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Abstract

Using modal series expansions of electromagnetic fields in terms of

prolate idal vector wave fi i an exact solution is obtained

for the scattering by: (a) a single uniformly lossy dielectric prolate

spheroid, (b) a system of two uniformly lossy dielectric prolate spheroids

in arbitrary orientation, and (c) as an imp special case a system

of two uni lossy diel

ic prolate sp ids in parallel
tion embedded in free space. In all the above cases, the excitation being

a b ic plane ic wave of arbitrary polarization

and angle of incid Since the dielectri ials of the rer

are of complex relative permittivities, complex eigenvalues are evalu-

ated for the spheroidal scalar wave functions of transmitted compo-

nents of E-field and H-field i R ional-T lational Ad-

dition Th and Translational Addition Th for spheroidal

vector wave functions are used to study the scattering by a system

of two

in arbitrary and as a cpecial case by a

system of two spheroids in parallel configuration respectively. These

are used to fc the ing wave from one spheroid
into the incoming wave at the other spheroid. The field solution de-
termines the column vector of the unknown coefficients of the series

i of the d and itted fields exp! d in terms

of the column vector of the known coefficients of the series expansions
of the incident field and the system matrix which is independent of the
direction and polarization of the incident wave. Numerical results in

the form of plots for normalized bistatic and monostatic radar cross



sections are given for a variety of uniformly lossy dielectric prolate

spheroids with resonant or near resonant lengths. Also for two-body

i di arbitrary i including parallel config-

urations of the sp| ids at di i of ion have been

considered.
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Chapter 1

Introduction

1.1 Literature Review

The study of electromagnetic scattering by a system of two (or more) spheroidal
objects has gained considerable interest in the last few decades. This is because

the geometries of many objects of practical interest can be approximated by

spheroids.

Solving scalar Helmholtz equation in sphercidal coordinates is the starting
point in solving problems of el i ing by spheroids. Flammer
[1] and Stratton et al. [2] have studied ively the spheroidal wave fi

Solution of scalar Helmholtz equation in terms of spheroidal coordinate system
and expressions of spheroidal vector wave functions are available in details in [1]
and [2].

The exact analytical solution to the el i ing by cond
prolate spheroids for axial incidence has been given by Schultz [3]. Later Siegel et

al. (4] obtained some numerical results for scattering by a thin prolate spheroid
(axial ratio 10 : 1) by varying the relative size of the spheroid from 0.1 to 6.
The exact solution to the problem of electromagnetic scattering by a conduct-

ing prolate spheroid for arbitrary angle of incidence and polarization was given

1



by Reitlinger [5]. But his work involved complexity in ical

Nevertheless, his work provided a foundation in finding analytical solutions to
more complex problems involving scattering by spheroidal objects.
Because of the complexity of the spheroidal geometry, non-orthogonality of

spheroidal wave functions and i ing di ies in

beyond the Rayleigh region [6], no progress was made in the resonance region
after the work of Siegel et al. [4], although extensive works have been carried out
at both low frequencies and high frequencies. It was not until 1974 that Sinha
obtained for the first time an exact analytical solution to the electromagnetic

scattering by a conducting prolate spheroid in resonance region (6. He also

developed fast, accurate and simplified ithms for heroid;

] eigen
values and spheroidal wave functions thereby overcoming the shortcomings in
Reitlinger's work. Furthermore, he proved that results obtained by Siegel were
accurate for values of axial ratio upto 2.5. Later Sinha and MacPhie presented
numerical results of backscattering radar cross section at different values of axial
ratio for a single conducting spheroid (7).

Dalmas and Deleuil also studied the electromagnetic scattering by a perfectly
conducting sphercid by using M" and N" spheroidal vector wave functions [8]-[10].
Using these vector wave functions, Asano and Yamamoto presented the analytical
solution of light scattering by a spheroidal particle at arbitrary incidence and
polarization of incident wave [11].

of el ic waves by srbitrarily shaped diclectric bodies

lying in the resonance region has been studied by Barber and Yek [12]. In [12]
plots of differential scattering cross section vs. scattering angle are presented in

azimuthal plane and equatorial plane for bodies like spheres, prolate spheroids,



oblate spheroids and cylinders having different geometries and dielectric con-
stants. Asano and Sato (13] analyzed the problem of light scattering by randomly
oriented identical dielectric spheroidal particles and computed extinction, scat-

tering and absorption cross sections and asymmetry factor of prolate and oblate

heroid

Asano also i i d the light i ies of spheroidal
particles oriented randomly with their long axes horizontal {14]. Later Cooray
[15) worked on the scattering problem by a perfect dielectric prolate spheroid by

modal series ion of el ic waves.

Extensive research is available in literature regarding scattering of electro-
magnetic wave by a system of two (or more) spherical and spheroidal objects.

Bruning and Lo (16] studied ively the ing of el ic wave

by a system of two spheres by applying the translational addition theorem for
spherical vector wave functions [17), which is an extension of the theorem for
scalar wave functions developed by Stein [18].

It was not until the mid 1980s that Sinha and MacPhie [19] developed the
translational addition theorems for scalar and vector spheroidal wave functions in
which the outgoing wave from one spheroid is transformed into the incoming wave
to the other spheroid assuming the simplest form for the vector wave functions,
as they translate like a scalar wave function. Utilizing these theorems, Sinha and
MacPhie obtained the exact solution for the scattering behavior of plane electro-
magnetic wave by two parallel conducting prolate spheroids [20]. In Appendix IT
of [20] the ion was simplified by obtaining the spheroidal 1

addition coefficients in terms of the spherical translational addition coefficients.
Dalmas and Deleuil also studied the multiple scattering of electromagnetic waves

by two infinitely conducting prolate spheroids in [21] using Translational Addition



Theorems for prolate spheroidal vector wave functions M" and N* (22]. Lately,
Cooray et al. [23] worked on the scattering problem by two perfect dielectric

prolate spheroids in parallel orientation.

Further lization of the two-spheroid ing problem has been possi-

ble due to f lation of Rotational-Translational Addition Theorems for vector

spheroidal wave functions in [24]-[26]. Utilizing these theorems, electromagnetic

scattering by a system of two perfectly conducting and two lossless dielectric

heroid

in arbitrary ori ion were analytically studied by Cooray and Ciric
in [27], (28] and [29].
By means of modal series expansions of electromagnetic fields in terms of pro-

late spheroidal vector wave functions, an exact analytical solution for more realistic

situation of el plane wave ing by uniformly lossy dielectri
prolate spheroids has been given in the present thesis. Scattering of plane elec-
tromagnetic wave by (i) a single uniformly lossy dielectric prolate spheroid, (ii)
by a system of two uniformly lossy dielectric prolate spheroids in arbitrary con-
figuration, and (iii) as a special case scattering by a system of two uniformly lossy

dielectric prolate in parallel ori ion, have been ly studied

in resonance region. The parallel configuration of two or more prolate spheroids
has practical importance. Hence it is felt that analytical study of this special case

of the more general cr -e of arbitrary ori ion of the spheroids be developed

separately by using translational addition theorems, so that those interested in
this special case may not necessarily be involved in the complexity of the general
formulation.

In this thesis, the analysis for single body is carried out by using M=v*

and N=¥* vector wave functions following the procedure employed by Sinha and



MacPhie [7) for conducting prolate spheroid. The scattering by a single lossy
dielectric prolate spheroid bas also been analyzed by Zimmer [30] who employed
M" and N* vector wave functions.

In the present work the dielectric media of the scatterers are assumed v be

Since the propaga-

(or b ) lossy and

tion constant of the media inside the scatterers is complex in nature, complex

are evaluated for the spheroidal scalar wave ions of
components of E-field and H-field expansions. Oguchi has calculated the eigen
values of spheroidal wave functions for complex values of propagation constants
in (31). Zimmer also has computed complex eigen values for spheroidal wave
functions assuming e time variation of time-harmonic electromaguetic field
[30]. Subsequently Sebak and Sinha have calculated complex eigen values cor-
responding to prolate spheroidal functions in order to study the scattering by
a conducting spheroidal object with lowsy dielectric coating at axial incidence
[32]. In the present work, the algorithm developed in [33] for real eigen value
computation has been used to compute complex eigen values.

By applying appropriate boundary conditions, the field solution is obtained
in the form S = [G]I, where S and I are respectively the column vector of the
unknown coefficients of the series expansions of the scattered and transmitted
fields taken together and the column vector of the known coefficients of the series
expansions of the incident field. [G] is the system matrix that depends only on
the scattering system and the frequency of the incident radiation, and is inde-
pendent of the direction and polarization of the incident wave. The solution in
the above form eliminates the need for repeatedly solving a new set of simul-

taneous equations in order to obtain the expansion cocfficients of scattered and



transmitted fields for a new angle of incidence.

It is worthwhile to note that the oblate spheroidal vector wave functions can
be obtained from the prolate ones by the transformations ¢ — j¢ and h — —jh,
where ¢ is the spheroidal radial coordinate; h = kF, F being semi-interfocal

distance of the spheroid and k being the propagation constant of the medium (1].

1.2 Organization of the Thesis

This thesis deals with the exact analytical solution of ing by
lossy dielectric prolate spheroids — the incident excitation being unit amplitud
} ic plane el ic wave of arbitrary incidence and polariza-

tion and having wavelength ). El i ing by a single

ly
lossy dielectric prolate spheroid, by a system of two uniformly lossy dielectric

prolate spheroids in arbitrary configuration, and by a system of two uniformly

dielectri hecoid Jeved

lossy prolate spheroids in parallel orientation have been considered sep-

arately. In Section 1.1 we have discussed the available research in literature

to el i ing by spheroidal objects and have given

the general outline of the problem presented in this thesis. The organization of

other chapters is as follows:

o In Chapter 2, a brief idea of spheroidal coordinate system is d

first. Then solution of scalar wave equation in spheroidal coordinates and
expressions of various spheroidal wave functions are considered. Finally,

prolate spheroidal vector wave functions are discussed.

© Chapter 3 deals with the analytical solution of scattering of plane electro-

magnetic wave by single uniformly lossy dielectric prolate spheroid. Inci-



dent, scattered and transmitted components of electric and magnetic fields

are d in terms of

d prolate spheroidal vector wave func-
tions. Appropriate boundary conditions are then applied on the surface of

the spheroid to solve a set of simultaneous linear algebraic equations re-

lating the unknown i fhici ding to d and

transmitted fields expressed in terms of known expansion coefficients of the
incident field. Finally the scattered field is calculated iu the far zone and
numerical results are presented in the form of curves of normalized bistatic
and monostatic radar cross sections for a variety of uniformly lossy dielectric

prolate spheroids.

In Chapter 4, the exact solution for the problem of electromagnetic scatter-

1 heroid

in arbitrary orienta-

ing by two uniformly lossy dielectric prolate
tion has been discussed. Rotational-Translational Addition Theorems for
spheroidal vector wave functions have been used here — a vector spheroidal

wave function defined in one spheroidal coordinate system (£, 7, ¢) has been

expressed in terms of a series ion of vector idal wave fi

defined in another spheroidal coordinate system (¢, 7', ¢'), which is rotated
and translated with respect to the first one. Applications of appropri-
ate boundary conditions and derivation of the system equation have been
discussed then. Finally numerical results in the form of curves for normal-
ized bistatic and monostatic radar cross sections are given for a variety of
two-body system of uniformly lossy dielectric prolate spheroids in arbitrary
orientation having resonant or near resonant lengths and different distances

of separation.



o In Chapter 5 we present an exact solution for electromagnetic scattering by
two uniformly lossy dielectric prolate spheroids in parallel orientation. The
Translational Addition Theorems, which transform the outgoing wave from
one spheroid into the incoming wave at the other spheroid, have been used
here. Incidentally translational addition theorems [19] can be considered
as a special case of rotational-translational addition theorems when Euler
angles a —+ 0° 8 — 0° and 4 — 0°. Applications of appropriate bound-
ary conditions and derivation of the system equation have been discussed.
Numerical results in the form of curves for normalized bistatic and monos-
tatic radar cross sections have been obtained in the resonance region for a
variety of two-body system of uniformly lossy dielectric prolate spheroids

in parallel orientation having different distances of separation.

¢ Finally in Chapter 6 concluding remarks are presented.



Chapter 2

Prolate Spheroidal Coordinates
and Prolate Spheroidal Wave
Functions

2.1 Introduction

In this chapter we give a brief overview of prolate spheroidal coordinate system

followed by derivation of vector Helmhol ions for E-field and H-field of

an electromagnetic wave. We then discuss the solution of scalar wave equations
in spheroidal coordinates. Finally we obtain solutions of vector wave equation by
applying certain vector differential operators to the scalar wave functions. The

resulting solutions are called vector wave functions.

2.2 Prolate Spheroidal Coordinates

There are two types of spheroidal coordinate system: prolate and oblate. The
prolate and oblate spheroidal coordinate system are formed by rotating the two-

e 4

system, isting of confocal ellipses and hyper-

I elliptic
bolas, about the major and minor axes of the ellipses, respectively. It is customary

to make the z-axis the axis of revolution in each case [1].



Since in this thesis we are considering the scattering problem from prolate

fiasaids; we oii thed heroidal di

of prolate

system; however description of oblate spheroidal coordi

system can be found
in pp. 6 7, [1]. Fig. 2.1 shows the prolate spheroidal coordinate system.

Let the semi-interfocal distancz of the confocal ellipses be denoted by F, as
shown in Fig. 2.2. Then for a single ellipse the spheroidal coordinates, denoted
by (€,7,8) of a point P in space distant r; and r, respectively from the foci Fy

and F, are given by

& = (n+r)/(2F)
n = (n—ra)/(2F) (21)
6 =4

where £ is radial coordinate, 7 is angular coordinate and ¢ is azimuthal coordi-

nate. It can be shown that prolate spheroidal coordinates (¢,7,9) are given in

terms of rectangular coordinates by the following relations pp. 17-18, [6]:

€ = sl PN - P (22)
n = 51? [+ 9244 PR~ (@424 (e = FAY] (23)
4 = tarl(y/z) (24)

By inverse transformation we can also obtain:

z = F(1-n?)%¢ - 1)Y3cos (2.5)
y = F(1-n?)3(¢ -1)%sing (2.6)
z = Fn¢ (2.7)

with -1 <9<1,1<6< 00,0 ¢ < 2.
In prolate spheroidal system the surface ¢ = constant > 1 is an elongat~d

ellipsoid of revolution with major axis of length 2F¢ and minor axis of length
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Figure 2.1: Prolate Spheroidal Coordinate System.
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Figure 2.2: Prolate spheroidal geometry and cartesian coordinates.
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2F(£ ~ 1)V/2, The degenerate surface £ = 1 is a straight line along the z-axis
from z = —F to z = +F. The surface [5| = constant < 1 is a hyperboloid of
revolution of two sheets with an asymptotic cone whose generating line passes
through the origin and is inclined at an angle § = cos™ 7 to the z-axis. The
degenerate surface [n| = 1 is that part of the z-axis for which |z| > F. The
surface ¢ =constant is a plane through the z-axis forming the angle ¢ with the
z — 2 plane [1].

It is to be noted that the confocal quadric surfaces in space intersect each other

at right angles, i.e. the tangent planes of the three surfaces passing through

any given point in space are mutually dicular. Thus prolate spheroidal

coordinate system is a system of orthogonal curvilinear coordinates. In each case
the coordinates (¢, 7, ¢) form a left-handed system, since § x /i = —¢; i x § =
=& $xé=—i.

In the limit when the interfocal distance 2F becomes zero, both the prolate
and oblate spheroidal systems reduce to the spherical coordinate system. For
finite 2F, the surface £ = constant in each case becomes spherical as £ approaches

to infinity; thus

FE—r1, n—cosb, as { » o0 (2.8)
where r and 0 are spherical radial and angular coordinates respectively.
2.3 Vector Helmholtz Equations

We know that a time-harmonic electromagnetic field (e** time variation, w being

angular frequency) satisfies Maxwell’s equations:

VxE = —jupfl (29)



UxH = jueB+J = jwueE (2.10)
where
€ = e—jojw (211)

is called complez permittivity of the medium; ¢, 4 and o are the permittivity, per-

meability and conductivity of the medium ively. J is volume distrit

of electric current per unit area,
Let Ao be wavelength of the electromagnetic wave in free space; € and po be

pectively, and ¢ be velocity of

the permittivity and bility of free space
propagation of wave in free space. Then propagation constant of free space is

given by
ko = 21/l = w/c = w(poeo)'’? (212)

Substituting w from (2.12) in (2.9) and (2.10) we get

4 . o

VxE = bl (213)
N

VxE = jrsphE (214)

Taking curl on both sides of (2.13) we get
VV.E-ViE = (“‘ ) RE (2.15)
For charge free space

VE =0 (2.16)

v’i:+(i‘l)kgi, =0 (217)



Taking curl on both sides of (2.14) we get

= F AT
VVA-VE = “—) 2 ;
H-V’H (I‘ofo KH (2.18)
From Maxwell’s equation
VH =0 (2.19)
From (2.18) and (2.19) we have
e AT
v E (.“_) 2 = X
+g ) BE =0 (2.20)
Setting
" 1/2
k=(t) ko= nyko (221)

where n, = ‘/m is the complex refractive indez of the medium, vector
Helmholtz equations for £ and H fields of electromagnetic wave can be given as
VE+KE = 0 (2.22)
VHE+FPE = 0 (2.23)

2.4 Prolate Spheroidal Differential Equations

Prolate spheroidal coordinate system is one of the eleven coordinate systems ? in

which the scalar wave equation
(v+¥)y =0 (224)
is separable, where k is the medium wave number. This equation, in prolate

spheroidal coordinate system, can be written as
LY N0 PP I S
0Ly 4 = O3+ g e o

(2.25)

2 cylinder, elliptic cylinder, parabolic cylinder, spherical, conical,
parabolic, prolate |plmnld.|. oblate spheroidal, ellipsoidal and paraboloidal.
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where we set h = kF.
Using the separation of variables principle, the soluticn of (2.25) can be ob-

tained in the form (1]
W = Smalh,n) REW(,€) Smé, §=1,2,3,4 (2.26)

where R(,(h, €) and Spn(h, 7) are called prolate radial function and prolate angle
function respectively. RE),(h,€) and Spa(h,n) satisfy the ordinary differential

cquations

m

%[(1—7')%&"@,7:)]+[Am—m . ,] San(hy) = 0(227)

7| -07R000] - e+ ] R0 = 00w

where Amn(k) and m are separation constants. Those values of Ana(h) for which
(2.27) admits solutions that are finite at 7 = *1 are the eigenvalues of the
differential equation (2.27). Here n = |m|,|m|+ 1,|m| +2,-+-, and m is any
integer including zero.

h is real or complex accordingly the propagation constant of the medium

under consideration is real or complex. Ct ions of i il f spheroidal

wave functions for real values of propagation constants and for complez values of

are respectively shown in (33] and Appendix A of the
present thesis.

It is worthwhile to note that the oblate spheroidal scalar wave function can
be obtained from the prolate one by utilizing the transformations ¢ — j¢ and

h— —jh in (226).
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2.4.1 Prolate Angle Functions

The associated eigenfunctions Sma(h, 7) are the prolate spheroidal angle functions
of first kind, of order m and degree n, corresponding to eigenvalues Ama(k) in
(2.27). There are two types of angle functions: S{)(k, 1) — angle function of first
kind, and 5&)(h,n) — angle function of second kind. In most boundary-value
problems, the physical quantities are defined over the entire domain -1 <y <1,
0 < ¢ < 27. The usual requirement that the wave function be finite at y = *1
confines the n-dependence of the wave function to that of the angle function of
first kind, because the angle function of second kind, SG)(h,7) are singular at
these points. Henceforth we will use the notation Sma(k,n) to refer to angle
function of first kind.

‘When & goes to zero, angle function of first kind reduces to associated Leg-

endre functions of the first kind of integral order and degree. So we huve
Ama(0) = n(n+1), n2m (2.29)
When k is not equal to zero, angle function of first kind is of the form
Smlhr) = T&GRZO @)

where d™"(h) are prolate spheroidal expansion coefficients. The prime on the
summation symbol indicates that the summation is over only even values of r
when (n—m) is even and over only odd values of r when (n—m) is odd. PZ,,(n)
is associated Legendre function of first kind. The expansion coefficients d™(h)
are given by the recurrence formula in equation (3.1.4) of [1]. Examination of
equation (3.1.4) in (1] reveals that as r — oo, either d™(h)/d"%(h) increases

as —4r3/h?, or goes to zero as —h?/(4r?). We choose the latter as it leads to &

N 1

series.

of angle function is given in [6].
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From general theory of Sturm-Liouville differential equations, it follows Sa(h,7)

form an orthogonal set in the interval (~1,1) [1]:

)
L., S5 m) St (B0 = G Bn(B) @y
where 8, is Kronecker delta function and
I S L G O]
Nonlh) = 2 3 ' o 1] (232)

is the normalization factor.
2.4.2 Prolate Radial Functions

Prolate spheroidal radial functions RE),(h, €) (i = 1,2,3,4) satisfy the differential
equation (2.28), where 1 < £ < co. The eigenvalues Amn(h) which'occur in (2.28)
are those to which angle functions Spn(h,7) belong.

In physical problems one usually requires both the radial functions of the first
kind, R)(k,¢), and those of the second kind, R@)(h,¢). Two useful combina-
tions of these functions are known as radial functions of the third kind and radial
functions fourth kinds, given by RE)(h,¢) and R{Y,(h,¢) respectively.

The radial functions of the first kind R{)(k, ¢) and radial functions of second
kind R3)(k, &) are respectively given by the series [2):

£z -1\ m/2

Mo = (S5 )
2 _1\™/? oo
ke = (572)7 Erartmmnt) @3

where jmsr(h¢) and nmss(h€) are spherical Bessel function and Neumann func-

3 G (W) (hE) (2.3)

=0

[}

tion respectively, and a""(h) are convergent expansion coefficients such that as
r — 00 aP*(h)/a(h) — h?/(4r*) ~ 0. The expansion coefficients a[™"(k) are
given by the recurrence relation in equation (3.24) of [6].
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The radial function of third kind and radial function of fourth kind are repec-

tively given as:

ROMR,&) = ROM(A,€)+3iREA(R,E) (235)
RA(R€) = ROM(AE) - FREAKE) (2.36)

The following asymptotic properties of the spherical Bessel, Neumann, and Han-
kel functions are worth noting, p. 31, [1]:

inh) = ‘/; Ty (B T o (he = 2n 4 1))

ma(he) = (=1)"i_(na)(h€) ;
= |forg Mt BT 5 i (-5 nm) b o
BBE) = (b + na(h) "5 elbSloni]
W) = () = frn(h) Y5 e bbmn]
Thus the asymptotic behavior of RE)(k,€), RA(h, €), REL(h,¢) and RE)(h,€)

is readily obtained as

REMh,) Mo h_Em,( -3+ 1) (2.38)
ROk ) M h—c"" (hf—é(ﬂ+l)7r) (2.39)
ROk " ;Il?el““k‘"*"'] (2.40)
R(h,§) M= fge'["“*‘""”"] (2.41)

At very large distance from the spheroid R{)(k, ¢) and R(Y)(k, £)have the prop-
erties of diverging spherical waves. As R{)(h,¢) has the property of outgoing
spherical wave for il — oo, it will be used to describe the scattered fields of

ic wave, Series jon of RU)(h, ¢) shows fast convergence,

whereas series for R)(h, ¢) does not converge rapidly for small value of h¢ or
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hé = 1. An integral method introduced by Sinha and MacPhie in [34] improves
the convergence of R@)(h, ).

2.5 Prolate Spheroidal Vector Wave Functions

Before defining prolate spheroidal vector wave functions let us discuss in brief the

fundamental set of solutions of any vector wave equation, pp. 392 - 393, (37].
Within any closed domain of a homogeneous, isotropic medium from which

sources have been excluded, all vectors characterizing the electromagnetic field

— the field vectors B, B, D and H, the vector potential and the Hertzian vectors

— satisfy one and the same differential equation. If €' denotes any such vector,
then
ViG+EC = 0 (2.42)

where k? = euw? — jouw (e™* time variation of € is assumed).
By the operator V? acting on a vector we mean V? = VV. ~ V x Vx;

therefore in place of (2.42) we can write
VV.C-VxVxC+kC = 0 (2.43)

Now the vector equation in (2.43) can always be replaced by a simultaneous sys-
tem of three scalar equations, but the solution of this system for any component

of Cis impractical in most cases. It is only when C is resolved into its rectangular

that three independ ions are obtained. Thus, in this case
ViC;+KC; = 0, j=3,y,2 (2.44)

Let the scalar function  be a solution of the equation
Vi +ky =0 (2.45)
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and let & be any constant vector of unit length. We now can construct three

independent vector solutions of (2.43) as follows:

L =y
M = Vxay (2.46)
N = (/kVxM

1£ C is placed equal to L, A7 or N we can verify that (2.43) is satisfied identically
by (2.46) subject to (2.45). Since & is a constant vector M can also be writtea as

M = Lxa = (1/kVx N (2.47)

For one and the same generating function ¥ the vector M is perpendicular to the

vector i, or
LM =0 (2.48)
The vector functions L, M and N have the following properties:
UxE=0, V.I=V=-ky (2.49)
Also M and N are solenoidal, i.e.

V.M=0, V.N=0 (2.50)

Let us now define the spheroidal vector wave functions. The scalar function

isfying the scalar Helmholtz equation d in terms of spheroidal coordi-

nates has the form given in (2.26):

VX6 ) = Smalhyn) BEN(h,E) Srmé (251)
where the superscripts e and o refer to even ¢-d ds and odd ¢-d dy

respectively and i = 1,2,3,4.
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The spheroidal vector wave functions can be defined as [1]:

MEOhiemé) = VYidhig,n,¢) x & (2.52)
NiO(hin @) = k'V x MiO(hi¢,n,4) (2.53)

where @ is arbitrary unit constant vector or radius (position) vector. In spheroidal
coordinate system, none of the unit vectors £, 7, ¢ has the properties required for
&. Hence we choose cartesian coordinate system in which each of the unit vectors
&, §, £ is a constant unit vector, The unit vectors in cartesian coordinates are
related to the spheroidal coordinate unit vectors by the relations [1]:

—p?\? . 5
5-1,_—”,’,) o e P

1o\ .
{,_n,) sing €+cosp ¢ | (2.54)

Thus the cartesian unit vectors in (2.54) generate three distinct classes of prolate

spheroidal vector wave functions M and N, given by:
M k6 d) = VYENEn ¢)xa, a=zyz2 (2:9)
Ne(hibyn,9) = K7V x MEO(hig5,9), a=2,9,2 (256

Also with regard to the position vector 7, the M and N vectors are expressed as

MEO(hitmd) = Vid(hig,n,¢) x 7 (2.57)
NaOhieme) = k7Y x MEO(hign, ¢) (2.58)

In this thesis the analysis for single body is carried out by using M= and N=¥
vectors following the procedure employed by Sinha and MacPhie for conducting
prolate spheroid [7]. ?

3Zimmer employed M" and N" vectors to analyse the scattering problem by a single lossy
dielectric prolate spheroid [30].
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Tn the functions M35, M), N3 and Ni¥® the ¢-dependence of the
various components is equal to the product of either cos ¢ or sin ¢ with cosmé
or sinmg. Therefore it is convenient to define the following additional spheroidal
vector wave functions, (where the components of those labeled with the index
m+1 have either a cos(m+1)¢ or sin(m+1)¢ ¢-dependence, while the componenta
of those labeled with m — 1 have either a cos(m — 1)¢ or sin(m — 1)¢ one) p. 70
[1):

NS Gitnd) = 3 [EOGien 8 7 JEEOKEn )] (259)
B (hend) = %[Mi:‘"(h;e,n,db)i;M;ﬁ"(mem.es)] 260

N (hien,g) = k7 V x M3 (hi6m,4) (2.61)
Niu(hime) = k70 V x M (hi6ym,8) (2.62)

Explicit expressions of the vector wave functions defined above are given in Table
V, pp. 74-718, 1].

According to Sinha and MacPhie [20), it is possible to express the sinusoidal
variation of ¢ in equation (2.51) as complex exponential variation. Also for any
integer n > 0 since —n < m < =, it is possible to normalize spheroidal vector

wave functions M and N in terms of |m|. Normalization of spheroidal vector

wave functions and their jons in ial form are explicitly given
in [20] and Appendix A of [15]. Orthogonality property of complex exponential,
given below, will be used later:
* L,
Ji " mOeIG = Db (2.63)
o
where §mm is Kronecker delta function.
It is worthwhile to note here that notations for M and I followed through
this thesis are the ones used by Sinha and MacPhie [20]. Flammer’s M), and

2



N8, become Mz and N3 in [20] respectively, and Flammer's M%), and
N;9).. become Mz and Nz in [20] respectively so that M) and N have
(m=1)¢ ¢-dependence. However Flammer’s M) and N2 remain same as that

in (20] having m¢ $-dependence.



Chapter 3

Electromagnetic Plane Wave
Scattering by Single Uniformly
Lossy Dielectric Prolate
Spheroid

3.1 Introduction

In this chapter we study scattering of plane electromagnetic wave by single uni-
formly lossy dielectric prolate spheroid. Incident, scattered and transmitted com-

ponents of electric and ic fields are d in tenns of lized pro-

late spheroidal vector wave functions (defined in Appendix A of [15]). Since the
dielectric medium of the scatterer is of complex relative permittivity, complex

lues are eval d for the spheroidal scalar wave functions of transmitted

components of E-field and H-field i iate boundary conditi
are then applied on the surface of the spheroid to solve a set of simultaneous linear

algebraic equations relating the unknown

to scattered and transmitted fields expressed in terms of known expansion coef-
ficients of the incident field. Finally we elaborate on the computation of radar

cross sections in far field for single uniformly lossy dielectric prolate spheroid.
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INCIDENT PLANE WAVE SCATTERZD WAVE IN THE PAR FIELD

Figure 3.1: Scattering geometry ior a nng,le umfannly Iouy dielectric prohu
spheroid with arbitrary incid ion of a pl wave.
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3.2 Expansion of the Incident Electric Field
in terms of Normalized Prolate Spheroxdal
Vector Wave Functions

Let us consider a h it wave of length A

ic plane
and of unit amplitude propagating in free space. This wave is propagating in the
z — z plane {¢; = 0) at an angle §;(< 7/2) made with the z-axis, and is incident
on single uniformly lossy dielectric prolate spheroid as shown in Fig. 3.1 Let
& = o be the value of £ on the surface of the spheroid, and a be the length
of semimajor axis of the spheroid. The media outside and inside the scatterer

are assumed to be non-f ic (ice. their ilities are equal to the

permeability of free space io).

Let the electric field E; of the incident plane wave be lineatly polarized in an
arbitrary direction. This can be decomposed into two orthogonally polarized £
vectors Eig and Eirar. H; vector is decomposed into orthogonally polarized
vectors Hirg and Hirm. Eirg and Hiry lie perpendicular to the plane of inci-
dence whereas Eiras and Hi g lie in the plane of incidence. Thus the polarization
angle v, (the angle which the incident electric fiell makes with the normal to the
plane of incidence (z — z plane)) is such that for T'E polarization 4, = 0 and for
TM polarization 7, = 7/2.

According to Flamme: an incident plane wave can be expanded in terms of
MY and M. The electric field of unit amplitude incident on a spheroid is

given as [20] and [15]

Z [Pha b2 4 M) (31

m—-ﬂn n=lm|



where

P = Mm.nm,)s'ﬂ"("““"’” (ZZxjimy) @2
whete hy = (27/A)F, Nia(h1) is the normalization factor given by equation
(2.32); Simin(h1, cos 6;) is the prolate spheroidal angle function (defined in Chapter
2).

If the expansion of 5; given in (3.1) is arranged in the g-sequence (0)g, (£1)¢,
(£2)8, -+, then the series expansion in (3.1) can be written in the form of

associated matrix field expansions given in [20] and [15]:
B = M1 (3.3)

where T indicate transpose of a matrix, and

Mo Po
o | M 2
Mi= M.: i I= p: (3.4)
with
ML = [T (35)
ML o= MM M M), 021 (36)
where
NEEOT = (20T a0 M, - @7
Also
o5 = [ptTpi7] (38)
ol = ek el Pl 021 (29)
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with
p¥ = [Pf,m Pf.|,|u P:[rlfi = ] (3.10)

where pk, (= |m|,[m| + 1,|m|+2,--) is given by equation (3.2).

3.3 Expansion of the Scattered Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

In response to the electromagnetic field incident on spheroid, there will be scat-
tered component of electric field outside the spheroid (¢ > é) which must satisfy
the radiation condition. Knowing

R0 "5 perlectonr] @11)
we can expand the scattered E-field in terms of normalized prolate vector wave
functions. Also the components of the scattered field must have the same ¢-
dependence as the corresponding elements of the incident field. Thus according

to [20] we can write

E, =

™s

o L - o
O M 4 oty M+ Y0t M 4 og M50
=

Ms {0
3

P i IR 7 1 I (3.12)

™Ms

g

3
i
1)
3
i
3

where all M-vectors in the above equation are evaluated with respect to hy
(=27 F/)) which is real. a*-s, a™-s and a’-s are the unknown expansion coeffi-

cients ding to the series ion of scattered E-field that have to be

evaluated.
If same ¢-sequence of azimuthal harmonics used for the incident field is used

in this case, then the scattered field from the spheroid can be written in the
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generalized column vector product similar to that for E;, [20]

E, = M{Tq (3.13)

where
M, = g; T (3.14)

with
ME, = [MHOT M7 (3.15)
N = [N NEOT R VT, 051 aae)

with M) defined in (3.7) for i = 4, and

NEOT = [ AR ) (.17)

Also
of = [atfefl] (3.18)
of = [adh ool o], 021 (3.19)

with
afT = [od of o, o] (3:20)
af = ["':.[v, [ } (3.21)

3.4 Expansion of the Transmitted Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Since the medium inside the scatterer (spheroid) is composed of dielectric ma-

terial, there will also be a transmitted component of E-field inside the spheroid
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which is non-plane wave type.
Now inside a lossy dielectric medium, propagation constant or wave number

k is given by
ko= (2n/3)y/de (3.22)

where € = € — jo/w, €, is permittivity of free space, and conductivity () of the
medium inside the spheroid is not equal to zero. ¢ = ¢'/¢ is called complex
relative permittivity of the medium, Thus inside the lossy diclectric spheroid k
is complex, and is of the form k = k' ~ jk”, where k' and k" are real quantities.

For the expansion of the transmitted E-field, the vector wave functions of
first kind are to be considered and also they have to be evaluated with respect

to hy (= (2xF/))\/&), which is complex. Thus the transmitted E-field inside

the spheroid d in terms of lized prolate spheroidal vector wave

functions is given as (23]

“ W &
Beo= Y Y M B M+ DB + BT
o] &

e
Y S a4 B iy M (3.23)
L

£ o diki ts

B*-s, B~-8 and B*-s are the unknown
the series expansion of transmitted E-field that have to be evaluated. All the
M-vectors in the equation (3.23) are evaluated with respect to ha.

If the terms in the expansion of E are arranged in the ¢-sequence of (0)¢,

(£1)¢, (£2)4, -+ then we can have

E = Mg (3.24)
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where

Mo B
- Ma B,
M. = Mo |} P8, (3.25)
with
ME = [MHOT N (3.26)
ML = [MEYTMEOTMIN MG, o 21 (3.27)
with M2(!) defined in (3.7) for i = 1, and
MO = (810 M0 A ] (328)
Also
8T = [B*7ay] (3.29)
T o= (BT BT AL, 8], 21 (3.30)
with
BET = (B B s Baa ] (331)
BT = B2t Bt B -] (3:32)

3.5 Expansion of H-field in terms of E-field

We know from Maxwell’s equations for a time harmonic electromagnetic field

i = (:—“) UxE (333)

Again we know that w = (27/))/(so€0)"/? and k = (¢/e0)'/*(27/}), Assuming
that the media outside and inside the spheroid are non-ferromagnetic, we can
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write
H = jE " (e/uo) PV x E (3.34)

where k is the wavenumber (or propagation constant) and e is the permittivity of
the medium (real or complex). We can obtain expansions of the different H-fields
inside and outside the scatterer in terms of appropriate normalized spheroidal
vector wave functions from those of the corresponding E-fields. We do this by
replacing M by IV and multiplying cach ion by the iate value of

3 (€/uo)2.

3.6 Expansion of the Incident Magnetic Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Utilizing equation (3.34), the incident H-field can be expressed as
o P 1 2
B = e/l () (V% B) (3.35)
1

where k; and € are the propagation constant and permittivity of the medium

outside the spheroid repectively. Using (3.1) and the relation

R = 2V xHE) (83%)
we get
it L o - -
Ho= ¥ % [phaii0 + pra 70 (3.37)

m==00 n=jm|
where pZ, are defined in (3.2). Equation (3.37) can be written in the matrix
form similar to that of £; as

B = j(e/po)*NP71 (3.38)
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N7 has the same form as that of M{)7 defined in (3.4) - (3.7) but with &
replaced by N. I has also been defined in (3.4) and (3.9) - (3.10).

3.6.1 Limiting Case: v, =0 and 6; - 7/2

The series expansion of incident E-field and H-field becomes indeterminate when
angle of incidence §; — 90° for TE polarization (i.e. 7, = 0) of incident exci-
tation. The limiting expressions for p¥,, for 6; — 90° corresponding to TE
polarization of incident fields are given by Sinha and MacPhie in [7):
(n—|m|) even

0,
=g U DO abml 1) ag (3489)

Pmn Mo WW.

Nimim is the normalization factor given by equation (2.32).

3.7 Expansion of the Scattered Magnetic Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Using (3.34) we can write for &,
- ; 1 -
B = el (5) (7 £) (3:40)
Using (3.12) and the relation given in (3.36)
iz : 125 = b GO L ) S b ) L x )
H o= jla/w) | Y aha N3O + el N + Yot N2 + ag, N5
=k =1
© o
+ 5 Fatan ot o] (aa1)
ot

Equation (3.41) can be written in the matrix form similar to that of £, as

H = j(a/m) N (3.42)
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N7 has the same form as that of M{%)T defined in (3.14) - (3.17) but with A
replaced by V. o has also been defined in (3.14) and (3.18) - (3.21).

3.8 Expansion of the Transmitted Magnetic Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Using (3.34) we can write for A,
B = ialw)” (3) (VB (843)

where k; and ¢, are the propagation constant and complex permittivity of the
medium inside the spheroid repectively.

Using (3.23) and the relation given in (3.36)
_ -
He o= jlea/mo)® 3 S BhaNAD + B nNolfhn + S A5 N0 + 65,580
non=m =
+ T Y BV B iy Ny (344)
—f 4
Equation (3.44) can be written in the matrix form similar to that of B as

A= jlea/no)* N p (345)

N7 hag the same form as that of M{VT defined in (3.25) - (3.28) but with M
replaced by N. @ has also been defined in (3.25) and (3.30) - (3.32).

3.9 Applications of Boundary Conditions

Boundary conditions requite that across the surface of spheroid (¢ = £o) the

tangential components (7 and @) of the E-field and as well as those of H-field
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(assuming no surface current) must be continuous. These conditions can be
expressed equivalently:
Ey+By
Ho+ iy
Hig+Hiy
at ¢ = §o and for all values of n and ¢ in the ranges -1 <n<1and0< ¢ <21

(3.46)

respectively.
By expanding each E-field and H-field in terms of normalized prolate spheroidal
vector wave functions, we can rewrite (3.46) as
(MITL+ MO @) x lemge = M8 x Eecty (347)

(NT14 RO a) xEleng, = (eafa)*NEOTBx Eleeey  (348)

3.9.1 ¢-matching and 7 hing
In (3.47) and (3.48) the coefficients of the same ¢-d d ial terms

on both sides of each equation should be equal and the equality should hold good
for each corresponding term under the summation of . Also those terms on both
sides of (3.47) and (3.48) that are under summation of n cannot be matched term
by term.

Thus according to [15] and [23] for ¢-matching and n-matching both sides of
(3.47) and (3.48) are scalar multiplied by the vector functions

s
{ 03 } Simpmis €5, N =0,1,2,...

and the products are integrated over the surface of the spheroid with respect to

both n(~1 <n<1)and ¢ (0 < ¢ < 27), where |, and I, are given by

L, = j2F(g-n' )
o = (G- } a49)

L]
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for equation (3.47) and by

L, = 2P -~
Iy = 2FXG-1)/(E—1) (8:20)
for equation (3.48). Using the orth lity p ies of complex ial

given in (2.63), aud angle functions, given in (2.31), we obtain a set of coupled
algebraic equations of the form:
[Pu) B+ [Qu] @
[Pv] B+[Qn] @ = [Rx]D) (3.52)

[Ra) 1) (3.51)

where the elements of [Py], [Qa], [Rar], [Px], [Qn) and [Ry)] are defined in
Appendix B.

3.10 System Matrix [G]

Combining (3.51) and (3.52) we can write

IR I

Equation (3.53) can be written in the form

s = [G1 (3.54)
where
& = [;} y (3.55)
o- (@R e

[G] is the generalized system matrix which is independent of the direction and

polarization of the incident wave. Thus the solution in the above form eliminates
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the need for repeatedly solving a new set of simultaneous equations in order to
obtain the expansion coefficients of scattered and transmitted fields for a new

angle of incidence.

3.11 Far-Field Expansions and Scattering Cross

sections
Once the unknown fici ding to series ion of
d and itted fields are determined by solving the system equation

(3.54), we can find the magnitude of the scattered field at a particular distance

s

from the spheroid by substituting the values of ding to series
expansion of scatiered field in equation (3.12). However, of practical interest is
the scattered field in the far zone for |r| — oo, r being the distance from the
spheroid to the point of observation.

At very large distance from the spheroid h;¢ — co. So as k¢ — oo,

hE - kr
7 - cosf (3.57)
PR |

Also as hyé — o0, it can be shown that [20] and [15]:

il
R(hy6) — ™2 (3.58)
d E-ihv

4 g & PEE—

“R,....(hnf) "k F e (3.59)

The asymptotic forms of spheroidal vector functions are obtained by neglecting
£ and its higher inverse power terms. Thus in the far zone the scattered E-field

with respect to the origin O of spheroid A, is given by [20]

e=ikr ~ -
B = S [R(6,8)0+ Ri6,6)4] (3.60)
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where

F(0) = - 5 5 7 [ l(aha - apa) cosm + 1)
4 et + o) sinm + 1)9) + S2a, | (3.61)

FA0.8) = 35 305 [rSmnl(ah + o) contm + 10
+ ;(-a;n — apa)sin(m+1)8} = /1= 7Smiin

{(&hns1.n + 0% p1),0) cO8(m + 1)8

$(atrn = 0L iy a) sin(m + 1)}

315n0tin = = TS| (3.62)

6 and @ are the unit vectors in the direction of increasing § and ¢ respectively.

§

The scattering cross section is defined as 4 times the ratio of the scattered
power delivered per unit solid angle in the direction of the receiver to the power
per unit area incident at the scatterer. This can be shown to be independent of
.

The bistatic radar cross section (8, ¢) is defined as

- 2B,
o(8,4) = lim 4rr iR

(3.63)

where 7 represents the polatization of the receiver at the observation point
(r,8,4). With 7 in the same direction as , the normalized bistatic radar cross

section is given by
209 \Rgo, g8 + 0,0 (as)

The normalized bistatic radar cross section in E-Plane and H-Plane are obtained

by substituting ¢ = 7/2 and ¢ = 0 in (3.64). For normalized backscattering
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(monostatic) radar cross section f = 6; and ¢ = 0 in (3.64), so that the corre-

sponding backscattering cross section becomes
8
D)~ \pe, 0 + R0 (3:65)

For evaluation of monostatic radar cross section we substitute ¢ = 0 in (3.64)
because we have assumed that the incident wave is propagating in the z - z plane

(¢ =0).
3.12 Results of Numerical Computation

For TE or TM polarization of incident field, the unknown expansion coefficients
corresponding to series expansion of scattered and transmitted fields have been
determined by solving the system equation (3.54) by using Gauss elimination
technique (36]. Since the series expansions of the E and H-fields in terms of the
spheroidal vector wave functions are infinite in extent, all the matrices of (3.54)
have infinite size. Thus to obtain numerical results of desired accuracy one has
to truncate the series and matrices accordingly.

The truncation scheme used here, is the one that was developed by Sinha
and MacPhie for conducting prolate spheroid [7) and {20]. According to thistheir
scheme for each value of m, n = |m|, jm|+1, |m|+2, -+, |m| +n—1 withn; =
Int(kia+4). ky = 27/}, kra is the relative size of the spheroid, and Int(A)is the
smallest integer which is not less than (A). For cach m, N in Sim|im|+~ can be
givenas N =0,1,2,--+, n, — 1. It is found that ¢-harmonics (0)¢,/+1)4, (+2)¢
give at least two significant digit accuracy in the computed results of the radar
cross sections. This limits the values of m to —1,0,1. However since we are using

spheroidal vector wave functions normalized with respect to |m|, we evaluate the
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radar cross sections for m = 0,1. Another truncation scheme is given in {11]
which uses A" and N'* vectors in scattering formulation.

Also in order to study the ing cb istics in the region,

where the wavelength of the incident radiation is comparable to the length of
semi-major axis of the spheroid, we choose spheroids with different values of kia
varying from 1 to 4.

I results are d in the form of d bistatic and monos-

tatic (backscattering) radar cross sections in the far field for single uniformly lossy
dielectric prolate spheroid, with axial ratio a/b = 2 and 10, and with different
values of complex relative permittivity (e,).

In this thesis we determine bistatic radar cross section for T'E polarization
of nose-on incident wave (§; = 0), since for axial incidence the known expansion
coefficients pt,, have same magnitude for TE and TM polarizations of incident
plane wave. Thus when §; = 0, evaluation of bistatic radar cross section in E-
Plane and H-Plane is independent of the polarization (T E or T M) of the incident
excitation.

Fig. 3.2-3.4 give plots of normalized bistatic cross section for TE polariza-
tion of incident wave in both E-planc (¢ = 90°) and H-plane (¢ = 0°) for a
single uniformly lossy dielectric prolate spheroid having axial ratio a/b = 2 and
a/b = 10, and with different values of relative size (k;a) and complex relative
permittivity .. In Fig. 3.2 we consider ¢, = 2— ;0.5 and in Fig. 3.3 we consider
& = 4 — j0.5. From Fig. 3.2 and Fig. 3.3 we observe that as the axial ratio
changes from 2 to 10 there is a decrement in magnitude of bistatic cross section
in both E-plane and H-plane. This is due to the reduction in thé available scat-

tering area for the thin spheroid with axial ratio 10. Also for a given value of
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axial ratio and complex relative permittivity, bistatic cross sections tend to show
more fluctuations as the value of relative size (kia) increases. For given values
of kia and a/b, Fig. 3.4 presents the plots of bistatic cross section for various
values of frequency dependent part of ¢,. We choose seven different values of €,:
& =4-70;6=4~3502¢ =4—704;¢ =4—750.6; 6 =4~-30.8 ¢ =4~31;
6 =4-712

In Fig. 3.5 and Fig. 3.6 we present the plots of normalized monostatic
(backscattering) cross section 7a(f;, 0)/A? as function of aspect angle 6; in terms
of TE and T'M polarizations of incident field for a single uniformly lossy dielec-
tric prolate spheroid having axial ratio a/b =2 and a/b = 10, and with different
values of relative size (k;a) and complex relative permittivity ¢,r. In Fig. 3.5 and

Fig. 3.6 we consider ¢, = 2 — j0.5 and & = 4 — jO.5 respectively. It is observed

that that itudes of ic cross section cor ding to TE and TM

polarization of incident wave are the same at axial incidence (6; = 0°). This is

because for axial incidence the known fhici di

Pin to
the incident fields have same magnitude for TE and TM polarization of incident
excitation.

Fig. 3.7 shows normalized monostatic cross section, as a function of aspect
angle for single uniformly lossy dielectric prolate spheroid with axial ratio 10,

relative size kya = 3, and for different values of complex relative permittivity

€ =470 6 =4—j04 ¢ =4~3j08 € =4-712
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Figure 3.7: Normalized monostatic cross section, as a function of aspect angle for
single uniformly lossy dielectric prolate spheroid with axial ratio 10, relative size
kja = 3, and for different values of complex relative permittivity ¢ = 4 — ;0;
& =4-j04; 6 =4-708; ¢ =4—j12
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Chapter 4

Electromagnetic Plane Wave
Scattering by a System of Two
Uniformly Lossy Dielectric
Prolate Spheroids in Arbitrary
Configuration

4.1 Introduction

By means of modal series expansions of electromagnetic fields in terms of prolate

1 vector wave functions (following the ds shown in chapter 3),

ic plane wave ing by

an exact solution is obtained for the
two uniformly lossy dielectric prolate spheroids in arbitrary orientation. Since

the spheroids are arbitrarily oriented, ional lational addition tk

for spheroidal vector wave functions are employed in order to transform the out-
going wave from one spheroid into the incoming wave at the other spheroid. By
applying appropriate boundary conditions on surfaces of the spheroids we solve
unknown expansion coefficients corresponding to scattered and transmitted fields.
Finally numerical results in the form of curves for normalized bistatic and mono-

static radar cross sections are given for a variety of two-body system of uniformly
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lossy dielectric prolate spheroids in arbitrary orientation having resonant or near

resonant lengths and different distances of separation.

4.2 Expansion of the Incident Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

bitraril diel.

Consider a system of two oriented uni: ly lossy

ic prolate
spheroids as shown in Fig. 4.1. Unprimed coordinates refer to spheroid A and
primed coordinates refer to spheroid B. The system (z',y’, ') is obtained from
(,y,2) by rotating the latter through Euler angles (a,8,7) (defined in [38],
also refer Appendix E) to (z,yy,2) which is parallel to (z',3', 2'), and then
followed by a translation of distance d. The center O' of spheroid B has spherical
coordinates (d, 04, ¢a) with respect to Ozjyz and (d, 6o, ¢o) with respect to
Ozyz. A point P has spheroidal coordinates (¢,7, 4) and (&', 7', ¢') with respect

to (z,y,2)-system and (z’,y', 2')-system respectively.

Let us consider a t 1 ic wave of 1 A

ic plane
and of unit amplitude propagating in free space. This wave is propagating in the
-z plane (¢ = 0) at an angle 6;(< 7/2) made with the z-axis, and is incident,

on A-B system. The media outside and inside the scatterers are assumed to be

of free

o ic (i.. their bilities are equal to the
space o).

Let the electric field E; of the incident plane wave be linearly polarized in

an arbitrary direction. This can be decomposed into two orthogonally polarized

E vectors Firg and E-.TM. H; vector is decomposed into orthogonally polarized

H vectors 17.1'5 and I?.'ru. Em; and ﬁmu lie perpendicular to the plane of
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Figure 4.1: Scattering geometry for a system of two uniformly lossy dielectric
prolate spheroids in general configuration with arbitrary incidence and polarization
of a plane electromagnetic wave.
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incidence whereas Eira and Hirg lie in the plane of incidence. Thus the polar-
ization angle v, (the angle which the incident electric field makes with the normal
to the plane of incidence (z-2 plane)) is such that for T'E polarization v, = 0 and
for TM polarization 7, = 7/2. The electric field of unit amplitude incident on

spheroid A is given as [20] and [15]

o = ; ;
Ba = % % [phalli) + ppatizl) (1)
m=—c0 n=lm|
where
st = A g (huycosty) (&2 % jsins,) (42)
T Niiaha) T sy " ’

Nimia(s) is the normalization factor given by (2.32); Simjn(#1, cos 8:) is the prolate
angle function (defined in Chapter 2). hy = (27/A)F4, which is real. All the M-

vectors in the above equation are evaluated with respect to ;.

If the expansion of Eiy is arranged in ¢-sequence (0)¢, (£1)¢,(£2)é, .., then
the series expansion in equation (4.1) can be given as:
Ba = MYT1, (4.3)
where
¥io P
. M; P
M= 1\71.-: i L= p, (4.4)
where
l\7l:-"; = [Mfg”’ M;(x}r] (4.5)
ML = [T MR M, MY, o2 (#6)
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with

N7 = (WA ST AT, - ]ii= 1,23, )

Also
e = [ptTei7] (48)
o = ek oty Py o 21 (4.9)

with
= [’:I'I Prieir Prieien ] (4.10)

The limiting expressions for pZ, when 7, = 0 and § — /2 ate given in [7] (also
refer section 3.6.1).
E-field incident on spheroid B is given in terms of primed coordinate system

as [27]:

Bis= e-ikid z E Ipy MQ(I)’+P -'-5.‘"+P‘.'..J~7l..5."] (811)

e
where,
. L i e o
Prn = gyl cos e (e F ey sinyy
o cos 4
(ex nc..,-)m;:] V6, except when 7, =0, 6 7.
i (412)
0§ "
(6w F sy m;'] for =0, 6,7
) 2j™ i

= 2 _g,(h,cos [cyus in

Fon = N...,.(h’)

c.—l VDex:eptwhen-y_oa.._
cos b; ¢ L 2
(4.13)

+

]far'y,-ﬂ 63

—c,,.
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where ki = —ko(&sin6; + 2cos;). All the M’-vectors are evaluated with re-
spect to hi (= 27Fp/)), which is real. In (4.12) and (4.13) 8!, ¢ respectively
are the spherical angular and azimuttal coordinates of the direction of inci-
dent monochromatic plane wave with respect to the primed coordinate system.
Caz!, Cay', Ca', (@ = T,,2) are the direction cosines that relate the unit vectors

3,§,% and 2/, 3,2/ by
y

& = ot + Copy' + Can?!, (4.14)
where

Cest = cOsacosfcosy —sinasiny

Csy = —(cosacosfsiny + sinacosy)

Czy = cosasinf

¢y = sinacosfcosy+ cosasiny

cy = cosacosy— sinacosBsiny

¢ = sinasing

Cet = —sinfcosy

Gy = sinfsiny

Cop = cosf (4.15)

a, 8,7 are the three Euler angles. If the expansion of Eip is arranged in the

#-sequence, (0)¢', (1)¢', (£2)¢, - then we get in the matrix form

Bs = MY'Ip (4.16)
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where

Mi, P
- M, | -
Mis=| ' |3 Ts=| pf eikd (4.17)
MET = [NEOT T N 07) (19)
WE = (VTN WOT N NS MO, 0 > (a19)
with
wor - [ LA e
MO = [M:.l(vl|) :.|(vl|]+1 ﬁ:.ml: ] (4.21)
Also
N o | (4.22)
pl = Al pT ety PiE oy PIT], 21 (429)
with
PP = [Pf.;q Pf.;-m Pf.;-m"‘] (4.24)
BT = [y Poleien Phiriaa - (4.25)

The exponential factor in the expression for Iy is necessary since 7' = 7 — d, and
the global reference point for the incident wave is the center O of spheroid A. If
the spheroids are identical and Euler angles @ — 0°,8 — 0°7 — 0° (i.e. the

spheroids are parallel to each other), it is obvious Ip = Iye7R4,
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4.3 Expansion of the Scattered Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

According to (20] the scattered E-field from spheroid A can be expanded in the

form:

B B . . & }
By = LY ohallil + oMo+ Yoot M + o6 MY

oy
o

+ 2 Y aln i+ i (4.26)
P

where all M-vectors in the above equation are evaluated with respect to hy which
is real. a*-s, a"-s and a*-s are the unknown expansion coefficients corresponding
to the series expansion of scattered E-field from spheroid A that have to be
evaluated.

If same ¢-sequence of azimuthal harmonics used for the incident field is used
in this case, then the scattered field from the spheroid can be written in the

generalized column vector product similar to that for E, [20):

Ex = MTa (4.27)
where
Mo ao
M, = E: ia=|a (4.28)
with
ML = MO M) (4.29)
M, = (MR VT M MO, 021 (4.30)
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with M£(9) defined in (4.7) for i = 4, and

A = (639 650,50 ] an
Also
of = [atfad" (4.32)
of = [T el 0], 021 (4.33)
with
a¥T = [y a1, 0 ] (434)
u:’ = [0:,|r| L4t Crprita ] (4.35)

In presence of spheroid B there will be a non-plane wave type of field that will
be incident on spheroid A, which is the E-field scattered from spheroid B. The
scattered E-field from spheroid B can be expanded in terms of primed coordinates
in a manner similar to that for scattered E-field from spheroid A. The scattered
field £,p acts as a secondary incident field for the spheroid A. Thus we have

B = 3 3 OhMAY + BussaMilln + LOL MY + b

ey g 7
+ X Y BomaMinn + B il miryn (4.36)
K~ ¥

where all M-vectors in the above equation are evaluated with respect to h{ which
is real. B+-s, B~-s and §*-s are the unknown expansion coefficients corresponding
to the series expansion of scattered E-field from spheroid B that have to be
evaluated.

This scattered field from spheroid B can be written in the generalized column

vector product similar to that for spheroid A as
Ep = MY"8 (4.37)
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We can use a sequence of ¢"-harmonics for spheroid B similar to that used in case
of spheroid 4, and form the following column matrices for the scattered E-field

from spheroid B:

My, Bo
0 M, B,
Ma=| g i 8=]p, (4.38)
in which the various sub-vectors M/, and 8, are anal to those for spheroid

A, but with the vector wave functions evaluated with respect to primed coordi-
nates.
To impose the boundary conditions on the surface of spheroid A, the field

in primed coordinates has to be expressed in terms of vector wave functions of

first kind in imed di Since the spheroids are arbitrarily oriented,
it is necessary to invoke the rotational-translational addition theorems [24]-[26],
which transform each outgoing normalized spheroidal vector wave functions in
primed coordinates into a series of incoming normalized spheroidal vector wave
functions in unprimed coordinates for r < d [27]:
My = [r|ME) (4.39)
Utilizing (4.37) and (4.39) we can have:
Eipa = NGB (440)
The elements of matrix [I'] are the rotational-translational addition field expan-
sion coefficients given in [24] - [26] (also refer Appendix E). The column vector
]\7[“ is such that
ML, = ["7‘54.0 M3y, MEa- ] (441)
(4.42)
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where
Miao = [V NO7 N) (443)
M3, = [NMEQT ST MO MRS MO M), o > 1(444)
with
WO = (A0 RO, T -] )
Yo T )T 2(1)T
WO = [ S, B, ] (446)
where all M-vectors in the above equation are evaluated with respect to ; which
is real. Also in the presence of spheroid A there will be a non-plane wave type
of field incident on spheroid B, which is the E-field scattered from spheroid A.
This scattered field from spheroid A has been shown to be of the form:
Ea = MY a (4.47)

To impose the boundary conditions on the surface of spheroid B, this field in

d di has tobe d in terms of vector wave functions of first

kind in primed coordinates. By utilizing the rotational-translational Addition

Theorems each outgoing d sph 1 vector wave functions in d

coordinates is transformed into a series of incoming normalized spheroidal vector

wave functions in primed coordinates for +' < d [27]:
MY = (M) (448)
Utilizing (4.47), (4.48) we can have:
Bus = MM a (4.49)

The elements of matrix [I”] are the rotational-translational addition field expan-

sion coefficients given in [24] - (26] (also refer Appendix E). M} has the same
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form as that of M) but with vector wave functions evaluated with respect to

primed coordinates,

4.4 Expansion of the Transmitted Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Since the spheroids are composed of dielectric material, there will be transmitted
component of E-field inside the spheroids which is non-plane wave type. Thus
the transmitted E-field inside spheroid A can be expanded in terms of normalized

prolate spheroidal vector wave functions, given by [23]:

. 8 & . } B -
By = 3 3 vaMiD 49wl + LAt M) + 5, M50
=

moon=m
=
+ Zn SV MG+ 1i(mu).nM:((:r)-+:).n (4.50)
m=on=m

4*-s, v7-s and 7*-s are the unknown expansion coefficients corresponding to the
series expansion of transmitted E-field that have to be evaluated. All the M-
vectors in the equation (4.50) are evaluated with respect to k= (2rFa/A)VEr.

If the above expansion for By is also arranged in ¢-sequence (0)¢, (1)¢,

(£2)4, -+~ then Fyq can be written in the matrix form
B = My (451)

where, in terms of unprimed coordinate system of spheroid 4, Mf}’ is a column

1ized soheroidal

vector whose elements are the p vector wave functions of first

kind evaluated with respect to h; which is complex, and 4 represents a column



vector whose elements are the ding unknown ff
Moo o
= M, v,
M= 1\71:: P ov= _’: (4.52)
where
ME = [MHOT M) (4.53)
ME = [EOTNESTNCT G, o2l (as)
with M(1) defined in (4.7) for i = 1, and
MEOT = (8260 18200, 7, ] (4.55)
Also
7 = [T (4:56)
7 o= AT vy ), o2t (457)
with
¥ = P s e ] (4:58)
VT = (Voo Vatets Yogeraa - (459)

The transmitted E-field inside spheroid B can be expressed in terms of normalized

prolate spheroidal vector wave functions similar to that for spheroid A.

) o = ; o .
Bp = 3 3 SR MAD + 60 WD+ 2612 + 65,0058
n=0

L0,
. )

LD DD DL =L R o s (460)
L)
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Thus in matrix form we can write
Ep = M5 (4.61)

where, in terms of primed coordinate system of spheroid B, MY is a column

vector whose elements are the vector wave functions of

first kind evaluated with respect to hj (= (2rFp/)).\/&5) which is complex, and
& represents a column vector whose elements are the corresponding unknown

expansion coefficients.

My &
_ M 5
Mas=| 29| 6= 5; (4.62)

in which the various sub-vectors M, and &, are analogous to those for spheroid

A, but with vector wave d in primed

4.5 Expansion of Incident, Scattered and Trans-
mitted Magnetic Fields in terms of Nor-
malized Prolate Spheroidal Vector Wave
Functions

Using the Maxwell’s equation

B = jk'(e/p)'V x B (4.63)
where k is the wavenumber (or propagation constant), € and u are the permit-
tivity and permeability of the medium respectively, we can obtain expansions of
the different H-fields inside and outside the scatterers in terms of appropriate
normalized spheroidal vector wave functions from those of the corresponding E-
fields. We do this by replacing M by N and multiplying each expansion by the
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appropriate value of j (¢/p)"/?. Assuming media outside and inside the scatterers

are non-ferromagnetic, we can write for spheroid A:

Ha = jla/w) PR 1, (4.64)
Hisa = 3 (/) REFOT B (4.65)
A = i(a/w) R« (4.66)
Hu = 5 (ealno)* N7y (4.67)

where €; and ¢4 are the permittivities of the media outside and inside the scatterer
A respectively, po is permeability of free space.

Similarly for spheroid B we have

Bz = j(a/w)/ R s (4.68)
Hup = j(a/u) N (T p (4.69)
B = j(a/m) N« (4.70)
Fia = j(ealpo) "Ry (a.71)

in which ¢ and ep are the permittivities of the media outside and inside the

scatterer B respectively.

4.6 Application of Boundary Conditions

From the analysis shown in the previous sections we find that the total E-field
outside the spheroid A in the system of unprimed spheroidal coofdinates can be

given as
By= Bt Epat B =ML+ MET T A+ M e (a72)
and the total E-field inside the spheroid A is given as
A =My (4.73)
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The total H-field outside and inside the spheroid A in the system of unprimed

heroidal d&i enn Be P

given as
Ha=Hia+ Bipa+ o = (e /po) (NG 1+ NET (1) 8 + N aju.74)
and

Hua= jleafuo)? R+ (4.75)

Similarly total E-field outside and inside the spheroid B in the system of primed

tietoidal i

can be respectively given as

By = Fis + Buan + Bin = M s + MG M2+ MY 8- (4.76)

Eg=MYTs (4.77)

The total H-field outside and inside the spheroid B in the system of primed

can be respectively given as
Ag = Hip + Buas + Fup = il /po)* (NG 1o + NG 1" o + NEYT )

(4.78)
and

Hip = j(en /o) N7 6 (4.79)

Boundary conditions require that across the surface of each spheroid the tangen-
tial components (7 and ¢) of the E-field and as well as those of H-field (assuming

no surface current) must be continuous.

Spheroid A:



Let us first consider spheroid A. Application of the boundary conditions on
equations (4.72)-(4.75) yields:
(M L0+ M (078 + N ¢ Elicg, = M1 xE ey, (480)
= (1)1 - = . €a\? :
(NG L+ RGO+ NG o) x g, = () R ¢ Eleme,
(481)

Following the procedures developed in [15], both sides of (480, (4.81) are scalar

multiplied by the vector functions

s
{ ,:g } Sl mpen eSMEY, N 20,1,2,...

and the products are integrated over the surface of the spheroid A with respect

tobothn(—1<n<1)and ¢ (0< ¢ < 2r), where
I, = j2Fa(&-7")"
ls = 2Fa(&i-7%)
for equation (4.80) and
b= 2= G -1

b= J2F(E —n)/(€h-1)

s m

of angle functi and

for equation (4.81). Using the

set of coupled al,

complex tials, we obtain the

of the form:

[Pua) v+ 06+ [Qual @ + [RupalllT B = [Rmal (] (482)
[Pual y + (016 + [Qual o + [RypalllT B = [Rwal [ (483)
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where the elements of [Paa), (Qmal, [Rasal, (P al, [Qnal, [Rwsal, [Rma] and

[Rua4) are defined in Appendix B.

Spheroid B:

For spheroid B by applying boundary conditions and ing sub

n—

integration and @¢-integration in a manner similar to that of spheroid A, we

obtain the following set of coupled algebraic equations:

(017 + [Pus] & + [Raeas)(T]" & + (@] B = [Rus] [Is]
(0] ¥ + [Pus) 6 + (Rwas)[I']" & + (Qws] B = [Rws) (18]

(4.84)
(4.85)

where the elements of [Pus), (Qa5), (Rmas), [Pns), (@n5), [Rvas), [Rus) and

[Rws] are defined in Appendix B.

4.7 System Matrix [G]

Combining (4.82), (4.83), (4.84) and (4.85) we can write:

[Prea] (0] [@ual  [Rupa] ()T s [Raea] La
[Pval (0] (@Al [Rwmal[D] | | 6| _ | [BwalTa
0] [Pus] [Raasl(l)  [Ques) a [Rues] I
[0] [Pwsl [Rvas))"  [Qwal p [Rns]1s

Equation (4.86) can be written in the form
S = [G]I

where

WR ™2

(4.86)

(4.87)

(4.88)



1= [ Is ] (4.89)

Iy
(Pual 0] Qual  Raead 0717 (Rid] 0]
6= [Pna] [0} [Qna] _ [RusallT) (Bl (0]
(0] (Pus] [Rmas](T')  [(Qus] (0] (Rus]
) [Pval (Rwas)T]" (Qua] 0] [Rys]
(4.90)

(G] is the generalized system matrix which is independent of the direction and
polarization of the incident wave. Solution in the form § = [G]I eliminates the
process of repeatedly solving a new set of equatiozs for new angle of incidence,

which is a great advantage in numerical computation.

4.8 Far-Field Expansions and Scattering Cross
sections

Let the distazuces from the centers of spheroids A and B to the point of observation
P be denoted by 7 and  respectively. Of practical interest is the scattered field in
the far zone of the A-B system for |r| — co. To calculate the far-field scattering
cross sections we have to evaluate the asymptotic values of hyé, hi¢', 1, 4, '
and #'. The asymptotic forms of spheroidal vector functions are obtained by
neglecting £~2 and its higher inverse power terms. According to [20]:

1€ kr

cos
-6
kr'
cos §'
ry

s

4.91)

Lttty

)



Also as 7 — oo it can be shown that [20]:
R~ g

ke

d —
z (k) - JrRFSE

(4.92)
RL‘;L(M:E'} - g % eked .
R = ep S R
where
k. = ko(dsinfcosd + jsinBsin ¢ + 3 cos) (4.93)
d = d(ésin, cos ¢ + § sin o sin ¢ + 3 cos 6,) (4.94)

hy = 2nF4/) and bl = 22Fp/). k, is the k-vector of the far-scattered field where

heroidal coordinates are asymptotic to spherical coordinates, Thus in the far

zone the scattered E-field with respect to the origin O of spheroid A, which is

chosen to be the global origin, is given by [20] and {27):

E, = Eu+Es
=skr N . . .
= S [Poal0, )+ Foa(8,0)8 + Fos(8,8) 8 + Fyn(0,4) 6]
il P’ . P %
= T Ru0, )+ Far0,)8 + Fon(8'#) {028+ 2d)

+Fys(0', ') {930 + 96}

ik 5 %
S B9+ Ri6.0)d) (95)
where
Fo(8,8) = Foa(6,)+ 01 Fwn(6', ') + g:Fun(6', ¢) (4.96)
Fu(8,8) = Fea(8,4)+ 9:Fwn(0',¢') + 94Fun(6', ¢) (4.97)
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o al” =

los 9" =

Fi(6,¢) =

Fi0,4) =

o) =

[ =

[Q)[C)lcosé' cos ¢' cosf'sing’' —sind|T (4.98)
[AC)[-sing’ cosg’ 0] (4.99)

-5 5 [Fn (et - ama) cotm + 106
p2e 2

ok + az,).sinlm + 16} + S2at, ] (4.100)

S 5 57 [rSanl(eta + o) ontm + 114
J(ann = aqp)sin(m +1)¢}
1

7 Smitn {(“fnn.n + 0L )n) cOS(m + 1)¢

H(8hs1m = @ i) sin(m + 16}

F1Snatin = VT= Sk (a101)
cosfcos$ cosfsing —sinf

~sing cos ¢ 0 ] (4102)
Caxt Cay Czp'

G G G (4.103)
Cxt Cay Cant

The expressions for Fpp(¢', ¢') and Fyp(6', ¢’ 1re obtained from those of Fo(8, ¢)

and Fyu(0, ¢) respectively by replacing a-s by -s and multiplying each expression

by an overall phase factor ezp|jF,.d] to account for the vector displacement d from

the global origin O. Also the functions in primed variables &', ¢' are expressed in

terms of unprimed variables 8, ¢ as follows, The direction of the sc ittered wave

vector £, in the far-field with respect to primed coordinate system is given by

K= ko (2'sin6' cos ¢' -+ y'sin#'sin ¢’ + 2 cos §') (4.104)
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Substituting &,§, £ in (4.93) in terms of &',y’, =" (refer to (4.14)) we get from
(4.93) and (4.104) the following set of relations, from which knowing 6, ¢ and the
direction cosines cos, Cay'y Cos' (@ = %, yor z) (refer to (4.15)), we can determine
6 and ¢

sin'cos @' = corsindcos @+ cyp sin Bsin ¢ + cyer cos 8

sind'sing' = czysinfcos @+ cyy sinfsin ¢ + cyy cosf

cosf' = Ceysinfcosd+ cye sinfsin g + ¢, cos b

The ions needed for calculations of bistatic and ic radar cross

sections in the far field are given by equations (3.63) - (3.65).



4.9 Results of Numerical Computation

N I results are d in the form of lized bistatic and

(backscattering) radar cross sections in the far field for a system of two uniformly
lossy dielectric prolate spheroids in arbitrary orientation, each with axial ratio
a/b =2 and 10, and with different values of complex relative permittivity (e,),
Euler angles (e, §,7) and displacement of their centers specified by (d, 6o, ¢o).
Since the series expansions of the E and H-fields in terms of the spheroidal
vector wave functions are infinite in extent, all the matrices of (4.86) have infinite
size. Thus to obtain numerical results of desired accuracy one has to truncate the

series and matrices dingly. The i dure discussed in Chapter

3 is followed here. Since Fy and Fy in equations (4.100) and (4.101) respectively
are true for m > 0, we compute the radar cross sections for m = 0, 1.

At this point it is pertinent to mention about the limitation on the distance
between the spheroids for some non-axially displaced cases while using rotational-
translational addition theorems. For a distance d of separation between two
spheroids (as shown in Fig. 4.1) the rotational-translational addition theorems
for spheroidal vector wave functions, employed to transform the outgoing wave
from spheroid B into the incoming wave at spheroid A, are valid strictly within
the region enclosed by a sphere of radius d and having center at global origin O.
Thus rotational-translational addition theorems can hold good for all points on
spheroid A only when a4 < d, where a, is the semi-major axis length of spheroid
A and d is the radius of the sphere of convergence. Similar arguments are true

for spheroid B.

In order to study the ing ch istics in the region, where



the wavelength of the incident radiation is comparable to the length of semi-major
axis of each spheroid, we choose a4 = ag = a = /4. This restricts the value of d
tod > A/4. Sosince kja = /2, in order to truncate the series and matrices all the

results in this thesis have been obtained with n = |m|, [m| +1,|m| +2, - |m]| + 5

for each value of m to the above ¢- ics,and N =0,1,2,---5.

Fig. 4.2(a) shows the computed normalized bistatic cross section na(8)/3

as a function of ing angle 0 ding to the axial excitation (6; = 0)

of incident wave for two identical uniformly lossy dielectric spheroids each of
semimajor axis length of /4, complex relative permittivity being e.4 = €5 =
2 —j0.5, and axially displaced (center of spheroid B lying on the axis of sym-
metry of spheroid A i.e. z-axis) by d = A/2 Fig. 4.2(b) presents the noimal-
ized bistatic cross section for the same spheroids and excitation but with their
centers separated by a distance d = A along z-axis. In Fig. 4.3 we present
the normalized bistatic cross section by choosing complex relative permittivity
&4 = &p=4—j05. In both Fig. 4.2 and Fig. 4.3 we consider the Euler angles
to be a = 30°, 8 = 45°,v = 60°.

From Fig. 4.2 and Fig. 4.3 we observe that as the axial ratio changes from 2
to 10 there is a decrease in magnitude of bistatic cross section in both E-plane
and H-plane. This is due to the reduction in the available scattering area for the
thin spheroid with axial ratio 10. Also with tae increase of d = A/2 tod = A we
observe that E-plane and H-plane bistatic cross sections show more oscillations,
which is due to more pronounced effect of multiple scattering. Also the absence
of perfect nulls may be attributed to multiple sczttering.

Fig. 4.4(a) shows the computed normalized monostatic cross section xo(8i,0)/A?

2s a function of aspect angle 6; in terms of TE and TM polarization of incident
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wave for two identical uni ly lossy dielectric spheroids each of semimajor axis

length of A/4, complex relative permittivity being €4 = e, = 2 — j0.5, and
axially displaced (center of spheroid B lying on the axis of symmetry of spheroid
A ie. z-axis) by A/2. Fig. 4.4(b) presents the normalized monostatic cross sec-
tion for the same spheroids and excitation but with their centers separated by a
distance X along z-axis. In Fig. 4.5 we present the normalized monostatic cross
section by choosing complex relative permittivity .4 = €5 = 4 — j0.5. In both
Fig. 4.4 and Fig. 4.5 we consider the Euler angles to be a = 30°, 8 = 45°, 7 = 60°.

From each of the four figures in Fig. 4.4 and Fig. 4.5 respectively, we find

that the minima of ic cross section ding to TE polarization of
incident field and that corresponding to T'M polarization of incident field occur at
almost same value of 6;. However, since the spheroids are arbitrarily oriented, at

8; = 0° the value of b ing cross section ding to TE

of incident excitation is different from that corresponding to T'M polarization of
incident wave, unlike what we have observed in [20], [23] and [43]. The same
observation holds good for 6; = 180°. We can also notice that minima occur at
almost at the same positions as in Fig. 4.2 and Fig. 4.3, and also as d increases
monostatic cross section, corresponding to both TE and TM polarization of
incident wave, show more oscillations which is due to more pronounced effect of
multipl scattering.

Fig. 4.6 gives the plots of normalized backscattering cross section for broad-
side displacement of two identical spheroids separated by d = A/2 in the direction
of z-axis (6 = G°,¢ = 0°), with Euler angles a = 30°,§ = 45°,7 = 60° and
complex relative permittivity: (a) €4 = €5 = 2—j0.5; (b) €4 = €-p = 4—j0.5.
From this figure we find that that for axial ratio a/b = 10 of the spheroids, there
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is a significant difference in the value of monostatic cross section at §; = 0° for
TE and TM polarization of incident wave unlike what has been explained in [20],
23] and [43).

In Fig. 4.7 the variation of monostatic cross section as function of aspect
angle is presented for two spheroids of different values of axial ratio and complex
relative permittivity. The center O’ of spheroid B has spherical coordinates:
d = A/2,60 = 60°, o = 20° with respect to Ozyz-system; the Euler angles are
chosen to be a = 30°,8 = 45°,y = 60° (a) &4 = 2 — jO.5, 68 = 3 — j0.5,
(b) € = 83— 05,68 = 4 jO.5, (c) a = 2 j0.L,e5 = 3— 04, (d)
ea=3-70.1,65=4—j0.1.

In Fig. 4.8 the variation of monostatic cross section as function of aspect
angle is presented for two spheroids of different values of axial ratio and complex
relative permittivity. Complex relative permittivity of the spheroids are chosen
to be €4 = 3 —j0.5,65 = 4 — j0.5. The center O’ of spheroid B has spherical
coordinates: d = /2,68 = 60°, o = 20° with respect to Czyz-system. In Fig.
4.8(a) Buler angles are chosen to be a = 0°,§ = 45°,7 = 0°, whereas in Fig.

4.8(b) we take Euler angles to be @ = 30°,4 = 60°,7 = 90°.

It is to be noted, while obtaining results for ic cross section we have to
consider the variation of aspect angle (6;) from 0° to 180° (unlike what have been
shown in [20], (23] and [43]) because of the spatial asymmetry of the arbitrasily

oriented spheroids.
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Figure 4.2: Normalized bistatic cross section for T'E polarization of incident wave,
as a function of scattering angle for two identical lossy dielectric prolate spheroids
with axial ratios 2 and 10, each with semi-major axis length a4 =
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Figure 4.3: Normalized bistatic cross section for TE polarization of incident wave,
as a function of scattering angle for two identica! lossy dielectric prolate spheroids
with axial ratios 2 and 10, each with semi-major axis length a4 = ap = A/4,
complex relative permittivity &4 = &5 = 4 — j0.5, Euler angles o
45°, = 60°, and displaced along z-axis (6o = 0°,¢o = 0°) by: (a) d=A/2, (%)

d=A o

0 % 60 %0 12
? (e )llﬂlﬂ

30°,8 =



(@ha= g =2 <35 - (e = (ofilg = 10 1
) A .
3 60 90 120 150 180 0 % 120 150 180

0 (degrees) °ﬂ (“"ym,)

(a) d=A/2.

ot
- (o/%)a = (s/)g =3 " 1 gt _(-Il‘h-(:m.‘-ln )
J 30 6 90 120 150 180
1 (desrees) R L S
®) d=A

Figure 4.4: Normalized monostatic cross section as a function of aspect angle
(8;) for two identical lossy dielectric prolate spheroids with axial ratios 2 and 10,
each with semi-major axis length a4 = ag = /4, complex relative permittivity
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Figure 4.5: Normalized monostatic cross section as a function of aspect angle
(6:) for two identical lossy dielectric prolate spheroids with axial ratios 2 and 10,
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Chapter 5

Electromagnetic Plane Wave
Scattering by a System of Two
Parallel Uniformly Lossy
Dielectric Prolate Spheroids

5.1 Introduction

By means of modal series expansions of electromagnetic fields in terms of pro-
late spheroidal vector wave functions (following the procedures shown in chap-
ter 4), an exact solution is obtained for the electromaguetic scattering by two
uniformly lossy dielectric prolate spheroids in parallel orientation. Since the
two spheroids are in parallel configuration, the Euler angles (a,/,7) used in
rotational-translational addition theorems [24]-[26] are, in the present case, given
by a— 0°, 8 — 0° and  — 0°. Thus translational addition theorems [19] can be
considered as a special case of rotational-translational addition theorems when
a —0° B — 0° and v — 0°. Numerical results in the form of curves for normal-

ized bistatic and monostatic radar cross sections are given in the resonance region

ic prolate sp! in

for a variety of two-body system of ly lossy di

parallel orientation having different distances of separation.
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Figure 5.1: Scattering geometry for a system of two parallel uniformly lossy dielec-
tric prolate spheroids with arbitrary incidence and polarization of a plane electro-
magnetic wave.
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5.2 Formulation of the Problem

Consider a system of two parallel uniformly lossy dielectric prolate spheroids as
shown in Fig. 5.1. Unprimed coordinates refer to spheroid A and primed coordi-
nates refer to spheroid B. The center O' of spheroid B has spherical coordinates
(d,60, ¢o) with respect to Ozyz. A point P has spheroidal coordinates (€,7, 4)
and (£, 7', ') with respect to (z,y, z)-system and (',y', 2')-system respectively.

Let us consider a ic plane ic wave of length A

and of unit amplitude propagating in free space. This wave is propagating in the
z -z plane (¢; = 0) at an angle 6;(< 7/2) made with the z-axis, and is incident
on A— B system. The media outside and inside the scatterers are assumed to be
non-ferromagnetic.

Let the electric field E; of the incident plane wave be linearly polarized in
an arbitrary direction. This can be decompesed into two orthogonally polarized
E vectors Birg and Eirs. H vector is decomposed into orthogonally polarized
H vectors Hirg and Hirar. Thus the polarization angle 7, (the angle which
the incident electric field makes with the normal to the plane of incidence (z — 2
plane)) is such that for T'E polarization v, = 0 and for TM polarization 7, = m/2.

The incident electric field in unprimed coordinate system can be expressed in

generalized matrix product [20]

By = ML (5.1)
In (5.1) a boldface character means a column vector and T indicates the transpose
of a matrix. The elements of M{} are the normalized spheroidal vector wave

functions corresponding to radial function of first kind evaluated with respect to

hy (= 27 F4/)) which is real. The elements of I are the known incident field
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expansion coefficients given in [20] (also refer to (4.2) ). The limiting expressions
for the elements of I4 when v, = 0 and 6 — 7/2 are given in (7] (also refer
equation (3.39)).

In the presence of spheroid B there will be a non-plane wave type of field
incident on spheroid A, which is the E-field scattered from spheroid B. This
scattered field from spheroid B can be written in the generalized column vector

product [20]
Bs = My"p (52)

where, in terms of primed coordinate system of spheroid B, M{Y” is & column
vector whose elements are the outgoing normalized spheroidal vector wave func-
tions corresponding to radial function of fourth kind evaluated with respect to A,
and [ represents a column vector whose elements are the corresponding unknown
expansion coefficients.

Now for boundary conditions to hold good, this field in primed coordinates
has to be expressed in terms of vector wave functions of first kind in unprimed
coordinates. At this point it is necessary to invoke the Translational Addition

Theorems [19] which form each outgoing 1 vector wave

functions in primed coordinates into a series of incoming normalized spheroidal
vector wave functions in unprimed coordinates for r < d. Thus following the

analysis shown in (20], we can write:
Epa = MEN (Tea"8 (53)
The elements of matrix [T4] are the translational addition field expansion coef-

ficients given in [19] and [20] (also refer Appendix E). Also the elements of the
column vector My} are defined in Appendix I of [20] (also refer Chapter 4).
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In response to the incident plane wave and the field scattered from spheroid

B, the total field scattered by spheroid 4 is given as [20):
B = M{Ta (5.4)

where, in terms of unprimed coordinate system of spheroid A, 1\7[5? is a column
vector whose elements are the outgoing normalized spheroidal vector wave func-
tions corresponding to radial function of fourth kind evaluated with respect to h;
and o represents a column vector whose elements are the corresponding unknown
expansion coefficients.

Since the spheroid is composed of dielectric material there will be a trans-
mitted component of E-field inside the spheroid A, which can be expanded as

(28]:
B = MYTy (5.5)

where, in terms of unprimed coordinate system of spheroid A, M{Y is a column

vector whose elements are the heroidal vector wave i of
first kind evaluated with respect to h; which is complex. h = (28 Fa/A)\/€l /€0

€y = €4 — joa/w, where €, is permittivity of free space, and conductivity (0.4) of

the medium inside the spheroid A is not equal to zero. €4 = €}/€o is complex

relative permittivity of the medium inside spheroid A. 7 represents a column

vector whose elements are the ponding unknown fRici
Using the Maxwell’s equation
H = jkV(e/u)PVxE (5.6)

where k is the wavenumber (or propagation constant), € and s are the permit-

tivity and permeability of the medium respectively, we can obtain expansions
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of the different H-fields inside and outside the scatterer in terms of appropriate
normalized spheroidal vector wave functions from those of the corresponding E-
fields. We do this by replacing M by N and multiplying each expansion by the
appropriate value of j (e/u)'/2.

The total E-field and H-field outside the spheroid B can be expanded in a
manner identical to that for spheroid A but with respect to normalized spheroidal

vector wave functions iated with primed spheroidal di

5.3 Application of Boundary Conditions

Boundary conditions require that across the surface of each spheroid the tangen-
tial components (1 and ¢) of the E-field and as well as those of H-field (assuming

no surface current) must be continuous.
Applying the boundary conditions on the surface (¢ = £4) of spheroid 4, we

get:

(V7 L0+ MGT (Tod" 8 + MY @) x Eleet, = M v xEleme,  (5)
(NG 1+ NG (Toal" B+ N @) x £lewt, = (eafer)'RETy x Eleme,
(5.8)

Both sides of (5.7), (5.8) are scalar multiplied by the vector functions

1% p
{ 0 } S I, N =0,1,2,...

and the products are integrated over the surface of the spheroid A with respect
to both 7 (=1 <7 < 1) and ¢ (0 < ¢ < 2r), where

b = j2Fa(h - ")

Iy = 2Fa(Eh—7")
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for equation (5.7) and
b= 2FY(& -7/ - 1)
e = S2FUE&-7)E-1)
for equation (5.8) as given in [23). Utilizing the orthogonality properties of com-
plex exponentials and angle functions [1], we obtain the following set of coupled
algebraic equations of the form:
[Praly +10] 6+ [Qua] & + [Rupal(Tal" B = [Rmal[La]  (59)
[Pnal ¥ +[0) 6+ [Qua] @ + [RnpallTsA)" B = [Rwal[la]  (5.10)
where the elements of (Pya), [Qaal, (Rusal, [Pnal, (@nal, [RNBal, [Raa) and

[Rn 4] are defined in [20] and (23] (also refer Appendix B).
By applying the boundary conditions on the surface (¢ = £{p) of spheroid B,

and n— and ¢—i ions we obtain the a set of coupled

algebraic equations in a manner similar to that of spheroid A.

[0]  + [Paes] & + [Raeas)[Tas)” o+ [Qus) B = [Rus] [I5] (5.11)
0] ¥ +[Pus) 6 + [Rwas][Tas]” @+ [Qns] A= [Rys] [Is]  (5.12)

where the elements of [Pys), (Qus], [Ruas), [Pxs), (Qns), [Rvas), [Rus] 2nd
[Rg) are defined in Appendix B. The elements of [Ip), the known expansion

fic dis

to series ion of E-field and H-field incident on

spheroid B, are given by equation (4.2), but evaluated with respect to primed

coordinates. Thus according to [23], we finally get

[Pua) (0] [@ua) (Raasal [Toal” ] [ v [Rma)1a

[Pna] 0] Qual - (ResalToal” | | 6| _ | [Rialla | g
(0] [Pus) (Ruas)Tas]”  [Qus) a [Rus)1s [
(0] (Pus] [Rwas)(Tus]”  [Qus] B [Rys]1s



Equation (5.13) can be written in the form

s = 61 (5.14)
where
-
s=|5 (5.15)
B
1= [a ] (5.16)
Pral 0] [@ual  (Rusd)[Toal” 17 (Rua] (0]
6= [Pva] (0] [@nal [Rypal [Toal" [Rna] (0]
(0] (Pus] [Rmas)[Tas]” (Qums] 0] [Rms]
[0)  [Pvs] [Rnas][Tas] (Qws] (0]  [Rwsl]
(5.17)

All the elements of matrix [G] are defined in Appendix B. [G] is the general-
ized system matrix which is independent of the direction and polarization of the
incident wave. Solution in the form S = [G]I eliminates the process of repeat-
edly solving a new set of equations for new angle of incidence, which is a great

d in ical

5.4 Far-Field Expansions and Scattering Cross
sections

Of practical interest is the scattered field in the far zone of the system for |r| — oo,
The asymptotic forms of spheroidal vector functions are obtained by neglecting
€% and its higher inverse power terms. Thus in the far zone the scattered E-field

with respect to the origin O of spheroid A, which is chosen to be the global origin,
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is given by [20):

B, = Eu+Ews

it . )
= (R0 +Fe.0)d) (5.18)

where

Fi(6,¢) = Fou(b,¢)+ Fos(6,¢)
Fo(6,8) = Fya(6,9)+ Fyn(9, ) (5.19)

where Foa(6, 4), Fsa(9,8), Fon(6, ¢) and Fyp(6, 8) are defined in [20].
The expressions needed for calculation of bistatic and monostatic radar cross

sections in the far field are given by equations (3.63) - (3.65).

5.5 Results of Numerical Computation

Numerical results are d in the form of ized bistatic and

(backscattering) radar cross sections in the far field for a system of two parallel
uniformly lossy dielectric prolate spheroids, each with axial ratio a/b = 2 and 10,
and with different values of complex relative permittivity (¢,), and displacement
of their centers specified by (d, f, do). Since the series expansions of the E and
H-fields in terms of the spheroidal vector wave functions are infinite in extent,
one has to truncate accordingly the matrices given in (5.13). The truncation
scheme used here, is the one that was discussed in previous chapters. For each
m, N in Sy jmi¢w can be givenas N =0,1,2, -+, n;— 1. Also it is found that
$-harmonics (0)¢, (+1)¢, (£2)4 give at least two significant digit accuracy in the
computed results of the radar cross sections. In order to study the scattering

characteristics in the resonance region we choose a4 = ap = A/4.
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Fig. 5.2 shows the computed normalized bistatic cross section corresponding
to axial excitation (6; = 0) of two identical uniformly lossy dielectric spheroids
with €4 = €5 = 2~ j0.5, each of semimajor axis length of /4 placed in contact
with each other end to end, the centers of two spheroids being separated along
z-axis by: (a) A/2, (5) A In Fig. 5.3 the normalized bistatic cross section is
shown for €4 = €,5 = 4~j0.5. From Fig. 5.2 and Fig. 5.3 we observe that as the
axial ratio changes from 2 to 10 there is a decrease in magnitude of bistatic cross
section in both E-plane and H-plane. This is due to the reduction in the available
scattering area for the thin spheroid (a/b = 10). Also due to more pronounced
effect of multiple scatteting, as d increases E-plane and H-plane bistatic cross
sections show more oscillations.

Fig. 5.4 the plots of lized ic cross section in terms of

TE and TM polarizations of incident field for two identical lossy spheroids with
€4 = &p = 2 — j0.5, in contact end to end with their centers separated along
z-axis by: (a) d = )/2, (b) d = A. In Fig. 5.5 shows the plots of normalized
monostatic cross section for €,4 = €5 = 4 — j0.5. From Fig. 5.4 and Fig. 5.5 we
observe that minima occur at almest at the same positions as in Fig. 5.2 and Fig.

5.3, and also as d increases we observe that ic cross section di

to both TE and TM polarizations of incident wave show rore oscillations, which
is due to more pronounced effect of multiple scattering. We also notice that
at ; = 0°, the magnitude of monostatic radar cross section corresponding to
TE polarization of incident excitation is equal to that corresponding to TM
polarization of incident wave, unlike what we have observed in Fig, 4.4 and Fig.
4.5.

When the two spheroids are displaced along the z-axis specified by the coordi-
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nates d = )/2, 6 = 90°, do = 0°, as shown in Fig. 5.6(a) and Fig. 5.6(b), we find
that for fat spheroid (a/b = 2) there is a di in magnitudes of

cross section for TE and TM polarizations of incident wave, but these magni-
tudes are almost same for the thin spheroid (a/b = 10) — this behavior is same as
that explained in [20] and [23]. When the two spheroids were arbitrarily oriented
(refer Fig. 4.6) there was a significant difference in the value of monostatic cross
section at §; = 0° for TE and T'M polarization of incident wave.

In Fig. 5.7 the variation of monostatic cross section as function of aspect
angle is presented for two spheroids of different values of axial ratio and complex
relative permittivity. The center O’ of spheroid B has spherical coordinates
d = 1/2,8, = 60°,¢o = 20° with respect to Ozyz-system: (a) €4 = 2 — j0.5,
€p = 3-70.5; (8) €4 = 2701, &5 = 3=70.1; (c) &4 = 3—70.5, &5 = 4—0.5;
(d) &a=3-301, €65=4—;50.1

It is to be noted, while obtaining results for monostatic cross section we
consider the variation of §; from 0° to 90° because the spheroids are in parallel

orientation with respect to each other.
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Chapter 6

Conclusion

Exact analytical solutions for the problem of electromagnetic scattering by a sin-
gle uniformly lossy dielectric prolate spheroid, a system of two uniformly lossy di-
electric prolate spheroids in arbitrary configuration, and as a special case a system
of two parallel uniformly lossy dielectric prolate spheroids have been obtained.
Numerical results in the form of curves for normalized bistatic and monostatic
radar cross sections are given for a variety of uniformly lossy dielectric prolate

spheroids in the resonance region. Also for two-body scattering, different arbi-

trary confi jons and parallel ions of the spheroids having different

distances of jon have been idered by using il lational

addition theorems and translational addition theorems respectively. Since no fre-
quency approximation is involved in our present analysis, the solution obtained
is valid for all frequencies.

By choosing Euler angles a = 0°,8 = 0°,4 = 0° for scattering by a system of
in general ori ion Chapter 4, [41], (42], results

dielectric spheroid

two lossy
obtained were found to be identical with that obtained for a system of two lossy
spheroids in parallel configuration (Chapter 5 of the present thesis) which em-

ployed only translational addition theorems [19]. Some of the results of Chapter
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5 were presented in [43]. Also results were cross checked and were found to be
in agreement with that of [20], [27], (23] and [20] by choosing appropriate values
of relative permittivity of the medium inside the spheroid, € and Euler angles
(@,8,7)-

It was shown that the system matrix [G), in the equation S = [G]1, is inde-
pendent of the direction and polarization of the incident wave. Solution in the

form S = [G] I eliminates the process of repeatedly solving a new set of equations

1

for new angle of incidence, which is a great advantage in

Also since rotational-translational addition theorems and translational addi-
tion theorems assume the simplest forms for normalized vector wave functions
because they translate like scalar wave functions, formulation of the two body

scattering problem is simplified. However, because of the limitation in the size of

the region within which the ional lational addition th and trans-
lational addition theorems available in literature are valid, the center to center
distance between the spheroids for some non-axially displaced cases is restricted
to d > a, where a is length of semi-major axis of the spheroid. If this restriction

can be eliminated, then it will be possible to solve the problem of scattering by

a system of two closely spaced spheroids for all ially displaced cases with
distance of separation d < a.

Although specifically prolate spheroids have been considered, it is possible to

obtain the solution for scattering by oblate sphercids by making suitable trans-
formations in prolate spheroidal vector wave functions [1).

The present study finds ications in i ering from air-

crafts and missiles 40), rain drops, ice crystals, biological particles e.g. bacterial

cells [13] and in biomedical engineering such as tumors in human bodies [30].
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Appendix A

Computation of Complex Eigen
Values

Since the dielectric medium of the scatterer is of complex relative permittivity,
complez eigen values Ama(h), where n = |m|, [m|+1, |m|+2, -+, and m is any pos-

itive integer including zero, are evaluated for the spheroidal scalar wave functions

ding to itted of E-field and H-field expansions.
Oguchi has calculated the eigen values of spheroidal wave functions for com-
plex values of propagation constants in [31). Zimmer also has computed complex
eigen values for spheroidal wave functions assuming ™3 time variation of time-
harmonic electromagneticfield [30]. Thus in [30] the complex value of propagation

constant is given by

k= (uyEm)yeet jofwe)

Sebak and Sinha have calculated complex eigen values corresponding to prolate

ducti beroidal

spkeroidal functions in order to study the ing by a

object with lossy dielectric coating at axial incidence [32].

In this thesis we consider e*! time variation of time-harmonic electromagnetic
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field. So the complex value of propagation constant is given by
k= (wy/em)yeleo —jo(we)

In the present work, the algorithm developed in (33], [6] for real eigen value
computation has been used to calculate complex eigen values. In this appendix
we present the code for calculation of complex eigen values required for angle
functions and radial functions computation. We also present tables of eigenvalues
Ama(h), m = 0,1,2,3, n = |m|,|m|+ 1,|m| + 2,-+,m| + 5 corresponding to
prolate radial and angle functions for axial ratio of length a/b =2 and a/b = 10,
and different values of complex relative permittivity of the medium inside the
spheroid. The computed eigen values are in excellent agreement with those given
in [30].

Now from 1] we know that

e = F¢ (A1)

b= FJE-1 (A2)
from which we find that

£ = Al (A3)

~ ey -1
Utilizing the relation b = \/&.(k1a/€), where & = e/eo — jo/(weo) and kya =

2ma/) being the relative size of the spheroid, we can find the complex value of k.

108



/+ In the following code the computation of complez eigen values for
prolate spheroidal wave functions corresponding to complez values of
propagation constant is presented. The functions used for algebra of
complez quantities (declared below) are not defined in the present
code. +/

typedet struct {
double rei;
double re2;
}

complex;

complex K = {
0., 0.}

complex J = {
0., 1.};

int m, n;
complex hc;

complex E2c,E3c,Ec,Alphac(60],Betac[50],Ganmac[60],
¥c[60],CRc[50],8igenc[60] [60];

complex cpow(complex,int); /e refurns (complez)es (integer) «/
complex cmult(complex,complex); /+ returns (complez)s (integer) o/
complex rmult(doubl lex);  /+ returns (double)s (integer) +/
complex csun(complex,complex); /s returns {compl::}+{lnle_'=r) o
complez cdiv(compl Lex); /+ returns (compl
complex csub(compl 1ex); /e returas (comp
complex calc.cpowpos(complex,complex); /+ refurns (cample!)u{pal ive inteyer) o/
complex calc.cpowneg(complex,complex); /e returns (complez)ss(negative integer) o/

main() {
int in,enti,cat2;

m=0;
for (cmti=1;cati<16icntiss){
E2cs]
E3
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“or (cnt2=1;cnt2<16;ent244){
in=0;
it ((a-m)%2 #0) in = 1;
it (Be.re2i#0.) call comsigen();
nes;

B

}
void call.comeigen()

int r,4,1,cnt3,2lag;
complex Eic,Xc,Yc,Zc,deltac;

if ((n-m)%2=20) 1=0;

else it ((n-m)%2#0) 1=1;

if (hc.re1#0.) callcomfactor(l);

Ec=K;

it (cabs(hc)>4.0) Ec=csum(E2c,E3c);

it (n==m) Ec=K;

deltac.re1=0.001;

deltac.re2=0.001;

if (hc.re2 == 0.) deltac.re2 = 0.;

if (hc.re1#0.) Xc=call.comiteration(l);

flag=0;

for(cat3=1;cnt3<100; cat3++)

{
if (flag#0) conmtim
EBicsEc;
Ye=Xe;
Ec=csun(Ec,deltac);
i (hc.re1#0.) Xc=call.comiteration(l);
Zeeke;

4f ( tabs( cabs(Yc)-cabs(Ze) ) < 0.0000001 )

I (o
I (o

of eigen values ing to rodial func. o/
of cigen values ing 1o angle func. +/

it (he==K &k (sw==1))
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Printf("ANGLE FUCTION EIGEN VALUE,lambda_{Xd %d} for hce=K is :
#t\n",
=,1, (loat) (nen+n));

(cabs(he)>4.0))
E3c.Te B ‘H
.o(Ec.re2-aem);

it ((a>m} k& (cabs(hc)>4.0)) E3c=csub(Ec,E2c);
it (cabs(he)>4.0) E2c=Ec;
eigenc(nl(n] = Ec;

if ((hc.re10.)R&(:
print2("lanbda_{/d %d}.
m, n, Ec.rei, m, 1, Ec.re2);

if ((hc.re1#0.)kk(sw==0)) /+ Radial function ecigen values o/
print("lambda_{%d %d}. %g, lambda_{%d %d}.im = %g\n",
m, n, Ec.re1, m, 1, Ec.

1))/« Angle function eigen values o/
Yg, lambda_{%d %d}.im = %g\n",

Xe=call comiteration(1);
flag=t;

}

olse {
Ec=csun(cdiv(cault(deltac,Ye),csub(Ye,2c)) ,Elc);
Xescall.comiteration(1);
deltac=cdiv(cmult(Xc,deltac) csub(¥c,zc));

return;

}

void call.comfactor(int 1)

{
int r,mf;

for (r=1;r<40;r+=2) {
it (r>1) mtst;
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calc.comAlpha Beta Gamua(m?,r);
}
return;

}
complex call comiteration(int 1)

int i,7;

conplex Xc;

wc[0).re1=1.;
) QR
i2 (hc.re2
¥cln-m+24]

) Nelol.re2=0.;

¥c[n-m+26]=K;

iy

for(r=1;r<(n-m)+2;r+=2) calc.comupiterate(r);
¥pe=Nc[n-m+2];

ien-me22;

it ((n-m)%2#0) it+;

for (r=1;r<20+1;r+=2) cale condowniterate(i,r);
Enc=Nc[n-n+2] ;

Xe=csub(¥pe,Mac);

return(Xc);

}

void calc.comAlpha Beta Gamma(int mf,int r)
{
i1 (sw == 1){ /» ... for Angle function ...
Alphac{rl=rmult(((2.en+2.9143.)+(2.+n+2.9145.)/
(double) ((2emér+2)+(2emtr+1))), cpowlhec,~2));
Betac[r)= csum(rmult(~(m¢r)s(mir+1),canlt(J,1)),
runlt((2¢(mér)e(mér+1) —2emem—1)/
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(double) (((2¢m+2er—1)#(2em+2er+3))),cpow(hc,2)));
Gammac [r]=rmult;(—((r+(r—1) s (2+m+24r+3) ¢ (24m+20x+5)
/(double) ((2sm+2er—3)s(2emt2er—1)(2emer+2) s (20mer+1)))
#+(double) (mt)),cault(3,1));
}
it (

0) { /+ ... for Radial function ..... »/
Alphac(r]=rmult(—(((2em+2er+3)s(2em+2er+6))/((r+2.)+(x+1.))),cpov(he,~2));
Betac[r]=csun(rmult(—(n+r)s(mér+1) ,cault(d, ),
rmult((((2srsr+2ers (2em+1)+2em—1))

/(double) (((2.+m+2.er—1.)#(2.+m+2.91+3.)))) ,cpow(hc,2)));
Gammac[r]=rmult(— ((((r+2sm—1)+(r+2sm)s(2em+2er+3)s(2em+2er+6))

/(double) (((2.#m+2.+7=3.)#(2.4m¢2.o1-1.)0(r+2.) 0 (r+1.))))
+(double) (a2)),cmult(3,1));

}

return;

void calc.comupiterate(int r)
¥e[r+2]=csub(cmult(Alphac(r],csub(Ec,Botac(r])),cdiv(Gammac(r],Nclr]));
return;

}

void calc.condowniterate (int i,int r)

Feli-r)=cdiv(Ganmac(i—r],caub(cmult(Alphacli-r], csub(Ec,Betac[i~x1)) ,Beli-r+21));
return;
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a/b = 10
Ka = 7/2
& = 2-305

lambda {0 0}.re = 1.34384, lambda {0 0}.im =

lambda {0 1}.re = 4.77309, lambda_{0 1}.im =
lambda {0 2}.re = 8.73859, lambda {0 2}.im =
lambda{0 3}.re = 14.5753, lambda{0 3}.im =
lambda {0 4).re = 22.5148, lambda_{0 4}.in =

lambda.{0 5}.re = 32.489, lambda{0 5}.im =

vim =
vim
vim
im
.im
.im

Jim =
vim =
Jm =
Jim =
Jim =

Jim =
Jim =
Jim =

] h = 2.22726 - j0.274187

—0.27189

—0.64738
—0.718595
—~0.667017
—0.640477

—0.62952

—~0.199015
—~0.478564
—0.577297
—0.699691
—0.605346
—0.607484

—~0.154081
—0.381455
—0.486818
—0.534555
—0.558966

—0.124852
—0.317195
—0.421425

lambda{1 1}.ro = 2.88558, lambda_{1 1
lambda.{1 2}.re = 8.00835, lambda.{1 2
lambda{1 3}.re = 14.3, lambda.{1 3
lambda.{1 4}.re = 22.3727, lambda.{1 4
lambda.{1 6}.re = 32,3997, lambda_{i 5
lambda.{1 6}.re = 44,4132, lambda_{1 6
lambda {2 2}.re = 6.65765, lambda {2 2
lambda{2 3}.re = 13.5795, lambda {2 3
lambda.{2 4}.re = 21.9594, lambda {2 4
lambdz {2 § = 32.1343, lambda{2 5
lambda {2 6 = 44,2281, lambda.{2 6
lambda {2 1} re = 58.2843, lambda{2 7}.im = —0.5731
lanmbda .re = 12,5217, lambda {3 3
lanbda .re = 21.3021, lambda {3 4
lambda 35
lanmbda .re = 43,9221, lambda. {3 6

lambda{3 7}.re = 58.0573, lambda.{3 7}.im =

im =

lambda{3 8).re = 74.1457, lambda {3 &}.in =
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—0.51463
—0.537195
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2.27345, lambdaf
7.19015, lambda-
11.6549, lambda
17.3297, lambda.
25.1235, lambda.
35.035, lambda

3.61559, lambda
9.83907, lambda
16.6007, lambda 1
24.7913, lambda.{
34.8406, lambda.q{
46.8586, lambda.f

7.24088, lambda{
15.0577, lambda{
23.8907, lambda.
34.2738, lambda-
46.4703, lambda.
60.5839, lambda.f

= 13.0024, lambda{
= 22.5411, lambda
= 33.3709, lambda.{
= 45.8362, lambda.{
= 60.1163, lambd
= 76.297, lambda.f
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-im
.im
Jim
.im
Jim
Jim

.im
.im
im
vim
im
vim

Jim
Jim
.im
.im
.im
.im

.im
.im
.im
Jim
.im
.im

] b = 3.13192 — j0.194986

—0.202386
—0.562536
—0.729614
—0.708674
—0.664279
—0.643592

—0.168357
--0.437745
—0.570878
—0.608676
—0.614908
—0.616189

—0.138349
~—0.358157
—0.478232
—0.534787
—0.561997
—0.576646

—0.115839
—0.3025695
—0.413737
—0.477229
—0.514793
—0.538439



afb
Kia
& = 2-305

} b = 1.93857 — j0.238649

lambda.{0 0}.re = 1.06377, lanbda.{0 0}.im = —0.22527

lambda_{0 1}.re = 4.13042, lambda{0 1}.im = —0.506446
lambda.{0 2}.re = 8.0484, lambda{0 2}.im = —0.535578
lambda{0 3}.7e = 13.9361, lambda{0 3}.im = ~0.487172
lambda.{0 4}.re = 21.8977, lambda{0 4}.in = —0.481079
lambda{0 5}.re = 31,8809, lambda.{0 5}.in = —0.474385
lambda.{1 1}.re = 2.68628, lambda{1 1}.in = —0.157907
lambda_{1 2}.re = 7.53693, lambda{1 2}.im = ~0.370553
lambda{1 3}.re = 13,7401, lambda{1 3}.in = ~0.43712¢
lambda{1 4}.re = 21,7931, lambda{) 4}.in = —0.452182
lambda{1 5}.re = 31.8144, lambda{1 5}.in = —0.456744
lambda.{1 6}.re = 43.8255, lanbda{1 6}.inm = —0.458776
lambda{2 2}.re = 6.50519, lambda_{2 2}.im = —0.120115
lanbda.{2 3}.re = 13.2054, lambda{2 3}.in = ~0.293536
lambda {2 4}.re = 21.4861, lambda.{2 4}.im = —0.369997
lambda.{2 5}.re = 31.6162, lambda{2 5}.in = —0.404698
lambda.{2 6}.re = 43.6866, lambda{2 6}.in = —0.422811
lambda {2 7}.re = 57,7292, lambda{2 7}.in = —0.433477
lambda.{3 3}.re = 12.3989, lambda{3 3}.im = —0.0964408
lambda.{3 4}.re = 20,9919, lambda{3 4}.in = —0,243131
lambda.{3 6}.re = 31.2903, lambda{3 5}.im = —0.320858
lambda.{3 6}.re = 43,4567, lanbda{3 6}.im = —0.363701
lambda_{3 7}.re = 57,5683, lambda{3 7}.im = 0.389783
lambda {3 8}.re = 73.625, lambda{3 8}.im = —0.406706
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a/b = 2

ka = 7/2 = 272599 — §0.169714

& = 4-3j05
lambda{0 0}.re = 1.85301, lambda_{0 0}.im = —0.174734
lambda{0 1}.re = 6.05629, lambda_{0 1}.im = —0.456712
lambda{0 2}.re = 10.2368, lambda_{0 2}.im = —0.553012
lambda{0 3}.re = 15.9755, lambda_{0 3}.im = —0.522249
lambda {0 4}.re = 23.8481, lambda_{0 4}.im = —0.494313
lambda{0 5}.re = 33.7943, iambda{0 5}.im = —0.482347
lambda{1 3.27521, lambda{1 1}.im = —0.137771
lambda {1 8.96967, lambda{1 2}.im = —0.346202
lambda.{1 15.4882, lambda{1 3}.im = —0.435784
lambda {1 23.6146, lambda{1 4}.im = —0.458211
lambda {1 33.6528, lambda{1 5}.im = —0.462409
lambda {1 45.6695, lambda.{1 6}.im = ~0.463242
lambda{2 2}.re = 6.96509, lambda{2 2}.im = —0.110234
lambda{2 3}.re = 14.3514, lambda.{2 3}.im = —0.279673
lambda{2 4}.re = 22.9581, lambda.{2 4}.im = —0.365712
lambda{2 5}.re = 33.2364, lambda_{2 5}.im = —0.405231
lambda{2 6}.re = 45.3818, lambda_{2 6}.im = —0.424715
lambda{2 7}.re = 59.4674, lambda.{2 7}.im = —0.435581

lambda.{3 3}.7e = 12.7734, lambda.{3 3}.im = —0.0909213
lambda{3 4}.re = 21.9469, lambda{3 4}.im = —0.234486
lambda {3 5}.re = 32.5643, lambda {3 5}.im = —0.316341
lambda {3 6}.re = 44.9092, lambda_{3 6}.im = —0.3625
lambda.{3 7}.re = 59.1179, lambda{3 7}.im = —0.38998
lambda.{3 8}.7e = 75,2534, lambda.{3 €}.in = —0.407476
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h=3.95- j0.626

lambda{0 0}.re = 3.12359, lambda.{0 0}.im = —0.6452
lambda.{0 1}.re = 9.63126, lambda{0 1}.im = —1.93797
lambda{0 2}.re = 14.924, lambda{0 2}.im = —2.85644
lambda{0 3}.re = 20.5275, lambda.{0 3}.im
lambda {0 4}.re = 28.0948, lambda{0 4}.im
lambda{0 5}.re = 37.9083, lambda{0 5}.im

= —3.01137
= —2,80456
= —2.67226

lambda{1 1}.re = 4.34254, lambda{1 1}.im = —0.582803
lambda{1 2}.7re = 11.7608, lambda{1 2}.im
lambda{1 3}.re = 19.144, lambda.{1 3}.im = —2.24785
lambda.{1 4}.re = 27.5121, lambda{1
lambda_{1 5}.re = 37.586, lambda.{1
lambda{1 6}.re = 49,6032, lambda.{1

lambda.{2

lambda.{
lambda {
lambda
lambda

lambda.{

lambda.{:
lambda
lambda
lambda
lambda
lambda

2}.re = 7.84581, lambda {2
2 3}.re = 16.6376, lambda{2
2 4}.re = 26.0172, lambda{2
2 5}.re = 36,6576, lambda.{2
2 6}.re = 48,9769, lambda.{2
2 7}.re = 63.1546, lambda {2

3 3}.re = 13,5122, lambda.{3
3 4}.re = 23.8795, lambda{3
3 5}.re = 35.2097, lambda {3
3 6}.re = 47.9611, lambda{3
3 7}.re = 62.4097, lambda {3
3 8}.re = 78.6961, lambda{3

4}.in
6}.im
6}.in

2}.im
3}.im
4}.im
5}.im
6}.im
7}.im

4}.im
6}.im
6}.in
7}.im
8}.im

= —1.,60812

= —2.48653
= —2.5287
= —2.52473

= —0.50345
= —1.35478
= —1.88779
= —2.16872
= —2.28586
= —2,34946

3}.in = —0.434438

= —1.16447
= —1.63756
= —1.91809
= —2.08313
= —2.18469

The above eigen values are in good agreement with those obtained in [30].
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h=761-j2.47

lambda{0 0}.re = 6.83423, lambda.{0 0}.im = —2.4805
lambda {0 1}.re = 20.9442, lambda.{0 1}.im = —7.47411
lambda {0 2}.re = 33.8823, lambda.{0 2}.im = —12.6123
lambda {0 3}.re = 45.4058, lambda {0 3}.im = —18.4051
lambda_{0 4}.re = 52.7882, lambda{0 4}.im = —24.4264
lambda {0 5}.re = 58.4144, lambda.{0 5}.im = —25.2691

lambda.{1 1}.re = 7.90493, lambda{1 1}.im » —2.45073
lambda{1 2}.re = 22.1805, lambda{1 2}.im = —7.3456
lambda{1 3}.re = 35.295, lambda{1 3}.im = —12.205
lambda{1 4}.7e = 46.9838, lambda.{1 4}.im = —16.726
lambda.{1 5}.re = 57.5356, lambda.{1 5}.im = —19.7899
lambda{1 6}.re = 68.7774, lambda{1 6}.im = —~20.7089

lambda{2 2}.re = 11.1155, lambda{2 2}.in = —2.36803
lambda{2 3}.7e = 25.9056, lambda{2 3}.in = —7.00486
lambda{2 4}.re = 39.8299, lambda.{2 4}.im = —11.3073
lambda{2 5}.7e = 53.0915, lambda{2 5}.im = —14.8562
lanbda{2 6}.re = 66.4108, lambda{2 6}.in = —17.1825
lambda{2 7}.re = 80,8356, lambda.{2 7}.im = —18.3154

lambda{3 3}.re = 16.458, lambda{3 3}.im = —2.24938
lambda{3 4}.re = 32.0822, lambda{3 4}.im = —6.56074
lambda{3 5}.re = 47.2498, lambda{3 5}.im = —10.3554
lambda{3 6}.re = 62.3653, lanbda{3 6}.im = —13.3476
lambda{3 7}.re = 78.079, lambda{3 7}.im = —15.3914
lambda {3 8}.re = 95.0398, lambda{3 8}.im = —16.6281

The above eigen values are in good agreement with those obtained in [30].



Appendix B

Definition of Elements of [G]

By applying the iate boundary conditions and ing the 7 and ¢
integrations on the surfaces of the spheroids A and B we obtain the system
equation S = [G]1, in which elements of [G] given by equations (3.56), (4.90)
and (5.17) are quasi-diagonal matrices.

It is to be noted that in Chapter 4 the size of the matrix [Ras] or [Rya)
is different from that of (R or [Ry4; whereas in Chapter 5 the size of the
matrix [Rys) or (Ryp) is same as that of [Raa] or (Rw4]. Also in Chapter 3,
the matrices [Pa], [Q24], [Rae], [Pw), [Qw] and [Ry] are respectively identical to
[Pasal, (Qaeal, (Rasa), [Pua), [Qual and [Rya).

The diagonal submatrices of [Pua] or [Py.] are given by [Paalm or [Paralm
respectively (m = 0,1,2,-+), and the off-diagonal submatrices are null matrices.
Thus from Appendix III of (20]:

[Bagib !

] (o)

[Pealo (B.1)
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(YD) ] [0)

(8] [vam] [0}
[Peal = m>1 (B.2)
oo ) e |
[ o ferz8ly] 2]
LisMor N ding as Y is \it heroidal vector wave function M or

N respectively, evaluated with respect to h;.
The diagonal submatrices of [Qa] is given by
[x4H) [hxa)

(@xaly =~
x4 foxs)

) [xa] (o (0]
[6X24] [pxx0) ol o)
[@xal = - ,m2>1 (B4)
o0 pxfly) [x)
o] o exziy] [ex)

KisMor N ding as X is lized spheroidal vector wave function M or

N respectively, evaluated with respect to hy.

For [Raa) or [Ry4] we can similarly write its submatrices as:
[xt] )

[Realy =
[ox] foxi®)

(B.5)
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P bx2Y] o o

)] (x5 © [0

[Rea) = ,m>1 (BS)
] 0 XLy Xy
(0] O[] Xz,

K is M or N according as X is M or N respectively, evaluated with respect to
By
For [Rupa] or [Rnpa] used in Chapter 4 the submatrices are
] ] )

[Rxaalo = - (B.7)
o] o) ]

[ xRY] x] o o] 0

. b (x4 [xa) o ) o
(R R I & i i ) B

o0 0 ) [xl) [x)]
(838)

K is M or N according as X is M or N respectively, evaluated with respect to
hy.
For [Rmpa) or [Rypa) used in Chapter 5 the submatrices are
et o) o]

[ReBalo = - (B.9)
] o) o)



5,.452) N R 1 ) IR N 1 e R )

R 28] o x) o xRE
KBA| = —

0 [exH) 0 [x] o [excfl,
(B.10)

K is M or N according as X is M or N respectively, evaluated with respect to
hy.
The submatrices [Xn] are of the general form:

Xmojml Xmojmi+t Xmojmi+a
Xentiml Xmtimier Xmjmisa

Kol = | Xnzio Xmaioitr Xmamisa*

(B.11)
where the elements of matrix in (B.11) are evaluated with respect to hy. The
submatrices [Yyy], with elements evaluated with respect to hs, have the same form
as those of [Xn). The clements of the submatrices [X,n] and [Yin] are defined in
Appeadix C.

In Chapter 5, the submatrices [Pas), (Qms], [Rub), [Rmas), [Pys), (@ns),
[Rws), [Riv4s) have the same forms as those of (Pca), [Qxal, [Rxal, [Rsal, but
with corresponding elements being evaluated with respect to primed coordinate
system attached to spheroid B. In Chapter 4, the submatrices [Pys], [@ums],
[Raas], [Pwsl, (@us), [Ryas) bave the same forms as those of [Pza], [Qeal,
[Rra), [Rgal, but with corresponding elements being evaluated with respect to
primed coordinate system attached to spheroid B. However the matrices [Ryg)

and [Rys) are different from Ry and [Rva]. Thus in Chapter 4, for [Rys) or
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[Rws] we can write:
(Reel, = el o] B B12)
L o) o '

(X2 xR bxE] o o [0
[ox2] [x28] [pxzo] (o) o 0
[Rxs) = " .
(0l o O [xha] X)X
N U e i et
(B.13)

K is M or N according as X is Mor N respectively, evaluated with respect to
h{. [Xm] has the same form as that given by equation (B.11).
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Appendix C

Definition of [;,@5)], [ann(f?z],
@z, [, (D, [

In this appendix we define the elements of (Qu], where @ is equal to X when the
field under consideration is E-field and is equal to Y when the field is H-field.
The submatrices of (@] are cf the general form:
Qmoimi() @mojmis1(€) Qmojmita(c) -
@ui = gvml.lmlfg g“"‘"“%g gm.x.lmmg::: )
™2, |m| 2 ml+1 'm.2,|m}+2

cis equal to (27 F/A) or (2 F\/&/)), where F and ¢, are semi-interfocal distance
and complex relative permittivity of the spheroid respectively, according as the
medium under consideration is outside or inside the spheroid.

The elements of the matrix in (C.1) for Q equal to X are given by the integrals
in (20] and (15]:

(1900 = 5 [ (5) 5y
. m.|m’+‘(:,q "‘”‘*‘)‘dq d¢ (Cc.2)

(350 = g [ () ()7
m.|m|u(¢:'l) et dy dg (3)
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where
L = j2F(¢ -n*) (C4)
s = 2F(¢ -7 (C3)
with J is the respective component of M; ¢ = 0,1,2,---; r being the spheroidal

coordinate triad (¢, 1, ¢).

The submatrices [Y;] have the same form as those of [X,n] with elements given

(:)Y:("').(ﬂ) = 2,/“/“(,‘) J*”(c,r)

5 Sm|m|u(=m)="("‘*"‘dﬂd¢ (C6)
(3)%an@) = g [TL7 () (3)hetem
. Sm.:mw(c,v:)e"‘”‘*"‘dvdé (1)

where J is the respective component of ﬁ; t=0,1,2,-+-,and
I, = 2F%(¢ —n?)R /(¢ - 1) (c8)
L = RFE-DE-1) (c9)

Explicit expressions of Xpn,¢a(c) ave given in [7] and [15]. Explicit expressions of

Yonta(c) are given below.

For n = |ml,|m| + 1,|m| +2,--- and N = 0,1,2,--- we have the following
expressions for Yin v .a(c):
Yalla(e) = [(eo -1 —um(c,n

L
B (R0 ) A lumm.]

+ & %,mn(‘-E)L_b ((é0 = 1) umn + T1smn + 2T14man]

O (o0
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'lyu+l.ll a(€)

220

+1.8a(€)

H

+

+H

4

I

(1) B, (€~ Do+ 2t g7 o]
1) B, (16 = Dot + 2t + 7]
(C.10)

[(e: -1 g Bamate)]
(€3 = 1) Tamvn + lleNn]
d
b 2 - aminsa(c,
F¥aminn(ed)

+6 R smimsalet)

o

[(é0 = 1)Tompn + Taomna + 2ZTromprn]
4

(6) __&
ﬂ-u:.mnn(cyf)l‘:ﬁ TnimNn ﬁ_-lln"'""
(m +2:£1) B mnsa(ei )],

gl - (42 +241) a6

[(€8 = 1) Lasmmtin + 2Lompin

8

. [(63 = )laamiin + 2Jsmin + —l...n.] (c.11)

4t

1

+

[(c: 1P B s mrmn e)| AT AT
i¢=to

@-1yn —ns:l, mint1(6:€)

(Lamwa = Insmivn)
=te

[AGE 1)‘/’ RSM-\-MM(‘:Q
le=to

(68 = 1)Tamwe + T

;{"{ﬁ‘nmnn(crf) e E%)T/?’ilmﬂn
e im0, (6= 10 s+ 206~ Ve
] + 25 B (&), ] (©12)
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T = s B )], et £ raval

@-n
L A (1Fm) d .
+ [,‘.R‘.m( 0+ Eoy ,‘M.w.( .e)

* W Rf-.-+-(=,£)|¢=6] Timin (c.13)

Kallnale) = ({n —1 Pamnsales€) o,

- [(m+2)(Imwa + Tsamia)  (Tssmivn = Timia)]

+ [%ﬁﬁiz.mz(af) + O B mimatat)]
+ (m+2) RO I @
@1y Fmramnsalerd Newes | Frmtm (C.14)
V) = o s im0,
Foirwale) = ~ta A ({’—1) +mintl t;f)l‘_“ 29mNn
+ ‘—:‘-lﬂnmm(ﬂ.f)| IM-} (C.15)
€=t

Yolinle) = [«,-1)'" —R&’(c.s) {(e: Dlismtin + Jizmva}

= fn(fo—1){(‘u‘1)11m-+thﬂn} 'n(qo|

- @ greo| {@- 1)lw,+1w,(“, £

+ mf‘wﬁ{l(‘-f)l‘%lnmm.] (C.16)
Yolin(@) = 0 (can

The integrals Jpmnn, p=1,2,::+,33 have been defined in Appendix D.



In all the above expressions for Yim, nn(( R (e, €) is evaluated utiliz-

&
) g
ing the equation (2.28):

R e L

- g Rntet)] 1€ D) (C18)
Using the computed values of Ammn(€), Rmsn(c,€) and %RS:’.{M,,(C,O we

can calculate ;;-,us:'_{m,_(c, £) from (C.18).

129



Appendix D
Definition of Integrals

The integrals Jomnn, p = 1,2,-+,33 resulting out of n-matching are evaluated

by using the relations of associated Legendre functions from p. 401
[37) and the integrals

' pm(ypm _ 2 (stm)
[ Prmprin = Gt T (01)
and [5]
0, v>u
\ __2 (B +m) "
LB = Gt DE-m-2 #
2fm + ) B i, b <

(= m)!
(D2)

where §,, is Kronecker delta function. The evaluation of integrals Iomnn, p =
1,2,-++,11 is shown in [7); here the results of integrals Jpmnn, p = 12,13,---,33
are included. It is to be noted that orthogonality property of complex exponen-
tials is used for ¢- hing. Also for simplicity, the ion d*" has been

used in place of d7"(c). ¢ is equal to 2rF/) or 2rF/&/), according as the

propagation constant of the medium under consideration is real or complex.
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For m 20, we have
* d
B = f 7417 5 Son S dn

& +9(g+1) on
a 22 2g+1) a

=01

(g-1)
(2¢-3)(29 - 1)

A Mo
29+3 —

g+2 [ (g+1)d+N _ @+ +a)di¥
+ zq+5[(24—1)(2q+1) —‘“—"“—(zq_,,_—,)(zH-,) 1 (n+N)even
= 0, (n+N)odd oy
)
Lamnn = /‘(1 —n’)"/’és,.. Suasndy
s 2P L gn[ltieraets) (a4 i
& Br D) | (2+9)(2+8) | uF3 247
_ a-tdle+ier2) [T dY
(29-1)(2g+3) -1 20+3
ala+ 1) +2)(g+3) [ ¥
* TR {"'—z.,_s -‘—2,_, , (n+ N) even
= 0, (n+N)odd (D.4)
1
Dumin = f 1= 7)Smmin S d1
=
= ,_@mag o
- z,ﬂ., {(2m+29+ l)q!d:n
(@mtq+Nem+q+2) [ dupt  dpgtt
(2m+2943)(2m+29+5) |2m+2943 2m+29+7
(2m +1)g(2m + g+ 1) [l _ N
+ @m+2q-1)2m+2q+1)(2m+2¢+3) |2m+2¢—1 2m+29+3
alg—)(e-2) il ammy
R = s e R b e | B R
= 0, (n+N)even 05)
1
d
=
= ___ (mtgt)  mmen v
- z.;. (e e e M R RL
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In all the expressions of Ipmnn,p = 1,2,:+-,33, prolate spheroidal expansion

coefficients d*" are real or complex accordingly the propagation constant of the

medium is real or complex.
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Appendix E

Rotational-Translational
Coeflicients

E.1 The Euler Angles

Let us first define the Euler angles before defining the rotational-translational
coefficients. An arbitrary rotation of a system of coordinates (z',y',7') with
respect to a system of coordinates (z,y,2) is uniquely determined by three
parameters — the three Euler angles (a, £, 7) [39]. Since we are using cartesian
coordinate system, which is a right-handed system of coordinates, a positive
direction of rotation is one that corresponds to the motion of right-handed screw.
Let initially the (z',4',2') -axes coincide with the (z,y,z) -axes: position K.
The Euler angles (a, §, v) are defined by three consecutive rotations through
which the set of (z’,y',2’) -axes goes from the position X to the final position

K. These three rotations are performed as follows (refer to Fig. E.1):

(a) arotation over an angle @ (0 < a < 2r) around the z-axis changes
the system of axes to the pcsition Ki(z1,y1,21).
(b) a rotation over an angle 8 (0 < B < 2r) around the new -

axis changes the system of axes from the position K to the position
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Ka(za,v2, 22).

(c) a rotation over an angle ¥ (0 < v < 2x) around the z;-axis which

is same as the z'-axis changes the system of axes from the position K3

to the final position K'.

Figure E.1: The Euler Angles.

E.2 Rotational-Translational Coefficients

The elements of the matrices [I] and [I'] defined in (28] are as follows.

Moo oy [Plea-+
lI‘lm [y [Ty,

= o m,. Il ®1)
with
o [mE g
M = |l Crd B ®2)

Ik = Lo % | [rll.(m) lrzl.é._n Lo

L, (Rl OF Tlesy T8 rd, ] o2

(E3)
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LT S ) 4

Mo = {F;.ii-(r -1) }‘?:l-(,_,) {FI‘]]'("‘) yr21 (E4)
Lo e Y A

ML W WL I Ml D5

., = L% 10 VMV | 04 [T L(-n} -1] D)
= [T s Vi B vl o o8 ot S 0 o i G
LY SR © ) R | [PaZfosy  [TaZfomyy [Mel2S
721, 021

(ES)

The submatrices [[\]; and [*I\];, where 7, 7 = -+, ~3,~2,~1,0,1,2,3, - and
i=1,2,3,4,5, are given by C/ [I']7 and C!* [T']] respectively, where C are defined

as follows:
= }(1 + cosp)[cos(e +7) — jsin(a +7)]
Z4(1 - cos B)cos( — 1) + j sin( ~ 7)]
—38inf(cosy — jsinv) (E.6)
sinf(cosa — jsina)
cos

C}* is the complex conjugate of C/, and
(‘)Q:"l-l'll (c)q'r-le (c)QmM

o lol+1 alel+2”" "
[rp = | @Qrit woriy wgrilt... (E7)

Qri QUi worl.

where (0Qim™ are rotational lational i flicients given below.

The elements of matrix [I'], given in equation (4.84), can be obtained from

the corresponding elements of [I'] by replacing Q)™ (given t.'cw) by (IQmn
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and replacing C| by C;, where C; are given as:

G = (1 + cos B)[cos( + ) + j sin(a + 7))

C, (1 — cos B)[cos(a ~ 7) + j sin(a — )]

Cs sinB(cosa + jsina) (E.8)
Cy = —sinf(cosy +jsiny)

Cs = cosf

C; is the complex conjugate of Ci.
Consider the translation from the coordinate system O'z'y'z’ to the system
Oz)yyz) followed by the rotation of the system Ozjyjz) about the origin O

through the Euler angles (—v, —f, —a). The rotational-translational coefficients

()Q!mn needed for the ion of spheroidal wave functions in primed coordi-
o 2

nates expressed in terms of functions in unprimed (global) coordinates are given

as:
= ) A
QT p1id) = 3 ) 55 et Jubis gy
Clul+r)
3 men s ORI 9
where

14s
Ogpd) = (-1 3 (—1p R+ Da(m,sl - o, llp) ¥y (d)
P=popotl
(E.10)
in which a(m, s| - c, lp) are the lincarization expansion coefficients [19], po is the
lower limitof p = s+4 s +1=2,-+,Js=l|if [s= | > |m—c|. K |s—1| < |m <],
po is replaced by |m — c| or |m — ¢| +1 according as s + [+ |m — c| is even or odd.

‘The upper limit of p is given by s + I, and

YR (d) = z0(kd).B<(con Ba).eXmm M (E.11)
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where z{9(kd) = h@)(kd) is the spherical Hankel function of second kind and
P}r=%(cos 84) is the associated Legendre function of the first kind. dy"(h') and
d¥(h) are the spheroidal expansion coeficients and N, (h) is the normalization

factor [1]. Also in (E.9) the following notations are used:

2 (l+m)

Aut = (E12)

G+ D (-m)
v, .

Robpn) = (1 [12] " emdd () (B13)
1

(E.14)

where P{™ ;™™ *+™)(cos ), the Jacobi polynomial of cos B, is evaluated

in the present work using the explicit expression [35]:

Pz = 2i ;("’;"‘),(""*_ '\:)(z—l)""(z+ 1)* (B.15)

Likewise, ional: lational coefficients in the ion of scalar spheroidal

wave functions in d in terms of ions in primed

coordinates for ' < d is given by:

oo (Iml+q)
OQmi(eByid) = 3 'dPn(h) 3 Rpn(a,p,7)

(= ke={imite)

s nlipemiond ol .
rg,l]lmH" +v=|u] "N::’]::)d:v(hl)‘(‘)":-ll':llﬁ(d)

(E.16)
where

Vo) = (-1 3 (1R (bl ) $0,0(d)
P=Popot
(E17)
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E.3 Special Case: Translational Coefficients

Translational Addition Theorems can be obtained as a special case of Rotational-
Translational Theorems when a — 0, # — 0 and 7 — 0. Thus from (E.13) we
find that

R7(0,0,0) = S (E.18)

where ' is Kronecker delta function. Also when a — 0, 8 — 0 and vy — 0,
the direction cosines cos!, Cay, Car', (8 = ,y, z) are all equal to zero, except czx,
¢y and C,y which are equal to unity. Translational coefficients, deduced from
rotational-translational coefficients in pp. 159-160, [26], are exactly same as the

translational coefficients presented in [19].
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