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Abstract

Most of the Indonesian rivers are characterizedby the formation of deltas

at the mouths . The estuaries are usually shallow and the longitudin al bed slope low.

The rivers debouch into an ocean with low to moderate marine energy. The river now

fluctuates seasonally in accordance with the monsoon season. During the wet season,

fromNovemberto April. floods mayoccur due to the intenserainfall. The river flow

becomes qune small during the hOI. dry seasons.

Naturally , me river s bring a lot of sediments which originate from

volcano ashes and erosion of the catchment basin. Mo~ sediments flow down to the

estuaries and near-shore areas duri ng the high river flows of the rainy season. In most

cases, man y hydraulics structures have beenbuill along the river systems. The y arc

intended (or sediment control, flow regulation and floodcontrol.

The fluctuation of river flow is considered to be a major factor in

determining estuarine circu lation patterns and delta formation. Typically, the circulation

pattern shifts from that of a high ly stratified estuary durin g the high river flow o f the

rainy season to that of a well-mix ed estuary during the low river flow of the dry

season. Furt hermore , the quantity and variation of discharge in associa tion with wave

effects results in vario us delta geometries ranging from river-dominated to wave-



dominated delLaS. River-dominated deltas are characterized by highly irregular lind

protruding shorelines and by sediment bars deposited paraJlel to the direction of river

now. wave-dominated dellaS are characterized by straight shorelines w'ith sediment

barriers deposited parallel to the shorelines.

To understand the contribution of river now and marine forces to t"e

behaviour of estuaries and the geometry of deltas in Indonesia, the Kali Garang Estuary

has been chosen as a subject of study. The Estuary consists of two ~ranches: Kali

Scmarang, and the West Channel. Tidal excursion, salinity distribution and circulation

patterns are used to represent the estuarine behaviour. The Discharge Effectiveness

Index is used to evaluate the relative contributionof river flow versus marine forces 10

the development of deltas. Field observations of water level, salinity, temperature,

currents, and sediments were made during thedry season of 1991. Existing data sets

related to the study wert also collated.

The study shows lIlattheKali Garang Estuary experiencesa small-diumal

tide-range ( - 65 em). In the manmade West Channel the tide propagates up the estuary

as far as the weir. The tidal range decreases landward and the fresh water discharge

flows seaward over the saline water that intrudes landward below it. In the Kali

Scmarang, the tide propagates as far as its midlength. Fresh water mixesdirectly with

seawater, and a weak vertical stratification is experienced. The saline water moves up

and down the estuary due to the f lood and ebb tides.

The coast where the estuary discharges to the sea is subject to a very

moderate wave climate. Maximum wave power occurs in phase with maximum river



discharge and this resuns in the formation of a wave-oomlnaiec della. The high river

sediment during the rainy season is spread out by waves generated by the west

monsoon. This material is then redistributed along the shoreline by waves generated by

the east monsoon during the low freshwater flow of the dry season.
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Chapter 1

Introduction

Indonesia is an archipelago composed of live major islands; Java .

Sumatra, Kalimantan(Borneo), Sulawesi (Celebes),and Irian Jaya (New Guinea); and

thousands of small islands (Figure 1.1), The regionextendsalong the equator(06U50' N

to ll u60'S and 92"25'E to 141"30'E), Indonesia ts boundedby two continents, Asia in

the North and Australia in the South, and by two oceans, Indian in the West and Pacilie

in the East.

Geologically. most islandswereformedduringthe Mio-pleoceneor later

periods accompanying a series of volcanic activity. Therefore, the islands nrc

characterized by eolianand sedimentary formations of Neogene Tertiary together with

andesitic, and basaltic rocks of volcanic origin. The eolian and sedimentary rocks of

the Mia-pliocene are mostly derived from andesilic and basaltic rocks. Weathering

processes have changed the rocks to fertile, soft soil, The landmasses are covered

mainly by tropical forest.

Present-day formationof the Indonesian Islands occurred over the last

15,000yearsduring the Flandriantransgression which ended approximately 5000years

ago, Increasing sea levels,of approximately 100metersduring the Pleistocene Ice Age,
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inundated low lands and separated Indonesia from the Asian and Australian continents.

Java, Sumatra , and Kalimanta n were separated from Asia. Irian Jaya was separated

from Australia, while Sulawesi remained the same lU before.

During the subsequen t rise in sea level. theriver systems have feda high

rate of sediment co ntinuously to the lower reaches and have built a thick ~..quence of

de ltaic sed iments which developed seawards from the mouth.

As most rive r system in Indonesia debouch into an ocean with small to

moderate marine forces, t idal action and wave effects. river-dominated deltas are

usually developed . These deltas are characterized by the bifurcation of channels that

form through the deposited sedimen t. The river flow is usually distributed between the

various b ranches. However, in some cases where the marine forces become significant,

the delta geometries are altered to either intermediate river- tide or river-wave de ltas,

o r occasionally to a tide-do minat.ed or wave-dominated delta.

Clim atic conditions are dominated by the tropical monsoons. The cast

monsoon usually lasts from May to October and the west monsoon from November to

April. Th e west monsoon brin gs considerable rain which causes heavy flooding allover

the country .

The soil, geo logy, and climatic conditions ment ioned above strongly

influence the charac teristics of the river sys tems. On a world scale, Indonesian river

basins provide a high volume of natural sediment materials (Figure 1.2). Fresh water

flows fluc tuate seasonally . Th e flow is high during the rainy season and low during the

dry season.
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General problems related to the characteristics of the river systems

mentioned above are flood, drought, erosion, and sedimentation. High river flows

during the rainy season inundate low lying basins which usually consist of farmland and

densely populated areas. In con trast, the low flow during the dry season provides

insufficient water for agriculture and human use.

In response to public demand and protection, the Government of

Indonesia has taken some countermeasures against these problems. These are focused

on river basin and river course improvements. The first is aimed at reducing erosion,

and the latter proposes to regulate river flow and increase river channel capacity in

order to discharge floods.

As these measures have been introduced, some significant results have

been obtained. Flood damage has been reduced while shortages of water during the tlry

season have been minimized. Moreover, the increasing availability of river water during

the dry season has resulted in an increase of the annual rice yield.

On the other hand , modification of the natural cycle of rivers by

construction of dams, training wal ls, bank protection and weirs has altered the natural

movement of water and sediment. New areas of deposition and erosion together with

areas of potential flooding are created . This is particularly true in the estuaries of many

Indonesian rivers. Many of these estuaries arc deltaic in nature.

This thesis will study the parameters involved in water and sediment

movement using a smaller Indonesian Deltaic Estuary as a practical example. The

estuary chosen is the Kali Garang Estuary which is located in Scmarang , Central Java.



The estuary consists or two branch es: the Kali Semarang and the manmade West

Channel. This estuary provides a good iIIustn tion or the general characteristics or

Indonesian estuaries , particularly those located in Java Island.



Chapter 2

Theoretical Background

2.1 Int roduction

An estuary is defined as a 'transition zone where fresh water from land

drainage mixes with and dilutes saline seawater. As such, the charact eristics of any

estuari es are affected by the river system characteri stics and by the a rea of the ocean

into whichthe estuarydischarges.

The main factors, which play a crucial role in dete rmining the

characteri stics of an estuary , are fresh water river discharge, tidal action, density

difference between fresh and sea water , the estuary geometry, sediment transport,

influence of winds and waves and, in some large estuaries, Ccriolls effects.

Tidal action can displace considerable volumes of water within the

estuary. Ina shallowwater estuary, tidal motioncan be modifiedconsiderably. Range

maybe amplifiedor diminisheddependingonthe topography. Thc shoreline and nature

of the bottomcan alsostronglyaffect tidal currentsby obstructingor constricting water

flow. thereby altering the circulation pattern. Furthermore, the level or energy

containedin tidal currentsaffects sediment transport. These currents can playa major



role in building tidal flats and deltas.

The rate of fresh water flow affects the water level and salt water

penetration. Density of estuarine water is function of salinity, temperature, and

sediment load. The density difference induced by intermingling of the two different

waters drives water circulation and mixing processes.

Strong winds that blow along an estuary may cause an increase or

decrease in water level up to several centimetres. These winds will also influence the

mixing processes in the upper layers of water.

Ocean waves rework river sediments brought seawards by river

discharge. The waves may then transport sediment back into the near-shore areas,

moving them inshore or alongshore. Waves also provide marine sediments for the lower

reaches of the estuary. These processes play a considerable role in development and

formation of river deltas.

Additional ly. in a wide, deep estuary , Coriolis effects play a considerable

role in modifying the circulation patterns. In the Northern hemisphere. the effect of this

force is to shift the seaward flowing fresh water and the landward flowing seawater

layers to the right in the direction of flow. In the Southern hemisphere this force

deflects these water masses to the left.

2.2 Classification of Estuar ies and Their Relations to
Sedimentation

Scientists have attempted to classify estuaries based on a number of



different scientific or professional viewpoints. Some of the common classifications that

relate closely to sedimentation are based on, tidal range, sediment sources or water

circulation patterns.

Tidal range.

Davis and Hayes (quoted in Kennlsh, 1986) developed a relationship

between tidal range (fR) and estuarine type. They identified estuaries in terms of

microtidal , mesotidal, and macrotidal syste ms. Microtidal estuaries have a small tidal

range (fR oS. 2 m). In such cases tides playa less dominant role in reworking the river

sediments than do waves. These estuaries are usually characterized by sandy sediment

river deltas or by wave built structures or spits aligned with the beach. Many

Indonesian estuaries are in this group. Tidal action affects ci rculation slgnificanu y only

during the dry season.

Mesotidal estuaries experience an intermediate tidal range (2 In < TR

< 4 m). In this type, the distribution of sediment deposition is primarily influenced by

tidal currents. As a result, tidal deltas and meandering tidal channels develop. Silt ilnd

clay materials collect on tidal flats and in salt marshes.

Macro tidal estuaries have a high tidal range (TR 2:. 4 m). Tidal currents

completely dominate the distribution of sediments within the estuary and delta area . The

estuaries are usually broad mouthed and funnel shaped . Sandy sediments are deposited

in the central portion of the estuary and fine sediments accumulate on broad, tidal flats



or salt marshes.

Sediment soorct5 .

The sediment sources of an estuary provide another possible method of

classification. Based on it, Rusnak (quoted in Lauff, 1961, p . 180) classified es tuaries

into posit ive filled and inverse filled. In the first category , the sediments being

deposited or moving through the estuary are dominated by river born sediments.

Marine source sediments dominant in the second case. All Indonesian estuaries fall into

the category of positive-filled basins, i.e estuaries in ~hich river sediments are more

important than marine sediments.

Water Circulatio n Patino.

Classification based on the water circulation is the most widely used

system. Th is system classifies estuaries basedon the variation of river discharge and

tidal range. Cameron and Pritchard (1963) described the relationship between fresh

water discharge and tidal action. and classified estuaries into three classes or orders in

accordance with the strength of river discharge relative to the tidal action. The classes

are termed: (I) salt wedge estuary, which is highly stratified; (2) partially mixed

estuary, which is moderately stratified; (3) vertically homogeneous estuary, with a

lateral salinit y gradien t; and (4) sectionally homogeneous estuary, with a longitud inal

10



salinity gradient. In the higl\ly stratified estuary , river discharge dominates strongly

over a small tidal action. The less dense fresh water noatson top of denser seawater

in a layer that thins in the seaward direction. The seawater intrudes into the estuary in

a wedge shape Utat gets thinner as it moves landward (Figure 2.la.) . Sedimentary

material in a stratified estuary accumulates at the limit or penceanoo of the sail wedge.

Suspended material entering thesalt wedge would bebrought to the limit of penetration

by tidal and/or density currents.

.,.
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figure 2.1 Classification of Estuaries Based on Water Circulation, a) l/ighly

Stratified. b) Paniallymixed. c) Well mixed (AfterPrucnard, /955).

The presence of tidal motion within the estuary enhances vertical

11



turbulent mixing. Mixing increases as tidal action increases. When the estuary is

completely homogeneous, the vertical salinity gradient disappears . Although lateral and

horizontal salinity gradients remain, the estuary is known as vertically homogeneous

(Figure 2. lc .) . In an estuary which has a sufficiently small ratio of width to depth, the

lateral salinity gradient can be broken by lateral frictional forces and the only salinity

gradient retained is the longitudinal one. The estuary is then called sectionally

homogeneous. Suspended material in the well-mixed estuary accumulates over a much

longer length of channel than in a moderately stratified estuary and is confined mainly

to the limit of penetration of salt water.

Between the highly stratified and well-mixed estuaries, there is a partial ly

mixed estuary (Figure z. tb.) . Here, the tidal force is about equalto the fresh water

flow in contributing to estuarine circulation. Material carried in suspension is deposited

over the limits of the saline intrusion which may vary over several kilometres as the

interface moves up and down due to the tide.

2.3 Fresh Water Discharge

Fresh water flow plays an important role in determining the salt water

distribution, circ ulation pattern, and sediment transport. For this reason, it is very

important to ascertain the fresh water flow enteri ng the estuary at any time. Basically,

there are two methods of estimating the fresh water flow: direct measurement of flow

or the use of empirical formulae relating rainfall to run-off.
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The first is the more accurate but it is a much more expenslv...

undertaking and as a result data is sparse. In Indonesia the other method is ortenused

in practiceaccompanied, perhaps, byoccasionalcalibrations. The following sectionwill

deal with the relationship between rainfall andrunoff, togett\(r withother Iactcrs relalf,,'t.I

to it.

2.3. 1 Rainfall

Rainfall is quantitatively described in terms of depth {millirnctres) and

duration (minutes or hours) (Roberson, er aI., 1988). Depth is the total amount of min

to fall in a given time. Intensity is the rate of rainfall per unit time (rnm/minuh:s or

mm/hours). The rainfall varies signincantly from place to place, even within a few

square kilometres. It varies. not only in intensity, but also in time and duration.

A'rerage rainfall.

Because rainfall varies spatially, the data of a single station may be

significantly different from that of another station within the samc catchment area.

When several stations have recorded rainfall in a given catchment area, all data should

be considered in determining the average depthof rainfall over the basin. The average

amount can be calculated by using the following methods,

13



Statio n Annie Melhod .

'Thedata of all stationsare simple averaged as

n.u

where R..,. is average rainfall depth over the basin,~ is rainfall measured in stationi,

and N is number of stations.

Thiessen polygon method.

The rainfall measuredat eachstationis assumed.10 berepresentativeonly

of thearea closest 10 it. The portionof the drainage area for eachstation is detennined

by drawingtheThiessenpolygon(Figure2.2a). Theaverage rainfallis computedfrom

(2.2)

where Ai is the area representedby station i.

I '
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b. laohyelal method

Figure 2.2 Averaging rainfall (a) Thiessen Polygon Method, and (b) Isohyctal
Method

Isohyetal method.

Theaveragerainfall isdetermined basedonthe isohyetal Ilnes(i.e., lines

of equal rainfall depth) which are constructedon the map of the catchmentarea (Figure

2.2b). The average rainfall is
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(2.3)

where Rj is the rainfall on isohyetj, ~ is area between isohyetj and j+J. and m is the

number of intervalsbetween isohyets.

Intensity-duration-frequencycurves (IDF).

Naturally. the rainfall intensity has an inverse correlation with the

duration; the higher the intensity, the shorter the duration, and vice versa. The

maximum in a river basin flood may not be caused by the heaviest storm in a short

durationbut by the rainfall with a durationas longas thetime of concentration,t. The

timeof concentrationis definedas thetime required for surfacerun-off to travel from

the most remotepart of the basin to the point at whichthe floodis to be estimated.

The occurrence of a given rainfall intensity is irregular. For these

reasons, rainfall intensity-duration-frequencycurves (IDF)are constructed to estimate

the maximumrun-off fer a certain return period. Thecurve canbe constructedby using

the following steps

I. The maximumrainfalleachyear is selected for eachconsidered duration.

2. The selecteddata are arranged orderly (rom the highest to the lowestdata.
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3. The return period is determined using Weibu!l' s formula; T ::: (n +I )/m ,

where T is average return period in years, n is number of years of record.

and m is rank of storm.

4. The rainfall intensities for each return period considered are then plotted in

a table of plotting for an IDF curve.

Typical rainfall intensity-duration-frequency curves (IOF) are shown in

Figure 2.3. This shows the curves for the cities of Surabaya and Jakarta (lndoncsia).

2.3.2 Run- orr

Surface run-off is affected by numerous hydrological factors such as rainfall

intensity and duration, geologic structure, relief, plant cover of catchment area, and

shape of basin. Analytical methods for computing runoff cannot yet relate all those

factors in a rigorous fashion. However, many empirical methods have been developed

which may give satisfactory results.

The most commonly used is the so-called the modified rational method. This

is
(2.4)

where Q, is peak discharge in ml/s, C is a run-off coefficient, C. is a storage

coefficient, I is the mean rainfall intensity in mm/hour, and A is the drainage area in

km'.
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Figure 2.3 Intensity-duration-frequency (IOF) Curves for the Cities of Jakarta and
Surabaya. (DepartmtnJ of PublicWorks, Indonesia . 1961)

Run -off coefficie nt (C).

The run-offcoefficient C isa dimensionlessconstant thatdependsontexture,

permeability andlanduseof the area.Table 2.1 listsvalues of C recommended for the

modified rational method.

Storag e (oe fficient (CJ.

The value of C, depends on the drainage area. The larger the area the larger

the effectof storagetends to be. The magnitude of C. canbeestimatedby the following

18



relation

(2.51

where t, =t, + t", t, is the time required the surface run-off from basin to nearest

channel and ~ is the time needed to travel from the first channel to the point

considered.

Table 2.1 Run-off Coefficients, C (Source Department of Public Work.
Indonesia 1982)

Type of Area Run-off
Coefficient,C

Urban business 0.95
Commercial office 0.70
Residentialdevelopment
Scarce housing 0.50
Medium housing 0.65
Denselyhousing 0.75

Suburbanresidential 0.40
Apartments 0.70
School and mosques 0.80
Industrial 0.80 - 0.90
Parks, cemeteries 0.25
Rail-road yards 0.35
Unimprovedgrassland 0.35

Rainralli ntensity, I.

Rainfall intensity, l, depends on t, and IDF curve (Figure2.3).
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For the purposeof calculation of salinity, circulation pattern and sediment

movement, the direct measured river dischargeis usedin this study,

2.4 Tides and Tida l Propagation in Estuar ies

Tides are the rise: and fall of water level generated by response to the

attractive forces of the moonand sun, and by the rotationof the earth-moonsystem

aboutits common centreof gravity. The earth-moonsystemrevolves aroundits centre

of mass witha period of 27.3 days. The combinedgravitational effect between the sun

and the moonis strongest when they are in alignmentwith the earth. Resulting tidesare

called spring tides. Spring tides occur every 14days, just after the full or new moon.

Conversely, when the sun and the moon are at right angles to the earth, the resulting

tide is at a minimum. The tides are then knownas neap tides and the moonis said to

be in quadrature.

Althoughgravitational forcesare responsible forthe tides, many irregularities

in the tidal cyclecannotbe explainedon this basis alone. There are many other factors

influencing, modifying and controlling the tides which are initiated by gravitational

forces. Someof these modifying factors are variable. Othersare constant. The most

noticeableof the variable influences arc atmospheric pressure and windaction.

The constant factors result in a number of different tidal constituents.

Doodson(1920)listedsome390differentpartial-ride constituentswhich are all related

to the sun-earth, moon-earth, or combined interactions. Table2.2 lists the major tide-
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force constituents, their periods and their contributions 10 tidesrelative to the principal

component M1• The basic strengths of the components listedin Table 2.2 arc nor the

same for all places on the surface of the earth. They may varystrongly from one area

to another depending on the local basin geometry. In Semarang-ladonesla for example,

the dominant componentis the Luni-solar diurnal (K1) , although this force contributes

only 58.4 % of the principal componentM1•

Table 2 2 The MainTide force Constituents(Source ' Beannun 1989)

Period, Coefficient
Name of Constituents Symbol solar hours ratio,

M1"", IOO

Semi-diurnal

Principail unar M, 12.42 100.0
Principal solar S, 12.00 46.6
Larger lunar elliptic N, 12.66 19.2
Luni-solar semi-diurnal K, 11.97 12.7

Diurnal

Luni-solar diurnal K, 23.93 58.4
Principal lunar-diumai 0, 25.82 41.5
Principal solar diurnal P, 24.07 19.4
Larger lunar elliptic Q, 26.87 7.9

Long-Period

Lunar fortnightly M, 327.86 17.2
Lunar monthly M. 661.30 9.1

Centrifugal accelerationand boundary irregularities modify the effects of

gravity. Water particle centrifugal acceleration is induced by the earth' s rotation and
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causes moving water in the Northern hemisphere to deflect to the right. In the Southern

hemisphere the centrifugal action turns moving particles to the left. This phenomenon

is known as the Ccriolis effect.

Finally, the boundary irregularities cause innumerable reflections of tidal

propagation. These boundaries also introduce friction and dissipate the tidal energy .

2.4. 1 Tida l Types

The principal basic tides can be classified by using a ratio (Fl, of the sum

of the amplitudes of the two main diurnal constituents (K. and 0 1) to the sum of the

amplitudes of the two main semi-diurnal constituents (M2 and S1) (An Open Univers ity

Course Team, 1986), thus

_ AmplitudeK1 +Amplitude 01
F - Ampli tude M~ +Amplitude S~

(2.6)

A ratio F of 0 - 0.25 implies a semi-diurnal type ; a ratio F of 0.25 - 1.50,

a mixed-predominantly semi-diurnal type; a ratio F of 1.50 - 3.00, a mixed-

predominan tly diurnal: and a ratio of F greate r than 3.00 refers to a diurnal tide.

Th e term semidiumal tide is used for a tidal cu rve having two high waters

(HW) and two low waters (LW) of about equal height during a tidal day (24 hOUfS 50

minutes), see Figure 2 .4a. A diurnal tide has only one high and low water during the

same period (Figure 2. 4c). In a mixed tidal type there are somet imes one high and one

low water and sometimes two high and two low waters during a tidal day (Figure2.4b) .

22



Figure 2.4 Examples of Different Tidal Types, (a) Semi-d iurnal, (b) Mixed,
Dominant Diurnal, and (c) Full Diurnal Type

The basic patterns identified by factor, F, can be modified by local effects,

particularly the local effects of harmonics of the partial tides. Figure 2.5 shows a real

tide as recorded in the field.
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Figure 2.S Examplesof Recorded Tide in Semarang Harbour, Indonesia (F = 1.67,
Dominant Component is K1)

2.4.2 Tidal Propaeatlon in EStuaries

Tidalenergy in estuaries is derived from local ocean tides rather from than

the directaction of astronomical forces. As ocean tides propagateinto a shallow water

estuary, their profile depends in panon the basin depth. When the water depth in the

estuary does not appreciably exceed the tidalamplitude, the tide wave is propagatedas

a shallow water wave. Hence the speed C is given by

(2. 7)

where h is the water depth; g is acceleration due to gravity; and 7Jis the height of the

water surface above mean tidal level. As the water depth decreases, 'l/h increases.

Hence, the tidal wave speeddecreases. Consequently, the tidal crest (HW) propagates

faster than the trough (LW). Furthermore, there is an asymmetry in the tidal cycle,
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with a relatively long time interval between high water and the succeeding low water.

and a shorter interval between low water and the next high tide.

Tides in a river channel are also modified by varying degrees of interference

between the wave whieh enters the estuary and reflection from the boundaries o r from

the estuary head, frictional dissipation, and decreasing c hannel cross section (Kemish ,

1986). Depending on the geometry and associated resonance characteristics of the

channel, the tides may behave as either progressive waves or as standing waves.

Progressive waves usually occur in a wide and long (assumedof infinite length) estuary

where the entering wave height is reduced significantly by bottom friction. Waves

reflected by boundaries are smaller than entering waves. The important point in thi$

typeof w~ve is that the currents are in phase with the tide; i.e .• the maximum currents

occur near the lime of high and low water. Minimum currents occur near mid-tide.

In an unrestricted estuary, where wave attenuation is small and theampl itude

and period of the entering wave equal those of the reflected wave, a standing wave is

experienced. Here , the tidal levels and velocities are out of phase by 90 degrees. The

maximum amplitude occurs at the head of Ihe estuary and at anrinodes that arc located

at ~ultiple distances of one half of the wave length (U2) from the head. Nodal points

of zero amplitude and of maximum velocity exist at U 4 and at odd multiples thereof.

A well known example of this type is the Bay of Fundy (Canada) which has a length

of about one quarte r of the wavelength. The maximum tidal range at the head is some

15 m and the maximum tidal currents occur at about mid-tide .
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In addition to the effects of the geometric factors discussed above, estuaries

have special variable influences on tidal level. These are large freshwater inflow at the

head, wind actions and atmospheric pressure. These three factors may significantly

affect the water level.

2.4.3 TIdal Wave Entering A Channel Closed at One End

This case may be dealt with as one complete reflection of the entering

progressive wave from the closed end. Thus two waves of equalamplitude a and period

T are superimposed, one travelling in the positive and one in the negative x direction.

In accordance with the definition on Figure 2.6 (Ippen and Harleman, 1966), then

'I .. a e ccs c e coskx
(2.8)

and

u" 2-EC sinat sinkx
(2.9)

where h·rr = kC,

k : 2.../L ,

T tidalperiod (seconds),

L : wave length (m), and

C wave celerity (m/s).
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Figure 2.6 Wave Entering Channel of Finite Length with Reflecting End.

High water is obtained,therefore,

at the closed end : =0

Thus in equauon 2.8 with t = 0

'I"""", = 20

01theopenend : = ~ l

Thus in equarion 2.8 with t =0

'I,.,....... =2a cos k/

The ratio of the maximum tide at the closed end to tide at the entrance

is

(2.10)

This ratio is infiniteifkl = T/2forllL =1/4 . Note that equation 2 .10 applies only for

onetime.
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2.S Waves in Shallow Water

Wavesare disturbances on the surfaceof a fluid. They usually occur on

the interfacebetween the air and the water body (surface waves), but may also occur

on the interface between two different water masses (internal waves). In estuaries,

waves may affectsediment movementdirectly or indirectly. In this section, wave means

a wind generated wave. The size of a wind generated wave is controlled by three

variables: (I) the fetch, which is the distance the wind blows over the water surface in

a constant direction, (2) the duration with which the wind blows in one direction, and

(3) the wind speed. Increasing these three factors results in increased wave heights.

The important variables in wave observation are wave height, wave

period, and wave direction. The wave height and period may be recorded by using a

wavegage recorder. Since the wave directions are difficult to measure they are usually

assumed to have the same direction as the direction of the generating winds. In

engineeringapplications the measured wave heightis transferred into a significantwave

height. Munk (1944) (quoted in U.S. Army CERC, 1984, p. 3-2) defined significant

wave hight (H.) as the average height of the one-third highest waves.

2.5.1 Wave Energy and Wave Power

The processes associated with wave energy have a significant effect on

the distribution of river sediments, on the rate of longshore transport and on the
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formation of deltas. For these, it is important to ascertain bolh lhe quantity and

distribution of thewave mergy at thedelta zone.

'Theenergy containedwithin a wave occurs in two (arms; kinetic and

potential. Tbe Iotal energy (E) in a waveper unit crest width is given by (U.S . Army

CERC, 1984, p. 2-63)

u.m

where E is in loule/m2, p is the density of the seawater in kg/.rr, g is the acceleration

due to gravity in m/ s2, and H is the waveheight in metre.

Wave energy flux is the rate at which energy is transmitted in the

direction of wave propagation across a vertical plane perpendicular to the direction o (

the wave advance and CJt tending over the entire depth. The energy flux per unit lenglh

of wave crest is

(1. 1l)

whereP is the energy flull. that is frequently called thewave power (Nls =J/s·m), and

Cg is the group velocity of the wave (m/s). This can becalculated (rom (Wiegel. 1964)

(1.131

In deep water (diL > 0.5), the group wave velocity is equal to one half of wave

velocity, and in shallow water (diL < 0.05) the group velocity is equal to the wave

29



velocity and proportional to the root-squareof the depthd, thus

(2.14)

(2.15)

For an obliquewave, the wavecrest makesan angle, orwith the

shoreline. In that case the wave power becomes

(2.16)

and the longshorecomponent(P,) is given by

(2.17)

2.5.2 Energy Dissipation and Wave Attenuation

Whenwavestravel fromdeep water to shallow water, wave energywill

bedissipated. Basedon theoryand fieldmeasurements, Bretschneider and Reid (1954)

have.derivedequationsto estimate thereduction of waveheightdue to bottomfriction.

The wave height, Hft after undergoing frictionalattenuationover a distancex is given

by

HI . H'

(fHn$ .X.,)
K, .T'
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where H' is me wave height after refraction, f is the friction coefficient «(or low

roughnessboucm, egosilt and clay the value is 0.02, Wright and Coleman, 1973), T

is the wave period, K, Is the shoaling coefficient, and ~ is given by

• • ~(__K_. _ ) '
3 g sinh2.( ~)

The shoalingcoefficient K. is calculated fromthe relation

(2.19)

(2 .20)

where d is the water depth (m), and L is thewave length (m), H is thewave height(m)

at the depth d, and H: is the wave height in deep water (m) if the wave is not

refracted.

Theenergy flux in the near-shore can be obtainedby substitutingHI into

the energy flux equation 10 replace H.

The annual wave power can be obtained from the expression

1%.21)

where His a number of wave-class Characteristics. j refers to the particular set of wave

characteristics, andt is the percentage frequency of the wave setj.
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2.6 Salinity Distribution and Circulation Pattern in Estuar ies

Estuarine water consists of a combination of freshwater and seawater.

Freshwater originates from land drainage, and saltwater intrudes from the ocean. The

salt penetrates up the estuary by advection and diffusion. The salinity in estuarine water

varies gradually in space and time. It is different between lower and upper parts. It

changes seasonally, daily, and throughout a tidal cycle.

The salinity intrusion and circulation pattern in estuaries are functions

of freshwater flow, tidal action, the estuary geometry, wind influence, Corioli s effects,

and the density difference between fresh and salt water. Patterns are directed by the

strength of each factor relative to the others . As the significance of one factor is often

dependent on the relative weakness of one or more of the others, a measure of the

interaction between the different factors is extremely difficult to obtain . Hence the

dete rmination of the salinity distribution and circulation patterns in estuaries are

com plex problems.

2.6.1 Salinity Distribution in well-mbed Estuaries

Salinity distribution and estuarine circulation patterns are non linear.

There are a number of important independent or interdependent variables that vary

spatially and temporally. Quantitative treatment of both phenomena can be represented

theoretically by three well known laws of mechanics; conservation of momentum,
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conservationof mass, and continuity.

Ina wellmixedestuary, salt transportcan bedescribed by a conservation

of mass or by anedvection-dlspersionequation (Helder and Ruardij , 1982). Consider

a Cartesiansystemwithcoordinates; x, y, and z, wherex and y are the horizontaland

sectionalcoordinates, respectively, and z is the verticalcoordinate measured downwards

from the meanwater surface. The three-dimensionaladvection-dispersion equationcan

be written as

(2.221

where

(2.231

and where S is salinity, K is the dispersion coefficient, g is the acceleration due to

gravity, 1 is timeand u, v and ware the x, y, and z component of velocity.

Innarrow, well-mixedestuaries themajor spatialvariability occurs along

the estuaryaxisand transport of salt can betreatedas a one-dimensional process. Aone

dimensional treatmentmay also provide a very uscful result for estimating the cross-

sectionally averagedquantity of salinity intrusion in a partlymixedestuary (Uclcs and

Stephens, 1990).

Consider a river channel with fresh water discharge 0, and width U.

Salinity is nearly constant in the ocean and approaches zero at the upstream. Equation

2.23 can be rewritten as
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(2.24 )

for stationaryconditions, where 6S!lJl = O. equatioa 2.24 becomes

(2.25)

(2.26)

where 11 is the depth of the estuary .

For Q, constant, a single integration of equation 2.26 gives

(2.m

where S. is the salinity at x "" x..

FOC' a given value of K~. lhe longitudinal salinity distribution can be

predicted .

DlspersioDc:oeflidenLs(K.,)

For a one-dimensional method can be estimated from the longitudinal

distributionof salinity. the estuarinecross-sectional areaand the river flow(Helder and

Ruardij, 1982). Therefore, the longitudinal dispersion coefficient can be estimated by
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integrating and rearranging equation 2.26 to

K. .. 0(" 5 .
• d S

A"" dX (1.1' )

where K~ is longitudinal dispersion.coefficient (mt/sec), Q,. is fresh water flow

(ml/sec),S~ is salinity (ppt), A~ is cross-sectional area (m~ •.1: is distance (m) along lhe

longitudinal axis of estuary,

Salinity distributions alongthe channel for different conditions, either of

fresh water flow or tide or of both. canbe estimatedfromknowledge of the dispersion

coefficient in each cross section.

2.6.2 Salinity Dis1ribution In A Sa lt Wed ge EstUllry

Keulegan (1966) stated that the intrusionof salt in a river opening to a

sea with low tidal action is affected by the upstream movement of a definable and

limited saline layer underlying the freshwater. The lengthof anadvancing wedge (LJ

is a.function of the densimetric Reynolds number (Rt ), densimetric velocity (uJ . and

the velocity of fresh water opposing the advancing wedge (u,), see Figure 2.7, The

relation is given as

(1.19)

where the Reynoldsnumber, R.is quantifiedby
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(2.3 0)

andthedensimetric velocity,ueis expressed as

u = ~ .A£..gH• P.

(2.31)

and where D.p is the density difference between fresh and saline water (kg/ml) , Pm is

the average density of the two waters (kg/m'), and H is the depth of the river (m) . The

value of the constant , A~, varies with H/B and with R. and the value of constant, m,

with R, only (Keulegan, 1966).

RIver \/

Fr"'l h wllt. r

! 'f-- L~
r---lo !

s••

H

Figure 2.7 SchematicChartof Saline Wedge

The verticalsalinity distribution in the salt wedgeestuary dependson the

denstmetric Froudenumber, F, . This is givenby

F ._"-
r .fQiii1
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where u is the mean velocity of the upper layer (mls), h' is the depth of the density

interface (m), g is the acceleration due to gravity (mts) , and the specific density, (1 , is

givenby

(2.33)

wherePr and P. are the fresh water andseawater densities respectively (kg/rrr) ,

As the value of Fr' increasesthe mixing processbecomes more intense,

and the salinity of the upper layer increases. Farmer and Morgan(1953) foundthat if

Fr ' > I.Oan internalwave is formed. Further increasesin velocitycausethis wave to

break and start interfacialmixing. Hence the local vertical salinity gradientdecreases.

2.6.3 Circulation Patterns

Circulation patterns in an estuary are largely controlled by the strength

of the river flow relative to the strength of tidal currents in combination with the

geometrical configuration of the estuary. Circulation patterns range from those

experienced in salt wedges to thoseof well mixed estuaries(see section2.2).

The competing effects of fresh water discharge and tidal currents may

be quantified through the estuarine stratification number, S•. This can be used to

roughly predict the circulation pattern in the estuary. Pickard (1975) attempted to

quantifyan estuarine number, S" in his formula
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(2.341

where U is themean tidal current , B is the width o f estuary, g is gravity, and Oris

fresh waterdischarge. A small value of S.would lead to a stratified estuary, anda large

value would be associated with a well mixed esreary . The transition occurs in the

range O.OJ to 0.3. The mean current, U , is related to the tidal prism, that is !he volume

of water entering the estuary or passing a given cross section on the flood tide. The

mean tidal current ca n be estimated from the following relation

u- 2 Tr4 • .. 2 V.,.
BH T AT

(%.35)

where U is given in mis , Tit is tidal range (m), A. is surface area (m2) , B and lJ arc

width and depth of channel. respectively (rn), VTistidal volume em'), A is cross section

area (m!), and T is tidal pe riod (seconds).

In a differen t way, Simons (1%9) (quo ted in Silvester, 1974) proposed

quantifying lilt degree of mixing by a flow ratio eK), which is the ratio of thevolume

of fresh water per tidal cycle to thevolumeof salt water in the rlood tide.

Then for :

K~ 0 .7 the estuary is high ly stra tified,

0.7 > K > 0.1 the estuary is part ially mixed. and

K~ 0 . 1 the estuary is well mixed .
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Based on either the estuarinenumber(SJ or the flow ratio (K), estuaries

maychange their classification from stratified to well mixeddue to the reduction of the

fresh water flow and change from well mixed tostratified by increasing in fresh water

inflow. Similar changes may result from lhe increase and/or decrease in tidal ranges

from neap to spring and/or vice versa.

2.7 Sedimentation and the Movementof Sediments

The main sources of natural sediment entering an estuary are the

catchmentarea of the river system (river-borne), the ocean (marine sources), and a

small fractionwhich originatesin the estuary from biologically and chemically in situ

precipitatedmaterials.

In the complexity of an estuarine environment, sediment usually

experiences a variety of physical, biological, and chemical processes that go on

independently or in combination. The sediments pass through repeated cycles of

erosion, transportation, deposition, and re-suspension prior to being deposited

permanently or being lost to offshore areas.

2.7.1 Characteretles of Sediment

Sediments in estuariescan range in size from gravels and coarse sands

to clay and flocculating silt. Thesedimentsconsist of the products of the weathering,
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disintegration, and decomposition of pre-existing rocks and sediments and therefore

contain many of the rock forming minerals. Theyalso include organic matter and solid

materials biologically and chemically precipitated from waters within the basin.

Sediments can be de scribed in terms of their chemical or physical properties.

This section deals with the physical properties of particles which are

close ly related to the sediment movement; l.e. , the grain size distribution of sediment

material . Knowledge of the grain size distribution is important in determin ing the origin

and the manner of sediment movement. The size of sedimentary grain s is usually

expre ssed in either a metric or logarithmic scale, in which a continuous range of

sediment sizes is subdivided into classes or grades. There are two commo n size scales

used today: the Unified Soil Classification (USC) and the Wentworth 's modified scales.

These two scales have differen l limi ts of the class sizes. The USC boundaries

correspond 10the US Standard Sieve Size. The Wentworth classification differentiates

between sediments using limits which are always expressed in the form of 1:' mm,

where II can be any integer, i.e 2, 4, 6, 8 etc., or 0,5,0.125,0.062 ,0.03 1, etc. The

Wentworth scale was modified by Krumbein (1936) by transforming the millimetre

scales to a phi unit scale based on the definition

(2.36)

where the diameter, d, is in millimetre . The Wentworth and Phi unit scale are given

in Table 2.3 .
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Table1.3 Clnsification of sediment according to size (Wentllo'onh's
modifiedscale)

Nomenclature Diameter

Millimetres Phi (4))

Verylarge boulders 4,000 - 2,000 - 12 - II
Large boulders 2,000 1,000 - II ·10
Mediumboulders 1,000 500 -10 . 9
Smallboulders 500 250 - 9 -.
Large debris 250 130 a • 7
Smalldebris 130 64 7 - 6

Verycoarse gravel 64 32 - 6 - 5
Coarse gravel 32 16 - 5 - 4
Mediumgravel 16 8 - 4 - 3
Finegravd • 4 3 - 2
Veryfine gravel 4 2 - 2 1

Verycoarse sand 2.000 1.000 1 0
Coarse sand 1.000 - 0.500 0 1
Medium sand 0.500 - 0.250 1 2
Finesand 0.250 • 0.125 2 3
Veryfinesand 0. 12.5 • 0.062 3 4

Coarse silt 0.062 - 0.031 4 5
Medium sill 0.031 • 0.016 5 6
Fine silt 0.016 - 0.00' 7 a
Very fine silt 0.00' - 0.004 a 9

Coarse clay 0.004 - 0.002 9 10
Mediumclay 0.002 - 0.001 10 II
Fine clay 0.001 - 0.0005 II 12
Very fineclay 0.0005 - 0.0002 12 13

Naturally, since the finer sediment grains are more mobile than the

coarser ones, a large amountof informationconcerningmovementcanbeobtainedfrom

a study of the grain size and distribution in different size fractions. From the

distribution data, thegrain size accumulation curve canbedescribed. Funhermure, the
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range of grain size may reflect some pan of the variability of the forces causing

movement.

Grain size distributionis commonly determined by mechanical analysis

using a either sieveanalysis or a hydrometeranalysis. The first is used for coarse

particles. The sizeof grain is expressed as a sieve holediameter. The latter is usedfor

the fine particles. Particlediameter is indirectly determinedbasedon Stokes Law.The

basic formula of Stokeslaw (single particle) is

Si z e (1 n 10-6 m) '" F g
12.37)

where D is depth of the samplingin em, t is time in minutes, and F is a dimensional

constant which has a value 12.99 at 24OC, 13.30at 220Cand 13.6 at 2O"C.

Within the framework of Stokes law, however, many interacting

variables, such as particle shape, concentration, and density influence the manner in

whichparticles settlein a column of standing water. Hence, the equation2.37 cannot

be applieddirectly. In the hydrometeranalysis, rate of particle settling is expressed in

the changeof densityof the suspension as a measure of its contentof solids. Variations

of fluiddensityare reflectedin the depthat which the hydrometer floats below the fluid

surface. 'The relationship between the density of suspension , fall velocity and grain

diameter is then determinedusing a table or monogram. Wide varietyof opinionrelated

to the sample concentration, Dyer (1979) recommended the use of 10 g and certainly

no more than 20 g of sample in 1000 ml of water.

Grain size distributiondata (either from sieve analysis or hydrometer
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analysis) are illustrated graphically by means of histograms and cumulative curves.

These two graphs provide a visual indicationof the size fractions that compose the

particular sediment material.

A sample is usually described as well sorted if all particles have sizes

that are close to the typical size. If the panicles are distributed over a wide r.m~e IIr

size, the sample is said to be well graded, A well graded sample is poorly-sortedand

a well sortedsample is poorly-graded, This natureof the sample can be identifiedfrom

various statistical parametersor from graphic measures,

Median diameter (Md)

Mean diameter, Md , is the most common measure used in engineering,

l.e

(2:.38)

where d5() is the size in mitlimetres thatdivides the sample so that half the sample, by

weight, has particles coarser than the dJt) size. In the phi unit distribution it is termed

as MtU•

Mean diameter (Ml.

Inman (1952) proposed the average of the size of the 8401> and W '
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percentiles as measure of the mean.

(2.39)

Siandard de\'lation (0-)

Standard deviation, (1, is a measure of the degree to which samples

spread out around the mean. Inman (1952) proposed that the standard deviation could

be calculated from

(2.4()

where ¢ " and ¢ 16 are the sediment sizes, in phi units, finer than 84 percent and 16

percent by weight of the sample, respectively.

Skewness, a., is the measure of the degree to which the phi unit departs

from symmetry; Inman (1952) proposed

" . = ~u;:.1~;~ 4>50
(2.41)

The sample is called well sorted if the value of 17 value is less than 0.5 ,

and it is called poorlysorted if the (1 value is greater than 1.00.
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2.7.2 The mol'e~nl or Sediment.

A sediment particle will move wberever ttle force of flowing water

(buoyancyanddrag fortt$) over it is able to overcome1Mresistance force (gravity and

friction forces) of the: grain. A certain velocity at which the combined drag and li f!

forces is sufficient to dislodge particles from their equilibrium position is called the

criticalor thresholdvelocity. A small incrementof velocity will cause motion, bet the

motion will die away after a time and particles will cometo rest in a new equilibrium

pcstuon. With further increase in velocity, movement will become more general and

prolonged. Particle movement, therefore gradually changes from saltalion-dominalCd

to suspenslcn-dominatedwith increasing force of the !lowing water.

Sedimentsarc commonly divided into bed load, suspended load, and

wash load. Bed load comprises grains which arc: rolling, sliding, or occasionally

jumping along the bed. Suspendedload includes particles which arc moving with the

water, about the samevelocity, and which are supportedby turbulence. These grains

settle toward the bed when the Ilc-vdiminishes. Wash loadcomprises particles which

are ~ported and perpetually in suspension, even whenthe nuid has been nowingat

low velocity for sometime. Since the washload is us~ly lost into the offshore zone

and does not significantly affect the configuration of the channel, it will not be

discussedfurther.
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2.7.3 Sediment Discharge From River

Essential ly, the sediment transport rate is the total welght of grains

passing through a section per unit time, per unit area . Thus, the volume of river

sediment entering the estuary can be estimated by using the sediment carrying capacity ,

thai is the total weight of grains passing through a section per unit time , per unit width

of channel. Calculation of the rive r sediment discharge rate is usually divided into

bedload and suspended load rates.

Many sediment transport formulae have been proposed . Since each

formula was derived for a specific circumstance. the useof them sho uld be suited to

the field observations . In this study the formulae derived by Sate, et. al.. and Kalinske

(quoted in Bogardi, 1978) will be used to estimate the bed load and suspended load

rates, respectively. These two formulae have been examined in the Branta s River, East

lava- Indonesia (Department of Public Works , 1966).

Bed-load rate.

The first attempt to obtain a theoretical understanding of bed load

movement was made by Du Boys (1879) (quoted in Dyer , 1986). He proposed that the

bed load moves in layers so that the top layer of a thickness about the same as the

particle diameter d is transported at the highest velocity, with the veloc ity decreasing

linearly with the depth to zero at the bottom. The relation developed
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(1.42)

where qh is the rate of transport (kg/sec m), T., and T, are the actual and the critica l

shear stress, respectively (kg/m!), and C! is a dimensional coefficient (mJ/ kg sec).

Based on field data, sa te , et. al. (1958) formulated a relation between

bedloadrate and the factors aforementioned. After certainsimplifications confirmedby

experiments, Sere, et. aI. (quoted in Bogardi, 1974, p. 255 - 258) were able to show

that

(2.43)

(2.44)

where : q., ;; bed load per unit lime per unit width of section (nrls-m)

;; critical velocity near bed

= (gRJJIl (m/s),

where R = hydraulic radius (rn),

=energy grad ient (m /m)

T. = critical shear stress on bed (N/mJ) ;
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r
G

= shearing stress on bed(N/m1
) ;

= pgRJ"

p. = density of sediment material (kglmJ)

p.. = density of water (kg/rn')

4>, = f{n), n is Manning's coefficient,

The value of 4>, depends on Manning' s resistance coefficient and varies as

shown below :

n .a0.025, 40, = 0.623

n < 0.025, 4>. =0.623 (40 n)'u

The function F(r jrcl depends on the ratio actual to critical shear stress and

is shown in Figure 2.8

~..
1

/:
v

i- f
f

.s. I
j

,f

..~OJ.

Figure 2.8 Relation Between F(rjrc) and (rjr.)
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Friction velocity (u.), and critical shear stress (t ,) can be calculated by

using the following equations

".~. ~ p

u, " .;gIfT.

(2.4S)

(2.4<;)

where p is water density (kgfml), g is gravitational acceleration (m/s1) , R is hydraulic

radius (m), and l~ is energy gradient (m/m ).

The critical shear stress has been derived from basic experimentscarried

out Shields who found(Chadwick, and Morfett, 1986. p. 250) that

' c · 0 . 056 (P. - P) gdso

where Tois given in N/m1, P. and P in kg/ml
, g in mls1

, and d in m.

Suspended load transport rate.

(2.47)

Generally, the suspendedsediment transportrate,q.. canbeexpressed as

(2.48)

where q. is the suspended transportrare in kg/s-m, u is the now velocity in mis, and

C is the concentration in mgll.

Since the mean velocity is usually at about 0.6 of the depth measured from
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the bonom, while the mean concentration is within the bottom few centimetres of the

now, the velocity-concentration cannot be integrated analytically. Some advanced

formulae have been developed based on theory or measurement. In generalthe variables

involved are critical velocity (u.), water density, and size and density of material. The

flrst two factors represent the flow condition, and the last two variables represent

sediment characteristics. Kalinske (quoted in Bogardi , 1974) has tried to relate these

factors in his formula

q • • A.( p . u? ]'. u•.d..
(--l) .g. dsoP.

where d5Q ;:: median diameter of particle (01),

A" p;:: constant

(2 .49)

Based on me examination of the Brantas River, East Java-Indonesia

(Department of Public Works, 1966), it was found that the constant factors A. and p

in equation 2.49 were 4.0514 and 2. 135 (or A, and p respectively. Thus,

(
, ),.m

q# a 4 . 0514 P
g

Ll. • Ll• •dso
( - - l) ·g·d.;o

P.

2.7 .4 Tidal Response on Seawell! Movements

(2.50)

The vertical water movements associated with the rise and (all of the tide

are accompanied by horizontal water motion termed tidal currents. In the open ocean
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or ncar an unboundedbody of water thesecurrentsare rotary in nature. changing speed

and direction throughout all compass directions during a tidal cycle. The rotation is

mainly due to the Earth's rotation. Tnthe Northern hemisphere the rotation is in a

clockwise manner.

In narrow channels or estuaries, tidal currents are restricted to now

essentially along one path in a reversingdirection: landward currents during flood tide

and seawardcurrents during ebb tide. These currents are responsible for resuspending

andremoving sediment either up or down the estuary. In the case of a symmetricaltid e

the net resulting transport may be insignificant. When the tide is asymmetric thc

volumetric difference between the upward and downward transports can be

considerable.

In the caseof asymmetric tides, the flood period is alwaysshorter Ihan the

ebb period, and flood currents becomestronger than ebb currents. Consequently there

is a great movementof sediment landwards. The longer slack water at high water Ithan

thatat low water) enables a greater proportion of Ihe material 10settle 10the boo. Thus

thecombination of the greater velocity on the flood tide and the settling at high water

produces considerabledeposition along the estuary. Part of this deposited material is

resuspendedand transported backdownstream by ebb currents.

Normally the vertical dis'.ribution of velocityof theebb current is high ncar

thesurface in the upper layer and low near the bottom. In contrast the flood current is

high near the bottom and low at the upper layer. Currents near the bottom arc

responsible for picking bottom particles up into suspension. As a result, the

51



concentration of sediment is higher during the floodtide than during the eODtide.

Wright, et.al. (1973) hasexaminedtide-dominatedestuaries where standing

waves are usually developed. In this case, the currents are maximum at mid-tide and

slack at high and low waters. Consequently, when the water levels are highest and

inundate the widest surface area, currents are weak. In the Ord River (Australia) this

effect resulted in an extensivedeposition of silts and clays from suspension along the

higher levels of the river banks (Wright et. aI., 1975).

As the currents within the estuariesare derived from both tidal and non

tidal currents (current generated fresh water now and density currents), it is difficult

to determine the sediment transported by the tide only. However, if the non tidal

currents are minor, the tidal transportcan be estimated from the direct measurement

of sediment concentration in association with the water level during a tidal cycle for a

certain tidal range.

Another way of estimating the tidal effect on sediment movement is by

measuring the estuarinecurrents directly since the movement of sediment is a function

of current speed. Bed material will move whenever the critical current exceeds the

velocity of erosion U•. The material will settle whenever the critical velocity for

depositionUtiis achieved. Basedon limited fielddata, Dronkers (1986) found that these

velocities, U, and Ud' are about 0.5 m/s and 0.2 mIs, respectively. Although these

values are still questionable whenever they are used in different situations and

circumstances. the values can be usedto estimatewhether or not the observedestuarine

currents affect the sediment movement.
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1.7.5 Wan F.lft'ds on Mdiment Movnnt'nts

When a deep-waveapproachesa shorelineat an oblique angle it gencrau..,

two different currents: longshore and rip currents. These two currents are responsiblc

for transporting sediment within the surf zone. Sediment which is usually moved

parallel to the shoreline is termed longshore transport. At present, two basic lIll:tikx.ls

have been developed to estimate the amount of longshore transport in relation to the

wave climate: an Energy Flux Methodand an Empirical Method (U.S. Army CERC,

1984, p. 4-91 to 4·108).

In the energy flux method, the rate of longshore transport Q is assumed to

be dependent on the longshore component of energy flux in the surf zone. The

longshore energy nux in the surf zone is approximatedby assuming conservation of

energy flux in shoaling waves, usingsmall amplitude lheory, and then evaluating the

energy flux relation at the breaker position. The approximation for the longshore

component of energy flux at the breaker line (P.J is given by (U .S. Army CERe.

1984. p. 4-93)

(1.51)

where H.. is the wave height, C. is the wave speed at the break points, and a~ is the

angle between the advancing wave crest and the shore line at the break point, p is

seawater density. and g is acceleration due to the gravity.

Equation 2.S I is valid only for a single wave train with one period and one
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height. Most oceanwave conditionsare characterized by a variety of heightsthat are

distributed in a Rayleigh distribution(U.S. Army CERe, 1984, p. 4~93) . The correct

height to use in equation2.51 is the root-mean-square height, H......that is defined by

(2.521

where HI is the heightof successive individual waves,N is lhe total numberof the

recordedwaves. However,mostwave dataare availableas significantheightsH, , and

coastal engineersarc used to dealing with H, rather thanH_. Therefore the valueof

H, maybesubstituted into equation2.51 to producethe longshorecomponentof energy

(2.531

The valueof P~ computedusingsignificantwave height is approximately

twice the value of theexact energy flux for a sinusoidal wave height with a Rayleigh

distribution. This means that PII is proportionalto energy flux but not equal to it.

ThereforePI> is termedthe longshoreenergyflux factor(U.S. Army CERC, 1984,p.

4-93). Galvinand Schweppe(1980)(U,S. ArmyCERC, 1984, p. 4·93 to 4·94) derive

some variationsof energy flux (PI) and longshoreenergy flux factor (P~) , depending

on wavedata available.In thecase wherethewave climatein deep water is available,

the energyflux factoris given by

1.1 1

Pl . = O .05pgiH,,~ (cos«") ~sin2a:,,

s,

(2.54)



where H, is the deep water wave height and Cfo is the angle between the incoming wave

crest and shoreline.

Longshore transport (Q....HJ can be estimated from the relation given hy

(U.S. Army CERC, 1984, p. 4-101)

where / is the percentage wave frequen cy, and It is a dimensional constant. For metric

units A = 1290 (01) sIN yr), SCI that

,
O.".H. " 2 .03 . 1 0' ER,}- F ( o:o}

where

(2.56)

(2.57)

The value o f F(o,,) is ca lculated as an average value (or waves coming from

a sector generally 45" or 22S (U.S. Army CE RC, 1984, pA-103).

In the Empirical Method the longshore transport rate is assumed to depend

partly on breaker height. since as breaker height increases , marc energy is delivered

to the surf zone, and the surf zone through which sediment moves is widened . Galvin

(1972) showed that the relationship between ave rage breaker height, II~, during a one

year periodand Gross Longshore Tran sport Q may be written as

(2•.58)



where Q is given in M)/year and H6 in metres. H6 can be calculated from the following

relation

(2.59)

where (K')6 is the shoaling coefficient evaluated at the breaker position and (K,), is tile

shoaling coefficient evaluated at the wave gage, f is the percentage frequency of the

wave heights, and H, is the significant height obtained from gage records and assumed

to correspond to the heigh t obtained by visual observers.

2.7 .6 Estuari ne Sediment Bud get

As mentioned earlier, sedimententeringan estuary typically originates from

river borne and marine sources. The sediments are distributed either along the estuary

or in the near shore area and/or in the ocean. Calculation of the amounts of sediment

moving, remaining, or taken from the estuary is usually called the sediment budget. It

includes estimation of transportation , deposition, and erosion processes of sediment

materials within the area considered .

The residual in the sediment budget can beestimated by balancing sources

and sinks. A source is any process that increases the quantity of sediment material

within the estuary . Conversely, a sink is that which decreases sediment material. A

schematic of sediment budgeted in an estuary is shown in Figure 2.9.
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Figure 2.9 Schematic of Sediment Budget in Estuary

In the complete estuary sediment budget. the difference between the

sedi ment gained from all sources and the loss o f sediment to all the sinks should be

zero. In some cases, the sediment budget is used 10 estimate the unknown erosion

and/or loss of material to the sea or deposition within the estuary . The total budget is

Total sources - total sinks = 0

Total sources. total sinks =unknown

The main sources are river-borneandlittoral transport. Sinksoccur because

of dredging or mining or by sediment being lost to an offshore area. The volume of

river -borne sediment and the littoral transport can be esti mated by using sediment

carrying capacity, and long shore transport rates, respectively as discussed in the

preceding sections. Dredging and/or miningcan be determined from records.
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2.8 River Deltas

Deltaic estuariesdevelop wherever a river, particularlyone thai carries

substantial quantities of sediment, debouches into a receiving basin through several

mouths.

The term delta was first used by the Greek historian, Herodotus, in

approxi mately 450 Be to describe the triangular deposition of sediments at the mouth

o f the Nile River which. being triangular, resembled the Greek cap ital letter delta, d

(Bearman. 1989, p. 129). In general. deltas can be defined as coastal areas or near

shore features developed from river-borne sediments such as river mouth bars, tidal

Oats, tidal ridges, beach dune complexes. swamps, marshes, and evaporite flats.

2.8 .1 The Structu re of Dellas

A delta plain general ly consists of a subaerial delta and a subaqueous

delta. Figure 2. 10 illustrates the major components of a delta plain. The subaerial della

is the portion of the della plain above the low tidal limit. This port ion typically consists

of a lower delta plain and an upper delta plain. The lower della plain lies within the

region of river-marine interaction and extends landward to the limit of tidal influence.

The upper delta plain is the olde:r portion of the:subaerial delta and exists above: the

areaof significant tidal or marine influence . The subaerial delta is dominated by river

processes.
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Figur e 2.lO Components of a Delta Plain (Aft er coleman, 1982)

The subaqueous delta is the portion of the della plain that lies below the

low-tide water level. The subaqueous delta plain consists of the della front and the

prodelta . The delta front is the segment that is adjacent to and seaward of the lower

delta plain. It is composed in pan of bed load and may contain coarse material such <IS

sand and gravel. The prodelta is the most seaward panof the subaqueous delta and is

composed of the finest material (clay and silt) deposited from the suspension.

Both the subaqueous and subaerial deltas may consist of active and
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abandoned deltas. The active delta plain is the growing portion occupied by functioning

distribuW'y channels. An abandoned del ta plain develops when the lower course

changes its direction to a shorter or more efficient route to thesea.

Z.3.1 Oeltak Precesses

The deposition, orientation, and morphologic patterns and sedimentary

sequences of a delta are produced by a co mplexity of interaction among numerous

fluvial and coastal processes. Wright (1977) identified the processes that stlollgly

inlluence the formation of various types of deltas. These are, the discharge regime and

sediment load of the associated river; the nature of the river mouth processe s; the

relative magnitude of marine forces, pan icularly tides, waves and their mod ification

near shore . and the receiving basin geometry . Figure 2.11 illustrates schematicall y the

major factors and their contributions to the delta formation. The following section will

briefly review the contributions of the fresh water flow and wave effects to the

development and formation of deltas.

The general configuration of a de lta depends on the relative degree of the

contribution between wave energy nux adjacent to the shore and river d ischarge

(Wright and Coleman, 1972). If the effects of the river discharge and sediment load are

high in comparison with the effects of the wave energy flux, sediments will be

deposited just beyond the river mouth and the adjacent coast and protruding deltas are

developed . In contrast , if river sediment disc harge is rel.llively smaJl and wave energy
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high, the wave will quickly rework the river-borne sediments into a marine-dominated

delta configura tion.

f i gure 2.11 Major Factors Control on a Delta Formation

The preceding basic concept is insufficient to completely explain the

effects of the strength of the river discharge relative to that of the wave force. Variatio n

in discharge throughout the hydrologic year is the most important fiow characteristic

which exerts great influence on deltas geometries.

If the discharge peaks coincide with the limes of greatest wave energy,

the increased river sediment supply may be balanced by the capacity of waves to

redistribute the sediment. This situation tends to give a regular and smooth progradatio n
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of the delta shoreline. If, o n the other hand, discharge and wave-energy maxima arc out

of phase. then the river o utflow may dominate for part of the year, and this will be

followed by a period of intense reworking by the waves. In this condition. spits and

barrier beaches along the coast flanking the river mouth will likely be developed.

A number o f experts such as Davies (1958), Jennings (1955) and Wright

and Coleman (1971) have tried to quantify the relationship between discharge-wave

power and delta geometry . In this thesis, the discharge effectiveness index, IQ, proposed

by Wright and Coleman (1971, 1972, 1973) will be used to identify the degree to

which delta morphology is wave dominated or river-dominated. This index is the ratio

of discharge per unit width of river mouth to the near shore wave power per unit length

of wave crest. Thus

(2.58)

where q is river discharge per unit width of rive r mouth and P is the near shore wave

power per unit length of wave crest.

A low value of the index, Iq, re lates 10a wave-dominated delta whic h

exhibits wave straightened shorelines and abundant beach ridges. A high index relates

to a river-do minated delta with sand bodies deposited at high angles to the shoreline.

Observation of seven denes made by Coleman and Wright (1972) may

be used as a standard. The results of the work of Coleman and Wright represent a

spectrum o f deltas types reflecting processes ranging from river dcmlneted, low wave

energy to wave dominated . low fluvial influence . as presented in Table 2.4 below.
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Table 2.4 Mean Annual Summaries of Discharge/Wave Power Climate and
Attenuation Ratios of Seven Deltas (After Wright and Coteman 1972)

M~ AnnualWave M~ M~ Mt:Kn
Power{Jls·m) Discbllflle AnnUlll AnnUllI

Del... 10' Discharge AlI t:nWlliun
Deep N~, mIls rf fediv_ ROlin
water shore Indel

Mississippi 106.0 0.013 17,69 5477,0 7913.3
Danube 23.0 0.014 6.29 1171,0 2585.0
Ebm 72.8 0.051 0.55 267.8 12()9.5
Niger 67.6 0.659 10.90 4.4 102.8
Nile 136.0 3.210 1.47 3.2 42.5
Sao Francisco 371.0 9.970 3. 12 1.3 37.2
Sinegal 156.0 37.700 0.77 0.3 4.2

2.8.3 DeltaicGeometries

Deltageometries are controlledby a number of factors thai vary broadly

betweenone delta and another, As result eachdella has itsown individualattributesthai

set it apart from theothers. Dependingon the magnitudeof the three major controlling

factors: river process, tide, and waves, deltas can be groupedinto three major shapes:

river dominated deltas, tidedominateddelta, and wave dominateddelta. In some cases

the three factors work together, and other factors must also be taken into account,

Coleman and Wright (1973) concludedthat deltas are be classed into six general types.

These six types of deltasare illustrated in Figure 2.12.
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Note : C~~~~~~]
Located in Indonesia

Figure 2.12 The Classification of Various Delta Morphologies Based on the
Relative Strength of River, TIdal and Wave Processes .
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Chapter 3

Indonesian Estuaries and Deltas

Nearly ali Indonesian estuaries are drowned river valleys. also known as

coastal plain estuaries or rias. They were formed within the last 15,000 years during

the F1andrian transgression which ended apprcxirnately5.000 years ago. A rise in sea

level of 100 to 130 m subsequent to the Wiscosin glaciation inundated river valleys,

creating these estuaries. They are being progressively intillcd with sediment. The

natural sediment discharge from these rivers is high and limited wave and tidal acuon

leads to the estuaries being rapidly filled. As a result, deltas soon develop seaward of

the river mouths.

This chapter deals with general characteristics of estuaries and dcnas in

Indonesia and major factors related thereto. Two river-delta systems; the Mahah mand

Brantas Deltas, have been chosen to represent the formation of deltas with differcm

river characteristics. Figure 3.1 shows the location of these two deltas.

It is known that numerousfactorsdetermine and affect the characteristics

of a river system. Figure 3.2 illustrates the various components of a river system and

major factors that control each part. The major factors affecting the river system arc

climate, geology. morphology and other hydrological factors, tides, waves, and winds.
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Figure 3.2 Components of River Systemand MajorProcessControlling Each
Part .

3.1 Topogra phy and Geology

Indonesia is an archipelago composed of five major islands; Java,

Sumatra, Kalimantan (Borneo),Sulawesi (Celebes), and Irian Jaya (New Guinea). II is

located along the equator between 06"50'N and 11°60'S and between 92"25'E and

141"30'E, It is bounded by two continents, Asia in the North and Australia in the
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South, and two oceans, the Indian ocean in the West and the Pacific in the East. All

major islands. except Kalimantan,are laid over the earthquakeepicentre of the Circum

Paciflc belt. Therefore there are many either active and non active volcanoes. This

situation causes the features of KalimantanIsland to bedifferent from the others. The

general topographic and geology of the main islands can be described as follows.

JUIl Island.

Java Island is a long island, extending in a west-east direction. The land

features are mountainous with a number of volcanoes. Some are active while other are

not. There are at least thirty mountains that lie on south-side along Java Island. Their

elevation ranges from 1,750 m to 3,416 m above sea level. The coastal plain extends

along the north side of the island. Java is the mostdensely populated island. About 60

% of the total population of Indonesia (180 million) lives on Java, which is only 1115

of the total area. As a result of the high population, much of the tropical forest that

originally covered the land has been changed to settlement areas or to farmland.

The main river systems of Java Island are the Brantas, the Solo, and the

Citarum Rivers. These rivers originate from hilly areas and flow down through low

lying, densely populated areas before they debouch into the ocean. The Brantas River

debouches into the Madura Strait and the other two into the Java Sea.

All over the island. a large scale upheaval took place in Mio-pleocene

or later periods accompanying a series of volcaniceruptionshaving an east-west trend.
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The geology of the island. therefore. is characterized by eolian and Sl=dimcnl.:lry

formations of NeoaeneTertiary and andesitic and basaltic rock of volcanic origin.

Sumatra, Su lawesi, and Irian J aya.

Topographically these three islands are almost (hc same as Java Island.

Sumatra is a long island extending in the southeast-northwest (SE-NW) direction. A

series of mountains and volcanoes lies on the southwest-side of the island. The

northeast side consists of lowland. marshes andcoastal plain. Sumatra hasan area some

three times that of Java Island. The main streams of Sumatra arc the Musl, Satang

Han, and Batang Indragiri Rivers. These threerivers originale from the mountainsand

flow northeastwards through the lowland. Sulawesi has no big river, since the island

is convolutedand no part is more than ISOkm from sea. Irian Jaya is a mountainous

island. It contains thehizhest mountain in Indonesia (i.e .• Puncak Jaya; 5.020 m above

sea level). The Memberomo River is the major river of Irian Jaya. The coastal plain

is mainly laid on thesouth side of the. island. These ihreeislands are less populated

than~ava. Only about 30% of the total Indonesia population lives there.

Kalimantan (Borneo).

Kalimantan is the biggest Island among the Indonesian Islands. Its area

isabout three anda half times that of Java Island. Kalimamanis located on the equator.
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The land features are less hilly, and it is mountainous only in the middle of the island

with the highes t elevation being about 2,988 m above sea level. Most of the land

con sists of lowland and coastal plain and is covered by tropical forest. The population

is only about 10 % of the total Indonesian populat ion. People live prima rily on low lying

land near a river course where most cities developed.

The main rive rs in Kalimantan are the Mahakam, Barito, and Kapuas

Rivers . These rivers are characterized by a very smal l slope, particu larly in the lower

reaches . Inconsequence, the river wate r is almost stagnant during low river discharge .

Thi s causes the flushing time 10 increase and, since the rivers are used both as water

supply and for sewage disposal , the water quality decreases accordingly .

3.2 Climate

Climatic condi tions are affected by monsoons. The east monsoon usually

lasts from April to November and the west monsoon from December 10 March . Figures

3.3 and 3.4 show the general direction s of the east monsoon and the west monsoon,

respectively . The west monsoon brings considerable rain and causes heavy floods all

ove r the country . However the east monsoon is dry and rainfall is sparse. Therefo re the

river discharge fluctuates seasonall y with the maximum occurring during January

Februaryand the minimum during July-August. The annualrainfall ranges from 1,600

romto 2 ,500 mm.

The region is entire ly within the tropics , so that there is little variat ion
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in ai r temperature throughout the year. The monthly mean temperature ranges from

23GC to 30"<:. Humidity all around the area is relatively high. Yearly mean relative

humidity varies from 80 % to 90% , while the monthly mean relative humidity ranges

from 60% to 90%. Daily evaporation varies from 1.4 mm/day to 6.5 mm/day with

maximum evaporation in August to September and minimum in January to February .

This humid tropical condition led 10 lands originally covered by tropical plants and

grasses. The tropical environments are also conducive to the production and

preservation of organic material and peat deposits.

3.3 River Sediments

The main source of sediment entering Indonesian estuaries is via the

fresh water flowing in at the head of the estuary. Amounts of sediment supplied from

the drainage basin are dependent upon its various hydrological factors but normally

greatest transport occurs at maximum storm run off .

Tlte monsoon, tropical, areas of Indonesia havc a naturally high rate of

sediment potential. Materials originate from the erosion of the drainage basin and from

material of volcanic eruption. Volcanic material is dominant in a number of Javanese

rivers. Most of thc sediment flows down into the estuary during high precipitation

during rainy season.
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3.4 Waves

Wind generated waves which affect the Indonesian coasts are mainly

those associated with the west monsoon and the east monsoon. Waves may occur due

to submar ine earthquakes or under water volcanoes but these are a rare occurrence.

There are no storm waves directly associated with tropical hurricanes since the region

is out of the tropical cyclone area. Exposed Indian coast sectors in the south of Java and

northwest of Sumatra, and the exposed Pacific coast of north Irian Jaya are typically

subjected to high wave regimes. Therefore, there are steep, sandy coasts. Other coasts

arc generally subjected 10 low to moderate wave regimes. These coasts are subjected

to seasonally altered longshore drift directions although the eastern drift component

appears to dominate (Silvester . 1974).

3.5 Tides

There have been relatively few tidal studies in Indonesia other Ihan the

published tide tables in some main harbours . However , several generalizations may be

made from available information . Basically, most of the coasts are mesotidal coasts

(tidal range 2·4 m) except the north-coast of Irian Jaya and northwest-coast of Sumatra

which are microtidal coasts (tidal range < 2 m).
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3.6 The Mahakam River Della

The Mahakam River (Figure 3.1) is located 00 the east coast of

Kalimantan (Borneo) between 0"21' and 1-10' southern lati!udc and between 117"15'

and 117"40' eastern longitude. The river debouches intCI a reancted basin of Makassar

Strait. The drainage basin of the river CO'Ien almost one third of the island of

Kalimantan. The monsoon-tropical climate in the drainage basin results in discharge

with an average discharge of 1,500 ml/s, but with high fluctuation (Dutrieux, 1990).

Tides along this portion of'the Kalimantancoast are semi-diurnal withan average range

0(2.5 m.

Large quantities of sediment(160mg/l) are transported by the Mahakam

River. The delta plaincomprisessome 1,500 kin! and consists of numerous bifurcating

distributaries (Figure 3.5). Channels form a divergent network of variably impor1all1

rivers. The della plain has a very flat oopognphy (0.1 " slope) and is covered by an

extremely dense vegetation, panicularly mangroves.

The important factors affccting the Mahakam River Della are river

processes and tidal action. High river now, particularly during rainy season, is

restricted by shallowwater beyond the river mouth , River mouth processes, however,

are dominatedby frictional forces. Consequently, the high scdiment loadof nne-grained

deposits from upstream are spread laterally over a large area seaward of the river

mouths. The wide, lateral, distribution of this sediment builds an unstable platform

across which some distributaries developed. Decreasing river flow during the dry
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season causes the effect of tidal currents 10 become significant During the spring tide

the sea water intrudes as far as 25 km landwards of the distributary mouth (Dutrieux.

1990). Sea water inundates almost all part s of the delta plain. Slack !lood wate r occurs

during high water and the sediment load which is resuspended by tidal currents is

deposited in the form of levees. The ebbing water flows over the delta plain and forms

a numerous of crevasses.

3.7 The Bra nlas Della

The Brantas River (Figure 3.1) is located in east Java between 07"01' and

08"15' southern latitude and between 110"30' and 112"55' eastern longitude. The river

debouches onto the close-end. narrow basin of Madura Strait. An area of 12,000 km",

consisting of a series of hills and volcanoes, form the drainage basin. The monsoon,

tropical, climate in the drainage basin results in discharges with considerable

fluctuation. Average discharge is about 200 m)/~ but daily flows vary from 60 m)13to

1,600ml /s. Tides around the coast in this area are mixed, dominant semi-diurnal with

an average range of 2.0 m.

The Brantas River transports large quantities of sediment that originate

mainly from the eruption of Kelud volcano and a small part from the erosion of lhe

catchment basin. The annual fluvialload is some 11,2 x 106 mI. In it lower reaches,

the river splits into two branches, These are Ihe Surabaya and Porong man-made

branches. The delta, which is river dominated, develops seawards of the mouth of the
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Porong branch where most river flow has been directed. Delta growth is about 300 m

seawards per annum. The delta plain has a very flat topography (0. 1 % slope) and is

mainly used as shrimp pond.
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Figure 3.6 Schematic of the Brantas Delta, East Java-Indonesia.

The important factors affecting the Brantas River Delta are river

processes and tidal action. A high river flow during the rainy season dominates the
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processes within the delta region. Decreasing water flow during the dry season allows

tidal action to playa significant role in redistributing the river delta. Also, coasal

waves mainly arise from the east, since those from the other directions are fetch limited

either by Java or Madura Islands. Waves are generated by the east monsoon. Thus the

wave power and the maximum river discharge are out of phase. The near-shore wave

power is small due 10the dissipation of a very gentle slope of the receiving basin. As

a result the delta shoreline is irregular and is composed from fine grained sediment.
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Chapter 4

The Estuary of The Kali Garang

4.1 General Characteristics

The Kali Garang (Figure 4. 1) is situated in Sernarang , Central Java,

between 6OS0' and 7<'lO'S and between 109"50'and 109"35E. The river originates from

the Ungaran Mountain and flows into the Java Sea. It is formed by the confluence of

three tributaries; the Upper KaJi Garang, Kali Kreo , and Kali Kripik. The three

tributaries flowparallel northward and join to form the mainchannelof the KaliGarang

about9 kin south-southwestand upstreamof Semarang city and about 5 km upstream

of SimonganWeir. The weir splits the river flowinto two branches; Kali Semarangand

West Channel.The weir also controls the flow in both brancheswhich debouch into tlle

Java Sea.

The Kali Garang has a tou t catchment area of 196 km2 which consists

of the basin of the Upper Kali Garang (67.95 km1) , the basin of the Kali Krco <34.58

km2) , the basin of the Kali Kripik (61.84 km2) , and the lower basin (31.63 km2
) .

Administratively, the area includes the municipalityof Semarang, Scmarang regency,

and Ungaranregency . Witha total populationof about 1.1 million in 1987, the maximum
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density was 25,100 people per squarekilometre in the lower basin, and a minimum

density was5,000 people per square kilometre at the upper basin.

Present land use consists of paddy fields (I 6.H 'KI). upland fields (27.401

' ) , marsh and swamp (S.9O'KI). forest (4.SO'Kr)plantation (2.60 '1&). urban settlement

(32.00 ~), and others (10.99 'KI).

4.1.1 Topograph y

KaliGarang river basin can be considered in two parts: upperand lower.

The upper part is situated on the hilly area of the Ungaranmountain on the South side,

and has a slope of IS to 40 %. With an average elevationof about 50 to 125 m above

sea level, U1e land consists mainly of upland field with irregular plants cover.

plantation, and a small part of forest. The lower part, that extends along theseashore

at the South side, has a slope of 0 to 2 ~ , and an elevation about 5 m above sea 1~e1 .

It consists of seulememareas,paddy fields, marshes and swamps.

4.1.2 Geology

Geologically, the upper basin of the Kali Gatang is generally volcanic

rock, volcanicbreccia, and sandy rock all of which derive from volcaniceruptions. The

lower basin is formed (rom the alluvial material deposited by the Kali Garang and its

tributaries. This is mostly from clay, silt and sand.
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In general, the drelneee basinhasa high erosion rate. Annual soil loss

ranges from 5 mm (higherosion rare)to 2 mm (low erosion rate) (Departmentof Public

Works, 1982).

Java Sea
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Figure 4.2 Sketch chan of the Kali GarangEstuary and the Simongan weir
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4.1.3 The Simongan Weir

The Simongan weir as well as the West Channel is a part of the 1l00d

control system of Semarang cit y tha t wasbuilt by ee Dutch during the Colonial period

in the 1900'5 . The weir is located about 5 km downstream of the confluen ce of lhe

tributaries and spliU the Kali Garang into two branches: the Kali Semarang and the

West Channel. Freshw,uer flows into both branchesare contro lled by the weir, During

the dry season the freshwater discharge released by the weir into the Kali Semarang is

maintained at 0.20 m'rsec. No freshwater is released during the rainy season, In nm es

of fresh water flood. however, the excess discharge is directed by the weir through the

West Channe l.

Weir dimensions can besummarized as rollow. The weir crest is 64 .60

m long . Two sluice gales, each 2.60 m wide are located al both sides of the weir . The

weir crest and downstream elevation arc + 5.60 m and + 1.40 m, respec tively . TIIC

bedelevat ion upstream or the weir is +3 .70 m. Flow into the Kali Scmarang passes

through seven gates each 1.80 m wide. The base elevation of each gate is + 4.00 m.

4.1.4 The Kali Semarang Chann el

The Kali Semarang Channel is the original lower reach of the Kali

Garang. It flows through the densely inhabited area of Scmaran g city and extends north

eastward from the Simongan weir with a north- west tum about four kilometres from



Java sea. The total length is 8,240 m.

Today the Channel is used as a drainage and flushing channel for

Scmarang city. The gate lhat connects the Channel to the Kali Garang is closed

throughout rainy season, and is only opeoed during the dry season.

In 1984, the river channel was improved by The Committee of

Normalisation of KaliSemarang. Its course was realigned and its banks were protected

by constructing vertical walls. The river width varies from 42 m at the mouth to 10

meters towards the weir, with bed slopes varying from about 0.0002 to 0.0007 .

Various current feature of the Kali Semarang and the design discharge

at several points along the channel are summarized in Table 4.1 and Figure 4.3 below.

The present featu of the Kali SemarangTable 4 1 no

Distance Bcd Width Design
Section from the Elevation discharge

weir
(rn) (m) (m) (m' /s)

Gate (Simongan) 0 + 4.00 10.0 0.0
Gajah Mada 2.701 + 2.16 14.0 2.9
Sebandaran bridge 3.517 + 1.60 14.0 12.4
Kapuran bridge 3,739 + 1.46 20.0 20.9
Johar 4,709 + 0.95 20.0 37.7
Berok bridge 5,113 + 0.76 30.0 39.6
Kali Baru 5,749 + 0.45 34.0 33.0
BoomLama 6,439 + 0.28 40.0 32.5
Kali Asin 7.630 + 0.00 42.0 31.7
Mouth 8,240 ·0.50 42.0 47.3

Suspended sediments derived from the surrounding area amount to

13.000 m'zyear (Depanment of Public Works. 1982). About 90 % of this load was
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deposited within me channel, particular ly in the lower reach . This estimation was based

on the potential erosion of Ihe river basin.

4. 1.5 The West Channel

The West Channel (Figure 4,4) was built at the same time as the

Simongan weir and is intended to accommoda te flood water directly to the l ava Sea

rather than through the KaJi Semarang . The channel extends straigh t northward for

about 5,340 m. Basedon the latest measurement, which was taken in 1990, its width

varies from 340 m at the mouth to about 100 meters just below the weir. Depths vary

from 5 to 2 m and the average bed slope is 0.0004, Bed elevations decrease seaweeds

from about - ) ,0 m to ·3,0 m.

A masonry levee was built in 1982. The levee extends along both banks

from about the middle to the mouth (3 km) and was designed to avoid over flow during

the rainy season.

4.1.6 The Delta or Kall Garang

Historically the lower part of Semarang city is situated on alluvial

material deposited by from the Kali Garang and its tributaries, Bums and Mc Donnell

(1976) found that the shore line within the West Channel mouth extends seawards about

10.5 m/year.
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lhe West Channel (1/3)Figure 4.4 Plan View or
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Fil urr 4.4 Plan View of the West Channel (213)
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figure 4.4 PlanView of theWest Channel (3/3)
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The present condition of the Kali Garang Delta can be seen in Figure

4.5. The West Channel mouth protrudes about400 m seawards from the shoreline.

Westwards of the mouththere aresomebarislands thatextendparallel to theshoreline.

The islands havea straight shorelinefacing the sea andare composedof fine sandand

silt.

01:00:""

Figure 4.5 The Kali Garang Delta
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4.2 Existing Data and General Analysis

Existing data were collared from a numberof government officcs. Data

includehydrology, water flow, tide, waves. andwinds.

4.1.1 Hydrologk al Dala

The basin of the Kali Garangis located in the tropical lone. It has two

seasons: dry and rainy. During the dry season, May to October, winds arc dominated

by theeast monsoon. In the rainyseason, November 10 April, winds are affected by the

west monsoon.

Meteorological data such as rainfall, temperature, relativehumidity. and

evapcratioawereoblained fromSemarang MeteorologicalStation. Generalhydrological

conditions during 1990 are summarizedin Table 4.2.

Rainfall.

The averageannual rainfall is about 2,750 mm. The monthly average

rainfall for the January 1990 to December 1990 period is 241 mm with the maximum

at 667 rom in January. Daily rainfall intensity varies considerably as presented

graphically in Figure 4.6.
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Evaporation.

Anannual evaporation is about 1,640 mmandvaries from 182.5 mmin

October to87.4 mm in January. Monthlyevaporation is presented inTable 4.2. Daily

evaporation variesfrom6,4 mmto 3.5 rnm withtheaverage being4.5 mm/day. Figure

4.7 shows variation of monthly evaporation during1990.

Table 4 2 Hydrological Data 1990

Monthly Monthly Monthly Monthly
Month average average average precip-

temperature humidity evaporation itation
' C % mm/day mm

January 26.1 87.2 2.8 667
February 26.3 88.2 4.5 662
March 26.9 83.5 3.5 300
April 28.2 78.9 4.6 119
May 27.8 80.2 3.9 98
June 27.7 74.6 4.4 139
July 27.2 74.3 4.6 186
August 27.4 74.5 4.7 172
September 27.8 71.1 5.7 150
October 28.7 69.3 5.9 17
November 28.7 73.3 5.7 121
December 26.8 64.0 3.5 265

Average 27.S 78.3 4.5 241

Temperature.

The average monthly temperature ranges from 26.IOC in January to

28.7°Cwithan averageannual value of 27.soC (see Table 4.2). Thedaily maximum

andminimum temperature are36"<: and23°C, respectively.
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Figure 4.6 Daily RainfallVariation During 1990

Figure 4.7 MonthlyRainfalland Evaporation, 1990.

Relat ive Humidity.

The averageannualrelativehumidityis 78.3 % and the averagemonthly

varies from 88.2 % in February to 64.0 % in December as presentedin Table 4.2.

Daily humidity variesfrom 84% to 35 %.
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4.2.2 Fresh Water Discharge

The salinity at any point in the estuary and at any particular depth

depends on the amount of fresh water present at that point at that time. It was.

therefore, very important to ascertain the fresh water flow entering the estuary at any

lime. The amountof fresh water flowcan beestimatedby direct measurement of flow

or by the use of empirical formulae relatingrainfall to run-off (see section2.3)

Measured Fres h Water .

The amount of fresh water flowing in the Kali Garang was gauged at

Panjangan located about 3.5 km upstream of the Simongan weir (Figure 4.2) by the

Directorate GeneralofWaler Resource, Department of Public Work. The gauge records

flow from aboul178 km2 (88%) of the totaldrainagearea.

During the period of April 1986 to December 1989, the maximum

average daily flow was 187 m'/s and occurredon February 5, and 22, 1989. The

minimumflow wasabout 0.30 m'/s, Figure4.8 shows the variation of daily fresh water

flow during the periodJanuary to December 1989.

Maximumfloodoccurred in January 26, 1991. The water elevationat the

time was +9.40 m (3.80 m above weir crest). River discharge was estimated about

1,000ml/s. The same floodhappenedin 1963.
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Table4.3 Monthly Fresh water Aow of the Kali Guang al
PanjanganfromApril 1986 10December 1989

M""th Monthly fresh water now (m'/s)

1986 1987 1988 1989

January 22. 18 12.73 9.89
February 29.72 19.50 48.39
Much 24.85 IS.96 15.12
April 29.77 12.05 10.45 13.16
May 5.76 6.38 7.49 5.91
June 8.57 5.0' 2.75 8.56
July ' .88 3.49 2.46 2.82
August 4.12 2.46 1.70 2.26
September 4.36 1.88 1.77 1.94
October 3.' 0 2.08 3.64 3.32
November 8.21 3.82 3.90 3.52
December 6.99 8.9 1 27.53 6.34

:;:~~[[ '''J'
!.150

~ 125e
~100

~ 75

i 50

.< 25 4b ... 1\
o 1 P M A M"""J!""''"'J,....A,.......-:S,....~O'''""''N 0

Mouths

Figure4.8 Variationof Average DailyFlowof the Kali Garang at Panjangan,
During 1989.
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Runoff .

Runoff calculations in the drainage basins of the Kali Garang and its

tributarieswere obtained from the Design of Drainage System of Semarang City, 1989

(Bappeda Kotamadya Dati II Semarang, 1989). The procedure and result are

summarized in lhe following section.

The peak discharge, Qp'

Peak Discharge, Qp, was _calculated .by using the modified rational

formula (equation 2.4). TI,e run-off coefficients. C, used are given in Table 2.1. The

storQRe ,·oe./ficienl, e" for the Kali Garang basin was estimated at 0.8 (Bappeda

Kotamadya Dati IISemarang, 1989). Time of concentration, te, was estimated based on

the equation 2.5, where t, was obtained from Figure 4.9.

Rainrall intensities, I .

Rainfall intensities I, were estimated based on 13 years data and are

shown in Table 4.4. Rainfall intensity for each duration and different frequency were

calculatedby Weibull' s formula as mentioned in section2.3, and presented graphically

in Figure 4. 10.
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Table 4 4 Maximum Rainfall (Source ' Depart17leTllof Public Works 1982)

Rainfall duration (minutes)

Ve•• s re is 30 .. eo u '" see nc

19S9 10.0 ~., 30.0 sc 53.0 n .• 53." 54,6 .14 ,6 S4.6
,se, 11,1 21.0 31.1 . 5.9 .6 .0 . 7.0 51.2 51.0 61.4 11.0
1961 20.6 ~. , 1'" "., .2 .1 43.$ so.o 65,6 11.0 I 1U
1962 10.1 30.' ~., 30.1 35.0 31.' 4S.2 51.5 11.6 15.9
1963 11.2 30.' 14.9 JI .2 39.' "., ~., 61.5 69.1 111.5,... 10.1 31.1 4L6 61.4 ". .0.0 19.1 91.4 91.1 100.0,.., 11.0 14.6 11.3 2!.J 31.3 " .6 41.1 UI W .• UU,... 16.' 19.6 34.1 .1 .1 50.0 53.6 11.9 10.0 '" 91.0
1916 ".0 10.0 33.1 .1 .1 59.0 1• .9 106.$ 106.5 13• .6 111.6
1918 17.0 14.5 36.0 ec.c n.' 14.5 m 102.0 11U 114.9

"n 15.1 U., 19.1 36.9 SO.I 5U 91.7 91.1 126.0 116.0

"'" U.I 11.9 61.0 01.0 11.6 91.0 m.l 114.9 191.6 191.6
1911 20.0 ee.o 50 ,0 ss.o ro.' 10.0 111.6 IW.O 114,0 110.4

Calculationsof peak discharges were carriedout for each tributary and

for the main channel. The results are summarizedin Table 4.5.

Table 4 5 Runoff of the Kali Garangand its tributaries

Basin Area Q,
(km' ) (m)/sec.)

Kali Kreo 61.84 306.84

Kali Kripik 34.58 285.72

Upper KaJi Garang 65.77 402.74

West Channel (weir) 177.55 695.11

Kali Semarang (mouth) 10.25 30.07
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Figure 4.9 DesignChart for Estimation of OverlandTime of Flow (Source:
Deportmentof Public Works, 1982)
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Figure 4.10 Intensity-duration-frequency (lOP) Curves .

4.2 .3 . Tidal dala

Direct measurements of the tide at the Kali Garang Estuary have never

been made . Instead, tidal information is derived from Semarang Harbour which is

locat ed about 2 km and3 km East from the KaliSemarang and the We st Chan nel

mouths respectively (Figure 4.11).

Based on the tidal constituent s which influence the Semarang region , the

tidal type is a mixed, predominantly diurn al tide with an "PMratio of 1.67 . The Lunl-

solar diurnal (K.) component is dominant (fable 4.6) . Thus the mean tidal period is

23.93 hours .
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The Tide allhe Semarane Harbour.

Tides have beenrecorded since 1985by using an Automatic Water Level

Recorder (AWLR) located at the wharf facing the harbour channel (Figure 4.11 ).

Table 4.6 Tidal Constituents in Semarang (Source: Deparrmenr of
Fisheries and Oceans Ca1liU!a)

Constituent Period Amplitude Phase,
lunar brs . em, degree

M, 12.42 10 286.00
S, 12.00 8 187.20
N, 12.66 5 249.70
K, 11.97 4 229.80
K, 23.93 22 8.90
0, 25.82 8 246.10
P, 24.07 7 12.30
Q, 26.87 2 154.80

The instrument consis ts of a vertical tube open to the sea through a small

orifice near the bottom. Inside the tube. a float sits on the water surface . A wire joins

the float to a recording mechanism where the wire is connected to a counterbalance

weight . Waler levels are recorded by a pen moved across the recorder paper whic h is

secured around a drum rotated by clockwork. Water level is recorded against time in

form of graphic output.

This recorder has been operat ing since 1985, and original records have

been tabulated hourly for every month. These data were analyzed to determine the tidal

range. duration of rise and fall, type of tide, and water level distribu tion.
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Flgure 4.11 Lay Outof Semarang Harbour, Showingthe Location of Tidal
Gage, WaveRecorder and Anemometer
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The tidal range, duration of rise and fall and mean tidal level (MTL) ,

were obtained from tabulation of the elevation and time of each high and low water for

the whole of 1990 and for three months in 1991. Results for 1991 are presented in

Table 4.7. Figure 4.13 shows the results for 1990.

During the three month period, May t" to July 31" , 1991, the tide was

dominated by diurnal tides although an unequal sem i-diurnal tide occurred for a few

days around nea p tide. During this period, the maximum tidal range was 1.09 m and

the average was 0.S7 m. Mean Tidal Level was 0.72 m above the Kali Garang Datum

(RBW I
) .

Pulll.lOOIl

o•
Semlfl.ll.lI
July, 1991

l.5 0 ...-----------------,

~ 1,2S

i 1.00.
•~ 0.75
:
~ 0.50

! 0.25
iO

0.00 '-'-~~~~~~~~~~~~~~........J

II 16 21 26 31

Days

fi gure 4.12 Tide in Semarang Harbour, I uly 199I.

RBW i! the damm used by the Oovernment of Indon~i.. in the Ktli O.rang
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Tar)le4.7

Analyses of
Tidal dataof Semanmg Harbour

Recordfrom May I- to July 31-, 1991
Elevationis given in em, ROW

ffigbWatet Low W"" Du~ioa ..."Do" TI_ H,_ Tinw H~hl '.1 Rile Fall ... MO'aIIu ...,!l
(hrs) (till ) (M) (t m) (hn) ~B) (~m) (t ill) (t ill) (em)

May 14.30 .04 23 . 10 42 ' .40 14.50 " " 73 73
14 .00 .04 24 .00 17 10 .00 16.l 5 67 .. 73 to
16 .15 . 00 22,30 .. S,U 11.3 0 57 " t s II
16 .00 "' 23 .30 4l 1.30 11.10 72 " 79 "16 .40 '" 0 .30 57 7.SO 6.45 OS 78 90 71
7 .15 " 9.'" 80 '. 00 6.45 s " " "16 .00 . 18 22 .30 o 6. 30 16.45 7S " II 84
15.'" 125 23 .30 34 8. 15 7.10 " 44 10 "6 .40 78 8.15 7S "25 1.4 5 , 44 77 "16 .00 119 2 3.50 78 1.50 ' .00 " 53 74 SS
7 .50 II 9 .50 73 ' .00 6.1 0 • 41 77 94
16 .00 . 18 0 .40 30 '. 40 1i.20 84 " 72 57

10 7.00 .. 9.40 77 2.40 6.40 7 .. II . 00
16 .20 . 23 23.SO '9 7.30 7.10 94 56 76 57

II 7.00 " 9.30 7S 2.30 7.00 '0 41 10 ...
12 16.30 .16 0.30 " ' .00 6.30 .. '9 76 6S

7.00 94 11.00 18 4.00 6. 15 16 " .. 94
13 17.1 5 .09 0 .15 OS 7.00 1.45 .. 56 77 73

' .00 '0' 12.10 " 4. 10 4.SO 16 '0 9' so
18 11.00 " 0 .45 41 7.4 5 ' .ll " 57 61 70

9 . 10 9' 14.00 80 4.50 ' .30 18 IS " II
IS 18.30 " 2.00 .. 7.30 ' .SO . 9 59 71 76
16 10 .50 'OS ' .30 .. 14.40 10.00 56 " 77 "17 11.30 "' 2 .45 .. U.U 9.45 " 71 " "18 12.30 ' 21> 2 .50 sa 14.20 11.00 " " .9 9'

13.50 127 23.00 ' 9 9.10 ' .00 61 • " .,
19 2.00 • 7 4 .30 61 2.' 0 9.15 • 70 .. 96

1l .45 131 23.40 Sl 9.55 14.5 0 18 18 92 92
20 14 .30 131 23. 10 " S.40 " ..50 '0' 10' 80 79
21 15 .00 129 23.15 " 8.15 16 .4 5 '00 " 79 78

" 16 .00 128 0. 15 17 8.15 7. IS '09 61 72 "23 7 .30 " 9.00 ' 0 1.30 6.40 s ' 9 " ' 00

" 15.4 0 ' 19 0 .30 25 8.50 6.45 " 70 72 '0
7 . 15 " 9. 40 18 2.25 7.35 17 78 87 "25 11.'" 106 0. 45 n 1.30 6.55 7S " 69 62
1.40 9' 11.00 76 3.20 6.l 5 17 16 " 84

continued(213)
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Table 4.7 (continued2/ 3)

High Wlter Low Wiler DUflition Range
D•• Time Hght Time Hghl Fin '"~ FlU '"~ Mean Level

(hrs) (em) (hrs) (em) (bn) (bn) (em) (em) (em) (em)

26 l7 .15 92 0.30 41 7,15 '.00 " " 67 69
27 8.30 96 1.45 46 17.15 7.45 SO se 71 14
ae 9. 30 102 0.30 49 15.00 9 .30 sa 6. 76 79
29 10.00 109 1.15 46 15.15 10.45 63 63 78 78

17.00 109 24.00 " 12.00 11.40 64 68 77 79
3D 11040 lI3 23.00 4l 11.20 13.10 70 72 78 79
1I 12.1 0 us 23.30 .1 11.20 16.00 14 71 78 77

JUlie I 15.30 lI2 0. 15 '1 8.45 14.45 71 71 77 77
2 IS.OO 112 1.30 J9 10,30 12 .45 13 79 76 79
3 14.15 118 22.40 4l ' .2S 10 .00 7S 52 81 69. 8.40 ss 21.00 J6 12.20 13.10 " 79 " 76
S 10.10 ns 0.30 31 14.20 14. IS 84 80 13 71
6 14.45 III 22.4 0 27 7. 55 16.50 84 84 69 69
7 15. 30 II I 23.30 1I 8.00 15,45 80 72 71 67
8 15,15 103 0. 50 2J 9,35 10.40 80 8S 63 "• 11.30 10. 22.30 ae 11.00 8.20 80 " 68 S8
10 6.5 0 87 11.00 67 4.10 5.30 JO I' 77 76

16.30 8S 24. 00 29 7.30 7.30 se 13 57 "II DO 102 13.00 .. 5.30 3.30 13 2 96 so
16,30 . 1 24.00 31 7,30 8 .30 60 7 1 6 1 67

12 8.30 102 1.00 31 16.30 8.45 71 14 67 68
13 9.45 lOS 0.45 " 15.00 9.45 13 72 69 "I' 10.30 104 2.1 0 . 1 15.40 9. 30 " 77 13 80

" 11.50 118 23.10 J7 11.20 1.40 81 • 78 J9

" 0.50 41 3.10 J9 2.20 10.40 2 ' 1 40 80
13.50 120 1.10 J9 11.20 1.20 . 1 3 80 41

17 2.30 42 3. 50 J9 1.20 8. 10 3 80 41 79
12.00 "' 23 .00 " l U )O 14.30 " 92 76 79

18 13.30 125 22.30 J6 '.00 15,JO 89 80 " 76
19 i4 .00 116 23. 00 26 ' .00 17.30 90 ss 71 ..
20 16.30 lI 2 23.5 0 31 7.20 17.40 7S " 7S 70
21 17.30 102 24. 00 " 6.30 7.00 69 S8 ss 62
22 7.00 . 1 11.30 82 4.30 6.45 • • 87 84

18.1 5 " 24.00 30 5.45 '.00 " 67 S8 64
2J '.00 97 13.30 87 S.30 3.00 I' 2 90 84

16.30 es 21. 15 31 4.45 9. 15 48 61 61 "24 6.30 .. 23.30 29 17.00 8.30 69 69 64 64
2S ' .00 .. 24 .00 31 16.00 '.00 67 72 ss 67
26 8.00 103 24.00 32 16.00 10.00 71 72 " "27 10.00 104 0, 10 " 14,10 10. 00 69 70 70 70
as 10. 10 lOS 23. 10 " 13.00 12.20 72 " 69 67

continued(313)
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Table4.7 (continued 3/3)

HigbWater Lcw we ter Duration RlIllllO
Date Time Hllbt Ti~ Hghl F~ll Rise Fill Rise Mean Level

(hn) (elll) (hrs) (em) (hrs) (hfli) (elll) (em) (elll) (em)

29 \1.30 101 24.00 11 12 .30 12.00 70 76 ss 69
70 12 .00 107 23.30 11 11.30 13.00 76 74 69 "July 1 12.30 lOS 23.00 28 10.30 13.30 77 80 61 68
2 12 .30 10. 24.00 JS 11.30 13.00 73 61 72 68
3 13.00 102 23.00 37 10.00 14.00 ss 66 69 69
4 13.00 102 23.00 36 10.00 14.00 66 " 69 64
s 13 .00 92 23.00 " 10.00 \6.JQ es 73 60 64
e 15.30 100 23.00 33 7.30 10.00 68 31 " se
7 9.00 83 12.30 80 3.30 10.00 3 s 82 83

15.45 " 23.15 " 7.30 3. IS " ss 57 ". 6.30 94 13.00 73 6.30 2.70 21 4 84 "15.30 77 23.15 2J) 7.45 7.45 57 73 49 57
7.00 " 14.30 72 7.30 3.00 21 2 83 73
17.30 74 24.00 " 6.30 7.30 49 74 sa ea

10 7.30 " 15.00 70 7.30 LSD " 3 " 71
16.50 73 24.00 22 7. 10 7.00 SI BO 47 62

11 7.00 102 0 .30 17 17.30 '.00 " 84 61l ss
12 8.30 101 1.30 IS 17.00 9.30 " 90 " . 0
u 11.00 10' 2.15 as 1S.15 6.45 70 74 70 72
14 9.00 109 6.50 JS 21.50 5. 10 29 33 9S 97
IS 12.00 113 23.40 JS 11.40 12.20 re as 74 "16 12.00 121 22.15 40 10. 15 14.30 81 68 81 74

17 12.45 108 23.30 2J) 10.45 13.30 .. " 64 57
18 13.00 9S 22.30 11 9.30 9.00 64 .0 6l 01
19 7.30 91 10.40 " 3.10 2.50 Il 4 " .0

13.30 82 23.00 29 9.30 7.00 53 54 " SO
20 '.00 83 11.) 0 60 5.30 4 .30 23 14 72 61

16.00 74 13.00 57 2\.00 3.00 17 3 " ss
16.00 .0 23.50 11 7.S0 6.50 24 68 48 70

22 '.40 104 13.50 01 7.10 1.10 44 3 82 62
15 .00 6l 23.00 11 '.00 8.00 33 " 41 01

23 7.00 92 14.00 52 7.00 3.00 41 12 72 "17.00 6l 23.IS 28 6.15 7.55 lS 69 46 6l

24 7. 10 97 23.50 30 16.50 '.40 61 6l 64 "" 8.30 " 23.10 " 14.40 9.30 64 64 01 01
ze '.40 " 23.00 11 14.20 9 .45 " 71 " 66

27 8.405 102 0.15 14 15.30 9.15 68 ss 68 61
28 9.30 " 24.00 27 14.30 9.00 72 72 6l 6l

" 9.00 " 24.00 as 15.00 9.30 60 " 69 72
30 9.30 10' 0.40 " 15.10 66 72

Average : 100 44 9:24 9:16 57 57 72 72
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Distributions of tidal rangeand waterlevel were also analyzedfor the 1990

period. The distribution of tidal range was obtainedby tabulatinga vertical distance

betweena high water and consecutivelow water. Results are presentedgraphicallyin

Figure 4. 13. During 1990 the tidal range varied from 0. 13 m to l.OS m with an

average of 0.65 m.

TimedllriDa 1990(cia,.. )

B

Figure 4.13

Timedariq t HO (cia,..)

Daily Variation of Tidal Ranges in Semarang During 1990 (A),
Distribution of Tidal Range (B).
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The average tidal range of the one-tenth highest tides is 0.95 m, and the

average tidal range of the one-tenth lowest is 0.35 m. These values will be used

hereafter as mean spring and mean neap tides, respectively.

The distribution of water level was found by tabulating an hourly water level

during a one year period. Data were classed in 5 em increments. The frequency of

occurrence for each class of water level was then calculated to determine the percentage

of occurrence. Figure 4.14 shows the sea water distribution during 1990. The mean sea

water level (MSL) is 0.74 m, RBW, the high-high water level (HHWL) and the low-

low water level (LLWL) are 1.35 m and 0. 15 m, respectively. The average of the one-

fourth highest water levels is 1.06 m, and the average of the one-fourth lowest water

levels is 0.42 m. Here and after, these two values are used to represent the low water

level (LWL) and the high water level (HWL), respectively.

On.y••rp.rlad,lI1110

1.3' .--------- - - - - - - ----,

;
i 0 .90

·1
. ~ 0 .•' ~-=-"--~;.------"'=--~io-="-''-.rl

!
0 .0 0 C===I=:::::;::=====::Jc==::::I

o

Figure 4.14 Distribution of Water Elevation in Semarang Harbour, 1990
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4.2.4 Wind and Wave

Wind and wave data were obtained from the Directo rate General of Marine

Transportation, Section of Tanju ng Emas Harbour , Semarang.

Wind Data.

The wind measurement station was located within the harbour area at the

tip of the wharf (see Figure 4.11) with the anemometer placed at a height of II m

above the harbour datum. Winds were recorded continuously in both velocity and

direction. Data were averaged and presented hourly , so there were 24 data for each

day. Distribution of wind direct ions durin g 1989 period is summarized in Tables 4.7

and 4.8.

During a year, the wind blows primarily from east, east-south-east, and

south-east (E + ESE + SE ;:: 45.6 %). This wind blows from April 10 October and

is called the east monsoon . The other prevailing wind blows from west, west-south

. west, and south-west c:w + WSW + SW ;:: 22.4 %). Thi s wind blows during

November to March and is called the west monsoon.
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Table 4 8 Wind Data 1989

LOCATION SEMARANG. INDONESIA
LAT.OO6:56S , LONG, 110:25 E

PERIODJANUARY 01.1 989 TO DECEMBER 31. 1989

Frequency

D'_ ''''' ~ MAA ~ MA> mN '" '"0 '" ocr NOV O<C ,.... "'-",. I;un

N " . .. ., N .. .,
" ~ ~ " " '" N

NN'
, . " .. . " u · . t ,~ NN '

"' "
,

" " " " u .. " u re " ,~ "''"'
, r .. " " ao " " " " " " '" '"', " " .. " " " '" us '" .. .. " %. ,

as .. " .. '''' '" '" '" ". '" '" '" " 1443 sse

" .. " '" m '" '" '" '" ,.. '" ua .. U 76 sa
ss " u " " ac aa rt rc · " " " us ss,

" " as " " " ia " " " " " '" s
"W " " " n re " . , · ,

" " on "W
, W " " as " " " " · u " " .. m 'w

W'W " " " "
,

"
, · · "

,
" '" W , W

W m au " " " " n " " n " u m W
WNW '" m " "

,
" " · " " " " ... WNW

NW .. " " .. " " " " " " " u ... NW
NNW "

, m " " " " " "
.,

" " no NNW

T~'
,..

'"
,.. no ,.. no ,.. ,.. no ,.. w, ,.. ~7JJ T~'

Wave Data.

A waverecorder, which hasbeen operated since 1987, waslocated about

3 kmseaward from theshoreline or about 300 mnorth of thetipof the westbreak-

water, where thewater depth is approximately 10 m(Figure 4. 11), Thesite is open to

WNWto NNE winds, Prom otherdirections, the fetch is limitedby Java Island.

The recorder providesinformation about theseasurface elevation which is

recorded for a 20 minute period everyhour by penon paper chan rolls. Sea state
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parameters (H, andTJ are derived fromthesechan records.

Table 4 9 Wind Datain 1989 ( in percent)

LOCATION SEMARANG , INDONESlA
LAT.006:S6 S. LOI'G. 110:25 E

PERIOD JANUARY 01, 1989TO DECEMBER31, 1989

Percentage frequency(%)

OJ,,,o '''' '" M" "'. MAY '"" '"' AVO m ocr ' OV 0'" YEA Oi_
liaa . 1;00

N u e.• 5.' s., 10.6 15 .. 7.' ' .7 7.' IJ.O 5.' 7.' N
N", ,.. e.s ,.. ,.. '" u u r. ". c., ,., c.s t . '"'"' , .c ' .7 7.1 ' .7 a.• 7.S U ,.. 7.' 7.' I .' I. ' as HE

'"' •.. r.e ,.. U ,., U ,., ... I .' a.a ., I .c a.a ON'a ,.. I. ' .., I.' rc.s ILl ,,~ 17.2 16.7 13.2 11.-4 I.' 11.1 ,
ess I.' 7.' I.' 14.<4 20.7 ' U ,,~ "., n~ 21.0 16.S ... 16.S ase

" '.1 ,.. IU 17.' 29.0 2l.1 '" n.' ".. 19.' 16.2 12.0 1'.0 "sse 7.7 ". U ,.. e.o ... ' .1 " t.t U U ,., ,.. ss, ' .1 ..• •.7 U ,. .., ". ,.. ,.. ,.. .., , .e a.s .
"W ,.. ,.. I.' U ,., ' .S '.1 ... ... e., '" U "7 " W
,W ., '.1 ' .7 U '" ,., I.' e.s LS U U e., U sw

W,W 7.' 11.6 '.7 ' .1 '.7 ,., '.7 ... t.r ,.. ,.. ,., ,., W'W
W n .1 ,l.7 n. 1 .. " ,. ,.. U '.1 .., I .• " .2 '. 7 W

WNW 14.4 19.0 11.1 ' .7 c., ,.. ,.. ... ... ,.. .. 7.' '.7 WNW
NW .. ' .7 ,,~ 1' .1 7.7 ,.. .. , .o 7.' ... 11.4 11.1 ... NW

NNW ' .1 ... ..• U U ... " ,. 3.1 ,.. ,.. ' .7 ' .1 NNW

T" ' 00 ' 00 '00 ' 00 '00 '00 '00 ' 00 ' 00 '00 '00 ' 00 '00 T~'

The wave climate throughout 1989 is summarized in Table 4.9 below.

Waves withH.higherthanonemetreusuallyoccurduring November to March. During

theothermonths,the sea is dominated bycalmwavesand thewave heightis less than

O.SOm.
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Table 4 10 Waveclimate

STATION c-s
SEMARANG HARBOUR, INDONESIA

JANUARY 01, 1989 TO DECEMBER 31, 1989

H, 2.5
I

(m) 2.0
12 13

1.5
14 97 67 5 I

1.0
as 179 246 88 9

0.5
577 1252 921 401 III 18 I

0.0
, , , . , ,

Peakperiod in seconds
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Chapter 5

Field Observation and Analysis

Theproblemwas10determinethe tidalpropagation, salt waterintrusion

and circulation pattern together with the distribution of sediment transport and

deposition along the two channels of the KaliGarang Estuary, and {ormationof delta

seawards of the river mouth. The parameters considered were tidal action at the mouth

of the estuary, riverdischarge, estuarinegeometry,winds, wavesand density variation

betweenfreshand saline waters.

To understand the problems mentioned, some field measurements and

observations were taken during May to August 1991. The initial step was to determine

the location on survey crosssectionsand instrumentation. Locationsof survey cross

sections are shown in Figure 5.1 and described in Tables 5.1 and 5.2.

5.1 . WaterLevel Measurement

Water levels were measured by using a pole marked in metres and

millimetres. This is usually known as a Visual Tidal Scale. Poles were installed

vertically at the river bank in such a way that it was still possible to obtain readings
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Figure 5.1 Sketch Chan of the KaIi Garang Estuary Showing the Observation
Stations.

Table 5 1 Survey Cross Sectionsat theWest Channel

SurveySection kmsfrom kms Description
Number weir apart

0 Simongan weir
0.310

01 0.310 Simongan bridge
1.112

02 1.422 BM.PPS.KGR.04
0.810

03 2.232 BM.PPS.KGR.05
1.450

04 3.682 BM.PPS.KGR.06
1.255

05 4.937 BM.PPS.KGR.07
0.400

5.337 Javasea
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even at the lowest low water. The levelling system was based on the Kali Garang

Datum (RDW). Threepoles were installed at each branch, at stations 01 , 03, and 05

for the West Channel, and stations 02, 04, and 05 for the Kali Semarang (Figure 5.1),

Table 5 2 Survey Cross Sections at the Kali Semarang

Survey Section kms from kms Description
Number weir span

0 Simongan weir
0.150

01 0. 150 KaiisariGate
3.367

02 3.5 17 Sebandaran Dr.
1.192

03 4.709 Johar
1.040

04 5.749 Kali Baru
1.832

OS 7.58 1 Kali Asin
0.650

8.23 1 Java sea

Readings were taken simultaneously at three stations, at one hour

intervals over one tidal period(about 24 hours) both during spring and neap tides. The

aim of these measurements was to estimate the type of tidal propagation along the

channel (tidal curves), longitudinal water profiles and tidal volumes.

As mentioned in section 4.2 , the tide at the Semarang HaJOOur is

predomi nantly a diurnal tide. Normally the difference between spring and neap tide is

small, unless there is an unequal-semidiumal tide. Measurements of water level show

that the tides at the West Channel and the Kali Semarang are similar to those at the
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Figu re S.2 Tidal curves in the Se marang Harbour ' and three stations in the West
Channel on oj June 26, 1991, b) July 04 , 1991. c) July 18 , 1991, and
d) July 26, 1991.
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Figure 5.3 Tidal curves in the Semarang
Harbour and two stations in the
Kali Semarang,
a) July 04, 1991,
b) l uly 18, 1991,
c) July 20 . 1991.
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Harbour. The tidal range decreases gradually up the estuary. Figures $.2 and $.3 show

the tidal curves found during measurements at the West Channel and the Kali semarang,

respectively.

In the West Channel, the tide propagates upstream as far as the weir. The

tide reaches the weir in less then one hour. Tidal range just below the weir was about

75 % of that at the river mouth. Theoretically the channel should experience a standing

wave. Since the length of the channel is far less than one quarter of the wave leng th

(diurnal L ± 95 km}, the standing tide in the channel is not apparent.

In the Kali Semarang, the tide propagates to about the mid length of the

channel (between Sebandaran bridge and la har) . The maximum tidal limit is at

Sebandaran Bridge (3,517 m from the weir). During the observations, the fresh water

now was almost zero. The channel was dry, except for the lower part of the Kall Asin.

During flood tides the channel was inundated but it dried out again during the ebb tides.

5.1.1 Tida l Curves and Longitudinal Water Profiles

Typical raw data obtained from the water level measurement is given in

Appendix A, Table A. I. Data from each station were plotted against time and tidal

curves for each station were obtained by connecting the hourly water level data. The

longitudinal water level profiles were obtained by plotting both the maximum and

minimum water level from each station against distance . If there was a different time

in reaching either HW or LW at each station, the time at the mouth was used as
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reference . The results are given in Figures ~.4 and 5.5. respectively, for the West

Channel and the Kali Semarang.

General water profiles (during low discharge) can be estimated by

averaging the water surface gradient found during observation. The gradient was taken

at both high water and low water.

Table S 3 Water Surface Gradient at the West Channel

GradientatHW Gradient at LW
Date Iww (t(Js) II.w (t O·s)

Upper part lower pan Upper part Lower part
(STA.OI-Q3) (STA.03·05) (STA.OI ·03) (STA.03·05)

June 26 1.0309 0.0348 2.8076 1.3928

July 04 0.3948 0.3480 2.9170 2.089 1

July 18 1.2280 1.2187 5.0450 0.9057

July 26 0.6361 1.0446 4.8910 1.7409

Average 0.8225 0.6615 3.9 150 1.5321

Table 5.3 shows that the average of the water surface gradients in the

West Channel during low water (LW), ILW' is higher than that during high water (HW),

l/fw(Le. , Irwis three times as high as IHW) . Another feature of interest is that the water

surface gradient at the upper part (i.e ., STA.OI-03) is higher than that at the lower part

(i.e., STA.03·0S) . This indica tes that seaward velocities in the upper reach are higher

than those in the lower reach.
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Figure 5.4 water Profiles at the West channel.
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T. blt 5 4 Water Surface Gradient at the KaliSemarang

Gradient at HW Gradient at LW
Oat< fHW (10" ) ILw (l~)

Upper part Lower part Upperpart Lowcrpan
(STA.02-ll4 ) (STA.04-()S) (STA.02-ll4) (STA.04.()S)

July 04 3.1100 0.0224 6. 140 0.1344

July 18 3.2690 0. 1389 6.140 0.2016

July 20 4.0138 0 .0403 6. 140 0.1344

Average 3.4642 O.06TI 6. 140 0.1561

In the Kali Semarang, ILW is about twice 11!W' In the upper part of the

estuary (i.e STA.02·04) the values of IHW and ILware both much higher than the values

in the lower part of the estuary (i.e STA.04..{)$). This phenomena might be due to the

variation of the tidal limit. In table S.4 above, the tidal limit was assumed 10 be

constant and tobe localed at STA.03. In fact. the location of the tidal limitvaries with

the tidal level at the mouth.

5.1.2 Estirn.t ion or TId81Volume in tbe West Cb. nnel

The tidalvolume wasestimatedfor three different tidal conditions: spring

tide (tidal range of 0.94 m), mean tide (tidal range of O.~ m), and neap tide (tidal

range of 0.30 m), see Figure 4. 13. The mean water level at the mouth wasfound 10 be

0.74 m. The water profile depends on the water elevation at the mouth and the water

surface gradient as calculated in Table .5.3 above. When the water proftlewas obtained
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the corresponding areas below the various water levels could then be calculated. The

volumes between the sections were calculated by averaging the two areas concerned and

multiplying by the centre line distance between the sections. The tidal volume was

obtained by subtracting the water volume below high water (HW) and water volume

below low water (LW).

The calculation was facilitated by the EL-A curves shown in Figure 5.6

and water surface profiles. The EL-A curve is the relation between water level and

cross section area. Curves were calculated for five stations in the West Channel. The

relationship between elevation and area is expressed in a polynomial equation as

presented in Figure 5.6.

;

SOO

'ij' 400

";;'300

..!! 200

100

/
/ JfJ

,:.
i 9TA.O'),.' '- '/" ," ," ,/ $ TA.O'J

~~~;:.:::;;:: .-
STA.02

CJ STA.03

Q ST A.004

Water elevation (m , RaW)

Figure 5.6 Elevation-Area (EL-A) Curves at Five Stations of the West Channel
A.,. ", .. 25./259 + JO.0944X + 1.867}(' + o.J70SX'
A.,. IU" 7~.$707 + 2$,7$" X + ;2,6061}(' + 0.9404 X'
A.,. OJ .. )1.29Jj + 4O.lflV X + 9.1158 X' - OJ)(J9jX'
A.,. _ 69.2J$+19.466 X+5.J4JJ ]('·1/.56J X' +J.19$ X'
A"'A.M.. J09.057.5+ 11/.8912 X + 9.645](' - 4.458 X'
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water surface profiles were derived from the average water surface

gradient as calculated in section 5.1.1, Table 5.3. The initial water elevation at the

mouth was taken as mean sea level (MSL) plus or minus tidal amplitude for high water

(HW) and low water (LW), respectively. The results are tabulated in Table 5.5.

Tab le 5 S Tidal Volume in the West Channel

Di... "". Volu.... 8<luw Volu.... Btlow V"lume!loI",."n
S.. ll"*' r...11\ Hijlb W. '<t (HW) Low w..... (L W) HW.ncILW

lI>cw.i r
Sprin. Mo. " ~ri~ M~ 1.1• •11'"" 11I1)"m iW,,,, ~'::' Mom ;:.:~ ~ri:~ 64<", ;:.:~

w,.
10179 (19)1STA.OI no ".'" 11509 1665) 13742 rocr om 2911

STA.1I2 1441 6J6~7 """" 5671111 ~"" 48993 5 1916 1749 1 11049 4K64
STA,OJ 11]2 4241~ 36811 32643 19381 nOM "... 11047 141113 om
STA,(]04 3682 96969 812j4 T,l651 5J~n 574% 62146 6 1030 26758 10'05
STI\ ,OS 4937 323716 304214 2114661 214868 234357 ,,,"',, 108858 ,,'n 306S6

TNII 4~J7 146412 501'106 463387 340S7J 37SsaS 408278 199850 116319 SSI09

5.1.3 Discussionon Tidal Propagation in the West Channel

Tides aro und the coast of Semarang are mixed , diurnal, with an average

tidal range of 0.65 m. The Kali Garang estuary, therefore , experien ces a microtidal

action. Observation of the water level in the West Channel (section 5.1) shows that

tides propagate up the estuary to the Simongan weir. The tidal range decreases

gradually from the mouth to the weir. At slack water during a flood tide, the water

level is almost horizonta l along the estuary . The slope is about OO7סס.0 m/m. At slack

water during ebb tide, the water slope is about 0.00026 m/m.

Configura tion of the West Channel can be expected to affect the tidal
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propagation. The narrow, relatively uniform, channel (average width at normal

discharge is 50 m) causes boundary dissipation to be higher than the effect of

convergence. Anotherfeature of importance is the presence of the Simongan weir. The

weir stops tides propagating further upstream. Theoretically, the channel should

experience a standing wave, with an incoming wave reflected by the weir. As

mentioned in section 2.4 , the length of the channel plays a major role in determining

the modeof the water profile when there is a standing wave. Here, the channel is 5.35

km long with an average river depth of about 2.0 m. The tunt-sotar diurnal (Kl )

component is dominant. Hence the tidal period is 23.93 hours. Therefore the wave

celerity (C) is given by

4.41 mts

and the wave length (L) is

4.41 x 23.93 x 3,600

379,913 m

and the time needed to travel from the mouth to the weir (I) is

(5.35,10')/(4.41,60)

20 minutes.

The length of the channel is far less than one founh of the wave length

(5,350 m < < < 94,978 m). Therefore there is no node point within the channel. If
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the channel was frictionless and the convergency factor was negligible, the tidal range

should besame throughout the channel.

The travel time (t) is small in comparison with the tidal period. There

is practically no difference in time between the occurrence of high water at the mouth

and high water at the beaod.e.. at the weir). The incoming wave reaches the head

before one fourth of wave length completely enters the mouth. Therefore the

interference between incoming and reflecting waves is not apparent along the channel.

Finally, tidal propagation is affected by the obstruction of bridge piers.

The high water is lowered at the upstream end and the low water is lowered at the

downstream end. Consequently the tidal range upstream is smaller than that downstream

of the piers. Overall, the tidal range along the West Channel decreases in a landward

direction.

5.2 Measurements of Salinity, Temperature, and Curr ents in
the West Channel.

In the West Channel, salinity, temperature, and current measurements

were taken simultaneously. The salinity and temperature readings were obtained by

using an STC·2D Salinometer. Curren t speed was measured using a currentmeter (Type

C 10. 150). Both instruments were calibrated before the survey. The relationship

between velocity and the number of revolutions, n, is :
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for n < 0.69, l'"" 0.2375 n + 0.0 /6

for n > 0.69, v = 0.2535 n + 0.005

15.1l

15.2)

where n is number of revolution per second, and v is water velocity in metres per

second.

The measurements were taken at about mid channel at each station.

Readings were made at deplhs of 10 em, 2S em, ~O em, 100 em, 150em, 200em. 250

em, and about 20 em above the bottom for each.station. The salinity and temperature

were read directly from the salinometer.

The currentmeter was carefully positioned parallel to the now din..salon,

and away from obstacles which might affect the propeller rotation. Readings were taken

during one minute for each interval depth.

These measurements were used to determine the longiludinal profile of

salinity taken at panicular times relative to the tidal cycle. density distribution.

circulation patterns. and variation of salinity and velocity in relationship 10 water

elevation. Variationof water density with salinityand temperature is determined by th~'

equation of state (quoted in Thomann, and Mueller, 1987, p. 102) as

p• •c•o • 1 + (10 · ) [ (2 8 .14 - 0 . 07J5 T-0 .0046 9T11

+ ( 0 . 80 2 - 0 .002 7") (5·35)JI

(5.J)

where P•.•.ois the density at salinity S in parts per thousand (ppt), temperature, T , in "C

and atmospheric pressure. Furthermore, the density is quantified in the form of sigma-t

(O'J as

0 t · ( P •. e,c - 1 ) . 10 00

)26

(5. ' )



5.Z.1 Longitudinal Salinity Distribution

Longitudinal measurementsof salinity, temperatureand currents were

taken on June lS, June 19, and June 26, 1991.The average fresh water flow during

those dates was 1.6 ml/s. Tides were diurnalwith rangesat the mouthequal to 67. 70,

and 58 emon June 15,lune 19,and June 26, respectively. The observationwas started

from the head of the estuary (weir) to the mouth.Time differencebetweenone station

and the nextstationwasaboutone hour. The fielddataobtainedfrom the measurements

are given in Appendix A, Tables A.3·11O A.3·4.

Salinityinformationat each stationwas plottedagainstdistance for every

depth measuredusingthe polesthat were installedat every station.The longitudinalbed

profile wasdeterminedbasedon the latest measurement (1990) takenby the Directorate

General of Water Resources.

When the measurementsfrom each profile had been plotted, the data

were contoured to developlines of equal salinity. Figure 5.7 shows the longitudinal

distribution of salinity in the West Channel. Referring 10 Pritchard and Cameron's

classification(seesection2.2), the West Channelcanbeclassifiedas a highly stratified

estuary.

The results shown in Figure5.7 indicate that sea water intrudes into the

West Channelat the bottomof the channel. Freshwater flowsdownstreamover saline

water. The fresh water layer is thinner at the seawardend due to the wideningof the
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Weir Distance from the weir (km) See

Figure 5.7 Salinily distribulion in the West Channel (unit ppn,
a). b) and c) Qr =1.6 mIls, and d) Q, =3.5 ml/s.
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Figu re 5.7 Salinity distribution (continued 2/2)
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channel. Its average salinity increases seawards. Near the mouth the water column is

only moderateiy stratified. Wind and waves fro m the sea accelerate the mixing process

near the mouth so that the thin layer of fresh wa ter is almost completely mixed with the

sea water seawards of the mouth. The saline water in the lower layer was almost

motionless during the measurement. Increasing salinity in the upper layer is caused

more by vertical dispersion rather than by interna l mixing. Further discussion on this

matter is given in section 5.2.5.

S.:!.:! Density a nd Circula tion

Based on the salinity and temperature data (he value of stgmo-t (u,) at

each point can be calculated using equations 5.3 and 5.4. The value of u, at each depth

can then be plotted against distance to obtain the density distribution. Figure 5.8 shows

the density and velocity distribution along the West Channel. Closely spaced contour

indicate an intcrfacial layer, which is defined as a position at which the vertical densi ty

gradient, dpldh, is a maximum, As the pos ition of the halocline is known, the

circula tion patterns along the channel can be analyzed by calculating the densime tric

Froude number, Fr ' (equation 2.32) . The water depth, h', is measured from the surface

to the middle of the interfacial layer and the veloci ty is taken by averaging velocities

over the upper layer. The calculation of Fr ' was made at each station for each

measureme nt period.
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Figure S.8 Distributionof Density(I1J andFlow Structure AlongtheWest Channel,
Basedon Observations of June IS, 1991 (Fr'= Densimeuic Froude
Number).
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Figure 5.8 Distributionof Density (t1.) and Flow StructureAlong the West Channel,
Based on Observations of June 19 , 1991 (above) and June 26, 199 1
(below), (continued 2/2)
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The results (Figure 5.8) show that the value of Fr ' increases seewards

due to the decreasing thickness of the upper layer . Landwards of the mouth the value

of Fr ' is always less Ihan 1.0. lllis means that there are no internal waves (Farmerand

Morgan, 19.53). The very low difference in velocity between the two water layers is

unable 10 generate internal stresses . Mixing processes occurred in one direction only,

that is from e e lower layer to the upper one. The volume of the upper layer increases

seawards.

The presence of wind action seawards of the mouth appreciably affec ts

the circulation pattern. The thin surface layer o f fresh water is easily disturbed by

winds which generate small waves and break the stratifica tion. The salinity survey

implies that the water column seawards o f the mouth is onl y slightly stratified.

5.2.3 Salinit y and Velod ty Varia tion

The effect of tidal variation on the sali nity and velocity was measured at

STA .03. Measurements were taken on July 15 and July 18, 1991. On these date, the

fresh .water flows were 1.6 ml/s and 0.6 mIl s, respectively. Tides were diurnal with a

range of 68 em on July 15 and 60 em on J uly 18. On July IS, the measurements were

started at 8.00 AM and were carried out until 3.00 PM (LWal 1.00 AM and HW at

12.00 noon). On July 18, the observations were made from 6.00 AM 105 .00 PM (LW

at 00.00 midnight and HWat 1.00 PM). Readings were taken hourly at depths of 10,

25, 50, 100, ISO em below the surface, and 20 em above the bottom. Observed data
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are given in Appendix A, Tables A,4· l to A.4-4.

nato : Ju1r18, 1991 Loea lloo: STA.0 3, Weill CbaD.Dol
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Figure5.9 Typical Net Movement at STA.03, West Channel: Depth is given in
percent.

Measurements showed that the salinity in the lower layer was almost

constant with a variation smaller than 2%. The salinity of the upper layer was slightly

affected by the water level giving higher salinity during high water than during low

water.

Currents in the upper layer always flow downstream during both flood

. and ebb tides and increase after the high water is reached. In the lower layer, the

currents flow landward during the flood tide until about high water, and then there is

no flow during the ebb tide. Figure 5.9 shows net salinity and net velocity during a

tidal cycle at STA.03 of the West Channel. These typical profiles were derived from

data taken on July 18, 1991.
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5.2.4 Length or Saline Wedge

The length of salt intrusion in a salt wedge estuary can be determined by

using equation 2.29 (see section 2.6.2) . Measurements of longitudinal salinity

distribution, Figure 5.7, and density and circulation . Figure 5.8, show that the

penetration of salt water in the West Channel was limited by the weir. Because of this,

the length of the salt wedge could not be found from the measurement. An indirect

determination was then made by relating the height of the wedge hI at each point to the

depth of the river mouth H and the distance L of the corresponding point in terms of

H. In other words, the relationship is

(5.4)

The measured values of LlH and hlH (Figures 5.7 and 5.8) are given in

Table S.6.

Table 5,6 Shape of Saline Wedge (A)June 15 (flood), (8) June 15 (ebb), (C)June
19 and (D) June 26 1991

U H h/ H (m/m)
Station

(km fm) June 15 June 15 June 19 June 26
(flood) (ebb)

01 1.493 0.25 0.26 0.35 0.33
02 1. 134 0.38 0.38 0.39 0.44
03 0.873 0.48 0.48 0.46 0.54
M 0.404 0.73 0.73 0.77 0.81
OS 0 0.93 0.91 0.96 0.96
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The values of h/H in Table 5.6 were plotted againstU H to obtain the

shape of salt wedge. The curve was fitted by using a polynomial relation. Results are

presentedin Figure 5.10.

o . _

June 15 (flood ) June 15 (ebb) June 111(flood) June 28 (ebb)

~.~~
~o.so ~.

~ ,..,.»;t /'O

0.00
2.00 1.50 1.00 0.50 0.00
River

lIH (kmlm)
River mouth

F1gul'e 5.10 Form of Saline Wedge in lhe WestChannel

Figure 5.10 shows that the average value of U H is 1.9 kmlm or 1,900

m1m. This value was substitutf:dinto equations 2.29 to 2.31obtain ce coefficient A~.

For the readers' convenienceequations2.29 to 2.31are repeatedhere as equations S.S.

S.6 and 5,7, respectively
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U,, " ~~gH
P.

(5.6)

(5.7)

Here lip = 20 kgfm), P'" = 1,0 10 kg/m J , 8 = 9. 81 m/s2, H = 3. 1 rot thus from

equation 5.7 the densimetricvelocity, "4"" 0.778 m/s. The kinematic viscosity v =

0.818 10-6m1/s . Reynolds number, R6 • is obtained from equation5.6, that is 2.9106•

Current velocityt u, was obtained from the average of the four measureme nt given in

Figure 5.8 , thai is 0.098 m/s . The value of m is taken at 0.25 (between 0.25 to 0.5,

Kculegan, 1966). Hence from equation 5.5 the value of the constant A
Q

is 1.46. Thus

L (u H)""('U r--.!! = 1 .46 ~ --!
H v u",

(5.8)

As this equa tion (equation 5 .8) was derived duri ng the low fresh water

flow, its use may be limited and further study is suggested to obtain a bener

relationship.

5.2.S Discussion

Figures 5.7 and 5.8 show that the West Channel is highly stratifiedwith

regard 10 salinity distribution and water density during the period of low fresh water

flow in the dry season. The effect of the stratification is to distort the normal vertical
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velocity profiles into profiles typified by that shown in Figure 5.9 . Fresh water flows

downstream on the top of the seawater throughout tidal period, while a tidal density

current moves up slowly only at the beginning of floodtide. The salt water rests on the

bottom as an almost motionless layer. A~ a result, the net water movement after a tidal

cycle of 23.93 hours shows the surface water to be moving seawards and the bottom

layer to have a net landwards movement.

Stratification during the lime of observation was examined by calculaling

the estuarine number, S" (equations 2.34 and 2.35) . The calculation was undertaken

at STA.OI, STA.03, and STA.05. Results are presented in Table 5.7.

Table 5 7 Estuarine Number S of the West Channel
"

Tidal Fresh
range water Estuarine Number, So

Date at the flow
mouth (ml/s) STA.05 STA.03 STA.OI

(em)

June 26, 91 58 1.60 2,131<r ' 1.51 10" 2.55 io-
July 04, 91 50 1.60 1.5710.1 1.03 1<rs IAI 1O~

July 26, 91 55 0.65 2.09 )<r' 1,43 10" 1.06 I O' ~

A cursory glance et rhe values of S. in Table 5.7 shows that, according

these estuarine numbers, the West Channel during low fresh water flow was highly

stratified (S, < 0.03), To confirm this result, the effects of fresh water discharge and

tidal action on the degree of stratification were examined by using a flow ratio, K,

suggested by Simons (1969) (quoted in Silvester, 1974, see section 2.6.3). In Table 5.8
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this ratiohasbeencalculated for various river discharges andfor threetidalranges in

theWestChannel.

Again,accordingto theTable5.8, theWestChannel is highly stratified

throughoutthe year. Theseratios are too highwhen applied in thisestuary. This may

be because of thepresence of theweir beyond whichthetidecannot propagate. Infact,

the tidal range downstream of the weir is still significant in comparison to thatat the

mouth. Therefore, thetidal effectsdue to thevolumeof saltwaterentering theestuary

during a tidalcycle arenot representedin thenormal wedge.

Table 5 8 Valuesof flow ratios K forthe West Channel

Fresh water No. of daily Ratio (K) for
tlow in avg. flow
(m'/s) Jan'87-Dec'89 Spring tide Mean tide Neaptide

T=23.93 h. T=18.50h. T= 12.42 h.

2.00 307 0.8621 1.0545 1.6227
3.00 [39 1.2932 1.5817 2,4340
5.00 205 2.lS53 2.6362 4.0567

10.00 [78 4.3106 5.2724 8. ll33
is.oo 91 6.4660 7.9086 12.1700
20.00 55 8.6213 10.5447 [6.2266
25.00 58 10.7766 13. [809 20.2833
50.00 40 21.5532 26.36[9 40.5666

100.00 6 43.1064 52.7237 81.1332
> 100.00 9 > 43 > 52 > 81

Despitethisfact, it is veryrelevant to putforward Pritchard's statement

about the parameter affecting thedegreeof estuarine stratification. Pritchard(1955)

stalesthai"other things beingkeptequal, anestuary tends todrift fromhighly stratified

through moderately stratified10 verticallyhomogeneous" with(1) decreasingriverflow,
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(2) increasing tidal range, (3) increasi ng width, and (4) decreasi ng depth. The effect

of changing the valucs of these param eters can beevaluated as follows.

If the width , depth and tidal range are assumed to remain constant the

effect of variat ion of river flow can be considered . Increasing river flow induces

Increasing strati fication and the estuary changes from well mixed to a sail wedge

estuary .

Variation ofti dal range with constant river flow, width and depth can be

easi ly examined. The tideless estuary would be highly stratified with fresh water

flowing over seawater. As the tidal range increases, tidal currents and tidal flow

increases, thus reducing the degree o f stratification. The estuary changes from a salt

wedge to well mixed with increasing tidal range.

The variation of width of an estuary white keeping the othe r variab les

constant affeeu the ratio between the tidal volume and the river vol ume. Increasing

width increases the cross sectional area.Consequently. the tidal volume increases, while

the velocity of the fresh water flow decreases . Therefore. increasing width decreases

the stratification .

Increasi ng depth decreases the influence of botto m stress on the mixing

process. As resu lt, the stra tification increases.

Referring to the fact that in the West Channel there is very low tidal

de nsity current, the only possible mixing is that created by molecular diffu sion . Weak

tidal action enables the establishment ofa two layer flow. In the lower zone the salinity

is practically constan t and the wate r is almost motionless. T urbulence inherent in the
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flow is insufficient to overcome the stabilizing gravitatio nal effect. These cases are

illustrated in section S.2. 1, Figure S.? A weak tidalac tion therefore only results in a

horizontal motion of the salt water to and fro. There is very little salt water movement

and the bottom salty layer is relatively stable. The fresh water flows down over it but

it is not mixed into the bottom layer . The mixing is entirely upwards. Thus , the bottom

layer has a fairly constant salinity along its length but loses salt graduall y into the

surface layer. This loss is replaced by a slow salt water flow at the beginning of the

flood tide.

Fresh water velocity in the upper layer increases and its thickness

decreases seaward. which has been illustrated by means of density distribution and flow

structure in section S.2.2, Figure 5.8. Here the flow just below the interface is in the

same direction as that of the fresh water. In the region close to the bottom the motions

are reversed. This is particularly true during the early stages of the flood tide.

The value of flow ratio, K, listed in Table 5.8 indicates that the river

discharge has a very pronounced effect on the water movement in the estuary . The

surface layer that flows downstream throughout the tidal cycle may be increased with

increasing river flow, and the salt water may be swept completely out of the estuary

during very high river flows.

The length of the salt penetration can be estim ated by using equation 5.5 .

For example, assuming the river discharge is 25 m'ls, the tidal level is + 0 .74 m

(MSL) , the cross section area is 170 ml , lip lp. is 0.0198, and "is 0.818 10-6mIls,

equation 5.8 , gives an estimation of wedge length equal to 2.13 krn . In the same way
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it can be shown that, at a fresh water discharge of 75 rollS. the saline water is almost

completely swept out from the estuary (L" • 125 m).

5.3 Water Analysis

In the Kali Semarang, salinity was measured by titration. Samples were

taken from the mid depth of the river at each station by using a water sampler. These

samples were then stored in two-litre bottles. The sample was titrated with silver nitrate

10 obtain the chlorinity (C/), that is the total weight of chloride. plus a chloride

equivalent of bromide and iodine in a one kilogram water sample. The salinity was

determined by using equation

S(%o)= 1.80655X C/(%o) (5.9)

Dissolved Oxygen (DO). BiologicalOxygen Demand (BOD), and the pH

of the samples were also analyzed.

Sampling water for the analysis was takenduring high water.on July 15.

and July 19, 1991. The results of the water analysis are presented in Table 5.9. The

distribution of salinity in the Kali Semarang was obtained by plotting data from each

station against distance for every sampling period. The longitudinal bed profile was

determined based on data obtained from the Committee of Normalisation of Kali

Semarang and it was adjusted to the present condition. The plotted data were then

contoured. Results are presented graphically in Figure 5. 11.
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Tab le ! .9 water Analysis in the Kali Semarang, July IS, 1991 (above), and
July 29 1991 (below)

Parameters
Station

DO BOD pH Conductivity Salinity
(ppm) (ppm) (mY) (Pp')

STA.OI 6.13 3.20 8.3 133.4 0.21
STA.02 0.00 13.87 7.5 ·46.0 0.20
STA.05 1.70 27.00 7.4 92.2 19.69

STA.02 0.05 114.49 7.9 · 68.8 0.17
STA.04 4.91 0) 7.5 33.0 0.14
STA.04 0.00 247.04 7.7 12.6 7. 1:5
STA.05 4.96 131.34 7. 1 13.8 22.86

ote .) unaerecte

o

J u ly 1 5. 1 9 9 1

J u ly 2 9 , 1 991

Flgure 5.11 Longitudinal Salinity Profile in the Kali Semarang.

The result shows that the salinity in the Kali Semarang intrudes about 3.5

km upstream from the river mouth. This point is the furthest upstream to which the

saline water intrudes. Its limit moves downstream during the ebb tide (low water) as

far as the Kali Asin (about 600 m from the month). The variation of salinity is
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co mplete ly dominated by tidal action at the mouth . This is true durin g a period of

measurement at which the fresh water llow is very low.

The same analysis was also done for samples taken from the W~

Channel. The samples were taken on Ju ly 1.5, 199 1 at STA.Ol . STA.03. and STA .O.5.

Results are listed in Table .5.10 following .

Tab le 5.10 water Analysis in the West C hannel. Based on obse rvations of
July 1.5 1991

Parameters
Sta tion

DO BOD pH Conductivity Salinity
(ppm) (ppm) (mV) (ppl)

STA. 01 6.36 2.45 8.2 148 .6 1.71
STA .02 5 .2 1 3.52 7.8 122 .4 14 .36
STA .05 5.69 1.36 7.8 115,4 27.23

Further discussion about water analys is and water pollution in estuaries

is given in chapter 7.

5.4 Float Tests

Float tests were used to determine the speed and d irection o f the

currents, and their effects on sediment movement, The float consisted of wooden cross

with vane s 20 cm deep and 20 em long from centre to lip. The cross was at tached to

a small bamboo with a small flag on top. The float was suitab ly weighted to keep the

bamboo more upright and to keep the vane at the co rrect depth.

144



S.4.1 Currents In the W~ Channel

Float tests in the West Channel were undertaken at STA.03 on July 19

and July 25, 1991. The river flow during those periods was 0.5 ml/s. Tidal influence

was semidiumal with a range of 55 cm on July 19, and was diurnal with a range of 64

em on July 25. The float was centrally situated in the estuary. The vane was placed at

about the mid depth of 2 .0 metres average water depth (I m below the surface). Time

................,

~ -s .e 0.• ~
l~ ~i ... !--f:"--..'l::~;:::' =-_--''...CI._~ ,..j •.• ]

~ S~ ~7.' L.._~ .....l • ••

0 .00 20.00

7.' L..._~ ~_~_---l0 .2S

0.00 20.00

1-.1 2J 1991

...
..... . 5.0t ·2.'i 0.01---1---'--..,.-...,....-""--=--4
-I 2.S 0 .50
>

b

Figure S.U Measurements of Current Speed at STA.03 of the West Channel;
MeasurefTU!nl wastasenby usingfloai test. l OO cmbelowwater surface
in 200em of average depth.
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required to travel a distance of 20 m was recorded for each measurement. Floats were

released at one half hour interval. Direction of the float movement was also observed.

Data obtained are shown in Appendix A, Tables A.5-lto A.5-4. Results show that the

effects of Coriolis' force to the directionof the water movement were nol apparent. The

float always moved in the middle of the channel , where the floatwas released. It should

be noted that the flow is low (maximum velocity measured was 5 cm/s), the channel

is narrow, and it is located at the low latitude (equator). Figure 5.12 shows the

quantitative-variation of current speed at STA.03, West Channel.

Flood currents are strongest three to four hours after thebeginning of the

rising tide, and are zero at mid-tide(slack water). The slack-flood occur for two to four

hours. During strong flood currents, however, water on the upper layer still flows

seawards. The ebb currents occur one or two hours after high water. The magnitude

of the ebb current is lower than that of the flood curre nt. Figure 5.13 shows the

comparison between measured and calculated tidal currents taken in June 25, 1995. The

current was calculate by using equation 2.9, where " = 0.30 m, h "" 2.00 m, C ""

4.4 1 mis, L "" 380 km, T = 23.50 hours, and x = 2.23 km.

As the theoretical values are based on an assumption that the tides arc

sinusoidal waves, the results are slightly different in the shape of the curve . The

maximum flood current calculated is as the same as that measured, but the ebb current

calculated is significantly higher. This is caused by the d ifference in duration between

flood and ebb. The flood period is about 8.50 hours and the ebb period is about 15

hours.
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Flgure5.13 Comparison Between Calculated and Measured Tidal Currents at
STA.03, West Channel,July 25, 1991:

5.4.2 Currents in the KaliSemarang

In the Kali Semarang, float tests were doneon July 20 and July 26,

1991. Thefresh water flowandtidal range on July 20 were 0.30 ml/s and52 em.

respectively. On July those were 0.40 rolls and 61 em. The float was released at

51A.05 (Lower areaofthe Kali Asini. where thechannelatthat locationis straightand

is as longas200 m both in theupstream anddownstreamdirection. The average depth

isabout 1.00m.The float was therefore50embelow the surface. However the float

did not flowsmoothlydue to theshallowwater, The ex-penmen!was thendone using

a bottle. The bottlewas 40 emlong. It wasfilled with water to keepit verticalandat
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the correct depth. A smal l tlag was attached on a piece of stick and put 00 the top llf

the bottle, The measurement was similar that taken with the float in the West Channel.

Measured data is shown in Appendix A. Tables A,6-1 and A.6 -2,

b T .... (lao ....)
, ... ,.26. 1991

"":' -".0
1.2 .'

; o.ol'--+ - --'---,-----r-- "'-j

~
<-...._~-----~----~ 0 .2

20.00

Thllo(1lo .....)

Figure ~.14 Measurements of Current Speed at STA ,05 of the Kali Semarang;
MeuJ'urement \VO.I' taken by usingflout test (BfJU/('), 40 em betow waler
surface in 100em of averagedepth.

Currents move landwards during the tlood tides and seawards during ebh

tides (Figure 5.14) , The curren t was faster about two hours after the beginning of the

tlood and ebb tides. The slack water between flood and ebb tide is as long as one to

three hours, During that time the float moved up and down very slowly. This characte r
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of tidal currents indicate that there is a standing wave. The incoming tidal wave is

reflected by the bottom channel between STA,02 and STA.OJ .

For a comparison, the average maximum tidal currents in the Kali

Semarang can be estimated by using (Thomann, 1987. p. 93)

IS.IO)

where x; is the distance of tidal ex-cursion, in this case the value is 3.51 km, and TXJ

is period of dominant constituent, for K, the value is 23.93 hours. Thus from equation

5. 10 U_ "" 0.128 mrs.

5.5 Sediment Analysis

Sampling of bottom sediments were carriedout using a simple coring

device. The corer consists of a metal tube 10 em in diameter. 50 em long. Samples

were taken during low water. A tube was inserted into the river bed manually until it

was nearly full of soil and then pulled up slowly to keep the soil in the core. The soil

was·then kept in a plastic bag for further analysis. Samples were taken at STA.OI,

STA.03. and STA.05 in the West Channel; and at STA.Ot in the Kali Semarang.

5.5.1 Particle Size Analysis

The purpose of this section is 10determine the grain size distribution and
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quality of thebed sediment along the estuary, and to trace the movement of the

sediment. Samples were analyzed using sieve-analysis. The weight retained on each

mesh was logged. This was then convened to a percentage of the total weight of

sediment analyzed. The dataobtainedare presentedin Table 5.11.

Table5.11 Grain size analysis of bed-loadsediment samples, (1) frequr1ICY lVt'illht
in % (2) cumukuivefreq~ncy weight in %

West Channel Kali
Diameter Semarang

STA.05 STA,03 STA.OI STA.OI
(o j

1 2 1 2 1 2 1 2

., 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
·2 0.0 0.0 0.0 0.0 0.' 0.' 0.0 0.0., 0 .0 0.0 0.0 0.0 a.c a.s 0.0 0.0
0 0 .0 0.0 0.0 0.0 r.s ' .0 o.s o.s
I l.l i.s 1.0 1.0 2.0 7.0 r.s 2.0
2 12.0 13.5 2.' a.s s.s t2.5 ' .0 7.0, ]1. 5 45 .0 11.0 15.0 10 .0 22.5 13.0 20.0
4 21. 0 66.0 16 .0 ]1.0 14.0 36.5 13.5 ]].5, 11.5 77.5 "., 56.5 22.5 59.0 20.0 5l.S
6 12 .0 89.5 28.5 85.0 16.0 75.0 26.5 80.0
7 9.' 99.0 9.0 94.0 s.s ec.s 11.5 91.5

• 1.0 100.0 '.0 99.0 6.' 87.0 s.s 97.0
9 0.0 100 .0 1.0 100.0 ' .0 92.0 ' .0 100.0

10 0.0 100.0 0.0 100.0 ' .0 97.0 0.0 100.0
11 0.0 100 .0 0.0 100.0 a.c 100.0 0.0 100.0

Tabulateddata are also presented in graphical form as histograms. A

histogramis a bar graphbased on continuous dataand shows the weight percentageof

sediment ineach size class. The independentvariable is grain size. as horizontalaxis,

and the dependent variable is the weightpercentage, as a verticalaxis. The cumulative

frequency curve is also used. In this case the vertical axis is laid off in divisions from

oto 100 % and the horizontalaxis retains its sizescaling.
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The percentage weight retained on the coarses t sieve is plotted at the

rele vant diameter. The sum of the sedime nt weight percentage in the coarses t two sieves

is plotted above the next finer sieve mesh size. Then the sum of the residue on the

coarse st three sieves above the third value, and so on, unt il the ent ire sedimen t

dist ribution has been accounted for at the cumulative value of 100 %. Figure 5.15

shows the grain size analyses of the bed-sedimen ts.

Tabl e 5 12 Descriptive chara cter of sediment samples

Class West Channel Kali
(si<':ct/l) Scmarang

Upper part Middle Lower (U pper)

part pan

Sand 66.0 " 30.0 " 36.5 " 20.0 "
(· 1.0· 4.0)

Silt 34.0 " 68.0 % 51.5 % 70.0 %
(4.0 - 8.0)

Clay 0.0 % 2.0 % 12.0 % 10.0 "
(8.0 - 12.0)

Based on the wentworth Classificatio n (Table 2.3), sedime nt samples can

be div ided naturally into three different size group s o r modes , namely sand. silt and

clay . The percentage of ea ch group of each sample is summarized in Tabl e 5.12 . Tle

tabl e shows that the distribution o f sediment material along the West Chan nel decreases

in diam eter from the lower pan to the middle and then increa ses in the upper part . In

the upper part, the sediment is co mposed of sand (66 %) and silt (34 %). The

perc entage o f sand decreases in the midd le (30.0 %) but increase s again in the
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Figure 5.15 GrainSize Analyses; Plot of Frequency by WeightPercentage Against
Grain Diameter (left), Plot of Cumulative Percentage Frequency by
Weight Agai nst Grain Diameter (right). a) Upper part of the Kali
Semarang, b) STA .OI, c) STA.03 , and d) STA.OS of the West Channel.
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lower part (36.5 %). Conversely, the percentage of silt increasesin the middle (68.0

%) and decreasesin the lowerpart (51.S %). The percentageof clay increasesseawards

along the Channel.The original river sediment that is represented by thesample taken

upstream of the weir, is dominatedby silt (70.0 %). Sand and clay are only (20.0 \IIi)

and (10.0 %), respectively.

5.5.1 Measures or Size Distribution

Thesizedistributionswere describedqualitatively using mediandiameter

(Md), mean diameter (M.) , standarddeviation (0), and skewness(a.) . The values of

these parameterswerecalculatedusingequations2.38 through2.41and werefacilitated

by the cumulative curve, Figure 5.15. Results are summarized in Table 5.13.

Table 5 13 Qualitative description of bedload distribution

West Channel Kati
Measures Semarang

Upper Middle Lower

"Pan Part

" " "
Md = ~K) 3.25 4.80 4.90 4.90

M. 3.80 4.55 4.90 4.75.. 1.60 1.25 2.40 1.85

". -0.31 -0.20 0.17 0.30
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Basedon Table 5.13, the sediment in all parts of the estuary can be 5C.'Cn

to be distributedasymmetrically with a skewness value varying from -0.31 to 0.30.

Sediments in the lower part have a better distributionthan those from the other parts.

The sedimentsare poorly sorted Cu. > 1).

5.5.3 Discussion

Distributionof bed sedimentsamples indicate that the speedof the river

current decreases as the water flows over the weir. The channel can be regarded as a

settling basinfor a large quantity of material suppliedby fresh water. Coarser material

settles first just downstream of the weir. The finer grains are still in suspension bul

gradually settle further downstream.

Boththeoretical andobservedtidal currents (Fig. 5. 13) indicate that they

are too ...mall to either initiate sediment movementor 10 increase sedimentconcentration

in the water. Thus settlingis unaffected by tidal currents. The distribution of sediments

along the channel disagrees with the idea that suspended sediments in the salt wedge

eslU~ accumulate at the limit of penetration of the salt wedge. In fact, the salt water

penetrates 10 the weir but the tidal currents are zero at this point due to reflecting

In the lowerpart of the estuary, wave effects are believed to beimportant

in returning sand back from the surf zone or surrounding area to the mouth, so that

there is a higher percentage of sand there than that in the middle reaches.
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Chapter 6

Sediment Budget and Delta Formation

No direct observations of sed iment budget and delta formation were

made. The only observations taken were samplesof bottom sediment, water profiles,

and tidal currents. The following sections deal with estimatesof the sediment budget

and delta formation. These estimates are based mainly on the theo ry related to the

available basic data. such as river discharge, wind and wave data. tidal data,

bathymetry, and geometry. A sediment budget was estimated from the rate of river

sediment load and the rate of longshore drift . The delta formation was examined by

using the discharge effectiveness index, ~.

6.1 Wave Energy Flux

Wave energy flux was calculated (or waves of different periods

separately and then was added together to get the total wave energy flu x. The

calculationwas madeat thesubaqueous limit, where the depth is about 30 feet (9.0 m)

(Wright and Coleman.1972) and in the nearshore area (river mouth). In the present
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case the subaqueous limit is 4,000 m seawards of the shoreline (see Figure 6. 1). The

depth of the nearshore water is 1.70 m.

The first step was to determine the azimuth of the shoreline. Azimuth is

the orientation of the shoreline with respect 10 north. In this case the azimuth was 70'

(Figure 6.1). Hence the winds from a 180" seawards sector was taken as the winds

generating wave energy within the delta area .

Percentages of occurrence of d ifferent wave heights were obtained from

the wave hindcast given in Table 4. 10. As waves are assumed to bederived solely from

wind action, the percentage occurrence of wave direction will be the same as the wind

direction a t the location as given in Table 4.9. The wave energy was then calcu lated

by using equations 2. 12 to 2.21 (see section 2.5 .1). The angle lXo is the angle betwee n

the wave crest and the shoreline or the angle of the wind direction with respect to a

normal 10 the shoreline. Sea water density (p) was 1020 kg/ml
, g "" 9.9 1 mts. The

calculation of deep wave energy flux is presented in Appendix B.

Near shore wave energy flux was calculated at the depth of 1.70 m. This

depth was based on the mean depth of the river mouth. The shoaling coefficient, Ks,

wave group celerity, Cg, and other wave variab les were taken from Table C- I in the

U.S. Army (1984) (see Appendix H). Calculations of near shore wave energy flux are

given in Appendix C, The summary of wave energy climate is shown in Table 6.1.

Figure 6.2 shows the distribution of monthly wave energy flux during 1989.

IS7



Ta ble 6.1 Wave-energy Flux and Wave Attenuation of the Kali Garang River Della
in 1989

Wave energy Wave energy
Months flux in flux in nearshore Wave

deepwater (J/m-s) attenuatio n
(J/m-s)

January 35.42 4.31 8.22
February 43.93 5.46 8.04
March 34.55 4. 14 8.35
April 29.45 3.49 8.44
May 18.65 2.18 8.57
June 21.62 2.59 8.34
July 17.27 2.02 8.56
August 16.36 1.91 8.54
September 23.56 2.76 8.53
OCtober 23.94 2.84 8.25
November 27.98 3.26 8.57
December 32.24 3.88 8.30

Average 27.08 3.24 8.37

DeepW IW

1 40 i I

5)0 ~ I

Jza l .
! lO j 1

IJIMAMIIASOND JPMAM J1ASOND
Moatlul MOlltU

Distribution of Monthly Wave Energy Flux Climate During 1989

158



The result shown in Table 6.1 and Figure 6,2 indicate that the wave

energy flulI: is high duringthe rainy season, October to April, with a maximum in

February.Thisenergy is mainly generated by thewest monsoon whichblowsfromthe

sector betweenWest and North-west (onshorewinds). The east monsoon that blows

duringthe dry season (May!o September) generates less energy flux, because a large

pan of this wind blows fromthe sectorbetweenEast-south-east and South-south-east

(offshore winds). This typeof energydistribution will further affect the distribution

of the longshoretransportandthe sediment originating fromtheriver (seesection6.6).

6.2 River Sediment Load

Sedimententering theestuaryfromriver sourceswasestimated using the

sediment carrying capacity (see section2.7.3). Suspendedload wasestimated using

Kalinske' a equation (equation 2.50) andthe bedload using Sate's equation (equation

2.44). Ideally, these formulae should be examined with the field condition.

Unfortunately, no measurements were taken at the Kali Garang River. However

formulae have been developed for thc BrantasRiver (Department of Public Work,

1966)which is in the same geographical area and, in the absence of any other

information, these were applied to the KaliGaran~ .
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6.2.1 Computa tions of w ater Surface Profiles

As the observationof waterelevationdid not coverall conditions of river

discharge and tidal level, thewater surfaceprofiles used in the sedimentcalculationarc

those obtained from the observation supported by those calculated using the standard

step method (Chadwick, and Marrett, 1986) which is given in Appendix. D. The

calculation was done at threedifferent tidal levels; 0.42 ,0.74 , and 1.06 m,and at eight

(8) different river discharges;5, 10, 15,20 ,25, SO, 75 and 100 ml /S, Tidallevels were

based on the water level distribution given in Figure 4.14. water slope used for each

stage of flow was an average of water slope obtained from three different tidal levels.

5 .0 ~-------~----.~""

g 4 .0

""~ 3 .0
~

Water e leva tion (m. ROW)

ST A.O l

ST A .02

STA.04

STA.O,"1

Figure 6.3 Elevation-HydraulicRadius(EL·R) Curves at Five Cross Sections in the
West Channel.
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Calculation of water profiles utilized the EL-A (Figure 5.6) and EL·R

curves (Figure 6,3), The calculated values obtained from the computation of water

profiles are shown in Appendix E, and a summary is given in Figure 6.4,

6,2.2 Computa tion of Sediment Rates

In the calculation of sediment load (suspended and bed loads) the West

Channel was divided into four sections, section I to section IV, Sec tion I represents a

region between STA,QI and STA ,02. Section II represents a region between STA.02

and STA,03, and so on. Calculation was made for differen t water flows at different

water slopes, Water flows were classified into eight (8) cases: 5.0 , 10,0, 15 ,0, 20,0,

25.0 , 50,0, 75,0 and 100.0 mJ/s,

Equation 2.50 was solved utilizing the EL·A, EL·R curves mentioned

previously together with values given in Table 6.2, In this table the size of the

sediment, d$l)t represents measured sizes, P. is an assu med value and "0 was calculated

from equation 2.47,

Table 6 2 Characteristics of Sediments

Section dJo(mm) 'to (N/m~) p,(kg/m')

I 0 .105 0.0952 2,650

II 0. 071 0.0639 2,650

III 0.035 0,0315 2,650

IV 0.034 0.0304 2,650
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The calculated values of suspended load and bedload rates at each section

in the aforementioned river discharge are listed in Appendices E and F for suspcnde-d

and bedload, respectively .

The results giving details of sediment rates at each section wc~ then

plotted to obtain the relationship between river discharge and sediment disctlargl:. In

this case bothsuspended load and bedload were approached by using a power or linear

logari thmic relationship . Figure 6.5 presents the graph obta ined. The relation between

Q.. Q" and Qr are listed in Table 6.3, where Q. and Q, arc suspended load and bed-

load , respectively, given in 10·) mvs, and Q. is the river d ischarge in mIls.

I "

I·: ,
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. ,
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V
'r I'
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1 0'~

D1Hhar• • Q, (Dl" ' )

Figure 6.5 Relation Between Qr and Q. (lert), and Q. and Q, (right,
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Tab le 6 3 Relation between Q and Q and Q and Q, .. , .
Section Relation between Q, and Q, Relation between 0 1and Q,

I
LOgQ~·4 . 031LogO t-6 . 607 LogOb"' 2 .206LogOt - S . 549

II LOgQ. =4 . 54 4LogOt-7. 623 LogOb=2 . 662L ogOt - 5 . 460

III
LogO~ · 4 . 6 56 LogOt -7 • 392 LogOb"'3. 366LogOt -7. 044

IV LogQ . "S . 1 83LOgQr- 9 .104 LogOb""~ ' 00 J LogOt - 8 . 065

6.2 .3 Annual Sed iment Dischar ge

Annual river sediment load is found by summating a daily sediment load

during the whole of the year, where the daily river sediment load was calculated by

substituting the average daily river now into the equation listed in Table 6.3 and

multiplying by a day' s duration (86,400 seconds). Thus the result is in units of 10·]

rnJ/day. The avernge daily river discharge is taken during a three year period; 1987 to

1989. The calculation of sediment load are summarized in Tables 6.4 to 6.6 .
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Tab le 6 4 Sediment Load at Each Section Along the West Channel' 1987m

Section l Sclction ll SllClion lll s.."'liun tV
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Ta ble 6 S Sediment Load at Each Section Along the West Channel in 1988
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Table 6 6 SedimentLoad at Each SectionAlong the WestChannel in 1989

Section I Soclion ll Soctionlll Section IV
M Olllh $ CSTA.OI·STA.02) (STA.0 2·STA 03) CSTA.03·ST A.04) (STA.04 ·STA.OS)

5oJ~:;'d
._.

5oJ:'~'d Bcdlolld SU~'d 80&011 SU'f~~'d Bedll>ld

I m'j (m'j 1m') (m ') (m' j ,., ,., ,.,
lonuo'Y rt " "

,
"

, . ,
~-::h''Y

13171 ,% .,.., .., 1029S1 on 1917$ no

'" " .. n m . " s
A(lril '" II ~ " m ,

" s
~~

, , , , ) c c o

" " "
,

" ) u I
lui, , , , c , , o o
Au....ol , o o c c c o ,
~P~;~.. o c , o , , , ,

c c u c c c e ,
Nov. roI>cr , , c , , c , ,
Dc<.mh.. , . , , , o c ,
Tw ' 1JJlI6 .n 99911 '00) l OlJ41 ... 199H 11 1~

.". 1116<11 IS1I lH US ,on 161106 1411 1 ~99 11 J6 91
v,~u....

The annualriver se<limentload at every sectionalong the West Channel

can thus be presentedin Figure 6.6. The unit of sedimentloadin Tables 6.4 to 6.6 and

in Figure 6.6 is bulk volume (ml
) , assuming the porosity, e =0.4

The results(Figure6.6) showthat theamountof sedimentincreasesfrom

section J to III and then decreasesin sectionIV. The highest sedimentquantity is in

sectionIII. Assediment supply from upstream(sections I and II) is less than theamount

of sediment transportedin sectionIII, there mustbe scouringin the last part of section
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II and the first half of section III. Part of the sediment starts to deposit after the mid

point of the section III and throughout section IV. In fact, the deepest pan is at about

mid of section IV, This means that deposition may occur as the flow enters the river

mouth. The most significant feature of this estimation is that the sediment load is very

sensitive to the river discharge. During 1989 the load was very high, as there was a big

storm; i.e . • the biggest discharge during the three year period was in Februa ry 5 , and

February 27, 1989. The daily average discharge at those days was 187 OllIs. The

average discharge during this three year period was 8.5 ml/s.

According to this estimation, the West Channel supplies about 76,000 01'

of river load each year to the adjacent coastal area.

1987

.",

e

i
iil
.3
ii

J .
0

1988 19 8 9 A ve resCl

4

D isc anee from the weir (km)

Figure 6.-5 Sediment Load at Every Section Along the West Channel

168



6.3 Sedimentation Along the Kali Semarang

The amount of material deposited or eroded at each section along the

Kali Scmarangcan be easilyestimatedbased on the changeof bedelevation between

1984 oust afte r improvemen t) and 1990. Based on data desc ribed in section 4.1.4,

Table 4.1 and Figure4.3 thevolumeof depositedor scouredmaterialcan beestimated

as shown in TabJe 6.7 following.

T able 6.7 Deposited Material Along the Kali Semarang During a Pe riod of 1984 to
1990

Distance Bed Elevation Deposition
Section from (m) Width or

Ihe weir em) Accretion
(m) 1984 1990 (ml

)

Weir 0 4.00 4 .00 10
Gajah Mada 2,701 2.16 2.16 14 0
Sebandaran 3.517 1.60 1.62 14 110
Kapuran 3,739 1.42 1.46 20 115
Jahar 4,709 0.80 0.95 20 172
Berek 5, 113 0.52 0.76 30 1,654
KaliBaru 5,749 0,\0 0.45 34 6,074
BoomLama 6,439 -0. 10 0.28 40 9,3 50
KaliAsin 7,630 -0.45 0.00 42 20,307
Mouth 8,240 -0.65 -0.50 42 7 ,686

Total DepositionDuring 6 years (1984·1990) 45 ,468
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Attheupperreach. fromIhe weirto Sebandaran Bridge (STA.02),there

is neitherdeposition nor erosion . Below thispoint material starts to seute. Further

downthedeposited material is thicker untilit reachesits maximum atthe KaliAsin (sec

Figure4.3), thendecreases seawards. Thispattern ofdeposition is probably related to

tidal propagation, bed slope, and water pollution. Indeed. the tidal limit is about the

Sebandaran bridge. The fresh water velocity slows down as it enters the tidallimu,

particularlyduringfloodtide. Velocityis further reducedbydecreasingbedslopefrom

0.0007at the upper partto0.0003at thelower pan. Decreasingdepositiondownstream

of theKaliAsin mayrelate tothedischarge fromthe KaliAsinthaiisable to flushpart

of thesediment down\0 the sea, particularlyduringhigh flowsin the rainy season. The

effect of water pollutionOIl sedimentation is 10 accelerateflocculationwhich results in

an increasein seuling velocity.

Potential erosion of the river basin suggests thaI the Kali Semarang

receives 13,000m)/annumand90 %of it isdepositedwithinthechannel (Department

of PublicWorks, 1982). Based on values listed in Table 5.7 above. Ihe annual

depositionof material is 45,468/6 = 7,578 mJ/year. This large difference between

predicted andactualvalues indicates theneedfor monitoring sedimentmovcment at thc

channel to obtaina betterestimationof sediment enteringand leavingthe channeL

Despite the largedifference between the two values, the quantity of

sedimentsuppliedby the Kali Semarang to thesurfzoneissmallincomparison tothat

supplied by the WestChannelor littoraldrift.Therefore, it willnot be consideredin

thecalculationof the sedimentbudget.
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6.4 Longshore Transport

The longshoretransportwas calculatedusingtheenergyfluxmethod(see

section 2.7.5). The azimuth, 0' 0' and wave and wind data used are the same as those

usedin thecalculation of waveenergy flux. Theaveragedepthwas5.00m (see Figure

6.1).

In this calculationof longshoretransport, movementfromthe right to left

side of the observer standing on the shore looking out to sea is indicated by the

subscript "t " (Q,) and is given a negativevalue. Movement towards the observer's

right is indicatedby the subscript 'r" (Q,) and is given a positivevalue. In this case the

shore line runs East-West, so the movement from the East-north 10 the West is

negative. and from the North-westsector 10the East is positive.

The gross longshore transport rate (Q,) and net longshore transport rate

(Q.) arc defined, respectively, as

(6.2)

(6.3)

The longshore transport rate was calculated by usingequation 2.56.

wherethedirectional termF(o,) iscalculatedas anaveragebetweena sector of 22"30'.

The calculation is presented in Appendix G.
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A summary of the calculations of the longshore transport is given in

Table 6.8 following.

Table 6 8 Longshore Transport at the Kali Garang River Della in 1989

Period, T Q, Q, Q. Q.
seconds (mJfy r) (mJfyr) (m'fyr) (m' fyr)

2.5 · 1,872 4.060 5.932 2,118
3.5 ·4,001 8,680 12,681 4,679
4,5 - 9 ,538 20,688 30,225 11,15 1
5. 5 ·6,134 13,306 19,440 7. 172
6,5 602 1,307 1,909 705
7.5 49 107 156 156

To,," ·22, 196 48,1 48 70,344 25,952

The monthly distribution of the longshore transport should be

proportional to the distribution of the wave energy nux . Accordingly, the distribution

can be calculated based on the wind climate. Table 6.9 shows the distribution of

longshore transport in 1989. The quantity of longshore transport in each direction per

month is obtained by multiplying the percentage of yearly wind in the appropria tc

direction and month, and the annual-rate of longshore transport in that direction. The

monthly longshore transport is then obtained by summating the longshore transport from

all directions considered on the corresponding month.

The maxima of both gross and net transports occur in February. Thc

minima (absolute value) of those are on August and July, respectively. Winds from

northwest and west-northwest generate the highest longshore transport rate.
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Table6 9 Monthly Distribution of LongshoreTransport Q During 1989'.

Month LongshoreTransport (m'/year) Monthly

ENE NE NNE N NNW NW WNW W Qn Qg

I . .....,.
., .,,, ·n ·755 " ''''' 3 195 11 5~ 51" ' 2~ 1.. .,,, ."" .. . 1111 ~2U ,~ 9$33 100l5~

~::h'''' ." ·m ·19' ·931 .. 1 91~ 161S 151~ ~S31 m.
Ap ril ." ... -ce ·948 .. 2413 1391 m "" ,,,.

·153 ." ·251 · 1615 ro m " ... ·1 1l~ 3331

~: ·134 ·m .m ·IJ I1 "" n, '" aca ·114 4111

Juty ·]41 .m .,.. .... ,n ." ... '" ... ""Au",11
·163 -17S ·17S -l U I " '" on '" -122 J IGI
·119 -361 ·n. ·IS]) " nee '" "" ." ...,

~~r;:" - lOS .,,, ·115 ·1169 on 1I0S '" '" ",. 4762

N......mb• •
·110 ." · 291 ·m. '" ",00 '" '" '" SII4

o. ccmbcr ·00 _J41 ·,oo ·m " .oo, ,,,. 1914 .", 11S0

T_lldi. ·1116 .m -)n~ ·13111 ... "'" 1611] llS 9S 1S9$1 m..

6.5 Sediment Budget

Bumsand Me Donnell(1976) foundthat the deltagrowth in the vicinity

of the WestChannelmouthwas about 10.5 metres per year. Unfortunately, there is no

detailedinformation about the delta and detailed chart of the area is not available. In

order to illustrate the sedimentbudget, a rough estimation of depositedmaterialhas

been made based on the bathymetric chart, Figure 6.1, assuming that the fluvial

sediment wasdistributedalong the shorelinebetweenthe SemarangHarbour (east)and

the tip of the Tirangkawang Island (west). Hence the length of shoreline is 8 Ian. An

average depth at the nearshorearea is about 1.5 m. Thus the volume of material
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deposited should be 8.000 x 1.5 1 10.5 :::: 126.000 mJ/year. If this material was

supplied by the river alone it would result in the average concentration being

~~::::635pplll

10x 24 x 60 x 60 x lIY

where the porosity, e = 0.4, sediment density, p :::: 2,650 kg/nl' and average river

discharge, Qr "" 10 rolls.

Th is value of concentration is likely to behigher than one would expect

from a fresh water river, and it is thought that material must be transported from

marine sources by longshore currents assocteied with waves.

Based on the previous sections, a theoretical estimation of the sediment

movement and deposition in the vicinity of the Kali Garang Delta can be made. Figure

6.7 schematically illustrates the sediment budget during 1989. In that year, the ri.ver

discharged 149,9 10 ml of suspended load and 3.690 mJ of bed-load (Table 6.6). Gross

longshore transport accounted for 70.344 ml with a net of 25.952 m' (Table 6.8) . The

gross total entering the deltaic zone was therefore 223.944 rn'. The net material is then

175,553 m). Based on this period the quantity of fluviaiload alone has been greater

than"that deposited. It is thought that some of the suspended material sinks into the

offshore area.

A more general estimation of estuarine budget can be made from the

three year calculation (1~87· 1989) of river load (Table 6.4, 1/3 to 3/3). The average

of fluvial load per annum during this period is (from Tables 6.4 to 6.6)
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31 570 + 43 076 + I,n 600 =76.082 m)
3

Thus thegross and net sediment budgets are 146,426 mJ and 102.034 m", respectively.

Sediment Budlet in 1989

(' 3...3'3 m'/yr)
orr.hore SlDk

~ - --1-- -., , ,
LObBSho~C1 Transport DepolitloD Loosshprc Transp ort

(48, +8 m'/yr) (126...000 m'/yr) I (2~ 1 9S m' /yr)

":lWd~, , ,
Sedime~~-:';;i;C1~-B;~i.~ t------i-----J

Dredg il1l.,.
Fluvial Lo ad s
(15 3",600 m'/yt)

Figu re 6.7 Schematic Chan of Sediment Budget in the vi clnlt y of tt,e Kali Garang
Estuary

Othersimple estimations of fluvial load canhemade basedon the genera l

chart of annu al discharge of suspended sediment from the drainage basins, Figure 1.2.

Here, Indonesia falls into the category of the highest sediment rate area . The rate is

more than 1,000 tons per square kilometre per annum . Thu s the suspended load
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by 196km2 of the drainage basinof the KaliGarang River i ~ more than 196x 1,000

x 10' = 1,96 lOt kg or equal to 123,270 m' (bulk material). Hencethe gross andnet

sedimentbudgetsare 193,270 m' and 149,220m', respectively.

Although there is a discrepancy between sediment loadcalculatedbyone

methodand theothers, the statement madein the first paragraph of thissection, namely

that thedepositedmaterialwithin thedeltaregion of 126,000mJ, is reasonable (average

netsedimentbudgetis Ih (l 49,220 + 102,032) "" 125,626 m1) . About60 to 80 percent

of the material is fluvial load while the remaining20 to 40 percent is longshore drift.

The quantity of river load may be high duringa year of if high rainfall, or if there is

a big storm. A substantial quantityof material may be transportedinto the surf zoneby

fresh water floods, having a high concentration of suspended material perhaps

exceeding 600 ppm. However,thiswill be offset by the smaller quantities transported

at low flows.

6.6 Delta Formation

Fluvialsediments transported to the sea by river floware distributedand

deposited seaward of the river mouth in accordancewith the marine forces on which

the orientation and patternof the delta depends. Depending on the relative strength of

fluvialversus marine forces,deltas mayassumea spectrum of configurations ranging

from those which are river dominated to those which are marine dominated.Byustng
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Coleman's work as 3 reference(see section 2.8), the formation of the KaliGarang

Delta canbedescribed as follows

Table 6.10 Discharge Effectiveness Index.atthe KaHGarang Delta. Based on Data
in 1989

Nearshore Average Discharge
Wave Discharge -"-- -0- Etfcctiven

Months Power (Q,) p- , Q- es
(p) (mJ/s) Index.

(J/s~m)

January 4.309 9.89 0.78 9 0.204 0.029
February 5,464 48.39 1.000 1.000 0. 105
March 4.137 15.\2 0.757 0.312 0.044
April 3.489 13. 16 0.639 0.272 0.044
May 2. 177 5.9\ 0.398 0. 122 0.031
June 2593 8.56 0.475 0.177 0.039
July 2.017 2.82 0.369 0.058 0.016
August 1.915 2.26 0.351 0.047 0.015
September 2.762 1.94 0.506 0.040 0.009
October 2.840 3.32 0.520 0.069 0.015
November 3.263 3.52 0.597 0.07 3 0.012
December 3.883 6.34 0.711 0. 131 0.019

Average 3.237 10. \0 0.593 0.209 0.032

The waveclimate of theKaliGarang Estuary(Figure6.8) exhibitsseasonal

variability. Similarly, dischargealso exhibits high seasonal variability witha peak in

February. Theperiodof maximum riverdischargeis approximatelycoincident withthe

timeof maximum wavepower. The discharge effectivenessindexis thus smallduring

most of theyear(Table 6.10). Sediments that reach theseaare sorted by waves, and

coarser fractions arc worked backonshore. Wave-induced longshore driftapparently
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has beenresponsible for the development of the relatively straight shorelinewith bar

building at the left-handside. Onlyin the immediate vicinityof the West Channelriver

mouth has the river beenable to builda slight protrusion. The waves generatedby the

cast monsoon during low river discharges are sufficient to generate appreciable

longshore drift towardthe west. Hencethe greatestaccumulation of material lies west

of the river mouth.

6.7 Discussion

The patternsof the movement and deposition of sedimentat the areaof the

Kali Garang delta occur in seasonal cycle, with riverbome sedimentdominating the

supply during the rainy seasonand sedimentresuspensicnand deposition dominating

during the dry season. These seasonal differences, combined with the difference in

longshorerates betweenwesternandeasterndriftsmakethedelta a complicatedsystem

to evaluate. Fromlimited existingand observation data, however, a simpleconceptof

the basic patternsof movementand depositionof sedimentcan be presented. As the

processes are seasonally modulated , theyare separated into two parts.

The river sediment load is high during the rainy season (Fig.6.9a). The

strongriver now is slightlyshifted to the right side by waves generatedby the west

monsoon. The waves encountering the river flew are liable to break. This promotes

extensive mixingof sea-water and fresh-water, and causes a breakdownin density
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stratification. Vigorous mixing of sea-water and river water leads to the rapid

deceleration of the fresh water flow, and equally rapid deposition of sediment. The

coarser grained fractions are deposited at the zone of mixing near the river mouth as

a crescent shaped bar. Some of the Ilnct-grained fractions escape deposition and are

carried seawards to be deposited further offshore.
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Figure 6.8 Discharge/wave climate at the Kali Garang Delta.

During low river flow in the dry season, the deposited material (fhc bar) is

reworked rapidly by waves generated by the east monsoon. Under these conditions the

bedload is moved back landwards and is deposited west of the river mouth (Fig.6 .9b).
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Figur e 6.9 Schematic Chart of Processes of the Development of the Kali Garang Delta

As a measure of the relative strength of wind powerover riverdischargein

the Kali Garang Delta, table 2.4 has been repeated as Table 6. 11. It must again be

stressed thai these values are only basedon data in 1989that may varysignificantly

from other years or periods.
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Tab le 6.11 Mean Annual Summaries of Discharge/Wave Power Climate and
Attenuation Ratios of Seven Deltas and of the Kali Garang Delta

Mean AnnualWave Mean Mean Me-1n
Power Discharge Annual Annual

Delta (J/s-m) 10' Discharge Anenu

Deep Near
mJ/s Effective utiou

ness Ratio
water shore Index

Mississippi 106.0 0.013 17.69 5477.0 7913.3
Danube 23.0 0.014 6.29 1171.0 2585.0
Ebro 72.8 0.051 0.55 267.8 1299.5
Niger 67.6 0.659 10.90 4.4 102.8
Nile 136.0 3.210 1.47 3.2 42.5
Sao Francisco 371.0 9.970 3.12 1.3 .17.2
Senegal 156.0 37.700 0.77 0.3 4.2
Kali Garang 27.J 3.237 0.01 0.03 ' .4

It is difficult to give a perfectly valid comparison between the KaliGarang

Delta and the other seven deltas listed in Table 6.11since the Kali Garang Riversystem

is small comparedto the others. However some statements can be made in relation to

the table above. The waveattenuation in the KaliGarang delta is higher than that in the

Senegal Delta, but is far lower than in the Mississippi Delta. These attenuation ratios

depend more strongly on the subaqueous profile rather than on the deep water wave

power. The slope of the subaqueous nearshore of the Kali Garang (2.35 x IUJ m /m)

is gentler than of the Senegal (4.7 x l<t)) bUI steeper than or the Mississippi (5.8 x 10")

(Wright, and Coleman, 1972). Therefore the discharge effectiveness index in the Kali

Garang is lower than that et the Senegal. Consequently, the coastline of the Kali

Garang is totally wave dominated. The delta shows little river produced irregularity.
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Chapter 7

Discussion on Water Pollution in
Estuaries

Estuarieshavebeenconsidered idealplaces for industrialandcommercial

businesses. Their proximityto the sea makesthem beneficiallocations for easy access

to maritime transport, They are usually used as a supply of industrial and drinking

water and, in addition they are frequently used as a waste disposal site. On the other

hand, estuarine ecosystems provide an environment of considerable importance to

numerous aquatic organisms. Theyserve as a refuge nOI only for various freshwater

species butalso for many marinepopulations.

With the rapidgrowthof industry and population in the last century. the

estuarine loads are becoming unbalanced and perhaps even overtaxed and the water

quality is beingdegraded. When the natural ecological balanceis disturbed the water

is termed polluted, and the substances that cause pollution are called pollutants .

The Kali Garang Estuary flows through an urban area and is not free

from pollution problems. The pollutants originate mainly from domestic sewage. The

deg ree of pollution in the Kali Garang Estuary can be seen from the water samples

taken in both the West Channel and the KaH Semarang. Testing determined the

magnitude of the biochemical oxygen demand (BOD) and the dissolved oxygen

182



concentration (DO). Results are presented in Figures 7. 1and 7.2 for the West Channel

ami the Kali Semarang, respectively.

Before discussing this further, it is relevant to briefly review the meaning

of BOD, DO and their relation to pollution in estuaries. Bio,'hflllirdl flxygrn demand

(BOD) is the amount of oxygen required by microorganisms to biologically degrade the

organic matter in the water. The higher the BOD, the greater the organic mancr
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figu re 7. 1 DO (above) and BOD (below) Curves at the West Channel, Based on
Observations of July 15, 199 1.
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Figure 7.2 DO (above) and BOD (below) Curves at the Kali Semarang, Based on
Observations of July IS, 1991 and July 29, 1991.

existing in the water, and the greater the problem created by the decomposition of that

mailer. Microbial activity by bacteria requires oxygen to decompose the organic matter.

This activity reduces the dissolved oxygen (DO) concentration in the estuary .

Decreasing DO to less than 4 mgll causes most fish to die or move away. The

relationships between DO concentration and water pollution in estuaries are usually

determined by comparing the available DO with the saturation level. The DO at
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saturation is the maximum concentration of oxygen within the water, The DO

concentration at saturation is a function of salinity. temperature. and pressure. Al

ermospberie pressure, increasing the salinity ;and temperature decreases the DO

saturation. Table 7.1 contains oxygen saturation valun at diffcrt nt saliniliC$ and

temperatures. The differencebetweenDO saturation and available DO is called the 00

deficit. The higher the 00 deficit the higher the pollution.

.. ...
Temperature Salinity::: Salinity ... Salinity ::: Salinity -

'C oppt 16 ppt 28 ppt 35 ppt

0 14.62 12.94 u.n 11.13
5 12.68 11.26 10.35 9.83

10 11.26 10.09 9.19 8.80
15 10.09 9.06 8.80 7.89
20 9.06 8.15 7.S0 6.47
2S 8.41 7.63 6.99 6.73
30 7.50 6.86 6.34 6.08

Table 7.1 Saturation Values for Dissolved Oxygen in ppm at Different
Temperatures and Salinities under Atmospheric Pressure (From DIH,is.
J M andCornwell D A J986)

Dissolved Oxygen concentration in estuaries varies due to the variation of

sourcesand sinks of DO along the estuary. Sources of DO are : [ I} Reaeraticn from

the atmosphere. (2) Photosynthetic oxygen procucucn, and (3) DO in incoming

tributaries and effluent. The sinks of DO include: (I) Oxidation of oxidizable waste

material, (2) Oxygen demand of Sediments. and (3) Use of oxygen for respiration by

aquatic plants.
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Oxygen transfer in estuaries through reaeration depends on internal

mixing and turbulence due to velocity gradients and fluctuations. temperature, wind

mixing, hydraulic structures, and surface films. The presence of aquatic plants in

estuaries can have a profound effect on the DO resources because of their ability to

photosynthesize, converting water and carbon diClxide into glucose. and releasing

oxygen.

Discharge of settleable waste components in estuaries may result in the

formation of sludge banks, particularly during the dry season in which the now is low.

when this deposit is thick enough, anaerobic decomposition of the organic material

begins and several kinds of gases are produced. If the gas production is high this leads

to some ...esthetic problems as wen as DO depletion.

The water tests presented in Figures7. l and 7.2 above show that the DO

in the upstream part (ncar the weir) of both branches (the Wcst Channel and the Kali

Semarang) is t h ~ same (7 O1gll) , and almost as high as the DO saturation. In the West

Channel the DO below the weir decreases slightly due to increasing salinity. At the

same time the DO saturation also decreases for the same reason. Overall the DO deficit

decreases seaward. Near the mouth the DO deficit is almost zero. This phenomenon is

believed to bedue to aeration generated by winds blowing from the sea.

Below the weir the DO at the Kali Semarang decreases markedly until

almost zero at STA.02 (3.5 km downstream of the weir). At this point the DO deficit

is a maximum (7oSmg/l). Below this point the DO increases due to the effect of salt

water that intrudes upstream to that point. The polluted upstream water is diluted by

186



less polluted sea water. Although there is no information concerning the nature and

quantity of domestic sewage discharging into the Kali Garang estuary, it is likely thai

the Kali Semarang receives more sewage than the West Channel docs. The DO in the

Kali Semarang is below the low limit of the DO required for aquatic life.

The high pollution of the Kali Semarang is believed to contribute to a

acceleration of the deposition of sediment. This is because pollutants which originate

from domestic sewage consist not only of liquid but also of solid and settleable

material. The weak currents in the shallow water of the Kali Semaraog Channel arc

unable to flush down the solid material. As result, the material settles and accumulates

within the channel, particularly at the inner-bends where the flow is very weak. As

domestic sewage contains organic material, it has a positive charge and signilicanlly

enhances flocculation.
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Chapter 8

Conclusion

, -;,--';. ' "

River systems in Indonesia are mainly influenced by the geologyand

morphology of the systems, the climate, and the condition of the receiving basin. The

humid, mountainous, tropicalbasinsprovidea high volumeof sedimentthatoriginates

both from volcanic ashes and basin erosion . Monsoon seasons lead to the fluctuation

of runoff. Floodsmayoccur duringhighrunoffin tl1erainyseasonanddroughtsoccur

during low runoff in the dry season. The high volume of river loads leads to delta

formations in most river systems. The deltas vary from river dominated to wave

dominated dependingon the marineforcesagainstwhichthe riversare emptied.

Floodswhichinundate thelow,f1at ,lower basinandsedimentation at the

lower reachesare the mostcommonproblems.A number of construction projects in

some river systemshas altered the natural movement of water and sediment.

Limitedobservations which have been carried out in the Kali Garang

estuaryand have been discussed in the precedingchapters, give an illustrationof the

characteristics and phenomenafaced in Indonesian river systems. Despitethe limited

data. someconclusionscan be made.Theseare presentedin the followingparagraphs.
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The construction of the Simongan Weir and the West Channel in the Kali

Garang have shifted the main channel from its original lower course . the Kali

Semarang , to the West Chan nel. Currently, the Kati Semarang is as narrow as 10 m to

40 m, and is highly polluted arid is filled with sedime nt.

In section 4 .3.1 the tidal wave in the West Channe l was shown to be

reflec ted by the weir as it progresses upstream from the sea. Boundary dissipation has

a stronger effect than convergency, and the presence of some bridge piers along the

channel reduces tidal energy. Tidal range, therefore, decreases in a landward direction.

T he water surface gradient at low slack wate r is about three times higher than that at

the high water . The time of high water varies very little throughoutthe channel.

Observat ions of the tidal level throughou t the Channel and tidal data at

the coast have enabled the tidal volume at various tidal ranges to be calculated. In

section 4.3.1 the tidal vo lume has been calculated for three diff erent ranges: spring,

mean, and neap tides. Du ring a spring tide the tidal volume is about one third of the

volume of high water (to tal volume). During neap tide this value decreases to about one

eigh th of the volume of high water (see Table 5.5) .

Observations of salinity, temperatu re, and currents at STA .03, in the

Wes t Channel (see section 5.2.3), showed that the wate r in the upper one fourth of the

depth has a net moveme nt downstream , The remaining three fourths have a net

movement in an upstrea m direction after a period of about one tidal cycle. Throughout

the depth , however , the net movement is in a downstream direc tion throughout a tidal

cycle .
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The actualconditionsand watermovementduring low fresh waterflow

in the WeslChannelhave beendescribedin section4.3.2, aud have beendiscussedin

section6.2. The river discharge has a very pronounced effect on the water movement

in the channel.Althoughthere illa low fresh water flow, surfacecurrents alwaysflow

downstream throughout the tidal cycle. The surfacelayer is thinner at the seawardend

due 10 wideningof the channel and becauseof mixing with the salt water througha

diffusionprocess. "I11e surface layer may increase with increasing river flow, and the

salt water may be sweptcompletelyout of the estuary during a very high river flow.

In section 5,2.5 it wasshown thai a dischargeof 75 ml/s would push the saline wedge

down to a point 125 m upstreamof the mouth. Theoretical values of flow ratio, K,

indicatewithout doubt that the channel is highlystratifiedthroughout the entire yeu .

Materialentering the WestChannel comesmainly from the fresh water

river systemas suspendedload and bedload.Grainsize analysis of bedmaterialalong

the West Channel shows that the particles vary in size from sand (2 mm) 10 clay (0.5

pm). The meandiameter (M) decreasesseawards from72 ,urnat j ust below the weir

1033 pm near the mouth. This is contrary to the theoreticalassumption that particle

diameter increases in a seaward direction after about the middle of the estuary. It

implic~ that marineforceshave little effecton returning sediment material upstreamin

the estuary.

Direct observations of tidal currents in the middle of the West Channel

(STA.03) indicate that tidal currents are very weak and cannot initiate particle

movement or increase sediment concentration.The maximumcurrent is less than 10
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cm/s. These extremely low tidal currents suggest that settled particles in the saline

bottom layer are unaffected by them.

The effect of wave action on the inner estuary is also likely to be

insignificant in returning sediment back landwards. Wave ene rgy is dissipated by the

river banks as the waves enter the narrow channel just upstream of the mouth. Wave

action has an effect only until the river mouth. Indeed, the percentage o f sand at the

mouth is slightly higher than that at the middle.

Data rela ting to the change of bed elevation along the Kali Scmamng

during the period 1984 to 1990has enabled the annual amou nt of deposited material

within the channel to be estimated. In section 6.3 the values have been calculated. T he

annual deposited material during that period was 7,458 m}. Thi s material was deposited

in the lower reaches and shows that the velocity slows down after the tidal limit is

reached. Sediment carried down by the upper river starts to settle in this area ,

especial ly since the pollution from domestic sewage may take effect.

A theoretical annual sediment budget given in section 6.5 suggests that

the amount of deposition is 126.000m) per annum. About 60 to 80 percent is supplied

by t~e river and another 20 to 40 percent by longshore dri ft. T his value. although

derived from theoretical considerations, compares well with the work of Bums and Mc

Donnell (1976) which shows [hat the theoretical value given here is reasonable.

The receiving basin into which the Kali Garang debouches is a microtida l

sea (mean tidal range = 0.65 rn) with a very moderate wave energy climate. The

maximum river discharge coincides with the maximum wave energy. Consequently, the
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value of the discharge effectiveness index is low throughout the year. Based on data in

1989, the index ranges from a minimum at 0.009 to a maximum of 0.105 (average

0.032). The high volume of riverine sediment carrieddown during the rainy season is

reworked by Ihe west monsoon. This material is brought back near shore by the east

monsoon during the low water flow of the dry season. As result, the coastline of the

Kali Garang Delta is totally wave-dominated. The coastl ine is relat ively straight with

only a small protrusion at the West Channel mouth and some bar islands west of the

mouth.

Pollution, which is experienced in most river syste ms in Indonesia, is

likely, either directly or indirectly, to accelerate deposi tion processes in the inner

estuary. This is panicu larly true if the pollutants consists of settleable material and

organic mailer.

After this study several problems remain evident, and several have been

revealed which require further study and investigation. Total solids supplied by the

fresh water river system should be carefully monitored during a one year period, or at

least during the high river discharge of the rainy season. These resu lts would confinn

the actual fluvial load entering both estuary and surf zone. A long term study of wave

climate is needed 10 determine the rate of littoral drift . Finally, a strict regulation of

domestic sewage should be applied in order to reduce its effect on sedimentation and

its hazard to aquatic and human life.
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Appendix A

Data Sheets of the Field Observations
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location
Date:

Table A. I-I

Tidal Record

WestChannel
June 26 1991

Time: Water Level (em) Remarks

Harbour STA.O~ STA.03 STA.OI

00.00 31.0 49.' H .5 66.3 LW
01.00 37.0 55.0 59.0 67.8 0.00
02.00 47.0 62.9 68.0 71.2 Midnight
03.00 63.0 76.S 7H.9 n 2
04.00 74.0 84.6 87.3 84.0
05.00 81.0 89.5 90.5 90.3
06.00 90.0 91.8 94 .7 97.0
07.00 99.0 103.5 106.0 103.3
08.00 103.0 107.0 107.1 109.9 HWal
09.00 102.0 102.5 103.8 111.8 Harbour
10.00 98.0 97.5 102.5 109.3 8.00 AM
11.00 1)3.0 90.5 91.~ 98.8
12.00 88.0 88.2 87.5 94.3
13.00 aJ.O 82.5 83.9 90.8
14.00 80.0 80.~ 82.5 88.8
15.00 no 78.0 81.0 83.8
16.00 73.0 72.5 72.5 n9
17.00 68.0 67.' 68.5 74. 8
18.00 63.0 63.5 64.5 72.8
19.00 57.0 60.7 60.5 69.3
20.00 49 .0 59.5 59.5 67.8
21.00 41.0 54.5 57.0 66.3
22.00 35.0 52.5 ~5 .5 65.8
23.00 32.0 49.8 54 .0 64.8 LWat
24.00 32.0 49.1 52.5 64.8 Harbour
01.00 34.0 50.5 54.5 64.8 0.00
02.00 43.0 56.5 58.5 69.4 Midnight

Range 71.0 57.9 54.6 45.1
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Table A.I·'!

Tidal Record

we...1. Channel
J I 04 1991

location
Oate : u y

water Level (em)
lime

STA.03 STA.OI
Remarks

Harbour STA.05

00.00 39.0 49.5 55.5 68.8
0 1.00 39.0 51.5 58.5 69.8
02.00 45.0 54.5 60.5 70,3
03.00 51.0 59.5 63.5 70.8
04.00 56.0 67.0 67.\ 71.5 HW al
05 .00 62.0 71.5 71.5 705 .3 Harbour
06.00 69.0 73.5 74 .5 n.. 1.00 PM
07.00 78.0 84.5 86.5 91.1
08.00 88.0 89.5 97.9 99.2
09.00 9 1.0 91.9 96.5 102.1
10.00 91.0 94.7 99 .5 102.4
u.oo 99.0 103.7 10115 103. 1
12.00 100.0 102.5 101.5 IOS.8
13.00 102.0 104.0 105.0 106.8
14.00 101.0 100.0 105.5 106.3
15.00 100.0 97.7 102.5 105.1
16.00 96.0 92.3 99.5 102.3
17.00 89.0 82.5 85.5 91.5
18.00 19.0 78.5 80.5 88.7
19.00 67.0 73.5 76 .7 82.2
20.00 55.0 67.6 7 1.8 n.5
2 1.00 45.0 59.5 65.5 73.8
22.00 39.0 55.5 60.5 71.8 LWal
23 .00 37.0 54 .5 58.5 71.3 Harbour
24.00 ' 0.0 54.5 58.5 70.8 11.00 PM

Range 65.0 ' 9.5 47.0 35.5
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Location
Date

TableA . I~J

TidalRecord

West Channel
July 18 1991

Water Level (em)
Time Remarks

Harbour STA.<Ci STA.03 STA.OI

00.00 32.0 40.7 43.3 66.3
0 1.00 39.0 40.6 43.4 66 .3
02.00 51.0 4) .2 45.3 68.0
03.00 55.0 59.5 59.5 76.9
04.00 70.0 ffi .7 rz.s 79.5
05.00 74.0 73.5 74.0 81.2
06.00 85.0 76.5 82.9 39.0
07.00 88.0 84.6 87.9 93.7
08.00 88.0 89.7 94. 1 95.1
09.00 88.0 91.0 94.5 100.1
10.00 87.0 88.3 94.1 98 .9
11,00 89.0 86.9 91.2 98 .0 HWat
12.00 90.0 89.2 91.8 99 .2 Harbour
13.00 94.0 90.5 92.7 97.3 0.45 PM
14.00 92.0 91.7 92.9 98.5
15.00 91.0 88.6 90.7 94 .1
16.00 89.0 87.7 89.9 89.6
11,00 81.0 84.6 87.2 87.0
' 8.00 71.0 SO.4 81.7 85.0
19.00 60.0 75.2 77.6 84.6
20.00 49.0 ss.s 70.0 81.4 LWat
21.00 38.0 51.1 56.8 76.2 Harl>our
22,00 33.0 45,1 49. 1 69.& 10.30 PM
23.00 3 1.0 43.5 45.5 67.3
24.00 35.0 45.2 48.0 68.8

Range 63.0 48.2 49.0 32.8
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Location
Date

Table 1\. 1-4

Tidal Record

West Channel
July 26 1991

Water Level (em)
Tilne

Harbour STA.05 STA.OI
Remarks

STA.03

00.00 29.0 38.5 43.5 65.8
01.00 32.0 42.5 44 .5 66.3
02.00 40.0 50.5 53.5 68.2
03.00 55.0 57.5 59.5 69.8
04.00 67.0 67.0 67. 1 71.5
05.00 77.0 71.5 71.5 75.3
06.00 84.0 73.5 74.5 77.4 HWat
07.00 91.0 84.5 86.5 91.1 Harbour
08.00 92.0 89.5 97.9 99.2 8.40 AM
09.00 93.0 96.5 99.5 102.1
10.00 91.0 96.4 995 102.4
11.00 83.0 94.7 99.0 101.3
12.00 80.0 94.3 98.5 100.8
13.00 77.0 91.1 96.0 100.1
14.00 72.0 88.0 92.5 98.8
15.00 67.0 83.8 89.S 95.3
16.00 66.0 82.5 89.5 91.8
17.00 66.0 82.S 85.5 91.5
18.00 60.0 78.5 80.5 88.7
19.00 53.0 73.5 76.7 82.2 LWa l
20.00 49.0 67.6 71.8 77.5 Harbour
21.00 39.0 54.3 58.3 74.2 11.00 PM
22.00 32.0 48.5 49.5 68.8
23.00 31.0 42.5 45.5 67.3
24.00 31.0 41.5 45.5 67.8

Range 71.0 57.9 54.6 45.1
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TabJeA.2-1

Tidal Record

Kali Semaran g
I I 04 1991

Location
O toate : uy

Water Level (em)
TIme

Harbou r STA.OS STA.04 STA.02
Remarks

00.00 39.0 ~2.0 45.0 160.5
01.00 39.0 42.0 45.0 160.5
02.00 45 .0 44.0 45.0 160.5
03.00 51.0 SO.O 49.0 160.5
04.00 56.0 55.9 55.0 160.5
05.00 62.0 59.1 57.0 160.5
06.00 69.0 68.2 65.3 160 .5
07 .00 78.0 77.9 76.8 160.5
08.00 88.0 86.3 82.6 160.5
09.00 91.0 1s8.1 87.6 160.5
10.00 92.0 91.3 91.1 160.5
11.00 99.0 98.3 97.2 160.5
12.00 100.0 99.0 100.6 160.5 HW al

13.00 102.0 100.0 101.9 160.5 Harbour
14.00 101.0 101.5 102.0 160.5 1.00 PM
15.00 100.0 100.6 10 1.0 160.5
16.00 96.0 97.2 98.5 160.5
17.00 89.0 90.1 92.2 160.5
18.00 79.0 82.2 83.8 160.5
19.00 67.0 n .2 76.6 160.5
20.00 55.0 65.3 69.2 160. 5
21.00 45.0 51.0 52.0 160.5 LWat
22.00 39.0 47.0 48.0 160.5 Harbour
23.00 37.0 43.0 45.0 160.5 11.00 PM
24.00 40 .0 42.0 45.0 160.5

Range 65.0 58.5 57.0 0.0
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Location
Date

Tidal Record

Kali Semarang
July 18 1991

Water Level (em)
Time

Harbour STA.05 STA.04 STA.02
Remarks

00.00 32.0 40.5 45.0 160.5
0 1.00 39.0 43.2 45.0 160.3
02.00 51.0 49.7 47.0 100.5
03.00 65.0 51.3 49 .0 160.5
04.00 70.0 68.6 61.5 160.5
05.00 14.0 72.6 73.3 160.5
06.00 85.0 83.5 83.6 100.5
07.00 88.0 86.7 86.1 160.5
08.00 88.0 87.9 89.2 100.5
09.00 88.0 88.0 89.9 160.5
10.00 87.0 87.6 90.1 100.5
11.00 89.0 88.3 91.3 160.5
12.00 90.0 90.9 95.5 100.5 HW 41
13.00 94.0 95.8 98.3 100.5 Harbour
14.00 92.0 95.9 99.0 100.5 0 .40 I'M
15.00 91.0 91.3 94.5 160.5
\6.00 89.0 89.4 90.2 100.5
11.00 81.0 82.5 85.6 100.5
\8.00 71.0 71.\ 79.1 100.5
19.00 00.0 69.0 70.2 100.5
20.00 49.0 57.0 58.0 100.5
21.00 38.0 48.0 51.0 100.5 LWal
22.00 33.0 42.0 47.0 100.5 Harbour
23.00 31.0 40.0 45.0 160.5 11.00 PM
24.00 35.0 41.0 45.0 100.5

Range 63.0 50.9 54.0 0.0
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Location
In"

Tidal Record

Kali Semarang
Iuly 20 1991

Time WaterLevel(em)

STA.05 STA.04 STA.02
Remarks

HaJbour

00.00 31.0 42.0 45.0 160.5
01.00 31.0 42.0 45.0 160.5
02.00 48.0 44.0 45.0 iso.s
03.00 59.0 57.0 56.0 160.5
04.00 11.0 68.1 66.3 160.5 HWat
05.00 81.0 18.5 16.6 160.5 Harbour
06.00 83.0 84.2 83.S 160.5 6.00 AM
01.00 82.0 84.3 85.2 160.5
08.00 79.0 11.6 79.8 160.5
09.00 7 1.0 69.5 72.2 160.5
10.00 66.0 61.0 68.2 160.5 LW
11.00 61.0 61.1 63.3 160.5 11.30 AM
12.00 61.0 63.0 63.9 160.5
13.00 64.0 63.3 64.8 160.5
14.00 68.0 65.4 68.6 160.5
15.00 10.0 69.6 11.1 160.5 HW
16.00 74.0 13.8 13.8 160.5 4.00 PM
11.00 72.0 16 .6 16.3 160.5
18.00 10.0 74.3 7S.4 160.5
19.00 63.0 68.8 72. 1 160.5
20.00 55.0 65.6 70.3 160.5
21.00 49.0 62.0 63.0 160.5
22.00 44.0 52.0 53.0 160.5 LW
23.00 35.0 45.0 47.0 160.5 0.00 AM
24.00 29.0 42.0 45.0 160.5 Midnight

Range 22.0 23.2 21.9 0.0
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Table A.3-1

Longitudinal Survey Data

WestChannel
J 15 1991 (tloodtid )

Location
D tae one ice

Depth C<>~" Velocity Si linity Tempe IXn.it y Remark
Time ~ru~

om. Rev/60s mi •• Pr' "C g/cml EI~v.' inn

'.00 to 53 0. 229 0.00 27. 20 i.ooco STA.OI
AM SO l2 0.064 0.90 27 .30 i.oooo

100 , 0.040 1.21 27.90 i.cocc rise
150 0 0.000 20 .20 28.50 1.0122
200 0 0.000 29.00 29.00 1.0186

9.00 to ee 0.2 84 0 . 10 27.5G STA.02
AM SO II 0.060 1.30 27.60 r.cooe

tOO 3 0.028 7.20 28.00 1.0027 nse
tSO 0 0.000 23.60 28 .50 1.0 148
200 4 -0.032 29. 10 29.00 LOl87
250 l2 -0.06 4 30. 10 29 .00 1.0195
l Oll 0 0.000 3 1.30 29.00 1.0204

10.00 to 11 0. 305 0.70 27.80 r.oooo STA.03
AM SO " 0.1 11 5.50 27 .90 1.00 14

tOO 8 0.048 15.30 28. 10 1.0087 rise
150 0 0.000 25.80 28.60 1.0164
200 17 -0.0 83 30.30 29 .00 1.0 196

11.00 to 73 0.3 13 5.30 28.40 1.0012 STA.04
AM SO , 0 .036 15.70 28.90 1.0088

tOO l2 0.064 25.30 29.00 1.0 159 fi~

150 0 0.000 28. 80 29.00 1.0185
200 0 0.000 30.30 29.00 1.0 196
250 to -O.OS6 30.90 29.00 1.0201
300 s ·(1.036 31.00 29.00 1.020 1

12.00 to 89 0.38 1 10.25 29.20 1.0046 STA.05
AM SO 32 0 . 143 25.10 29. 30 1.0 1S7

tOO 4 0. 032 27,90 29.00 1.0 178 mal lmUm
150 0 0.000 29 .80 29.00 1.0192
200 0 0.000 31.10 29.00 1.0202 Wiler
250 0 0.000 31.20 29.00 1.020 3
300 0 0.000 31.50 29.00 1.0205 level
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Table A.3-2

LongitudinalSurvey Data

West Channel
June 15 1991 (ebb tide)

Location
Oate

Dop.

e__
Vd",cil)' SalimI)' Tempc:t Do:nsil)' ..-

Time .~

om. ...,... mi•. "'" 'C . /em' EkvatiOll

4.00 ' 0 .. 0 .199 O.IS 30.70 1.0000 STA.O I
PM ' 0

, 0.024 0.95 30.60 1.0000

' 00
, 0.036 ' .25 30.50 1.0000 eu

150 0 0.000 n .30 30.20 1.0 141

' 00 0 0.000 29.20 30.10 1.0 185

' .00 ., " 0 .261 I. IS 30.80 ' .0000 STA. 02
PM so • 0.048 2.10 30.50 1.0000

100 0 0.000 10 .90 30.50 1.0048 en
' 50 4 0.032 " .60 30. 10 1.01' 8
200 0 0.000 29.40 29.'" 1.0 188

'50 0 0.000 30.20 29.40 1.0 194
300 0 0.000 31.20 29.20 ' .0202

' .00 10 " 0.225 2. IS lO.IO 1.0000 STA.03
PM 50 2J 0 .101 6.3S 30.00 1.0015

' 00 , 0.028 17.70 29.30 1.0102 .n
'50 0 0.000 26.60 29.20 1.0168
200 0 0.000 30.20 29.00 1.0195

1.00 10 " 0.225 6: 15 30.00 1.0011 STA.04
PM 50 26 0.119 11.30 29.10 1.0097

100 0 0.000 26.60 29.'" 1.0 167 . 11
rso 6 0.040 29.00 29. 10 1.0 186
200 0 0.000 ~.90 zs.co 1.0193
asc 0 0.000 :MUS 29.00 1.020 1
lOO 0 0.000 31.10 29.00 1.0202

12.00 10 .. 0 .381 10 .25 29.20 1.0046 STA. OS
AM 50 " 0 .143 25.10 29.30 1.0157

100 4 0 .032 27.90 29.00 1.0178 maximum
150 0 0.000 29. 80 29.00 1.0 192

'00 0 0.000 31.10 29.00 1.0202 water
250 0 0.000 31.20 29.00 1.0203
300 0 0.000 31.SO 29.00 1.0205 level
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Location
Date

Table A.3-3

longitudinal Survey Data

West Channel
June 19 1991 (flood tide)

Depth CaUlIlli Velocity S. linity Tempera Density R~mllrk

Time ,,~,,,. Rev/60s mi•. Pel 'C a/em' ElevMli"n

' .00 10 sa 0 .27 1 0.00 28.4 0 1.0000 STA. OI
AM SO 10 0.056 0 . 10 28.60 1.0000

100 2 0.0 24 10.50 29.00 1.()(»9 rise
ISO 0 6.000 24 .90 29.00 1.0156
200 0 0.000 2850 29.00 l. 0183

10 .00 10 " 0.280 0.90 28.50 1.0000 5Th . 02
AM SO 28 0. 127 2. 10 29.00 1.0000

100 7 0.044 11.50 29.00 1.0056 nse
ISO 4 o.csa " .60 29.00 1.0 161
200 0 0.000 29.30 29.00 1.0 189
2SO 12 -0.064 30.20 29.00 1.0 195
'00 4 -c.oaa 31.00 29.00 1.0201

11.00 10 ee 0.292 1.10 29.8 0 1.0000 5TA.03
AM SO 31 0.139 5.70 29.00 1.0013

100 • 0.052 16 .30 29.00 1.0092 n se
ISO 0 0.000 27. 10 29.00 1.0 172
200 16 -0 .079 29 .80 29.00 1.0 192

12.00 10 12 0 .309 13.50 29.8 0 1.0069 5TA.04
AM SO 29 0. 131 19.30 29.80 1.0 112

100 , 0.052 24.50 29.20 1.0 152 rise
ISO 0 '.000 28.20 29.00 1.0 180
200 0 0.000 30.10 29.00 1.0 195
2SO IS -0.075 30.60 29.00 1.0 198

'00 4 -0.032 30.90 29.00 1.020 1

1.00 PM 10 .. 0.368 18.30 29.80 1.0 105 STA. OS
SO sa 0.225 27 .50 29.50 1.0174

100 14 0.071 28 .80 29.00 1.0 185 rise
ISO 0 0.000 30.20 29.00 1.0195
200 0 0.000 30.50 29.00 1.0198

"0 10 -o.OS6 30.50 29.00 1.0 19 8

'00 s -o.OJ6 30 .80 29.00 1.0200
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Location
Dale

TableA.3-4

Longitudinal Survey Data

West Channel
June26 1991(ebb tide)

Depth Co WlIl; Velocity Salinity Temper Density Remark
Time em. Rev/60s . mi•. ppl .. ure g/e ml Elevation

'C

9.00 AM 10 ss 0. 231 0.00 28.40 \ .0000 STA.O I
50 0 0.000 0.50 28.60 \. 0000

'00 z 0.024 13.10 29.00 1.C1013 112 em
ISO 0 0.000 Z$.60 29.00 1.0 16 1

' 00 0 0.000 29.00 29.00 \. 01 86

9.45 AM 10 ss 0 .231 0.00 28.050 \. 0000 STA.02
50 28 0 . 121 \.60 29. 00 \.0000

\00 0 0.000 18.20 29.00 1.0 106 l06 clll
ISO 4 0.032 21.10 29 .00 1.0112

'00 0 0.000 29.20 29.00 1.0188
250 0 0.000 30.30 29.00 1.0196
300 0 0.000 31.00 29.00 1.020 1

10.4 S AM 10 l8 0 . 166 \.00 29.80 \ .0000 STA. 03
50 1I 0.139 10.30 29.00 LOOn

100 , 0 .024 21.30 29.00 1.0129 92 elll
ISO 0 0.000 28.00 29.00 1.0179

'00 0 0.000 29.80 29.00 1.0 192

11.405 AM 10 49 0. 2 12 105 ,30 29.80 1.0082 STA.04
50 31 0 .139 22.30 29.80 1.01 34

100 • 0.04 8 25.50 29.20 1.0163 88 em
ISO 0 0.000 28.10 29. 00 1.0 180

' 00 0 0.000 29.50 29.00 1.0 190

' 50 0 0.000 30.90 29.00 1.0201
300 0 0.000 30.50 29.00 1.0198

12.45 AM 10 90 0.385 19.60 29.80 1.0114 STA. os
50 24 0. 111 27.80 29.50 1.0 116

100 , 0.024 28.00 29.00 1.0179 83 em
\60 , 0.OS2 28.SO 29.00 1.0183

' 00 0 0.000 29.70 29.00 1.0 192
'50 0 0.000 30.70 29.00 1.0 199
300 0 0.000 30.80 29.00 1.0200
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Location
Date

Table A.4-1

Sectional Survey Data

STA .03, WeM Channel
July04 1991

TilDe

"""" C~. Vdoc:ily S. linily Temper """'". WR

(WL' ,m. Rev16l)s mI,. '" -c lI'em'

8.00 AM 10 79 0.]29 0.0 1 28.10 I.<XXJO
25 J6 0. 159 10.00 28.] 0 1.0047

90,. 50 0 0.000 20.50 28.50 1.0125
100 ) .0.028 29.50 28.80 1.0191
ISO '0 .0.056 19.80 19.00 1.0192
190 0 0.000 29.50 19.>0 1.0189

9.00.0\101 10 ss 0.234 1.90 28.10 I.<XXJO
25 " 0.143 ' .90 28.10 1.0046

92 em 50 0 0.000 20.>0 n.se 1.0125
100 0 0.000 19. 80 21.90 1.0193
ISO • -0.052 19.80 19.00 1.0192
190 0 0.000 29.50 29. 10 1.0190

10.00 PM 10 46 0.198 1.90 29.00 ' .<XXJO
25 18 0.166 1.90 29.00 1.0019

95 em 50 0 0.000 17.00 29.80 1.0095
100 0 0.000 19.>0 29.80 1.0188
1>0 6 ~.040 29.80 19.50 1.0191
' 90 0 0.000 19.90 19.40 1.0192

11.00 PM 10 n c.scr 1.65 10. 10 I.<XXJO
25 .. 0.174 10.50 30.20 1.0046

l04 c:m " 0 0.000 22.10 :JO.40 LOlli
'00 ) .0.028 26.SO 19.80 1.0165
ISO • -0.052 21.20 29.80 1.0178
190 0 0.000 29.20 29.80 1.0186
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location
0.16

Sectional Survey Data

STA.03. West Channel
July 04 1991

Tillll: D<"" c••,," VeloQly Salinity T" ...... Da:!.s.ity

.~"
IWL) I:rn. Rcv/605 mI,. "" 'C , rem'

12.00 AM 10 78 0 .325 2.30 30.40 1 OOסס.

25 .. 0.206 10.30 30.70 1.0043
103 em 50 0 0.000 22.10 30.80 1.0130

' 00 " -0.079 25.00 30.10 1.0153
" 0

, -0.036 27, 10 29.80 1.0 170

' 90 0 0.000 29.90 29.80 1.019 1

1.00 PM 10 10' 0.432 1.75 31.00 r.oooc
25 II I 0.463 11.60 31.20 1.0051

l\M em 50 0 0.000 22.70 31.40 1.0 132
'00 0 0.000 28.00 30." 1.0175

'50 0 0.000 29." 29." 1.0 190
'90 0 0.000 29.90 29.80 1.0 19 1

2.00 PM 10 u t 0.479 1.75 31. 10 r.cooo
25 " 0.226 11.90 31.20 1.0053

100 em 50 0 0.000 n .20 31.20 1.0137
' 00 0 0.000 21 .50 30.20 1.0119
150 0 0.000 29." 30.00 1.0 189
'90 0 0.000 29." 29." 1.0190

3.00 PM 10 67 0.211 1.50 31. 10 r.oooc
25 " 0 ,218 13.20 11,10 UlO63

98 em 50 0 0.000 25.00 31.00 1.015 1
'00 0 0.000 29.00 29.90 1.0 134
" 0 0 0.000 29.80 29.80 1.0190
' 90 0 0.000 29.80 29.80 1.0190
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Location
Dale

Table A.4-J

Sectional Survey Data

Sta.03 , West Channel
July18, 1991

Time Depth COUI'\IS velocity Salinity Tereper D~nsilY

. IUN

(WL) om. R~~160s mis. ," -c ll/cm'

6.00 AM 10 78 0 .325 0.!5 27.80 r.occo

" SO 0 .2 14 10.15 27.80 1.0050
88em SO 0 0. 000 21.10 27.90 1.0131

'00 2 -0.024 27.60 28.50 1.0177
ISO S -0 .036 2~.10 29.00 1.0 187
190 0 0.000 3~.OO 29. 10 1.0 194

7. 00 AM 10 100 0 .412 3.20 27.80 r.ocoe

" 61 0 .257 9.70 27.80 1.0046
"' om SO 0 0 .000 21.60 28.00 1.0134

100 7 -0. 044 28.80 28.50 1.0\ 86
ISO a ..(l.024 29.00 29.00 1.0186
190 0 0 .000 30.10 29.10 1.0194

8.00 AM 10 OS 0 .273 3. 10 27.80 1.000Xl

" 42 0. 182 9. 10 27.80 1.004 1
95 em SO ) 0 .028 22.70 28.00 1.0 142

100 0 0 .000 28.90 28.40 1.0 1.17
ISO 0 0.000 1'J.IO 29.00 1.0 187
190 0 0.000 30.30 29.00 1.0 196

9.00 AM 10 60 0.254 2.20 27.80 r.occc

" 4l 0.186 10.30 27.80 1.0050
94 em SO 0 0.000 22.90 28.00 1.0144

100 0 0 .000 29.00 28.50 1.0188
ISO 0 0 .000 19.30 19. 10 1.0 188
190 0 0 .000 29.90 19. 10 1.0193

10 .00 AM 10 8S 0 .352 1.90 18.00 1.00110

" 6l 0 .265 11.00 28.00 1.000SS
9 1em SO 0 0 .000 24.10 28. 10 1.0153

100 S -0 .036 28.90 18.60 1.0 187
ISO 2 ..(l.014 29.40 19. 10 1.0 189
190 0 0 .000 30.10 29.10 1.0194

II 00 AM 10 9l 0 .384 2.20 19.10 r.ococ

" S1 0. 1 18 11.10 28.40 1.0056
92em SO ) 0 .028 24.40 28.20 1.0154

100 ) -0 .028 27.90 28.50 1.0180
ISO 6 -O.l>1O 28.90 29. 10 r.etas
190 0 0 .000 29.50 29. 10 1.019U
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Locat ion
Dat

Table A.4-4

Sectional Survey Data

STA.03. West Channel
July 18 1991

Ti_ ""'" e-. Vdoci1y SaliDily T,_ Dem;ily
. N«

IWLI ,m R""'" mi. ... 'C c'em'
12.00 AM ' 0 O! 0.... 3.20 29.50 1.0000

" 36 0 .1S9 .... 29.30 I.CI043
9J cm 50 0 0.000 2] .:10 29.00 1.0144

100 0 0.000 28.30 2&.70 1.0 182

' 50 • -0.052 2UO 29.20 1.0 184

' 90 0 0.000 29.80 29.10 1.0192

1.000 1'M 10 107 0 .440 2.70 ] 0. 10 1.0000

" 89 0 .368 8.90 30.00 1.0034
92 .;m 30 0 0.000 20.90 30.00 1.0123

' 00 0 0.000 27.80 29.00 1.0178

' 50 0 0.000 29.10 29.30 1.0186

'90 0 0.000 29.30 29.20 1.0188

2.00 PM ' 0 .. 0.408 1.20 31.00 1.0000
zs " 0. 170 9. 10 ac.sc 1.0034

9 1.;m 50 0 0. 000 21.30 lO.30 1.0 115

'OIl 0 0. 000 26 .SO 29 .20 1.0167

' 50 0 0 .000 28.10 29 .30 1.0178

' 90 0 0.000 29.80 29.10 1.0192

J.oo PM 10 ., 0 .273 0.9' 31.30 1.0000

" .. 0 .178 8.50 31.20 1.002 8
90= 50 0 C.OOO 2 1.20 31.20 1.0122

100 0 0.000 27.20 30.00 1.0170

'30 0 0.000 29 .20 29.30 1.0 187
190 0 0 .000 lO .OO 29.40 1.0 193

4.00 PM 10 36 0.238 0." 31.40 1.0000

" 1I 0. 139 8.70 31.20 1.0030
87 em 30 0 0.000 20.30 31. 10 1.0116

'00 0 0.000 26.60 30 .20 1.0165

' 30 0 0.000 29.20 30.00 1.0185

'90 0 0.000 30.30 29 .60 1.0194

5.00 PM 10 44 0. 190 0.75 31.00 1.0000

" l2 0 .143 9.30 31.10 1.0034
82 em 30 0 0.000 20.95 31.20 1.0 120

' 00 0 0.000 2.5.20 lO.60 1.0153
130 0 0.000 28.90 30. 10 1.0182
' 90 0 0.000 lO .20 29.80 1.0193
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Table A.S-I

FloatTest

STA.03. West Channel
J 1 19 1991

Location
Date uy

Time Water
Distance Elev. Remarks

Start Finish (ml (m,RBW)

00.00 0.3 1 · floodtidestarts about
01.00 OLII 20.0 0.32 midnight
02.00 02.07 20,0 0.48 - the float was released
02.30 02.35 20.0 0.52 at midof the channel
03.00 03.11 20.0 0,59 · the floatmoves up-estuary
03 .30 03,44 20.0 0.66 until 06.00 AM
04.00 04.20 20.0 0.71 - the position of floatalways
04.30 04.49 20.0 0.75 at the middleof the channel
05 .00 05.17 20.0 0.8\
05.30 05.47 20.0 0.82 · from6.00 to 7.30 AM. the
06.00 0.83 floatmoves up anddown

· HWa16.15 AM

07.30 07.47 20.0 0.79 · at 7.30. the floatmovesdown
08.00 08.15 20.0 0.78
08.30 08,4 1 20.0 0.74 · at 10.30 to 12.00 (Nooon), the
09.00 09. 17 20.0 0.71 floatmoves up anddownvery
09.30 09.50 20.0 0.68 slowly
10.00 10.25 20.0 0.66
11.00 l l. 30 20.0 0.6\ · LWat 11.30 AM floatmoves

up

12.00 12.25 20.0 0.6 1
13.00 13.20 20.0 0.64 · at 4.00 to 5.00 PM. the float
14.00 14.21 20,0 0.68 moves upanddown slowly
15.00 \5.24 20,0 0.70

0.72 · at 5.00 PM, the float moves
17.00 down
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loc ation
Date

Table A.So2

FloatTest

STA.03. West Channel
July 25 1991

Water
Time Distance Elcv. Remarks

Swt Finish
(m) (m,RBW)

00.00 0.31 - floodtide starts about
01.00 01. 18 20.0 0.32 midnight
02.00 02. 12 20.0 0.40
02.30 02.36 20.0 0.49 - the floatwas released at mid
03.00 03.05 20.0 0.55 at thechannel
03.30 03.37 2U.0 0.62
04.00 04.08 20.0 0.67 - the floatmoves up-estuary
04.30 04.45 20.0 0.72 until 7.00 AM.
05.00 05.20 20.0 0.76
05.30 05.50 20.0 0.8 1 - the floatremains about the
06.00 06.22 20.0 0.84 mid of the channel
07.00 0.90 - from7.00 to 9.30 AM, the

floatmoves up anddown
slowly

09 .00 0.94 - HW at 8.45 AM
09 .30 09.50 20.0 0.92
10.00 10.19 20.0 0.91 - at9.30 AMthe floatstarts
10.30 10.42 20.0 0.89 to movedown
11.00 11.12 20.0 0.85
12.00 12.14 20.0 0.80
13.00 13.16 20.0 0.77 - at 3.00 to 5.30 PM. thefloat
14.00 14.20 20.0 0.72 movesup anddownslowly
15.00 0.67

0.66
17.00 0.64 - the float moves downat
17.30 17.49 20.0 5.30 PM.
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Location
Date

TabItA .6-1

Float To t

STA.05. Kali Sernarang
July20 1991

Time Distance w ater
Elev. Remarks

Slart f inish (m) (m.RBW)

00 .30 00.49 20.0 0.49 - thefloatwasreleasedat tne
0 1.00 01.17 20.0 0.52 mid at thechannel
02 .00 02. 12 20.0 0.63
02 .30 02.41 20.0 0.70 - the floatmoves up-estuary
03 .00 03.10 20.0 0.77 until7.00 am
03 .30 03.39 20.0 0.83
04 .00 04.0 8 20.0 0.88 · the float remains at about the
04 .30 04.49 20.0 0.92 middle of the channel
05 .00 05.20 20.0 0.93
05 .30 05.50 20.0 0.95 - from,6 .00 to 8.30 AM,the
06 .00 06.25 20.0 0.97 floatmoves up anddown
06 .30 0.98

0.99 - HWat 7.15 AM
0.95

08.30 08 .55 20.0 0.91 - at 8.30 AM, thefloat startsto
09 .00 09 .30 20.0 move down
09 .30 - at 10.3010 12.00 (Noon), the

floatmoves upand down very
slowly.

• water level almost constant
0.90 from10.00 AM to 1.00 PM.

14.00 0.89 the float moves up and down
15.00 0.90 slowly
16.00 15.20 20.0 0.89 • at 3.00 PM. the float moves up
17.00 16.28 20.0 again

- at 4.00 to .5.00 PM, the float
stops.
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Location
Date

Table A.6-2

FloatTest

STA.05, Kali Semarang
July 26 1991

Time wa ter
Distance Elev. Remarks

Start Finish (m) (m,RBW)

00.00 00.19 20.0 0.30 . thefloat was releasedat mid of
03.00 00.46 20.0 0.31 the channel
01.00 O1.l5 20.0 0.32
02.00 02.11 20.0 0.40 ~ the floatmovesup-estuary until
02.30 02.40 20.0 0.45 about 7.00 AM
03.00 03.07 20.0 0.52
03.30 03.38 20.0 0.59 - thefloat movesabout themiddle
04.00 04.13 20.0 0.68 of Ihe channel
04.30 04.47 20.0 0.73
05.00 05.20 20.0 0.78 - from 07.00 10 10.30 AM, thefloat
05.30 05.50 20.0 0.82 movesup anddown veryslowly
06.00 06.28 20.0 0.85
07.00 0.89

- HWaI8.30A M

10.00 0.89 - at 10.30 AM, the floatstarts to
10.30 10.49 20.0 0.86 movedown very slowly
11.00 11.25 20.0 0.83
12.00 12.29 20.0 «n
13.00 0.73

0.61 . at l.00 PM. the float moves up
anddown until the lest finished at

17.00 5.00 PM
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Appendix B

Offshore Wave Energy Flux

Tab le B. l Angle Between Wind Direction and Normal of Shoreline (a.,)

Avg AVIl CUSlr. ~

Direction D . cc se, (CO"" .) SinO'. Sina. Silla., AvIl·{1I

(I) (2) (l) (4) (Sl (6) (7) (8 )

Shorel ine -90 .00 0 .00 -r.oc 0.00
ENE -76. 25 0.2 4 0.12 .0.97 -0.99 -0.23 ·0. 12
NE ·SJ.2S 0.60 0.42 -0.80 -0.89 -0.48 -0.36

NNE -31.25 0.85 0.73 -0.52 -0.66 -0.44 -0 .46
N -S.75 0 .99 0.92 ·(1.15 .0 ,34 -0. 15 ·0.30

NNW 13,15 0.97 0.98 0.24 0.04 0.23 O,( )4

NW 36.2$ 0 .81 0.89 0. 59 0. 4 1 U.48 0.35
WNW 58.75 0.52 0.66 0.85 0.12 0.44 0."

W 81.25 0. 15 0.34 0.99 0.92 0.15 0.30
WSW/f>«<. 90.00 0 .00 0.08 1.00 0.99 0.00 0.08

Table B.2 Determination of wave-group celerity (<; )

T r..= I.S6'fl .!L .JL .!L L =.JL X,• c,
(sec.) (m) t , H. l (dILl C

2.5 9.7S 0 .9231 0 .9999 0.9231 9.75 0.500 1 1.90503
3.5 19.11 0 .4710 0.981 4 0.4735 19.01 0.5128 2.78 49
4.5 31. 59 0.28 49 0 .9440 0.2987 30.13 0.5611 3.7569
5.5 47,19 0.1907 0,9 162 0.2 174 41.40 0 .5956 4.48J 1

6.5 65.9 1 0.1365 0 .9153 0. 1720 52.33 0.5968 4.8 043
7.5 87. 75 0. 1026 0.9307 0.143 1 62.89 0. 577 1 4.8 394
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Table 8 .3 Offshore Wave Energy Flux for T "" 2.5 Seconds

Pct of Frt:queocy, f(,-,)

II . u,' occur.

'ml ,mJ ' OJ ENE l NE INNE I N INNWl NW IWNwj W Iwsw
2.5 2.3 1.2 7.0 3. 8 8.0 6.2 8.2 3.5

' .25 0.230 30.930 0.77~ I0.711.1 0.J7~ I;.I~ 1 1 . 1 7~ I 2.47~ 1 1 . 9 1 ~ 12.S36 11.083
0.7S 0 691 0.860 0.022 0.020 0.010 0.060 0.033 O.OM 0.OS3 0.071 0.030

II . ": II, Energy nUJ. {Jl IlI-s)

' mJ ' mJ (ml
ENE I NE I NNE I N I NNW I NW I WNW I W [ w sw

0.25 0.230 0.231 I.OO~ I0.924 10·.t~7 1 al3 1 U2~ I a.us I 2.49~ I 3 .29~ j 1.4Of
0.7S 0691 0.692 0.2S1 D.23 1 0. 121 0.704 0.382 0.104 0.623 0.82$ 0.3S2

Total 1 1.256 11.1SS 10.603 !J.m l l.909 14.019 !3.1IS14.120 1 1.751

Tab le 8.4 Offshore Wave Energy Flux for T "" 3.5 Seconds

Pet or Frequency , f
II. II: occur.

ENE NE NNE N NNW NW WNW W WSW,ml (m) ,OJ
2.5 2.3 1.2 1.0 1.8 8.' 6.2 8.2 3.5

0.2S 0.2S 22.150 O.S69 O.S23 0.273 1.593 0.86$ 1.820 IAIl I. '" 0.000
0.7S 0,74 4.420 0.111 0. 102 0,OS3 0.'" 0. 168 0.3S4 0.274 0.362 ' .000
1.25 1.23 0.350 0.00. 0.001 0.0<l4 0.025 0.013 0.028 0.022 0.029 0.000

II. II: II, Encrgy flus. (JIm-I)
,m, 'mJ 1m'

ENe H' HNe H HHW HW WNW W WSW

0.25 0.25 0.247 1.207 t.r u 0.S79 3.380 1.835 3.863 2.... ' .960 '.000
0 .7S 0.74 0.741 2.111 1.942 1.013 S.9IP 3,209 USS 5.23S 6.924 0.000
1.2S 1.23 1.234 '.464 0.427 0.223 1.300 0.106 1.486 1.151 1.523 0.000

Total II 3.782 3.430 1.816 10.59 S.149 12.104 9.380 12,406 0.000
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Table8.S OffshoreWave Energy FluxforT "" 4.SSeconds

N, .... "," " f ftllllJmC)'. f (~ )

1m) Iml -,.
ENE NE NNE N NNW NW WN W W WSW(0)
2.S 2., 1.2 ' .0 I.' ' .0 6. 2 ' .2 ' .S

e.as 0.24 9 .910 0 .24' 0 .221 c.us ,.... e.att , .", 0 ,614 0-11) ,..
0.7> 0.71 6 .010 0 .152 0 .001 0 .00 1 0.... 0 .002 0.'" 0.... 0.., 0"
I." 1.11 2.... 0.ose 0 ,001 0000 0 .002 0 .001 O.GO:! 0.001 0,002 0."
1.75 ..es 0'" 0.... 0 000 0.000 0." 0." 0.000 0." 0.000 0."

... .... II, Eoera::r nlll (Jlm·. )
1m) 1m) 1m)

ENE NE NNE N NNW NW WNW W WSW

0." 0.24 0 .236 0 .64' 0 .597 0 .311 UI6 0 ,916 2.075 .... 2.127 0."
~ .75 0.71 0, 708 3.510 0 .033 0.017 0 .100 0 .054 0. 115 oOl~ 0 .117 , ceo
1.25 !. II 1.180 3.926 0 .0]6 0.019 0 .110 0 ... 0 .126 0.09 7 0.129 0 ceo
1.75 r.es 1.652 0.962 ''''' 0.005 0.0:17 0 .015 0 .031 0 .024 0.0]2 ...

TOI.II lll 9. 116 0,674 0 .352 2.053 1.114 2 .J~ 1.118 2.405 , .eoc

Table 8 .6 Offshore Wave Energy Flux forT - S.S Seconds

... No' ",",' fRlqueDl:)'. f ("J
1m) 1m) - ,.

ENE NE NNE N NNW NW WN W W WSW
I ' )

2.S 2.' 1.2 ' .0 ].I ' .0 6.2 ' .2 I .S

0." 0." 2.740 0.... 0.'" 0 .OJ3 0.1'12 O.IIM 0.2 19 0 .170 0.215 0."
0.75 0." 2. 170 0.'" 0.050 0.'" 0.152 0 .0112 0 .174 0 .135 0 .171 0."
I.~ 1.15 1.670 0.042 O.OJI 0.020 0.117 0.'" 0 .134 0. 104 0 .137 0"
1.75 r.ec 0 .320 0.... 0.007 0.... 0.022 0 .0 12 0 .026 0020 0.026 ,..
... .... N, EncTiynUl (J/Ift-s)
In ) Iml Iml

ENE NE NNE N NNW N W WNW W WSW

e.as 0." 0.22' 0 ,202 c.ns 0.097 0 .564 0,3116 0.645 0 .500 0 .661 , .ccc
0 .75 0." 0 .687 1.436 1.321 0 .689 4.022 2.183 4.596 3,562 4.711 ,..
i .as US 1.\45 3.071 2. 125 1.474 1.591 4.667 9.126 7.615 10.071 ,..
1.75 i.eo 1.603 1. 153 1.061 0.554 3.229 1.753 l .... a... 3.782 ,..

TO\.III V 5.162 5 ,393 2814 16.412 1.910 18 ,757 14.537 19.226 0."
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Table 8 .7 Offshore Wave Energy A ult for T - 6.5 Seconds

H. ... ", .f Frequmc;)', f C")

Cm' ,., - ,.
ENE NE NNE N NNW NW WNW W WSW

"' ' .S z.a r.a 7.0 , .e ' .0 0.' e., ' .S

O,ZS 023 O...SO 0 .0 11 0.010 0."'" 0.032 0 .011 0 .036 0 .021 0 .031 ,....
' .23 ,." , .220 ' .000 '''''' '''''' 0.015 ,... 0 ,011 0 .0 1" 0 .011 '''''I.ZS 1.1" O.I:!O 0.0" ''''' 0.001 0.00. ' .oos 0 .0 10 0 .001 0 .010 , .ecc
' .23 , .cs ,.'" 0 .00 1 ,... ' .000 0 ,00 1 0.001 ,."" 0 .001 c.oea ,.""
H, ... H, Enerl)'llll' (Jfrn-s)

'm' f.' Cm' ENE NE NNE N NNW NW WNW W WSW

e.as 0. 23 0.219 0 ,035 0 .033 0 .017 0.099 ,.'" 0 .113 0 .081 0 .116 '''''0.75 0,69 0,686 0 . 156 0. 1"3 0.0 75 0.436 0,237 0 ,498 0.386 e.su e.eoo
1.25 1.14 \.l 44 0 .;136 0,2 17 0. 113 0 ,661 0.359 0.155 0.585 0 .n 4 ''''':!..ZS , .ce 2.059 0 . 127 0 .117 0 ,061 0, 357 0.194 0 .408 0 .3 16 0 .411 acco

TOLlI V 0 .555 0.5 10 0.266 1.5S3 0.143 I.n5 1.J75 1.119 e.eco

Table B.B Offshore Wave Energy Flux for T =7.S Seconds

H• ... Pct ef Frequmc)'. (C")

'm' ,., _.
ENE NE NNE N NNW NW WNW W W SW

"' ' .S z.r t.z 7.' ,.. ' .0 0.' e., a.s
0 .25 O.:!J ,.'" 0 .00 1 , .cco , .ece 0 .001 0.001 ' .007 0.00 1 ,.'" '''''0 .75 ' .10 ,."" ,."" 0.000 0.000 ,."" ,."" ,."" , .eoc ,."" ,...
" 23 1.16 ,.'" 0 .001 ..... ' .000 0.001 0.001 ,.'" 0 .001 ,.'" , .eoe
1.15 t ." ''''' ,... ,.... , .eec ,."" ''''' , .ooe ,.... , .cce , .eec

H. ... If, EDerv filii;(11_),., em, ,.,
ENE NE NNE N NNW NW WNW W WSW

' .23 o.n 0.233 0 .002 ' .002 0,001 0.005 0 .002 0 .005 ,.... 0.005 , .ecc
0 .75 0 .70 0 ,698 , .occ ,... ,... , .coc '.000 , .ooc , .ecc ' .000 ' .000
1.25 1.16 1.163 0 .041 0 .038 0.0'20 0 .115 0 ,062 0 .131 O.U12 0.134 , .eec
1.75 1,63 1.629 ' .000 ' .000 ' .000 '000 ' .000 , .ceo ' .000 , .coe ' .000

TOLlI V I 0 .043 0 .039 0.020 0 .119 0,065 0 . 136 0. 106 0 . 140 ' .000

To.IIIl(I + . .. -tVij ZO.6 1J 11.252 5 .870 3.. .2.... 11,590 39 .136 30.331 4O.US 1.7S1
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Ta ble B.9 Monthly Distribution of Offshore Wave Energy Flux (P) During 1989

Wave ~e.gy flu,,"(P) 1"" dirc:clion je r month (JIm·,) ·1 TOllll

Moolbs
ENE NE NNE N NNW NW WNW W wswI : :th

......')' 0 ,67' 0 .74' 0 .161 1.971 un ,."" s.m e."'" 0.29: 1 2U Il 9
F.b .... ')' 0.7l0 0.26 1 0.;164 0.246 O. I ~~ UlO 1 .~2J 12.716 'B2~ 16..\10 :0;
M. "' b 1.414 0.'" 0.526 2.U3 1.6S~ 4.~'4 4.IlSS 4,:0;.14 0.1% 21.1Sbl
....pm 1.J49 1.1S1 0.769 2.464 1,811 U07 1 .511 1.91'>6 ,1.117 11 .0721

~~
1.399 1.167 O.44S oI. ' U 1.917 0.931 0 .120 G.S!! 0 .029 1l.0~J3

1.09 9 ,..,. 1.0 12 ,."" 1 .019 1.026 0 .762 0. 963 0.129 1J.71 16
" , 2.314 0.5 96 c."" ,.- 0.!l\l4 t.~ r.,.. 1.123 0.029 1\.2 040

....u..'" 1.549 0."" ..... 3.1.... 1.076 1.11S D.W 1.123 O.OB 10.7HS
$<ple<l'lb<, 2,114 0.9 3 1 O.40S 3.983 1.S73 1 ,176 t .sos I.n. 0.0.14 14.U'4
~_.

1.649 0.7 01S c.nn 3.03 1 2.+01 3.910 U2J 1.6MS 0.100 14.9l.S0
NO\'Cmbo' 1.714 1.080 0.n6 4.S17 U61 U l9 t .~ 0.923 0.042 17.3174
Deeembe. 1.499 0. 194 .". 1 . ln 1.111 U ll 1 .969 6.09 7 e.ru 19.1171

I: I:: 20 ,6 1 11.2.S S.170 34,144 II .S9O J9 .136 30 .HI 4('1.1IS 1.7l M 1(11.910

Ta ble B.10 Monthly Distribution of Longshore Compone nt of Offshore Wave Energy
A ux (PJ During 1989

Longshore component orwave energy flux (P1o) per No< Grnss

Months direction per month (J/m-s) p. p.
per per

ENE NE NNE N NNW NW WNW W WSW mun lh mu nlh

]an. 4')' -0.078 -o.16S -o.07S -c.se O,OS) 1 . 17~ 1.6'9 2.0n 0.02 2 S,0444 7.0m

~::h4')'
-0.047 -0,093 -0.161 -0.01 3 0.007 U 9 1 BOB 3.776 0. 039 1 ,3000 9.14111I
-o. I~ -0.344 -0.261 -0.7 19 0.067 u os 2.n 4 1.441 O.DlS 3.7916 6.7326

"''' -o. U6 -0.621 -0.3$$ -o.ll l 0.07) 1.871 1.163 O.S« 0."'" LlI41J U7Il

~:
-0.177 -o.4SO -0,206 -1.191 0.010 0.)3 0 O.OSS O.US ,."'" ·1.602 1 U 467
-0.1 42 -0,463 -0,467 . 1.0 11 0.012 0.717 0.351 0.2S6 0.0 10 .4).7J'I1 3.UYl

July -o.~ 1 -0,111 -0,280 -c.zn ."" 0.660 0.SS4 0.111 0."'" n.0'.I76 3 .01107
AUlI' rI <.l?< -0.15 1 -0.224 -0 .963 0.04l 0.4J O 0.148 OJ JJ 0 .003 .4l.m6 1 .6YOO

~:"",:,,'
-0.151 -0.33 1 -Ull -].1 8] 0 .06) 1.0 18 0.n9 OJI I ' .00< 0.15. 1 4. ISM
-0.190 .{),26S <.'" -0,902 0.097 t ..., 0.S17 ' .>00 O.OOR 1.0761 1.9771

Novembe. -0.199 ..(1.384 .4),140 · 1 .3~ 1 0.091 I.6JS 0.665 0,1701 0.00 1 O.50M2 U 412
De<.mbo. -0.173 .IUII -o. IU -oM4 0.041 .."" 1,366 1.110 0.016 J.S l lW U361

,~, ·1 .379 ·3.99S ·1.709 -10 .167 0.749 13.1' I).9 S 11.910 0.131 11.lolYS SY., SO
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Appendix C

Nearshore Wave Energy Flux

Table C.I Angle Between Wind Direction and Normalof the Shoreline

Dleec D. C=. AV8(3) Sino. Avg. (S) Cl,IS(I.x AVIl· (1)
l ion Sina.

(I ) (2) (3) (4) (5) (6) (7) (8)

S-line -90.00 0.000 -1.000 0.000
ENE -76.25 0. 238 0.119 -0.971 -0.986 -0 .2 31 -o.I1S
NE -53.25 0.5 98 0.4 18 -0 ,80 1 -0.886 -0.419 -0.355

NNE -3 1.25 0.8SS 0.727 -0,519 -0.660 -0 .4<4 -0. 461

N -8.75 0.98 8 0.922 -0. 152 -0.]]5 -0. 150 -0.297

NNW 13.75 0.971 0.930 0.238 0.043 0.2] 1 0.040
NW 36.25 0.806 0.889 0.591 0.414 0.417 0. 354

WNW 58.15 0.5 19 0.66] 0 .855 0.723 0.4<4 0.'"
W 81.25 0.152 0 .]]5 0.988 0.922 0. 150 0.291

WSW/SL 90.00 0.000 0.076 1.000 0.994 0.000 0.075

Table C.2 Determination of Wave Group Celerity (C.)

T L."U6~ i .H- i L- L .4 C, Sin"....., • ..
(1«: ) ' m) Lo Ho L (diLl C (mil)

:!.5 9.75 0.1154 0.914 0.205 8.362 0.599 2.002 I.'" 1.130 2•.m
7.' 19.11 0 ,0895 0 .94] 0. 132 12 .974 0 ,"6) 2.035 0 .926 7.25 7 4. 104., 31.59 0.OS41 1.0\0 O.09S 17.397 0.490 1.S96 0.6$8 24.9 14 4.112
s.s 47. 19 0.006 2 LOSS 0.079 :!1.67) 0 .425 1.675 0.516 63.753 5.137.., 65.9 1 0.0159 J.I59 0.0.. :!5.858 0.372 1.481 0.428 136 .S71 5.:!93

7.' S7.75 0.019S t.Z3 3 0.OS7 30.069 0.329 1.319 0.365 :!64.962 5.433
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Table C.3 Nearshore WaveEnergy FluxforT = 2.5 Seconds

n. n.' Pct cf Frequency.f(%)
(m) (m> oceur.

(0) ENE I NE INNEI N INNW I NWIWNWI W Iwsw
2.5 2.3 l ~ 7~ 3.8 8.0 ~2 8.2 3.5

O.:!SO 0.273 30-930 o.n~ 1 0.71~ I 0.37~ 1 2.1651 1 1. 11~ 1 2 .47~ 1 1. 9 1 81 2. S3~ 1 ,1.083
0 .750 0.820 0.860 0.022 0.020 0 .010 0.060 0.033 0.069 0 .053 0,071 O.OlO

H. H: H, e""rgy nu~ (1Im·")

'm' 'm' (ml
ENE NO NNE N NNW NW WNW W WSW

0.250 0.273 0.230 U)2~TO.94~-0.491. 1 2 .8~ 1 U~~T3.27~ 1 2 . S3~ 1 3 .3 S ~ 11.433
0 .750 0.820 0.303 0.050 0.046 O,~4 0.139 oms 0.IS9 0.123 0.1(13 0.069

TOli l l 1.073 0,987 O.Sh 3.OOS 1.631 3.434 2.662 3.52(] \.SOJ

Table C.4 Nearshore Wave Energy Flux forT "" 3.5 Seconds

a, H ' Pel of Frequency, f (%)
(m) (m' occur.

ENE NE NNE N NNW NW WNW W WSW(0)
2.' 2.' 1.2 1.0 '.8 8.0 6.2 8.2 a.s

0.250 0.270 22.750 0.569 0,523 0.273 1.593 0.865 1.820 1.411 1.866 0000
0.750 0,811 4.42t1 0.1 11 0.102 O. OS~ 0.309 0.168 0.354 0.274 0.362 0.000
1.250 1.352 0.3S<J 0.000 0"" 0.'" 0.025 0.013 0,028 0.02 2 0.029 0.000

H. H: H, Encrll:Yflux (1/m·s)
(m) (m) (m)

.ENE NE NNE N NNW NW WNW W WSW

0.250 0:270 0.208 0.64 2 0.590 0.308 1.796 0.975 2.053 1.591 2.1~ 0.000
0.750 0.811 0,2 19 0.139 0.1:!7 0.006 0.388 0.211 0.443 0.343 0.454 0.000
1.250 1.352 0.159 0.'" O.OO~ 0.003 0.016 0.'" 0,018 0.0 14 0.019 0.000

TOUIllJ 0,786 0.123 0.317 2.200 1.194 2.Sl5 1.949 2.578 0.000
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Table C.5 Nearshore Wave Energy Flux for T "" 4.SSeconds

~ No' ,"" Frequmcy. f ( S )
1m) 1m)

_.
ENE NE N:'iE N NNW NW WNW W WSW(0)
LS U 1.2 7.G ,.. ' .G ' .2 ' .2 l .'

e."" 0.':'" 9.910 0 .2. ' 0 .228 0 .11\1 ..... 0.3n ' .793 0 .61. G.l 13 ....
0 .7S0 0 .1. ) ..... 0.1n 0.1060 o.on 0.426 0.%)1 ..... 0.3n 0.• \111 ....
I~O 1.238 ~ ..-oa 0.0•• 0.~5 .'" 0.161 0.091 0 .191 0. 1.9 0 .191 ...
I.", r.m ' .300 0.0• • .'" .... 0.02.1 0.01l 0.02. 0 .019 ..'" ....
~ No' H, EDerey nux (JI1n1)

( m) (m, (m)
ENE NE NNE N NNW NW WNW W WSW

0.250 0.2411 0. 191 0, ~ 1 5 0 .1\17 0.103 0 .601 0.326 0.61 7 0 ,532 0 .704 e.ooo
0 .150 0.1. ) O .~O) 0,149 0. 137 0.071 OAI1 0,226 0 .476 0 .369 0 .488 e.ecc
1.2S0 1,::38 0 .141 0 .0:11 0 .029 O.DIS 0 .017 0 ,047 c.ess o.on 0. 102 ....
USO 1.733 0.1 12 ' .002 ' .002 0.001 ' .006 0.003 ..'" ' .006 •.en '.000

T'lllIll1l 0 .397 0 .365 0 .190 1.111 .002 1.270 0.91\<4 1.302 ....
Table C.6 Nearshore Wave Energy Flux for T = S.SSeconds

~ No' '"'" F""fI*ICy .f{S)
1m) (m) - ,.

ENE NE NNE N NNW NW WNW W WSW( 0 )
2.S 2.' 1.2 7.G l .' ... ' .2 ' .2 l .S

O.ZSO o.~ 2.7«1 ..... u'" 0 .03] 0 .192 0.104 0 .119 0 .110 . .w ....
0 .750 0 .691 2.1'70 0 .~4 e.ese 0 .0"'..6 0 .151 ' .012 0 .174 0 .135 0 .118 e.ece
I.ZO 1.152 1.670 0 .042 0 -038 0 .020 0 .117 0 .06] 0.114 0 .104 0 .137 e.eec
1.150 1,613 .,,, ..... 0 .007 ..... .= 0.012 ' .026 ..'" ' .026 ....
~ No' H, Eau ry nux(JIDHI)

(m) (m) 1m)
ENE NE NNE N NNW NW WNW W WSW

0 .250 o.no 0,111 0 .041 0.043 0,0"'..3 0 .132 0,07 1 c.ur 0. 117 0 .154 e.ccc
0 .150 0.69 1 0.200 0 .0411 0 .042 O.O"~ 0 . 127 ..... 0 .146 0 .113 0 .149 c.ooo
1.250 I.lS2 0. 147 0 .0 19 0 .0 17 .."" 0.053 0.029 0 .061 0 .047 0 .062 ...
usa \.6 13 0. 111 0.002 0. 001 0.00 1 ' .006 0.003 0 .007 0.005 0 .007 ....

TOI.Il lV 0.114 0. 105 O.OSS 0 .318 0 .173 0 .364 0 .282 0.3 n e.cce
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Table C.7 Nearshore Wave Energy Flux for T = 6.5 Seconds

" ". Pet of Frequency. (I")
(al) (m) occur.

ENE NE NNE N NNW NW WNW W WSW( ')
2.S 2 .] 1.2 7 .0 3.' '.0 6.2 '.2 3.S

0.250 0.~29 0 ,450 0.011 0.0 10 0 .005 e.ora 0.017 0.036 0.0'.l8 0.037 '.000
0.750 0 ,686 IU 20 , .cee 0,005 0 .003 0 .015 ' .008 O.OIB 0.014 0 .018 ' .000
1.250 1.144 0.120 '.003 ' .003 0.00 1 0 .008 0,005 0 .010 0 ,007 0 ,010 ' .000
2.ZS0 2 ,059 o.ccc 0.001 '.000 0000 0.001 0.001 0 .002 orol 0 .002 ' .000

" ". H, Energy nU Jt (Jlm's)
(m) (m) (m)

ENE NE NNE N NNW NW WNW W WSW

0 .250 0 .2 16 0 ,173 ' .006 o.oos 0.00 3 0.017 ' .009 0.020 0 .015 e.cac ' .000
0 .750 0.647 0 .201 '''' '''' 0 .002 0.0 12 , .eos 0 .013 0 .010 0.014 ' .000
\. 250 \. 079 O.ISI 0.001 0 .001 0.00 1 ' .00< 0.002 '.00< 0 .003 ' .00< '.000
2.250 1.941 0 .093 '.000 ' .000 ' .000 ' .000 '.000 ' .000 0.000 '000 '.000

'reerv 0.0 11 0 .011 '.006 0 .033 0.0 18 0 ,037 0,029 0 ,038 0,000

Table C.S NearshoreWave Energy Flux for T = 7.5 Seconds

H. ". Pet of Frequency, r ( ,, )
(m\ (m) occur.

ENE NE NNE N NNW NW WNW W WSW(')
2.S 2.3 1.2 7 .0 3.' ' .0 6.2 ' . 2 a.s

0 ,250 0 ,233 0.020 0 .001 ' .000 0.000 0 .00 1 0.001 0.002 0 .001 0 .002 0,001
0 .750 0.698 0.000 '.000 ' .000 0 .000 ' .000 '. 000 '.000 ' .000 '000 ' .000
\. 250 1.163 0.020 0 ,001 ' .000 0 000 0.00 1 0.001 '.002 0 ,001 0 .002 0,001
\. 750 1.629 ' .000 ' .000 '.000 0000 '.000 ' .000 ' .000 ' .000 ' .000 ' 000

" ". H, Energy n l.lJt (J/m-s)
(m) (m) (m)

ENE NE NNE N NNW NW WNW W WSW

0.2S0 0 .203 0 .166 ' .000 '000 0.000 0.00 1 ' .000 0 .001 0,001 0 .00 1 ' .000
0 .750 0 .608 O.Z02 ' 000 ' 000 0.000 ' .000 '. 000 '.000 '.000 ' 000 '000
1.2S0 \. 014 0 .154 ' .000 '.000 ' .000 0.001 0.000 0 ,001 0.000 0 .00 1 0.000
1.750 \. 419 0 .119 ' .000 '000 0 000 0.000 ' .000 ' .000 ' .000 '000 '000

TOlal VI 0.000 0.000 0.000 0.001 0.00 1 0.00 1 0 ,001 0 .00 1 0.00 1

TOlal(I+ .. +VI) 2.381 2.191 1.143 6.669 3.620 7 ,622 5.907 7 .81 2 1.503
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Table C.9 Monthly Distribution of Nearshore Wave Energy A u.l (P) During 1989

.- w.. c •..." • • (1'l,.... __ f'Cf_OJ..-o) T_

"" " 'N' ,
N~ ~ - W wow ..-

' _ 0 0.071 0'" om, "M .". U " I. I:IS 1.116 0..249 .'"
' .....0 ' .00 ,-", ,.o" "" O.OJl ,.'" 1.415 1.n 6 ,.'" HII 4
IoI. ", b Q.l1I5 a. l19 0.101 a.lIn ,." O.IU U d 0.H5 0.1111 4.1:16

"'" a.uI ,.><, O. ISO ,... O..2jj ,.'" ,.'" ,." 0.100 ,.'"
~~

O.l n 0.1"1 0.017 ,.... 0..217 0.111 ,.'" a .I 01 ,.'" un
0.1.1 0.U 6 0.191 ,.... O..2U 0.196 0. 161 0.111 e.nc 1.SiS

lui) O.IU 0.116 0. 111 0.6lI0 0. 196 0.363 ,.'" 0.1 19 O.01S 1.011
AuI UIl 0.194 O.U I 0.09 ' 0.1131 0.1 10 0.1)7 0.011) 0.219 0.011 1.9U

~~'
O.UI 0.111 0,019 o.n ll ,.'" 0." 0 0..213 ,,,, ,.'" 1.762
0.191 0.16S 0.019 0.392 0.468 ' .m 0.119 0.118 0.01$ 1 .u o

N,,,,,. ,nb., 0.1'<9 0.210 0.101 O.UO 0.4111 0.899 0,211 0.1&0 0.OJ 6 1 .263
o... mt>., 0.113 0 ,116 0.01 ' 0.616 O.lIM 0,U 4 o.m 1.131 0.111 J , ~U

T,ulld i , 2,].1 1. 1 ~ 1 1.141 U1l9 1. 1110 un U 07 1.8 12 ,-"', 11 .1149

Teble C. IO Monthly Distribution of Longshore Component of Nearshore Wave
Energy Flu" (Pa>During 1989

Moo"" l.oftphoR(OCI'IfOnenlor_ve IMel"IY nllJ: (P,,) ~diroctioll Nd G_
pct'lllOIllh(I Irm-s) p. e,

ENE NE NNE N NNW NW WNW W wsw po po
• • et • """"".~ .... -4.051 -4.DIS -0.114 0.0 10 O.l ft O.!ill , .", 0-019 r.'" I.JI I

=" -4.010 -4.0 11 -e.'" .0.0 16 ,.00, 0.271 "" om ,.... ,.... r.M
-G.Olt -4.0111..'" -4.140 0.011 O.:I9J O..US 0.211 0.011 0. 761 ''''"'" -G.on -4.121 .."" -4.162 0.0 16 ..'" 0.:117 0.114 ,... ,." ,-'"

~~
-4.012 -4.01' ..'" • .on 0.0 16 ..... 0.011 ,.... c.'" ..... .."-G.on .... -4.091 -4.197 O.DIII 0. 160 ,.... ,.on ,... .4 .111 ,....

'., .0.001 -4.fUl -4.O$S -4.142 0.001 0.121 0.101 O.OlIS c.cca ,.'" ,.."
Aup" .0.016 -4.a..9 . '" -4.111 0.008 ' .0» ,m ...., ,.'" -0.126 ....
:;'~:-C'

-4.019 .... -c,'" -4.230 0-011 0 .191 0.164 0.076 ncn '.<rn 0.191
.0 .011 .0.052 .0.0 11 .j). 176 0 .019 0.174 0.10 1 o.on ,... ,.", ,.'"

N,....mb<. .'" -4.07J .o ,l)61 .0 .261 0.019 0.11' 0.119 0.0$3 ,.'" e.ut 0.929
o... mIJ. , G.010 -4.061 .Q.G,!} -G.IlJ ,.. 0.111 0 ,~1I6 O.l S] 0.0 16 0.1 16 1.191

T"...l ·1l . 17.~ -0.171 -tl.,u _l.no 1l. H II l .II~1 2.711 1.3 19 0.1l] 4All ILSU
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Appendix D

Calculation of Water Profiles

Table D.I WaterProfiles

Initial Water Ele 1'0 . + 0 42 ISubjecr : West Channel va i n. 0

(I ) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Station Q, y A R E s, dE. L E
(ml/ s) (m) (m2) (m) (Oij (m/ m) (Ill) 1m) (m )

5TA,05 , 0.0120 382.62 2.05 0.420 4.1110' o
O.OOOH

STA .04 0.421 79.31 2 .16 0.421 8.87 10 ' 12;:' 0.421
0.00)48

5TA,03 0.425 56.30 1.19 0..125 J.92111' 1450 0.425
0.OOl82

STA ,Ol 0.427 88.12 2.S3 0.427 5.&410' "'. 0.·127
0,0057l

5TA ,OJ O.4n 38.50 1.06 0.433 9.69l0 · Ill ! 0.433

5TA ,05 " 0.420 382.62 2.05 0.420 1.6410 ' e
0.00227

5TA ,04 0.421 79,31 2.16 0.422 ).HiO · 1225 a..m
0.01369

STA ,03 0.433 56.69 1.20 0.435 r.nro ' 1450 0.435
0,00714

5TA ,0! 0.44 1 88.51 2.54 0 .442 1.JIIO· ere 0 .442
0,02124

5T A.0 1 e.eee 39.40 I.'" 0.463 ).5910' I ll! ..'"
5TA.OS " 0.420 382.62 2.05 0.420 3.7010 .1 o

0,00511
5TA.04 0.423 79.37 2.16 0. 42S 1.9710 ' 1225 0.425

002962
STA.03 0.45 1 '7.57 1.21 0.4'4 3.2910' 14' 0 0 .4' 4

0 ,01536
STA.o:! ' .469 n,31 2." 0. 470 '.0510 ' "'. '1 410

004251
STA.OI 0.506 40.&& J.J3 0.' 13 7.1410 ' 1112 0 ,513

STA.05 ac 0.4 20 3S2.f2 2.05 0.420 6.58 10 ' 0
0,00906

STA.04 0.426 19.46 2.16 0.429 1.4110 ' Ins 0.429
0,05024

STA.03 0.473 51.66 l.23 0.419 5.52 10' ,,,. 0.479
0 025&6

STA. o:! 0.51n 90.26 2.51 o.sos 8.11 10' .10 O.S05
0,06622

STA.OI 0.S6O 42.63 LI& 0.571 \ .101 0' 1112 0."1
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Table 0 .1 (Continued)

(I) (2 ) (3) (4) (5) (6) (7) (8) (9) ( 10)

STA ,OS as 0.420 382.62 2,05 0.420 1.03 10" 0
0.01413

STA_04 0.429 79 .55 2.16 0.434 2.2010-' "" 0.434
0.07436

STA,O] 0.499 59 ,95 .." 0.508 8.051 0 " 14S0 0.508
0.0]192

STA,02 0.541 91.41 2.59 0.546 \.31 10" .10 0.546
0.08989

STA.OI 0.610 44.S9 1.~ 0.636 \. 4910-' 1112 0. 636

STA.OS so 0.420 382 .63 2.0S 0.42 1 4.1110 ' 0
11.05527

STA.04 0.456 80.42 2. 17 0 ,416 8.61 10 ' 1225 0.476
0.2171 1

STA03 0.... 68.S3 1.40 0.693 2.13 10" 1450 0.693
0.10344

STA.03 0.784 98.64 3.73 0.797 4.2110" . 10 0.197
0.18585

STA.Ol 0.941 55 .41 \.S2 0.983 2.92 10" 1112 0. 983

STA.OS " 0.420 382.62 2.05 0.422 \),15 10" 0
0.1196\)

STA.04 0.499 81.116 2.17 0.542 1.86 10 " \2" 0.542
0.36155

STA.03 US8 19.01 1.56 0.904 3. 1310 ' \4S0 0.903
0.15126

STA.02 1.0]6 106.6 4 2.117 \.061 7.58 10-' . 10 1.061
0.24973

STA.OI 1.246 66.24 1.71 1.311 3.73 10" 1112 1,31\

STA.OS 100 0.420 382.62 2.05 0.423 1.64 10-' 0
0.20178

STA.04 0.SS3 8).81 2.19 0 ,626 3,1110-' 1225 0 ,6:!!
0.49S81

STA.01 \. 059 90.69 1.71 1.1:11 3.71 10" 1450 1.121
0.19459

STA.02 1.277 \148) ' .00 1.316 \.1 01 0" . 10 \. 3 16
0.29670

STA.Ol U2S 76.68 r.99 1.612 4.24 10" 1112 1.612
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Tab le 0.2 Water Profiles

Initial Water Elevation ' + 0 74 ISubject : West Channel eu

(I) (2) (3) (4) (S) (6) (7) (8) (9) (10)

Station Q, y A R E 5, ' 8 L E
(m' /s) (m) (m~ (m) (m) (m1m) (m) (m) (m)

STA.OS , 0.740 439.73 2.08 0.140 3.OJ 10' •0.00039
STA.04 0.740 92.10 2.29 0.740 6. IO l()"1 '225 0.740

0.00 174
STA.OJ 0.742 12 .60 1.46 0.742 1.791 0-' 1450 0.142

o.00090
STA.02 0.143 97.53 2.7 1 0.743 4.35 10"' SI. 0 .743

0.0027 1
STA.OI 0.745 48.74 1.34 D.746 4.4310· 1112 D.74b

STA.OS 10 0.740 439.73 2.08 0.740 1.2110' ,
o.ocut

STA.04 0.741 92. 15 2.29 0.742 2.4410· ms D.742
0.00690

STA.OJ 0.147 72.87 1.46 0.148 7.08 10· 1450 0.149
0.00357

STA.02 0.751 91.n 2.11 0.752 1.73 10· SI. 0.152
0.01049

STA.OI 0.160 49.24 I.J6 0.762 1.711 0 1 1112 0.762

STA.OS " 0.740 439.73 2.'" 0.740 2.73 H)"l ,
0.0035 1

STA.04 0.743 92.25 2.29 0.744 5.46 10' '225 0.1.....
0.0 1513

STA.03 0.758 73.47 1.47 0.760 1.551 0-1 " 50 0.760
0.00785

STA.02 0.767 98.27 2.21 0.768 3.83 10 ' SI. 0.76S
e.oma

STA.OJ 0.786 SO. I I 1.38 0.791 3.64 10-1 1112 0.79 1

STA.OS 20 0.740 439.73 2.'" 0.740 4.asH)"1 ,
0.00624

STA.04 0.744 92. 31 2.29 0.746 9.70 10· "25 0,746
0.026SS

STA.0 3 0.769 74.07 1.48 0,773 2.70 10"1 1450 0.773
0.0 1364

STA.02 0.784 98.79 2.73 0.786 6.71 10'" SI. 0.786
0.031405

STA..OI 0.816 5 1.1J 1.41 0.824 6.071 0"1 1112 0.824
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Table D.2 (Continued)

(I) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ST A.05 20 0 .740 439 .73 2.08 0.740 7.S8J(l" ' 0
0 .00972

STA.04 0.746 92.41 2.30 0.750 I.S1Hl"' 1220 0.7 50
0.04050

STA.03 0 .784 74.89 1.49 0.79 0 4.0 8 10" 1450 0.790
0.0 2067

STA.02 0.80 7 99 .51 2.7 4 0. 810 1.0310" 810 0.810
0.05440

STA.OI 0.853 52 .38 1.44 0. 865 8.7610" Ill2 0.865

STA.05 so 0.740 439.73 2.08 0.74 1 3.0310-- 0
0.03 779

STA.04 0.764 93 .35 2.3 1 0.779 5. 87 10" 1225 0.778
0.1357 1

STA .03 0.895 8UI 1.59 0.914 1.29 10" 1450 0.9 14
0 .06646

STA .02 0.969 104 .65 2.83 0. 981 3.5610" 810 0.981
0 .14209

STA .OI 1.088 60 .56 1.64 1. 123 2.20 \0" 1112 1.123

STA .05 15 0.740 439 .73 2.08 0 .741 6.83 10" 0
0.08\40

STA .04 0 .79 1 94.82 2.34 0.823 \ .26 10"' 1225 0.82 3
0.24950

STA .03 1.036 89 .32 1.70 1.072 2.1810"' 1450 1.072
0.1 1567

STA.0 2 1.165 111.16 2.94 1. 188 6.7510"' 810 1.188
0.2 1403

STA.OI 1.343 69 .81 U5 1.402 3.1710" 1112 1.402

STA.OS 100 0 .740 439.73 2.08 0.743 1.21 10"' 0
0. 13661

STA.04 0.825 96 .77 2.37 0.879 2.1110"' 12 25 0.R79
0.36399

STA .03 I.191 98 .74 1.81 1.243 2.91 10" 14SO 1.243
0. 15891

STA.02 1.366 118.20 3.05 1.402 1.0 1 10" 810 1.402
0.26978

STA .OI 1.592 79 .26 2.04 1.673 3.8410" 1112 Ui72
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Table 0 .3 Water Profiles

I . 'a! W Depth I 06West Cha Iuojec , nne nur ater : + . '"
(I ) (2) 0 ) (41 (5) (6) (7) (8) (9) (101

Station Q, y A R E S, ... L E
(mJJs) (m) (m~ (m ) (m) ( mJm) (m) ( m) (m)

STA.OS , 1.060 496.79 2. 14 I.QUO 2 .29 10- •
0 .00021

STA.O.$ 1.060 I Il.45 2.76 1.060 3.1<t 10"1 1225 I ."",
' .00090

STA.03 U 16\ 90. 8 1 1.7 1 1.061 9.2 4 Ut' 1450 1.061
0 .0005 1

STA.02 1.062 107.99 2.8 8 1.062 3.26 10"' BI. 1.062
0.00146

STA.OI 1.064 59.71 1.62 1.064 2.30 10" 1112 1.064

STA.OS
"

1.060 0196.79 2. 14 1.060 9 . 111 10"' o
0. 00082

STA .04 1.l161 113.54 2.76 1.061 1.25 10· 1225 1.06 1
0 .00357

STA.03 I .... 90.99 1.72 J.C16S 3.6710· lo1S0 1.005
0 .002<11

STA .02 1.067 108.15 2.119 1.067 1.311la-o '10 1.067
0 .00576

STA .OI ' .012 59.99 1.63 1.013 9.07 la-o 1112 1.073

STA.OS " 1.060 496.79 2.14 1.060 2.07 10"' ·0.001 85
STAo" 1.06 1 I I3 .~ 2.76 1.062 2.82 1lr '225 U161

0 .00798
STA.03 1.(169 91.29 I .n 1.1170 8.19 10' 1450 1.070

0 .00449
STA.02 1.074 108.39 2.89 1.075 2.11110' .10 1.075

0 .01268
STA .OI I.OBj 60.45 1.64 \.0 118 1.99 10"' 1112 r.caa
STA.OS 2. 1.060 496.19 2. 14 1.060 3.67 10"' U

0 .00329
STA. 04 1.06 1 113.54 2.76 1.063 S.OI IO"" 1225 1.063

0 .0 1407
ST A.OJ 1.07S 9 1.65 1.72 1.077 1.441 0"' 14S0 1.077

0 .00191
STA .02 I.on 108.69 2.90 1.085 ' . 131 0"' BI. 1.0115

0 .02192
STA. OI 1.102 61.05 1.6S 1.107 3.0 10" 1112 1.107
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Table 0 .3 (continued)

(I) (2) (3) (4) (5) (6) (I) (8) (9) (10)

STA.OS 25 1.060 496.19 2." ' .060 5.74 10"' 0
0.00512

STA.04 1.063 113.71 2.76 1.065 7.79 1r " 25 1.06:S
0.02171

STA.03 1.083 92.1J I.n 1.087 2.22 10"1 tee 1.087
0.0 12 11

STA.02 1.096 109. 12 2.90 1.099 7.92 10" 110 ' .099
O.O:U 02

STA.OI 1.124 6 1.84 1.6:S 1.132 :S. U 10.1 1112 1.132

STA.OS SO 1.060 496.79 2.14 1.06 1 2.29 10" 0
0.02010

STA.04 1.071 114.39 2.78 1.081 3.05 10"1 1225 1.08 1
0,07934

STA.03 1.146 95.96 1.78 1.160 '.89 10-1 1450 1.160
0.04375

STA.02 1. 194 112.45 2.96 1.204 2.9 110"' 110 1.204
0. 10040

STA.OI ' .300 68.22 1.82 1.327 1.51 10-' 1112 1.304

STA.US " 1.060 496.19 2. 14 1.06 1 5. 16 1r 0
0.04394

STA.04 I.on 115.41 2.11 1.105 6.66 10"' ' 225 I.I OS
0.1S12 1

STA.03 1.235 101.49 '.84 1.263 1.5210-- " SO 1.26)
0.0&512

STA.02 u n 117.11 3.03 1.348 5.1 5 10"' 110 1.341
0. 176 12

STA.OI 1.47) 74.69 ' .96 1.524 2.5110-' llJ2 1.524

STA.OS '00 ' .060 496.19 2.14 1.062 9.18 1~

0.0749 1
STA.04 1. 100 116.94 2.86 1.137 1.1J 1cr' . 225 i. u t

0.24620
STA.03 1.339 103.14 1.90 1.383 2.2610-- 1450 1.383

0.12890
STA.02 1.477 122.55 3.11 1.511 9. 11 10-1 810 1.511

0.24031
STA.OI 1.676 82.55 2. 10 1.751 3.40 10'" 1112 1.751



Appendix E

Estimation of Suspended Load
TableE Bstiamticn of Suspended load Rate

(Kalinske' s Formula)

Q, I, Y R U. q, Q.
Section

(m) fs) (m) (m) (m) ( m/s) (I0" m' /. ) (I(t'm'l~l

, 0.296 0 .146 2 .025 0 .00761 0.00000 0.00008
S«ti on l 10 1.120 0 .759 2.035 0 .01495 0 .00008 0. 00268

" 2.330 0.781 2 .053 0 .02166 0.00059 0.0 1889
STA.OI zo 3.760 0. 808 2.013 0.0276 5 0.002 14 0.06840

'0 2S 5.320 0 .840 2 .098 0.03309 0.00550 0.17616
STA.02 ' 0 12.800 1.046 2.249 0.0 5314 0.06684 2.13815

7l 19.200 1.265 2."" 0.06 726 0. 23138 7.404 18
'00 24.200 1.4&6 2. 549 0.0 1779 0.497 92 1S.93333, 0.133 0.743 2.0 81 0.0052 1 0.00000 0.00002

Secticn Il 10 0.524 0.75 1 2.085 0.01035 0 .00002 0.0008 1

" 1.140 0 .16$ 2.OSS 0.0 \53 1 0.00015 0.00640
STA.OZ 20 1.950 0.781 2.106 0 .02007 0.0006 2 0.02669

to 2S 2.910 0.802 2.120 0.02460 0.00 181 0.07800
STA.OJ '0 8,790 0. 942 2 .2 13 0 .043 68 0.037 39 1.60H 7

7l 14.700 1.110 2.321 0 .05785 0.16 436 7.06769
'00 19.900 1.285 2 .430 0 .06888 0 .41203 17. 717 :0

s 0. 141 0 .742 1.929 0 .00 517 0.00000 0.0000 5
Sa:l iollJII ' 0 0.555 0.745 1.932 0 .0 1026 0.00004 0 .00181

IS 1.210 0 .751 l.9 37 0 .0 1516 0.000 32 0 .01420
STA.0 3 20 2.090 0.758 l.94 2 0 .0 1995 0.00 134 0.06035

'0 2S 3.140 0.7 67 1.950 0.02 451 0.00 396 0. 17834
STA.04 '0 9.930 0.833 2 .00l 0. 044 17 0.08836 3.97630

" 17.700 0.917 2.068 0 .0 5992 0.44082 19.8l 690
' 00 " .ecc 1.011 2, 139 0 .0730 1 1.2480 1 56. 16049

s 0.032 0.740 2 .247 0 .00265 0.00000 0.00000
Section !V ' 0 0 .127 0.741 2.248 0.0052 9 0.00000 0.000 12

IS 0.285 0.741 2 .248 0 .00793 0. 0000 1 0.00 100
STA.04 20 0. 506 0,742 2,248 0 .0 1056 0. 00005 0.00454
~ 2S 0.788 0.743 2 .249 0 ,0 1319 0.00016 0.01459

STA.05 ' 0 3.0 80 0. 752 U 55 0 .02610 0.00577 0.5335 3

" 6.67 0 0 .766 2 .265 0.03 850 0.04470 4.134 86
'00 11.200 0 .783 2 .2110 0 .05005 0. 17823 16.48664
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Appendix F

Estimation of Bedload Rate

Table r Estimation of Bedload Rate
(Sato-Kikawa -Ashlda Formu la)

s",., .. "Section '" ~ y R "~ ' J>. F(TJ u. (lO' (10'

(ml /ft) (m) Cm) '. ' J (mil) Wi•." m'I. )

(Him')

, ..... 0.146 1.015 •.os" ' .U ..., 0.00161 ' .0l000 ' .0l000....., " 1.120 0.'" 1mS .""" U , 0.15 0.0149' 0.00010 ..-
" U " 0.111 ,.." O.~J 4093 .." 0.02 166 ....." 0.01114

Sf,..OI m "'.. .... 1.073 ...... ..~ .... 0.01765 0.00011 O.01S7I
D ,,,. ..... '000 ,.... 11.:10 r.oo ...".. orou' .-sr• .on " I1.ICIO ,.... U~ 2.n 40 ..." ,.ee O.~J 1 4 Oms1. 0.114&4
n 1'.200 1.165 U" 4 $1(1 ," .n ,... ...."" O.oIl Jl O.J741O
,ce IHOO .... lI6 '$<' 6.OSI" ".~

,m ..."" 0.01111 ."",
Sf<IIooIU , 0 .1]] 0.743 J.llli 0.0:172 0.41 •.co 0.00511 ' .0l000 ' .0l000

" 0,514 0.'51 UA S 0.107:1 1.61 O.SO O,OIOlS 0.00001 0.00092
ITA ,m " J.14(l 0.76' 1.011' aaio 3,67 .... 0.0 1$) 1 0.00013 O.OO.m.. l.'~O 0.711 1.106 0.4019 .... 0.98 0 .02001 0,00031 a.OU ll
STA.OJ U 1.910 c.." a.uc 0.6051 9.47 0.99 0 .01-160 o.(loon Om.4' 9

" ' .m 0.941 1.1U r."" l U 6 ,... O.lMJU 0.00311 O. U7M

" H .700 1.110 r.m J J 470 SUI r.ec o.onu 0.0014' 0.)1041

'M 19900 1.21S 1.4)0 " .1<01 lU~ ..., 0.1»1 11 0.0 1151 0.,S401S

...... , O. I ~ I 0.1. 1 r.", 0.0161 ' .n 0 .01 0.1XI111 ' .0l000 ,.....
m " '>" O.ld UJ2 f).l~1 ,.~ 0.91 0.01016 .- 0.00110

" 1.110 0:751 1 - )1 ..- '"'. .... O.OU " O.lXlOiJ .""..
",. M m ,.... 0 .1S1 1.'42 .""', 11." , .ec 0.01" ' .=, O.OlJ 16

n U.a 0.161 ,.". .- 19.07 ,m O.ot~ S I 0.000" O.O%SSO
sr.... " '. no O.UJ ,." 1.,,1t 61.... , .oc 0.GU11 o.cmn ..-

" 11.100 M il ,.... U ... IU." .... ..- ..- U"'"'M n ... 1.011 1.139 S.3291 1&9.10 r.ec 0.01J01 o.olm 0.613'n

...,... , a.OJl 0.140 U41 ..."" .." c.ec O.oot6, ' .0l000 ......
m " (1.111 0.1. 1 1 .14' 0 .0110 '.n •.on o.oo.m ' .0l000 0.00001

" O.tIS 0.1~ 1 UU 0.0619 ,m 0.11 0.00193 0.000:11 acoue
STA.OoI " IU06 0. 1~2 2.H a 0. 1116 3.01 0 .93 0.0 1056 ..- 0.00J90

" 0.111 O.l .l 2.W~ 0.m9 ,." 0.91 0.0 1319 ....... ...""
STA,OS " ,... 0. 1S) 2.15S 0,4113 22.0 r.., 0.0:2610 0.00061 O.06l J2

" 6.010 0.'706 2.26S 1.~121 ~I ,IO ,m O.OlUO 0.00220 0.103U

'M 11.200 O.' ll U BO , .sce , aU9 ,.cc ....", 0 .0lM11 0.44639
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Appendix G

Calculation of Longshore Transport

Table G.t Determination of ero

Direction -. Sector -., F(a..,) F(crJ

-90.00 OOסס.0-

ENE -87.5 13.75 -0.1612
-76.25 -0.3224

NE -65.0 22.50 .Q.5828
-53.75 -0.8363

NNE -42.5 22.50 -0.8481
-31.25 -0.8529

N -20.0 22.50 -0.5764
-8.75 -0.2998

NNW 2.5 22.50 0.0793
13.75 0.4584

NW 25.0 22.50 0.6811
36.25 0.9038

WNW 47.5 22.50 0.8283
58.75 0.7528

W 70.0 22.50 0.4703
81.25 0.(878

WSW 92.5 8.75 0.0939
90.00 0.0000

Table G.1. Determination of Shoaling coefficient (H/Ho')

.Jl JL .Jl L=--"-
T 1..=1.561" L. H.' L (diLl

2.5 9.75 0.5128 0.9916 0 .5 144 9.72
3.5 19.11 0.2616 0.9362 0.2780 17.99
4.5 31.59 0.1583 0.9130 0.1901 26.30
5.5 47 .19 0. 1060 0.9282 0.1462 34.20
6.5 65.91 0_0759 0.9609 0.1194 41.88
7.5 87.75 0.0570 1.0010 0.1013 49.36
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Table G.3 LongshoreTranspon forT "" 2.5 Seconds

H. n,' pd Frequencyof occurrence(" )
0'

ENE NE NNE N NNW NW WNW Wem' em' - 2.' 2.' 1.2 7.e ].I ... e,2 1.2

0." 0 .2479 30.93 ' .m 0 .71 1 0.371 .,,, 1.175 2 .4'74 1.9 1' 2..5X:,." 0.101 ,... 0 .022 ''''' 0.0 10 0."" O.OU , .", 0.<1'3 0.011

H. .... 1'" longshoreuanspon (m'/year)
of

ENE NE NNE N NNW NW WNW Wem' em, occur
-0 . 161 -0.583 -0.848 -0.516 0.019 0 .6 8 1 0 .828 0 .410

0." 0 .24'79 30.93 ·77 .4 ·2n.S ·19 S.S ·n S.2 S1.9 1046 .1 986 .6 '740 .9
0.7' 0.1431 0.' 6 -33.6 -u r.s -84 .7 ·336.0 " .1 453.7 42 7.6 321 .1

Total I · 111.0 -369 .1 ·280 .3 - 1111.1 n.o ISOO.S 14 14 .2 1062.0

Table G.4 lo ngshore 't ransport (or T = 3.5 Seconds

H. .... 1'" Frequencyofoccurrence (")
0'

ENE NE NNE N NNW NW WNW W'm' eml ~w

a.s 2.' 1.2 7.c ,.. e.o e.2 1.2

D.:lS 0.%32 "'"
,.... D.5:!) D.m .,,, ,.... 1.820 1.4 11 .....

0 .15 0.691 4.42 0.111 0.102 0.0$3 .,,, .,68 0.354 0 .214 ,.362
I.:!j 1.162 0>, ,... 0.... ,..,. , 00> 0.013 ..". ..." ,.",

H. .... pd. longshoretransport (m'/yw)
0'

ENE NE NNE NNW NW WNW Wem' (m, _. N
-0 . 161 .(I.S8J -0.848 .(1.5 76 0 .019 0 .681 0.828 0 .410

0 .25 0.232 22.'75 ....8.5 - 16 1.4 ·122 .6 -41S.9 " .J 656 .2 6 18.5 ...,
0.'75 0.691 4.42 · 147 .0 -4n.9 ·3'71.2 · 141 1.8 IOU 1911.5 18'73.2 1406.7
1.25 1.162 0." -41.'7 -138.1 -10S.4 -417.9 3\.2 564.4 531.9 399 .S

Tol.ll lI ·2.)'7.3 -189.2 -599 .2 -2315.6 177.4 3201 .2 3023 .7 2270.6
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Table G.S Longshore Transport for T "" 4.5 Seconds

II, H; pc Frequency ct cccurrence (,.)
or

ENE NE(m) (m) occur NNE N NNW NW WNW W
2.' 2.3 r.2 1.0 J.' ' .0 ' .2 ' .2

0." 0.228 U I 0,l48 O.ll8 0.119 0.694 0.317 0.793 0,614 0.1 1't
O.7~ 0.6U 6,08 O. ISl 0. 140 0.073 0.4l 8 D.:!:!1 0.4111 D.377 0.499
i.as t.I 41 l .40 0 000 O,oss 0 ,Dl9 0,\66 0,09\ 0. 191 0.149 0,191
1.75 l.S98 0.30 0"" 0.007 0.004 0,021 0,0\ 1 0.~4 0,019 0,0"'.J

II, H; pet Lengshorenanapurt (m'/year)
or

ENE NE NNE N NNW NW WNW W(m) (m) ~,

-0 . 161 -0. 583 -0.848 .().576 0,079 0 .68 \ 0.828 0.4 70

O,lS 0.2l1 9.9 1 ·ZO.2 -et.r ·51.0 ·l02.0 15. \ 271 .1 lS7.1 193.1
0.75 0.685 6.08 -193.0 .641.9 -487.4 -19Jl.2 1«,3 cscs.a l609.] 1846.8
I. :!.S 1.141 z... .273.2 ·908.7 .fi89.9 -l73S ,2 20.., ]6 93.7 ]48 1.3 l614.l
1.75 U98 0.30 79.l -263.4 -100.0 -79l .9 59.2 \010 ,6 1009.2 757.6

Total II .~65 , 6 ·188l.1 -1428.2 ·S66D 42l .9 7646.6 1206,9 '4 12.0

Table G.6 Longshore Transport for T ::: 5.5 Seconds

H, H;
""

Frequencyof Hccurrence(%)
or

ENE NE NNE N NNW NW WNW W(m) (m) occur
2.' 2.J r., 7.0 J ' ' .0 '.2 ' .2

0." 0.232 2,74 0.069 0003 0.033 c.rsa 0.104 0.219 0.170 0.225

0.15 0.'" 2.17 0,OS4 0,050 0.021 0. 152 0.082 0.174 0,135 0.118

..as 1.14\ 1.67 0.042 0 ,ll38 0.020 0. 111 0.003 0 ,1]4 0,104 0.137

1.75 1.624 0.32 0.001 0007 0 004 0.022 0.012 0,0 28 0.020 0.021

H: H' "" . Longshore transport (m'/year)
or

ENE NE NNE N NNW NW WNW W(m) (m) occur
-0. 161 -0•.583 -0 .848 .().576 0.0 79 0.6 81 0.8 28 0.470

0." 0.:!:!2 2.74 -5.1 -19,3 _14.1 ·58.2 ' .J 78 ,6 74. 1 'Hi
0.75 0 '" 2.11 .7\.8 -238,1 · 111.3 ·711.7 53.7 970.5 914.1 686.9
t .as 1.141 1.67 ·196.1 ~SI,9 ·500.3 . 1983.4 148.1 2I7ll.~ :!.Sl4.S 189S.7

1.75 1.624 0.31 -88.0 -291.8 -22.34 ·aU .4 '"~
11110.] 1121,8 141 .4

Tw i N -]6 3.7 · 1209.8 -918.6 -3641.7 m.o 4917.9 463S. 1 3480.7
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Table G.7 Longshore Transport forT == 6.~ Seconds

H. H,' "" Frequencyof occurrence (9li)
or

ENE NE NNE N NNW NW WNW W(m' (m' occur
2.' 2.3 1.2 7.0 3.8 8.0 6.2 '.2

." 0.240 0.45 0.0 11 0.010 .... 0.032 0.017 0 .036 e.oae O.OJ. i
0 ,15 0 ,721 0.1:1: e.ocs 0 .. OJ»3 0.0 15 0 .008 0,018 0 .014 0.0 18
1.25 1.1:01 0 ,11: 0.003 e.." 0 .001 0.008 0 .005 0 .010 0.007 0.010
1.15 1:.\61: e.02 0.001 n000 0000 0 .001 0 .001 ..., 0.001 •.eoa

H. H,' "" . Longshoretransport (m1/year)
or

NNE N NNW NW Wem' em' occur ENE NE WNW
.0 .161 -0.583 -0.841 -0.5 16 0.019 0 .68 1 0 .82 8 0 .470

0 .25 0.1:40 0.45 -1.0 -3.5 -1:.6 -10.4 c.s 14. 1 13.3 10 .0
0 .15 0.121 0.22 _1.9 _26.4 _20.0 _79.4 , .s 101.3 101.1 15.9
r.as 1.20 \ 0.12 _15.5 _51.6 -39.2 -155.4 11.6 209.9 191.8 143.5
1.75 2.Ui1: 002 _31.4 _31.4 .28.4 -112.6 ... 152 .0 143.3 101.6

Toralll -35,1 -118.9 "'. J -351.9 26.7 483.3 455.5 342.1

Table G.8 LongshoreTransportforT = 7.~ Seconds

H. H,' "'. Frequencyof occurrence (9li)
cr

ENE NE NNE N NNW NW WNW Wum (m' ceeer
2.' 2.3 1.2 7.0 3.8 8.0 6.2 8.2

0 .25 O.!50 O.O:! 0.00 1 e.000 c.000 0.00 1 0 .001 0.'" 0 . 110 o.oea
0 .15 0.15\ ., e.000 0.000 0.000 0.000 e.000 u000 0.135 •.000
I ." 1.251 0.02 0.00 1 0.000 0.000 0.001 0 .001 0 .002 0.104 .'"1.15 1.7.:52 e.00 e.000 neoc ncoc ..... .... 0.'" 0.020 . .000

... H. "" Longshore transport (m'fyear)
or

ENE NE NNE N NNW NW WNW W(m) em' occur
-0 . 161 -0.583 -0.8 48 ..Q.576 0. 079 0 .6 81 0 .828 0 .410

0." 0 .250 0.02 -c.r ~,2 -e.r .e.s e.e c.7 0.7 0.'
0 .15 0 .151 '. 00 c.c e.u 0.• ac ... c.c ..• 0.c
1.25 1.251 0.., -2.9 -9 .5 .1.2 -28.1 2.1 36.1 36 .5 21 .4
1.15 1.152 000 o.u c.c 0.c • .0 ... 0.e 0.0 0.n

T"\.llI IV -3.0 -9.1 -1.3 -29,2 2.2 39.4 31.2 27.9

T"\.llI(l+ ... + VI) _1316 04318 _3324 -13178 ... 17796 1677] 12595

~ . Q, -22\96 m'lyca~ 48148m Jlycar
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Appe ndix H

USA CERe /984)Function of dI~ (5TableH OIm:e: ""y

Tanh Sinh Cosh

-"- ... Zl<!! Zl<!! l.Dl W Jl. .c,
I-. L L L L L H' C

00000 00000 0.0000 00000 0.0000 '- 0000 . 0.0000
0.000\ O.OOolO 0.0"..51 DO!SI 0,0251 I.OOOJ ~.467 0,0:.0;1
0.0002 0.00 56 0.0355 0.OlS4 0,0355 '-0000 J,n7 0,0 354
0.0003 0.0069 0,043 4 01).134 0,0434 tcoos 3 .395 D.O·m
0 oooe 0 .0080 0.0501 0.0 50 1 O.05lr. 1.00 13 3.160 O.O5{l1

0.0005 0.0089 0.0561 0.0560 0.0561 UlOI6 2.989 0 .0559
00006 0 .0098 0.0614 0.0614 0,061$ 1.00 19 2.856 0 .0613
0,0007 0.0106 0..... 0."" 0..... 1.00l 2 :!.749 o.~

0 ,000& 0 .0113 0.0710 0.0101 0,0710 1.00l5 2.659 0 ,0707
0 .cccs 0 .0120 0.0153 0.0151 0.0753 1.0028 2.58:! 0 .0750

0 .0010 0 .0126 0.0794 0 0792 0 ,0794 r.ccn 2 .5 15 0 .0790
0 ,00:0 0 .0179 0.1123 O.1l 19 0, 1125 1,001:>3 2.119 0 .1114
0 ,0030 0021 9 o.urr O.D 69 0. 1382 1,009 5 U l1 n.ueo
0 .0040 0.0"..54 0,1592 0.1579 0,1599 1.0 l27 usa 0.15115
0 ,0050 0 .0284 0,1782 0.176-1 0 1791 I.OlS 9 1,692 0 ,1146

0._ 0.0311 a.1954 O ,19~9 0.1%1 1.019~ 1.f1~0 0.1900
0 ,0070 0.0336 0,2113 0.~68~ 0,2128 1 .~4 U 6 1 0 .W5 1
0 .00110 0.0359 0.2261 0 ,222J 0.22110 1.0251 1.5 12 0 ,~ 18(>

0 .0090 0.0382 0.2401 0. ~356 0.'!.424 1.0290 1.471 0.2312
0 ,0100 0.0403 0.2533 0 .2480 0.2'60 1.0322 1.435 0.24~9

0.D200 0 .0516 0.362 1 0,3410 0.310 1 '-IlO<O 1 . 2~6 0 .3321
0 ,0300 0 .0114 0.448) 04205 0,4fJ34 l.1021 Ll 25 0 ,]947

0."" 0.OS3] 0,5:!)3 0 ,4S02 0,5415 1.1401 'OM 0.4414
00500 0 .0942 0.5916 0.5310 0, 6~f11 1.1802 1.023 0 ,4779
0.0600 0 .1043 0.6553 0 ,n5J 0.70)3 1::!'!.:!5 0 .99) O.SOhS

0.0700 0.11]9 0.7 157 0.6144 0.1783 1.2612 0.9713 0.5JOO
0.0800 0 .1232 0.7741 0 ,1,.193 0.85J II 1.3149 0.!:54S 0 .54S5
0.0900 0 .1322 0.8306 0 ,6808 1'1 9295 1.3653 0 .9'22 0 .5632
0 . \0 00 0.14 10 0.885S 0,709] \. 006 1.41111 0 .9:121 0 .5147
0 .2000 0 .2251 1.4140 0 ,88114 1.9) 5 2. 1180 0.9 181 0. 5932

0. 3000 03121 1.961 0 ,%11 3.483 3,624 0.9490 0 .55S2
0.4000 0.4050 2.544 D.9871 6.329 6.4 01 0.9761 0 .5248
0.5000 0 .50 18 3.153 0 .99601 I Lfl8 11.12 0.9905 0.50%
0."" 0.6006 3.714 0 .9990 21.16 '!.U8 0 ,9965 0 .5035
0.7000 0 .7002 4.400 0 ,\1991 40 ,71 40 .12 0 ,99S8 IU OI'!.

0,8000 0 .800 1 5.D'!.7 0 .9999 76 ,24 76 .24 0.9996 0.""
0"'" 0 .9000 5.65.s '-0000 142 .9 142 ,9 0.9999 0 .5010
\.0000 \.0000 6.283 1.0000 261 ,7 267.1 \.0000 0 .5000
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