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ABSTRACT

‘T'he standard assumption in flood frequency analysis is that annual peak flows
are independent events. Hydrologists pay little attention to the serial correlation
of flood peak series in flood frequency analysis because standard statistical tests
for independence usually do not reject the null hypothesis of serial independence
at the 90% or 95% confidence level for most rivers. This study was undertaken to
investigate the validity of this assumption with regard to Canadian rivers by sta-
Lis

tically analyzing the short-term and long-term dependence of annual peak flows.

Ninety stationary flood series of Canadian rivers were tested by eleven tests for
short-term dependence and one test for long-term dependence. The results show

that about 18%(at 5% level) - 28%(at 10% level) flood series passed the short-term

dependence tests but failed the long-term dependence test. The presence of long
term serial correlation in flood series is evident and can not be disregarded in flood
risk analysis.

Modeling annual flow series by considering the effect of both short-term and

long-t d d was then di: d. This study idered two newly de-

veloped models: harmonic analysis of lative d and the mixed
model. These two models were further developed and a comparison between them
was made. Finally, the effect of long-term dependence on flood risk analysis is eval-

uated using Monte Carlo simulations. It was found that neglecting serial correlation

could cause iderabl inty in the esti d flood risk.
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Chapter 1
INTRODUCTION

1.1 Review of Serial Correlation on Flood Risk
Analysis

1.1.1 Serial Correlation of Annual Peak Flows

Many types of hydrologic time series exhibit significant serial correlation, that
is, the value of the random variable under consideration at one time period is cor-

related with the values of the random variable at earlier time periods. But in most

analysis of annual peak disch for the d ination of flood fr ies, an-

nual peak flows are assumed to be serially independent events.

The of assuming ind dent annual peak flows must be consid-
ered. Chow [1] cautioned that in actual hydrologic phenomena the variables are
likely to be interdependent to an extent, and that the possibility of interdepen-
dence should be investigated. The U.S. Water Resources Council Guidelines [2]
admitted that a relationship derived to predict future flood activity, if based upon
nonrandom data, would have an increased degree of uncertainty. As cited by Car-

tigan and Huzzen (3], the specific effects could be to underestimate the confidence

distrik 1

bands ascribed to a flood freq ibution and to

the popu-




lation variance of a peak flow series by neglecting to consider serial correlation.
If annval peak flows are dependent, errors in flood frequency analysis procedures

due to the ion of ind d should be ined and ified, and

standard procedures revised to account for interdependence. Lye [1] also showed

that taking into account the inty which is agg: d by serial
correlation, significantly increases the risk associated with future peak flows.
Serial correlation analysis provides a measure of the degree to which the vari-
ables in a time series are interdependent. Yevjevich [5] performed serial correlation
analysis on sequences of annual river flow and detected positive serial correlation
on many rivers. Acknowledging the interdependence of annual flows, Carrigan and
Huzzen [3] investigated the serial correlation of annual peak flows. In their analysis
of records for 45 streamflow stations throughout the United States, the number
5 s o o s

of ly different from zero for time lags of one

and two years was greater than the expected number due to chance. Six of the
45 streams were judged to show signs of dependence. In an analysis of Australian
streams by McMahon (6], approximately 17 percent of 133 streams analyzed showed
dependence of annual peak discharges. But, for most rivers, standard statistical
tests for dependence usually do not reject the null hypothesis of serial independence
at the 90% or 95 % confidence level. Wall and Englot (7] concluded that, according
to 5 independence tests, annual peak flows are independent for the 57 streams in
Pennsylvania. That is why serial correlation is usually disregarded in flood fre-
quency analysis. The obvious exceptions are rivers with large storage features in

their drainage basins such as large lakes.



1.1.2 Long Term Persistence in Peak Flow Series

Serial correlation implies persistence. Long-term persistence ! is the presence
in a Lime series of significant dependence between observations a long time span
apart. This is in contrast with the common assumption of time series analysis that
observation scparated by a long time span are independent or nearly so. Long term

may be ch ized by the Hurst ph and measured by the

Hurst coefficient h.

"The basic mathematical expression for the Hurst coefficient can be written as:

Ro/Sp ~n" (1.1)

where Ry, and S, are the ple-adjusted range of ive departures from the
arithmetical sample mean and the sample standard deviation, respectively, for a
given Lime series of length n; the ratio R./S, is specifically referred to as the ad-

justed rescaled range; and h denotes the Hurst i For some 900

time series, [urst [8][9] observed that on average h=0.73. However, theoretical at-
tempts to preserve this value of h in synthetic sequences failed as they led to an
asymptotic value of 0.5. This discrepancy between the empirical and theoretical

values is labelled as the Hurst ph It d iderable interest

among hydrologists and mathematicians alike since it indicates a puzzling long
term “memory” or “persistence” in the random process that generated the series.

The point that is overlooked in statistical tests for dependence is that these
tests are designed to show up only short term serial correlation. They are insensitive

"In this thesis, three words, serial correlation, persistence and dependence mean the same thing
and are used interchangeably.




to the long term serial correlation structurc of the data. This was demonstrated by
Booy and Lye [10]. They analyzed the correlation structure of about fifty annual
peak flow series from all over Canada, and found that while the high frequency
aspects of the serial correlation structure, as measured by the lag-one serial corre-
lation coefficient, are not significantly different from zero, the low [requency aspects

as 1 by the Hurst coefficient [8), is significant for many of these serics. Sim-

ilar findings for annual flow volumes and annual precipitation were reported by

Srikanthan [11] and Hall et al. [12], respectively.

1.1.3 The Modeling of Hydrologic Time Series

For a normally distributed flood series with members that are independent or

that follow a simple lation structure, the di

of the sample statistics
can be obtained analytically in a flood frequency analysis, For flood serics with a
complicated serial correlation structure, it is difficult to use an analytical approach.
One must resort to Monte Carlo techniques. A theoretical time series model that
will reproduce the correct correlation structure of the peak flow scries is required

to obtain the distribution of the esti d

Many models exist for the modelling of hydrologic timeseries having a relatively

high Hurst coefficient as well as a low lag-one serial correlation coefficient. The
better known models are: the Fast Fractional Gaussian Noise process (Mandelbrot,
[13]); the Broken Line process (Mejia, [14]); the ARMA(1,1) process (0’Connell,
(15]); and the ARMA-Markov process (Lettenmaier and Burges, (16]). A sin.

and relatively efficient Mixed-Noise process for delling the “mixed” behaviour of

hydrologic series has also been developed (Lye, [4][10]). More recently, a harmonic



analysis method developed by Sen [17] has also been shown to be capable of mod-
elling the mixed behaviour.

Srikanthan [11] has compared the performance of some models for modelling
annual flow volumes of Australian rivers. But there are a number of issues which
have yet to be resolved for the two newly developed models, that is, harmonic
analysis of the cumulative departures and Mixed-Noise model. Harmonic analysis
method has not been fully developed. Sen [17] did not discuss the suitability of this
method, how to model the residuals between the original and HCD (harmonic cu-
mulative departures) curves, and some other problems. For the Mixed-Noise model,
the theoretical properties of this model and its performance in relation to the other
models have not been investigated in detail. Moreover, how to mcdel skewed flood
sequences using Mixed-Noise model is very important in practice and has yet to be

developed.

1.1.4 The Effect of Long-Term Dependence on Flood Risk
Analysis

The importance of low frequency behaviour on flood risk analysis was previ-
ously demonstrated by Booy and Morgan [18]. With a fractional noise model which
models low frequency behaviour [13], they have shown that a degree of clustering
of high flood years in the the record of annual flood peaks on the Red River in
Winnipeg that, statistically speaking, is incompatible with the customary assump-
tion of serial independence in flood frequency analysis. The return period for the
flood protection of the City of Winnipeg and the towns in the Red River Valley was

reduced to less than half the value estimated with the assumption of serial inde-
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pendence. Long-term fluctuations in soil moisture conditions were also shown to be
related significantly to the observed low behaviour in the annual spring peak flows
at Emerson, Manitoba (Booy and Lye, [19]). Because of the customary assumption
that annual peak flows are serially independent, it is worth making an effort to
extend this work to other river flood series and to the application of other models
for the modeling long-term dependence in flood risk analysis. Monte Carlo method
and mixed-noise model were used for this purpose. Bayesian analysis proposed
by Lye et al.(1987, 1988)is another method which is able to evaluale the effect of

long-term persistence on flood risk analysis [1](39].

1.2 Objective of Thesis

The first objective of this thesis is to investigate the long term serial correlation
in annual peak flows of Canadian rivers. As mentioned above, the consequences of
assuming independent annual peak flows should be considered and the statistical
tests for dependence which are normally used are insensitive to the long term serial
correlation structure of the series. Therefore, it is neccssary to know if long term
serial correlation exists in annual peak flows before we perform flood risk analysis.

The second objective of this study is to do further studies in two newly devel-

oped models for modeling h gic time series: analysis of
departures and mixed-noise model. These two models were designed to model long
term dependence in flood series.

The third objective of this study is to evaluate the effect of long term persis-

tance on the tolerance interval of estimated floods.



1.3 Outline of Thesis

twelve istical tests to i i the

The study begins with
serial correlation structure in annual peak flows of 90 selected Canadian rivers.
This is given in Chapter Two. Further development on Sen’s harmonic analysis
method is done in Chapter Three. Chapter Four presents the application of the
mixed-noise model in modelling “mixed” behaviour in annual floods, especially in
modelling skewed flow series. In Chapter Five, based on mixed-noise model and
Monte Carlo simulation, the effect of serial correlation in flood risk is analyzed.

Chapter Six provides conclusions and recommendations from this study.



Chapter 2

SERIAL CORRELATION
STRUCTURE OF ANNUAL
PEAK FLOWS

2.1 General

Statistical frequency analysis assumes that the sample to be analyzed is a
reliable set of measurements of independent random events from a stationary pop-
ulation. The validity of this assumption can be verified using statistical significance

tests. However, most istical tests of serial ind: il

are designed to show
up only short term serial correlation. They are insensitive to the long term serial
correlation structure of the data which can be far more important.

To demonstrate this issue, the serial correlation structure of nincty peak flow
series from Canadian rivers was analysed using eleven common tests for short-term
dependence and Hurst’s K test for long-term dependence. The calculated Hurst's K

for each river was tested for I si

using b ing and using
a table of empirical percentage points developed based on normally distributed

independent data.



In the next section, the details of each test of short-term dependence are given.

Hurst’s K test for long-tes is then idered. This is followed by

analysis of the results, and conclusions.
2.2 Tests of Short-Term Dependence

In the statistical analysis of short-t depend of the annual peak flows,

the following cleven tests were applied to cach time series. The first nine tests are
non-parametric tests, the last two tests are parametric tests.
2.2.1 Non-parametric tests
(1) Median crossing test (Fisz,1963) [20]
X replaced by 0 if z; < % (median) and

X replaced by 1if z; >

If the original sequence of X, has been generated by a purely random process,
thenm, the number of times 0is followed by 1 or 1 is followed by 0, is approximately
normally distributed, i.e.

M~ N (E 9:—‘ (@1

where n is the sample size.

(2) Turning points test (Kendall’s test) [20]

Kendall's test(Kendall and Stuart, 1976) is also based on a binary series. If

Li-1 < Ti > Tig) OF Ti-1 > Ti < Ti41, then ; is assigned the value 1; otherwise it is



10

assumed to be 0. The number of 1's, m, is approximately normally distributed,ie,

Ly (=2 [(en 291} .
m N( 7 VT w ) L

(3) Length-of-runs test (Gold test, 1928) [20]

A run length s is defined by a set of s consecutive flows cither above or below
the median. If M, denotes the total number of runs above and below the median

of length s, then for a random process,

E(m,) 29

and

Sl E(mlY/Bm) ~ s~ 1) an

where s’ is the maximum run length in the sequence.

(4) Rank difference test (Meacham test, 1968) [20]

Flows are replaced by their relative ranks /; with the lowest being denoted by
rank 1 (Ry).
The U statistic is calculated by:

v =iIR.~—n;_.| (2.5)
i=2

For large sample size n,

(n+)(n=1) [(n=2)(n+1)(4n-1)
U~N ( 5 ,\/ o ) (26)




(5) Cumulative period. test (Box-Jenkins, 1970) 20]

The periodogram of a time series is defined as [29]:
n n
;) = %le 2 cos2mi f;) + (3 isin 2ni f;)7) @7
= =
where f, = j/n
i 1,2 ., (n=2)/2 forn = even

= 1,2 (n=1)/2 forn = odd
‘I'he normalized cumulative periodogram is obtained from

F]
C(f;) =X I(J)/ns® (28)
=
s%=variance of z;
for white noise points should fall +K,/\/(n —2)/2 n = even
Ko = 1.63(99%), 1.36(95%), 1.22(90%), 1.02(75%)
(6) Wald-Wolfowitz test (Wald & Wolfowitz, 1943 [21]
For a sample of size n,
net
R=Y sizici + 170 (29)
i
If the elements of the sample are independent,

i $ -5 s}—s._(sf—-s7)’+s|‘—41}57+43153+s§—2s4
n—1"'\n-1 n-1 (n=1)(n-2)

where
s =2+ a5+t (2.1)

If mean is subtracted first, 3, = 0, then

5 51-25
G-yt EoDm —2)) 213



(7) Spearman rank order serial correlation coefficient test for dependence
(22]

The series z; is defined by the rank of Q; (i

v oy 01)
the series y; is defined by the rank of Q; (i = 2, ..., n)

then
13+ 2ul-Sd
2 Tz
where $a? = (m®-m)/12 - £ T,

Lot = (m-m)/12-LT,

d; = difference in rank between z; and y;

S = (2.13)

m=nl
If no ranks are tied (can be assumed if only a small number), then
6T d} .

R (2.14)

For tied ranks, T, = (2 — 1)/12

where ¢ is the number of observations tied at a given rank.
ST and £7, are defined by extension of the foregoing.
For n > 10,

Sy ~ t(m —2) (one tail test)

t=5 (2.15)

1-8?
(8) Runs above and below the median test for general randomness [22]

Data are ranked in chronological order. An A or B is assigned according to

whether the corresponding data item is above or “below or equal” to the median.



‘The number of runs, RUNAB, is determined.
For ny A's and nz B's with ny and ny both greater than 20, the sampling
distribution of RUNAB tends tn normality with
= |RUNAB ~ [(2nin3)/ (ny +n2) +1]|
2nna(2mnz = m = nz)/[(n + na)(na 0y = 1))

7 (2.16)

#is an N (0,1) variate and as used in this program, the region of rejection is
2 greater than 1.96 for o = 0.05
2 greater than 1.645 for a = 0.10

For ny and ny both less than 20, the region of rejection is defined by tables.

(8) Rank von Neumann Ratio [24]

Let 7y,..., 7 denote the ranks associated with the z}s. The rank von Neumann
ratio is given by
_ Ity (rimrin)
U= a(nr-1)/12 @

Critical values of ¢ = [n(n?— 1)/12]v and approximate critical values of v are given
by Madansky [24]. For large n, v is approximately distributed as N(2,4/n), though

Bartels recommends 20/(5n+ 7) as a better approximation to the variance of v [24].

2.2.2 Parametric test
(1) Autocorrelation test [23]

Short-term depend is usually d by the itude of the 1 d

autocorrelation coefficients. In this thesis the autocorrelation function, r, is esti-



mated using:
n—k n
™= | Yl = B)@iv ~ f)] / [Z (ri= f)’] (2.13)

where k = lag; #; = annual flow at time #; n = sample size; and

The lag-one autocorrelation, r, is calculated from Eqn.(2.18) and is normally

1 |n®=3n244
q NN(_;. Lo @1)

ry is checked whether or not it is significantly different from the expected value,

distributed:

(2) Von-Neumann ratio test [24]

Let
(2.20)
If data is independent, V is imately normally distributed with E(V) = 2
and Var(V) = 4(n — 2)/(n* - 1), that is,
A - T (2.21)
Va(n =2)/(n?-1)
2.3 Long-term Persistence
Longt dence is d by the magnitude of the Huret, cocffici

In this study, the Hurst coefficient is estimated by Hurst’s K value since K has a
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lower variance than other cstimators currently in use and its calculation is simple
and straightforward. It has, however, a substantial bias in that it overestimates A
for values below 0.70 and underestimates h for values over 0.70 (Wallis and Matalas,
{25]). Hurst’s estimator I (Hurst, [8]) is given by:

K= ——'[‘;‘!’]((f//;)’ (2.22)
where, R is the range of cumulative departures from the mean, s is the standard
deviation, and n the sample length. K is theoretically 0.5 for series of indepen-
dent data. It increases when there is a greater degree of persistence, and it cannot
exceed 1,0, The Hurst coefficient is presently the only measurement available for

long-Lerm dependence.

2.3.1 Empirical Percentage Points for Hurst’s K

To test the significance of the calculated Hurst’s K of a given time series,
percentage points of Hurst’s K for serially independent data at different probabil-
ity levels are required. Statistical tables for testing the significance of Hurst’s K
are not conveniently available. Therefore, in this study Monte Carlo method was
used to obtain empirical percentage points for Hurst's K. It is assumed that the
null hypothesis is that the flood peak series is normally distributed and serially
independent, and the alternate hypothesis is long-term dependence.

The procedure to obtain the empirical points by Monte Carlo sim-

ulation is as follows:
1). Generate independent normally distributed data(mean of zero and standard

deviation of one used here) of sample size n;
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2). Calculate Hurst's K using Eqn.(2.22);
3). Repeat steps (1) and (2) 10,000 times;

4). Obtain the empirical percentage points based on the 10,000 A values.

The of lity should not invalidate the test since Hurst's K is

a very robust statistic (Mandelbrot and Wallis, [36]). This will be confirmed later
using the bootstrap technique.

As mentioned earlier, bias exists in the estimation of the Hurst coefficient h
by Hurst’s K. However, since the formula used for calculating K is the same for

both the sample and in developing the table of ical

points this bins

would not come into play here. Therefore it is reasonable to compare the K value

of the flood series with those at given empirical tage points. The
results of the empirical percentage points are shown in Fig. 2.1 and Fig. 2.2. For

the i of the ising engineer, these points are also shown

in Tables 2.1 and 2.2 for sample sizes ranging from 20 to 200.
The test for long-term dependence is based on ing the observed K value

with that which could arise by chance alone from a series of normally distributed
independent data. Therefore, if the K value of a flood series is greater than the K
given in the Tables at a given significance level for a given sample size, it is concluded
that this series is long-term dependent at this probability level. Otherwise it has
no long-term dependence. The 5% and 10% levels are used in this study.

2.3.2 Bootstrap method for testing significance of Hurst'’s
K

To check the assumption of using normally distributed data for testing Hurst's

K, the non-parameteric bootstrap approach was used. Efron invented the bootstrap
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method (Efron, [4¢] [41] [42]) based on the fact that one available sample gives
rise to many others. This method can be used here as a non-parametric test for
long-term dependence. The bootstrap samples are generated from the data of the
original sample as follows:

1. Suppose that the annual flow series z;, 72, ... , . are independent ob-
servations. Each data z; has the same probability of occurrence which equals to
1/n;

2. Generate a uniform random data i between 1 and n, then choose z; as one
point in the bootstrap sample. Repeat this step n times to generate a bootstrap
sample of the same size n as the original sample;

3. Calculate Hurst’s K for the bootstrap sample;

4. Repeat Steps (2) and (3) a large number of times (10,000 in this study);

5. Count the number of times the observed K value of the sample is exceeded
by the 10,000 bootstrapped K values.

6. Calculate the p-value given by:

#K > Ko,

10000 22)

p—value=

Therefore, if the p-value is less than the specified significance level, it is con-
cluded that the sample being tested is long-term dependent at the specified level.

Otherwise it has no long-term dependence.
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2.4 Analysis of the Annual Peak Flows of Cana-
dian Rivers

The twelve tests for depend: described previously, cleven for short-t

dependence and one for long-term dependence, were applied to selected unregulated
Canadian rivers. The criteria established for data to be analyzed in this study were:

(1) At least 40 years of continuous record are available. This is because the
calculation of Hurst’s K will become unmeaningful when the length of annual flow
series is too short.

(2) The annuai peak flow series are from stationary populations, This is to focus
the investigation of this paper upon only short-term and long-term dependence.

Data which met the above criteria are available from 90 Canadian rivers.
Among these annual peak flow series, 12 are from Alberta, 13 from Atlantic provinces,
32 from B.C., 6 from Manitoba, 17 from Ontario, 5 from Quebec, 4 from Saskatchewan,
1 from Yukon. The 90 rivers range in record length from 40 to 80 years. The rivers
analyzed, including length of record, mean of the data, Hurst's K and lag-one cor-
relation, is presented in Table 2.3. It can be seen from the table that most of
the rivers have small lag-one serial correlation coefficients, but many rivers have
fairly high Hurst’s K. Fig. 2.3 shows the distribution of Hurst's K for the nincty
Canadian rivers analyzed.

Among the twelve tests used in this study, the parametric tests are designed
for normally distributed data. Therefore, if the data is not normal, the Box-Cox

transformation (Box & Cox, [43]) is used give approximately normal data. The



Box-Cox transformation is:
Yo=(X -1)/A ifA>0

(2.24)

Y, = In(X,) ifA=

where Y; are the transformed values, and A is obtained using the simple Probability
Plot Correlation Coefficient (PPCC) method (Lye, {30)).
For all of the tests in this study, their significance were tested at both five

and ten percent levels because these two significance are often used in engineering

practice. The results obtained for these two signil levels will be
‘The Table 2.3 shows that most of rivers has small short term serial correlation, but
some rivers have high Hurst coefficient 4. This difference can be also seen from
the results of tests for dependence. (Next section provides more detailed analysis
of these results.) The results are summarized in Tables 2.4 and 2.5 in terms of the
number of rivers indicating dependence with respect to each of the twelve tests and
the numbers of tests indicating dependence at the 5% and 10% levels of significance.

Appendix A provides the detailed test results and shows clearly the serial cor-
relation structure in annual peak flows of 90 Canadian rivers. These results will be

further analyzed in the next section.

i
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2.5 Long-term Serial Correlation in Annual Peak
Flows of Canadian Rivers

Because the different statistical tests for independence were designed under Ai[-
ferent assumptions and conditions, they do not have equal power in discriminating
between time series which are not truly random; that is, the probability of a type-2
error is not the same for each test. The power of the tests depends somewhat on the
nature of the dependence present, and on the length of record (Wallis and Matalas,
[26]). Hence, sometimes the various tests employed give different conclusions for
the same series. This means that a flood series can fail one test. of independence
but pass the other tests. This can be clearly seen in the results.

Because of this, it is difficult to say whether a flood series is independent or
not just based on the result of one test. It is therefore a good idea to do several
tests first before making any judgement. The question that arises is: [low many

failed tests are needed for a final jud, of short-term d dence? It is not

easy to answer such a question. Wall and Englot (7] assumed in their study that
at least two of the five tests applied to each data sequence should show signs of
dependence. Similarly, Srikanthan et. al [20] assumed in their analysis that at
least, two of the six tests applied should indicate non-randomness. Therefore, it is
reasonable to assume in this analysis that, for short-term dapendence, at least four
out of the eleven short-term dependence tests applied to each data sequence should
indicate dependence, As for long-term dependence, because only one test available,
we make our judgements based on the results Hurst's K test. The results of the

and for this test will be compared.

From the results obtained in Tables 2.4 and 2.5, the test results for short-term
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it lence and long-term depend are summarized. This is shown in Table 2.6.

From Table 2.6 the following observations can be made:

1). For the parametric test of Hurst's K, about 17.8% (at 5% level) and 28.9%
(at 10% level) of the tested series show long-term dependence. They are quite
higher than the corresponding results of the short-term dependence tests, 1.1% (at
5%) and 8.9% (at 10%), respectively. The results from the non-parametric test of
Hurst's K" are similar to those from the parametric tests, concluding that about
15.6% (at 5% level) and 25.6% (at 10% level) of the tested series show long-term
dependence. ‘This means that significant long-term serial correlation structure of
the annual peak flows exists in a large number of rivers and should not be ignored,
otherwise mistakes will be made in our judgements. The effect of long-term serial
correlation in flood risk analysis will be shown in Chapter Five;

2). It can be seen that the short-term dependence tests are insensitive to the
long-term serial correlation structure of the data. Most of the series which has
long-term dependence can pass most of the tests for short-term dependence. Based
on the parametric tests, for example, about 17.8% (at 5% level) and 25.6% (at
10% level) of the tested series show that they are short-term independent but are
long-term dependent at the same time;

3). For the ninety annual peak flows tested, the conditional probabilities of
the existence of long-term dependence when the series has passed the short-term
dependence tests are as follows (based on parametric test results):

At the 5 % level:

P(long-term dep./short-term indep.) = 16/89 * 100% = 18.0%

At the 10 % level:




P(long-term dep. /short-term indep.) = 23/82 * 100% = 28.0%
The probabilities are quite high and we have no reason to disregard them,

Hence, if a series shows that it is short-term ind dent, we should still i

g

for long-term dependence.

2.6 Summary

The serial correlation structure of annual fiood series from ninety Canadian
rivers were analysed in this chapter. It was found that significant long-term serial
correlation as measured by the Hurst K statistic is present in a large number of
rivers. It was found that when a peak flow series shows short-term independence,

there is still a fairly high probability of long-t d de This long-t

dependence cannot be disregarded as in traditional flood frequency analysis; it
should be taken into account as this may significantly increase the risk associated
with future peak flows.

In the next two chapters, the modeling of long-term serial correlation in annual

peak flows is discussed.
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Figure 2.3: Distribution of Hurst's K for Canadian rivers




Table 2.1: Empirical Percentage Points of A for Independent Data (n: 20 - 50)

Sample Different Levels
Sice | 1% | 5% | 10% [ 20% | 50% |
20 0.8370 | 0.7961 | 0.7672 | 0.7277 | 0.6449
21 0.8334 | 0.7930 | 0.7647 | 0.7257 | 0.6442
22 0.8300 | 0.7900 | 0.7623 | 0.7237 | 0.6435
23 0.8268 | 0.7871 | 0.7599 | 0.7219 | 0.6428
24 0.8236 | 0.7844 | 0.7577 | 0.7201 | 0.6422
25 0.8207 | 0.7817 | 0.7555 | 0.7185 | 0.6415
26 0.8178 | 0.7792 | 0.7535 | 0.7168 | 0.6409
27 0.8151 | 0.7767 | 0.7515 | 0.7153 | 0.6403
28 0.8125 | 0.7744 | 0.7496 { 0.7138 | 0.6397
29 0.8100 | 0.7721 | 0.7477 | 0.7124 | 0.6391
30 0.8076 | 0.7700 | 0.7459 | 0.7110 | 0.6385
31 0.8053 | 0.7679 | 0.7442 | 0.7097 | 0.6379
32 0.8031 | 0.7659 | 0.7425 | 0.7084 | 0.6374
33 0.8010 | 0.7640 | 0.7409 | 0.7072 | 0.6368
34 0.7990 ( 0.7621 | 0.7394 | 0.7060 | 0.6362
35 0.7971 | 0.7603 | 0.7378 | 0.7048 | 0.6357
36 0.7953 | 0.7586 | 0.7364 | 0.7037 | 0.6352
37 0.7935 | 0.7570 | 0.7350 | 0.7026 | 0.6346
38 0.7919 | 0.7554 | 0.7336 | 0.7016 | 0.6341
39 0.7903 | 0.7538 | 0.7323 | 0.7005 | 0.6336
40 0.7887 | 0.7524 | 0.7310 | 0.6995 | 0.6331
41 0.7873 [ 0.7510 | 0.7297 | 0.6985 | 0.6326
42 0.7859 | 0.7496 | 0.7285 | 0.6975 | 0.6322
43 0.7845 | 0.7483 | 0.7273 | 0.6966 | 0.6317
4“4 07832 | 0.7470 | 0.7262 | 0.6957 | 0.6312
45 0.7820 | 0.7457 | 0.7250 | 0.6948 | 0.6308
46 0.7808 | 0.7445 | 0.7239 | 0.6939 | 0.6303
Ly 0.7797 | 0.7434 | 0.7229 | 0.6930 | 0.6299
48 0.7786 | 0.7423 | 0.7219 | 0.6922 | 0.6295
49 0.7775 | 0.7412 | 0.7208 | 0.6913 | 0.6291
50 0.7765 | 0.7401 | 0.7199 | 0.6905 | 0.6287




‘Table 2.2: Empirical Pe

Points of K for Ind

27

dent Data (n: 55-200)

Sample Different Levels

Size 1% 5% 10% 20% 50%
55 0.7720 | 0.7353 | 0.7153 | 0.6867 | 0.6267
60 0.7682 | 0.7311 | 0.7113 | 0.6833 | 0.6249
65 0.7649 | 0.7274 | 0.7077 | 0.6802 | 0.6233
70 0.7620 | 0.7241 | 0.7044 | 0.6775 | 0.6219
5 0.7593 | 0.7211 | 0.7015 | 0.6750 | 0.6206
80 0.7567 | 0.7184 | 0.6988 | 0.6728 | 0.6194
85 0.7542 | 0.7158 | 0.6963 | 0.6708 | 0.6183
90 0.7518 | 0.7135 | 0.6941 | 0.6690 | 0.6173
95 0.7494 | 0.7114 | 0.6920 | 0.6673 | 0.6164
100 0.7470 0.6900 | 0.6657 | 0.6155
110 0.7422 | 0.7058 | 0.6866 | 0.6627 | 0.6140
120 0.7377 | 0.7028 | 0.6836 | 0.6601 | 0.6126
130 0.7336 | 0.7000 | 0.6809 | 0.6578 | 0.6113
140 0.7301 | 0.6976 | 0.6785 | 0.6559 | 0.6101
150 0.7270 | 0.6951 | 0.6764 | 0.6543 | 0.6089
160 0.7245 | 0.6926 | 0.6745 | 0.6527 | 0.6077
170 0.7223 | 0.6900 | 0.6727 | 0.6510 | 0.6066
180 0.7201 | 0.6876 | 0.6711 | 0.6492 | 0.6056
190 0.7177 | 0.6857 | 0.6696 | 0.6475 | 0.6047
200 0.7148 | 0.6848 | 0.6682 | 0.6468 | 0.6043




Table 2.3:

Canadian Rivers Analyzed

River Name Province | n(yrs) Mean | Hurst’s K | r(1)

Athabasca At Athabasca Alberta | 47 | 2236.19 0.514 -0.190
Bow Alberta 80 217.61 0.651 -0.132
Castle Near Beaver Mines Alberta | 44 145.96 0.669 0.001

Drywood Creek* Alberta 52 6.57 | 0.688 0.020
Elbow Above Glenmore Dam | Alberta 14 63.25 0.668 -0.061
Elbow At Bragg Creek Alberta 54 60.25 0.680 -0.047
Ghost Alberta 10 22.66 | 0.673 0.230
Manyberries Creek Alberta 45 13.12 0.693 0.025
Rolph Creek** Alberta | 53 4.96 | 0.720 0.078
Sturgeon Alberta | 54 26.77 | 0.526 -0.171
Swiftcurrent Creek Alberta | 54 28.81 0.583 0.030
Waterton Alberta 41 142.33 0.665 0.032
Upper Humber Atlantic | 60 578.33 0.663 0.208
Lepreau Atlantic 2 78.75 0.522 -0.021
Saint John* Atlantic [ 62 | 2357.76 0.724 0.150
Shogomoc Stream Atlantic [ 45 39.63 | 0.630 0.046
Upsalguitch 45 367.29 0.643 0.031
Beaverbank* 67 29.52 0.725 -0.096
East. Atlantic [ 63 8.00 0.696 -0.140
Grand* Atlantic [ 68 18.94 0.700 -0.064
Lahave Atlantic K 230.36 0.708 -0.040
Northeast Margaree** Atlantic 72 176.31 0.732 0.070
Roseway** Atlantic ! 68.61 0.739 0.083
Southwest Margaree** Atlantic | 70 38.68 0.756 0.138
St. Marys(Stillwater) Atlantic | 73 408.62 | 0702 | -0.047
Adams B.C. 42 26.17 0.632 0.171
Ashnola B.C. 12 83.27 0.614 -0.320
Babine B.C. 41 126.31 0.697 0.075
Big Sheep Creek B.C. 10 48.81 0.645 0.055
Boundary Creek** B.C. 61 47.03 0.746 0.119
Bulkley B.C. 58 587.07 0.630 0.175
Chilko At Outlet of Lake** B.C. 60 136.8 | 0.744 [ -0.033
Chilko Near Redstone B.C. 62 300.34 0.607 -0.182
Columbia At Nicholson** B.C. K 437.60 0.746 -0.077
Columbia At Donald B.C. 44 712,64 0.686 -0.283
Columbia Near Fairmont Hot | B.C. 43 45.99 | 0668 |-0.292




conlinued

River Name Province | n(yrs) | Mean | Hurst’s K | r(1)

Flathead #* 60 208.53 0.785 0.187
Kettle Near Ferry** 60 339.33 0.738 0.133
Kettle Near Laurier 59 591.36 0.710 0.067
Kootenay At Kootenay Crossing 41 3.1 0.564 -0.093
Kootenay At Newgate** 42 1614.55 0.774 0.065
Lardeau At Marblehead 43 282.93 0.648 -0.218
Liard 42 | 5370.71 0.666 0.200
Lillooet 63 529.63 0.640 0.096
Moyie** 59 14590 |  0.848 0.132
Quesnel At Likely* 64 394.86 0.701 0.130
Quesnel Near Quesnel** 50 766.84 0.723 0.124
Salmo Near Salmo 40 243.23 | 0.593 0.075
Sikanni Chief o 44 198.84 0.425 -0.090
Similkameen 44 236.95 0.691 0.113
Skeena 41 | 5053.90 | 0.617 |-0.247
Slocan* 64 44177 | 0.706 0.075
South Thompson 48 996.17 [ 0.670 0.132
St. Mary At Wycliffe 43 385.28 | 0.680 |-0.047
St. Mary Near Marysville 41 303.51 0.609 | -0.110
Stuart#* 56 322.02 0.751 0.218
North Thompson* .C. 44 1775 | 0.723 0.021
Brokenhead Manitoba | 46 36.17 | 0.638 0.026
Roseau Near Cariboun Manitoba 67 47.46 0.663 0.199
Roscau Near Dominion Manitoba | 49 64.54 |  0.857 0.038
Sprague Creek Manitoba 43 19.72 0.657 0.104
Turtle Near Laurier Manitoba | 40 51.22 | 0.622 0.106
Whitemouth Manitot 42 83.68 | 0.677 | -0.100
Ausable Ontario 43 180.27 | 0488 |[-0.131
Black** Ontario 3 129.49 | 0.731 0.112
Castor Ontario 41 107.14 0.716 0.251
English At Umfreville* Ontario 67 158.59 0.700 -0.136
English (Sioux Lookout)** Ontario 60 287.28 | 0.736 0.003
Missinaibi** Ontario 69 880.99 [ 0.729 0.106
Namakan* Ontario 66 31947 | 0.705 0.154
Nith Near Canning Ontario 42 188.85 0.682 -0.044
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continued
River Name Province | n(yrs) | Mean | Hurst’s K | r(1)
North Magnetawan Ontario 73 44.47 0.615 -0.012
Nottawasaga Ontario 40 110.11 0.703 0.156
Pigeon Ontario 65 128.53 0.691 -0.007
Saugeen Near Port Elgin Ontario 74 500.45 0.627 <0.006
Saugeen Near Walkerton Ontario 74 |290..39 0.674 0.193
South Nation Ontario | 41 4741
Sydenham Near Alvinston Ontario 40 101.95
Sydenham Near Owen Sound | Ontario | 43 30.31
Turtle Near Mine Center Ontario | 58 127.24
Hall (Riviere) Quebec | 40 67.82
Harricana (Riviere) Quebec | 56 | 190.13
Petite Nation a Portage- Quebec 46 131.38

Petite Nation Pres De Cote- | Quebec | 43 69.51
Richelieu Aux Rapides F. Quebec | 51 923.84

Horse Creek Sask. 43 8.88
McEachern Creek Sask. 53 22.57
Poplar Sask. 56 24.94
Whitewater Creck Sask. 53 9.76
Teslin Yukon 41 1052

Mean 53

Standard Deviation 12

Note:

1. Short-term inds dent, but Hurst’s K signifi at 10% (*);
2. Short-t, ind dent but Hurst's K signifi at both 10% and 5% (**);

3. Short-term dependent at 10% only, Hurst's K significant at both 10% and
5% (#*).



Table 2.4: Dependence as a Function of Test

P and No) P {and No)
Tests of records indicating of records indicating
d at 5% level d at 10% level
Median crossing 2.22(2) 8.80(3)
‘Turning points 3.33(3) 7.78(7)
Length-of-runs 11.11(10) 15.56(14)
Rank difference 4.44(4) 10.00(9)
Cumulative periodogram 0.00(0) 2.22(2)
Wald-Wolfowitz 0.00(0) 10.00(9)
Spearman 0.00(0) 5.56(5)
RUNAB(random) 5.56(5) 11.11(10)
Rank von Neumann 4.44(4) 11.11(10)
Autocorrelation 0(0) 10.00(9)
Von-Neumann 4.44(4) 7.78(7)
Hurst’s K test
Parametric 17.8(16) 28.9(26)
Non- ic (B 16.7(15) 25.6 (23)




Table 2.5: Number of Rivers Indicating Dependence

Number of Tests Percentage(and number) of rivers
Indicating Dependence 0%
11 0.00(0) LII(T)
10 0.00(0) 0.00(0)
9 0.00(0) 0.00(0)
8 0.00(0) L11(1)
7 0.00(0) L.11(1)
6 0.00(0) 1L.11(1)
5 L11(1) 2.22(2)
4 L11(1) 4.44(4)
3 3.33(3) 6.67(6)
2 7.78(7) 10.00(9)
1 17.78(16) 24.44(22)
0 68.89(62) 47.78(43)

* Hurst’s K test is based on normally distributed data.

Table 2.6: Comparison of Short-term and Long-term Dependence

5 % Level 10 % Level
No. of rivers | Percenlage | No. of rivers [ Percentage

Short-term dependence 1 L1% 8 8.9%
Long-term dependence:

a. Parametric test 16 17.8% 26 28.9%

b. Bootstrap method 15 16.7% 23 25.6%

Only short-term dependence 1 Li% 5 5.6%

Only long-term dependence

a. Parametric test 16 17.8% 23 25.6%

b. Bootstrap method 15 16.7% 21 23.3%

Both short- & long-term dep. 0 0% 3 3.33%




Chapter 3

HARMONIC ANALYSIE OF
CUMULATIVE DEPARTURES

3.1 General

In previous chapters, the statistical tests of short-term and long-term depen-
dence were used for the flood peak series of 90 Canadian rivers. The results show
that the effect of Hurst phenomenon on annual peak flows is evident. Many flood

peak series have high Hurst coefficients. Because the corresponding increase in flood

risk due to inty can be suk ial if the flood peak series have

a high Hurst coefficient (Booy and Lye, [10]), how to model long-term persistence
(i.e. Hurst’s K) in flood peak series is important in flood risk analysis.
As mentioned in Chapter One, a theoretical time series model that will repro-

duce the correct correlation structure of the peak flow series is required to obtain

the distribution of the esti d of a flood distribution. There are sev-
cral such methods available for modeling series with high Hurst’s K and low p(1)
in flood peak series. For example, ARMA(1,1) model [16], the Broken Line model
[14], the Fast Fractional Gaussian Noise process [13], etc. Two recently developed

methods are Mixed Noise process (Lye, [4][10]) and the harmonic analysis of the

33



3

lative d approach(Sen, [17]), and both methods have not been fully

developed. In this chapter, some research work is done Lo investigate the existing
problems in the method of harmonic analysis, such as the modeling procedure, the
number of harmonics which should be used in the analysis, how to fit a suitable
stochastic model of the residuals, and normal transformation of the skew original
series. A comparison between Mixed Noise process and harmonic analysis method

will be shown in the next chapter.

3.2 Sen’s Method

To obtain a b ical model of the lative departures that would pre-

serve the Hurst ph Sen [17] has perf d the h ic analysis of the
cumulative departures of annual flow series from their sample mean values. In his
paper, Sen tried to explain the Hurst phenomenon on the basis of the storage-
related processes, the sole representation of which is the historic cumulative depar-
tures curve. Sen considered seven annual flow series from Europe and the U.S.A.
as an example of the proposed procedure. The characteristics of these series are
summarized in Table 3.1.

It has been observed that, even though the original annual flow time series is
stationary, the cumulative departures curve exhibits strong periodicities with the
slowest cycles having periods equal to the total sample length. The cyclic features
account for more than 95% of the variability in the Hurst coefficients. However,
in the classical simulation studies of the original series which are stationary, such

iodicities in the lative dep are not idered. So Sen d
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an alternative to direct simulation of annual sequences for preserving the Hurst

h The d dure is as follow:

(1) Construct the original curnulative departures curve from the observed time
series of the hydrological variable.

(2) Apply harmonic analysis to this curve by depicting the first seven to eight

h i P with fund. 1 freq: y of 1/n.

(3) Construct the harmonic cumulative departures (HCD) curve from the har-
monic components obtained in the previous step.

(4) Find the residuals between the original and HCD curves.

(5) Fit a suitable stochastic model of the residuals.

(6) Generate the synthetic sequence of residuals and add them to the HCD’s
curve.

Sen [17] presented the results based on the above procedure for seven annual
flow scries from Europe and the U.S.A., the characteristics of which are reproduced
here in the correct units in Table 3.1. It must be pointed out that Sen considered
only steps (1) to (3) in his paper. Steps (4) to (6) would be have to be carried out,
however, for the generation of synthetic sequences.

In applying Sen’s dure for the ion of heti several

problems were encountered. Briefly, it was found that using the first seven to eight
harmonic components for fitting the historical cumulative departures curve gave
residuals that were anti-persistent and in general require a high order ARMA pro-
cess to model them. This means that the resulting model based on Sen's procedure
would require far too many parameters. In addition, modelling skewed series cannot

be handled casily.
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In light of the stated problems, this study was conducted to shed more light

on the applicabili dure for modelli

of Sen’s p time series. In particular, this
study deals with the following:

a) the optimal number of harmonics to be used to obtain the harmonic cumulative
departures (HCD),

b) the kind of time series that this method is most suited,

c) the characteristics of the residuals that are most amenable to stochastic mod-
elling, and

d) how skewed time series may be modelled.

In the following section, Sen’s method is described and errors in Sen’s paper

are corrected. This will be followed by a di: ion of the stochasti delling of
the residuals using ARMA models. The comparison of the results obtained using

different number of harmonics, and conclusions from the study are then presented.

3.3 Cumulative Departures Curve and Harmonic
Components for 12 Rivers
3.3.1 Calculation Procedure

In general, the time series of the i T , Siy can be d

Si=Si+(zi—7) (3.1)
where: i = 1,2, ..,n; So and S, = 0; z; is the original time series which is considered
as an input into the reservoir and Z is its sample mean value which is assumed to be

its output. For a given sample size n, Eqn.(3.1) represents a stochastic process with
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amean 5 and variance o? which can be shown to be given by (G. Sabin, personal

communication):

G % f;(n 1= i) (32)

= soasd
—;EJ(H-J)ZIiZi-ﬁ (3.3)
= i=
The values of the mean and variance were incorrectly stated in Sen [17). Hurst’s

eslimate of the Hurst coefficient h is then obtained from the S;'s and X;'s:

- log(R/s)
= Tog(n/2) 64)

1/2

where: K = Hurst's K; s equals n="3[T, (zi - Z)]'"?, the sample standard

deviation; R is the adjusted range and is defined as
R=M,~—m, (35)

where, M, equals max (0,51, S2,.., Sn), and m,, equals min (0, §1, 5z, ..., Sn).
‘The cumulative process in Eqn. (3.1) can be represented in two parts, namely,

nonstationary and stationary as follows:

Si=P+e (3.6)

where P, is the periodic component at time instant i and e; is a stationary zero
mean process. Thus, e; denotes the noise part in the cumulative departures process.

Equation(3.6) can be written with its periodic part explicitly as:

S+ f:[Aksin(‘yki) + Bycos(yki)] + e; (3.7)
k=1
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where 5 is the mean of cumulative departures given by Eqn. (3.2). m is the number
of significant harmonics; y = 2r/n is the cyclic frequency over a base period; Ay
and By are harmonic coefficients.

d

In the lative d process the fi | period can be adopted

as equal to the sample length, and therefore, the fund | freq is 1/n.
Estimation of harmonic coefficients is achieved by conventional Fourier analysis.
Suppose that the number of observations n = 2m + 1 is odd, then the least squares

estimates of S is given by (3.2) and the harmonic coefficients A, and By will be:

n
Ax= 2 Y Sisin(vki) (3.8)
nia
and:
9.
Bi== 3" Sicos(vki) (3.9)
=
where k= 1,2,...,m.
Note: The ions for the Fourier coefficients given in Sen [17) are incorrect.

The periodogram then consists of the k = (n — 1)/2 values
1) = 5(42+ BY) (3.10)

where I(fi) is called the intensity at frequency fi.
When n is even, then set n = 2m and equations (3.2), (3.8) and (3.9), apply
for k=1,2,..,(n—1) but
= 13 (1) @1
Am

(3.12)

and I(fn) =nB3.
The periodogram I(fi) is also the “sum of squares” associated with the pair

of coefficients (Ax, Bi), and hence with the frequency fi = k/n (Box & Jenkens,
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[29]). Thus the proportion of variance, Vi, explained by the k** harmonic can be
computed from:
m
W= 1) [E 1
k=
n
= 1% / 3 (5: =3y’ (3.13)
A plot of V; against k would give a good pictorial representation of the contribution
of the k** harmonic to the explained variance of S;.
Fisher's test of significance for the intensity is applied in this study [27)[28].
Let
iy = maz{I(f1), I(f2), - I(fi)} = I(f;1)

Suppose that e; is white noise, the statistic

.
ai=In/ L I(f;) (3.14)
st
follows Fisher distribution,
ple > o) = D-1FCR L - G+ Dar (3.15)
=

where ris the greatest positive integer that make 1 - (r +1)g; > 0.
Given the probability level , say a=0.005, if
g>gl2a
we conclude that no period item p(t) exists. Otherwise, if p{g > g1} > a, we accept
that 7y = N/j1 as the first period item in the original time series.

Let I, be the ki greatest value, the statistic

_ I
=TI (219)



follows Fisher distribution
plo > a0} = CF' 3 Ot L - G 4 g @17
= Iy
where r is the greatest positive integer that let 1 —(r +k)gi > 0. Given probability
level a, if
plg>n} >a
Ty = N/ji is accepted as a period of the original time series.
It is suggested to use a a < 0.01, otherwise the probability of sclecting some

false periods exist [28]. Hence, a o value of 0.005 is used in this study.

3.3.2 Application

Sen [17] suggested that the first 7 to 8 ics be used for the b

analysis, although many rivers require only the first few harmonics. To investigate

the number of h ics that will it igni ly to the overall variabil-
ity of the cumulative departures, different number of harmonic components are
considered in this study. The harmonic components used are:

a. Using significant harmonics which are selected by Fisher’s probability at o
= 0.005;

b. 1st harmonic;

c. First 3 harmonics;

d. First 4 harmonics; and

e. First 8 harmonics.

The results are shown in Table 3.2 and Figs 3.1 - 3.5. Table 3.2 shows: the

river modelled, the sample size n, Hurst's K and lag-one correlation r(1), whether
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the data are normally distributed, the K values of the residuals after fitting using
significant harmonics, only the first, 3, 4, and 8 harmonics. Figs 3.1-3.5 show for the
‘Thames River the result of fitting the cumulative departure curve using different
number of harmonics and the resulting residual series.

From Lhese results, we can see that:

(1). The more harmonics we use, the lower the Hurst’s K of the residuals we
get. If we use the first harmonic only, the Hurst K of residuals is still very high
(sometimes it is higher than the K of original series). That means the function of
harmonic analysis here is limited and we have the same difficulty in fitting 2 suitable
stochastic model of the residuals. If we use the first eight harmonics (suggested
number by Sen), the K of the residuals is lower than 0.5 which implies anti-persistent
behaviour [38]. In the case of antipersistence, an increasing trend in the past implies
a decreasing trend in the future, and a decreasing trend in the past makes an
increasing trend in the future probable. The process appears very ‘noisy’ and it is
difficult to model. A reasonable number of harmonics to use seems to be 3 or 4,
where Hurst's K of the residuals shows no long-term dependence.

(2). For most of the rivers, the harmonic analysis selected many significant
harmonics, which means there would be many parameters in our final models if
we use significant harmonics. Moreover, selecting too many significant harmonics
causes anti-persistent behaviour in the residuals (K lower than 0.5). The only
exceptance of this case is the Thames river which has a high Hurst's K and a low
r(1). It looks like that using significant harmonics is suitable for a time series with
this kind of structure,

To confitm the above conclusion(2), five annual peak flow time series of Cana-
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dian rivers with high Hurst’s K and low r(1) were selected. The results of similar
calculation for these data are shown in Table 3.3.
For these five Canadian rivers with high Hurst’s K and low r(1), the numbers

of their significant harmonics are few as expected, from 2 to 4. Because they do not

" ¢ i

have many si behaviour does not exist in their
residuals. The K values of the residuals of these rivers range from 0.5 to 0.67. Anti-
persistent behaviour exists in both the residuals of using four and eight harmonics.
The K values of residuals of using only first harmonics are still high, like those in
Table 3.2. Therefore, from the above results, it is reasonable to suggest that using
h ics or first three ics for those annual peak flow series with

high Hurst’s K and low r(1).
1t should be noted that, although the residuals which have low Hurst's &

indicates no long-term persistence is present, it is still possible that short-term
persistence is present. Actually, using the tests for dependence in Chapter Two to
test the residuals, it was found that most of them were short-terin persistent. They

are not independent data.

3.4 Stochastic Modeling of Residuals

After obtaining the harmonic cumulative departure (HCD) curves, the prob-
lem now is to find a suitable stochastic model for the residuals between the original
and HCD curves. Since the residuals are stationary, the ARMA(p,q) class of mod-
els (Box & Jenkins, [29]) are used in this study as such stochastic models. The

ARMA (p,q) model can be represented in a single equation as

#(B)(L- B)Y, = 0(B)a, (3.18)
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where: B is the backshift operator, ¢(B) is the autoregressive (AR) process, 0(B)
is the moving average (MA) process, a; is the white noise term, and Y is the time

cries modelled.

The main problem here is in trying to decide which ARMA(p,q) fits the data
best, i.c. in identifying the AR order p and the MA order g. Much of Box and
Jenkins is devoted to this so-called “identification” problem. This study identifies

the model by considering the following three conditions:

1). Minimizing the Bayesian Information Criterion (BIC) [32]:
BIC = —2logLy4q) + log(n)(p + q) (3.19)

where n is the sample size, (p + ) is the number of parameters to be fitted and L
is the maximum value of the likelihood function for a (p + q) parameter model.

Actually, AIC is another criterion which is also most commonly employed in
model selection. The reasons for prefering BIC to AIC in this study is: BIC is
strongly consistent in that it determine the true model asymptotically, whereas for
AIC, an overparameterised model will always emerge no matter how long the avail-
able realization. Thus it would be appear that the BIC should be used in preference
to AIC [33].

2). AR(p) model should also meet the stationary conditions(29]. These condi-

tions are satisfied if the roots (u) of the characteristic equation
W= gt = gpuP -~ 4, =0 (3.20)
lie inside the unit circle. For AR(1) model, the stationary condition becomes:

—1<h<l1 (3.21)




The stationary condition for AR(2) model is:

bit+d2<1

$r—i <1 (3.22)

-l1<¢a<1

3). If

#+ad<0
the second-order difference equation satisfied by the autocorrelation function has
complex roots ([29], pp59). This will probably worsen the simulation results, espe-
cially when

8 +4d < -1.0

(from computation experience). In such case, we can try another ARMA model
with a higher value of ¢ +4¢, and a BIC value which is close to the minimum BIC

value.

The results are shown in Table 3.4.

3.5 Monte Carlo Simulation For the Compari-
son of Different Models

3.5.1 Monte Carlo Simulation

Having determined the number of harmonics to represent the cumulative depar-
tures and the best ARiviA model for the residuals, the next step is the generation
of synthetic sequences. If the model is correct, the model should on average be

able to reproduce the marginal distribution and the serial
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structure of the observed time series. That is, the mean, standard deviation and
skewness, and both Hurst’s K and the lag-one correlation coefficient r(1) should
on average be preserved. Since one of the main purpose of this study is to inves-
tigate the most suitable number of harmonics to use, the P; term in Eqn. (3.6)
is modelled using the different number of harmonics and its corresponding ARMA
model for the residuals. The Monte Carlo method was used and the number of
replication used in the Monte Carlo simulation study was 3000. The results are
shown in Table 3.5-3.9 for Hurst's K, the lag-one correlation coefficient r(1), mean,
standard deviation, and the coefficient of skewness, respectively.

‘The results show that aside from the coefficient of skewness, the other parame-
ters especially the Hurst I, r(1), and the mean are fairly well reproduced regardless
of the number of harmonics and corresponding ARMA model used. The results for
the standard deviation is somewhat erratic for some rivers,

From Table 3.8, one can see that the coefficient of skewness are preserved only
for those series that are approximalely normally distributed or have skew coefficients
close Lo zero. One method of overcoming this problem is to transformed the skewed
series Lo one that is approximately distributed and then do the harmonic analysis
and simulation using the transformed series. To recover the original skewed series,
the inverse transformation is applied. A convenient transformation to use is the
Box-Cox transformation (Box-Cox, [43]). It is given by Eqn.(2.24) in Chapter Two.
Similarly, the A value is obtained using the simple Probability Plot Correlation
Cocflicient (PPCC) method (Lye, [30]). The simulation results are shown in Table
3.5-3.9.



3.5.2 Discussion

Suitability of Sen's Method If Using Significant Harmonics

The Thames River and five Canadian rivers have high Hurst's K and low
£(1). The method suggested by Sen seems good for such rivers. There are not too
many parameters and from the simulation results the main pasameters except the
skewness of the original series, Hurst's K, r(1), mean and standard deviation are
quite well reproduced.

For those rivers that do not have simultancously high Hurst’s & and low (1),

bl

the simulation results are also but many signifi h ics are used

resulting in too many parameters in the model. Moreover, simple ARMA models
do not always work for the residual series.
The Number of Harmonic Components

Sen suggested in his paper that the first seven to eight harmonic components
should be used in harmonic analysis. But as we can see before, using first four or
eight harmonics may give a K lower than 0.5 in the residuals. From the simulation
results, we can see that for most cases, using the first three harmonics is quite
enough to obtain satisfactory results. This is because the first three harmonics
account for most of the variance. Therefore, this thesis suggests that using the first
three harmonics in the analysis.

From the above results, it seems that the number of significant harmonics in
flood series is less for those rivers with a high Hurst’s K and a low £(1). In other
words, the higher the probability that this series is long-term dependent, the less
the number of its significant harmonics of this series. To investigate this interesting

phenomenon, eight more Canadian rivers were selected to do harmonic analysis.
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These cight flood series are all with high K and low r(1). All of them are only
long-term dependent, that is, they passed all tests for short-term dependence but
failed in Hurst coefficient test for long-term dependence. The calculation results
show that the numbers of their significant harmonics range from 1 to 4. This is
shown in Table 3.10.

Hence we can see that h i contain some i ion of long-

term dependence. A further study maybe needed to investigate this interesting
relationship.
Normal Transformation of the Original Series

For those rivers with non-normal original series, we can not reproduce the
cocfficient of skewness if we do not transform the original series first(Table 3.9). The
simulation results of coefficient of skewness based on transformed normal original
series are shown in Table 3.11.

The above simulated results are not too good, but they are the best results
which can be obtained. In this method, reproducing the coefficient of skewness is

the most difficult d with ducing other

3.6 Conclusions

to

From the results and analysis described above, the
simulate storage-related processes proposed by Sen needs to be slightly modified.
The following procedure is suggested.

(1) Check whether the observed time series is normally distributed. If it is not
normal, use a normal transformation.

(2) Construct the original cumulative departure curve from this original (or



transformed) normal series.

(3) Apply harmonic analysis to this curve by depicting the first three harmonic

with fund fi of 1/n. For those original series with high

Hurst’s K and low r(1), significant harmonics selected by Fisher’s test can be used
directly.

(4) Construct the harmonic cumulative departures curve from the harmonic
components obtained in the previous step.

(5) Find the residuals between the original and HCD curves.

(6) Fit a suitable ARMA model for the residuals.

(7) Generate the synthetic sequence of residuals and add them to the HCD's
curve. Then, if a transformed normal series is used in step (1), transform this syn-

thetic sequence back to a skewed sequence.

In spite of the modified procedure, there are still some problems that have to
be addressed. For instance, the residuals are not easy to model in some cases. Also,
for series with a fairly high coefficient of skewness, even Box-Cox transformation
may not work. Finally, as pointed out by Sen, the harmonics are dependent on the
sample size. Therefore, Sen’s method is limited at present to simulating series of

the same size as the historical series.
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Figure 3.1: HCD and Residuals for the Thames River - Significant Har.
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Figure 3.2: HCD and Residuals for the Thames River - First Har.
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Figure 3.3: HCD and Residuals for the Thames River - First 3 Har.
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Figure 3.4: HCD and Residuals for the Thames River - First 4 Har.
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Figure 3.5: HCD and Residuals for the Thames River - First 8 Har.
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Table 3.1: Annual Flow Characteristics of Seven Rivers in Sen's Paper

River Station No.  Mean Standard  Lagoone
obs. (m%/s) Deviation  Serial
(year) (m3/s) _Correlation
St. Lawrence Ogdesburg 97 681864  504.94  0.105
Mississippi ~ St. Louis 96  4958.62  1482.77  0.295
Mississippi ~ Keokuk 79 173217 51167 0415
Munes Arad 7 16723 67.01 0245
Rhine Basle 150 102646 16346  0.076
Danube Orshavea 120 536418  1027.90  0.094
Thames Teddi 7 6295 2303 0.140




Table 3.2: Harmonic Analysis Results - 1
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River Original Data Residuals
Sig-har* 1-har -har 4-har 8-har

St. Lawrence | Normal Normal Normal | Normal | Normal [ Normal

n=97 K=0.89 K =044 K=081|K=066|K=062|K=048
r(1) = 0.705_| (1-9,13)

Mississippi,S | Normal Normal Normal | Normal | Normal | Normal

n =96 K = 0.65 K =047 K=073 [K=0.65|K =058 |K=044
(1) = 0205 | (1:58)

Mississippi,K | Not Nor. Normal Normal | Normal | Normal [ Normal

n=79 K=0.70 K =044 K=0.76 |K =062 |K =054 | K =045
r(1) = 0.415 | (1-4,7)

Mures Not Nor. Normal Normal [ Normal [Normal [ Normal

n=77 K = 0.68 K =0.56 K=0.78 |K=0.58 |K =0.57 | K =041
r(1) = 0.245 | (1,2,3,5)

Rhine Normal Normal Normal | Normal [Normal [ Normal

n =150 K = 0.61 K =049 K=078 | K=0.64 |K=061 | K=047
(1) = 0076 | (1-5,7,12,21)

Danube Normal Normal Normal | Not Nor. [ Normal | Normal

n=120 K =0.63 K =043 K=071 |K=067|K=059 | K =044
(1) = 0094 | (1-68)

Thames Normal Normal Normal | Normal |Normal | Normal

n="Tl K =0.76 K =0.61 K=073 |K=058 [K =055 |K =035
(1) = 0140 | (1,26)

* The significant harmonics identified are given in parenthesis.




Table 3.3: Harmonic Analysis Results - 2 (Canadian Rivers)

River Original Data Residuals
Sig-har 1-har J-har 4-har 8-har
Columbia Not Nor. Normal | Normal | Normal | Normal | Normal
K=052|K=078 [ K=061 |K=054 | K=034
n=T71 (1,2,4,6)
Flathead Normal | Normal | Normal [ Normal | Normal
K=1062|K=070|K=1057|K=053 | K=039
n=60 (1,3,7,9)
Southeast Mar | Not Nor. Normal | Normal | Normal | Normal | Normal
K =0.756 K=1065K=071|K=060|K=052|K=037
n=10 f1=0138  |(1,3)
Northeast Mar | Not Nor. Normal | Not Nor. | Not Nor. | Normal | Normal
K =0.732 K=067|K=074 | K=052|K=047 | K =043
n=T72 r1=0070 |(1,3)
Black Normal Normal | Normal | Normal | Normal | Normal
K =0.731 K=050|K=073[K=050|K=052| K=039
n=7 f1=0112  |(13)
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4: Best ARMA Models for Original Series & HCD Residuals

Table

River Original Data Residuals
. Sig-har I-har -har 4-har 8-har
St. Lawrence | AR(1) I\RMA(I 12) [ AR(2) ARMA(1,1) | ARMA(2,1) | ARMA(2,2)

n=97 $1=0.691 6=1476 | =0.751 | ¢;=1.520
$1=-0499 | 0,=-0.535 | §=-0.755
6,=0317
| Mississippi | MA(T) AR(2) AR(2) AR(2) MA(T)
5 0,=-0.315 $=1120 | $,=0.990 | 6,=-0.538
=96 $1=-0.357 | $,=-0.375
0,=0.465
s AR(T) AR(2) AR(2) AR(2) ARMA(Z2]T)
K $1=0412 6=1.233 | ¢ =1.192 | $;=0962 ¢,_1 087
w=79 $:=-0.322 | $,=-0438 | d=-0.444
Mures AR(1) ARMA(1,1) | AR(2) AR(2)
n=77 $1=0.226 #=0870 | $,=0.808 | $:=0.859
6,=-0.242 | $,=-0.322 | $,=-0.324
Rhine {Random) AR(1) AR(T) AR(T)
=150 $=0.866 | $,=0.804 | $:1=0.776
Danube (Random) AR(T) AR(2) ARMA(2,1)
0= 120 $=0807 | $,=0.966 | g:1=1611
$:=-0.142 | $,=-0.796
0,=0.664
Thames {Random) AR(T) AR(D) AR(2) AR(2)
n=7l $1=0524 | $=0.746 $1=0.679

$2=-0.269 | ¢,=-0.714
6,=0.934




Table 4 continued (Canadian Rivers)

River | Original Data Residuals
Sig-har T-har Fhar [ §her Shar
Columbia | (Random) | (Random) | ARMA(LT) | AR(3) ARMA(LT)
a=T7 $=0916 | $,=0612 $=0371
0,=0073 | $,=0379 0,=0914
$3=-0352
Flathead | (Random) | AR(2) AR(D) AR() MAE)
n=60 $=0.785 | $i=0.742 | ¢,=0.586 0,=0.2
=-0272 $2=-0231 0,=0.779
$a=0.048
$4=-0.419
Southeast | (Random) | AR(1) AR(D) AR ARMA(.T)
n=10 H=0617 | 4i=0.740 | $1=0.586 $i=0.430
$2=-0.786
0,=0.922
Northeast | (Random) | AR(1) AR(D) MA(T) ARMA(Z,1)
n=1 $=0518 | $=0.608 | 8,=-0.428 $,=0.678
Black | (Random) | ARMA(2,1) | AR(1) AR()
=13 H=1.101 | $=0874 | ¢;=0.470
6;=-0.752 $2=-0.296
0,=0.957

Note: 1) ¢; & 0; are parameters of the ARMA (p,q) models.

2) Random means independent data (based on tests of short-term

independence at a = 5%).




Table 3.5: Simulation Results of Hurst’s K

Thiver No. of | Original K of Simulated Sevies

Sig.-H K [Sg-H] I-H_[3H [4H [&H
St Lawronce | 10 0,892 [0.890 | 0.874 | 0.882 | 0.873 | 0.866
Missi., S 6 0.646 | 0.616 | 0.626 | 0.629 | 0.615 | 0.616
Missi., K 5 0.704 | 0.690 | 0.718 | 0.710 | 0.715 | 0.701
Mures 4 0.680 | 0.695 | 0.636 | 0.678 | 0.677 | 0.692
Rhine 8 0.613 | 0.606 | 0.597 | 0.600 | 0.596 | 0.590
Danube 7 0.632 | 0.629 | 0.611 | 0.622 | 0.632 | 0.618
Thames 3 0.760 | 0.739 | 0.746 | 0.755 | 0.758 | 0.743
Columbia 1 0.746 [ 0.748 | 0.710 | 0.738 | 0.745 | 0.742
Flathead 4 0.785 [ 0.756 | 0.717 | 0.756 | 0.760 | 0.777
Southeast Mar | 2 0.756 | 0.765 | 0.748 | 0.759 | 0.767 | 0.705
Northeast Mar | 2 0.732 0703 | 0.711 | 0.705 | 0.716 | 0.700
Black 3 0.731 [ 0678 | 0.666 | 0.709 | 0.698 | 0.717

59
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Table 3.6: Simulation Results of (1)

River No. of | Original r(1) of Simulated Series
Sig.-H r(1) [Sig-H[-H_[3H [{-H |80
St. Lawrence 10 0.695 ( 0.652 | 0.635 [0.622 [0.654 |0.665
Missi., S 6 0.292 (0.228 | 0.264 |0.296 |0.277 |0.169
Missi., K 5 0.41110.379 [0.296 |0.363 |0.395 |0.465
Mures 4 0.246 | 0.257 [0.134 [0.237 (0.239 |0.247
Rhine 8 0.076 | 0.073 | -0.053 [ -0.074 | -0.079 | 0.139
Danube T 0.093 | 0.088 |-0.036 0.090 |0.302 |0.152
Thames 3 0.13910.035 [0.022 [0.147 [0.146 |0.191
Columbia 4 -0.077 1 -0.034 | -0.003 | -0.054 | -0.059 [ -0.103
Flathead 4 0.187 [ 0.185 |-0.005 [0.211 |0.165 |0.185
Southeast Mar 2 0.138{0.033 |0.036 |0.021 {0.143 |0.171
Northeast Mar 2 0.070 | -0.068 | -0.027 (-0.044 [0.072 |0.184
Black 3 0.112{0.240 |-0.017 [0118 |0.223 [0.191
Table 3.7: Simulation Results of the Mcan Value of Series
River No. of | Original Mean Values of Simulated Serics

Sig.-H Mean | Sig.-H [ I-H 3-H 4- 8-

St. Lawrence 10 6818.64 | 6821.57 | 6823.58 | 6829.68 | 6831.42 | 6825.99

38.68 | 38.55 | 138.55 |38.50 |38.57
176.31 | 174.85 |174.82 [175.31 | 175.49
129.49 | 129.64 | 129.75 |129.64 | 129.50 | 129.37

Southeast Mar
Northeast Mar
Black

Missi., § 6 4958.62 | 4980.42 | 4958.49 | 4972.85 | 4992.05 | 4971.06
Missi., K 5 1732.17 | 1731.54 | 1743.58 | 1749.64 | 1740.72 | 1735.11
Mures 4 167.23 | 168.14 |170.85 |168.97 | 168.61 | 167.68
Rhine 8 1026.46 | 1024.76 | 1027.28 | 1026.30 | 1025.91 | 1024.52
Danube 7 5364.18 | 5359.82 | 5384.55 | 5371.78 | 5361.46 | 5
Thames 3 62.95 | 63.07 | 62.80 |62.69 |62.85
Columbia 4 437.60 | 437.75 | 443.07 |438.68
Flathead 4 208.53 | 208.19 | 209.42 |208.26 | 207.96

2

2

3




Table 3.8: Simulation Results of Standard Deviation

Tver Now of | Original 5id o Simulaled Series
Sig.-H Std [Sig-H [ I-H 3-H 4-H 8-H
10 594.94 | 601.46 | 570.49 |610.47 | 664.10 [ 690.38
6 1482.77 | 1421.68 | 1468.78 | 1480.72 | 1517.32 | 1445.85
5 511.67 | 516.64 |532.21 |602.14 | 540.3 541.59
1 67.01 | 68.64 73.14 71.59 70.48 68.09
8 163.46 | 170.61 [192.10 | 182.73 | 181.09 | 187.01
Danube 7 1027.90 | 1040.83 | 1061.16 | 1033.95 | 1116.21 | 1116.81
‘Thames 3 23.03 |23.08 [23.23 |23.39 |23.16 25.36
Columbia 4 114.29 [ 114.58 [123.83 |115.26 | 115.17 | 117.36
Flathead 1 70.00 | 7T1.11  [70.02 |72.11 | 70.06 69.3¢
Southeast Mar 2 8.18 | 8.08 8.00 8.14 8.11 10.50
Northeast Mar 2 66.89 | 67.17 67.78 |67.79 |66.86 72.63
Black 3 31.15 [ 37.08 [31.43 |31.31 | 33.56 3141
Table 3.9: Simulation Results of the Skew Coefficient
River No. of | Original Skew Coef. of Simulated Series
Sig-H | Skew[Sig-H|I-H [-H [IH [8H
St. Lawrence 10 -0.292 | -0.325 | 0.018 | 0.054 [0.230 |-0.184
Missi., § 6 0.297 { -0.080 | 0.000 |0.010 |0.277 |-0.041
Missi., K 5 0.480 | 0.152 [0.086 |0.237 |0.027 |0.127
Mures 4 0.925 | 0.015 | * 0.033 |0.022 |0.068
Rhine 8 0.146 | -0.035 | 0.004 | 0.003 |0.005 |-0.015
Danube 7 0.275 | -0.012 | 0.103 |0.014 |(-0.011 |-0.013
Thames 3 0.176 | 0.008 | -0.001 |-0.003 | 0.018 |0.108
Columbia 4 0.519 [-0.022 [ * -0.015 | -0.039 | 0.008
Flathead 4 0.754 | -0.007 | -0.005 | -0.001 {-0.029 | 0.023
Southeast Mar 2 0.619 | -0.005 | -0.002 | -0.009 |0.027 |0.047
Northeast Mar 2 1.747 | -0.006 | -0.016 | 0.017 |0.042 |0.015
Black 3 0.206 | -0.020 | 0.001 |-0.041 [-0.025 | -0.011

* No suitable ARMA model found.




Table 3.10: Numbers of Significant Harmonics in Annual Peak Series with Long-
term Dependence

River Name Hurst’s K | p (1) | No. of Significant Harmonics
Roseway 0739 | 0.083 T(1,21.5)
Boundary Creek 0746 | 0.119 1(1)
Chilko At Outlet of Lake |  0.744 | -0.033 2(1,2)
Kettle Near Ferry 0738 | 0133 1(1,24,8)
Kootenay At Newgate 0774 | 0.065 (1)
Moyie 0848 | 0,132 3(1,2,3)
English(Sioux Lookout) | 0.736 | 0.003 2(1,3)

issinaibi 0729 | 0.106 3(1,23)

Table 3.11: Simulation Results of Skew Coeflicients Based on Transformed Normal

Series
River No. of A* [ Original | Skew Coef. of Simulated Series
Sig.-H | Value Skew -0 T8-0 |40 (80

Missi., K 5 0.5 0.480 0.483 | 0.798 | 0.427 | 0.506
Mures 4 0.11 0.925 »” 1.039 | 0.987 | 0.997
Columbia 4 0.235 0.519 e 0.536 | 0.493 | 0.507
Flathead 4 0.395 0.754 { 0.538 | 0.528 | 0.538 | 0.523 | 0.532
Southeast Mar 2 0.005 0.619 | 0.554 | 0.541 | 0.546 | 0.575 | 0.622
Northeast Mar 2 0.005 1.747 [ 0.949 | 0.944 [0.894 | 0.910 | 0.911

* X = Box-Cox transformation parameter;

** = No suitable ARMA model found.



Chapter 4

MIXED-NOISE MODEL FOR
ANNUAL FLOWS

4.1 General

In the previous chapter, the harmonic analysis of the cumulative departure
curves, which is one of the newly developed models for modeling long-term per-
sistence in annual flows, was discussed. In this chapter, another newly developed
model for annual flows, which is called Mixed-Noise Model and was designed for
modeling mixed behaviour in annual flows(Lye, [4]{10]), will be discussed and ex-
tended to include skewness. A comparison with harmonic analysis method will be
also provided.

Among the several well known models mentioned in Chapter One for the mod-
cling of hydrologic time series with a high Hurst coefficient and a low lag-one serial
correlation coefficient, fractional noise has been shown useful in reproducing the
type of long-term variability time series that are characterized by a Hurst coeffi-
cient larger than 0.50 [13). Several other operational models have been developed
that can do the same but it has been shown that these can be regarded as approx-

imations of fractional noise [35] (37).
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However, fractional noise confronts the hydrologist with two problems [10]. The
first is that exect computer simulation requires an infinite number of operations so
that approximations are needed. The second problem is the low lag serial corre-
lation of fractional noise that is much too high for most hydrologic applications.
Therefore, an efficient model that is simple to uscis needed. The mixed-noise (MN)
model is such a model which is capable of reproducing short-term and long-term
serial correlation of flood series as well as the relevant marginal distribution prop-
erties, i.e., the mean and variance (Lye, [4]{10]). However, there are some issues
which have yet to be resolved. For example, liow to model skewed peak flow series
by mixed-noise model? What is the advantage of this model in practice? This

chapter focuses the research on these questions.

4.2 The Mixed-Noise Model

Mixed-noise model was developed along the lines of the ARMA-Markov model
[16]. In the development of the MN model, the Hurst coefficient, h, and first order
serial correlation p(1) are used explicitly to estimate the model’s parameters which
are easily obtained (Lye, [4]).

In principle, the MN model is obtained as the sum of three or four independent
autoregressive or AR(1) processes each with a suitable weight so as to reproduce

approximately the autocorrelation function characterized by a given lag-one serial

and a long-term correlation structure corresponriing o frac-

tional noise with a given Hurst coefficient.



The autocorrelation function of a three-term mixed-noise process is:
pun(s) = apgy + b phy + o, (4.1)

where s is the lag, a?,b2,c% are the variance fractions(or weights) which sum to

unily, ps,pu, and pr, are the lati i of the three ind d

AR(1) processes. The first AR(1) process models the high frequency effects, the
second AR(1) process models the intermediate or medium frequency effects, and
the third AR(1) process models the low frequency effects of the time series. Hence,

essentially the technique is to fit th lation function of Fractional Gaussian

Noise [13] with the given three weighted autocorrelation function of the AR(1)
process.

The MN model has six parameters. The three variance fractions (a?, 42, and
c?)and the autoregressive parameters (pr, py, and pi).

The generating equation for a zero mean, unit variance MN process is given
by:

Xo= a(puX) +d") +bou XA + M+ (pxB + ) @2)
where, ), e(M) and €(L) are normal independent process having variance (1 —
Pih(1 = pky), and (1 — p?), respectively.

The autocorrelation function of this process is fitted to the theoretical autocor-
relation function of FGN at four specified lags, s1, s3,9, and s,. The lag-one serial
correlation coefficient p(1) may be arbitrarily specified. To obtain the parameters

of the model requires the solution of the following system of equations:

a4+ =1 (4.3)

o +Bom + o = p(1) (44)
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a'gf + 8oy + ol = Clsiih) (4.5)
ap + Bp + 2ol = Clsxh) (4.6)
@i} + B9t + i = Clsaih) (.7
a’pif + Byt + cpi = Clsih) (4.8)

where, a?,5%,¢2, py, and p;, are constrained to lie between 0 and 1, and p(1) is
the desired first order serial correlation coefficient. The coefficient py is allowed to

be negative or can be set to zero to match the desired first order serial correlation

fhici C(s; h)is the th ical lation function of Fractional Gaussian

Noise (FGN) given by:
Cloi= 3lls+ 1 ~ 2 + o= 1% (49)
For large s, the functicn is approximately given by
C(s; h) = h(2h - 1)s™-? (4.10)

Lye [4] found it was convenient to take s; =4,3; = 15,53 = 54, and s4 = 200. On
a logarithmic scale, these chosen lags are equally spaced. The value of 54 = 200 is
chosen to reflect the planning period of most water resources projects. Also, the
chosen spacings make it easy to estimate the model parameters. Since the auto-

correlation function of an AR(1) process diminishes rapidly with increasing lags,

rather than si y

the system of ions can be
starting from the low frequency end.
Dividing (4.7) by (4.8), and assuming pf, p3%,p}f and pjt to be negligible at

lags s3 and 54 leads to:
Closih) _ éo
Clsih) ~ it iy
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For a given h value and, sg and s4, the left hand side of (4.11) is defined. Therefore
pu. can be calculated. Substituting into (4.7) and ignoring the high and medium
frequency terms, ¢ is obtained.

From (4.6), and assuming pj? to be negligible, one gets:
_ Clsaih) - pf?

» o7 (4.12)
Substituting into (4.5), pas is obtained.
Then from (4.12), one obtains % and from (4.3):
a?=1-b-¢ (4.13)
Finally from (4.4),
o =[p(1) - 8o - i)/ (4.14)

4.3 Skewed Mixed-Noise Process

The main work on Mixed-Noise model in this study is extending this model

to include skewness. Skewed MN sequences may be generated by using a suit-

able ion so that the f d flows are assumed to be normally
distrit d. Box-Cox f ion is used as such a transformation in this the-
sis. The dure for the syntheti ion of skewed flood X, based

on MN model with Box-cox transformation is as follows:

1) Transform the skewed X, to normal sequences Xy, by Box-Cox transforma-

tion:
A
Xny= =il (4.15)
A
2) Calculate the M(mean), Std| dard deviation), and the (a, b,

<y PHy Aty pL) of Xng



3) Generate three normal independent process ¢*), e(*), and (%), having vari-
ance (1 — p&), (1 - piy), and (1 — p}) respectively;
4) Obtain the sequences Zy ¢

Zya=alpnZif) + ™) + bouZE0 + *N + 2l + M) (116)
Actually, this is Equ.(4.2), where Z{, Z* and Z{" are AR(1) process given by:
20 =20, + e 1)

5)Add the mean and standard deviation
Zy =M+ Stds Zn, (1.18)

6) Transform Z; back to skewed squence
Yi= (2> +1)'* (4.19)

Y, is the needed synthelic skewed MN sequence.

Another way to generate skewed MN variates is by modifying the random
numbers used in the generation process [16). The necessary skewness in the mixed-

noise variate may be obtained in different ways (Lye, [4]). The mixed-noise process

(4.2) can be written as:
Xe=aX™ 4 bXM 4 cx(¥) (4.20)
Cubing both sides and taking expectations,

E(X?) = @E(X™) + BE(XM?) 4 SE(X(™P) (4.21)
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Since X, XM, and X are independent of each other and have zero mean,
the expected values of the cross-product terms are all zero. Also, X{), X{™), and

XM are AR(1) processes given by:
X0 = X2+ (1 = ) e (#.22)
Cubing both sides and taking expectations,
B(X3) = RE(XD ) + (1= p)VE()0) (4.23)

That is,
(4.24)

where 7x,, and 7. are the coefficient of skewness of Xj), and ¢) respectively.

Substituting into (4.21) one gets:

3/2

(=) (1 = o i
X = n”—f’% )+ b’-——%’———‘y () + c’————g—‘}——‘k.m (4.25)
(H

From (4.25) there are several possible ways of obtaining the required skewness
x:

1. Modify only the high frequency term. Here, ¥e,ar and 7., = 0, and the re-
quired skewness of the random numbers in the high frequency component is given

by:

e Y
Vel = X (4.26)
a1 - P(m)m

The Wilson- Hilferty transformation can then be used * o obtain the required skewed
random variate. The transform is given by:

YeHE 7. H 2
= == = - 4.27
m= [ T 36} o (4.27)



70

where, 7, is approximately gamma distributed with a mean of zcro, unit variance
and skewness Y. Yo is the skewness of the random deviates required; and ¢, is
a normally distributed random deviate with zero mean and unit variance.

2. Modify only the medium frequency term. In this case, 3,4 and 7., = 0,
and the required skewed deviates are from (4.26) and (4.27) with 7. replaced by
YoM

3. Modify only the low frequency term. In this case, ¥, and ¥, =0, and
the required skewed deviates are from (4.26) and (4.27) with 7 replaced by 7. 1.

4. Skewed random deviates can also be obtained by assuming the same skew-

ness for each component. That is, Ye = Yoll = YoM = Yo From (4. 25),

e
=7x [a”—('!)— + b“T‘—)— + 1—_’(9—4 (4.28)

and the required skewed mndom variates is obtained from (4.27) by replacing e
with 7.

Second and third methods do not work because b and ¢ are usually very small.
From (4.26), Y. and .. become very large. But in (4.27), because this large
number (y,ar or 7. ) should be squared and then be cubed, the corresponding 7,
becomes very huge. Therefore only the results of methods 1 and 4 are shown in the

next section.

4.4 MN Model Applied to Annual Peak Flows

Monte Carlo simulations are used to test the suitability of Mixed-Noise model
in modeling the annual peak flows. The data of the twelve rivers discussed in pre-

vious chapters are used here as examples. The number of replications equals 3,000.



‘T'wo ways of modeling skewed MN are all idered in the calcul,

A comparison of these results is provided. The simulation results are shown in
‘Table 4.1 - 4.3

‘I'he results in these tables show that, in most cases, using Box-Cox transfor-
mation and using Wilson-Hilferty transformation in MN skewed sequences obtain

almost the same results in ducing several i p like the mean,

standard deviation, Ry, and Hurst’s K. But, for modeling skew coefficient, Wilson-
Hilferty transformation gets ietter results, especially when the skew coefficient of
original data is very high. It seems that it is difficult to use Box-Cox transformation
to model high skew coefficient.

‘I'he bias in reproducing several parameters are quite small. A little larger bias

s in reproducing Hurst's K. Usually, the simulated Hurst’s K is less than the
original I if original K > 0.70. If original K < 0.70, the simulated K becomes
greater than the original K. This bias pattern of simulated K here is therefore
quite normal [25].

“To produce generated sequences from the modified mixed-noise model that “on
average” reproduce statistics cqual to the historical values, the parameters used in
the model must be corrected for bias. Analytical expression for bias correlation for
the modified process maybe possible. However, bias correction derived from the
Monte Carlo method is sufficient for most practical purposes. Lye [4] gave some
simple curves which can be casily used to find suitable inputs of K and p(1) in sim-
ulation for bias correction [4]. Some improved results based on this bias correction
method are shown in Table 4.4.

Compared with the simulated results of harmonic analysis in Chapter Three,




-
w2

the mixed-noise model with Wilson-Hilferty transformation is mare effective in re-
producing skew coefficients of the original sequences. Its advantage in this aspect is

very obvious for the high skew g. the results for North River). The

harmonic analysis method gave better results in reproducing Hurst’s K if mixed-
noise model is used without bias correction. This is because the harmonic analysis

1ative d

the original

curve firstly from the observed time
series, and the scparated cumulative departures curve accounts for more than 95%

of the variability in the Hurst coefficient.

4.5 Summary

Long-term dependence can not be ignored in modeling flood time series, that

is, the effects of medium and low fr ies should be idered. Mixed

model is quite effective in this way. It uses three AR(1) processes which are able Lo

model the effects of high frequency, medium frequency, and low fi respec-
tively. Hence it can be used to model those flood series with long-term dependence,
and its physical idea is easy to understand.

Mixed-noise model with a suitable transformation can be used to model skewed
series efficiently. This advantage is evident for those high skew series, compared

with harmonic analysis method. Wil Milferty ion is

to be used as such a transformation by this thesis because it obtains better results

than using Box-Cox transformation, although it is more difficult to use.

exists in d-noise model. But

Bias in

this can be corrected by changing the inputs of Hurst's K and p(1) in this model.
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Phe inputing values of K and p(1) can be easily obtained from curves which are
obtained based on the Monte Carlo method.
“The mixed-noise process has several advantages. Firstly, it uses both A and p(1)

plicitly to derive its Secondly, the are easy to estimate.

Finally, because of its simple structure, it is relatively efficient when compared to
the computational time of present models. It remains, however, to determine the
optimum values of the lags (s, $2, 53, and s4) where the MN correlation function is
forced to match the FGN correlation function. More curves for bias correction for
different sample lengths should be obtained by Monte Carlo Method. In addition,

a comprehensive comparison with the ARMA-Markov model and other contending

wodels in terms of small sample biascs, generation of skewed variates, and exten-

sion to the multivariate case remains to be carried out.



Table 4.1: Simulation Results of MN Skewed Sequences By Box-Cox Transforma-
tion(considered all H, M, L terms)

River A Mean Std R1 Skew Hurst’s K
Ori. | Simu. Ori.| Simu. | Ori.| Simu.| Ori. | Simu. | Ori. | Simu.
St. Lawrence® | 2.360 | 6818.64 | 6821.60 | 594.94 | 470.74 | 0.695 | 0.443 | -0.202 | -0.269 | 0. 0.793
Missi., §* 0.600 | 4958.62 | 4953.93 | 1482.77 [ 1452.34 | 0.292 | 0.255 [ 0.297 | 0.329 [ 0.646 | 0.703
Missi., K 0.500 | 1732.17 | 1729.79 | 511.67 | 490.76 | 0.411 | 0.332 | 0.480 | 0.358 | 0.704 | 0.731
Mures 0.110 | 167.23 | 167.42 | 67.01 65.73 ] 0.246 | 0.119 [ 0.925 ) 0.973 | 0.680 | 0.687
Rhine* 0.680 | 1026.46 | 1025.93 | 163.46 | 162.08 | 0.076 | 0.060 | 0.146 | 0.144 | 0.613 | 0.657
Danube* 0.170 | 5364.18 | 5361.91 | 1027.90 | 1021.39 | 0.093 | 0.058 | 0.275 | 0.439 | 0.632 | 0.665
Thames* 0.580 6295 | 6291 23.03| 21.07( 0.139| 0.010| 0.176 | 0.407 | 0.760 | 0.703
Columbia 0.235 [ 437.60 | 437.75 [ 114.29 | 108.88 |-0.077 | -0.169 | 0.519 | 0.334 | 0.746 | 0.684
Flathead 0.395 | 208.53 { 208.73 70.00 [ 6427 | 0.187 | 0.039 | 0.754 | 0.585 {0.785 | 0.713
Southeast Mar | 0.005 38.68 38.75 8.18 7.76 | 0.138 [ 0.021 | 0.619 | 0.589 [ 0.756 | 0.701
Northeast Mar [ 0.005 | 176.31 | 176.41 66.89 | 62.77 | 0.070 | 0.005 | 1.747 { 1.464 | 0.732 | 0.690
Black* 0830 | 12949 | 129.46| 31.15| 29.79| 0.112 | 0.019 | 0.206 | 0.108 | 0.731 | 0.698

* Originally normal data
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Table 4.2: Simulation Results of MN Skewed Sequences By Wilson-Hilferty
Transformation(7, from high freq. terms)

[River Mean Std R1 Hursl's K

Ori. | Simu. Ori.| Simu.| Ori.| Simu. Ori. | Simu.
St. Lawrence | 6818.64 | 6817.46 | 594.94 | 468.95 | 0.695 | 0.490 0.892 | 0.796
Missi., S 4958.62 | 4955.67 | 1482.77 | 1456.60 | 0.292 | 0.253 0.646 | 0.701
Missi., K 173217 | 1729.21 | 51167 | 491.75 | 0411 | 0.344 0.704 | 0.732
Mures 167.23 [ 167.20 | 67.01 [ 64.89 | 0.246 [ 0.189 0.680 | 0.702
Rhine 1026.46 | 1025.93 | 163.46 | 162.26 | 0.076 | 0.055 0.613 | 0.657
Danube 5364.18 | 5361.96 | 1027.90 | 1016.62 [ 0.093 | 0.065 0.632 | 0.667
Thames 62.95| 6295| 23.03| 21.65] 0.139 | 0.014 0.760 | 0.705
Columbia 437.60 | 437.51 | 114.20 | 108.52 | -0.077 | -0.186 0.746 | 0.683
Flathead 208.53 | 20862 | 70.00 | 64.08 | 0.187 | 0.031 0.785 | 0.715
Southeast Mar | 38.68 | 38.74 | 818 7.69 | 0.138| 0.020 0.756 | 0.704
Northeast Mar | 176.31 [ 175.96 | 66.89 | 62.20 | 0.070 | -0.006 0.732 | 0.69
Black 12049 | 12042 | 31.15| 29.81 | 0.12] 0.018 0.731 | 0.695




Table 4.3: Simulation Results of MN Skewed Sequences By Wilson- Hilferty
Transformation(7, from all H,M,L freq. terms)

River Mean Std Ri

Hurst's K
Ori. | Simu. Ori. | Simu.

Ori. | Simu.

Simu.

St. Lawrence |[6818.64 | 6817.30 | 594.94 | 469.61 0.892
Missi., § 4958.62 | 4955.70 | 1482.77 | 1456.40 0.646
Missi., K 1732.17 | 1729.03 | 511.67 | 491.58 0.704
Mures 167.23 | 167.19 67.01 64.86 0.680
Rhine 1026.46 | 1025.93 | 163.46 | 162.26 0.613
Danube 5364.18 | 5361.95 | 1027.90 | 1016.50 0.632
Thames 62.95 | 6295 23.03 21.65 0.760
Columbia 437.60 | 437.48 | 114.20 [ 108.47 0.519 [ 0.515 | 0.746
Flathead 208.53 | 208.69 70.00 64.03 0.754 | 0.819 | 0.785

Southeast Mar [ 38.68 | 38.73 8.18 7.67
Northeast Mar | 176.31 | 175.20 66.89 62.09
Black 129.49 | 129.42 3115 29.80

0.619 | 0.641 | 0.756
L747 | 1.633 | 0.732
0.206 | 0.211 | 0.731

Table 4.4: MN Skewed Sequences with Bias Correction (Wilson- Hilferty
Transformation?y, from all H,M,L freq. terms)

River Mean Std Rl Skew

Ori. | _Simu. Ori. | Simu. | Ori. | Simu. | Ori. | Simu.
St. Lawrence | 6818.64 | 6816.58 | 594.94 | 527.73 | 0.695 | 0.729 | -0.292 | -0.075
Missi., § 4958.62 | 4957.25 | 1482.77 | 147295 | 0.292 | 0.250 | 0.297 | 0.275
Missi., K 1732.17 | 1730.60 [ 511.67 { 520.86 | 0.411 | 0.348 | 0.480 | 0.443
Thames 62.95 | 62.94 | 23.03 23.00 | 0.139 | 0.155 | 0.176 | 0.173




Chapter 5

CONSIDERATION OF THE
HURST PHENOMENON IN
FLOOD RISK ANALYSIS

5.1 General

In the previous chapters, the existence of long-term dependence in flood peak
series and how to model this kind of dependence were discussed. But there is still
another question left to be answered, that is, why do we need to model long-term
dependence in hydrologic series? In other words, does it make sense in engineering
practice that we consider the Hurst phenomenon in flood risk analysis? In this
chapter, the effect of serial correlation on flood risk will be discussed. Mixed-noise
model and Monte Carlo method will be used in the analysis.

The effect of short and long term serial correlation on the variability of sample
statistics were discassed by some researchers. Loucks et al. [34] showed that short-
term dependence increased the variances of sample mean and sample variance [34].
Lye [4] showed that when the series of observations exhibits long term serial cor-

relation, the variance of the sample statistics are greater than that for ei*her short

7
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term correlated or independent processes [4). This chapter will illustrate that, when
Hurst's K is high, how much it will affect flood tolerance limits in risk analysis if

we ignore the serial correlation.

5.2 Method of Flood Risk Analysis

As a rule, hydrologists pay little attention to the serial correlation of flood peak
series. This is inherent in the way a flood frequency analysis is performed. The
flood data are arranged in order of magnitude. Then they are plotted on probability
graph paper, and finally, a probability distribution or a curve is fitted through the
plotted points. It is evident that in this process, the order in which the data occured
in the time series, and therefore the serial correlation structure, is considered to be
irrelevant,

When we use a flood frequency curve, we set a magnitude of flood to occur in P
percent of some long future record of floods. Usually, we think of the return period
(T) rather than the probability. A 25-year flood would be found to be exceeded,
on the average, four times in each 100-year period of a large number of 100-year
records. By using the return period as a design criterion, we are implying that we
expect average conditions to apply over some long future.

Risk estimation is an alternative to the return-period concept. Risk can be
introduced using the annual maximum flood as the random variable. Thus the time
period is 1 year. We will assume that in any one year, a flood either occurs or it
does not occur and that no more than one flood of a certain magnitude will occur in

any one year. If we also assume that the probability of that flood occuring remains
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constant from year to year, we have satisfied the four assumptions underlying the
binomial distribution. Thus, if we define the risk as being the probability of one or

more floods having probability p occuring in n years, we get the risk as

risk

-(§)Pa-ar=i-a-r 1)

We can develop the concept of risk in a different way. If p is the probability
that a flood will occur in any year, 1 — p is the probability that it will not occur. If,
further, we need n years for construction, (1 — p)" is the probability that the flood
will not occur in these n years, Conversely, 1 — (1 — p)" is the probability that the
n-year period will not be flood free. In other words, it is the chance of at least one
flood equal to or greater than the flood corresponding to p, and represents risk.

“The above methods are correct procedures only when we have long-lived struc-
tures, or economic benefits accruing over very long periods and the floods are serially

independent. But what risks do we run when the floods are serially dependent or

there is no opp: ity for long-ti aging? We can use confid intervals
to make probabilistic predictions about possible future values of the mean of the
sample. Also, we can use tolerance limits to make probabilistic predictions about
possible future values of specified proportions of our samples [44]. When doing

this, we must attach a confid level to the prediction. The probability of 0.5%

is a sample proportion of 1/200, and we must estimate how this proportion might
range.

If we had performed the simulation of m samples with the same sample size
n, we would be in a position to answer several questions. What are the range
and distribution of the largest z in each of the samples? What are the range and

distribution of the kth largest value? What are the range and distribution of the
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middle value of each sample? Answers to such questions are illustrated in the next
section, and a comparison of these answers between two corresponding simulated
series(dependent series and independent series) is also provided to show the in-
crease in the uncertainty of flood risk assessment when the serial correlation is not

considered in a high Hurst's K flood series.

5.3 Results and Analysis

The Thames river is chosen as an example in this analysis. The mixed series
data passed all tests for short-term dependence considered in this study, but the
data failed Hurst's K test for long-term dependence. That is, it is an indepen-

dent series under the traditional ideration but a d dent series under the

viewpoints in this study. Hence, it is a good example for our comparing the their
difference on flood risk.

Monte Carlo method is used for this analysis. Two thousand samples of inde-
pendent sequences, with the same sample size as Thames' flow series(n=71), are
generated first. Their means, standard deviations, and coefficients of skewness are
statistically equal to those of Thames' flow series. Then, two thousand samples

of dependent sequences, also with the same sample size, are generated by mixed-

noise model. Following the fitting procedure with bias jons for this model
suggested by Lye [4], the synthetic d d on average reproduce the
required sample ics( standard deviation, Ry, coefficient of skewncss,

and Hurst’s K). These are shown in the following Table 5.1.

To analyze the simulation results, we are specially interested in the probability
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distributions of largest events. This is because in engineering practice, only those
results with highest sample ranks affect our selecting design flood value. For ex-
ample, rank number 1 corresponds to the 1/71 event, rank number 2 corresponds
to the 2/71 event, and so on. The simulation results of 5 highest sample ranks and
the median rank (rank 36 for Thames flood series with n=71) are shown in Table
5.2,

The distributions of these events are shown in Fig. 5.1 using boxplots. Here
the lower hinge H, is the first quartile, the upper hinge Hy is the third quartile.
“The inner fences is between Hy, — 1.5(Hy — Hy,) and Hy + 1.5(Hy — Hi), and the
outer lences is between Hy,—3.0(Hy — Hp) and Hy+3.0(Hy— Hy). “* " represents
possible outlier which is between the inner and outer fences. “ 0" represents the
probable outlier which is beyond the outer fences.

‘The above results illustrate clearly that the effect of serial correlation on flood
risk. For dependent series, the median values of ranks numbers (“+” in the box)
are almost the same as those of independent series. In other words, consideration of
serial correlation (or Hurst phenomenon) does not change the results of frequency
analysis. It obtains the same answers in estimated median flood values for certain
return periods. However, it gave much larger variance in flood values for every rank.
The larger variance means larger uncertainty and the decrease in the reliability of
the results of frequency analysis. Therefore, uncertainty in the estimated flood risk
increases if the effect of Hurst phenomenon is taken into account.

To investigate how much is exactly the increase on flood risk, a further analysis
is needed. Either for dependent series or independent series, all 2000 samples have

their events arranged in order of magnitude. As a second step, each of these rank
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numbers may also be arranged in order of magnitude. We thus have ranks 1 to
71 of the individual samples ranked across the 2000 samples. Selected tolerance
limits numbers, the means and the median values of the 15 highest sample ranks
are plotted in Fig, 5.2 and shown in Table 5.3.

From the above demonstrations one can see that the variance of the ordered
statistics is substantially higher for flood series that exhibit the Hurst phenomenon.
Thus, neglecting uncertainty in these cases may cause serious underestimation of
the future flood risk. For example, under the traditional viewpoints, the flow se-
ries of Thames river is an independent series because it passed all statistical tests
for short-term dependence, and hence the serial correlation can be disregarded in
flood frequency analysis. But from the results in Table 5.3, this causes serions
underestimation of the flood risk. If we want to estimate the possible 2/71 event
(rank 2 number) at a significance level of a = 5%, the error of underestimation for
the upper limit would be 11.01%. For an estimation of possible 14/71 event (about

rank 14 number) at the same significance level, this error could be up to about 20%.

5.4 Summary

From the above discussion, it is evident that the serial correlation of annual
peak flows, and by implication the nature of the variability of these peak flows,
should not be taken for granted. It should be deduced from observations and ev-

ery effort should be made to d ine the hyd, logical conditions that

may cause the serial correlation. In addition to the standard statistical tests for

short-term dependence, flood peak flows should also be tested by Hurst's K for its



possible long-term dependence.

If flood peak flows fail in Hurst coefficient test, the serial correlation should
be taken into account in flood risk analysis, otherwise the underestimation of flood
risk could be serious. Mixed-noise model with bias corrections and some other
models like harmonic analysis can be used to model flood sequences with long-term
persistence. If necessary, the uncertainty in the distributions of the highest ranks
numbers can be quantified using Monte Carlo methods, like the analysis methods
used in this chapter. The most important aspect of this flood risk analysis method
may be that generated synthetic flood sequences should on average reproduce the

required sample statistics of original flood sequence.
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Table 5.1: Simulation Results of Thames' Annual Flow Series (Replications in
Monte Carlo method: 2000)

Parameter Mean Std Ry Coef. Skew K

Original Series 62.947 | 23.025 | 0.139 0.176 0.760
Dependent Series | 62.938 | 23.004 [ 0.155 0.173 0.760
I Series | 62.860 | 22.944 | -0.013 0.175 0.623

Table 5.2: Simulation results of five highest ranks and median rank
Rank 1 2 3 4 5 | 36(median)
Deptndent | Mean | 120.46 | 111.41 | 105.95 | 102.15 | 99.07 62.27
Series Std 20.42 [ 1852 | 17.88 | 17.61 | 17.38 16.74
Independent | Mean | 120.61 | 111.04 105.80 | 101.91 | 98.87 62.11
Series Sid_]11.08 ] 824 | 6.96 | 6.14 | 5.68 3.43




Table 5.3: Tolerance limits for the 15 highest sample ranks

U 5%

(a) Dependent series

U 10%

L 90% | L 95%

Median

Mean

154.04
141.32
134.74
130.83
127.25
125.03
123.23
120.65
118.75
117.05
115.65
114.16
112.41
111.36
109.61

147.24
135.03
128.69
123.93
121.07
118.59
116.37
113.94
111.68
110.14
109.07
107.56
106.34
104.61

103.28

94.44
86.94
82.70
78.95
76.04
74.07
72.28
70.45
68.95
67.59
65.69
64.41
62.97
61.88
60.76

88.33
8117
77.05
73.93
70.94
68.29
67.05
64.97
62.84
61.57
59.82
58.82
57.38
55.62
54.39

120.07
111.53
105.53
102.01
98.80
96.38
94.31
92.22
90.17
88.41
86.81
85.44
84.01
82.60
81.34

120.46
11141
105.95
102.15
99.08
96.55
94.35
92.36
90.43
88.77
87.23
85.78
84.41
83.10
81.84

(b) Independent series

Rank | U5%

*Err at 5%

U 10%

L 90%

L 95% | Median

1| 140.77
2| 125.76
3| 117.93
4] 11241
5| 108.71
6| 105.42
7| 102.80
8 | 100.06
9| 98.06
10| 9641
11| 9445
12 9295
13| 91.66
14| 90.04
15 | 88.82

-8.62%
-11.01%
-12.48%
-14.08%
-14.57%
-15.69%
-16.58%
-17.06%
-17.43%
-17.63%
-18.33%
-18.58%
-18.45%
-19.15%
-18.97%

135.77
121.79
115.01
109.94
106.09
103.22
100.74
98.31
96.34
94.66
92.89
91.38
90.08
88.57
87.32

107.76
101.44
97.29
94.18
91.96
89.48
87.56
85.62
84.15
82.70
81.46
80.12
78.66
77.53
76.50

98.77
95.10
92.43
89.94
87.70
85.86
84.09
82.66
81.30
79.87
78.57
77.30
76.06
74.94

105.02 | 119.32 |
110.30
105.32
101.67
98.76
96.14
93.96
92.03
90.31
88.69
87.02
85.60
84.22
82.90
81.60

Mean
120.61
111.04
105.80
101.91

98.87

96.28

94.04

92.07

90.29

88.65

8n.12

85.70

84.31

82.98

8L.74

* Note: “Err at 5%"

the

in the risk

because

of the assumption that the flow series is independent.



Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions
There are several conclusions which can be drawn from this thesis.

1. Many annual peak flows exhibit the Hurst phencmenon, but standard sta-

tistical tests for ind de are i itive to the long-t de d

of the peak flow series. Significant long-term serial correlation as

by the Hurst coefficient is present in a large number of the peak flow series

which passed standard istical tests for short-t ind d There-
fore, all annual peak series should be examined by Hurst coefficient test for

their long-term dependence.

»

Generally, harmonic analysis of the cumulative departures of annual flow se-
ries is a good method to simulate storage-related process. The first advantage
of this method is in reproducing required Hurst's K in simulated series. But

the difficultics come out in ducing the coefficient of skewness when the

original flood series is highly skewed. Because the residuals are usually not

90
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independent data, sometimes it is difficult to find the best ARMA model for

the residuals.

Mixed-noise model is an new effective model which is able to model the ¢f-

fects of high freq medium fi and low freq in flood series
respectively. Using Wilson-Hilferty transformation, this model can casily re-

produce the the coefficient of skewness of a high skew flood series. Bias in

producing the statistical existy for this model. But, with some

curves prepared by Monte Carlo method, this bias is easily corrected.

The effect of serial correlation on flood risk analysis can be substantial. It
should be considered for those rivers exhibiting significant long-term depen-
dence, otherwise it may cause serious underestimation of the future flood

risk.

6.2 Recommendations

From the results of this study, the following issues should be considered for

further research:

1

S

. Since parameter uncertainty caused by long term serial correlation is quite

substantial leading to a upward assesment of flood risk, physical reasons for
the long term behaviour should be investigated for each river basin where this

phenomenon is observed.

. It seems that there is some kind of relationship between the number of sig-

nificant harmonics of flood series and long-term dependence. It may be inter-
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esting to do further studies on this relationship and its physical explanations.

. There are several models available which are capable of simultaneously re-

producing high and low frequency effects. [t is necessary to develop the pro-
cedures for ease of selection of models and input parameters for any desired

output characteristics.
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the value * 1* means the series failed that test (or: the series is dependent).
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