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Abstract

The propagation of electromagnetic waves in a coaxial waveguide loaded with
ferrite is studied by using the exact analysis approach. The results of the partially
filled ferrite case (radii ratio ‘S, = 0.5’) and the approximately fully filled ferrite
case (radii ratio ‘S, = 0.9) are given for the dipolar modes (n = *1). The
ferrite used is assumed to be lossless and completely magnetized. A review of
the electromagnetic wave propagation in an infinite ferrite medium is presented

to point out the various wave ion ch istics in the ic space

diagrams. In the exact analysis method, the general dispersion relations are derived
directly from Maxwell’s equations. Initially, the cutoff and resonant frequencics
are examined analytically to predict all possible modes. By employing numerical

root search technique the lete dit ion ch istics are obtained.

The occuring modes in the different parametric regions are identified and prop-
erly classified to provide a better understanding of the basic mode structure in
these types of waveguides which are filled with anisotropic materials. Also, the cf-
fects of the radii ratio and the dc magnetic field on the various modes are discussed.

Finally, some applicational aspects of such are

in the design of phase shifters where the ch istics of the pairs of d

waveguide modes play an important role.
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Chapter 1
INTRODUCTION

P jon of el tic waves in ized ferrites is of great interest to

many hers in the area of mi devices. When a ferrite is magnetized

with a constant magnetic field, its relative permeability is no longer constant but
a tensor quantity (tensor permeability) and these ferrites possess non-reciprocal
properties. In this thesis an analytical study of the propagation of electromagnetic
waves in a coaxial waveguide partially filled with ferrite is considered. One of the
tnain reasons in choosing a coaxial waveguide over a circular one for this study is
to reduce the size of the component package which gives an added advantage in

many of the applications and also for ing over wide fr ranges, A lot

of microwave ferrite devices have been developed in the past few decades, to name

a few; phase shifters, isolators, circulators, gyrators etc. Thus, results obtained

from this study can have potential applications in the above

ferrite devices.

1.1 Problem statement

The coaxial waveguide under study has an inner radius ‘a’ and an outer radius
‘d’. A ferrite coaxial tube of inner radius ‘b’ and outer radius ‘c’ is enclosed such

that a < b £ ¢ < d. Dielectric materials exist on both its sides i.e. fora <r < b



%’ern

Region:3 Dielectric

Figure 1.1: Cross-section of a partially loaded ferrite coaxial waveguide

and ¢ < r < d where ‘r’ is the radial distance in the cylindrical co-ordinates. The
configuration of the problem is illustrated in Figure 1.1. As can be seen from the
figure, there are three distinct regions namely: Region 1- Dielectric ; Region 2-
Ferrite ; Region 3- Dielectric. The dielectric in region 1 is used to support the
ferrite tube. Due to the lity of this confi ion, the il ly fully

filled case is achieved by bringing radius ‘b’ close to ‘a’ and radius ‘¢’ close to ‘d".
The ferrite used is assumed to be lossless and completely magnetized along the
axis by a uniform magnetic field H,. It becomes an anisotropic magnetic material
and exhibits tensor permeability of the following form (Collin, 1966):

M jk 0
g=|-im m 0 (L.1)
= 0o 01

where y1; and 43 denote the permeability constants in region 1 and region 2 repec-

tively. In a cylindrical co-ordinate syx'iem (r,¢,2), the fields are assumed as follows



(Le-Ngoc, 1975):
F(r,¢,2) = F(r)ezplj(kz +ng - wt)]
k  phase constant
n azimuthal variation number

w operating frequency (rad/sec)

(1.2)

Maxwell's equations for a source {ree medium is given as :
V x By = -8B, /ot (1.3)
V x Hy = 8D, /ot (1.4)

where B} and H, represent the unnormalized field vectors. The constituent equa-

tions for the ferrite case are given as :

(5)

Dy = ey

&

By = poplly (16)
where ¢; is the relative dielectric constant of the ferrite and p the tensor perme-

ability which is also represented as follows (Le-Ngoc, 1975):

&= mfjafd = jindt + indd + psts @
M= 140/ - ) 8
mo= =00 - 97 (19
wo=1 (L10)

where (= w/wy,) is the normalised frequency and Qy(= wy /wn) is the normalised

gyromagnetic frequency. w, wy and wy, represent the source, gyromagnetic and



angular f ies respectively, (Seshadri, 1973). Gen-
erally the theoretical analyses are mainly based on two approaches: the quasi-static
approximation and the exact analysis. In the quasi-static analysis the rf electric
fields are too small and are neglected, hence the fields are derived from a scalar
potential function whereas in the exact analysis the fields are directly derived from
the Maxwell’s equations. Le-Ngoc (1975) studied the clectromagnetic wave propa-
gation in a circular waveguide partially filled with anisotropic materials. He used
both methods and showed that the quasi-static method is valid only for propaga-
tion constants of large values in predicting possible modes. This merely served to
be confirmed by comparison with the modes obtained using exact analysis. There-
fore in present study, only the exact analysis approach is considered. The adopted

procedure is given as follows:

d

Initially, the Maxwell’s ions are d into and longi-

tudinal components and then by the substitution of the

expressions into the longitudinal ones, a second order partial differential equation
in the longitudinal field components is obtained. This is then expressed in terms
of two scalar wave functions which are further solved by matrix algebra to yield
two partial differential equations in the scalar wave functions, the solution of these
equations are individually obtained. By applying the boundary conditions on the

various field components, the exact dispersion relations are derived.
1.2 Literature review

In the fifties, theoretical analyses based on two approaches; namely the Quasi-
static analysis and the Exact analysis were used to study the propagation of clec-
tromagnetic waves in completely filled and partially filled ferrite waveguides. In

quasi-static approximation, the phase velocities of the waves are assumed to be



much less than the velocity of light so that the a.c. electric fields can be ig-
nored. The magnetic fields are derived from a scalar function &, i.e., H = V.
Thus the name magnetostatic approximation came into being (Trivelpiece et al,
1961). Joseph and Schlomann (1961) investigated the mode spectrum of a long
circular cylinder of ferromagnetic material (ferrite column in free space). They

found that the i imation was justifiable over a large part of

the mode spectrum for both axi-symmetric and dipolar modes. Also the surface
modes existed only at small wave numbers and that their eigen frequencies being
higher than those of the volume modes, were examined. Interestingly, it was seen
that the eigen frequencies decreased with increasing wave numbers, because at low
wave numbers, the surface charge produces an additional restoring force thereby

increasing the frequency.
A study made by Trivelpiece et al. (1961) showed the validity of the quasi-static
They also blished the di ion relations for partially filled,

fully filled ferrite waveguides and ferrite rod in space. Magnetostatic approxima-
tion was also used by Olson et al. (1967) to categorize surface and volume modes.
Using this approximation, Masuda et al. (1971) studied the azimuthally dependent
magnetostatic modes for both, a hollow ferrite pipe enclosed in a cylindrical waveg-
uide and a ferrite rod placed at the center of a round waveguide partially filling the
cross-section. The dispersion relations were derived for only n = 1 modes in both
the cases. Their analysis revealed the presence of dielectric medium to be of great
importance in determining the cutoff ave number and upper bound frequency of
the magnetostatic surface modes.

Employing the exact analysis method, Kales (1953) formulated the dispersion
relationships for both the partially and fully filled waveguides of circular symmetry.
His study emphasized on the cutoff frequency. Tomkins (1958) provided quanti-

tative data relating field and energy distributions for several cases in a partially

5



ferrite filled cylindrical waveguide. In a study by Schott et al. (1967), the tran-

sition from the exact solution to the ic limit was i ig for the

ferrite column in free space. Numerical computations were also made and com-
pared with the magnetostatic results. Duputz and Priou (1974) developed a new
computing method to solve the dispersion relationship of both partially and fully
loaded ferrite circular TEy; waveguide mode. Their study based on exact analysis
assumed the ferrite to be lossy at frequency of 9.5 GHz. Le-Ngoc et al. (1977)
made a study on the propagation of electromagnetic waves in a partially ferrite
(magnetized and lossless) filled circular waveguide by using both the quasi-static
and exact analyses. Dispersion characteristics were studied in detail for the dipolar
modes and the cutoffs and resonances were considered.

Interestingly, a study was made by Mueller and Rosenbaum (1977) on the

ion of ic waves in an d ferrite loaded

coaxial Transmission Line. The Bolle and Heller functions, which are directly re-

lated to the Bessel and N functions respectively were employed to solve the

boundary value problem and the dispersion characteristics of the TE modes for

the coaxial waveguide were plotted between lized fr and lized

propagation constant. The main application is in digitally controlling the non-
reciprocal phase shift by pulsing the electric current in the center conductor of a
ferrite loaded coaxial waveguide. Samaddar (1979) has proved that the Bolle and
Heller functions reduce to the Bessel and Neumann functions in the absence of dc
magnetic field and has provided correct fundamental solutions which can be used to
solve any problems in the work done by Mueller and Rosenbaum (1977). Igarashi
and Nato (1981) have obtained a formula for the parallel component u, (same

as i3) which is a function of magnetization and not unity for a partially magne-

tized mi ferrite. Cylindrical coaxial ides which are corrugated, find

applications as feeds for reflector antennas. Hence studies relating to corrugated

6



coaxial waveguide were made by James (1983) with reference to frequency band
and bandwidth characteristics. Also the various modes were identified and the
radiation properties were studied.

In the paper by Thompson and Rodrigue (1985), the theory of planar anisotropy

st devel

wave fr ies is ped and it

of ferrite phase shifter applied to
was found that the differential phase shift depends on the thickness of the ferrite,
the phase shift increases with the increase in the ferrite thickness. These phase
shifters are generally made of a ferrite toroid with a core of dielectric. The archi-
tecture of reciprocal and non-reciprocal phase shifter and a few other microwave

devices loying circular ides are well ill d by Helszajn (1987). Day-

witt (1990) has solved the Maxwell's equation for a slightly lossy coaxial trans-

mission line to first order in the normalized surface impedance for principal and

ide modes. Di h istics of a strip dielectric waveg-

uide were derived by Chiang (1991) in order to facilitate the design of the strip
waveguide. The literature cited above is by no means exhaustive but lists sources

associated with the present work.

1.3 Scope of the thesis

The purpose of present thesis is to study the dispersion characteristics of the
dipolar modes (n = 1) in a partially ferrite filled coaxial waveguide by using
the exact analysis approach. The presence of a coaxial waveguide complicates the
analysis because additional boundary conditions are to be solved. The general
dispersion relations are obtained by the procedure stated above. The cutoff and
resonant frequencies are first examined to predict all possible modes by studying
the dispesrion relations at cutoff and ‘resonant conditions. Numerical techniques

are employed to solve the dispersion relations. In this study, dispersion curves for



both weak and strong d.c. magnetic fields are obtained. The ferrite used is taken

to be lossless and completely magnetized.

1.4 Organization of the thesis

This thesis is divided into five chapters. The first chapter, which is being presented,
gives a brief introduction to the problem stated and a detailed literature review.
The next chapter, chapter 2, outlines the analysis governing the propagation of
electromagnetic waves in an infinite anisotropic ferrite leading to parametric space
diagrams. Chapter 3 examines the exact analysis of propagation of EM waves
in a coaxial waveguide. Numerical results are given in chapter 4. Finally, some

applicational aspects and conclusions are given in chapter 5.



Chapter 2

ELECTROMAGNETIC
PROPAGATION IN AN
UNBOUNDED MAGNETIZED
FERRITE

In order to understand the operation of the ferrite devices, it is important to study

ded ferrite medium

the basic nature of mi ion in an infinite
(Collin 1966). In this chapter, plane wave propagation in an infinte ferrite medium
in presence of a dc magnetic field H, is considered. It can be found that the natural

modes of propagation in the direction of the dc magnetic field H, constitute left

and right circularly polarised waves ing different i tants as

will be seen later in this study.

2.1 Electromagnetic plane wave propagating in
an infinite magnetized ferrite

The plane wave solutions for the fields in a homogeneous, lossless and infinite fer-

rite medium are generally written in the form :

E=F, ezpli( K.~ wt)] (1)



where F, is a constant vector independent of space and time, r. being a vector from
the origin of the co-ordinate system to the required point of observation and K
representing the propagation vector.

The normalized field vectors £ and H are given as: £ = /& Ey and H = /s .
Now substituting the plane wave solution (2.1) and the normalized field vectors in
the Maxwell’s equations (1.3) and (1.4) and then by eliminating the E field, an

equation for the H field is obtained as,
K x (K x H) + Kespl. = 0 (2.2)

where k, = w/v is the propagation constant in free space, v denoting the velocity

of light. The matrix form representation of this equation is given below,

ke — K Jkegpa kyke H.
~jk3equa  kiesp — kY -k} 0 x| Hy | =0 (23)
kyk: 0 Klep— k2 .
where ki and k, are the and longitudinal it as

shown in Figure 2.1. ¢ being the angle between K and H,.
The determinant of the matrix has to be zero for non-trivial solutions of If.

Therefore,
(k3= k2 )[(Kesun ~ k) (kpegm — K = k3) = k3ehpg] — kLS (Klegm — K1~ K)) =0
(2.4)

The longitudinal and i are lized as v =

kz:/ko = k/k, and 5 = ki /k,. By doing this, equation (2.4) becomes,

7'+ 1/ aleg (13—t =) +7 (i + D+ 1 mnleg(pat ) =7 les (1 =) =] = 0
(2.5)
This equation (2.5) is then solved to obtain:
ma = (1 +20) - (v = /)20 - 20° + Qu)/2(% + O - )

10



Figure 2.1: Propagation vector diagram

£ (V7" + (207 - O — ) - 4G - O — Am)]'2
204(0% — 02+ Qp) 12.6)

I modes of

Although circularly polarized waves are the fi
linearly polarized waves seem to occur more often in practice. The detection of
a linearly polarized wave in the ferrite results is a measure of the sum of two
circularly polarized waves, the propagation constants being different for the two
opposite hands of circular polarization thus enabling one hand of the circular po-
larization to rotate further than the other in a fixed length of the ferrite material.
Hence the plane of polarization of the linearly polarized wave that was detected is
rotated with respect to the incident wave. This rotation has been referred to as the
Faraday rotation (Fuller, 1987). From equation (2.6) it is clear that there exists
two kinds of plane waves propagating in an infinite ferrite for a given value of v,
whose transverse propagation constants are given by ; and 5. By introducing the

refractive index term (¢ = K/k,) and ¢, from equation (2.4), the relation between

11



¢ and ¢ is established as:
Clmsin®d-+cos®d]— *les(u - u3)sin® @+ g (cos® @+ D]+ (u — e} =0 (2.7)
The dispersion equation (2.7) can also be written in another form which is given
as follows:
tan’d = —[¢* — es(ur = ma))C* = es(pis + )]

[m¢* = st = )liC* = ) (28)

The cutoff and resonant frequencies are obtained from equation (2.7) as follows;

At cutoff when ¢ = 0, we have :

Q=0y+1 (29)
and at resonance when ¢ — oo, we have :

0 = Qu(Qpy +sin*¢) =0 (2.10)

From these relations, it is seen that the cutoff frquency depends only on Q4 whercas
the resonant frequency not only depends on Q but also on the direction of prop-
agation. The dispersion equation (2.8) is analysed for studying the propagation of
waves in the direction specified as will be seen shortly. Also the concept of Faraday

rotation plays an important role in this aspect of study.
2.2 Propagation along H,, ¢=0°

Applying the condition ¢ = 0° in equation(2.8), we get two electricand

magnetic (TEM) wave solutions:
7% =gl +1/(Qn -0) (211)

12



% =ell+1/( + Q) (2.12)
It can be shown that equation (2.11) which represents a right hand circularly po-
larised plane wave (RHCP) has a cutoff frequency = Qy + 1 and a resonant
frequency 2 = Qy whereas equation (2.12) which represents a left hand circularly
polarised plane wave (LHCP) has neither cutoff nor resonant frequency. The re-
gions of propagation are indicated in the parametric diagram of Figure 2.2. These

waves are basically transverse electromagnetic in nature.

2.3 Application to guided waves in ferrites

The behaviour of the i tants namely 1, and 9, in equa-

tion (2.6) are shown in Figure 2.3, where the constant ¢ = wnd/v = 0.5 Again
referring to Le-Ngoc (1975) the curves are drawn, except that in this case ¢/ is 12
since the compound taken into consideration is different. These curves divide the
Q - plane into four distinct regions as studied by Clarricoats (1961). Schott and
Tao (1968) classified the different types of modes on this basis. The four distinct

regions are given as follows:

Region I : n and 7, are imaginary
Region II : my real and n; imaginary
Region III : 7y imaginary and 7, real

Region IV : 7y and n, are real

Therefore these curves which classify the different regions are very important and

will be made use of in identifying the various modes by exact analysis approach.
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Chapter 3

ELECTROMAGNETIC WAVE
PROPAGATION IN A
COAXIAL WAVEGUIDE

3.1 General dispersion relations

The Maxwell’s equations (1.3) and (1.4) are considered. By making the following
substitutions namely: E = \/&E1, H = /it and &k, = w\/lisG, in equations
(1.3) and (1.4) the Maxwell’s equations are now written as:
V x H = —jkoesE (31)
V x E=jkpll (3.2)
In a cylindrical co-ordinate system, the field is given by equation (1.2).

From equations (3.1) and (1.2) we get,

L )
L (3.4)
Lo %%’3 = —jkuesEx @5
From equations (3.2) and (1.2) we get,
5‘% - %8s ki + jpa) (36)



oF, _9E,

a5 = jko[—jpuaH, + p Hy) 3.7
L0(rEy) _19E. _
-0 TR jkoH, (3.8)
The electric field are obtained from equations (3.3) and
(3.4) as,
L A -ll.l (3.9)
and
1 (dH,
Ey= k._e,l_“" = (3.10)
The are now d as a function of the longitudinal

component. By the substitution of (3.10) into (3.6), equation (3.6) becomes

7y dH,
[m1es =) He + jpaerHy = #E. ;——‘ (3.11)
and by the substitution of (3.9) into (3.7), equation (3.7) becomes
; 2 dE,
JpaesHy — [pres = 7| Hy = —1- lJ‘l‘—‘ = ‘I—H-] (3.12)

Now using Crammer’s rule, the determinant of equations (3.11) and (3.12) is found
to be

A= [uaeg? = [mey - 7 (3.13)
which is assumed to be non-zero. The transverse magnetic components are now
written as

s [( (mes — v’)q) 5 - __U’E-
- L‘L‘L —? -77 dH.
L, — ey =L (.14
and

_ 1, (me =), (dE,  ypacsdH,
B = - 0Tt T w
_ jtadn, w8
I Bt ey 7),", ] (3.15)

17



Substitution for H, and H into equation (3.5) result in the wave equation:
J€ Abaey i
ik lmes = )VIE + DLV, 4l =0 (316)

and substituting E,, E4 and H,, Hy in equation (3.8) results in the other wave

equation:
MWt ap . 3 P =) oy o -
_l:,AV‘E' L VPH, - kI, =0 (317)
where Vi = 1d(rd) — 22, 2. Equations (3.16) and (3.17) are coupled and they can

be decoupled by assuming that B, = ¥ and H, = a¥, a being the proportionality
constant. By this assumption, the above equations are written as

‘YI‘m

Vi [— (I“U"Y)““ ]+ka 0 (3.18)
and
7
v+ ,j‘:l( (meg =) = )] = kol =0 (3.19)

For a non-trivial solution, the determinant of these two equations must be cqual

to zero, which results in a second order equation in a, given below.

o+ jl(mes — )(,W+m)

o+ €p = 3.20
= eI] i (3.20)

Thus the proportionality constant can be determined from above and it has two
solutions. Equations (3.18) and (3.19) can be re-arranged and writlen in the form

shown below:

VA +udl =0 (3.21)
and
Vi, +udl, =0 (3.22)
where
KA

2= 3.23
ta =i(mes =) + 1212 62)
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Equations (3.21) and (3.22) are nothing but Bessel equations for which the solu-
tions are

Wy = AyJa(uir) + BiNa(uir) (3.24)
and

Wy = AgJu(uar) + BaNo(uar) (3.25)

Hence the general solutions for E, and H, are given as follows:

E=U+1, (3.26)
Therefore,
E, = AyJu(uir) + BiNa(uir) + AsJn(uar) + Bz No(uar) (3.27)
and
H, =¥ + ¥ (3.28)
Therefore,

Hy = Ary(wr)Jn(wir) + Bry(un) Na(uar) + Aay(uz) Jn(uar) + Bay(ua) Na(uar)
@)
where y(u;) and y(u,) represent o and az. Thus the expressions for the longitu-

dinal electric and magpnetic field components are obtained. In the above equations

the constants Ay, A2, By and B; are di d by applying bound

conditions. As can be seen the waves occuring in this waveguide are of the hybrid
type in which the modes are mixed i.e. neither they are purely transverse electric
(TE) nor transverse magnetic (TM) modes.
In the dielectric region the permeability is a constant and by adopting the same
procedure used for the ferrite region, the field solutions in the dielectric region
where the medium is homogeneous are given as follows:

E = I.,(T:T“)U"% -] (3.30)
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1 n .dH,
Ey= = 7,)[‘1;5. Fige] (3.31)

1 n . dH,
H, = —Tﬁ(’d:sl +ir gl (3.32)
1 . dE; n
Hy= m(ﬂdj’,— =171 (3.33)
E. = CJn(hr) + DN,(hr) (3.34)
Hy = EJy(hr) + FNo(hr) (3.35)

where h? = k?(es—~?). The constants C, D, E and F are determined by using the
boundary conditions.

Now the necessary boundary conditions are applied to the different regions. Con-
sidering region:1 (dielectric where a < r < b), applying the conditions E,(r = a) =
0 and 42|i,—) = 0 leads to D = ~C24%) and F = —EZ%1e) respectively. By

Ni(ha)
simple sub the following ions are obtained.
By = Ci[Na(h1a)Jn(hir) = Jn(hia) Na(har)] (3.36)

where Cy = C/Ny(hia) and
Hay = Dy|N, (h10)Ju(hsr) = J,(h1a) Na(hyr)] (3.37)

where Dy = E/N,(hya) and h? = k2(e; — 4*). Applying the same conditions to
region 3 (dielectric (€3) where ¢ < r < d) except that here r = d in place of r = a,
leads to the expressions given below

Ezs = Cs[Na(hsd)Jn(har) = Ja(hsd) Na(hsr)] (3.38)
where C3 = C/Nn(had) and
Hug = D3| Ny(had)Ja(har) = Jo(hsd) Na(har)] (3.39)

whete D3 = E/N,(had) and h3 = k*(es — 7). Next the boundary conditions are
applied to region 2 (ferrite where b < r < ¢) as follows:
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First of all, by applying the continuity of H, at both the ferrite-dielectric in-

terface namely at r = b and at r = c expressions are obtained for Dy and Dj.

[Avy(u1)Jn(u18) + Bry(ur) Na(u1b) + Asy(ua)Jn(usb) + Bay(ua) Na(uzb)]

e Vanal(hah) = Ty () Vo]
(3.40)
and
Dy = [Ay()Jn(1€) + Biy(ur) No(usc) + Aay(ua)Jn(usc) + Byy(ua) Na(usc)]
o= [Nr{had)Ju(hac) = Jo(had) Nn(hsc)]
(3.41)
Similarly applying the continuity of E; we have,
_ [AvJn(u1b) + BiNa(ush) + AzJn(usb) + ByNo(uzb)] (342)
[Na(h1a)Jn(h1b) — Ju(hya)Ny(h1b)] "
and
_ [AJn(uic) + BiN, n(1€) + Aadn(uac) + BaNa(uzc)] (343)

[Nn(had)Jn(hac) = Jn(had)Na(hsc)]
Now we apply the boundary condition that the normal component of the induction

field (Bw) is continuous at the ferrite-dielectric interface (r = b).
Bya(ferrite) = By (dielectric)

Therefore
[mHer + i Haglems- = Hrle=pr
Making the relevant substitutions the right hand side (RHS)of the above equation

is found to be

1 i
RHS = gl Admd)a + 51l ()
+ A,J,.(u:b)(e;% + jvHa(h1, ,b)y(u3))
¥ B,N,,(u,b)(e.% + j7Ha(h1, 0, b)y(ur))

+ B,N,.(u,b)(z,% + jyHy(hs, a, B)y(uz))) (3.44)
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where
_ N(wa)a(hib) = Ja)Na(hib)
Hnhar0,) = 7 a) () = Jaa) Na(ud)
and the left hand side (LHS) is found to be

LHS = Tt (B - A 2 5 )

J(u b)

+(Bua— A;n)[u% +j7y(un)J (u b)])
AT ~(B = Al P+
+ (B = Al + o) o8
Ni(urb)

+ BiNa(unb)(—(Bpr — Apa)les 3

(B Al + () )

b)

N, 5
+ Balafuab)(~( B — Auz)[qﬁf:},’—) + i)

N (ugh)

+(Bpa - Am)[f/b +iry(u) g A ,,)])]

. n
AT +n;y(u.)]

(3.45)

(3.46)

where A = (u1e; — %) and B = pes. From equations (3.44) and (3.46) after

simplification we get
ArJn(ur8)f(ury h) + Aadn(uzb) fua, )
+B1 N (u1b)g(us, h1) + BaNo(u2b)g(uz, he) = 0

where

Fuh) = %{—(am—Am(e,j"ﬁ:f,'j;+i7§y(u;))
+(Buz = Am)es 3 i) Eu Bl

E’—?‘[ﬁ; + 37 Hn(h1, 0, 0)y(ui)]

9(uinh) = %[—(B#-—Am)(elx:::;:{+J‘7%y(uc))
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Ny (uib)
)

e 7, )] @49

+(Buz — Am)(esy 3 Him) R

and i = 1,2. Now using the boundary condition Hy(dielectric) = Hy(ferrite)
at r = b, we can obtain another relation involving A,, A2, B; and B, as follows:
First an expression for the LHS of the boundary condition stated above is obtained

after making the required substitutions as

LHS = g A (ubljaGalh, 0B = 7y(u)]

+ Al uab)jesGalhn,0,) = v 3y(u)]
+ BulVo(ust)ljesGalhs,0,) = 7 5y(u)]
+ BalNa(uab)liesGa(hsr,5) = Yu(us)] (3:50)

where

_ Na(h18)J,(hsb) — Ju(haa) Ny (h1b)
Galhnya,b) = G )0 () = Jeaa) Vo) (@51)
and RHS is obtained as given below:

RHS = Frlh(ud)—ierAR 4 ) 288 i 52+ gy
+ Al ier A By 28— B 4 )
+ B -es AR + ) "Eu‘b; — jerBy 4 Ary(u)
+ B e AR 1 ) DD 4 )
(352)
Equating (3.50) and (3.52) we get
A Bplan, ) + AT (uzbplin, )
+ By N (418)q(us, h1) + BaNo(uab)g(ua, hy) = 0 (3.53)
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where

k) = l-GierA = By T + B - e

- il th,a,8) - Fru(w] @50

1 3 A F
k) = gi-Gerd = B 1 2ty - iBe]
5—7[(]'619"(’!1,4‘ b)— ;w(u;)l (3.55)
and i = 1,2. Now applying the same boundary conditions to the other ferrite-
dielectric interface (r = c) we arrive at the following relations listed below:
ArJn(10) f(u1, hs) + Aadn(uac) f(uz, hs)
+BiNn(116)g(u1, ha) + By Na(uzc)g(uz, ha) = 0 (3.56)

where

fhe) = (B = Auer D 4 2 )
J(uic)

Jn(uic) i
= e + 78t e () @1

+(Bua = Ap)(es % + ()

Ny(uic)
Na(uic)

Sluihs) = Fl-(Bp — Ana)(er R + i u(us)

Ny(uic)
Na(uic) )

1 ‘
ol rHalhe, o du(u] (3.58)

+(Bpz— Au:)(é/; +y(wi)

Na(had)Jy(hsc) = Ju(had) N, (hsc)

Halhayerd) = N;,(had)Jn(hac) = Jp(had)Nn (hac)

(3.59)
and
ArJn(ur6)p(uy, ha) + AzJn(uac)p(uz, ha)
+B1 Na(u1¢)g(u1, hs) + Bz Na(u2c)q(ua, ha) = 0 (3.60)
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where

o) = Fl-GerA = Bryfu) o) + 2 ay(u) - o)
lliGahned) - S (as1)

o) = K-GieA = Brou) JoS8 4 2 ary(u) - i8]
e d) - L) )
Gulheed) = NalBM(hse) = Jolhod) ) -

Falhosd) = Inhod)Nalh)

and i = 1,2, Now that we have four equations and four unknowns, we can solve
for the dispersion relations by first determining the constants B; and B, from
equations (3.47) and (3.53) and then substituting for the same in equations (3.56)
and (3.60). The two dispersion equations are obtained and dividing one by the
other eliminates A; and A, to yield the required expression which is given as

follows:
Fo(w) _ Fo(ua)
Fi(w) — Fr(u)

Jn(uib) (P("-'.hl)!(":yhx) Sluiy ha)g( "z,hz))

Nu(u18) g(u1, ha)q(uzy 1) — g(uz, hr)g(u,y ba)
JIn(uib)  fus, h)g(ur, b) — p(ui, ha)g(us, ba) |

Nafuncloon ) + 0G5 o, ) =g, el )

No(uac)g(us, ha)] (3.65)

(3.64)

Fy(w) = [Ja(uic) f(uiyho) + T

Jn(uib) (P(“i» ha)g(uz, k1) — f(ui, h1)q(us, k1)
Na(16) *g(u1, h1)g(uz, b1) — g(ua, b1)g(wr, b1)

Fo(w) = [Ja(uic)p(uiyha) +

Jnt) | T oo, ) = g s )
Bo(osehuns )+ 5 e e, ) — e, B, )
Ny (uzc)q(uz, hs)] (3.66)

where i = 1,2 and u} is expanded to

(1 +20) + (¢ — v*)(20) + Q ~ m’)
AW + O — )

2 = 2
ulp = K[
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o (O30 = s (0 + 2 = 2002 +460%() + QO - nﬂ)]l/g A
205 (W + O — )

Equations (3.64) through (3.67) generally form the exact dispersion relations. For
a completely filled waveguide, b = a and ¢ = d are employed in these expres-
sions. Before solving the general dispersion relations it is very important to derive

the dispersion relation at cutoff and then solve them by numerical techniques for

btaining the desired dispersion characteristi
3.2 Dispersion relations at cutoff

Cutoff frequency is defined as the frequency at which propagation begins namely
aty = 0. The dispersion relations are now derived by setting v = 0. The equations

(3.9), (3.10), (3.14) and (3.15) become:

(3.68)
(3.69)

—oLypng  mdb,

i Det[ '+1¢ dr (80)

_ pdB, mn

Hye= Det[lc & ! @)

where Det = [u3 — p}]. Now by substituting E, in (3.68) and E, in (3.69) into
the longitudinal component of the Maxwell’s equation (3.8), the wave equation for
only H, is obtained:

ViH, + KinjH, =0 (3.72)
where n? = ¢/
Similarly by substituting H, in (3.70) and Hy in (3.71) into the longitudinal com-

ponent of the Maxwell’s equation (3.5), the wave equation for only E, is obtained:
VIE, + knlE: =0 (3.73)
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where = ezl

Therefore it is obvious that waves at the cutoff frequency are no more hybrid but

split up into purely transverse electric (TE) modes and transverse magnetic (TM)

modes.

3.2.1 Dispersion relations for TE modes

The longitudinal component in the ferrite region is written as:
Hyz = AzJu(komar) + BaNa(komar)

The field solutions in the dielectric region are given as follows:

1n
Er"_Ee_‘; A
-
ks

and
H, = EJy(hir) + FN,(hyr)
where h} = k2¢;.
As before in region 1 we have
Ha = Di[N,(h1a)Jn(har) = Jy (hsa) No(har)]
and in region 3
Hi = Dy[N,(had)Jn(har) — J,(had)No(har)]

where h3 = k2ea.

(3.74)

(3.75)

(3.76)

(3.77)

(3.18)

(3.79)

The boundary conditions are now applied in region 2 to obtain the dispersion

relations. First by applying the condition Eg(r = b) dielectric = Eg(r

ferrite we get
& Jp(konab)

A0~ SN 1t
=Bt (0,8~ LRI
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{

Applying the same condition except that r = c instead of r = b we have

€ Ja(kome)
€7 Jal (k 72€)

& Ny(kotac)
o Nalbasa) )

Aa[Hn(hs,c,d) — $1Jn(Kemc)

= =By[H(hs,c,d) -

(381)

Dividing one equation by the other eliminates the constants A; and B, resulting

in
(B (hsyc,d) — 3 Salbomd) (ko)

[Ha(hy,a,b) — 2 o001 g, (k)

_ Halho e d) — 5 3l Vo)
[Ha(hyya,b) — & Nalkembl) v (£ n.5)

¢ Na(komt)

(3.82)

The above equation along with 7} = ¢; form the dispersion relation at cutoff for

the TE modes.

As can be seen, the dispersion equations for the TE modes are independent of both

the gyromagnetic frequency (Q) and the sign of the azimuthal variation number

(n). The reason for the 2 independence is that at cutoff the RF magnetic field

is longitudinal to the dc magnetic field H,, therefore the ac magnetic field has no

effect on the motion of the magnetization vector and hence unaffected by If,.

3.2.2 Dispersion relations for TM modes

The longitudinal component in the ferrite region is written as:
Bz = AvJn(kumr) + By No(komr)
The field solutions in the dielectric region are giver: as follows:
-
Ha= L’—

a5,
dr
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and

By = CJy(ar) + DNy (bar)

As before in region 1 we have

Eq = Ci[Nu(h1a)Jn(har) = Ju(hra) No(har))

and in region 3

Ez3 = Ca[Nn(had)Ja(har) = Ju(had) Na(har)]

(3.86)

(3.87)

(3.88)

Next by using the boundary condition Byy (dielectric) = By (ferrite) both at

r=band r = c results in two other relations namely

and

C1[Na(h18)Jn(hab) = Jn(h1a) Nu(h1b)]
= ArJn(komib) + By No(komb)

Cs[Na(hsd)Jn(hac) = Jn(had)Na(hac)]
= AvJy(kome) + BiNn(komc)

(3.89)

(390)

Now finally applying the boundary condition Hy; (dielectric) = Hy, (ferrite) both

at r = band r = c and then making use of equations (3.89) and (3.90) we arrive

at the following relations

and

2 2 7'
_tain e Jy(kmb) _
Al = Dt Tins) ~ Golhas o Mln(komd)

5
= opytacin g Ny(kamb)
= =Bl - D R gy = ol oMl (komd)

_tagin G J(kme)
Al=F0 s~ Dat Takomo) Gu(ha, ¢, d)lJn(kome)

= —ptain _ G N(kime)
=-Bl-5% Det Ny(kam) Ga(hyy €, d)]Nn(Kome)
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Dividing one equation by the other eliminates the constants A, and B; resulting
in
2 a g
Il taka - e G, ks )
g G Jhlkons8)
Tn(lomb)l =55t § = et g = Gl a,b)]

_ Nalkome)[ -G48 — et falend — G (ha,c,d)]

= 7 5 (3.93)
No(komb)[ et — Dok Neleertd — G, (b, a,b))

The above equation along with 7} = U8, constitute the dispersion relations
for the TM modes at cutoff.

As can be, the dispersion relations for the TM modes depend on both the gyro-
magnetic frequency and the sign of the azimuthal variation number. The reason
being, the RF magnetic field is in a direction perpendicular to the dc magnetic
field, hence contributing to the motion of the magnetization vector and thercfore

affected by H,.
3.3 Dispersion relations at resonance

As v becomes very large almost tending to infinity the radial wave numbers are

approximated as
2(02, 2
i 2 = L =07 _—
lim 9} = W+ - (3.94)
and
lim 73 = —* (3.95)
It has been found that there are no resonant frequencies in region I since the
radial wave numbers are imaginary but in region II they are asymptotic to the

gyromagnetic frequency Qy which in fact is the resonant frequency. Once the

cutoff and resonant points are found, then intermediate points can be determined

hni i

by a numerical method using the root search to complete the
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curves for the dipolar modes. The numerical results for all the cases are discussed
in the next chapter.
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Chapter 4
NUMERICAL RESULTS

The dielectric constant of ferrite (¢;) is equal to 12 and the dielectric constants for
medium 1 and medium 3 are unity. The radius ‘d’ is assumed to be 4 times the
radius ‘a’ as shown in Figure 1.1. For the partially filled ferrite case the spacing
between ‘b’ and ‘c’ is equal to ‘a’ and § = 0.5 but for the almost fully filled ferrite
case the spacing between ‘b’ and ‘c’ is widened thereby increasing the thickness of
the ferrite ring in such a way that § = $ = 0.9 and the normalized ferrite column
radius g is taken as 0.5

The computational work is obtained based on each of the four parametric regions
namely region I: where u; and u, are imaginary, region II: where u; is real and u,
is imaginary, region III: where u; is imaginary and u; is real and region IV: where

4y and uj are real.
4.1 Cutoffs and resonances
4.1.1 Dispersion characteristics for TE modes

Having obtained the dispersion relations for TE modes in the carlier chapter, in
equation (3.82), it is important to solve them and plot the characteristics. The
dispersion equation (3.82) is dependent on the radius ratio S, and the normalized
ferrite column radius g. Therefore the dispersion cueves are plotted  versus ¢
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as indicated in Figure 4.1 for S, = 0.5 and Figure 4.2 for S, = 0.9. Each cutoff
curve is designated as TESs where p denotes the increasing order of the cutoff
frequency. As seen from the Figures 4.1 and 4.2 at constant S,, the TE cutoff
frequency decreases with an increase in g, but for a fixed value of g, the cutoff
frequency decreases as S, increases. As will be seen later, the TE cutoff dispersion
curves determine the cutoff frequencies of various modes such as surface wave

modes, volume modes and modified waveguide modes.
4.1.2 Dispersion characteristics for TM modes

The dispersion relations for TM modes at cutoff depends not only on S,, g and the
sign of n but also on Dy as seen in equation (3.93). The TM cutoff frequencies are
plotted against {1y in Figure 4.3 for S, = 0.5 and Figure 4.4 for S, = 0.9. As can
be seen the dotted curves @ = Oy + 1 and @ = Q. (where Q. = [Q(Ry + 1)]'/?)
divide the  — Qy plane into 3 distinct regions namely A,B and C. In the regions
A and C, n is real while in region B, ; is imaginary. The modes which fall in
region A determine the cutoff frequency of the volume modes while those that fall
in regions B and C determine the cutoff frequency of the surface and modified
waveguide modes respectively. The cutoff curves V,f; start from Q. and increases
rapidly along the curve @ = . with increases in Qy until they saturate when
Qi becomes high. The cutoff curves TMyy, are asymptotic to the @ = Qi + 1 or

2 = 0, curves respectively.
4.2 Exact dispersion characteristics

The exact analysis predicts all possible modes, namely, the surface wave modes,
the volume inodes and the modified waveguide modes. The surface wave modes are
designated as S5° while the modified waveguide modes are designated as T ES2, or
TM3s, depending upon whether their cutoff frequencies are determined by the TE

m
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Figure 4.1: TE cutoff for S, = 0.5, n = +1
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Figure 4.2: TE cutoff for 5, =09, n = 1
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Figure 4.3: TM cutoff for S, = 0.5, n = £1
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Figure 4.4: TM cutoff for S, = 0.9, n = +1
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or TM cutoff curves. Since the TE cutoff frequencies take any values between zero
and infinity, they d ine the cutoff iesof all ies of modes. TMSs,

cutoff curves determine the cutoff frequencies of both surface wave modes as well
as modified waveguide modes. ;% cutoff curves determine the cutoff frequencies
of the volume modes.

The exact dispersion curves of the modes are shown in Figures 4.5 and 4.6 for a
weak magnetic field (2 < 1) and in Figures 4.7 and 4.8 for a strong magnetic field
(R4 > 1). As can be seen for the cases where 2y = 0.5, the surface wave modes
exist. The surface wave modes terminate on the line 2 = Q, thereby indicating the
backward nature of these modes. Moreover the group velocity of these modes at
the termination point is zero. An interesting result is observed, the surface wave
modes exist even for n = —1 in both, the partially filled and the approximately fully
filled cases of a coaxial waveguide unlike the circular waveguide case as illustrated
in (Le-Ngoc, 1975). The cutoff point of the surface wave mode when n = -1 is
different from that of the surface wave mode of n = 1 and also the surface wave
mode curve when n = —1 terminates slightly before on the line @ = Q.. From
the Figures 4.7 and 4.8 it is clear that surface wave modes do not exist for strong
magnetic fields.

For a weak dc magnetic field (24 = 0.5) the cutoff frequencies of 505, §%5, SP2
and 5% in Figures 4.5 and 4.6 are determined by the cutoff curves TM{§, TM2},,
TM{{ and TM%), in Figures 4.3 and 4.4 respectively. Hence the occurence of
surface wave modes mainly depends on Ry, ¢ and S,. These modes exist only for
frequencies above (), and their cutoff’s are determined by TE or TM cutoff curves.
Generally the lowest of TE or TM cutoff curves determine the surface wave modes,

Now concerning volume modes, for a weak dc magnetic field (24 = 0.5) the
volume modes in the exact analysis do not have a common cutoff frequency Q.

unlike the case of the magnetostatic volume modes as illustrated in (Le-Ngoc,
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Figure 4.5: Exact dispersion curves for S, = 0.5, n = £1, Oy = 0.5
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Figure 4.6: Exact dispersion curves for S, =0.9, n = 1, Qy = 0.5
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Figure 4.7: Exact dispersion curves for S, =0.5, n= %1, Qg = 1.7
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1975). For small g, the cutoff frequencies of the TE modes are larger than Q.
therefore implying that the TE cutoff curves do not determine the cutoff frequencies
of the volume modes. The cutoff frequencies of V%%, V%5, V%5, VO, V2, and
V2% in Figure 4.5 are determined by the cutoff curves V{7, V%5, VI3, V25, Vo5,
and V2%, in Figure 4.3, respectively. Similar behaviour is observed for S, = 0.9,
the cutoff frequency of the volume modes in Figure 4.6 are determined by the cutoff
curves denoted V5% in Figure 4.4. For a strong dc magnetic field (g = 1.7) all the
lower order volume modes are forward waves in region IV. The cutoff frequencies
of V3, V3§, V2§, VO35, VO3, and VO in Figure 4.7 are determined by the cutoff
curves VOP, VIS, VIS VO3, VOF, and VO, in Figure 4.3, respectively. The cutoff
frequencies of V2%, V2, V2F, V%% and V2% in Figure 4.8 are determined by the
cutoff curves TEDY, V2P, V2P, VO and V2%, in Figure 4.2 and Figure 44. A
distinct feature of the waves near the line u} = 0 is that they change from forward
to backward in Figures 4.7 and 4.8. Thus the dispersion curves for the surface and
volume modes are drawn.

The dispersion curves for the modifed waveguide modes are illustrated in Fig-
ures 4.9 to 4.12. These modes are not affected to a large extent by variation in Q.
The main features of the modified waveguide modes are as follows. As { increases
the dispersion curves become asymptotic to the normalized phase velocity line
(also called light line) especially in the limit of {2 tending to infinity. In general all
the dispersion curves of these modes are asymptotic to the line u} = 0 in the limit
of © — 00, the reason being as © — 00, u} — k?(¢; — %) which in turn makes the
line 72 = ¢; coincide with the line u = 0. For a weak magnetic field the cutoff
frequencies of TMP$, TMPS, TEQS, TEYS, TM®S,, TM%$,, TE®,, and TE%S,
in Figure 4.9 are determined by the cutoff curves TM{§, TMP3, TEYf, TE3,
T M2, TM25,, TEYY, and TE(S in Figures 4.1 and 4.3. Similarly the cutoff fre-
quencies of TM{3, TM{3, TEDS, TED3, TEDS, TM®,, TM®Ds, TES,, TES,
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and TE%J, in Figure 4.10 are determined by the cutoff curves TMY§, TMPS,

TERS, TERS, TEDS, TMOS,, TMS,, TEDS, TEDS and TEYS in Figures 4.2 and
4.4. TFor the case of strong magnetic field (R = 1.7) the cutoff frequencics of
TM$, TMYS, TMPS, TEDS, TEYS, TM2S,, TMS,, TMPS, TE®S, and TES],
in Figure 4.11 are determined by the cutoff curves TMY, TMZ$, TM3, TESS,
TEY, TM®5,, TMO5,, TM®S,, TESS and TEYS in Figures 4.1 and 4.3 Similarly
for S, = 0.9, the cutoff frequencies of T M, TMPS, TMPS, TEYS, TEYS, TMOP,,
T M5, TM2s, TES,, T E%;, in Figure 4.12 are determined by the cutoff curves
TME, TMPS, TMIS, TEDS, TESS, TMOS,, TMO2,, TM®S,, TEDS, and TESS
in Figures 4.2 and 4.4, As can be seen there is no TE$J, modified waveguide mode
present because the cutoff frequency is below Q.. Thus the dispersion curves are

drawn for the modified waveguide modes.
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Chapter 5

DISCUSSIONS AND
CONCLUSIONS

5.1 Applications

The di: ion ch istics and classification of the modes (volume, surface
and modified waveguide) were studied in the earlier chapters since they play an

role in some applicational aspects. The results obtained are found to

P
have many applications in microwave devices like gyrators, isolators, circulators
and especially phase shifters. In this thesis the applicational aspect with reference
to the phase shifter is of main interest. As can be seen from the literature survey,
phase shifters loaded with ferrite are found to have applications at microwave
and millimeter wave frequencies. The main advantages using ferrites are given as
follows:

At a fixed ing fi the ferrite are adjusted ding];

to operate with different types of waves as classified. Another feature is that the
permeability tensor of the ferrite can be controlled by varying the dc magnetic
field H,. Also in the ferrite there exists gyroresonance.

Since dipolar modes are considered here the phase velocities are different forn =
1and n = —1 modes and thereby implying a possible existence of Faraday rotation.

In an earlier study by Le-Ngoc (1980) where a circular waveguide was used, the
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Faraday rotation was considerably high for the partially filled ferrite case whereas
with the use of a coaxial waveguide the Faraday rotation is considerably low for
the partially filled ferrite case (S, = 0.5) and relatively high for the approximately
fully filled case (S, = 0.9). But a considerable amount of phase shift is obtained
in both the cases. Moreover a detailed study in the phase shift aspect only is
considered in this thesis for applicational purposes. Generally the phase shifters

are of two types, namely, and i l. The classification arises

depending upon the polarization effects which result in Faraday rotation. For a
reciprocal phase shifter there is no Faraday rotation since there is no change in

the ization of the wave i But for a i I phase shifter

Faraday rotation exists due to a change in the polarization of the wave that is

d. By the introduction of ferrite in the ide, the Faraday rotation

or the phase shift can be changed thereby making it useful in the variable power
divider as shown in Figure 5.1 where the direction of power flow is controlled by the
change in phase shift produced. The change in phase shift is caused as it depends
on the dc magnetic field H, that is electronically controlled by varying the dc
current. The 3 dB coupler divides the power equally and the ground indicated, is
in fact a matched load used to prevent any reflection of signal.

In order to obtain an optimal set of dimensions for the design of a variable phase
shifter it is necessary to calculate the phase shift in accordance with the operating
frequency for which pairs of dominant modified waveguide modes are selected since
these modes exhibit phase shift as well as Faraday rotation characteristics. The
phase shift produced by a coaxial waveguide loaded with ferrite acts as a variable
phase shifter which can be used for rain polarisation compensation similar to the
one developed by Le-Ngoc (1980) except that a circular waveguide was used and
study of phase shift is done in the Ku band.

The dielectric constant of the ferrite is chosen as 12 and the dielectric constants
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Pi3=E(1 - cos¢)
Py =E(1+cosg)

Figure 5.1: Variable power divider

of medium 1 and medium 3 are 2.5 and 1 respectively. The angular
magnetization frequency wn = 25.1327GHz and the normalized ferrite column
radius ¢ = '!-‘ is fixed as 0.5. ‘v’ being the velocity of light and the radius ‘d’
calculated to be 0.5968cm which uequaltol)m" Since d = 4a the value of ‘a’ is
0.05875". For this data, the di ion ch i ining to the modified
waveguide modes for n = 1 and n = —1 are determined which are given as follows:
(1) For S, = 0.5, ¢ = 0.5 and Qy = 0.5, TEx; is the dominant modified waveguide
mode

(2) For S, = 0.5, ¢ = 0.5 and Qp = 1.7, TEy, is the dominant modified waveguide
mode

(3) For S, = 0.9, ¢ = 0.5 and Q = 0.5, TEy, is the dominant modified waveguide

mode
(4) For S, = 0.9, ¢ = 0.5 and Qy = 1.7, T My, is the dominant modified waveguide
mode
and illustrated in the Figures 5.2 — 5.5, respectively.
Generally the Faraday rotation angle O and the phase shift 8, per unit length
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Table 5.1: Phase shift of T E+;,; dominant modified waveguide modes for S, = 0.5,
q=0.5and Qy = 0.5

Normalized | Frequency | Phase shift
Q| (GHz) | (degrees)

2.75 11 209.4504
3.00 12 469.1689
3.25 13 607.4061
3.50 14 779.1554
3.75 15 955.0938
4.00 16 1055.630

are given by the expressions:

Or= %[k‘ kY (5.1)
and

0, = 31K + 4] (52)

As the dispersion characteristics ate plotted between 2 and (g7, the expressions

for the Faraday rotation and phase shift are rewritten as:

Qq, _ \
Or = —2:[7 =" (53
and
Qq, .
6, = ‘ﬁqh +4% (54)

Now using equation (5.4), the phase shift per unit length for the four cases of the
modified waveguide modes are calculated and listed in a tabular form as shown in
Tables 5.1 ~ 5.4. Plots between Phase shift and operating frequency are made for
the four cases as shown in the Figures 5.6 - 5.9.

As can be seen from the Figures 5.6 — 5.9 it is clear that the phase shift
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Table 5.2: Phase shift of T Ex,, dominant modified waveguide modes for S, = 0.5,
¢=0.5and Qg = 1.7

Normalized | Frequency | Phase shift
frequency @ | (GHz) | (degrees)
2.75 11 586.4611
700 12 636.7292
3.25 3 720.5003
350 0 787.5335
375 5 871.3136
2.00 16 955.0938

Table 5.3: Phase shift of T Ex;,; dominant modified waveguide modes for S, = 0.9,
g=05and Oy =05

Normalized | Frequency | Phase shift
frequency @ | (GHz) | (degrees)

2.75 11 511.0689
3.00 12 578.0831
3.25 13 628.3512
3.50 14 695.3753

3.75 15 770.7774
4.00 16 846.1796

Table 5.4: Phase shift of T My, dominant modified waveguide modes for S, = 0.9,
q=105and Qp = 1.7

Normalized | Frequency | Phase shift

frequency @ [ (GHz) degrees)
2.75 11 206.0992
3.00 12 309.9866
3.25 13 410.5227
3.50 14 473.3579
3.75 15 552.9490
4.00 16 628.3512
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increases linearly as the frequency increases. Also, it is noted that both O and
©, not only depend on the length but also on the strength of the dc magnetic field
applied, therefore they can be electronically controlled by varying the dc current.
Thus the coaxial waveguide loaded with ferrite finds applications in phase shifters.



5.2 Conclusions

ic wave ion in a coaxial guide loaded with ferrite has

been studied for both the partially filled (S, = 0.5) case and the approximately
fully filled (S, = 0.9) case by the exact analysis approach. The exact dispersion
relations are derived directly from Maxwell’s equations. These dispersion relations
are first solved for the cutoff and resonant frequencies to predict all possible modes.
Then employing the root search technique all points between cutoff and resonance
are obtained in order to complete the dispersion curves. The exact analysis is valid
for all 7.

The exact field solution modes are hybrid in nature but at cutoff they split up into
transverse electric (TE) and transverse magnetic (TM) modes which have been
proved analytically. Since both the TE and TM cutoff curves shown in Figures

4.1 - 4.4 determine the cutoff frequencies of the volume modes, these modes are

therefore ck ized by the electric or ic nature at
their cutoffs, then change to hybrid nature and finally become transverse electric
at resonance. By applying necessary boundary conditions the dispersion relations
are obtained. The contributions of this thesis is to gain understanding of the dis-
persion characteristics of the dipolar modes in a coaxial waveguide loaded with
ferrite.

According to the cutoffs and physical characteristics, the modes are classified into
three main types, namely, the surface wave modes, volume modes and modified
waveguide modes. The surface wave modes not only depend on the dc magnetic
field strength Q4 but also on the radii ratio S, and the normalized ferrite column
radius q . When these parameters are fixed, the occurence of a surface wave mode
is established from the TE and TM cutoff curves. This is done by identifying the

lowest cutoff frequency among the TE and TM cutoff frequencies which is greater
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than the hybrid resonant frequency Q.. The suface wave modes exist only in the
region where 7 is small. These modes start at a cutoff value above €, gradually
sloping down and finally terminating on the line © = £, where its group velocity
is zero, thus indicating their backward nature. From the numerical results it is
clear that the surface wave modes exist for both n = 1 and n = —1 cases only for
a weak magnetic field. The surface wave modes 57 and S0 are paired with S5

and S%9 respectively.

Since the TE cutoff frequencies are larger than €., the TE cutoff curves do
not determine the cutoff [requencies of the volume modes for weak magnetic fields,
hence the cutoffs for the volume modes are determined from the TM cutoff curves.
These modes exhibit backward nature charateristics. For strong magnetic fields
some of the lower order volume modes have their cutoffs determined by the TE
cutoff curves. In this case the volume modes are initially forward in nature but

gradually change into backward nature near the line u2 = 0 or resonance.

The modified waveguide modes are determined by either TE or TM cutofl
curves whose frequencies are higher than 2 + 1. These modes exhibit both Fara-
day rotation and phase shift characteristics for the case S, = 0.9 and phase shift
characteristics only for the case S, = 0.5. A reciprocal phase shifter can be de-
signed for the coaxial waveguide partially filled with ferrite since there is almost
zero Faraday rotation. But for the approximately fully filled ferrite one, a non-
reciprocal phase shifter can be designed due to the presence of Faraday rotation.
In this thesis, only the phase shift aspect is considered for applications as phase
shifter especially in the variable power divider where the power flow is controlled
by electronically varying the dc current. The phase shift linearly increases as the

frequency is increased and for a given bandwidth the one with a lower frequency
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slope is recommended for ideal design.

It is hoped that this work provides an understanding of the propagation of
electromagnetic waves in a coaxial waveguide loaded with ferrite for the dipolar
modes to the researchers specializing in the area of microwave devices employing

anisotropic materials.
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