total flexibility matrix for the cracked element is given as

[C] = [Co] + [Ciec] (6.4)

From the equilibriumn conditions (Figure 6.1)

h==g
Gy iy
3= "4
@ =—lgo
45 =1go —qu
96 =—lgs — 12
LR
98 =48

P=q
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Q0= q10
=4
Q12 = qi2

That is

(91592 912)" = [T(qr, g8y » 912)" (6.5)

where the transformation matrix [T] is

-1 0 0 0 0 0
0 -10 0 0 0
000 -10 0 0
00 0 <10 0
000 1 0 -1 0
0 -1 0 0 0 -1

M=11 9 0 0 0 o
001 0 0 0 0
000 1 0 0 0
00 0 1 0 0
0000 0 1 0
00 0 0 0 1

So the stiffness matrix of the cracked element can be written as

K] = [T)[C)[T)" (6.6)

When without crack

(K] = [T)ICT)” (6.7)

where [Co]~! is
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(6:8)

offe oo
o OWTOMlD

ccofoo
o ofhogko
OW_FO ﬂﬂm_T.
Fecooo

[
1

[Col™

So the stiffness matrix of element is

[Tl (T*

K] =

oghe o offolte o o
R . o
s uumh-uo coofoo
ccBogroccieode
Feectopooch
Froncntocens
okko o ogtelo oo
colfoifoootholo
cocofoococo om“-oo
-cgofoockot
e R

Feecccodeoccss

This is the general element stiffness matrix of beam without crack.



Chapter 7

Conclusions

7.1 Conclusions

The stiffness of elastic supports of the shaft has great effect on the natural be-
haviour of the shaft. In the case that the stiffnesses of the elastic supports at the
two ends of shaft are the same , (a) with the increase of the stiffness, the natural
frequencies also increase; (b) when the stiffness of the elastic supports is larger
than a value (which depends on the mode), the natural frequencies are almost
constant and approach the natural frequencies when the supports are rigid. (c)
for a shaft with similar elastic supports, the natural frequencies vary rapidly when
the stiffness is within a certain range. This phenomenon should be considered in
alignment of a shaft. When the stiffnesses of elastic supports at the two ends
of shaft are not the same. (a) with the increase of stiffness difference between
two supports, the natural frequencies also increase; and the effect on lower mode
frequencies is less than higher mode frequencies. (b) when the stiffness differ-
ence between two supports is big enough, the natural frequencies have very little
change.

For a shaft with a crack, the crack effect on vhe natural behaviour of the shaft
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is shown in the following aspects.

1, As expected, the natural frequencies decreases when the crack occurs, and
the maximum amplitudes of the mode shapes become larger.

2, As the crack depth i larger, the amplitudes of the mode shapes
become larger, and the values of natural frequencies become smaller. The general
trend of the decrease in natural frequencies with the increase in crack depth is
also observed at higher frequencies.

3, When the crack occurs close to the middle of the shaft, the maximum
amplitude of the mode shape occurs.

In practical engineering, measuring the changes in an adequate number of the
natural frequencies can be used to detect the crack. It is important for an engineer
to discover the crack as early as possible and prevent damage of the shaft due to

the presence of a crack.
7.2 Recommendations

This study carries out the calculation results obtained by finite element method.
However, further studies should be done in following topics:
1. Experiments should be done in order to compare with calculation results.
2. In practical shafts, the cracks may occur in any direction, how the crack

affect the dynamic characteristics should be studied further.
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Appendix A

Free Vibration of a Beam

A.1 Bending Vibration Equation of a Beam Sub-
Jjected to an Axial Force

For a beam with different boundary conditions, the derivation of the vibration
equation is given below.

Consider the free body diagram of an element of a beam shown in Figure A.1

where M(xt) is the bending moment, V(x,t) is the shear force, and f(x,t) is
the external force per unit length of the beam.

Since the inertia force acting on the element of the beam is

2,
pA(z)dzaaT':(z,t) (A1)



f(x,t).dx

M + Pdx

P+ ZPdx
E G
P : V4 Sdx
I
o L x
23 dx

Figure A.1: (2) a beam in bending; (b) free body diagram of an element
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Then the force equation of motion in the y direction gives

—v+ %‘Iidz) + fdz+V + (P +dP)Sin(6 + df) — PSinf = pAdx Y (A2)

Where p is the mass density, A(x) is the cross-sectional area of the beam and 6
is the angle between the force P and the x-axis. The moment equation of motion
about a point o is, (neglecting rotary inertia )

(M +dM)—(V+dV)dz+fdzd—;- —M=0 (A3)

By writing

av =Yt ana amr = M 4,
7 s

and neglecting higher order terms. Equations (A.2) and (A.3) can be written
as

aw"t)dz + fdz + (P +dP)Sin(0 + d8) — PSind = pA(z, l)wdz (A4)
M(z,1) _
s ~V@t)=0 (A.5)
For small deflection
Sin(0+d8) ~ 0+d0 =0 (A6)

From the elementary theory of bending of beams , the relationship between
bending moment and deflection can be expressed as

Mzt = EI(:)B "’(”’ Y (A7)

Where E is Young’s modulus and 1(x) is the moment of inertia of the beam
cross sectional area about the neuiral axis. Substituting equation (A.7) into equa-
tion (A.4) and (A.5), we obtain the differential equation of motion for the forced
lateral vibration of a nonuniform beam.

0%w(z,

%W(z) Wt)H Jile )aw(z,t) aw(zt)

= f(=,1) (A.8)



4
For the free vibration of a uniform beam, equation (A.8) reduces to

Sula,t) | Pu(st) o Pw(wt)
BIg 2 b pam 2 - oo =0 (A.9)



Appendix B

Mass and Stiffness Matrices
Derivation of Space Beam
Element

Figure B.1(a) depicts a typical member i of a space frame. Each end of the
member has six degrees of freedoms, three translation degrees and three rota-
tional degrees. The principal planes of bending are the z' —y plane and 2’ — 2'
plane. Six numbered displacements indicated at each end of the member, consist
of translations and rotations in the z',y',z' direction. With a prismatic mem-
ber, the 12 x 12 stiffness matrix for local axes is composed of the following 6 x 6
submatrices. ( Weaver and Johnston, 1987 ).



Figure B.1: Space frame member: (a) local directions; (b) global directions.
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(B)

(B2)

(B.3)

‘Where p is the mass density of element, A is the area of the cross section of
beam, L is the length of element,I; is the polar moment of inertia of the cross
section, I, I, are its second moments of area about the y' and z' axis respectively.

ro is GI/ElL,, 1y is AL?/L,.
For the circular cross section

LAt
L=
D4
b=
D!
L=
D is the diameter of the shaft
G is the shear modulus of elasticity
E
G 2L +v)

The stiffness matrix of element is



" K. K.
w1=[ 6 ] (B4)
Ky
Similarly, the 12x 12 consistent - mass matrix M’ for local directions contains
the four 6 x 6 submatrices,

®5)
0o o
0 0 0
ALl 0 0 s 0 -1L 0
Mil=Fg0 o o 72 0 o (B5)
0 0 L o -3 o
0 -8L 0 0 0 -3
W 0 0o 0 o0 o0
0 1% 0o 0 o0 -220
ello o 1w o m 0
M) = 0 0 0 02 0 0 (B7)
0 0 2L 0 4 0
0 20 0 0 0 4

Where r7 is J/A , the radius of gyration squared, J is the mass polar moment
of inertia of shaft per unit length.
=D*
=%
The Consistent - mass matrix M’ is
(M= [ My M¢ ] (B8
My

For the lateral(transverse) vibration of a shaft, it is reasonable to neglect the
translation and rotation in the axial direction. Therefore the stiffness matrix and
consistent - mass matrix of an element can be expressed as follows:
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12, 0 0 6Ll

. _E| o 121, -6I, 0
Kil=%| o ZeLy, i, o (B9)

6LI, 0 0 4r?L,

121, 0 0 -6LIL
0 -121, 6L, 0

0 -6LL, 2L, 0 (B.10)
6LI, 0 0 2r’I
12, 0 0 —6LIL
. _E| 0 i, LI, 0
Kul=35| o 6Li, 4, o (B.11)
—6LI, 0 0 4L,
The stiffness matrix of element K" is
o [ KL Ky
wi- [ &] -

Figure B.2 depicts an element neglecting the translation and rotation in the
axial direction.



o
=

Figure B.2: Beam element with 8 degrees of freedom

Similarly, the 8x 8 consistent - mass matrix M’ for local directions contains
the four 4 x 4 submatrices,

16 0 0 922L
_pAL| 0 156 -2 0
0| 0 -2L 4 o (B.13)
B0 0 4L?

s 0 0 13
0 5 -18L 0
0 180 -3 0

-BL 0 0 -3
w6 0 0 -2
L _pAL| 0 156 220 0

Mal=T5 | o L oar o (B15)

2L 0 0 4L

The Consistent - mass matrix M’ is

M)

3.

(B.14)
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. M M,
M= il J B.16
= [ 3 M (B.16)

After stiffness matrix, mass matrix for individual elements have been trans-
formed to global directions, we can assemble them by direction stiffness method
( Weaver and Johnston, 1987). Then the stiffness and mass matrices of the whole

structure can be obtained.
After oblaining the K, M of whole structure, the matrix equation of free vi-

bration can be written as follows:

[M){q} + [K]{q} = {0} (B.A7)



Appendix C

Flow Chart of Program



86

Produce Element Stiffness and Mass Matrices J

Produce Element Mass Matrix

Put the Element Stiffness and Mass Matrices
into Global Stiffness and Mass Matrices

Lumped Mass or Inertia

Input the Lumped Mass or Inertia

I




Flexible Support

Input Stiffness of Support

Apply the Boundary Condition

| Cal Subroutine of Solving Eigenvalue |

] Output of Frequencies and Shape Modcs]

End




Appendix D

Computer Program in
Fortran-77
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DIMENSION XM(120,120),XK(120,120) ,XNODE(30,2) ,MELM(30,4)

DIMENSION  AIEU(S5,4), XDCRACK(10),FLEC(4,4),XKCRACK(8,8)

DIMENSION  T(8,4),TT(4,8),TWORK(8,4),XCO(4,4), FCRACK(4,4),
FFCRACK(4,8) ,XKLOC(8, 8) , XMLOC(8, 8) ,NBOU(50,3
,H(120,120) ,V(120) ,ESPRING (20) , XMODE(30) , XLUMP (20) ,
LUMP(20,2)

CHARACTER*8 XCHAR
OPEN (1, FILE='in.dat’,STATUS=/OLD’)
OPEN (2, FILE=/out.dat’ , STATUS='NEW')
OPEN (3, “ILE='out1.dat’ , STATUS="NEW )
OPEN (4, FILE='out2.dat’, STATUS='NEW')
XM --- GLORAL MASS MATRIX
XK --- GLOBAL STIFFNESS MATRIX
XNODE(*, 2) -~ COORDINATE OF NODE, x
MELM(1,2,3,4) --ELEMENT
-= START No.
END .
-~ TYPE OF MATERIAL
-- TYPE OF EIM. 0 -- UNCRACKED.
1,2, ... -- CRACKED
AIEU(1,2,3,4,5,6) -- MATERIAL OF ELM.
-- RADIUS OF CROSS=SECTION
-- INTERIA MOMENT AT X -DIR.
" y n

pUNE
1
i

X
X
E, YOUNG MODULA
~- POSSION’S RATIO
-~ MASS DENSITY
MELM -- No. OF ELEMENTS
XCRACK(1) - THE DEPTH OF CRACK
1 - DEPTH
NCR -- THE NO. OF CRACK

amswNR
]
i

READ (1, *) NFE, NNODE, NELM, NETYPE, NBO, NKSPRING, NCR, NMASS

READ(1, *) ( (XNODE(I,J) ,J=1,2) ,I=1,NNODE)
READ(1, %) ( (MELM(I,J),J=1,4),I=1,NELM)
READ(1,#) ((AIEU(I,J),J=1,4),I=1,NETYPE)
READ(1, *) ( (NBOU(T,J),J=1,3),I=1,NBO)

IF (NKSPRING.GT.0) THEN

READ(1, *) (ESPRING(I) ,I=1,NKSPRING)

ELSE IF(NCR.GT.0)THEN

READ(1, i)(xncmcx(r) 1—1 NCR)

ELSE IF(NMASS.GT.O)T

READ(1,*) (XLUMP(I), x 1 NMASS)

READ(1, %) ( (LUMP(T,J),J21,2) , I=1, NMASS)
ENDIF
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NFE -- FREDOM OF EACH NODE

NNODE -- NO. OF NODES

NELM -- NO. OF ELM.

NETYPE --NO. OF ELMTYPE(MATERIAL)

NMASS - No. of LUMPED MASS(note: freedom)

LUMP(1,2)
1

No. of NODE
2---No. of freedom(1,2)
XLUMP (20) ---Mass or inerti
NNFR=NNODE*NFE
NNFR =- NO. OF FREDOM OF STRUCTURE
NFE -~ THE No. OF FREDOM IS 4
XLOU -~ THE MASS DENSITY
NKSPRING -- NO. OF ELASTIC SPRING
NNFR=NNODE*4
NNFE=2*NFE
DO 1000 IELM=1,NELM
KCRACK=MELM (IELM, 4)
THE No. OF THE CRACK
KINDELM=MELM (IELM,3)
NSTA=MELM (IELM,1)
NEND=MELM (IELM, 2)
X1=XNODE (NSTA, 1)
X2=XNODE (NEND, 1)
Y1=XNODE (NSTA, 2)
Y2=XNODE (NEND, 2)
XLELM=SQRT ( (X2-X1) **2+ (Y2-Y1) *%2)

PAI=3.1415926

R=AIEU (KINDELM,1)
XA=PAT#*R**2
XIZ=PAI*R**4/4.
XIY=XIZ
XIZ=AIEU(KINDELM,2)
XIY=ATEU(KINDELM,3)
E=ATEU (KINDELM, 2)
XNU=ATEU (KINDELM, 3)
XLOU=AIEU (KINDELM, 4)
MASS MATRIX

CALL XLOCM(XLELM, XLOU, XA, XMLOC, NNFE)

SUPPORTS
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WRITE(3,222)XLELM,XLOU, XA, NFE
FORMAT (1X, ‘L=’ ,F5.2, 'L0U=",F7.2, 'A=' ,F10.4, 'NF=' ,I2)
WRITE(3,444) ((XMLOC(I,J),J=1,8),I=1,8)
FORMAT(1X, ‘MLOC=',4F14.4)
DO 777 II=1,NFE
DO 777 JJ=1,NFE
XM (NFE* (NSTA) ~NFE+IT , NFE* (NSTA) ~-NFE+JJ) =
XM (NFE# (NSTA) -NFE+IT ,NFE* (NSTA) -NFE+JJ) +XMLOC(II,JJ)
XM (NFE* (NSTA) ~NFE+II , NFE* (NEND) ~NFE+JJ ) =
XM (NFE* (NSTA) ~NFE+LI, NFE* (NEND) ~NFE+JJ) +XMLOC (11, JJ4NFE)
XM (NFE* (NEND) ~NFE+II ,NFE* (NSTA) -NFE+JJ) =
XM (NFE* (NEND) ~NFE+II, NFE* (NSTA) -NFE+JJ) +XMLOC (II+NFE, JJ)
XM (NFE* (NEND) -NFE+II , NFE* (NEND) -NFE+JJ) =
XM (NFE* (NEND) ~NFE+II , NFE* (NEND) -NFE+JJ) +XMLOC (IT+NFE, JT+NFE)
CONTINUE

IF (KCRACK.EQ.0) THEN
CALL XLOCK (E,XLELM,XIZ,XIY¥,XKLOC, NNFE)
WRITE(3,555) KCRACK, E, XIZ, XIY
FORMAT (1X, KCRACK=',12, 'E=' ,E14.4,'1Z AND 7Y’,2F10.4)
WRITE(3,333) ((XKLOC(I,J),J=1,8),1=1,8)
FORMAT (1X,

KLOC=" , 4E16.4)

ELSE
CDEPTH=XDCRACK (KCRACK)
THE DEPTH OF KCRACK CRACK
XDCRACK( ) -- CRACK DEPTH OF EACK CRACK
PRINT *,’CDEPTH’ ,CDEPTH, 'R=',R
CALL XCRACK(FLEC, XLELM, XKLOC,NFE, CDEPTH, R, E, XNU, XCO
4 XI2,FCRACK, FFCRACK, T, TT , THORK)
SUB XCRACK(FLEC, XL, XKCRACK, NFE, CDEPTH, R, E, XNU, XCO
,XI1Z,FCRACK, FFCRACK, T, TT, THORK)
WRITE(3,212) ((XKLOC(I,J),J=1,8),1I=1,8)
FORMAT(1X,
*KLOCRACK=',4E16.4)

NF)

XK (NFE# (NSTA) -NFE+IT, NFE* (NSTA) ~NFE+JJ) =

XK (NFE* (NSTA) -NFE+11 , NFE# (NSTA) ~NFE+J3) +XKLOC (11, JJ)
XK(NFE# (NSTA) ~NFE+1I, NFE# (NEND) -NFE+3J) =
XK (NFE* (NSTA) -NFE+1I, NFE# (NEND) -NFE+JJ) +XKLOC (11, JJ+NFE)
XK (NFE* (NEND) ~NFE+LI, NFE* (NSTA) -NFE+JJ) =
XK (NFE* (NEND) -NFE+1T, NFE* (NSTA) ~NFE+J.7) +XKLOC ( IT+NFE, JJ)
XK (NFE* (NEND) ~NFE+1I, NFE* (NEND) -NFE+JJ) =
XK (NFE* (NEND) -NFE+II, NFE* (NEND) -NFE+JJ) +XKLOC (IT+NFE, JT+NFE)
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XK (NFE* (NSTA) -NFE+II,NFE* (NSTA) -NFE+JJ7) =XKLOC (II, JJ)
XK (NFE* (NSTA) -NFE+II, NFE* (NEND) -NFE+JJ) =XKLOC (1I,J3J)
XK (NFE* (NEND) ~NFE+IT , NFE* (NSTA) ~NFE+JJ) =XKLNC (II,J7)
XK (NFE* (NEND) ~NFE+IT,NFE* (NEND) -NFE+JJ) =XKLOC (II,J3J)
666  CONTINUE
1000  CONTINUE
WRITE(3,305) ( (XK(I,J),J=1,NNFR) , I=1,NNFR)
305  FORMAT(1X,’K=’,4E16.4)
WRITE(3,308) ((XM(I,J),J=1,NNFR) ,I=1,NNFR)
306  FORMAT(1X,’M=’,4E16.4)

nnoa

WRITE(3,404) (XM(I,I),I=1,NNFR)
404  FORMAT(1X, 'MII=',4E16.4)

WRITE(3,403) (XK(I,I),I=1,NNFR)
403 FORMAT(1X, 'KII=',4E16.4)

Intruduce Lumped Mass and Inertia

IF (NMASS.GT.0) THEN
DO 767 I=1,NMASS
ILN=LUMP(I,1)
ILF=LUMP(I,2)
XMLU=XLUMP (I)
III=(ILN-1)*4+ILF
print *,’Nmass’,nmass,’ILN’,ILN,’ILF’,ILF,’XMLU’,
c XMLU,’III’,III
XM (III,III)=XM(III,I1I)+XMLU
print *,/XM(IIT,III)’,XM(III,III)
767 CONTINUE

ENDIF

end of intrucing lumped Mass and Inertia
INTRODUCE THE BOUNDARY CODITIONS

NBOU(1,2,3)
1 -- NO. OF NODE
2 -- FRODOM OF RESTRAINED NODE
3 -~ TYPE OF RESTRAIN 0 -- RIGID,
12,3 ..-- ELASTIC
1 -- K1, 2 -- K2,
NBO -- THE NO. OF RESTRAINED NODE(* REPEATED NODE)
NKSPRING == NO. OF ELASTIC SUPPORTS
ESPRING (NKSPRING) -~ STIFFNESS OF SPRING

DO 888 I=1,NBO
1=NBOU(I,1)

'
IB1=4*(NB1-1) +NB2
IF(NB3.EQ.0) THEN



999

1002

346

DO 999 IB=1,NNFR

XK(IB1, IBl) =999999999999999.
DO 678 IB=1,
XM(IB1,IB)=0.
XM(IB,IB1)=
CONTINUE
XM(IB1,IB1)=2%999999999999999.

ELSE
ESPR=ESPRING (NB3)
XK(ID1,IB1)=XK(IB1,IB1)+ESPR

END IF
CONTINUE

PRINT *,’EIGEN’

WRITE(3,303) ((XK(I,J),J=1,NNFR), I=1,NNFR)
FORMAT (1X, 'KB=', 4E16.4)

WRITE(3,304) ((XM(I,J),J=1,NNFR) ,I=1,NNFR)
FORMAT (1X, 'MB=', 4E16.4)

WRITE(3,504) (XM(I,I),I=1,NNEFR)
FORMAT (1X, 'MII=",4E16.4
WRITE(3,503) (XK(I,I),I=1,NNFR)
FORMAT (1X, ‘KII=',4E16.4)

PRINT *, ‘NNFR=' ,NNFR
ERR=0.000001
CALL EIGG(XK,XM,H,V,ERR,NNFR,120)

ERR -- ACCURACY OF ITERATION
NMODE -- NO. OF MODE
H -- EIGENVECTOR

WRITE(2,1002) (XK(I,I),I=1,NNFR)
FORMAT (1X, ' EIGENVALUE' /1X, 4E16.9)

DO 343 II=NNFR,1,-1

DO 345 I=1,NFE
DO 346 IN=1,NNODE
IM1=NFE* (IN-1)+I
XMODE (IN)=XM(IM1,1I)
CONTINUE
IF(I.EQ.1)THEN
XCHAR= Z~MODE’

ELSE IF(I. £ z) THEN
XCHAR='Y~MOD

ELSE IF(I. m 3) THEN
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988
345
343

1001

10

94

XCHAR='CTZ-MODE’
ELSE IF(I.EQ.4) THEN

XCHAR=" CTY~MODE’

END IF

WRITE (2,989) IT, XCHAR
FORMAT (1X, 'MODE NO.’,I3,3X,A8)
WRITE (2,988) (XMODE (IMM) , IMM=1,NNODE)
FORMAT (1X,5E14. 6)

CONTINUE

CONTINUE

'WRITE(2,1001) ((XM(I,J),J=1,NNFR), I=1,NNFR)

FORMAT (1X, ' EIGENVECTOR’ /1X,4E16.9)
STOP
END

SUBROUTINE MCFL (CDEPTH,R,FLEC, E,XNU,NC)

NC--the num. of fredom of crack flexibility matrix
NC=4 - neglect torsional and longitunal vib.
NC=6 --=-- include

R--- Radis of shaft

CDEPTH ~- depth of crack

E -- young module

xnu -- Possion’s ratio

FELC -- flexibility matrix of crack elm.

DIMENSION FLEC(NC,NC)

CRATIO=CDEPTH/2./R

DO 10 I=1,NC

FLEC(I,J)=C 0

CONTINUE

IF(NC.EQ.6) THEI

PRINT *, ’NC=' ,NC 'WRONG FREDOM OF CRACK’

STOP

ENL IF

CALL C22(CRATIO,FC22)

CALL C33(CRATIO,FC33)

CALL C44 (CRATIO,FC44)

CALL C45 (CRATIO, FC45)

CALL C55 (CRATIO, FC55)

print *,/22n=’,fc22,33=',£fc33,’44="',fc44,

755=",£c55,/54="',fc45

FC22=10%*FC22
FC33=10#*FC33

FC44=10#*FC44

FC45=10%*FC45

FC55=10%*FC55

print *,722=/,£c22,/33=" fc33,’44=",fc44,
/55=/,£C55, 754=",fc45
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30

40

FC22=10+**FC22

FC33=10%*FC33

FC44=10%*FC44

FC45=10**FC45

FC55=10%*FC55

print #,722=/,fc22,733=",£c33,’44=", fcad,
55=¢,£c55, /54=" ,£C45

PAI=3.1415926
FO=PATXE*R**2/ (1, -XNU**2)

FLEC(1,1)=FC22*R/F0

FLEC(2,2)=FC334R/FO

FLEC(3,3)=FC44/R/FO

FLEC(4,4)=FC55/R/FO

=FC45/R/FO

=FLEC(4,3)

PRINT *, ’CRATIO=',CRATIO, ’FC=,((FLEC(I,J),
J=1,Nc) ,I=1,NC)
RETURN

END

sunnom‘ms xcmcx(usc XL, XKLOC, NFE, CDEPTH, R, E, XNU, XCO
L FCRACK, FFCRACK, T, TT, THORK)
DIMENSION FLEC(‘ 4) ,XKLOC(8,8) ,T(8,4) ,TT(4,8) , THORK(8,4) ,
XCO (4,4) , FCRACK(4,4) , FFCRACK (4, 8)
=1,8

xxx.oc(x 3)=0.0

cau. ncrn(comu,n,rmc,s,xuu,upa)
DO 30 I=1,4

T(I,1)
T(1+4,1)=1.
CONTINUE

print_#, ‘T(]=", ((T(I,&),I=1,NFE),I=1,8)
CALL XK22(XL,XCO,E,XIZ,NFE|
print *,’Xco[)=’, ((Xco(I,J),J=1,NFE),I=1,NFE)

DO 40 I=1, NFE

DO 40 J=1,NF]

FCRACK(I, J)‘FLEC(I J)+Xco(I1,J)
CONTINUE

NNFE=2*NFE
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print *,’FCRACK[]=', ((FCRACK(I,J),J=1,NFE) ,I=1,NFE)
DO 41 I%1 NFE
DO 41 J=1

FCRACK(I, J) chcx(x J)*E

CONTINUE

print *,/FCRACK[]=', ((FCRACK(I,J),J=1,NFE) ,I=1,NFE)

CALL INVER(NFE, FFCRACK, FCRACK, NNFE)
PRINT *,’INVER’
print *,’FCRACKINV([]=’, ((FCRACK(I,J),J=1,NFE),I=1,NFE)

DO 42 I=1,NFE
DO 42 J=1,NFE

FCRACK (I,J) =FCRACK(I,J) *E

CONTINUE

PRINT *,’FCRACK’, ((FCRACK(I,J),J=1,NFE),I=1,NFE)
FFCRACK (NFE, 2NFE)

CALL TRAN(T,TT,8,4)
PRINT *,’TRAN’

CALL MTM(T,FCRACK,TWORK, 8,4,4)
PRINT *,’MTM1/

CALL MTM(TWORK,TT,XKLOC, 8,4,8)
PRINT *, 'MTM2’
PRINT #, "TWORK’, ( (TWORK(I,d),J=1,4),I=1,8)

WRITE(4,102) ((XKLOC(I,J), a=1 8),I=1,8)
FORMAT (1X, ' KCRACK’ , 4E19.
WRITE(*,102) ( (XKLOC(I,J) , J»1 8),I=1,8)

RETURN
END

SUBROUTINE XK22(XL,XCO,E,XIZ,NFE)

The program is used to calculated the flexibility of an
uncracked elm.

DIMENSION XCO(NFE,NFE)

DO 10 I=1,NFE

DO 10 J=1,NFE

XCO(I,J)=0.

CONTINUE

(3,3
XCO(4,4)=XL/E/XIZ
XCO(3,2)==-XL**2/2. /E/XIZ
XCO(4,1)=XL*%2/2. /E/XIZ
DO 20 I=1,NFE
DO 20 J=I+1,NFE
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XCO(I,J)=XC0(J,I)
CONTINUE

WRITE(4,101) ((XCO(I,J),J=1,NFE),I=1,NFE)
FORMAT (1X, XC0’,4E15.5)

RETURN

END

SUBROUTINE XLOCK(E,XL,XIZ,XIY,XKLOC,NNFE)

DIMENSION XKLOC(NNFE,NNFE)

E -- YOUNG MO.

XL -- LENGTH OF ELEMENT

SECTION INTERIA MOMENT AT Z DIRECTION
H "

XKLOC ~--~LOCAL STIFFNESS MATRIX OF ELEMENT, (NFE,NFE)
NFE No. OF FREDOM OF NODE

NFE=4-- NEGLECT TORSIONAL AND LONGITUDAL
"

NFE=6 INCLUDE
NNFE ~- 2*NFE

COEE=E/XL**3
XKLOC(1,1)=12.*XIZ*COEE
2,2)=12.*XIY*COEE

=4, *XL**2*XIY*COEE
=4. *XL**2#XIZ*COEE
=-6. *XL*XIY*COEE
=6. *XL*XIZ*COEE
=XKLOC(3,2)
=XKLOC(4,1)

XKLOC
XKLOC
XKLOC
XKLOC
XKLOC

Gg
NNoauun BNBWREG
VUNWNBH AWHNBW

=-12.*XIZ*COEE
==6.*XL*XIZ*COEE
==12.*XIY*COEE

=6, *XL*XIY*COEE
==6.*XL*XIY*COEE
=2, *XL*#*2*XIY*COEE
XKLOC(8,1)=6.*XL*XIZ*COEE
XKLOC (8,4)=2.*XL**2*XIZ*COEE

XKLOC(5,5)=12 . *XIZ*COEE
XKLOC(6,6)=12 . *XIY*COEE
XKLOC(7,7)=4. *XLA*2*XIY*COEE
XKLOC(8,8)=4. *XL**2*XIZ*COEE
XKLOC (7, 6) =6 . *XL*XIY*COEE
XKLOC(8,5)=-6. *XL*XIZ*COEE
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DO 20 I=1,NNFE

DO 20 J=I+1,NNFE
XKLOC(I,J)=XKLOC(J,I)
CONTINUE

END

SUBROUTINE XLOCM(XL,XLOU,XA,XMLOC, NNFE)

DIMENSION XMLOC (NNFE,NNFE)

E -- YOUNG MO.

XIDII -~ MASS DENSITY

AREA OF CROSS SECTION OF SHAFT

XL LENGTH OF ELEMENT

XIZ -- SECTION INTERIA MOMENT AT Z DIRECTION
X

~LOCAL HASS MATRIX OF ELEMENT, (NFE,NFE)
NFE --- No. OF FREDOM OF NODE

NFE=4-- NEGLECT TORSIDNAL AND LONGITUDAL

NFE=6  INCLUDE
DO 10 I=1,NNFE
DO 10 J=1,NNFE
XMLOC (I ,J)=0.0
CONTINUE
COEE=XLOU*XA*XL/420.
XMLOC (1,1)=156. *COEE
XMLOC (2, 2) =156 . *COEE
XMLOC(3,3)=4. *XL**2#COEE

XMLOC(4,4)=4. *XL**2*COEE
XMLOC(3,2 22. *XL*COEE
XMLOC (4,1 2, *XL*COEE
XMLOC(2,3)=XMLOC(2,3)

XMLOC(1,4) =XMLOC(4,1)

XMLOC(5,1)=54.*COEE
XMLOC(5,4)=13. *XL*COEE
=! *COEE

2
XMLOC(7,3)==3.*XL**2*COEE
XMLOC(8,1)=-13.*XL*COEE
XMLOC (8,4)=~3.*XL**2*COEE

XMLOC(5,5)=156.*COEE

XMLOC(6,6)=156. *COEE

« *XL*#2+COEE
8)=4. *XL**2*COEE

XMLOC(7,6)=22.*XL*COEE

XMLOC(8,5)==22. *XL*COEE
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DO 20 I=1,NNFE

DO 20 J=I+1,NNFE
XMLOC (I, J)=XMLOC (J, )
CONTINUE

RETURN

END

SUBROUTINE LINE(X1,Y1,X2,Y¥2,X,Y)
Y=Y1+(X-X1)*(¥2-Y1)/ (X2-X1)
RETURN

END

SUBROUTINE COFI(A0,A1,A2,A3,Ad,AS,A6,A7,A8,A9,AL0
,BO,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,A,B)
PRINT *,’A=’,A,’B=',B
IF(A.LT.A0) THEN
PRINT *,'THE DEPTH OF CRACK IS WRONG’
ELSE  IF((A.GE.A0).AND.(A.LE.Al)) THEN
CALL LINE(AO,BO,A1,B1,A,B)
ELSE  IF((A.GE.A1).AND.(A.LE.A2)) THEN
CALL LINE(A1,B1,A2,B2,A,B)
ELSE  IF((A.GE.A2).AND.(A.LE.A3)) THEN
CALL LINE(A2,B2,A3,B3,A,B)
ELSE IF((A.GE.A3). AND (A.LE.Ad)) THEN
CALL LINE(A3,B3,A4,B4,A,B
ELSE  IF((A.GE.A4).AND.(A.LE.AS)) THEN
CALL LINE(A4,B4,A5,B5,A,B)
ELSE  IF((A.GE.AS).AND. (A.LE.A6)) THEN
CALL LINE(AS,BS5,A6,B6,A,B)
ELSE TF((A.GE.A6) -AND. (A.LE.A7)) THEN
CALL LINE(A6,B6,A7,B7,A,B)
IF((A.GE.A7) .AND. (A.LE.A8)) THEN
CALL LINE(A7,B7,A8,B8,A,B)
ELSE IF((A.GE.A8) .AND- (A.LE.A9)) THEN
CALL LINE(A8,B8,A9,B9,A,B)
ELSE  IF((A.GE.A9).AND. (A.LE.A10)) THEN
CALL LINE(A9,B9,A10,B10,A,B)
ELSE
IF(A.GT.A10) THEN
PRINT *,’THE CRACK DEPTH IS WRONG’
END IF
RETURN
END



SUBROUTINE C22 (CRATIO,FC22)
A0=0.

Al1=0.1

A2=0.2

A3=0.3

A4=0.4

A5=0.5

A6=0.6

B10=1.85
CALL COFI(AO,Al,A2,A3,A4,A5,A6,A7,AB,A9,AL10
BO,B1, BZ BJ Bl B5 BE B7 B8, BS HIO CRATIO FC22)
RETURN
END

SUBROUTINE C33(CRATIO,FC33)
A0=0.

Al=0.1
A2=0.2

B9=1.5
B10=2.28
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CALL COFI(AO,Al,A2,A3,A4,A5,A6,A7,AB,A9,AL0,

BO,B1, BZ BJ 54 BS BS 57 BE BS BlO CRATIO FC33)
RETURN
END

SUBROUTINE C44 (CRATIO,FC44)
A0=0.
Al=0.1
A2=0.2
A3=0.3
A4=0.4
A5=0.5
A6=0.6
A7=0.7
A8=0.8
A9=0.9
Al0=1.0
BO=-6.

B10=4.
CALL COFI(AO,Al,A2,A3,A4,A5,A6,A7,A8,A9,AL0,

BO,B1, 52 BJ 54 B5 BG B7 Bﬂ 59 BlD URATIO FC44)
RETURI

SUBROUTINE C45 (CRATIO,FC45)



CALL COPI(AO A1,A2,A3,A4,A5,A6,A7,A8,A9,A10

BO,B1, BZ BJ Bl BS BS B7 B8, BQ B).D CRATIO,FCdS)
RETURN
END

SUBROUTINE C55 (CRATIO,FC55)
A0=0.
A1=0.1
A2=0.2
A3=0.3
A4=0.4
A5=0.5
A6=0.6
A7=0.7
A8=0.8
A9=0.9

B10=3.
CALL COFI(AO,Al,A2,A3,A4,A5,A6, A7 A8,A9,A10,
BO,B1, BZ BJ Bl BS BS B7 BS BS B10, CRATIO FC55)
RETURN
END
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SUBROUTINE TRAN(T,TT,M,N)
DIMENSION T(M,N),TT(N,M)
DO 10 I=1,M

DO 10 J=1,N
TT(J,I)=T(I,J)

CONTINUE

END

SUBROUTINE MTM(A,B,C,M,N,L)
DIMENSION A(M,N),B(N,L),C(M,L)

c(x J)—C(I J)+A(I K) *B(K,J)

CONTINOB
RETURN
END

SUBROUTINE INVER(N,A,B,LL)

LL=2#N

DIMENSION A(N,LL),B(N,N)

INTEGER PV

print *,‘a’, ((a(i,j),j=1,11),i=1,n)
print #,’b’, ((b(i,3),3=1,n),i=1,n)
DO 40 I=1,N

DO 40 J=1,LL

IF(1. oszPs. GT.1.0) THEN
EPS=EPS/7.

GO TO 10

END IF

EPS=EPS*2

PRINT *, "MACHIN EPSILON=',EPS



EPS2=EPS*2
DET=1.0
DO 1010 I=1,N-1
PV=I
DO J=I+1,N
IF(ABS(A(PV,I)).LT.ABS(A(J,I))) PV=J
D DO

ENI
IF(PV.NE.I)THEN
DO JC=1,N*2
TM=A(I,JC)
A(I,3C)=A(PV,JC)
A(PV,JC)=TH

IF(A(I,I).EQ.0.) GO TO 1200
ELIMINATING BELOW DIAGONAL
DO JR=I+1,N
IF(A(JR,I).NE.O.)THEN
R=A(JR,I)/A(I,I)
DO KC=I+1,N#*2
TEMP=A (JR, KC)
A(JR,KC)=A(JR,KC) -R*A (I, KC)
IF(ABS(A(JR,KC)).LT.EPS2*TEMP) A(JR,KC)=0.0
END DO

END IF
END DO
1010 CONTINUE
DO I=1,N
DET=DET#*A(I,I)
END DO
PRINT *
PRINT *, ’DETER7BMINANT=' ,DET
PRINT *
BACKWARD SUBSTITUTION
IF(A(N,N).EQ.0) GOTO 1200
DO 1100 M=N+1,N*2
A(N,M)=A(N, H)IA(N N)
DO NV=N-1
Vs

(W M)
DO K=NV+1,N
VA=VA-A (NV, K) *A (K, M)

END DO
A(NV, M)=VA/A(NV,NV)
END DO
11eg CONTINUE
DO 99 I=1,N
DO 99 J=N+1,N#2
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1200

N

10

20
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30
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B(I,J-N)=A(I,J)
CONTINUE

RETURN
PRINT *, "MATRIX IS SINGULAR’
END

subroutine EIGG(A,B,H, V ERR, N, NX)
DIET{ [A]-LANBTA'[B]}

DIMENSION V(NX),A(NX,NX),B(NX,NX) ,H(NX,NX)
CALL DECOG(B,N,NX)

CALL INVCH(B,H,N,NX)

CALL BTAB3(A,H,V,N,NX)

CALL JACOB(A,B,ERR,N,NX)

CALL MATMB(H,B,V,N,NX)

RETURN-

END

SUBROUTINE DECOG (A,N,NX)

DIMENSION A(NX,NX)

IF(A(1,1))1,1,3

WRITE (*,2)

FORMAT (/ZERO OR NEGATIVE RADICAND’)

TO 200

aQ1, 1)=sqm~(n(1 1))

DO 10 J=2

A1, a)-A(x J’)/A(l 1)
40 1=2,N

I1=I-1

D=A(I,I)

DO 20 L=1,I1

D=D-A(L,I)*A(L,I)

IF(A(I,I))11,11,21

WRITE (*,2)

stop
A(I,I)=SQRT(D)
I2=I+1

DO 40 J=I2,N

1
D=D-A(L, I)*A(L,J)
A(I,J)=D/A(I,T)
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I1=I-1
Do 50 J=1,I1
A(1,3)=0.

RETURN
END

SUBROUTINE INVCH(S,A,N,NX)
DIMENSION A(NX NX) , S (NX, NX)
DO 10 I=1,N

A(L,I)=1./5(I,1)

N1=N-1

DO 100 K=1,N1

D=D+S (I, L) *A(L,J)
A(1,3)=-D/S(I,I)

RETURN
END

SUBROUTINE BTAB3(A,B,V,N,

NX)
DIMENSION A(NX,NX) ,V(NX) ,B (NX,NX)
DO 10 I=1,N

V(I)-V(I)w(x I)*A(K,J)
A(z a)—vu)

RETURN
END
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50

100
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200

300

400
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SUBROUTINE JACOB(A,V,ERR,N,NX)
DIMENSION » (NX,NX),V(NX,NX)
ITM=500

v(I,J)=1.
CONTINUE
M=N-1
DO 20 I=1,M
J1=I+1
DO 20 J=J1,
IF(ABS(A(T, J))-r)zo 20,2
T=ABS(A(I,J))
=1

1C=J
CONTINUE
IF(IT)5,4,5
T1=T*ERR
IF(T-T1)999,999,6
PS=A(IR,IR)-A(IC, I

C)
TA=(~PS+SQRT (PS*PS+4*T4T) ) / (2*A (IR, IC))

C=1./SQRT (1+TA*TA)
S=C*TA

DO 50 I=1,N

P=V(I,IR)
V(I,IR)=C*P+S+V(I,IC)
V(I,IC)=C*V(I,IC)=-S*P
I=1

IF(I-IR)7,200,7

P=A(I,IR)

A(I,IR)=C*P+S*A(I,bIC)

A(I,IC)=C*A(I,IC)-S*P
T

IF(I-IC)8,400,8
P=A(IR,I)
A(IR,I)=C*P+S*A(I,IC)
A(I,IC)=C*A(I,IC)~-5+P
I=T+1

GO TO 300

I=IC+1

IF(I-N)9,9,600
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P=A(IR,T)
A(IR,I)=C*P+S*A(IC,I)

A(IC,I)=C*A(IC,I)-S*P

I=I+1

GO TO 500

P=A(IR, IR)
A(IR,IR)=CAC*P+2.*CXS#*A(IR, IC) +S*S*A(IC,IC)
A(IC,IC)=C*C*A (IC,IC)+S*S*P-2,*C*S*A(IR,IC)
A(IR,IC)=0.

IT=IT+1

IF(IT-ITM)13,13,999

RETURN
END

SUBROUTINE MATMB(A,B,V,N,NX)
DIMENSION A(NX,NX),B (NX,NX) ,V(NX)
DO 20 J=1,N

K=1,N
V(I)=V(I)+A(I,K)%B(K,J)
DO 20 I=1,N
B(I,J)=V(I)

RETURN
END
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