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ABSTRACT

TIIl ~ ~tl1nd a.rd assumptio n in Rood frequen cy analysis is tha t annual peak flows

ilr< ! independent events. Hydrologists pay little attention to the serial correlation

,,( Ilood pl·ll.k sc r i c~ in flood frequen cy ana lysis because stan dard sta tis tical tests

fur independence usually do not reject the null hypothesis of serial independence

,'1,1 the DO%or 91:i% confidence level for moot rivers. This study was undertaken to

i ll V(!~ ti gll.tc the validity of t his asaumption with regard to Canadian rive rs by st a­

l is1.k'l.l1y an alyzing t he short- term and long-te rm de pendence of ann ual peak flows.

Ni"dy stati onary flood series of Canadian rivers were test ed by eleven tests for

sho rt -term dependence and one lest for long-term dependence. T he result s show

1Iial about 18%(at 5% level) - 28%(&1 10% level) flood series passed th e short-term

111'llI'mleucc testa but failed the long-te rm dependen ce test . The presence of long

k r ill ~er ial correlat ion in flood series is evident and can not bed isregard ed in flood

risk illlalysis.

Modeling a nnual now ser ies by considering the effect of both shor t-term and

long-term dependence was then discussed. Thi s stu dy eenaidered two newly de­

vdo ped models: harmon ic analysis of cumulative depar tures, and the mixed-noise

model. T hese two models were fur th er developed and a compari son between t hem

wa.'!made. fi nally, the effect of long-term dependence on flood risk ana lysis is eval­

uatcd using Monte Carlo simulations. It was found that neglecting serial correlatio n

could cause considerabl e uncerta inty in the estimated flood risk .
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Chapter 1

INTRODUCTION

1.1 R evi ew of Serial Correlat ion on Flood Ri sk
Analysis

1.1.1 Se ria l Correlat ion of An nua l P eak Fl ows

MallYtYJH!lI o( hydrologic time series exhibit significant serial correlation, tbat

i!l. t he value of the random variable under consideration at one time period is cor ­

rcl"'hodwith the values of the random variable at earlier time periods. But in most

analysis of annual peak dischergee for the dctermina.tion of flood frequencies, an­

nual peak now s are ass umed 10 be serially independen t events.

The consequences of MlIumintj independent annual peak flows must be consid ·

('f<"1. Chnw II) CAut ion ed that in ACtUal hydrologic phenomena the variables ace

likd y to be interdependent to an extent, and that the possibili ty of inte rdepen ­

dence should be investigated. The U.S. Water Resour ces Council Guidelines 12J

admi t ted that a relat ionship derived to predict future flood act ivity, if based upon

nonrandomdata, would have an increased degree of uncert ainty. As cited by Car ­

rigan and lI uzzcn [J), the specific effects could be to un derest ima te the confidence

L,u" l, cecribcd to a Oood frequency distribu tion and to uadereetimare the popu-



larion variance of a peak flow series by n~kctil II to con~irlcr sc--rial corrclauon .

If annu .u pea k flows are dependent, errors in floo<1 frrqu('ncy an"ly~i ~ pron ..lnrt"ll

due to the assump tion of independence sbould be eXlI-mined and quant iliod, )\11<1

standard procedures revised to account for interde penden ce. Lye '·11a1110 lIhowed

thai. tak ing into account the parameter unc('rta inly which i, aggrAyalt'dlIy :orrii\l

correlat ion, significantly increilo5CS the risk iIlI!IOd aled wil lI futlne peak flow,..

Serial correla tion a nalysis provides a measure of t he degree to which t he vari­

abies in a tim e series are interdependent. Yeyj(~v i rh 15Jperformed serial corrf'llllioll

analysi, on sequences of annua l river flow and detected pceirivc IIcrial correlation

on many riven . Acknowledging the interdep endence of ann ual now~ , Ceengan anti

Huzzen [3Jinvestigated the .!Ierial correlation of a nnual pea k f10W ll . In their allaly~i,.

of records for 45 streamflow Ital ion. throughout lIle United Sta tL'll, tile.' numlw.r

atautocorrela tion coefficients significantly different from :zerofor time lags of (Inc

and two years WM greater th an the expected number due to chance . Six or the

45 It rearm were [udged to abow sit ns of depende nce. In an analysis or AU!ltnJian

etream s by McMahon (6). approximately 17 perce nt of 133 dreaml analyzed ShOWL't!

dependence or annual peek discharges. Out, fo r most rivers, Ita nda.rd stat istical

tests for dependence usu ally do not reject t he null hypoth~i, or lW!ria.lintiepellllencc

at the 90% or 95 %confidence level. Wall a ne] Englot 17Jconcluded that, according

to 5 independence tC3tS, annual peak flews arc independen t Icr th e 57 strea ms in

Pennsylvania. That is why serial correlat ion is usually disregarded in flood fre­

quency analysis. The ob vious exceptions are rivers wit h large sto rage rcaltm:s ill

their d rainage basins suc h as large lakes.



1.1.2 Long Term Persistence in Peak Flow Series

ficrial correlatio n implies persiste nce. Long-term pe rsiste nce I is t he presence

in '" time series of significant dependence bet ween obser vations a long time spa n

apart, T his is in con t rast wit h the common assumptio n of time series analysis th at

observation separated by a long time span arc independ ent or nearly so. Long te rm

p,:rlli.'lLcnCe may he characterize d by the Hurst phenom enon and measured by t he

Ilurst cocfflcient h.

The bas ic mathe matical exp ression for t he lIurst coefficient can be written as:

(1.1)

where R" and $" arc t he sample-adjus ted range of cumula tive departures from th e

arit hmet ical sample mean a nd t he sample sta ndard deviat ion, respecti vely, for a

givcll l ime scries of length IIi th e ratio R../S.. is specifically referred to as the ad-

jnstod rescaled range ; and h denotes t he Hurst coefficient. For some 900 geophysical

time Reriell, Burst [8119]observed that on average h:::O.73. However , theoretical at­

tomp ts to preserve thi s value of b in synthetic sequences failed as they led to an

asymptotic value of 0.5. T his discrepancy between the empirical and theoretical

values ill labe lled as the Hurst phenomenon . It genera ted considerable inte rest

among hydrologists and ma th emati cians alike since it indicates a puzzling long

term "memory" or "pe rsisten ce" in the random process t hat generated the series.

The point that is overlooked in sta tistica l tests for dependen ce is that these

tl'lltRarc designed to show up only short term seria l corre lation. Th ey are insensit ive

'In th tRth ellt" thr~words, llCrlal correl sti on,pe ",i,tcn ce snddependencemeanlhe aamethlng

I\ntl are used interchangea bly.



to the long term serial correl atio n struct ure of t he dat il.. Thill waa (icmolllll rl\(c'd l,y

Booy and Lye [IOJ. Th ey an alyzed the corre la tion st ruct ure o f "hOllt firty iUH\1l1\1

peak 80w series from all over Canada, and found that while the high Irequcncy

aspects of t he serial correlat ion structure, 1\.' measured by the lag-one serial rorre­

latio n coefficient, are not significant ly differl'n1 from zero , the low freque ncy a.~ [l l'cl~

as measured by the Hurst coefficienl [8), is significant for many of theso sl'ri,·s. Sim.

ilar findings for annual 80w volumes and annua l precip italion were reported hy

Srikan1ha n {It! and It all et al. [121, respect ively,

1.1.3 The Modelin g of H ydrologic Time Series

For a normally distributed 800d series with mcrnbc ra that arc independent or

that follow a simple cor relat ion struct ure, the dietribu tjon of th e sa.mple sli\tilll icll

can be obt ained ana lytically in a 800d frequency analy sis. For flood series with a

complicated serial cor relation structure, it is difficult to use an e nalyticalnpproach.

One must resort to Monte Carlo techn iques. A theore t ical tim e ~rics morle! uul-t

will reproduc e the corre ct correla tion structure or the peak flow series is required

to obta in the distribution of t he estimated paramc tcra,

Many mod elsexist for the modellingofhyr:lr ologic time serics ha.viog II. relat ively

high Hurst coefficient as well as a low lag-one serial correlation coefficient. The

bet ter known models are : the Fast Fractiona l Gaussian Noise process (Mandr.lbrol,

[1 ~}); the Broken Line process (Mejia , [14J); the ARMA (I,I) pr oceu (O'C onne ll,

[I5!); and the ARMA·Markov process [Lcttc nrnalcr and Burges, 1161). A Si ll . ~

and relatively efficient Mixed-Noise process for modelling the "mixed" behaviour of

hydrologic seri es hall also been developed (Lye, 1"1I10}). MOTe recently, a harmoni c



analysis rnelllOd developed hy Sen [171has also been shown to be capable of mod.

dlirl~ t he mixed behavio ur,

Srikanthan Ill] has compared the performance of some model s for modelling

annna] flow volumes of Australia n rivers. Bllt ther e are a number of issues which

have yet to he resolved for the t wo newly developed mode ls, t hat is, har monic

ilnalysis of the cumulati ve depart ures and Mixed-Noise model. Harmonic analysis

me·thud h il.~ not been fully developed. Sen [17Jdid not discuss the sui tability of this

method, how to model t he residuals bet ween the or iginal and HCD (harm onic cu-

llIul/lliVfJdepArtur es) cu rves, and eome ot.her problem a. For the Mixed-Noise model,

lin! theoretical properties of this modeland il5 perfo rmance in relat ion to the other

models have not been investigated in deta il. Moreover, how to mode l skewed flood

sequences using Mixed-Noise model is very importa nt in practice an d has yet to be

developed.

1.1.4 T he Effect of Lon g-Term Dependence on Fl ood Risk
Anal y sis

The importan ce of low freque ncy beh aviour o n flood risk analysis was previ-

o usly demonst rated by Bcc y and Morgan [18J. Wit h a fractional noise mode l which

models low freque ncy be haviour {13], they have shown that a degree of clustering

of high flood years in th e the rec ord of ann ual flood peak s on t he Red River in

Winnipeg t hat , statistic a lly speaking, is incompa tible wit h the cust omary assump­

t ion of serial independe nce in flood frequency ana lysis. T he return period for the

lIood prot ect ion of the Ci ty of Win nipeg and the town s in t he Red River Valley was

reduced to less than hal f the value estimated with the assum ption or serial inde-



pendence . Long-term fluctuations in soil moisture ronditions wer e also shown to be

related significantly to t he observed low behaviour in the annual !lIning p('ak nOW!;

at Eme rson, Manitoba (Booy a nd Lye, [19]). llccause of the cust o mary iVIS111l1Jllioll

that annual peak flows are seriall y inde pendeu t , it is wort h mak ing an effort to

extend this work to othe r river flood ser ies and to the ap plication of otl\('r models

for the modeling long-term depen dence in flood risk analys is. Mo nte Carlo lI1<.'thod

and mixed-noise model were used for t his pur pose. Bayes ian e ualyaie propos ed

by Lye et a1.(1987, 1988)is anot her method whirl! is able to evaluate the clfrd o f

long-term persi stence on flood risk analys is !,t][39],

1.2 Objective of Thesis

The first objective of this t hesis is to investigate the lon g term serial co rrelation

in annual peak flowsof Canadian rivers. As men tioned ab o ve, the COIISCQ UCIICC5 uf

assuming independent a.nnual pe ak flows should he consid ered and the IttatiRtiCl\1

tests for dependence which are nor mally USCl:1 arc insensiti ve to th e long term Reria l

correlation structure of the series, Therefore, it is necessary to kn ow if lon g term

serial correlation exists in annua l peak flows before wepe rfo rm floo d risk llnalyRis.

The second objective of this study is to do further st u d ies in two newly devel,

oped models {or modeling hydro logic time series: harmonic analys is of cumulative

departures and mixed-no ise mode l. These two models were designe d to mo del long

term dependence in flood series.

The third objective of this study is to evalua te the effect of long term persia­

renee on the tolerance in te rval of estimated floods.



1.3 Outline of Thesis

Till: study begins with performing twelve statistical tests to investigate the

serial correlation structu re in annual peak flews of 90 selected Canadian rivers.

Thi~ ill given in Chapter Two. Further development on Sen's harmonic analysis

method is done in Cha pter Three. Cha pler Four presents the a pplication of the

mixed-n oise model in modelling "mixed" behaviour in annual floods, especially in

modelling skewed now series. In Chapter Five, based on mixed-n oise model and

Monle Carlo simulation, the effect of serial correlation in Heed risk is analyzed.

Chapte r Six provides conclusions and recommendat ions from this study.



Chapter 2

SERIAL CORRELATION
STRUCTURE OF ANNUAL
PEAK FLOWS

2.1 General

Stat istical frequency analysis assumes that the sample to be analyzed is a

reliable set of measurements of independent random events from a sta t ionary pop­

ulat ion. T he validi ty of this assum ptio n can he vcriliCflusing stal islir1l1significancl~

tests. However, most st atist ical tests of serial independence are designed to show

up only short term serial correlalion. They are insensitive to the long term serial

correlat ion st ruct ure of the data which can be far more important .

To demonstrate th is issue, the serial correlation structure of ninety peak Ilow

series from Canad ian rivers was analysed using eleven common tests for short-term

dependence and Hurst 's K test for long-term dependence. The calculated lI U f9 ~ 'S K

for each river was tested for sta tistical significance ,u ing bootstr apping and nelng

a table of empirica l pe rcentage points developed based on normally distributed

independent data.



In t he Ilf,:xt sedion, the tll'tai ls of each tesl of short· term dependence are given .

Hurst's h· test for long-term dependence is then considered. This is followed by

a nalysis of the results, an d conclus ions.

2 .2 Test s of Short-Term Dependence

In the stalist ic,,1analy sls of short. term dependence of the annual pea.k flows,

the following eleven tests were a pp lied to each t ime series. The first nine teats are

non-par a metric tests, the last two tests are parame tric test s.

2 .2.1 Non-pa ra metric t ests

(1) Med ian crossing t est (Fis2,196 3) [20]

X repla ced by 0 if Xi < X (median) and

X replace d by I if oX;> i

If t he original sequence of X. has been generat ed by a purely random process,

then m , thenumberoft imesOis fo llowed by I or 1 is followed byO. is approximately

normally distributed. i.e.

( n - I ~
m _ N Z-'Y"TJ

where n is t he sample size .

( 2) Thrn ing poi nts te st (Kendall's test) [20]

(2.1)

Kendal l's test(Kendall and Stuart. 1976) is also based on a binary series. If

.l'i_l < X i > Xi+1 or Xi_I > Xi < X i+! t then Xi is eeslgned t he value 1; othe rwise it is



10

assumed to be O. Th e number of 1'5, m, is approximatel y normally distributed.ie,

N (
2(n - 2) (l 6n -29) ,

m _ -3- ' - -90-1
(3) Len gth-or- runs test (G old test, 19 29) [20J

(2.2)

A run length s is defined by a set of s consecutive Hews either above or below

the median . If M. denotes t he tota l numb er of runs above anti below the median

of lengt h ", then for .... random process,

E(m ,) = In ~;~ ~ ·,1

and

t,lm. -E(m.lI'/E(m.} - xV -I}

where s' is the maximum run len gth in th e sequellce.

(4) Rank diffe rence te st (M eacham t est , 1968) (20)

(2.3)

(2.4)

Flows are replaced by their relative rank s n. with the lowest being denoted by

The U statistic is calculated by:

For large samp le size n,

(
(n + l )(n - l ) ,jt. - 2)(n + I)(,. - 7)

U-N --3--' 90

(2.5)

(2.')



II

( 5) Cumulat ive per iodog ram test (B ox-Jen k ins, 197 0) [20}

'l'bc per icdogram of a time series is defin ed as [291:

l U j ) =~ [{~ XiCOO 2 11'i /; ) 1 +(~ %;Sin 211' ih )21 (2.7)

where l , = tt «
j = I, 2, , (n-2 )/2 Icr n = even

= 1, 2, , (n - I) /2 (or n= odd
T he nor m alized c umulat ive pcrio do gram is obtained from

(2.8)

.~ 1= var i aIlCC Or X i

fo r white noise po ints should fall ±K"I.j(n - '1.) / 2 n = e ven

f{" = 1.63(99%), 1.36(95%), 1.22(90 %), 1.02(75%)

( 6) Wa ld -Wolfowitz t est (Wal d k Wolfowitz. lQ43 (211

For a sample of size n ,
.-,

R = trXiX;-1 +z.%'.. (2.9)

If 1I1c clements o f the samp le are independ ent,

Ii - N (j ~ - .'11 , s~ - .'14 _ ( Sl -S1) 2+ S l ~ - 4..j 82 + 4S1S3 +8~ - 234
n -I 0 - 1 n - l (n - 1)(0 - 2)

(2.10)

where

(2.11)

If mean ill subtracted first, " I =0 , the n

R~N (..=§.. SJ -S4 _~ + 51 - 254 ) (2.12)
0 -1 ' n- l (n - lJi (n - l )(n- 2)
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(7) Sp earm an r ank ord er lleria l corre la tion coefficient test for dependence

[221

The series Xi is defined by the rank of Q; (i =I , .... n-I ]

t he lICrie3 Yi i3 defined by the rank of Q; (i ;: 2, "" n)

then

SI= & E Z~ ~ ~ ~ ~ L tff

where Exf =:: (m 3 - ml /1 2 - r:T~

E y] ={m3 -m)J12- I:TI/

di = differe nce in rank between Xi an d y,

m ee n-I

If no ra nks are tie d (ca n be assum ed if on ly II. small number], then

For tie d ranks, To: = (t3 - 1)/ 12

where £ is the number of observations tied at II. givenrank.

E T,.. and E Tw a re defined by extension of t he foregoing.

For n > 10,

SI ..... 1(m-2) (one tail test)

(2.131

(2.141

(8) Run s above and below the median test for general randomness [22}

Data are ranked in chronological order. An A or 0 is lL,ftigned ac:cor'ling to

whether the corresponding data item is abo ve or "below or equal" to the median.
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Tlie nu mber of runs, RlJNAB, is dete rmi ned.

Fo r "I A'g and ", A's with " I a nd ", both great er than 20, the sampli ng

<Ii~t r i " 1J lioll of RUNAn lends tn norma lity with

(2.16)

1. i ~ #U l N (0,1) variate and as used in th is program, the region of rejection is

;.:great er than 1.96 for 0" =' 0.05

x great er than 1.645 for 0: = 0.10

For til and " 2 bot h less th an W, the region of rejection is defined by t ables.

(9) Rank von Neumann R at io [24]

Le t rt. .. .•r.. denote the ra nks associated wit h the xis. The r ank von N eumann

mlio il'lgiven by

(2.17)

Critical values of c "" [0(02- 1)/12]v and approx imate crit ical values of v ar e give n

hy Madansky 124J. For large n, u is approximately distributed as N (2,4/ n) , though

Barle ls recommends 20/(5n+ 7) asa bette r approximation to the varianceof v 124J.

2.2.2 Parametric test

(1) Autocorrelation test [23}

Short-term dependence is usually measured by the magnitude of the low-order

autocor relation coefficients. In this thesis the a utocorrela tion function, r ll . is eet.i-



mated using:

(2 .20)

where k = lag; Xi = annual now at ti me i; n = ~ l\m ple size; and

The lag-one autocorrelation, rlt is calcula ted from Eqn.(2. 18) and i ~ normally

distributed :

(2) Von.Neu ma nn rati o te st [24J

Let

v L: ~::2 (XI- x,_l )'

i:~= l (XI - 1)1

If data is indepe ndent, V is ap proxim ately no rmally distribu ted with E(V) = 2

and V ar(V) = 4(n - 2)j(n 1
- 1), that is,

z- V-2
,j'(n- 21!ln' - 11

2.3 Long-term Persistence

(2.2 1)

Long-term dependence is measure d by the magnit ude or t he lIurt~ coefficient.

In t hi s study, the Hunt coefficient is estimate d by Hurst ', K value since K 116.8 lI.



lower variance than other estimato rs currently in use and its celculetion is simple

an,] et raight fcrward. It has, however, a substantial bias in that it overestimates h

fur v<lIIH~~ below0.70 and underestimates h Cor valuesover 0.70(Wallisand Matalas,

[25]). llurst' s estimato r !< (Hurst, {S\) is given by:

K= log(RI J)
10. (n( 2)

(2.22)

where, R is the range of cumulative departures from the mean, " is the standa rd

d{~viatioH , and 11 the sample length. K is theoretically 0.5 Cor ['cries of indepen­

dent dnta. It increases when the re is a greater degree of persistence, and it cannot

(·xcecd 1.0. T he Hurst coefficient is presently the only measurement available for

long-term dependence.

2.3.1 Empiric a l Percentage Points for Hurst 's J(

To test the significance of the calculated Hurst 's K of a given time series,

percentage points of Hurst 's K for serially independent da ta at different probabil­

ity levels are required. Statistica l tables for testing the significance of Hurst's K

are not conveniently available. Therefore, in this study Monte Carlo method was

1I~,j to obtain empirical percentage points for Hurst' s K . It is assumed that the

Hull hypothesis is that the flood peak series is normally distributed and serially

independent, and the alternate hypothesis is long-term dependence.

The procedure to oLtain the empirical percentage points by Monte Carlo sim­

nlatlon is as follows:

I) . Generate independent normally distributed data(mean of zero and sta ndard

deviation of one used here) of sample size n j
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2). Calculate Hurst ' K using Eqn. (2.'22);

3). Repeat steps (1) and (2) 10,000 times,

4). Ob tai n t he em pi rie&1 pe rcent ll.!e points hAM'<!. on th e 10,000 1\ vll.hu.~.

T he assumpt ion of normality should not invalid ate t he tcst sinr c lIunt'. K i,l

ill \'cry robust sta tistic (Mandelb rol and Wallis, 136» . T his will he confirmed IAtr r

using the bootst rap tec hn ique.

As mentioned earlier, bias exists in the esti ma tion of the llur st cO(~mr i('1I 1 1i

by Hurst's K . However , since t he formu la used for calculat ing K is the same for

both the sample and in developi ng t he lable of empir ical percentage points thi s hiM

would not come into play here. T herefore it ill rcnsonahlc to compare t he 1\' vll.luc

of the flood series with those at given empi rical pe rcentage points . The calculat ion

result s of the empirical percentage point, are she wn in Fig . 2.1 and Fig. 2.2. For

the convenience of the pra.cti,ing engineer , tllt"fle pcrr.cntage poinb are alsoRhown

in Tables 2.1 and 2.2 for sample sizes ranging from 20 to 200.

The test for Ions -ter m depe ndence is based on compa-rins till"ob-lervel'1 K valUl"

wit h t ha t which could arise by chance alone from a ICri~ of normall y Ji !ltrihuted

independe nt da.t a. The refore, if t he K value of a. Roodser ies i. greater tha.n the h'

given in th e Tab les at a given significance level for a gi~n sampl e size , it is concluded

t hat t his series is lccg-term dependent at t his prohaLility level. Oth erwise it 11&11

no long. term depend enc e. The 5% and 10% levels are used in this study.

2.3 .2 Bootstrap method for t est in g signi fica nce of Hurst 's
J(

To check t he &.!8umptionof using normally di..tri nutC(j data for \.cating Hurst 's

K, the nce-peramete rlc boots trap approach was used . Efron invented t he bocut rep
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"Il~lho(l (Efron, I'WI111] [42J) based on the fact that one available sample gives

rise to many others. Th is method can be used here as a non-par am etric tes t for

long-term dependence. The bootstra p samples a re generated from the da ta. of the

original sam ple a., follows:

I. S IlPPO~C that the annual flow series Zit X2 . ,••• Xn arc in dependent ob­

servations. Each data X; has the same probability of occurrence which equa ls to

1/11;

2. Generate a uniform rand om data i between I and n , then choose :r j as one

point in the bootst rap samp le. Repeal this step n times to genera te a bootstrap

sample of the same size n as the original sample;

3. Calculate Hurst 's J( for the bootstra p sample;

1. Repeat Steps (2) and (3) a large number of times (10,000 in this study) ;

5. Count t he number of times the observed K value of the samp le is exceeded

by the 10,000 boots trapped K values.

6. Calculate the p-value given by:

p - value =#~;oo:"'· (2.23)

T herefore, if the p-value is less tha n the speci fied significance level, it is con­

elude d that the sample being tested is long-term depen dent at the specified level.

O therwise it has no long-term dependence.
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2.4 Anal ysis of the Annual Peak Flows of Cana­

dian Rivers

Th e twelve tests {or dependence described previously, eleven for short-term

dependenceand one for long-termdependence, wereapplied to selected unregulated

Canadian rivers. The criteriaestablishedfor data to be Analyzed in this ~ l ml~' were:

(1) At least 40 years of continuous record are I\vl'lilablc. This is bCCAUl!l ! the

calculationof Hurst's K willbecomeunmeeningful whenthe length of annual now

series is tooshort.

(2)Theannualpeakflowseriesarefromstationary pcpuletions. Thisis to focus

the invest igation of this paper upon only short-term and long-term dependence.

Data. which mel the abovecriteria are available from 90 Canadian rivers.

Amongtheseannual peakflowseries, 12 arc(romAlllcrtll,13fromAtlanticprovinces,

32 fromB.C.,6 fromManitoba, 17fromOntario, S fromQuebcc," fromSMkatchcwall,

I [rom YUKon. The 90 riversrange in recordlength from40 to 80years. The rivers

analyzed, including length of record, meanof the data, Hurst's K and lag-one cor­

relation, is presented in Table 2.3. It can be seen from the lable that most of

the rivers have small lag-one serialcorrelation coefficients, but many rivers have

fairly high Hurst's K. Fig. 2.3showsthe distribution of Hurst's K for the ninety

Canadian riven a.nalyzed.

Among the twelve tests used in this study, the parametric tests are deeigeed

for normallydistributed data. Therefore, if the data is not normal, the Box-Cox

transformation [Box&:Cox, (43]) is usedgiveapproximately normal data. The
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Box·Cox tran sforma tion is:

Y;= (X/ -I l!), if),>O
(2.24)

where Ytare the transformed values, and), is obtained using the simple Probability

]'[ot Corrdat ioll Coefficient (PPC C) method (Lye, 130]).

For all of the tests in this study, their significance were tested at both five

a nd ten percent levels because these two significance are often used in engineering

prac tice. The resu lts obtai ned for t hese two significance levels will be compared .

TI IC~ Tah le 2.3 shows that most of rivera ha.'lsmall sho rt term serial corre latio n, but

some rivers have high Hurst coefficient h. This difference can be also seen from

ti ll: results of tests for dependence . (Next section provides more detailed analysi s

of t]u.'1lC results.) T he resu lts are summarized in Tables 2.4 and 2.5 in terms of the

number of rivcrs indicati ng dependence with respect to each of the twelve tests and

t he numbers or tes ts indicating dependence at the 5% and 10% levels of significance.

Appendix !I. provides the detailed test results and shows clearly the serial cor­

relation structure in annual peak flows of 90 Canadian rivers. These results will be

fur ther analyzed in the next section.
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2.5 Long-ter m Seria l Correlation in A nnual Peak
Flows of Canadia n R ivers

Bccausc the diffe rent sta tistic al tests for independence were designed under dif­

ferent assumptions and conditions, they do not haveequal power in discriminating

between time series which are not tru ly random; that is, the probability of a tYlll:':!

error is not the same for each test. The power of the test s depends somewhat 0 11 the

nature of the dependence present , and on the length of record (Wallis and Mala la."

[26]). Hence, sometimes the various tests employed give different conclusions for

the same series. This means that a flood sr.ries can fail one test of independence

but pass the other tests. This call be clearly SCCII in the results.

Because of thls, it is difficult to say whethcr a flood series is independent or

not just based on the result of one test . It. ill t herefore a good idea 10 do ~evl~rnl

tests first before making any judgement . T he question that arises ls: flow many

failed tests are needed for a final judgement of short-ter m depende nce? It is not

easy to answer such a question. Wall and Englot [7J assumed in their study that

at least two of the five tests applied to each data sequence sho uld show signs of

dependence. Similarly, Srikanthan et . al [201 assumed in their analysis that at

least two of the six tests applied should indicate non-randomness. Therefore, it is

reasonable to assume in this analysis that, for short-term dependence, at leasl four

out of the eleven short-term dependence tests applied to each data sequence should

indicat e dependence. As for long. term dependence. beca use only one test a...eileble,

we make our judgements based on the results Hurst's K teet. T he resulte of the

parametr ic and non-parametr ic approaches for this test willbecompared.

From the results obta ined in Tables 2.1 and 2.5, the test results for short-term
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dependence and long-term dependence arc summarized. This is shown in Table 2.6.

From Table 2.6 the following observation s can be mad e:

J). For the parametric lest of Hurst 's K, about 17.8% (at 5% level) and 28.9%

(At 10% level] of the tested series show long-term dependence. They are quite

higher tha n t he correspond ing results of the short-term dependence tests, 1.1% (at

5%) and 8.9% (at 10%), resp ectivel y. The result s from t he non-parametric test of

Hurst 's A' ILfC similar to those from the parametric tests , concluding that about

1,'i.6% (at ii% level) and 25.6% (at 10% level) of the tested series show long-term

dependence. Th is means t hat significant long-term serial correlation st ructure of

the annual peak flows exists in a large number of rivers and should not be ignored,

otherwise mistakes will be made in our judgements. The effect of long-term serial

correlation in flood risk analysis will be shown in Chapter Five;

2). It call be seen that the short-term dependence tests are insensitive to the

long-term serial correlation struct ure of the data . Most of the series which has

long. term dependence can pass most of the tests forshort-te rm dependence. Sued

011 t he parame tric tests , for example, about 17.8% (at 5% level) and 25.6%(at

10% level) of the tested series show that they are short-term independen t but are

long -term dependent at the same time;

3). FOf the ninety annual peak flows tested. the conditional probabilities of

the existence of long-term depende nce when the series has passed the short-term

dependence tests are as follows (based on paramet ric test results) :

Atthc5 % level:

P(long·term dep.jehort-term indep.) = 16/ 89 • 100%= 18,0%

At thc 10 % level:



P(long-t erm dep./ short-term indep.] "" 2:1/82 ~ 100% "" 28.0%

The probabilities are qui te high and we have no reason to tlisregard them.

Hence, if a series shows that it is short-term independent , we should still i nv['~l ig"ll'

for long-te rm dependence.

2 .6 Summ a r y

T he serial correlation structure of annual flood series from nilwty Cal\;Uliilll

rive rs were analysed in t his chap ter. It was found that significant long-te rm senal

correlation as measured by th e Hurst K st at ist ic is present in a large number of

rivers. It was found t hat when a peak flow ~cries shows ahort -terrn independence,

there is still a fairly high probabil ity of long-term depen dence. This long-teem

depen dence cannot be disregarded as in t rad itional flood Irequcacy analysi!l; il

should be taken into account as t his may significantly increase t he r i.~k associated

wit h future peak flows,

In t he next two chapters, t he modeling of long-term serial correlat ion in annual

peak Rows is discussed.
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Figure 2.3: Distribution of Hurst's K for Canadian rivers



26

Table 2.1: Empirical Perceatege Points or ". ror Independent Data (n: 20 - 50)

Sample DiDtrtnt Lt t>tL.
Si:t I ll> 5 % 10 20 50
20 0.8370 0.7961 0.7612 0.1277 0.6449
21 0.8334 0.7930 0.7647 0.7237 0.6442
22 0,8300 0.7900 0.7623 0.7237 0.6435
23 0,8263 0.78il 0.7599 0.7219 0.6428
24 0.8236 0.7844 O .T~77 0.721)1 0.6422
25 0.8207 0.7817 0.1555 0.7185 0.6115
26 0,8178 0.7792 0.1535 0,7163 0.&109
27 0.8151 0.7767 0.1515 0.7153 0.&103
28 0.8125 0.7i44 0.1496 0.7138 0.6397
29 0.8100 0.7721 0.7477 0.7124 0.6391
30 0.8076 0.7700 0.7459 0.7110 0.6:185
31 0,80S3 0.7679 0.7412 0.7097 0.6379
32 0.8031 0.7659 0.7425 0.7084 0.6.114
33 0.8010 0.7640 0.7409 0.7072 0.6368
34 0.7990 0.7621 0.1394 0,7060 0.6362
05 0.7971 0.7603 0.7378 0.7().t8 0.6357
36 0.7953 0,7586 0,736< 0.7037 0.6352
37 0,7905 0.7570 0,7350 0.702ti 0.6346
38 0.7919 0.7554 0.73.16 0.7016 0.6341
39 0,7903 0,7538 0,7323 0,700.\ 0,6336
'0 0.7887 0.7524 0.7310 0,6995 0.6331
41 0.7873 0.7510 0.1297 0,69SS 0.6326
. 2 0.7859 0.7496 0,728S 0.6975 0.6322
.3 0.7&15 0.7483 0.7273 0.6966 0.6317

•• 0~7832 0.7470 0,7262 0,8957 0.6312
'5 0,7820 0.7457 0.7250 0,69' 8 0,6308
'6 0.7808 0.7445 0,7239 0.6939 0.6303
'7 0.7797 0.1434 0.7'229 0.6930 0.6299
.8 0.7786 0.7423 0.7219 0.6922 0.6295
.9 0.7775 0.7412 0.7208 0,69\3 0.6291
SO 0.7765 0.7401 0.7199 0.6905 0,6287
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Ta!J ll~ 2.2: EmpiricAl Percentag e Po ints of K for Independent Data (n: 55-200)

Sample Differen' Lt IJeU
Size 1 5% 10 20 50
55 a.T7W 0.7353 0 .7153 0.6867 0.6267
60 0.7682 a.T3t1 0.7113 0.6833 0.6249
65 0,7649 0.7274 0.7077 0.6802 0.6233
70 0.7620 0.7241 0.7044 0.6775 0.6219
75 0.7593 0.7211 0.7015 0.6750 0.6206
80 0.1567 0.7184 0.6988 0.6728 0.6194
85 0.7542 0.7158 0.6963 0.6708 0.6183
90 0.7518 0.7135 0.6941 0.6690 0.6113
95 0.7494 0.7114 0 .6920 0.6673 0.6164
100 0.7470 0.7094 0.6900 0.6657 0.6155
110 0.7422 0.7058 0.6866 0.6627 0.6140
120 0.1377 0.7028 0.6836 0.6601 0.6126
130 0.7336 0.7000 0.6809 0.6578 0.6113
140 0.7301 0 .6976 0.6785 0.6559 0.6101
ISO 0.7270 0.6951 0.6764 0.65<3 0.6089
160 0.7245 0.6926 0.6745 0.6527 0.6077
170 0.7223 0.6900 0.6727 0.6510 0.6066
180 0.7201 0.6876 0.67 11 0.6492 0.6056
190 0.7177 0.6857 0.6696 0.6475 0.6047
200 0.7148 0.6848 0.6682 0.6468 0.6043
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Rivrr Nllmr P rotrincr n yr~) Mra n JlU"~" ~ h" r(l )
Athabasca At Athabasca Alberta 47 2236.19 0.5J.1 ·0.190
Bow Alberta 80 217.61 0.651 ·0.132
Cu tle Near Beaver Mines Alberta .. 145.96 0.669 0.001
Drywood Creek' Alberta 52 6.57 0.688 0.~10

ElbowAboveGlenmore Dam Alberta .. 63.25 0.668 ·0.001
ElbowAt Bragg Creek Alberta 54 60.25 0.680 ·0.047
Choo' Alberta <0 22.66 0.673 0.2.10
Manyberries Creek Alberta <5 13.12 0.693 O.O'lS
RolphCreek" Alberta 53 <.96 O.no 0.018
Sturt;~n Alberta 54 26.77 0.526 ·0.171
Swiftcurrent Creek Alberta 54 28.81 0.5&1 0.03<1
WaterlOo Alberta " 142.33 0.665 0.032
Upper Humber Atlantic 60 678.33 0.663 0.208
Lepreau Atlantic 72 78.15 0.522 -0.021
Saint John' Atlantic 62 2357.76 0.724 0.150
Shogomoc Ssrcem Atlantic: <5 39.63 0.630 0.0.16
Upnlgui tch Atlantic <5 367.29 0.6<1 3 0.031
Beeverbenk" Atlantic: 67 29.52 0.725 -0.096
Ea.< Atlantic 63 8.00 0.696 -O.HO
Grand' Atlantic: 68 18.9<1 0.100 ·0.0&1
Lahave Atlantic: 73 230.36 0,108 -0.010
Northeast Margaree" Atlantic: 72 176.31 0.132 0.010
Roseway" Atlantic 71 68.61 0.739 0.08.1
Southwest Margaree" Atlantic 70 38,68 0.756 0.138
St. Marvs(Stillwater) Atlantic 73 <108.62 0.702 -0.017
Adams B.C. 42 246.17 0,632 o.m
Ashnola B.C. 42 63.27 0.614 -0,320
Babine B.C. 41 125.3L 0.697 0.075
Big Sheep Creek B.C. 40 48.81 0.645 0.0.55
BoundaryCreek" B.C. 61 47,03 0,746 0,119
Bulkley B.C. 58 587.07 0.630 0,115
Chilko At Outlet of Lake" B.C. 60 136,8 0,744 -0,03:J
Chilko NearRedstone B.C. 62 300.34 0.607 -0.182
Columbia At Nicholson" B.C. 17 437.60 0.746 -0.077
Columbia At Donald B.C. 44 712.64 0,686 ·0.283
ColumbiaNear Fairmont Hot B.C. 43 45.99 0.668 ·0.292
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Ui llr:r Name Province n yr8) Mean Hurst's K ,(I )
Flathead #~ B.C. 60 208.53 0.785 0.187
Kettl e Ncar fer ry'" B.C. 60 339.33 0.738 0.133
Kettle Ncar Laurier B.C. 59 591.36 0.710 0.067
Kootenay At Kootenay Crossing B.C. 41 33.71 0.564 -0.093
Kootenay At Ncwga tc" B.C. 42 1614.55 0.774 0.065
Lardcau At Marblehead B.C . 43 282.93 0.648 ·0.2 18
Liard B.C. 42 5370,71 0.666 0.200
Lillooet D.C. 63 529 .63 0.640 0.096
Moyic·· B.C. 59 145.90 0.848 0.132
Quesnel At Likely" B.C. 64 394.86 0.701 0. 130
QueNllel Near Quesnel" B.C. 50 766.84 0.723 0. 124
Salmo Ncar Salmo B.C. 40 243.23 0.593 0.075
Sikan ni Chief ., ""," , -' B.C. 44 198.84 0.425 -0.090
Slmilkamccn B.C. 44 236 .95 0.691 0.113
Skcena B.C. 41 5053.90 0.611 -0.241
Sloca n" B.C. 64 441.71 0.706 0.075
South Thompson B.C. 48 996.11 0.670 0.132
St. Mary At Wycli lfe B.C. 43 385 .28 0.680 ·0.047
St. Mary Near Marysv ille B.C. 41 303.51 0.609 -0.110
StllML#"' B.C. 50 322.02 0.751 0.218
North Thompson" B.C. 44 1775 0.723 0.021
Brokcn hcad Manitoba 46 36.17 0.638 0.026
Roseau N<.>Ar Cariboun Manit.oba 67 47.46 0.663 0.199
Hoscau Nea.r Dominion Manitoba 49 64.54 0.557 0.038
Sprague Creek Manitoba 43 19.72 0.657 0.104
Turtle Ncar Laur ier Manitoba 40 51.22 0.622 0.106
wbuemoutb Manitoba 42 83.68 0.677 -0.100
Ausable Ontario 43 180.27 0.488 -0.131
Dla.cku Ontario 73 129.49 0.731 0.112
Caste r Ontario 41 107.14 0.716 0.251
English At Umfreville* Ontario 67 158.59 0.700 ·0.136
English (Sioux Lookout)** Ontario 60 287.28 0.736 0.003
Mis~inaibin Ontario 69 880,99 0.729 0.106
Namakan* Ontario 66 319.47 0.705 0.154
Nith Near Canning Ontario 42 188.85 0.682 ·0.044
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con.tin.u~d

River Name Province n(lIrs) Mean HUTst's K ,.(1)
North Magne tawan Ontario 73 44.47 0.615 -0.012
Nottew asage Onlario 40 1l0.1l 0.703 0.156
Pigeon Ontario OS 128.53 0.691 ·0.007
Saugeen Near Por t Elgin Ontario 74 500,45 0.621 ·i).OOG
Saugeen Near Walkerton Ontario 74 200..39 0.61,1 0.193
South Nation Ontario 41 HA t 0.621 0.001
Sydenham Ncar Alvinston Ontario 40 101.95 0.619 -0.069
Sydenham Near Owen Sound Ontario 43 30.31 0.592 0.020
Turtle Near Mine Cente r Ontario 58 127.24 0.668 -0.059
Hall (Riviere) Quebec 40 67.82 0.735 -0.O'l 6
Harricana (Riviere) Quebec 56 190.13 0.483 ·0.161
Petite Nation a Portage- Quebec 46 131.38 0.681 0.028
Petite Nation Pres De Cote- Quebec 43 69.51 0.572 O.OJIi
Richelieu Aux Rapidea F. Quebec 51 923.84 0.633 0.1711
Horse Creek Sask. 43 8.88 0.606 -0.091
McEachern Creek Sask. 53 22.57 0.598 -0.049
Popla r SMk. 56 24.94 0.&15 ·0.049
Whitewater Creek Seek. 53 9.76 0.650 ·0.023
1'eslin Yukon 41 1052 0.663 ·0.050

Mean 53 0.6&1 0.015
Standard D e v iat ion 12 0.070 0.12,)

Note :

l. Short -term independent but Hurst's K significan t at 10% ("'I:

2. Short-term independent but HUl'llt 'lIK significant at both 10%and f,%(U) ;

3. Short-term dependent at 10% only, Hurst 's K significant at both 10% and

5%(#").
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Table 2.4: Dependence as a Function of Test

Tests

Median crossing
Turning points
Length-of-runs
Rank difference

Cumulat ive pcriodog ram
WaldoWolfowitz

Spearman
RUNAB(random)

Rank von Neumann
Autoco rrelatio n
Von -Neum ann
lIurst's K test

Parametric
Non-parametric (Bootst rap)

Percentage (and No.)
of recorda indicating

dependenceat 5% level
2.22(2)
3.33(3)

IUI(10)
4.44(4)
0.00(0)
0.00(0)
0.00(0)
5.56(5)
4.44(4)

0(0)
4.44(4)

17.8(16)
18.7(15)

Percentage (and No.)
of records indicating

dependence at 10% level
8.89(8)
7.78(7)

15.56(14)
1O.00(9)
2.22(2)
1O.00(9)
5.56(5)

U. U(IO)
11.U (10)
10.00(9)
7.78(7)

28.9(26)
25.6 (23)



Table 2.5: Number or Riven Indicat ing Dependence
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Number of Tests
Indicating Dependence

11
10
9
8
7
6
5
4
3
2
1
o

Percentage(and number ) of rivers

.. Hurst' s K test is based on norma lly distribu ted data.

Table 2.6: Comparison of Short-term and Long-term Dependence

5 %l.evel 10% Level
No.o/rivers Percentage No, o/ rivers Percent flge

Short-Ierm dependence 1 1.1% 8 8.9%
Long_term dependence:

a. Parametric test 16 17,8% 26 28.U%
b. Bootstrap method 15 16,7% 23 25.6%

Only shorl· term dependence I l.l % 5 5.6%
Only long-term dependence

a. Parametnctest 16 17,8% 23 25.6%
b. Bootstrapmethod 15 16.7% 21 23.3%

Both short- & long-term dep. 0 0% 3 3.33%



Chapter 3

HARMONIC ANALYSIS OF
CUMULATIVE DEPARTURES

3.1 Gene ral

In previous chapte rs, t he stat istical test s of shor t- te rm and long-term depen ­

donee were used Ior the flood peak series of 90 Canad ian riven. The results show

that the effect of Hurs t phenome non on annual peak flows is eviden t. Many flood

pee k ser ies have high Hurst coefficients. Because the corresponding increase in flood

risk d ue to parameter uncert ainty can be substan tial if t he flood peak series have

a high Hurst coefficient (Booy and Lye, [10]), how to mod el long-term persistence

(i.c. Hurst 's K ) in flood peak series is importa nt in flood risk analysis.

As mentioned in Chapt er One, a theoretical t ime series model that willrepro­

duce the correct correlation str ucture of the peak flow series is requi red to obtain

the dist ribution or the estimated parameters or a flood dist ribu tion. Th ere are sev­

eral such meth ods available for modeling series wit h high Hurs t's K and low p( l )

in flood peak series. For example , ARM A(I, I) mode l (161. the Broken Line mode l

[14), the Fast Frac tion al Gau ssian Noise process [I 3J. et c. Two recently developed

meth ods are Mixed Noise process (Lye, [4.lII O])and t he harm onic analy sis or t he

33



cumulative depar tures approach{Sen, (17]),and both methods howe not been fully

developed. In this chapter , some research work is done to Inveetlgate the existing

problems in the method of harmonic analysis, such as the mo deling procedure, the

number of harmonics which should be used in the analysis , how to fit A suita ble

stochastic model of the residuals, and normal transformation of the skewori~inal

series. A comparison between Mixed Noise proceea and harm oniclInl\lysis method

will be shown in the next chap ter.

3 .2 Se n 's Method

To obtain a mathemat ical mode l olthe cumulat ive departures tha.t would pre­

serve the Hurst phenomenon, Sen 1171has performed the ha rmonic ana lysiso f the

cumulative depart ures of annual flow series from their sample mean values. In his

paper, Sen tried to explain the Hurst phenomenon on the beals of the ~tor agl:'

related processes, the sole representation of which is the histo ric cumu lativedepar­

tures curve. Sen considered seven annual flow series from E urope a nd the U.S.A.

M an example of the proposed procedure. T he characterist ics of th ese aeries arc

summarized in Table 3.1.

It bas been observed tha t, even though the original ann ual now timc series is

stationary, the cumulative departur es curve exhihits strong pcricdicitlce with the

slowest cycles having period s equal to the tot al sample lengt h. The cyclic feat uree

account for more than 95% of the variability in the n urst coefficients. However,

in the classical simulation stu dies of the original series which are st a tionary, such

periodicities in the cumulat ive departures are not considere d. So Sen suggested
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all alternative to direct simulati on of an nual seque nces for prese rv ing t he Hurst

pIWllOIllCIlOII. T he sugges t ed procedure is all follow:

( I) Construct t he origi nal cumula tive depart ures curve from t he observed t ime

scr i e~ of the hydr ologica l variable.

(2) Apply har monic a.nalysis to this curve by depicting the firs t seven to eight

harmonic components with fundamental frequency of l In .

(3) Constru ct the harmonic cumulative depa.rtures (HCO) cur ve from the har­

m onic components obta ined in the previous step .

(1) Fi nd the residuals between the original and HCD curves.

(5) Fi t a suitable stoc hastic model of the residuals.

(G) Genera te the synthetic seq uence of residuals and add them to the HCD's

Sen i171 presented the result s based on the above procedure for seve n annual

now series from Eu rope and the U.S.A., the cherecter istics of which are reproduced

here in t he correct units in Table 3.1. It mud be pointed out that SeDcons idered

on ly steps (I) to (3) in hill paper. Steps (4) to (6) would be have to be car ried out,

however, for the generation of synth etic sequences.

In app lying Sen's procedu re for the ge neration of synthetic sequences , several

problem s were enco untered. Briefly, iL\f 3S found that using the first seven to eight

harmo nic componen ts for fitting t he hilltQrical cumulativ e departures curve gave

residuals t hat we re anti -persistent and in general require a high orde r ARM A pro­

cess to model them. This means th at the result ing model based on Sen's pro cedure

would req uire far too many parameters . In eddlncn , modelling skewed series cannot

be handled easily.
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In light of the stated prob lems, this study WM conducted to shed mo rc light

011 the applicability of Sen's procedure (or modelli ng time eerice. In particulu, til I II

stud y deals with the following:

a) the optimal number of harmo nics to be used to obtain the harmonic cumulative

departures (HCD),

b) t he kind of time series that this met hod i~ most suited ,

c) the characteristics of the resid uals t ha t Arc most amenable to stochastic mod­

elling, and

d) how skewed time series may be mode lled.

In the following sectio n, Sen's method is described and errors in Se n's pape r

are corrected. This will be followed by a discussion of tile stochastic modelling of

the residua ls using ARMA models. T he comparison of t he resu lts ohta ined using

different number of harmonics . and conclusio ns from the study arc then p resented.

3.3 Cumulative Departures Curve and Harmonic
Components for 12 Rivers

3.3.1 Calc ulat ion Procedure

In general, the time aeries of the cumulative depar tures, 5i, can be rep resente d

S, =5i _ 1 +(z,-z) (3. 1)

where: i "" 1,2 •...• nj So and Sn = OJ x, is the original time eeeieewhlchis con sidered

as an input into t he reser voir and 'f is its sample mean value which is assum ed to be

its output. For a given sa mple size n, Eq n. (3.1) repr esents a stochastic process with
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a mean S and variance 11: wh ich can be shown to be given by (G. Sa.bin, personal

comm unicat io n):

_ 1" 1"
S= -l:S,~ -l:(n fl - 2i)Z<

n j ",1 2n ,,,,t
(3.2)

u; =~x1 - ~E j(n - j ) l: z iZ;+i (3.3)
12 n .i=l ;= 1

T he values of the mean and variance were incorrect ly stated in Sen [171.Hurst 's

eetimate ol the Hurst coefficient h is th en obtained from the S,' ., and X/ J:

K = ' ,,(R/ . )
log(n/2)

(3.1)

where; K ;:; Hurst's K; II e quals n - t /1 IEi"'l (1'; - xll l
/2, the samp le sta ndard

devia t ion: R is the adjus ted r a nge end is defined /III

R=M,, - m ll (3.5)

where , AI" equa ls max (OISI, S2" " lSIl)' and m " equals min (0,81,82 , ••,,8,,).

T hc curnulativepr ocess in Eqn. (3 .1) can be represented in two pa rts, name ly,

ncnste t ionaey and sta t ionary as follows ;

So= ?, + c; (3.6)

where Pi is t he periodic component a t time instant j and e, is a stationary zero

mean process. Thus, Ci denote s t he noise part in the cumu lative departu re! process .

EquatiDn(3.6) can be written with its periodic part explicitly as :

S, =~ f flA" in h l i) + R.""bli )l+ e; (3.7)
"'=1
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whe re 5 is t he mean of cum ulat ive depar tures given by Eqn. (3.2). In ill t.he number

of significa nt harmo nics; "( "" 21r /n is the cyclic frequen cy over a base period; Ak

and Bk are harmonic coefficients.

In the cumula tive departures process the fundamental period can he adopted

as equal t o the sample lengt h. and therefore, the funda mental frequency i~ 1/,1.

Est imation of harmonic coefficients is achieved by convent ional Fouri er analysis.

Su ppose that the number of observations n = 2m + I is odd, then t he leMt squares

estimates of 5 is given by (3.2) and t he harmonic coeffielenta A. and B. willbe:

(3.8)

and :

(3.9)

wher e k= 1,2 , ... ,m .

Note : The equation s for the Fourier coefficients given in Sen [171 are inc orrect.

The peri odogram then consists of the k:= (n - 1)/ 2 values

(3.10)

where ((b ) is called the intensityat frequency / • .

When n is even. then set n = 2m and equations (3.2), (3.8) and (3.9), app ly

for Ie=1,2, .... (n - I ) but
l ' .

B. =- L;H)'S;
";=1

A.=O

(3.11)

(3.12)

and fU... ) = nB~.

Th e periodog ram 1(1. ) is also the "sum of squa res" associated wit h the pai r

of coefficients (A. , Bk). and hence with the freque ncy !k = kIn (Box & Jenkens,
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[:1.91). Thus t he proportion of variance, Vk, explained by the ph harmon ic can be

comp uted from:

v. 1(/. ) / to 1(/. )

/ " ,
1(/.) t; (S, - S) (3.13)

A plot of V.again~t k would give a good pictorial representat ion of the cont ribution

of th e k1h harmonic to the explained.var iance of S;.

Fi.~llCr '3 tes t.of sig nificance for the intensi ty is applied in th is st udy [27J1281.

Ld

I;. =mox{/(f,) ,/(f,), ..., 1(/. )) = 1(/;.)

Suppose thal Co is white noise, the statist ic

g, =l;,ft 1(/; )
; .. 1

follows Fisherdistr ibution,

(3.14)

, (g > g,) = t (-l);C{t' li - (j +l) g,IK- . (3.15)
j ={l

where r is the greatest positive integer t hat make I - (r +1)9' > O.

Given the probabili ty level a, say 0=0.005, if

p{g > gl } ~n

IVC concl ude that no period item p(!)exists. Otherwise, i£p{g > gt} > D, we ac:cept

that T, = NIh all the first period item in the or lglnal time series.

Let Iii be t he kll. greatest value, t he stat istic

(3.16)
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follow s Fisher distribut ion

p{g > g.} = C~.-I t ck~'+1 ~ + 1
1,[1- (j + k)g.I''1'-l (3 .17)

j _O ) +
wher e r is the greatest positi ve integer that let 1- (r+ k)g. > O. Given probability

le vel a , if

p{g > g*} > Q

Tk = Nli l< is accepted as a period o f the ceiginal tlrne scries.

It is suggested to use a 0: 5 0.01 , othe rwise the probab ility of sel ecti ng some

fa lse perio ds exist 128J. Hence , a a value of 0.005 is used in this study.

3. 3 .2 A pplicatio n

Sen [171suggested that the first 7 to 8 harmonics be used (or the harmonic

an a lysis, although. man y rivers requ ire only th e first few harmoni cs. To investigat e

th e numbe r orharm onics that will contrib u te significantly to the overall varlehll-

it y or the cumulative departures, d ifferent num ber o( harmonic component s are

considered in this s tudy. The harmonic com ponents used are :

a, Using significant ha rmonics which are selected by Fisher's probability at Q

= 0.005;

b. lst harm oni c;

c. Firs t 3 harmonics;

d. First 4 harmonics; and

e. Firs t 8 harmonics.

Th e results are shown in Table 3.2 and Fig! 3.1 • 3,5. Table 3.2 shows: the

river modelled, the sample size n, HUrst'B K and lag-one correlation r( I ), whether
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the (lata arc nor mally dis tributed , the K values of the residuals after fitting using

significa nt harm onics, only the first , 3, 4, a nd 8 harmoni cs. Figs 3.1·3 .5 show for the

T hames River the result of fitt ing the cumulative departure curve using di fferent

number of harmon ics and the resulting res idual series.

From these results, we can see that:

(I ). The more harmonics we use, the lower the lIurst 's K of the residual s we

gel. If we usc the first harmonic only, the lIurs t K of residuals is still very high

(somet imes it is higher tha n the K of origineleeries). That means the function of

ha rmoni c analysis here is limited and we hav e the samedifficulty in fitti ng a sui table

stochast ic model of the residuals. U we use the first eight harmo nics [suggested

number by Sen), the Kof the residuals is lower than 0,5which implies anti-pe rsistent

behaviou r [381. In thecase ofantipereletence , an increasing trend in the past implies

a decreas ing tr end in the future , and a. decreas ing trend in tbe past makes an

increasing trend in the future probable. The process appears very 'noisy' and it is

difficult to mode l. A reasonable number of harmonics to use seems to be 3 or 4,

where HUfst 's K of the residuals showsno long-term dependence.

(2). For most of the rivers, t he harmoni c analysis selected many significant

harmonics , which means there would be many parameters in ou r final mode ls if

we lise s ignificant harmonics. Moreover. selecting tooman y significant harmonics

causes anti ·persi stent behaviour in the residuals (K lower than 0.5). The only

cxccpta ncc of t his case is the Thames rive r which has a high Hurst's K and a low

r( I). It looks like that using significant harmonics is suitable for a time series with

thi s kind of stru cture.

To confirm th e above conclusion(2), five annual peak flowtime series of Cana-



dian rivers with high Hurst's K and low r(l ) wereselected. The results of similar

calculation for these data are shownin Table 3.3.

Fo r these five Canadia.n rivers with high Hurst's K and low r(l) , the numbers

of their significant harmonics arc fewas expected , from 2 to 4. Iloceuse they do not

have many significant harmonics, enti- persistent behaviour does not exist in tht'lr

residuals . The K values of the residuals of these rivers range from 0.5 to 0.67. AULi­

persisten t behaviour exists in both the residuals or using (our and eigM harmonics.

The K values of residuals of using only first harm onics arc still high, like those in

Table 3.2. Therefore, from the above reeune, it is reasonable to suggelt that using

significant harmonics or first three harmon ics for those annual peak now series with

high Hurst's K and low r(I).

It should be noted that, although the residuals which have low Hurst's /(

indicates no long-term persistence is pre sent , it is still possible that sho rt-teem

persistenc e is present , Actually, using t he tests for dependence in Chapter Two 10

test the residuals, it was found that most of them wereshort-te rm persistent . They

are not independent data.

3.4 Stochastic Modeling of Residuals

After obtaining the harmonic cumulative departure (HCD) curves, th e prcb­

lem now is to find a suitableetocheetic model for the residuals between the original

and He D curves. Since the residuals are stationary, the ARMA(p,q) cleee of mod.

ele (Box &:Jenki ns, 129])are used in tbis st udy as such stochastic models. The

ARMA(p ,q) model can be represented in a single equation ll.lI

';(B)(I - B)Y, =0(8)" (3.18)
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where: f] i:l the hac kshift operator, ¢(B) is the autoregressive (AR) process, 0(8 )

is the moving average (MA) process, a, is the white noise term , and 1'; is the time

~wrics modelled.

The main problem here is in trying to decide which ARMA(p ,q) fits the data

Iwst , i.e. in identifying the AM. order p and the MA order q. Much of Box and

Jenkins is devoted to t his so-called "identi ficat ion" problem. T his stu dy ident ifies

the model by considering t he following three conditions:

I). Minimizing t he Bayesian Informat ion Criterion (BIC) [32J:

BIG = - 2fogL(p+fJ+log{n)(p+ q) (3.19)

where n is th e sam ple size, (p +q) is the number of parameters to be fitted and L

is the maximum value of t he likelihood function for a (p+q) para meter model.

Actu ally, Ale is another criterion which is also most commonly em ployed in

model selection. Th e reasons for prdering BIC to AIC in thi s st udy is: BIC is

str ongly consistent in that it det ermin e t he tr ue model asymp totically, whereas for

AIG, all overparameterlsed mod el willalways emerge no matt er how long the avail­

ahle rcallaatlon. Th us it would he appear t hat the BIC should be used in preference

to Al e [331.

2), AR(p ) model should also meet th e st at ionary condit ions[29]. Th ese condi­

tions a.re satisfied if the roots (u) of the charac teri stic equa tion

(3.Wl

lie inside the unit circle. For AR(1) model , the st at ionary cond ition becomes:

- 1 < ~l c 1 (3.21)



The statio nary condition for AR(2) model is:

(:1.22)

- I < 412 < I

3). lf

the second-order difference equat ion satisfied by the autocorrelatio n function has

complex roots ([29], pp59). This will probably worsen the simulation results, C~I)C­

cially when

4J~+4¢, < -1.0

(from computation expe rience). In such case, we can try another AItMA model

with a higher value of ¢~ + 441,and a BlC value which is close to the minimum mc
value.

The results ate shown in Table 3.4.

3.5 Monte Carlo Simulation For the Compari­
son of Different Models

3.5.1 Monte Carlo Simulation

Having determi ned the number orhar monics to represent the cumulative depar­

tures and the best ARi.iA model (or the residuals, the next step ill t he gene ration

of synthetic sequences. If the model is correct, t he model should on average be

able to reproduce the marginal distribution paramete rs and the serial correlation
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stru cture of the cbecrved time series. That is, the mean, standa rd deviation and

skewness, and both Hurst 's K and th e lag-one correlation coefficient t(l) should

on a verage he preserved, Since one of t he main purpose of this study is to inves­

l j~atc the most suitable num ber of ha rmonics to use, t he Pi te rm in Eqn . (3.6)

is modelled using th e different number of harmonics and its corresponding ARMA

mode l for the residua ls. The Monte Carlo method was used and the number of

replica-lion used in the Monte Carlo simulation study W&9 3000. The results are

shown in Table 3.S·3 .9 for Hurst's K, the lag-one correlation coefficient r(l), mean,

sta ndard deviatio n, an d the coefficient of skewness, respective ly.

The results show that aside from the coefficient of skewness, t he othe r parame ­

ters especially the Hurst K, r(I ), and the mean are fairly well rep roduced regard less

of the numbe r of harmonic s and corresponding ARMA mode l used, Tbe results for

the standard deviation is some what erratic for some rivers,

From Ta ble 3.8, one can see that th e coefficient of skewness are preserved only

for t hose series that are approximately normally distributed or have skew coefficients

dos e to zero. One method of overcoming this problem is to transformed the skewed

scriee to one that is a pproxim ately dist ributed and then do the harmonic analysis

and simula tion using the trans formed series. To recover the origina l skewed series,

the inverse tran sformation is applied . A convenient t ransformation to use is t he

Box-Cox tra nsformat ion (Box-Cox, [43]). It is given by Eqn .(2.24) in Chapte r Two.

Similarly, the ..\ value is obtai ned using the simple Probab ility Plot Corre lation

COt'lIicient (PPCC) method ( Lye, (301). The simulation results are sbown in Table

:1.5 -3.9.
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3.5 .2 Di scussion

Suit~bi lity of Sen's Method If Using Signi~c~n t Harmonics

The Thames River and five Canadian rivers have high Hurst's /\" and low

r(1). The method suggested by Sen seems good Ior such rivers. There arc not too

many parame ters and hom the simulation rC9ulls the main paramelers except the

skewness of the original series, Hurst 's 1\. r( l) , mean and standard dcvlatiou arc

quite well reproduced,

For those rivers tha t do not have simultaneously high Hursl's K and low r(I ),

the simulation results Me also reasonable, hut many significant harmonics are u ~(',1

resulting in too many parameters in the model. Moreover, simple ARMA models

do not always work for the residual series.

The Number of Harmonic Components

'Sen suggested in his paper that the first seven to eight harmonic components

should be used in harmonic anelysie. But lLII we can see before, IIsing first rOllt or

eight harmonics may give a K lower than 0.5 in the residuals. From tile simulat ion

results, we can see that for most cases, using the first three harmonics is (Illite

enough to obtain satisractory results. This is because the first th rt.'(~ harmonics

account for most or the variance, Therefore, this thesis suggests that using th(!~ l'!Il

th ree harmonics in the analysis.

From the above results, it seems tha t t ile number of significa.nt harmonics in

flood series is less for those rivers with a high lIursl's K and a low r(l ). IIIother

words , the higher the probability that this series is long-term dependent, the tcee

the Dumber or ib significact harmonics or th is series. To invesligate this interesting

phenomenon, eight more Canadian rivers were selected to do harmonic lUlalYBis.
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T hese eight flood series arc all with high K and low r( 1). All of them arc only

long-term depe ndent, that is, they passed all tests for short - term depen dence but

Iailed in Hurst coefficient test for long-term dependence. Th e calcu lat ion results

show that the numbers of t heir significant harmonics range from 1 to 4. This is

shown in Table 3.10.

Hence we can sec that harmonic components contain some informat ion of long­

term dependence. A further study maybe needed to investigate this interesting

rela tionship .

Normal Transformation of the Original Series

I·br those rivers with non-norm al original series, we can not reproduce the

coefficientof skewness if we do not t ransform the original series first(Ta ble 3.9). The

simulatio n results of coefficient of skewness based on t ransforme d norma l original

series are shown in Table 3.11.

T he above simulated results are not too good, but they are the best results

which can be obtained. In this met hod , reproducing the coefficient of skewness is

t he 1I10stdifficult compared wit h reproducing other param ete rs.

3.6 Conclusions

f rom the results and analysis described above, t he suggeste d proc edur e to

simul ate sto rage-related processes proposed by Sen needs to be slightly modified .

The following procedure is suggested .

( I ) Check whether the observed time series is norma lly distribu ted. If it is not

norma l, II~C a norma l trensformario n.

(2) Const ruct the original cumul ative depart ure curve from t his original (or



transformed) normal series.

(3) Apply harmonic ana lysis to this curve by depicting the first three harmonic

components with fundamental frequency of l In. For those origin3.!series with high

Hurst' s K and low r(I) , signific3.nt harmonica aelreted by Fisher's test can be ueed

direct ly.

(4) Construct the harmonic cumulative depart ures curve from the harmonic

components obtained in the previous step ,

(5) Find the residuals between the original and IICD curves.

(6) Fil a suitable ARMA model for the reslduals.

(7) Generate the synthet ic sequence of residuals and add them to the IICIl 's

curve. Then, if a transformed normalserlea is used in step (1), tra nsform thill syn­

thet ic sequence back to a skewed sequence.

In spite of the modified procedure, there are sti ll !IOlIIe problems that ha...e to

be addressed. For instance, the residuals arc not easy to model in some CA:lCS . Also,

for series with a fairly high coefficient of skewness, even Box-Cox t ransformation

may not work. Finally, as pointed out by Sen, the harmonics are dependent on the

sample size. Therefore, Sen's method is limited at present to simulating serics of

the same size as the historical series.
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Tabl e 3.1: Annual Flow Characteristics of Seven Rivers in Sen's Paper

River Station No. Mean Standard LAg-one
cbs. (m3/ 3) Deviation Serial

(year) (m3/ 3) Correl ation
St. Lawrence
Mississippi
Mississippi
Munes
Rhine
Danube
Th ames

Ogdesburg
St . Louis
Keokuk
Arad
Beale
Orehavea
Tedding ton

97 6818.64 594.94 0.705
96 4958.62 1482.77 0.295
79 1732.17 511.67 0.'115
77 167.23 67.01 0.245
150 1026.46 163.46 0.076
120 5364.18 1027.90 0.094
71 62.95 23.03 O.I~O



Table 3.2: Harmonic Analysis Results - 1
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/liver Original Data Residuals
Big-har - l -tuu: 9·har i -haT 8-haT

St. Lawrence Normal Normal Normal Normal Normal Normal
11 =97 K = 0,89 K =0.44 K = 0,81 K = 0,66 K = 0,62 K=0.48

,(I) = 0,705 (1,9,13)
Mis,;issippi,S Normal Normal Normal Normal Normal Normal
II =96 K = 0.65 K =0,47 K=0,13 K = 0,65 K =0,58 K = 0.44

ttl) = 0.295 (1-5,8)
MiRRissippi,K Not Nor. Normal Normal Normal Normal Normal
n = 79 K = 0,10 K = 0.44 K=0,16 K = 0,62 K =0,54 K = 0.45

to} = 0.415 (1-4,7)
Mores Not Nor. Normal Normal Normal Normal Normal
n = 77 K = 0.68 K =0.56 K=O.78 K::::O.58 K =0.57 K=0.41

, (I ) = 0,245 (1,2,3,5)
Rhine Normal Normal Normal Normal Normal Normal
11 =: 150 K = 0,61 K = 0.49 K = 0,18 K = 0,64 K=0,61 K = 0.47

,(1) = 0,016 (1-5,1,12,21)
Danube Normal Normal Normal Not Nor. Normal Normal
n =: 120 K = 0,63

~_;,~;43
K=O,ll K = 0,61 K=0,59 K = O,44

,(I) = 0,094
Thames Normal Normal Normal Normal Normal Normal
n = j( K = 0.76 K =: 0.61 K =0,13 K = 0,58 K =O .5~ K = 0,35

,(I ) = 0.14. (1,2,6)

• The signillcant harmonics identifiedare given in parenthesis.



Table 3.3: Harmonic Analysis Rceults - '2 (Canadian Rivera]

ali

River Original Da!a Residuals
ig- ar t- hor 3· ar 4-har B-nar

Columbia Not Nor. Normal Normal Normal Normal Normal
K;: 0.746 K =0.52 K ;: 0.78 K;: 0.61 K =0.51 K :;;0.:14

n;: 77 rl = -0.077 (1,2,4,61
Flat head Not Nor. Normal Normal Normal Normal Normal

K = 0.785 K ~ 0.62 K = 0.70 K = 0.57 K =0.53 K =0.:19
n = 60 rl = 0.187 1(1,3,7,91
Southeast Mar Not Nor. Normal Normal Normal Normal Normal

K =0.756 K = 0.65 K = 0.71 K = 0.60 K = 0.52 K = 0.37
n =10 t l = 0.138 (1,31
Northeast Mar Not Nor. Normal Not Nor. Not Nor. Normal Normal

K =0.732 K =0.61 l< =0.14 K = 0.52 K = 0.'17 K :;;0,43
n =72 rl ""0.070 ! (1,31
Blac k Normal Normal Normal Normal Normal Norm al

K ~0. 73 1 K = 0.50 K = 0.73 K = 0.50 K ~ 0.52 K=O,:J9
n = 73 rl = 0.112 •(1,31



Tabh- :IA : Ik sl ARMA Models for Original Series & Hen Residuals
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/lillf;r Original Da/a Residuals
Sig.har I-har 3·har 4-har 8-har

St. I.awrm l(:l~ Alll l ) ARMA(1 ,2) AR(2) ARMA(I,I ) ARMAI2,1) ARMA(2,2)
II =!J7 tPl=O.6!J4 1/1.=0.270 l/I.= 1.476 1/11=0.751 1jI . =1.520 tPl=1.l526

01=0.300 ¢1= -O.499 01=-0.515 </12= ·0.755 Ih= -O.830
01=0.652 01=0.317 0, =0.684

0, =0.286
M i~ ~i HH i Jl pi MAIl) MA(2) AR(2) AR(2) AR(2) MAil)
S 01=-0.:1 15 01=.0.709 t/J.=1.20.s oP\ = l.l20 411=0.990 01=-0.538
II = !.IIi O2= -0.234 ¢,,,,,·O.330 Ih=· O.357 tP, =-O.375

0\=0.46 5
Mississippi AR( I ) ARMAII ,2) AR(2) AR(2) AR(2) ARMAI2,1)
J( 1$,= 0..112 t/J1=O.395 </11=1.233 <PI =Ll92 tPt=O.962 tPt=1.087
11 = 7!1 0,=0.444 ';' =-0.322 106,=-0.438 1,=-0.444 ¢,=.Q.779

0,=0.517 0\=0.974
~I url's AIlIl ) AR(2) ARMA(I,I) AR(2) AR(2) AR(2)
II = 77 ¢1=O.226 t/J1=O.769 tPl=O.870 411=0.898 rP\= O.859 1$1= 0.459

412=·0,323 9.= -0.242 ';'=-0.322 .,=·0.324 4>2=-0.375
I:hilw (Random) AR(2) AR(1) AR(I ) AR(I) ARMA(2,2)
11 = \!W 4J1=O.592 4Jl=O.866 411=0.804 4Jl=O.776 ¢l1=1.361

fh =-0.289 ';' =-0.702
81=0.773
8, =0.182

D ;l lll l h l' (Ilandorn) AR(2) AIlII) AR(2) ARMA(2,1) ARMA(2,1)
II = I:!O 4J1",,0.473 4J .",,0.897 4Ji""O.966 4Jl =1.611 th== 1.l35

¢1= ·0.250 tP,=·0.142 tP,=·0.796 tP, =-O.636
81=0.664 81=0.967

Thanu-s (Random) AIl(l ) AR(I ) AR(2) AR(2) AIlMAI2,1)
11 = 71 ¢1=0.524 4Jl=0.716 tP.=O.733 411=0.679 tPl=0.540

¢, =·0.256 12=·0.269 4J,=.0.714
81=0.934



Ta ble " continued (Can adia n Rh'cn )

Rifler Ori.ginal Data Ru idIJafJs
Sig-har t-har 3-har 4-.:1r s. r

Colu mbia (Ran dom) ( Random) ARMA ( I.I) I\ R(3) AR(3 ) ARMA( I.I )
n = 77 ~. =0. 9·16 q>,=0.612 6, = 0.266 6 1=0 .:1i1

0.=0 .013 61=0.379 f .=O.2iH 01= 0.9 1-1
6,=. 0.352 0, = .0.3.16

Flat head (Ran dom) AR(2) AR(I ) AR (' ) ARMA{I ,I) MA(2)
n= 60 161 = 0.185 fl = 0.142 ? 1""0.586 161 = 0. 191 01=0.221

f J=- 0.272 ~=.0.231 0.= -0.526 OJ=0 .7i!J
~=0.048

1/14- -0.419
Southeast (Ran dom) AR(I) J\ R(l ) A R(I) AII(2) AIIMA!'.I)
n= 70 1/11=0.6 17 t$l=0.74!) 6 1= 0.586 t$1=0.625 411=0..130

4>1=- 0.2'26 ?Je .O.786
0. -0.922

Northe ast (Rand om) AR(I) AR(I ) MA (I) AR(3) AIl MA(2 ,1)
n _12 6,,,,0.518 6,=0.698 0.=-0..128 6 .=0.400 6.=0.678

oh= -0. 191 61=· 0.752
0, =· 0.28-1 8,=0.9:10

Black (R:mdom) ARMA (2.1) AR(I ) AR (2) ARMA(2.1) ARMA(2,1)
n = 13 tI>, =l.lOl 91= 0.8 7" 411 = 0-"70 411=1.119 41.=0.:'191

0, =· 0.752 0,=·0.296 61=· 0.71)4 162=·0.6:1"
8,=0.957 01= 0.960 0.=0.980

Note : 1) ~; & OJ are par Amcten of the ARMA (p ,q) models.

2) Rand om mean , independe nt data (~I on lel!1lIof , hort-term

ind ependence at a == 5%).



Table 3.5 : Simu latio n RClIults of Hun t 's K

Niver No. o] Original K of Simulated Se:1e"
Sig.· lf K Sig.•H 1·/ $·H , .H 9·H

St. Lawrence 10 0.892 0.890 0.814 0.882 0.873 0.866
Mis9i" S 6 0.646 0.616 0.626 0.629 0.615 0.616
Mis.~ i. , K s 0.704 0.690 0.718 0.710 0.715 0.701
Mures 4 0.680 0.69·" 0.636 0.678 0.677 0.692
Rhine 8 0.613 0.606 0.597 0.600 0.596 0.590
Danube 7 0.632 0.629 0.511 0.622 0.632 0.618
Thames 3 0.760 0.739 0.746 0.755 0.758 0.743
Columbia 4 0.746 0.748 0.719 0.738 0.745 0.742
Flathead 4 0.785 0.766 0.717 0.756 0.760 0.777
Southeast Mar 2 0.756 0.765 0.748 0.759 0.767 0.705
Northca.st Mar 2 0.732 0.703 0.711 0.705 0.716 0.700
Hlaek 3 0.731 0.678 0.666 0.709 0.698 0.717

'9



Table 3.6: Simulat ion Result s of r(l)

River No. of Original r(1) of Sinm /at ca Seri es
5ig.-H , I) 5i g.•/I 1·11 3· /1 /. /1 8· /1

St . Lawrence 10 0.695 0.652 0.635 0.622 0.654 0.665
Missi., S 6 0.292 0.228 0.264 0.296 0.277 0.169
Missi.,K 5 00411 0.379 0.296 0.363 0.395 0.165
Murea 4 0.246 0.257 0.134 0.237 0.23 9 0.217
Rhine 8 0.076 0.073 -0.053 ·0.074 ·0.079 0.139
Danube 7 0.093 0.088 · 0.036 0.090 0.302 0,152
Thames 3 0.139 0.035 0.022 0.147 O.l 4R 0.19 1
Columbia 4 -0.077 -0.031 -0.003 ·0.054 ·0.059 ·0.103
Flathead 4 0. 187 0.18.') ·0.005 0,211 0.165 0.185
Southeast Mar 2 0.138 0.033 0.036 0.02 1 0.143 0.171
Nort heast Mar 2 0.070 -0.068 -0.027 -0.044 0.072 0.181
Black 3 a.1I2 0.240 -0.017 0118 0.223 0.19 1

Table 3,7: Sim ulation Results of the Mean Vi\[U (~ of S('ric s
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Ri ver No . of Original Mean Value! of Simu lat ed Scn'cs
Sig.-H Mean Sig.-H i-u $. /1 4-1/ B-JJ

St. Lawrence 10 6818.64 6821.57 6823058 6829.68 6831A2 682.'i.!J9
Missi.,S 6 4958.62 4980.42 1958.4 9 4972.85 4992.05 4971.0!i
Missi.,K 5 1732.17 1731.54 1743.58 1749.&1 1740.72 173.'1.11
Mcree 4 167.23 168.14 170.85 168. 97 168.61 167.6B
Rhine 8 1026.16 1024.76 102'1.28 1026.30 102.').91 10202
Danube 7 5364.18 5359.82 5384.55 5371.78 5361A 6 53GI.20
Thames 3 62.95 63.07 62.80 62.69 62.&'1 62 .96
Columbia 4 437.60 437.75 113.07 438.68 436.91) 437.9.'1
Fla.thead 4 208.53 208.19 2{I9A2 208. 26 207 .96 208.41
Southeast Mar 2 38.68 38.55 38.55 38.50 38.51 38.5'1
Northeast Mar 2 176.31 174.85 174,82 175.3 1 175.49 175.71
Black 3 129.49 129.64 129.75 129.64 129.59 129.31



Table 3.8: Simulat ion Results of Standard De viation
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!lillf:r NQ, of Original S id ofSim ulatedSerie~

Sig.•1/ S id Sig.- Il J·H 3· ,·H 8·
St. La wrence 10 594.94 601.4 6 570.49 610,4 7 664 .10 690.38
.'.lisRi. , S 6 1482.77 1421.68 1468.78 1480 .72 1517.32 1145.85
Mi~s i .• K .\ 511.67 516.64 532.21 602 .14 540.3 541.59
Mures 4 61.01 68.64 73.14 71.59 70.48 68.09
Rhine 8 163.46 170.6 1 192.10 182 .73 18 1.09 187.01
Danuhe 7 1027.90 1040.83 1061.16 1033 .95 1116.21 1116.81
'J'hamc~ 3 23.03 23.08 23.23 23. 39 23.16 25.36
Colum bia 4 114.29 114.5 8 123.83 115.26 115 .17 117.36
Flathead 4 70.00 71.11 70.02 72.11 70 .06 69.34
SOllth CiL!It M a r 2 8. 18 8.08 8.00 8.14 s.n 10.&0
Norlhca.~t Mar 2 66.89 67.17 67.78 67.79 66 .86 72.63
Black 3 31.1 5 37.08 :n .43 31.31 33.56 31.41

Ta ble 3 g. Simulation Results or t he Skew Coefficient

River No. oj Original Skew C oel , of Simulated S eries
Sig.-H Sk ew Sig.-H ' ·H 3·H /· H 8·H

St. Lawrence 10 ·0. 292 -0.325 0.018 0.054 0.230 ·0.184
Missi.,S 6 0.297 ·0.080 0.000 0.010 0.277 ·0.04 1
Mis:'Ii., K 5 0.4 80 0.152 0.086 0.237 0.027 0.127
Murcs 4 0.925 0.01 5 0.033 0.022 0.068
Rhine 8 0.1 46 ·0.035 0.004 0.003 O.OO~ ·0.015
Dan u be 7 0. 275 ·0.012 0.103 0.014 ·0.011 -0.013
Thames 3 0.17 6 0.008 ·0.001 ·0.003 0.018 0.108
Columbia 4 0.51 9 -0.0 22 -0.0 15 -0.039 0.008
Flat head 4 0.754 -0_007 -0.005 -0.001 -0.029 0.023
Sout heast Mar 2 0.61 9 ·0.005 ·0.002 -0.009 0.027 0.047
Northe asl Mar 2 1.747 -0.006 ·0.016 0.01 7 0.042 0.015
Black 3 0.206 -0.020 0.001 -0.041 ·0.025 ·0.011

.. Nosu itableARMA model found .
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Ta ble 3.10: Numbers of Significant Ilerr uonica in Annual Peak Se ries wit \1 Long­
term Dependence

RivcrName Jl lJ r$l ~ h" p (1 ) No. oj SigRificant Ilfl "" {O rr ir-.~

Roseway 0.739 0.083 4 (1 ,2,.1,5)
Boundary Creek 0.746 0.119 1 (1)
Chilko At Outlet of Lake 0.744 ·0.0:13 2 (1.2)
Kettl e Near Ferry 0.738 0.13:1 ·1 (1,2,.1,5)
Koote nay At Newga te 0.774 0.06r, 1(1)
Moyie 0.848 0.t32 :1(1,2,3)
English(Sioux Lookout} 0.736 0.003 2( 1,3)
Mieeinaibi 0 .729 0.106 3 (1,2,3)

Table 3.11: Simu lation Results of S kew Cccflicients Haaod on 'lr ansformcd Normal
Series

Riv er No. oj ." On'ginal Skew CrN.f. 0/ S imula ted .')eric.,
SigAl Value Skew Sig.-II J.Jl 3-Jl i- II 8-11

Missi., K 5 0.5 0.480 0.S!)7 0.483 0.798 0.427 O..'iOI1
Mutes 4 0.11 0. 92.~ 1.2<14 1,039 0.987 0,997
Columbia 4 0.235 0.519 0.491 "" 0.536 0.493 0.507
Flathea d 4 0.395 0.7501 0.538 0.528 0.538 0.523 0.532
South east Mar 2 0.005 0.619 OJiS'! 0.541 0.546 0.575 0.622
Northeast Mar 2 0.005 1.747 0.9019 0.944 0.894 0.910 0.911

* A= Box-Cox t ran9forma lion param('ler i

** = No suita ble ARM A model found .



Chapter 4

MIXED-NOISE MODEL FOR
ANNUAL FLOWS

4 .1 G ener a l

In the previous chapter. the har monic analysis of the cumulative depart ure

Cll fVCI. which is one of the newly deve loped model! for modeling long-term pe r­

si!ltence in annuel flows, waa discussed. In th is chapter, another newly developed

model for annual flows, which is celled Mixed-Noise Model and was designed for

model ing mixedbe haviour in annua l flows(Lye, [41(10]), will be discussed and ex­

tended to include ,lte"nell'. A eompar lscn wit h harmonic analy sis met hod will be

also provided.

Among the several well known model s me ntioned in Chap ter One fo r the mod ­

d ing of hydrologictime series with" high Hurst coefficientand a lowlag -one serial

co rrelation coefficient, fract ional noise has been shown useful io repro ducing the

type of long-term variability time se ries that are characterized by a Hu n t coe ffi­

cicnt larger than 0.50 [13). Several ot her ope rational models ha ve been developed

t ha.t can do the same but it has been shown tha t these can be regarded all appro x­

ima tions of fractional noise (35J [37J.
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However, fractional noise confronts the hydrologist withtwo problems 1101. The

first is tha t exact computer simulat ion requi res an infinite nurn bcr of o perations so

t h at approximat ions are needed. T he second problem is the low tag serial corte­

la t ion of fractional noise t ha t is much too high for most hyd rologic applicat ions,

There fore, an efficient model that is simple to li st' is nee ded. Th e mixed-noise(MN)

model is such a model which is cap able of reproduci ng short -term and long-term

se r ial correlation of floodseries as well as th e relevan t margina l distri bution prop'

erties, i.e ., the mean and variance (Lye, (<l J[IO)). However, ther e are some iasucs

wh ich have yet to be resolved. For example, howto model skewed [lea k flow se ries

by mixed-noise model? W hat is t he advantage of th is model in pra ct ice? T his

chapter focuses the research on these quest ions.

4.2 The Mixed-Noise Model

Mixed-noise model was developed along ti ll: l i l1~ oHlle ARM A·Ma rkov mo del

116], In the develop ment of the MN model, t he Hurst coefficient , h, and 6rsl order

se ri al corre lation p( l) are used explici tly to es timate th e model 's paramete rs which

are easily obtained (Lye, [4]) .

In prin ciple, th e MNmo del isobtained a..!I the sum of three or four independent

au toregressive or AR (I) processes each with a suneb le weight 90 as to reprod uce

approx imately the autocorre lation fu nction charaeteri zed hy a given lag -one :w.rial

cor relation coefficient and a long-term (orre lation structure corrCllpon,.'l ing lo fr&t;·

tio nal noise with a given Hur st coefficient.
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T he autocorrelation functio n ora t h ree -term mixed-noise process is:

(4.1)

where ., is lim lag, a2, b2 ,c2, are the va rtencc fra cti ons(or weights) which su m to

III1;(Y, PII, PM. a nd PL arc the au t ocorrela t ion coe fficients of the three inde pe ndent

AIt(l) processes. The first ARCl) process models the hig h frequency effects , the

seculld AR(!) pro cess mo dels t he interm ediate o r medium freque ncy eff~cts . and

lllt~ th ird AR(I ) process models t he low freq uency effectsof the time series. Hence,

essuntlu llythe te chnique is to fit th e autocorrelat ion functi on of Frac t ional G aussian

Noise [13/ with the giv e n three weighted autoco rrelation functio n of the AR(l )

process.

Th e MN m odel has six para mete rs. The th ree variance fracti o ns (a2
• b2 , and

c2) And t ile autoregressive param e ters (Pll,PAI, and pL).

T he genl!rating equa tion for a zero 10('1\11, unit varia nce MN p rocess is given

hy:

where , (III}, t I M ) . and ilL) are norma l ind epende n t proces s having varianc e (1 ­

P~/ )' ( l - pI,), and (I - pD,respectively.

The autoco r relation function o f this p rocess is fitted to the theo r etical autocor­

relation function of FG N aLfour s pecified lags, 3 1032,33. an d 3 ~ . The lag-on e serial

correla t ion coefficient p( 1) may be arbit ra rily speci fied. To obtain th e parameters

of the m odel req uires the solutio n of the following system of equat io ns:

a2 t h1 +c2 =1

a2pH + b2pM + C2pI. = p(l )

(4.3)

(4.4)
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(.t S)

(' .G)

(U)

(' .8)

where. a 2,b2,c2 ,P M. and Pt. are constrai ned to Ii.. between 0 and I. And P(II ill

the des i red first order se rial corre la tion coe ffinent , The coe fficient PI! ill a llo.....cd to

be nega tive or ca n bese t to zero to match the de sired first order serial co rrelat ion

coefficie nt. C("i h) is the t heoret ical aulocor n'lilt ion function of Fract ional Calls ,il\n

Noise (FGN) give n by:

(' .9)

For large .I . the function is Appro ximately «iYf'n by

(' .10)

Lye [4J found it wasconvenient to take .111=4,-,., =IS, .I3 :: 54, and .I t = 200. On

a logari t hmic scale , these chosen lap are el}uaJl,V , paced. The value of " . = 200 is

chosen to reOect the phUlnin« per iod of most wate r resources pro jects . AI!lO, the

chosen spacings mAkeit euy 10 est ima te the model parameters . Since t he auto­

correlat ion functi on of a n AR(l ) process diminish es rapid ly with incrcMi n! lags.

the syst e m of equations cen be e valuated sequent.ielly ra th er than sirnult e neoualy

starting (rom th e lowfrequ ency end ,

Div iding (4 .7) by (4 .8), and assuming pf],p~,p'1 And pUto be negligible at

lags 53 and 5 4 lead! to:

(<.I')
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For " given h value end, "3 end "4. the left hand elde of (4.11) is defined. T he refore

PI. can be calculated. Substitu ting into (4. 71 and ignoring t he high and medium

Ireque ncy terms . t? is obtai ned.

From (....6). a nd as.'luming pil to be neg ligible, one sets :

II = C(1l2i h ) - ep'i
pA:

~ Il ,", l i t ll t i ng into (4}j ), PM is obtai ned.

Then from (1. 12), one obta ins b2i and from (4.3 ):

Finally from (4.4 ),

4.3 Skewed Mixed-Noise Process

(4 .12)

(4.13)

(4.14)

Th e main wor k on Mixed-Noise mode l in this stu dy i. extending this m odel

La include skewness. Ske wed MN sequences may be scnerat ed by using & suit-

able t rll.n9fonna tion 10 tha t the lransrorm~ nOWI are assumed to be no rm ally

distributed. Box-Cox transformation is used &S such" transformation in this the-

sis. The pr ocedure for the synt het ic genera t ion of s kewed flood sequences Xl based

on MN mod el wit h Box-cox lr u srormation i~ a.. fol lows:

I ) Transform th e skewed XI to normal sequences XNJ by Box-Cox t rans fo rme-

lion:
X ," -l

XN.I = - A- (4.15)

2) C alculate th e M(meanl. St d(standard devia tion). end the parameters (a, b,

c, PII. PM, pd o r -"HoC ;



3) Gentfate t hree normal independe nt process (IHI, (,M"And (1l.I, ha..-ing vari­

anee ( I - P'tt),(1 - p1,), And(I - pi) res pectively ;

4) Obtain th e sequences ZN.J

Actually , this is Equ.(4.2), where Z"/I, Z~MI and Z~LI ate AR(I) p rocess give n hy:

5)Add the mean and standard deviation

Z, = M + SId . ZN.,

6) Tra nsform Zl back tc skewed sque nc e

1';={Z/ + I) I/~

1";is the needed synthe\ic skewed MN seq uence.

(' .I7)

(·1.18)

(·1.1'1

Ano ther wa.y to gener ate skewed MN vAriates it by modifying the ran dom

numbe rs used in the generation prceesa [16). The necmuy .kewnCfls in the m ixed-

noise va ria te ma y be obtained in different ways (Lye.l.U. Th e mixed- noise pr ocee

(4.2) can be wri tt en &.1:

(' .201

Cubing both , ides and taking expect a t ion.•,
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Since X I
CHi, X,(Ml, and X!LJare independe nt of eac h other and have zero mean,

t he expected values of the cross-product term s are a ll zero. Also, XfH), XV"), a nd

X,tLlan: A R (l ) processes given by:

(4.22)

C u bing hot h aidell and taking expect a tions,

T hat ls,
(l_p(, )3/2

'Yxo:: 1- pr) 1,,() (4.24)

whe re 1,'1'0 a nd 1'••() are the coefficie nt of sk e wness of XU, an d to respectively.

Sllb~ t i tuting into (4.21) one gets:

_ 3( I - P(m )3/1 ](I _PIMI)312 (I -PlLl)3/2
1X - fI 1- prm 1••(,, ) +~ 1 _ PiM\--r··(M) + r? I _ tilt) 7 ••(L) (4.25)

From (.1.25) t here are se veral poss ible way s of ob taining t he required skewness

I. Mod i fy only the high frequen cy term. Here. 7.,M and 7.,t. = O. and the reo

qui red skewn ess of th e random numbers in the high frequency compone nt is given

by:

-~ (4.26 )
""<,H - Q3(1_plH))3/;rx

T he Wilson- Hilferty t eansfor metlon can then be used • 0 obtain the required skewed

random variate, The transforrn is given by:

"1== 2.-[1+ "T.,H(I _ ~J3 _ 2.-
1.,H 6 36 11,H

(4.27)



(1.28)
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whe re, 'II is a pproximately gamma distributed with a mean of zero, unit variance

and skewnes s "f"H ; "«,n is th e skewness of the random deviates required ; and (I is

a nor mally di stributed random deviate with ze ro mean and uni t variance .

2. Modify only t he medi um frequency term. In t his case, 1.,1/ and "'.,1. = O.

and t he required skeweddevia tes arc from (·1.26) and (4.27) with 1,,11 eoplaced by

'kAl ·

3. Mod ify only t he low frequency term . In this ca.'IC, 1. ,1I and 'k", = 0, and

the req uired skewed deviates are from (4.26) and (4.27) with /< ,/1 replace d by "f.,L.

4. Skewe d rand om devia tes can also be obtained by as~uming the sa me skew-

ness (or each compo nent. T hat is, 1. = ; .,11 = 1c,M = "fo,L. f rom (1.25),

1. = 1'Xra3~'~ +b31-pi":13(J +c l - piL/I1J-1
1- ~H) 1- P(MI 1- P(LI

and th e requ ired ske wed random varia te s is obtained from (1.27) by rep lacing 7••11

wit h 'Ye.

Se cond a.nd third method e do not work because band c arc U311ally very small .

From (4.26). 'Y•.M and '1f,L become very large . lJut in (4.27) , because thi s lar ge

num ber be,At or i.,H ) should be squared and then be cubed, the corresponding tlt

becom es very huge. Th erefore only the results o f met hods I and 4 are shown in the

next sec tion.

4.4 MN Model Applied to Annual P eak Flows

M onte Carlo sim ulations are used to test the suit abili ty of Mixed-Noise model

in modeling the annual peak flows. T he data of the twelve rivers discussed in pre­

vious chapters are used here as examples. The n umber of replical ions equals 3,000 .
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Two ways of m"dding skewed MN seq uences arc all considered in the calculation .

A mrnplHisoll or these results is provided. The simulat ion resul ts are shown in

The n-sult s in these tables show that , in most cases, using Box-Cox transfer­

Illa t ion and Ilsing Wilson-llil fcrty t ransformation in MN skewed sequences obta in

ilhllusl t he SIl.II1Cresul ts in reproducing several importan t. parameters, [ike the mean ,

s1.il.nda rcl dl ~vialiOIl , nl , and Hur st 's H . But , fo r model ing skew coefficient. Wilson­

llil f,:rty trausformarion gels i-et tcr resulls , especially when the skew coefficient of

u ri~ illal ,[ala is very high. H seems t hat it i ~ (!ifTk u[l lo use Box-Cox transformation

t il nunh-lhigh skew coefficient .

'I'll.' h i a.~ in reproducing several parame te rs arc quite small. A little larger bias

" Xilli ll in repr oducing Hurst's K . Usua lly, the sim ulated Hurst's K is less than the

original /\' if original /\' > O.iO. If original It' < 0.70, the sim ulated K becomes

~n'at ,:r than Ole original K . T his blas patte rn or sim ulated K here is therefore

quitenormal [251.

To produc e genera ted sequences from the modified mixed-noise model that "on

nvcrngc" reproduce statistics equal 10 t he histo rical values , the pa ramete rs used in

th,- modelmust becorrected for bias. Analytica l expression for bias correlation for

thc modlflcd process maybe poaslble. However, bias correction derived from the

Monte Carlo method is sufficient Ior most practical pu rposes. Lye (41 gave some

~irnpl(~ ( urn 's which can be easi ly used to find suitable inputs of K and p( l) in elm­

ulation foe hia.~ correctio n [4]. Some improved results based on this bias correctio n

nn-thod art.' shown in Table 4.4.

Compared with the simula ted results of har monic analysis in Chapter Three,



the mixed· noise mod el with Wilson-Hilfl't ty tr~nllform~tion ill mort' effeeuve in r'"

prod ucing skew coefficientJ of the origin al sequences. Its ild"antage in thi !l ;\,'I )('("till

very obvious for the high skew .sequt"nces(e.g. t hr rt'!Illlls for Nor the;\.. t Hi\TI ). Th e

har mon ic an alysis met hod ga\'r' better r(':'lulhlin rrp roclud ng lI unot '!! h" if mixl"tl­

noise model is used with out bias rcrrcctlcn. 'fI .i!!i. !)C('auar t ho:'haenonie ana lp i!l

constr ucts t he original cumul ative departur es ('\If \ 'C fir.;tl y from t he ohsf-r\'l'c1 ti lllC'

series, and the SCPIUlLted cu m ulative departure!! (' \IfVC ACCOIlIlhl for III O r t' t hAlI ~)r,%

of th e variabi lity in th e Hurst coefficie nt.

4.5 Summary

Long-te rm dependence CAn not be ignor...1 in lIl{)(lding nee d time lwriel, t hal

is. the effects of medium and low Ireq uencics should he rousidered. Mixrd ·lloi!W·

model is qui te effective in this way. It WIt'S three AR(I ) processes which are ahle to

mode l the effects of high Ieeqne ney, med ium frl"lurIlCY, al1d low lrffJu...ncy r,.."p""C·

tively . Hence it can be used to model th ose Rnoel iWTlcs wit h long· te rm dc pendenr e,

and its phy sical idea is t'ilSy to unders tand.

Mixed -noise model with a su itable t ransformat ion CAn beII~ to IIIQ1'ld skl:wed

series efficiently. Thi s advantage is ev ident Cor tho!lc high skew lIf:rics, compar.....1

with har monic analysi. met hod . Wilson-ml Certy tran~(ormation is recommended

to be used as such a tra.nsrorm at ion by thls thr~;~ hrcauM! it obtAin. better reeults

tha n using Box· CoJl: tr ansrorm at ion. a lthon gh it i ~ more difficult to usc.

Bias in reprodu cing sta tis tical pa rameters md5t~ in mixed-noise mod el. But

t his can be corrected by changing the inputs oCHurst 's K and p( l) in th is u.cdel .



"l'he illl"Jl ing vlI.hJ('~ of K and fI(l ) (an be caaily obta ined from curves which arc

"I,t llill"d h...~ed on the Monle Carlo method .

TIJI ~ mixed-noiseprocess has se veral advantages . Firstly, it uses bot h h and p(1)

I~XIJliritly to derive its pa rame ters . Secondly, the pa rame ters arc easy to est imate.

Fillll.lly, bec ause of ib simple st ruc tu re, it is rcle rivcfy efficient when com pared to

tIll' comput ational time of present models. It rema ins, however, to determine the

upt iUIIJIl1values of the l ag~ { S .. sa , .'13. and .... l where t he MN correla tion function is

forn '.! to match t he FGN correla tion funct ion. More curve s for bias correctio n for

dilr"(l'nl smuplc lengths shou ld be obtained by M<>nte Car lo Method . In addit ion,

n roruprchensive compa rison wit h the ARMA ·Markov modeland ot her contending

lIIodd" ill ter ms of sma ll aaruple biases, gene ration of skewed variates, and exten -

"iun lo 1I11'multi variat e case remains to be carried out .
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Tab le 4.1: Simulation Resul ts of MN Skewed Sequ ences By Box-Cox Transfcrma­
lion (conside red all H, M, L terms]

River > Mean Std RJ Skew lfu rsl 's K
On. Simu. Ori. Simu. Ori . Simu.. On. Simu. Ori . Simu .

St. Lawrence" 2.360 6818.64 6821.60 594.94 470.74 0.695 0.443 -0.292 -0.269 O.$:J2 0.793
Missi., S· 0.600 4958.62 4953.98 1482.77 1452.34 0.292 0.255 0.297 0.329 0.646 0.703
Missi., K 0.500 1732.17 1729.79 511.67 490.76 00411 0.332 OA80 0.358 0.704 0.73 1
Mures 0.110 167.23 161.42 67.01 65.13 0.246 0.119 0.925 0.973 0.680 0.687
Rhine" 0.680 ' 1026.46 1025.93 163.46 162.08 0.076 0.060 0.146 0. 144 0.613 0.657
Danub e" 0.170 5364 .18 5361.91 1027.90 1021.39 0.093 0.058 0.275 0.439 0.632 0.665
Thames" 0.580 61:.95 62.9 1 23.03 21.07 0.139 0 .010 0.176 0.407 0.760 0.703
Colum bia. 0.235 431.60 437.i5 114.29 108.88 -0.017 ·0.169 0.519 0.534 0.146 0.684
Fla thead 0.395 208.53 208.78 70.00 &1.27 0.187 0.039 0.754 0.585 0.785 0.713
Southeas t Mar 0.005 38.68 38.75 8.18 7.76 0.138 0.021 0.619 0.589 0.756 0.701
Nort heast Mar 0.005 176.31 176..11 66.89 62.77 0.070 0.005 1.747 1.464 0.732 0.690
Black'" 0.830 129.49 129..16 31.15 29.79 0.112 0.019 0.206 0.108 0.731 0.698

'" Or iginall)' normal data
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Tab le 4.2: Simula tion R~uhs or :\Ii\ Skewed Seqlil"Il C{'S By Wibou·lliUr rty
Transforma tiooh .. from high Ireq. term s}

River Met." Sid RI Ske ~' Illlr,,' '.< h"
n. imu, On. Simu. On. imu. rio S;mu. Or i. ; 11111.

St. Lawrence 6818.64 6811.46 594.94 468 .95 0.695 0.490 ·0.292 -0.525 0.892 D.IUti
Missi.• S 4958.62 49M .67 1482.71 1456.60 0.~2 0.253 0.297 0.286 0.6-16 0.701
Missi., K 1732.17 1729.21 5 11.67 491.75 0..111 0.344 o.rso 0..112 030-1 0.; 3'1
Mu= 167.23 167.2Q 67.0 1 64.89 0.2-16 0.189 0.925 0.881 0.680 0.7Il!
Rhine 1026.46 1023.93 163.46 162.26 0.016 0.055 0.1-16 0.1-11 0.6 13 0.657
Danu be 5364.18 5361.96 1027,90 1016.62 0.093 0.065 0.215 0.266 0.632 0.661
T hames 62.95 62 .95 23.03 21.65 0.139 0.0 1-1 0.176 0.197 0.760 0.705
Columbia 437.60 437.51 114.29 108.52 , ·0.077 ·0.186 0.519 0.525 0.746 0.683
Flat~ead 208.53 208.62 70.00 64.08 0.187 0.031 0.754. 0.8-10 0.785 0,715
Southeast Mar 38.68 38 .74 8.18 1.69 0.138 0.020 0.619 0.653 0.756 0.70-1
Northe ast Mar 176.3 \ 175 .96 66.89 62.20 0.010 -0 006 l. H 7 1.618 0.132 0.696
Black 129.49 129.42 3US 29.8 1 0.112 0.018 0.206 0.21-1 0.73 1 0.695
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Table 4.3: Simulat ion Results of MN Skewed Sequencc9 Ily Wilson_ IIilrt'r ty
Trans fcrmencn t-i, from all H,M,L lreq. terms)

Rit'er Jf ean Sid RI Skcw ll lll.,d :~ /.;
On. S imu. On. Simu, On. SimI!. Ori. Si"w. n. ,.,'jmu

St . Lawrence 6818.64 6817.30 594.9·1 469.61 0.695 0..lS9 -O.:.!!I:! ·0..175 U.8!}:? 1I.i!l!1
~lissi..S 4958.62 4955.70 1482.77 1456..10 0.:">92 0.2.';3 0.t!17 0.2&', (Ui·1Ii 0.7Ul
Missi" l\ 1732.17 1729.03 511.67 ·191.58 0..11 1 0.:1-1-1 0..\80 OAli7 11.70·1 Inll
Mutes 167.23 167.19 67.01 64.86 0.246 0.187 0.!1:!5 0.:H7 0.680 O.iUO
Rhine 1026.-16 1025.9-1 163..1 6 162.26 0.076 0.OS5 0.\ ·16 0.1·11 IUII :1 0.1....,7
Danu be 5364.18 5361.95 1027.90 1016.50 0.09;'1 0.06·1 0.275 0:.W5 0.632 IUili7
Thames 62.95 62.95 23.03 21.65 0.1:19 0.014 0.176 O.I!):? (l.760 n.70r,
Columb ia 437.60 437.'18 114.29 108..17 ·0.077 -0.189 0.519 0.515 0.74(; (!.liS:.!
Flathead 208.53 208.69 70.00 64.0:1 0.187 0.027 0.7501 O.SI!) O.7H5 11.71·1
Southeas t Mar 38.68 38.73 8.18 7.67 0.138 0.018 0.619 O,{H I 0.756 0.70:l
~ortheast Mae 176.31 175.20 66.89 62.09 0.070 ·0.017 1.747 l.m 3 0.732 n.!i!l'.!
Black 129.49 129..12 31.15 29.80 0.112 0.017 0.206 0.211 0.731 lI.li!l!!

Table 4.4: ~I N Skewed Sequences with Bia...q Correction (Wilson- IIilrcrt y
Transfcrrnaticn-r, from all H,M,L Ireq, te rms)

River Mean S.d RI SkellJ If'll;;~
On. Simu. On. S imu. On. Simu. On. Simll . O,i . Sim'll.

St. Lawrence 6818.61 16816.58 594.9 ~ 1527.73 0.69: I0.7W'O.
29i1'0'075 0.8911 0.86"Missi., S 4958.62 4957.25 1482.77 1472.95 0.292 0.250 0.297 0.275 0.646 0.675

Missi., K 1732.17 1730.60 511.67 520.86 0,411 0.348 0.480 0.443 0.704 0.114
Thames 62.95 62.94 23.03 23.00 0.139 0. 155 0.176 0.173 0.760 0.760



Chapter 5

CONSIDERATION OF THE
HURST PHENOMENON IN
FLOOD RISK ANALYSIS

5.1 General

In the previous chapters, the existence of long-te rm dependence in flood peak

~Ni('S and how to model th is kind of dependence were discussed . But there is still

anc the r quest ion left to be answe red, that is, why do we need to model long-term

dependence in hydrologic series? In other words, docs it make sense in engineering

pract ice tll"'l we conside r the Hu rst phenome non in flood risk analysis? In this

chapter, the effed of seria l correlation on flood risk will he discussed. Mixed-no ise

model and Monte Carlo method will be used ill the ana lysis.

T he effect of short and long te rm seria l correlat ion on the variability of samp le

~ta l i st i c8 were discussed bysome researchers. Lo ucks et .1.1. [34Jshowed that short­

ter m dependence increased the variance'! orsample mean and samp le varia nce [34].

Lye I"Jshowed that when the series of observations exh ibits long te rm serial cor­

relat ion, the variance of t he sample statistics arc great er th an that for eifher short

77



term correlated or independent processes [-II, T his chapter will iIIustti\j{' t hat, when

Hurst 's K is high. how much it will affect flood tolerance lilll;tl\ in risk i\l\ llly~ i~ if

we ignore the serial correlat ion.

5.2 Met hod of Flood R isk Analysis

As a rule, hydrologists pay litlle att ent ion to the 9('r;1I.1 correlation of Hood peak

series. Th is is inherent ill the way a flood frequency analysis is pl.'rfornw tl. '1'111'

flood data are arra nged in order of magnitude . Then they arc plotte..d on prohahility

graph paper , and finally, a probability dist rihllt ion or a curve ill fitted through the

plotted points. It is evident that in this proc("llS, thr-order in which the data oecured

in the time series, and therefore the serial co-relation struct ure, is cOllsidcrcI\ to lw

irrelevant .

When we use a flood frequency curve, wc ~t a magnitude of flood to occur in P

percent of some long future record of floods. Usually, we think of the ret urn pl..riod

(T) rathe r than the probability. A 25-ycar 1I00d would be found to be exceeded,

on the average, four times in each LOO-yeM perlod of a large nurnber of IOa'year

records. By using the return period as a design criterion, we arc implying that we

expect average conditions to apply over some long future.

Risk estimat ion is an alternat ive to the return -period concept . Risk can be

int roduced using the annual maximum flood 3.'1 t he random variable. Thu s the lime

period is I year. We will assume thal in any one year, a flood either occu rs or il

does not occur and tha l no more than one flood or a certa in magnitu de willoccur in

any one year. If we also assume thal the probability of tha l flood occuring rernalna
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cclllsl;t.nl from yea r to yeer, we have satisfied the four assump tion s underl ying the

llinomial .lislrihution. Thu s, if we define the ri~k as being the probability of one or

more nllodl' ha.ving proba.bility p occuring in n yeus, we gd the risk as

W.· can develop the concept of risk in a different way. 1£ p is the probability

that 1\ flood willoccur in any year, I - p is t hl' prohability that it will not occu r. U.

Iur ther , wo IIccd ,. yean for construct ion. (1 - pr is the probability that the flood

will no! occur in t hese n yea rs. Conversely, 1 - (1 - p)" is the probability that the

n-year per iod will not be flood free. In other words, it is t he chance of at least one

1I00d equal Laor greate r than the Rood corresponding to p, and rep resen ts ris k.

T he a bove method s are correct proced ures only when we bave long-lived et ruc­

t uree, or economic benefits accruing over very long pericde a nd the floods are serial ly

independent. Out what risks do we run when the flooch!are serially depend ent or

there i~ no opport unily for long-li me avera!ing? We can use confidence intervals

to make prohabilislic predidions about possible futu re values of the mean of the

sample. Also, we can usc tolerance limits to mue probabili st ic predictions &bout

poaaihle fut ure values of specified proport ion. of our ..mples (44}. When doing

this , we must att ach a confidence level to the pnodid ion. The probability of 0.5%

is a. sam ple proportion ot 1/100. and we must estima te how this propo rt ion might

range.

It we had performed the simulat ion at m samples wit h the sa me sample size

II, we would be in a position to a nswer several questions. What are the range

and distribution or ~"e largest z in each ort he samples? What are th e range and

dist ribu tion or the kt h largo.t value? What are t~e range and dist ribution oCt he
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mid dle value of each sample? Answers to such (jut'Stions arc illustra ted in t he next

secti on, and a comparison of these answers between two corrl.'l1ponding simulatoo

seriesfd epe ndent series and independent se ries) is also provided to show thf' ill­

crease in t he uncer tainty of flood risk assessment when the serial cor relat ion is 1I0t

conside red in a high Hun t 's K flood series.

5.3 R esul t s and Analys is

The Thames river is chosen as an example in t his analysis. The mixed series

data passed all tests for short-term dependence considered in t his stud y, hilt ti le

data failed Hurst 's K test for long-te rm de pendence . T hat is, it is all iud epcn­

dent series under the traditional considerat ion hut a dependent series under the

viewpoints in this stu dy. Hence , it is a good exam ple for our compari ng t he their

differen ce on flood risk.

Monte Carl o met hod is used for t his an alysis . Two t housand samples of indo­

pendent sequences, with t he same sam ple size a!I Thames' flow se ries(t1:=71), are

generated first . Th eir me ans, sta nda rd deviat ions, and coefficients o r skewness arc

statistic ally equa l to those of Thames' flow series. T hen, two thousa nd sam ples

of dependent seq uences, also wit h the same sampl e size, arc generated by mixed­

noise model. Following the fitt ing procedu re with bias correc t ions for this mode l

suggest ed by Lye (4J, the synthetic dependent sequences on average rep rod uce the

requ ired sam ple stat istics( mean, st anda rd deviation, nil coefficient or skewness,

a nd Hurs t 's K). Th ese are shown in t he following Table 5.1.

To a nalyze t he simula tion resu lts, we are specially interested in the probab ility
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distri butio ns of largest event s. Th is is beca use in engineering practice, only those

fl'S U!tS with highest sample ranks affect ou r sdcc ling design flood value. FOf ex­

ample , rank numbe r I correspo nds to t he 1{71 event , ran k number 2 ccrreaponda

to the '1. /7 1 event , and so on . The simulat ion results of 5 highest sample ra nks and

the median rank (rank :16for Tha mes flood series with 0=71) arc shown in Table

.''"1.2.

The dist ributions of these events arc shown in Fig. 5.1 using boxplot s. Here

the [ower hinge 1ft is the first quart ile, the nppnr hinge Hu is the third quartile.

The inner fences is between l it. - L5{11u -1ft ) and lJu +L5(Hu - HL), an d t he

uut er fe nces is between l h - 3.0{Hu - lh ) and lfu + 3.0(Hu - Hr.}. .. .. .. represents

possible outl ier which is bet ween th e inner and oute r fences. " 0 " represents th e

probable out lier which is beyond th e outer fences.

The above results illustra te clearly tha t t he effect of serial correlat ion on flood

risk. For depend ent series, the median values of ranks number s ("+ " in the box)

are almm t t he same as those of indepe ndent ~t"ri es . In ot her words, conside ration of

serial correlatio n (or Hurst phenomenon) docs not change the results of frequency

analysis. It obta ins the same answers in estim ated median flood values for certain

return periods. However, it gave much larger variance in flood values for every rank .

The larger var iance means larger uncerta inty and the decreeee in the reliabili ty of

the results of frequency analysis. Therefore, uncerta inty in the estimate d flood risk

increases if the effect of Hurst phenomenon is taken into account.

To inveetigeto how much is exac tly t he increase on flood risk , a furt her ana lysis

is needed . Eith er for depende nt series or independent series, all 2000 samples have

their events ar ranged in order of magnitud e. As a second step, each of these rank
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numbers may also be arranged in order of ml\gnitude. We thu~ have ranks 1 to

it of the individual samples ranked across the 2000 samples, Selected tolerance

limits numbers, the means and the median valuf':!of the 15 highl'St sample ranks

are plotted in Fig, 5,2 and shown in Ta ble 5,3,

From the above demonstrations one can 8('(' that the variance of tim orl!crt',1

statis t ics is substanti ally higher for flood series that exhibit the Hurst phenomenon.

Thus, neglecting uncertainty in these cases may cause serious underestimation of

the future flood risk. For example, under the t raditional viewpoints, the lIow se-

ries of Thames river is an independent series because it passed all stat istical tests

for short-term dependence, and hence the serial correlat ion call be ,Iisn:garucli iii

flood frequency analysis. Bllt from the rl'!l lllt~ in Table 5.:1, this CIUl"eS ~riO ll9

underestimation of the flood risk. U we want to estimate the possible 2/7 1 event

(rank 2 number) at a significance levelof a = r;%, the error of underestimation for

the upper limit would be 11.01%. For an estimat ion or possihle 14/ 71 event (ahollt

rank 14 number) at the same significance level, this error could be up to abou t 20%.

5.4 Summary

From the above discussion, it is evident tha t the serial correlation of annual

peak flows, and by implication the nature or the variability or these peak news,

should not be taken for granted. It should he deduced Irom observations and ev­

ery effort should be made to determine the hydromcteorological condit ions that

may cause the serial correlation. In addi tion to the sta ndard stat istical tests for

short-te rm dependence, flood peak flows should also be tested by Huret 's K for its



83

po~silJ I( ~ long-term dependenc e.

If flood peak flow, fail in Hurst coefficie nt test, the serial correlat ion should

1m taken into accoun t in flood risk ana lysis. othe rwise t he underestimation of flood

risk could he serious . Mixed-noise model with bias correct ions and some ot her

models like harmonic Analysis can be used to model flood sequences wit h long-term

persistence. U necessary, t he uncertainty in the distributions of the highest ranks

numbers can be qua ntified using Monte Carlo methods, like t he ana lysis methods

used in t his chapter. The most importa nt aspect of this flood risk ana lysis method

may he that generat ed synt hetic flood sequences should on average reproduce the

required sample stat istics of original flood sequence.
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TAble .'jol: Simula tion Resul ts of Thames' Annual Flow Series (Rep licat ions in
Monte Carlo method: 2000)

Parameter Mean Sid R,
OriginalSeric& 62.947 23.025 0.139
Dependent Series 62.938 23.lXH O.lS5
Independent Series 62.860 22.9B -0.013

Coe/. Sk ew K
0.176 0.760
0.173 0.760
0.175 0.623

Table 5.2: Sim ulation results of five h ighest rank~ and median rank

Rank 1 2 3 4 5 36 median
Dependen! Mean 120.46 111041 105.95 102.15 99.07 62.27
Series Sid 20.42 18.52 17.88 17.61 17.38 16.74
Imiependent Mean 120.61 111.04 105.80 101.91 98.87 62.11
Series Sid 11.08 8.24 6.96 6.14 8.68 3.43
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Ta ble 5.3: Tolerance limits for the IS highest sample ra nks

(a) Dependent :'!l'ril'S

Rank U 5% U 10% L90% L 95% M~dian M~an

1 154.04 147.24 94,44 88.33 120.07 120..16
2 141.32 135.03 86.94 8U7 111.53 Il IAI
3 134.74 128J,}9 82.70 77.05 105.53 105.95
4 130.83 123.93 78.95 73.93 102.01 102.15
5 127,25 121.07 76,04 70,9<1 98.80 99,08
6 125.03 U S,S9 74.07 68.29 96.38 96.5!)
7 123.23 116.:17 72,28 67,05 94,31 94.35
8 120.65 113.94 70.45 6/\.!n 92.22 92.36
9 118 ,75 111.68 68.95 62.801 90.17 90.013

10 117.05 110.14 67.59 61.57 88..11 88.77
11 115.65 109 .07 65.69 59.82 86.81 87.23
12 114.16 107.56 64.41 58.82 85.44 85,78
13 112,41 106,34 62.97 57,38 84,01 84.41
14 111.36 104 .61 61.88 55.62 82.60 83.10
15 109.61 103.28 60.76 54.39 81.34 81,81

(b ) lndepende nt Mcries

Rank U5 % · Err at 5% U 10% L 90% L95% Median Mean
1 140.71 '8,62% 135.77 107,76 105.02 119.32 120.61
2 125.76 ,11.01% 121.79 101.44 98,77 110.30 111.04
3 117.93 .12.48% 115.01 97.29 95.10 105.32 105.80
4 112.41 ,14,08% 109,94 94.18 92.43 101.67 101.91
5 103.71 ,14,57% 106,09 91.96 89.94 98.76 98.87
6 105.42 ,15,69% 103.22 89.48 87.70 96.14. 96.28
7 102.80 -16.58% 100.74 87.56 85.86 93.96 94.04
8 100.06 -17.06% 98.31 85.62 84.09 92.0.1 92.07
9 98,06 ·17.43% 96.34. 84 .15 82.66 90.31 90.29

10 96.41 ·17,63% 94,66 82,70 81.30 88.69 88,65
11 94.45 .18.33% 92.89 81.46 79,87 87.02 87.12
12 92.95 .18.58% 91.38 80.12 78.57 85,60 85.70
13 91.66 -18.45% 90.08 78.66 77.30 84 .22 84.31
14 90.04 ·19.15% 88.57 77.53 76,06 82.90 82.98
15 88.82 .18.97% 87.32 76,50 74,94 81.60 81.74

• Note: "Err at 5%" represent s the underestimat ion in the risk aeseeement because
of the assumption t hat the flow series is independent.



Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6 .1 Co nclusions

There arc several conclusions which can be J rawn from th is thesis.

I. Many annual peak flowsexhi bit th e Hun t pbeocmeno n, but stan dard sta­

tilllical tests for independence lU'C insensitive to the long-ter m dependence

of the pea k Row series. Significant long-term :serialcorrelation AS measured

by t he Hurst coefficient is present in a large number of the peak flow series

which passed stMdard stAtistical tests for short- term indepen dence. There­

Core. all annual pea k series should be examined by Hunt coefficient test (or

t heir long-term dependence.

2. Generally, harmonic analysis of the cum ulative deplU'tu rn of annual flow se­

nes is a good method to eimulet e stora ge-related process. The first advant age

of th is method is in reproducing requ ired Hunt ', K in simulated series. But

the difficulties come out in reproducing the coefficient of skewness when th e

original Rood series i, Ilighly skewed . Beceuee the residual, are usually Dot
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independent data, sometimes it is d ifficult to find the hest. ARMA model for

t he residuals.

3. Mixed-noise model is an new effective model which is able to model the a.
Iects of high frequency, med ium frequency, and low frequency in f1O{)(I .'!<'fit·.'!

respectivel y. Using Wilson.Hi lferty transformation , this model ra n eaaily ro­

produce t he t he coefficient of skewness of a high skew flood scric". J)in.~ in

rep roducing t he stat istica.l param eter ...('xil(t" for this model . nu l , wit h eoun-

curves prepared by Monte Carlo me thod, th is bias is ea.~i1y cor rected.

4. Th e effect of ser ial correlat ion on flood risk ana lysis can be substantia l. IL

should be considered for those rivers exhibiting significant long-term dcpen­

dence, ot herwise it may cause serious nuderestl matlon of the fut urll nood

risk.

6.2 Recommendations

From the results of this st udy, t he following issues shou ld be conside red for

furt her research:

1. Since parameter uncer ta inty caused by long term serial correlat ion is quill:

substan tia l leading to a upward &."I!ICsmenl of flood risk, phyalcal reascn e for

t he long term beh aviour should be inveatlgeted for each river basin where t hi...

phen omenon is observed .

2. It seems that th ere is some kind of rd al ionship bet ween the numbe r of sig­

nificant harmonics of flood series an d long-te rm depend ence. It may be inte r-
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('SlinKto do further studies on this rela tionship and its physical explanat ions.

:I. T here are several models available which arc capab le of simultaneously re­

produ cing high and low frequency effects. It is necessary to develop the pro­

cedu res for case of select ion of models and input pa rameters for any desired

ou tp ut characteriatica.
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