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Abstract
Using modal ser ies expansions of elect roma gnet ic fields in terms of

prolate spheroidal vector wav e functions , an exact solut ion j " obtained

for the scatter ing by: (a) a single uniformly lossy diel ectric prolate

sph eroid, (b ) a syst em of two uniform ly lossy dielectric !>rolatl l sphe roids

in arbitrary ori enta t ion , and (e) as an import ant sp ecial case a sys tem

of two uniformly lossy di electric prolate spheroids in parallel co nfigu ra

tio n embe dded in free space . In all the a bove cases, the exci ta ti on bein g

a mon ochromat ic plane electrom agnetic wave of a rbit rary p ola riza t ion

and angle of in ciden ce . Sin ce th e d iel ectric m ate rial s of th e ecet t e rers

a re of com plex rela tive permittivitie s, compl ex eigenvalues are evalu

ated Cor th e sph eroidal scalar wave fun cti ons of transmitted com po

nents of E-fi eld and H-field expansions. Rotational- Tr anslational Ad

dit ion Theorems and 1'l'anslational Addi tio n T heorems for npheeoidnl

vecto r wave functions ar e used to st udy the scattering by a system

of two sph eroids in arbit ra ry configuration and as a : peciaJ case by a

sy st em of two spheroids in p aralle l configu ra t ion respectively. Th ese

theorems are used t o transform th e outgoing wave from on e sphe ro id

in to the incoming wave at the other spheroid. The field so lutio n de

termines th e column vector of th e unknown coefficients of th e series

expansions of th e scattered and transmitted fields ex pressed. in terms

of the column vector oCth e known coefficients of ~.he ser ies expenetcne

of the incident field and th e system matrix which is ind ep endent of the

direction and p olarization of th e incident wave . Numerical resultB in

the form of plots for normali sed bistatic and mon ostatic radar cross



sections are given for a var iet y of uni forml y lossy d ielect r ic pro late

spheroids with resonan t or nea r resonant leng ths. Also for two-b ody

ecat teelng, different arb itrary co nfigurations ind ud ing par alle l config 

urat ion s of th e sp he roids at diffe rent dis ta nces of separation h ave bee n

co nsidered.
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Chapter 1

Introduction

1.1 Li ter a t ur e R eview

The study or electr omagnet ic tCatt ering by it. . y.t em of two (or more) spheroidal

objects has gained considera ble interest in the last few decades. Th is is because

the geomet ric. of many ob jec.h of practical interest can be app roximated by

. phcroid, .

Solving Icalar Helmholt z equation in spheroidal coordin ates i. the Iluting

point in solving prob lem. of electromagnetic Icd teri ng by . pheroids. Flammer

11] and Stra tton et &I.. 121hav e studied extensive ly the spheroidal wave function•.

Solution of .calar Helmholtz equation in term s oC spheroidal coordinate . ystem

and ex pressions of .ph croidal vector wave funct ion. arc availah le in detai l. in II)

ead (2J.

The exact analy tical solut ion to the electr omagnetic scat te ring by conducting

prolate spheroid. (or axial incidence hu been given by Schult z {3J. Lat er Siegel et

el. 14] obtained l ome nume rical relu ltl for Icatt ering by a thin prolate spheroid

(axial ratio 10 : 1) by varying the relat ive lize of the Iphe roid from 0.1 to ti.

Th e exact lolution to t he problem otelect roml gnet ic Icatt ering by a ecaduct

ing prolat e Ipheroid tor arbitrary angle of iaeidecee and polarisation wu given



by Reitlinger [5\. But his work involved complexity in numerical computat ion.

Nevert heless, his work provided a foundation in finding analyticallolu t ions to

more complex problems involving scatterin g by spheroida l objects.

Because of the complexity of the spheroidal geometr y, non-orthogonality of

spheroidal wave functions and increasing difficulties in numerical comp utations

beyond the Rayleigh region [61. no progress was made in the resonance region

after the work of Siegel et al. [41,although extensive works have been carrie d out

at both low frequencies and high frequencies. It was not until 1974 tb a t Sinha

obta ined for the first time an exact analytical solution to the electromagne tic

stattering by a conductin g prolate spheroid in resonance region [6\. He also

developed fast, accurate and simplified algorithms for comput ing spheroid al eigen

values and spheroidal wave {unctions thereby overcoming the shortcomi ngs in

Reitlinger 's work. Furt hermore, he proved that results obtai ned by Siegel were

accurat e for values of axial rat io upto 2.5. Later Sinha and MacPhie pr esented

numer ical results of backscatte ring radar cross section at differen t values of axial

ratio for a single conducting spheroid [7\.

Dalmas and Deleuil also st udied t he electromagnetic scatte ring by a perfectly

conducting spheroid by using Mr and iJr spheroidal vector wave functions [aj-[ IO].

Using these vector wave function s, Asano and Yamamoto present ed the an alytical

solution of light scattering by a spheroidal particle at arbitr ar y incid ence and

polarization of incident wave (11).

Scatt ering of e.!ect romagnetic waves by r.rbit rarily shap ed dielectri c bodies

lying in th e resonance region has been studied by Berber and Vel: [12J. In [12}

plots of differential scattering cross section VI . scatt eri ng angle are presented in

azimuthal plane and equato rial plane for bcdiee like ~pheres. prolate Ipher oids,



oblate spheroids and cylinders having different geometries and dielectric con

stan ts. Asano and Sat o /I31analyzed the problem of light scattering by randomly

oriented identical dielectric spheroidal particles and compute d extinc tion, scat

ter ing and absorption cron sections and asymmetry factor of prolate and oblate

spheroids. Asano also investigated the light lCattering proper ties of spheroidal

par ticles oriented randomly with their long axes horizontal 114J. Later eoora.y

/15J workedon the "attering problem by & perfect dielectric prolate spheroid by

employing mcdel eeeiee expans ion of electromagnetic waves.

Extensive research is available in literature regarding scattering of electro-

magnetic wave by a system of two (or more) spherical and spheroidal objects .

Bruning and La [16J studied extensively the scattering of electromagnetic wave

by a system of two spheres by applying the transla.tionlll addition theorem for

spherical vector wave functions [17). which is an extens ion of the theorem for

scalar wr.vefunctions developed by Stein [181.

It was not until the mid 19805 that Sinha and MacPhie [191 developed the

translational addit ion theorems for scalar and vector spheroidal wave functions in

whicb the outgoing wave from one spheroid i' transformed into the incoming wave

to the other spheroid assuming the simplest form for the vector wave function .,

as they transla te like a scaler wave function. Utilizing these theorems, Sinha and

MacPhie obtai ned the exact solution for the scattering behavio r of plane electro

magnetic wave hy two parallel conducting prolate ephercide [20J. In Appendix II

of 120) the computation was simplified by obtaining the spheroidal t ranslational

additio n coefficients in terms of the spherical translational addition coefficients.

DalmAlJ ead Deleuil also studied the multip le scattering of electromagnetic waves

by two infinitely conducting prolate spheroids in [211using Transla tional Addition



Theorems for prolate spheroidal vector wave functions AIr and iJr [22], Lately,

Cooray et el. 123] worked on the scattering problem by two perfect dielectr ic

prolat e spheroids in parallel orient ation.

Further generalia atlcn of the two-spheroid scatte ring problem bu been possi

ble due to formulation of Rotat ioOilI.Trandation,,1Addition Th eorems for vector

spheroidal wave functions in [24J-{25], Utilizing these theorems , elect roma gnetic

scatt ering by a system of two perfectly conduding and two lossless dielectric

spheroi ds in arbit rary orientation were analytically studied by Cooray and Ciric

in [27J, [281 end 129).

By means of modal series expansions of electromagnetic fields in term s of pro

lat e sphe roidal veetor weve funeticne, an exact enelytical eolution for~

~ or electromagnetic plane wave Icatte ring by uniform ly louy dielectric

prolate spheroids has been given in the present thesil, Scatt ering of plane elec

tromagnetic wave by (i) a single uniformly lossy dielectric prolate spheroid, (ii)

by a syste m of two uniformly lossy dielectr ic prolat e epberoids in arbit rary con

figuration, and (iii) at a special case scatte ring by a system of t wo uniformly lossy

dielectri c prolate spheroids in parallel orientation , have been separat ely studied

in resonance region. The parallel configuration of two or more prolate Ipheroids

hat practical impor tance, Hence it is felt th at analyt ica.lstudy of t his special caee

of th e more general cr -e of arbit rAry orientation of the sphe roids be developed

separa tely by using tran slat ional additi on theorems , 10 th at t hose interested in

t his epeciel case may not necessarily be involved in t he complexity of the general

Icrmula tion.

In th is thesis, the an alysis for single body is carried out by using lti-·v.

and fJ-,V,1vector wave functions following the procedure emp loyed by Sinha and



MacPhie [71 for conducting prolate spheroid. The scattering by a single lossy

dielectric prolate spheroid bu also been analyzed by Zimmer [30]who employed

Air and fir vector wave functions.

In the present work the dielectric media of the scetterers are assumed \.:l1 be

uniformly (or homogeneous) lossy and non-ferromagnetic. Since the prcpaga

tion constant of the media inside the ICa.Ueren is complex in nature, complex

eigenvalues are evaluated for the spheroidal scalar wavefunctions of tran smitted

component! of E·field and H·field expansionl. Oguchi hu calculated the eigen

value. of spheroidal wave function. for complex values of propagation conltanh

in [31}. Zimmer also has computed complex eigen values for sphercidel wave

funct ions usumi ng e- j "" t ime variation of tlme-bermcnic electromagnetic field

130J. Subsequently Sebak and Sinha. have calculated complex eigec values cor

responding to prolate spheroidal functionl in order to study the scattering by

a conducting spheroidal object with ImJ~y dielectric coating at axial incidence

[32J. In the present work, the algorith m developed in [33] for real eigen value

comput ation has been used to compute complex eigen values.

By applying appropriate boundary conditions, the field solution is obtained

in the form S = [GIl, where S and I are respectively the column vector of the

unknown Coefficients of the series expansions of the scattered and transmitted

fielda taken together and the column vector of the known coefficients of the series

expansions of the incident field. {OJ is the system matrix that depends only on

th e scatt ering system and the frequency of the incident radiat ion, and is ind e

pendent of the direction and polarization of the incident wave. The solution in

the above form eliminates the need for repeatedly solving a new sct of simul.

teneo ue equations in order to obtain the expansion co.:f6cienh of ecettered and



transmitted fields (or a new a.o.gle of incidence.

It. is worthwhile to note that the oblate spheroidal vector wave funct ions can

be obtained £rom the prolate ones by the transformations {_ j { and h _ - j h,

where { is the spheroidal radial coordinate; h = kF , F being eemi-ia terfccal

dista nce of the spheroid and k being the propagation constant of the mediu m ill.

1.2 Organization of the Thesis

This thesis deals with the exact analytical solut ion of scattering by uniformly

lossy dielectric prolate spheroids - the incident excitation being unit amplitude

monochromatic plane electromagnetic wave of arbitrary incidence and polariaa

tion and having wavelength .t Electromagnetic .catt ering by a single uniformly

lossy dielect ric prolate spheroid, by a system of two uniformly lony dielectric

prolate spheroids in arbitrary configuration, and by a system of two uniformly

lossy dielectr ic prolate spheroids in parallel orientation have been considered sep

arately. In Section 1.1 we have discussed the available research in litera ture

pertaining to electromagnetic scatte ring by spheroidal objects and have given

the general outline o"the problem presented in this thesis. The organizat ion of

other chapten is at follows:

• In Chapter 2, a brief idea of spheroidal coordinate system is presented

first. Then solution of scalar wave equation in spheroidal coordinate s and

expressions of various spheroidal wave functions are considered. Finally,

prolate spheroidal vector wave functions are dh cueeed.

• Chapter 3 deal. with the analytical solut ion of . cattering of plan e electro

magnetic wave by .i ngle uniformly lou y dielectric prolate spheroid. Inci-



dent , scattered and transm itt ed component! of electric and magnetic fields

are expressed in terms of normalized pr olate spheroidal vector wave func

tions . Appropr iate boundary cond itioDs are then applied on th e surface of

the spheroid to solve a t et of simultan eous linear algebraic equations reo

lat ing the unknown expansion coefficieut e corresponding to scatt ered and

transmitt ed fields expressed in te rms of known expansion coefficients of the

incident field. Finally the scatt ered field is ealeulated iIi.the far zone and

nume rical result s are presented in the form of curves of normalized bistatic

and monostati c radar croRisection s for a variety of uniformly lossy die lect ric

prolate spheroids.

• In Chapter 4, th e exact solution for the problem of electromagnetic scatter

ing by two uniformly lossy dielect ric prolate spheroids in arbitrar y orien ta 

tion h8JIbeen diecueeed. Rotational·Tranda.tional Addit ion Theorems for

sphe roidal vector wave functions have been used here - a vector spheroid al

wave function defined in one spheroidal coordinate system (t , '1, ifJ) has been

express ed in terms of a series expan sion of vector spheroidal wave func tions

defined in another spheroidal coordinate system ({', .,,', 41'), which is rotated

and tramJ ated with respect to t he first one. Application s of appropri

ate boundary conditions and deriva tion of the system equation have been

discussed then. Finally numerical results in the form of curve s for normal 

ized biatetie an d monostatic radar erose sections are given for a variety of

two-body . ylt em of uniformly lcsay dielectric prolate . pheroid. in a.rbitrary

orient at ion having resonant or near resonant length. and different dis tances

of eeparetlcn.



• In Chapte r 5 wepresent an exact solution for electromagnetic scatt ering by

two uniformly lossy dielectric prolate spheroids in parallel orientat ion. Th e

'I'ranllat ional Addition Theorems, which t ransform the outgoing wave from

one spheroid into the incoming wave at the other spbercld, have been ueed

here. Incidentally t ranslat ional addi tion theorems [19J can be considered

as a special case of rotational-trans lat ional addition theorems when Euler

an gles Q _ 0°, /3_ 0° and "( _ 0°. Appliclt ionl of appropr iate boun d

ary conditions and derivat ion of the system equation have been diecuseed.

Numerical results in the form of cur ves for normalized bid at ic and monos-

tatic radar cross sections have been obtained in the resonance region for a

variety of two-body system of uniformly lossy dielectric prolate spheroids

in parallel orientation having different diatances of separation.

• Finally in Chapter 6 concluding remark! are presented.



Chapter 2

Prolate Spheroidal Coordinates
and Prolate Spheroidal Wave
Functions

2.1 I ntroduc t ion

In thia chapter we give a brief overview of prolat e spheroida l coordinate system

followed by derivati on of vector Helmholtz equations for i -field ILnd Ii-field of

an elect rom agnetic wave. We then diecuae the solu tion of sealu wave equations

in spheroidal coord inate •. Finally we obtain aolution. of vector wave equation by

applying certain vector different ial operators to the scalar wave {unctions . T he

resulti ng solution. are called vector wave functions.

2 .2 Prolate Spheroid al Coordinates

There are two typea of spheroida l coordinate system: prolateand oblate. The

prolate and oblate spheroida.lcoordinate system are fanned byrotating the two

dimensional ellip tic coordinat e system , consisting of confocal ellipses and hyper

bolu , abo ut the major and minor axel of t he ellipses, reapee'avely, It is cUltomary

to makl: th e z·ax il the axis of revolution in each cu e (II.



Since in thil thesis we are considering the scatt ering problem from prolate

. pheroid., we concentrate on the description of prolate .pheroidal coordinate

system; however description ofoblate spheroidal coordinate system can be found

in pp. 6 - 7, [I]. F ig. 2.1 showsthe prolate spheroidal coordinate system .

Let the semi-interfocel distanc~ of the ccafocel ellipses be denoted by F, as

shown in Fi g. 2.2. Then lor a single ellipse th e spheroidal coordinates, denoted

by ({, "I,f) of a point P in space distant II and r3 respectively from the foci FI

end F3, are given by :

(2.1)

where { is radial coordinate, "I is angular coordinate and (J is azimutbal coordi

nate. It can be shown that prolate spheroidal coordinates « ,'1,¢) are given in

terms of rectangular coordinates by the following rela tions pp . 17-18, [6J:

-iF [(:.:2+ y3+(%+F)3)1/3+ (:1:2+ y2+(e _ F)2)1/2) (2.2)

J] = -iF [(:1:2+ y2+(%+F )2)1/2_ (:1:2+ y3+(% - F )2)1/2J (2.3)

¢ " ' -'(Ylx) (2.4)

By inverse transformation we can also obtain:

F(I_'12 )1/2W_ l )1/2COIq,

Y = F(l _1'/2)1/2(e - 1)1/2 lin 1,6

(2.5)

(2.6)

(2.7)

with - 1 s 1'/s I , 1ses 00, 0 s ¢ s 2-w .

In prola te spheroidal system the surface t = conlt ant > 1 i. an elcnget- d

ellipsoid of revolution with major axis of length 2Ft and minor axil of length

10
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Figure 2.1: ProlAte Spheroidal Coordinate SYI~
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Figure2.2: Prolate spheroidal geometry andC&11eIiancoordinates.
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2F({ - 1)1/2• The degenerate eurface e= 1 i. a .t raight line along th e .z-axi.

from z =-F to z = +F. The .urface 1'1/1 = cou. tant < 1 i. & hyperboloid of

revolution of two .heett with an u ymptoti c cone whose generr.t ing line paste .

th rough the origin and is inclined at an angle 8 =cos- 1 '1/ to t he .z·ax is. The

degenerate surface I'll = 1 is tha t part of th e z-axis for which Izi > F. The

surface 1$ = const ant is a plane through the z·uis forming the angle f with the

:r - z plane [1/.

lt is to be noted that the confocal quadric surfaces in space interse ct each other

at right angle., i.e. the tangent planes of the three surfaces paning th rough

any given point in ap ace are mutua lly perpendicu lar . Thu e prolat e spheroidal

coordinate system is a system of orthogonal curvilinear coordinates. In each case

the coordinates (e, 'I, 1$) form a left. handed system , since i x Ii = -~; Ii x ¢=
- I; ~ x 1= - • .

In the limit when the interfocal distanc e 2F becomes zero, both t he prola.te

and oblate spheroidal systems reduce to the apherieal coordinat e syl tem. For

finite 2F, the surface e= constan t in each case becomes spherical as { approaches

to infinity; thul

F(_r, 'I .....co.8. as { .....cc

where r and 8 are spherieel radial a.nd angular coordinate. resp ect ively,

2.3 Vector H elmholtz Equations

(2.8)

We know that a time-harmonic electromagnet ic field (ellA t ime ,-ariation , w being

angular frequency) sati sfies Maxwell's equations:

Vx E = -jwjJH

13
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where

f' = f - jU /W

(2.10)

(2.11)

is called complcz penn itti vity of the medium; e, jJ and CTare the permitt ivity, per

meability and condudivity of the medium relpectively. j is volume distri bution

of electric current per unit area.

Let ~o be wavelength of the electromagnetic wave in free spacej fO and po be

the permitti vity and permeability of free space respectively, and c be velocity of

propagation of wave in free space. Then propagation coostant of free Space il

given by

Suhsti tuting w from (2.12) in (2.9) and (2.10) we get

v x E -j(JlO~)1/2~J1

VX H j(JlO~)'J] koE

Taking curl 00 hoth sides of (2.13) we get

VV.E_ V2E = (J't...)kJE
/lato

For charge free space

'l.B = 0

Prom (2.15) and (2.16) we have

'l'B+ (J't...) IlE = 0

"'"
14
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Tuing curl on both . ide. of (2.14) we get

(2.18)

From Muwe U'. equAtion

V.B = 0

From (2.18) &nd(2.19) we have

V2I1 + (~~) ~H = 0

Setting

(2 .19)

(2.20)

(2.21)( ")'"k= L ko =n.ko
PoCo

where n,. = VlJoc' /lJO co il the complex refractive inJez of the medium, vector

Helmholtz equation- for Eand ii fields of electromagnetic wave an he given u

vJE+ 1c Je = 0

vJii + J: 2ji = /)

(2.22)

(2.23)

2.4 P ro la te Sp heroidal Differenti al Equat ions

Prolate Ipheroid&1 coordinate Iyatemil one or the eleven coordinate Iyiteml 1 in

which the Icalar wave equation

(2.24)

i• •eparable, where k i, the medium wave number. Thi. equation, in prolate

. pberoidal coordinate . y.t em, can be written &I

[
8 (1 ,)8 8 ( (, )8 1'-.' 8' h'«(' ,)].,.a;; -. a;; +Be I - Be +((' - 1)(1 _ .') 8.' + - . . =0

(2.25)

Icarteaian, clulli ar cylinder, elliptic cylinder, parabolic c}'lInder, Ipherical, collical,
patabo lic,pr olat. Iphcroidal, oblatelpheroidal,e llipeoidaIud parabo loidal.

15



where we set h =kF .

Using the separa tion of variables principle, the solution of (2.25) can be ob

tained in the form 11]

where ~~(h, () and S",n(h ,,,) are called prolde radialfunct ion and prolate angle

function respectively. R!:.~(h,O and S",..(h,!'1) satisfy th e ordinary differential

equat ions

~ [(1-'l2)~S",..(h, '7)] + [~",.._ h2'72 - 1::2]S",,,{h,'7) 0(2.27)

fe [w -l)fe~~ (h,()] - [~m"- h'(' +(,":'1]~~(h, () 0(2.28)

where ~",,,(h) and m are separation conl tanh. Those valuel of ~.",n (h) for which

(2.27) admits solut ions that are finite at lj = ±I are the eigenvalues of the

differenti al equation (2,27). Here n = lml, Iml+1, Iml +2" ", and m il any

integer including zero.

h is real or compl ex accord ingly the propagation conltant of the medium

under considera tion is real or complex . Computations of eigenvalues of sphe roidal

WAve fun d ions for Tealvalues of propagation consb,nts and for comple:z: values of

propa gation constants are respectively shown in [33] and App endix A 01 tbe

pre sent thel is.

It is worthwhile t o note th at th e oblat e spheroidal scalar wave fun ction can

be obtained from t he prolat e one by ut ilizing the tr ansforma tions e--+ jeand

h --+ -jh in (2.26).

16



2.4 .1 Prolat e Angl e Func tions

T he uJOciated eigenfunction, 5.....(11., 11 ) are the prolate,pheroidal Angle functioD'

of tin t kind, of order m and degree '1 , torI"elponding to cigenvaluel l .....(h) in

(2.27). There are t",o type. of angle (unetious: S<~(h, ,,) - &llgIe function o( tint

kind, and st.!.!,(h,,,)- &IIgle function of .econd kind. In moat bounda.ry·va1ue

problelnt, t he pbysical quant it ies are defined over the ent iu domain - 1 $"'1$ 1,

o$" , :5 2• . The usual requirement that the "ave function be finite at 'I =±l

confines the n-de pendenee of the wave funct ion to tha t of the angle function of

firtt kind, because the angle function of second kind, SJ!l(h,'1) are singular at

these point. . Hencefort h we will use the notation 5.....(11.,'1) to refer to angle

funct ion of fin t kind.

When II.goes to zero, angle function of fint kind reduces to u soclated Leg

endre functions of the fint kind of integral order and degree. So we have

l .....(O) ::: n.(n + I}, n ~ m

When II.i. not equal to zero, angle function of tin t kind i. of the fonn

S~+(h , . ) = f:.r,+(hlP.::••(. l...'

(2.29)

(2.30)

where d;.""(h) are prolate spheroidal expansion coefficienta. The prime on the

aummatioD .ymbol indie-ate. thil.t the . umm atioDi. over only even valuea of r

when (n - m}il even and over only odd Va1uCl ofr wben (n - m) ia odd. P:.~(1J )

ia u lociated Legendre function of first kind. The expansion coefliclenta re-"(h )

are given by the recurrence fonn ula in equation (3.1.4) of [1]. Examination of

equation (3.1.4) in [1) reveals that as r _ 00 , either ~"(h.)/cr."_~(h) increase,

as _4r'Jl h2 , or goes to zero U - h2f(4r'). We chccee the latt er U it leada tc a

ecnvergeet aerin . Numerical computat ion of angle function i. given in [61.

17



From gener al theory of Stu rm-Liouville differential equat ions, it follows S.....(h, 11)

form an orthogon al eet in the inte rval (- 1,1) [11:

where c....' is Kronecker delta functi on and

Nm.(h)

is tb e norma lization factor ,

2 f; ,(,+2m)!(d;"(h )):
~,,0,1 (2r + 2m + 1)rl

(2.32)

(2.33)

(2.34)

2.4.2 Prolate R adi al Funct ions

Pr olate spher oidal radial functions m:.~(h,{) (i =1,2 ,3,4) satisf y the differen tia l

equation (2.28), where 1 :5 (:5 lXI , T he eigenvalues .\",..(h) wbich'c ccur in (2.28)

are those to which angle functions S.....(h,l1)belong.

In physical problems one usually requi res both the radial funct ions of the tint

kind, R.UHh,(), and t hose of the second kind , ~l(h,e) . Two useful combina

tions of these functions are known as radial functions of the t hird kind and radia l

functions fourth kinds , given by ~Hh,e) and J4:l (h,e) respectively.

T he radial functions of t he first kind R~l(h,() and radial funct ions of second

kind ~l(h, e) are respect ively given by the seriesl2J ;

(
e_1, ...'2coo

R!.:!(U) T) .~.' .~·(h)jm,.(h()

R!:!(h,() ( {' ~ ,)ml
' f; ' .~·(h)n".,.(h()

e . ,,0,1

where i...+~(h{) and n".+~(h() are spherical Bessel function and Neumann func

t ion respect ively, and 4:;'''(h)are convergent expansion coefficients such th at as

r -0 lXI 4~"(h)/4:;'_i(h) -. h2/(4r2 ) __ O. The expansion coefficients 4:;""(h) are

given by the recurrence relat ion in equation (3,24) of [6J.

18



The radial function of third kind and radial function of fourth kind ere tepee-

tlvely given as:

~!(h,()

R!.:!(h,()

.'l!:!( h,( ) +iR!;!(h,( )

~!(h,() - iR!;!(h,()

(2.35)

(2.36)

The following asymptotic propert ies of the spherical Beeeel, Neumann, and Han

kel Iunctions are worth noting, p. 31, [1/:

i _(hO

n_(hO

hi" (h( )

hi" (h( )

(2.37)

Thu, the ASymptotic behavior of ~l(h,O, R~l(h,o. ~l(h,O and R$:l(h,e)
is readily obtained lU

~!(h,() ~ ~ cos (he - ~(n+ 1)1r) (2.38)

R!;!(h,(j It:> ~ sin (he- ~(n + 1)1r) (2 19)

R!;!(h,() "!=: ~,["'- ll-H"J (2.40)

R!.:!(h,() It::' ..!..e- [II(- ~ (n+ll·1 (2.41)h(

At very large dislance from the spheroid ~l(h,O and R:!!l(h.e) 'have the prop

erties of diverging spherical waves, As ~l(h, e) hu the property of outgoing

spherical wave for ile _ 00, it will be used to describe the scatte red fields of

electromagnet ic wave, Series repre,entation of .RUl (h, e) show. fut convergence,

whereu , eries for ~l(h, 0 does not converge rapidly for ,mal l value of heor

19



he se 1. An integral method introduced by Sinha and MacPhie in [34J improves

the convergence of ~l(h,0.

2.5 Prolate Spheroidal Vector Wave Functions

Before defining prolate spheroidal vecto r wave functions let us discuu in brief th e

fundamental set of solutions of any vector wave equation, pp. 392 - 393, [37J.

Within any closed domain 01 a homogeneous, isotropic medium from which

sources have been excluded, all vectors characte rizing the electr omagnetic field

- th e field vectors E,ii , jj and H, the vector potent ial and th e Hertzian vectors

- satisfy one and the same differential equation. If 6 denotes an)· such vector,

then

(2.42)

where k2 = flJl.;Ja - japw (ej ...1 tim e variation of 6 is assumed) .

By the operato r Va act ing on a vector we mean "13 = "1'\7. - V x V x ;

therefore in place of (2.42) we can write

(2.43)

Now the vector equation in (2.43) can always be replaced by a simultaneous sys·

tern of three scalar equations , but t he solut ion of this system for any component

of 6 is impractical in meet cases. It is only when iJis resolved into ih rectangular

compoDeDts that three independent equll.tions are obtained. Thul, in this cue

(2.44)

Let th e scalar function t/J be 1\ solut ion of th e equation

(2.45)

20



(2.46)

and let Q. be any COD.t ant vector of unit length. We now can con.truct t hree

independent vect or solution. of (2.43) AI follow.:

~ : ~~a~ I
fI = (l /k jV xM

If Ci. placed equal to i , MorNwe un verify that (2.43) i• •atiJficd ident ically

by (2.46) subject to (2.4S). Since Ii i. a conltan t vector Mcan ....0 be wriUe.au

M = L xa = (l /k)V x fI (2.47)

For one and the l ame generating function 1/J t he vector Aii. perpendicular to t he

vector i; or

i .M = 0

T he vector funct ion. L, M and N have the following propert ies:

Alto Ai and N are solenoidal , i.e.

V.M= O, V.N= O

(2.48)

(2.49)

(2.50)

Let UJ DOW define the .pheroidal vector wave function •. The . cala.r function

t ati.lying the .calar Helmholtz equ ation expreJled in term. of . pheroid al ccordi 

nate. b.. t he form siven in (2.26):

where the .u pencriph e aDd 0 refer to even~dependency and odd ;- depen dency

re.pedively and i = 1,2, 3, 4.
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The spheroidal vector wave functions can be defined as [1]:

Ml~" (h;( , •••)

Nl~"( h; (,••"

V~~2(h ; ( ••• • Jx G

. -'17 x Ml~"(h;(•••' )

(2.52)

(2.53)

(2.54)

where Ii is arbitrary unit constant vector or radius (position) vector. In spheroidal

coordinate system, none of the unit vectors e, ~ , ~ hu the properti es required for

Ii , Hence we choose cartesian coordinate system in which each of the unit vectors

oi, y,z is a constant unit vector, The unit vectors in cartesian coordinates ere

relat ed to the spheroidal coordinate unit vectors by the relations [II:

((' -I)'" (1-.')'" - _:i:=-'1 (3_1]3 cos~ ~ + ( l3~ cos ~ ( - sin~ ~

((' -I)'" (1 -.,)", - -Y=-1/ (3_ 1/3 s in ~ ~ + ( e- 1]3 sio, ( +cos~ tP

_ (1-")''' _ ((' -1)"' -
~=( (3_1/3 '1+1/ (3_'13 (

Thus the cartesian unit vectors in (2,54) generate three distinct classes of prolate

spheroidal vector wave functions M and iJ, given by:

M,;:!" (h;(••••)

N';:!"(h;(,•••)

V~~2(h;(•• ,.) x G• • ='.Y.' (2.55)

k-'V x Ml~i)(hi( ,J'lltP ) , a = :?: , Y. ~ (2.56)

Also with regard to the position vector r,t he M and iJvectors aJ'e expressed as

M;:!"(h;(•••• ) V~~2(h;(••• • ) x i' (2.57)

N;:!"(h;(, • •• ) . -'17 x M;:!" (h;(, • •' ) (2.58)

In this thesis the analysis for single body is carried out by using Me.II,' and iJcol/"

vectors following the procedure employed by Sinha and M&CPhie for conducting

prolate spheroid [1J. 3

3Zlmmn employed ii- and ii- vecton to aoalYle t he ICatteripl problem by I linl ie IO*IY
dieledric proll r.eIpberold 130).
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various components is equal to the product of either cos~ or sin~ with cosm~

or sinm~. Therefore it is convenient to define the following additional spheroida l

vector wave funct ions, [where the components of those labeled with the index

m+1 have either a co.(m+l )~ or . in(m+ 1)</1 ';'depend ence, while the component.

of those labeled with m -1 bave either a cos(m-1)~ or s in (m - l)~ aile) p. 70

M;.+,g~..(hj{,7J,,p)

M~-_(;!" ( h:I , ',')

Nl~(:~..(h;{ ,7J,tP)

J'I~:(;!"(h:I,',')

~ [M~~'l( h: I , ', o) T ~Ml'J') (h : I " " )l (2.59)

HM~~')(h:I,',') ± ~M~~') (h: I " ")l (2.60)

k- 1 V' x Ml~(;~..(h jt,7J,tP) (2.61)

k- ' <J x M~:(;!"(h:I , ',') (2.62)

Explicit expressions of the vector wave functions defined above are given in Table

v, pp. 74 - 76, [1[.

According to Sin~a and MacPhie [20). it is possible to expren the sinusoidal

variation of ¢ in equation (2.51) as complex exponential varia tion. Also for any

integer n > 0 since -n :5 m :5 n , it is possible to normalize spheroidal vector

wave funct ions M and N in term. of Iml. Normalization of spheroidal vector

wave functions and their representations in exponential form.are explicitly given

in [20Jand Appendix A of IUil. Ol·thogonality property of complex exponential,

given below, will be used later :

(2.63)

where 5......, is Kronecker delta function.

It is worthwhile to note here that notations for it and iJ followed through

thi s thesis are the ones used by Sinha and MacPhie [20). Plemmee'e M.:~t.. and
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N.::~t..become /;1.:$:1 and N:.L'l in [20) respect ively, and Flammer'. M;~L..and

N.:~L.. become M.:1'l and N.:~l in {2O} respect ively 10 t hat /;1.;1'1 and N~) have

(m± 1); ;'dependence. However Flammer '. Jol:~1 and if:;} remain ...m e &I tb ...t

in 120) having m~ f.dependence.
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Chapter 3

Electromagnetic Plane Wave
Scattering by Single Uniformly
Lossy Dielectric Prolate
Spheroid

3.1 Introduction

In this chapter we study scatte ring of plane elect romagnetic wave by single ani

Cormly lossy d ielect ric prolate spheroid . Incident , scatter ed and transmi~ted com-

ponente of electric and m agnetic field. are expreeeed in l enni of normalized p ro-

late spheroida l vector wave functions (defined in Append ix A oC(15]). Since t he

dielect ric medium of the scatte rer is of complex relative permittivity, complex

eigenvalues are evaluat ed for the 5pheroidal scalar wave function s of t ransmit ted

components of E·field and H·field expansions . Appropria te bounda ry conditio ns

are then applied on the lun aceof th e spheroid to solve a set of simultan eous linear

algebraic equatio ns relat ing the unknown expansion coefficients com esponding

to scaUered and transmi tte d field. expressed in term. of known e:t'pan.ion ccef

ficients of the incid ent field. Finally we elaborate on the comput ation of rs der

croll sectio ns in far field for lingle uniform ly lOlly dielect ric prolate spheroid.
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Figure 3.1: Scattering geometry lor a li ngle unilonnly Iouy dielectric prolate
. pheroid with arb itrary incidence and polarization of a plane electromagnetic wave.
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3.2 Expansion of the Incident Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Let UI consider a monochromatic plane electromagnetic wave of wavelength >.

and of unit ampli tude propagating in free space. This wave i. propagat ing in the

.:I: - z plane (¢. = 0) at an angle 6i (S 1(/2) made with t he Z-axi' l and is incident

on single uniformly louy dielectric prolate spheroid all ebcwn in Fig. 3.1. Let

( = eobe the value of eon the eurfsce of the sphe roid, and a be th e length

of semimajor axis of the spheroid. The media cut eide and inside the seetterer

arc assumed to be Don-ferromagnetic [i.e. their permeabilities are equal to tbe

permeability of free space /lo),

Let the electric field Ei of the inddent plane wave be linearly polarized in an

arbit rary direction. This can be decomposed into two orthogonally polarleed E
vectors E iTE and E'TM. ii; vector is decomposed into orthogonai ly polarize d jJ

vectors H;TE and H;TU. E'TE and HiTU lie perpendicular 1.0the plane of inci

dence whereea EiT U and ii"l& lie in the plane of inciden ce. Thus the polarization

angle 1, (the angle which the incident electric field makes with th e normal to the

plane of incidence (:I: - z plane») is such that (or TE polarization 1, = 0 and (or

TM polarization "Y, =7r/2.

According to Fl amme.: an incident plane wave can be expanded in terms of

M':~l) and M':;;~I I . The elect ric field of unit amplitude incident on .. spheroid is

given u [20J and (151

E, = f f [p~"M~~')+p;"M;~") (3.1)
...=-.., ....,"'1
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where

:i 2j "-1 (COS7, " )
p..... == -N (h )51...1..(hl , cos8;) - , . "=F JSID1'.

Iml" 1 COl .
(3.2)

where ht = (2'Wj)' )F. Nlml,,(h l ) is the Dormalization fa.ctor given hy equation

(2.32); Slmln(hi, cos8;) is the prolate epheroldal angle fundion (defined in Chl.pter

2).

lfthe expan sion of E.given in (3.1) i. arran ged in the t/rl equence (O)4J. (±I )4J,

(±2)4J, ' '' , t hen the series expansion in (3.1) can be written in the form of

associated matrix field expa.nsions given in [20J and [15J:

where T indicate tran spose of a matr ix, and

[
lii;, 1 [P' ]M~ . - ~'I , 1- PI

.- Mi3 ' - P 3

: ;

with

[M~P lT Mj (l)Tj

[M:~;)T M;~;lT i M~l;~lJ M:!;~J]' f1 2:1

where

(3.3)

(3.4)

(3.5)

(3.6)

Also

(p!fpiT]

Ip;':l P;JI ; P!fr+l)P:f.-ll]' (f ~ 1

28

(3.8)

(3.9)



with

(3.10)

where p;'.. (n :,:Iml,lml + 1, lml+ 2, · · ·) is given by equation (3.2).

3.3 Expansion of the Scattered Electric Field
in terms of No rmaliz ed Prolate Spheroidal
Vector Wave Functions

In response to the electromagnetic field incident on spheroid, there will be scat·

tered component of electric fieldoutside the spheroid <e > Co) whiChmust satisfy

the radiation condition. Knowing

(3.11)

we can expand the scattered E·field in terms of normalized prolate vector wave

functions. Also the components of the scatt ered field must have the same ,p..

dependence as the corresponding elements of the incident field. Thul according

to [20J we can write

where all M.vectotl in the above equation are evaluated with respect to hi

t- 2~FI),,) which is real. a+ . , , a- ·s and a '•• are the unknown expansion coeffi

cients correlponding to the series expanelon of scatt ered E·field that have to be

evaluated.

If same ;'sequence of azimuthal harmonics used for the incident field il used

in this cue, then the scat tered field from the ~pheroid can be written in the
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generalized column vector product similar to that for ii. [20]

(3.13)

where

with

[M~~4 )T M~4}Tj

(M:i~)T M;(4 }TM:!:~I ) M:I:ITj, a ~ 1
with M;(4}defined in (3.7) for i ""4, and

Also

[a!iafl
[a;~~ a;T0:[._1)a~~] , a;:: 1

with

a;T"" [a ;'I" 10;' 1" 1+1 o;' I"IH •• •j
Q~T "" [OI~, I'" Q~,r"l + l o~, I" IH • ••,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

3.4 Expansion of the Transmitted Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Function s

Since t he medium inside t he ecatt erer (Iphe roid) i, compo sed of d ielectric rna

terial, there will allO be a t r&.llllmittcd component of E·field laside the .pheroid
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which i. non-plane wave type .

Nowimide a lossy dielectr ic medium, propagation constant or wave number

Ieis given by

• = (2'IA).,pJ;. (3.22)

where f.' = t - j rr/w, t . is permitt ivity of free space, and conductivity (0) of the

medium inside the spheroid is not equal to zero. f,. = ~/fD i. called complex

relative permitt ivity of the medium. Thus inside the loslly dielectric spheroid Ie

is complex, and is of the form It :::: le' - jk" , where le' and k" are real quantities.

For the expansion of the t ra.nsmitted E·field1 the vector wave functions of

first kind are to be considered and also they have to be evaluated with respect

to h2 (= (21rF/),, ).;4), which is complex. Thul the tr ansmit ted E-field imide

the spheroid expressed in terms of normalized prolate spheroidal vector wave

functions is given as (231

P+·s, p- .s and fJ~ - . are the unknown expansion coefficients corresponding to

the series expansion of transmitted E-field that have to be evalua~ed. All the

Ai-vectors in the equation (3.23) are evaluated with respect to h20

If the termJ in the expansion of El are arranged in the 4>-sequence of (0)';1

(±1);, (±2);, .. . then we can have

(3.24)
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where

with

iM~11)7'M~(1)7' 1

[M:~lr M;(ljT M=!~~l M~(~ )T I , a?: 1

with M;(I ) defined in (3.7)Cor i =1, and

Also

[J3!;J3;T)
[13;':113;7' 13 :(.. -l ll3 ~~l, u?: 1

with

13;7' = [.8;'r"II3;'I,.I+1 'o;'I,.I+1 ·

/3~T = [.8:.I,.,I3:,I,.I+l'o:....,H .·

(3.25)

(3.26)

(3.21)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

3.5 Expansion of H-field in terms of E-field

Weknow fromMaxwell', equations for a timeharmnnic electromagnetic field

" (i) "H = z:;; 'VxE (3.33)

Again we know that w = (27f/),)/(IloEo)1/3 IJId Ie= ( E/EO)1/1(2~/)'), An uming

that the media outside and inside the spheroid are non.ferromagnetic, we can
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write

(3.31)

where I: is the wavenumber (or propagation constant) and t is the per mitt ivit y of

the medium (real or complex). We can obta in expansions of the different H-fields

inside and outside the ecatterer in terms of appropria te normalized spheroidal

vector wave functions Cromthose of the corresponding E-fields. We do tb is hy

replacing Aiby N and multiply ing each expansion by the appropriate value of

j(<<IJJo)1/2.

3.6 Expansion of the Incident Magnetic Field
in terms of Normalized Prolate Spheroidal
Vect or Wave FUnctions

Utilizing equation (3.34), t he incident H· field can be expressed as

(3.35)

where 1:1 and EI are the propagation constaat end permit tivity of the medium

outside the spheroid repectively. Using (3.1) and the relation

(3.36)

we get

ii , = f: f: [p:'"N':~1 +p;"N;~11 (3.37)
...=-"" ..",,",I

where P;'.. are defined in (3.2). Equation (3.37) <:&0 be written in the matrix

form . imilar to that or E•...

(3.38)
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N!ljT has the same form as that of MP)T defined in (3.4) - (3.7) but with Ai

replaced by ii. I has also been defined in (3.4) and (3.9) - (3.10).

3.6.1 Limiting Case: "(p = 0 and 0, _ 1r/ 2

The series expansion of incident E ·field and H·field becomes indet ermi nat e when

angle of incidence 8; ...... 90° for T E polarization [i.e. 'l, =0) of incident exci

t at ion. The limiting expressions for p;' .. for 8; ...... 90· corresponding to T E

polari zation of incident fields are given by Sinha and MacPhie in 17J:

{

0, (n -Iml) even
t = 2j"- 1 (_ I)("- I"'HI/ 2(n+ !ml+l)!

Pm. N,.,.· 2.(~)t(~)! ' (n - Iml) odd

N1"' ln is the normalizat ion factor given by equation (2.32).

(3.39)

3.7 Expansion of the Scattered Magnetic Fi eld
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

U. ing (3.34) we can write for fi .

(3.40)

U. ing (3.l2 ) and the relation given in (3.36)

Equ at ion (3.41) can he written in the matrix form limil&:to tha.t of E. all

(3.42)
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N~4lT hu the lame form u that of M~4 lT defined in (3.14) - (3.17) but wit h M
replaced by N. a haa also been defined in (3.14) aad (3.18) - (3.21).

3 .8 Expansion of the Transmitted Magnetic Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

Using (3.34) we can write for iii

(3';3)

where k2 and t2 are the propagation constant and complex permittivity of the

medium inside the spheroid repectively.

Using (3.23) and the relation given in (3.36)

Equation (3.44) can be written in the matrix form limillLl' to that of E, &I

(3.45)

N!I)T h&ll the lame form &8 that of M P lT defined in (3.25) - (3.28) but with Ai
re placed by N. 13 has also been defined in (3.25) and (3.30) - (3.32) .

3 .9 Applications of Boundary Conditions

Boundary conditions require that &CrollS the surface of spheroid «( = <0) the

tangential components (" and .,) of the E·field and as well &8 those of H- field

35



(assum ing no surface current) must b e continuous. The se cond itions can be

expressed equivalently :

~,,+~~ ~~" }
Ei4- +E.. = EI~ (3.46)
iiiTf + H", = HlTf
Hi. +H•• = H,.

at e=ec an d for all values off} and ¢ in the ran ges -1 ~ 11:<:; 1 and 0 :5 ¢ :<:;2'11'

respectively.

By expanding each E· fie\d and H·field in term. ofnorma lizedprolate spheroidal

vect or wave functions, we can rewrite (3.46) as

(M!,IT I +M~4)T0) x i lf:(o

(:Njt1TI + N!-)T0) x i lf:(o

M p lT{jx i lf=fo (3.47)

(e2/(,) '/ 2NplT,8x el fcto (3.48)

3.9.1 ~matching an d '1-matching

In (3.47) and (3.48) the coefficients of the sam e ,.depend ent exponen tial terms

on bo th sides of each equation should be equal and the equality sbould bold good

for each corresponding term under the summation of m. Aho those terms on both

sides of (3.47) and (3.4g) that are under Bummatiooofn cannot be matche d term

by term.

Thus according to [15]and (231for ¢i-matchi ng and '1-matching both sides of

(3.47) and (3.48) are scalar mult iplied by the vector funct ioos

{::~} Siml.I"'HNe±jC"':tt)4>, N=O,I,2,,, .

an d the product s are integrat ed over the surface of the spheroid with res pect to

both ,, (- 1 ~ 1/ S 1) and ;(n S; S 211' ), wherel~ and l~ /Ilegiven by

I" = j2F(e~ - ,,2)ln ) (3.49)
I. == 2F({g_1j2)

36



for equa tion (3A7) end hy

(3 .50)

for equ at ion (3.4 B). Using the ortho gonality properties of complex exponen ti als,

given in (2.63), 8D.d ang le functi on. , given in (2.31). we obtain a set of coupl ed

algebrai c equa.tions of the form:

(PM}13 + [QMI '"

[PNII3 + IQNI '"

(3 .51)

(3.52)

where th e elem ents of {Pu]. [QuJ, IRMJ. {PH!, [QH] an d [RHl ar e defined in

Append ix B.

3.10 System Matrix [G]

Combining (3.51) and (3.52) we can writ e

Equa.tion (3.53) can be written in t he for m

5 = IGJI

where

(3 .53)

(3 .54)

5 =

[a]

(3 .55)

(3.56)

[0 ] is the gener alized Iy.tem matrix which is independen t of the direct ion and

polarization of the incident wave. Thus the solut ioDin the above form eliminates
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the need for repeatedly eolvieg a Dew,el of simultaneous equilotion. in order to

obtain the expansion coefficients of scattered and transmitted fields for a new

angle of incidence.

3 .11 Far-Field Expansions and Scattering Cross
sections

Once the unknown expansion coefficients corresponding to series expansion of

scattered and transmitted fields are determined by solving the system equat ion

(3.M), we can find the magnitude of the scatte red field at a particula r distance

from t he spheroid by substitut ing the values ofcoefficienh correspond ing to . e ries

expansion of eeettered field in equation (3.12). However , of practical iatereet is

t he scattered field in the far zone for lrl ..... 00, r being the distance from tLe

spheroid to the point of observation.

At very large dist ance from the spheroid hie ..... 00 . So as hie _ 00,

h,1 - kr 1
11 -+ cos6
~ ..... - 8

Also iLlI hd _ 00 , it can be shown that [201and 11SI:

RJ:~(h"l)

~RJ:~(h"O

(3 .57)

(3 .58)

(3.59)

The asymptotic forms of spheroidal vecto r funct ions are obtained by Mglecting

e-2 and its higher inverse power terms. Thus in the far zone the scattered E · field

with respect to tho:origin 0 of spheroid A , is given by (20]

(3.60)
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where

- f: f: jft~l [~((a:'ft - O;;'ft )' eos(m t 1 )~
",=(lft='" 2

t j(o:'ftta;;.,,).siD(m + l )~}t*a~lftl

fo,,~ j" [~ '1S",.. {(a:'" ta;;.,, )cos(m t l )~

t j(a:.,, - a;;.,,) s i n(mt l )~} -~S"'~ l ,"

{(O:"~I," t a~(m~I) ,,, ) cos(m t l )~

+ j(o:"+l ,.. - Q~("'+l)...)li n(m + l)iP}

t ~'1SI ..a~I" -~SOna~]

(3.61)

(3.62)

8and ~ are the unit vectors in the direction of increasing (J and ¢ respectively.

The scatt ering cress section is defined as 4'11" times the ratio of the ecatt ered

power delivered per unit solid angle in the direction of the receiver to the power

per unit area incident at the ecetterer. This can be Iho'RD to be independent of

The biltatic radar cron lect ion 0'(8,16) is defined 11.I

(3.63)

where i represents the polarization of the receiver at the observation point

(r,6 I tP ), With;' in the same direction as E, the normalized bistatic radlU'croll

lection il given by

(3.64)

The normalized bistatic radar crou section in E·Plane and H·Plane are obtained

by lubs tituting 16 == ."j2 and 16 ::: 0 in (3.64). For normalized backacatte ring
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(monosh.tic) radar cross section 8 =8, and ~ =0 in (3.64), 10 that the corre

sponding backscatter ing cross section becomes

..~;,Oj = 1F.(8"OJ! ' + IF, (8" O)l' (3.65)

For evaluation of monostatic radar cross sect ion we lubl titute ~ = 0 in (3.64)

because we have assumed that the incident wave il propagating in the %- z plaDe

(0, = OJ.

3.12 Results of Numerical Compatation

For T E or T M polarization of incident field, the unknown expansion coefficients

corresponding to series expansion of scattered and t ransmitted fields have been

dete rmined by solving the system equat ion (3.54) by u. ing Gauss elimination

technique [361. Since the series expansions of the E and H·fields in terms of the

spheroidal vector wave functions are infinite in extent , all the matrices of (3.54)

have infinite size. Thus to obtain numerical reeulta of desired accuracy one has

to truncate the series and matrices accordingly.

The tru ncation scheme used here, il the one that Wa.l developed by Sinha

and MacPhie for conductin g prolate spheroid 171 and [20]. According to thistheir

scheme fer each value ofm, n =[ml, Iml+ 1, Iml+ 2," ' , Iml+n,-l with "I=

Int(k lQ+4) . k1 =2'11" / ~ , kill is the relative size of the Ipheroid, and Int (a ) is the

smallest integer which is not leu than (D.). For each m, N in 51...I,t...[+", CIU1 be

given as N =0,1,2 , . . . 1 " 1 - 1. It i, found that (>.harmonics (0)~,( ±l);,(±2) ~

give at leaat two significant digit accuracy in the computed relults uf the radar

cross sections. Thislimih the ValUCI ofm to -1,0,1. However since we are u.ing

ephercidal vector wave functionl Dorma.lir-:d with respect to Iml,we evaluate the
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radar erose sections for m = 0, 1. Another truncatio n scheme i.s given in ill]

which ulel M~ and iJ· vectors in lCattering formulation .

Allo in order to study the luttering characteristiCl in the resonance region,

where the wavelength of the incident radiation il comparable to the length of

semi-majo r axil of t he spheroid, we choose spheroids with different values of k1a

varying from 1 to 4.

Numerical results are presented in the form of normalized bistatic an d monos-

tatit (backscattl::ring) radar cr051 led ions in the far field for lingle uniformly louy

dielectric prolate spheroid , with axial ratio alb = 2 and 10, and with different

values of complex relative permitt ivity (t.) .

In thil thesis we determine bistatic radar croas sect ion for T E polarization

of nose-en incident wave (9, -=0), since for axial incidence the known I::Xplllu ion

coefficients p;'.. have eeme magnitude for T E and T M polarizat ionl of incident

plane wave. Thus when 8, = 0, evaluation of bilt at ic radar crolB section in E·

Pla ne and H·Plane is independent of the polarization (TE or T M ) of the incident

excita tion.

Fig. 3.2-3 .4 give plots of normalized bistatic cross section for TE polariza·

tion of incident wave in both E.plane (; = 90°) and H -plane (; = 0") for a

single uniformly lossy dielectri c prolate spheroid having axial ratio alb = 2 and

al b = 10, and with different values of relative size (.l:1a ) and complex relative

permittivity E~ . In Fig. 3.2 we consider f . = 2 - j O'!jand in Fig. 3.3 we ccaeider

fro = 4 - jO.5. From Fig. 3.2 and Fig. 3.3 we ebserve that as t he axial ratio

changel from 2 to 10 there is a decrement in magnitude of bist aUc ClOSS section

in both E.plane and H-plane. ThiBil due to the reduction in th~ available Icat ·

tering area for t he thin spheroid with l\.Xiai ratio 10. Allo for a given value of
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axial ratio and complex relative pennittivity, bistatic cross sections tend to show

more fluctu ations all the value of relative tize (kI4) increeaes. For given values

of k14 and al b, Fig. 3,4 presents the plots of bistatic crou section far various

values of frequency dependent part of 4 . We cheese seven different values of 4:

f , = 4-;0; f, =4 -;0.2; f, =4-;0.4; f, =4 - ; 0.6; f, =4 -jO.8; f, = 4- ;1;

f.=4-;1.2.

In Fig. 3.5 and Fig. 3.6 we present the plots of normalized monostll.tic

(backlcattering) cross sect ion wu(9;,Ol/J..' as funct ion of &Ilpect angle 9, in terms

of T E and 7'M polariza.tions of incident field for a single uniformly lou y dielec

tric prolate spheroid having axial ratio o/b= 2 and ol b = 10, and with different

values of relative size (kla) And complex relative permittivity t:,.r. In Fig. 3.5 and

Fig. 3.6 we consider t, = 2 - jO.5 and r, = 4 - ;0 .5 respectively. It is observed

that tLat magnitudes of monostatic croll section corresponding to TE AndT M

polarizat ion of incident wave are the same at axial incidence (9, = 0°). This is

because for axial incidence the known expansion coefficientsP~.. corresponding to

the incident fields have same magnitude for TE and T M pollU'ization of incident

excitation.

Fig. 3.7 shows normalized mono.tatk crolS section, u a funct ion of upect

angle Ior single uni formly lossy dielectric prolate spheroid with axial ratio 10,

relati ve size k14 = 3, And for different values of complex relati ve permittivity

e, = 4 - ;0; e, =4 - j O.4; t , =4 - j O.8; E. =4 - ; 1.:1.
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t., =4 - ; 0.8; (,.= 4-jl : t. = 4- ; 1.2.
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Chapter 4

Electromagnetic Plane Wave
Scattering by a System of Two
Uniformly Lossy Dielectric
Prolate Spheroids in Arbitrary
Configuration

4.1 Introduction

By means of mod " , eries expansions of elect romagne tic field. in lenni of prola te

ephercid el vector wave funct ion. (following the procedurel .bown in chapter 3),

&n exact solut ion is obt ain ed for t he elect romagnet ic plane wave scatte ring by

two un iformly Jon 7 dielectric prola te spheroids in arb itr ary orieotuion. Since

the spheroi d. an u bitrari ly orient ed, rot ation al-t rantlatio nal addition th eorem .

for spheroidal vector wave functio n. are employed in order t o trans form t he e ut-

going wave from one . pberoid into the incoming wave at th e other sphero id. By

appl ying app ropriat e bound ary cond itions on . urfeee. of t he .ph eroidl we solve

unknown expan sion coefficients eereeepeedl ag to .c attere d an d traplmitted field•.

Finally num erical result. in the form of curve. for normaliz ed bi. tatic and mon o

It atic radar UOI• • ection. are e;iven for a variety of two-body Iylt em of UDiforml y

49



1085y dielectric prolate spheroids in arbitrar y orientation having resonant or near

resonant lengths and different distances of separation.

4 .2 Expansion of t he Incid ent El ect ric F ield
in terms of No rmalized P ro late Spheroidal
Vector Wave Functions

Consider a system of two arbitruily oriented uniformly lossy dielect ric pu,late

spheroids as shown in Fig, 4.1, Unprimed coordinates refer to spheroid A and

primed coordinates refer to spheroid B. The system (:I: ',y',z ') is obtai ned from

(:I:,y,z) by rotating the latt er th rough Euler angles (0,,8,1) (defined in 138J,
also refer Appendix E) to (:rIl'Yll ,zll) which is parallel to (:I: ',y',z' ), and the n

followed by a t ranslation of distance d. The center 0 ' of spheroid B has spherical

coordinates ( d, 8~, r/J ,,) with respect to OZ1l1l114:11 and ( d, 8o, ~) with respect to

Oz yz . A point P has spheroidal coordinates ({ ,I'j,' ) and ({',I'j',") with respect

to (e, Y. z)'system and (z', y',z')-system respectively,

Let us consider a monochromatic plane electromagnetic wave Ofwavelengt b.A

and of unit amplit ude propagating in free space. This wave is propagating in the

,t:-z plane (r/J. = 0) at an angle 8i (:5: -,0 /2 ) made ..... ith the z-axis, and i, incident

on A-B system. The media outside and inside the scatte rel'lll are essumed to be

non-ferromagnetic [i.e. their permeabilit ies are equal to the permeabilit y of free

Let the electric field Eiof the incident plane wave be linearly polarized in

an arbitrary direction. This can be decomposed into two orthogonally polarized

E vectors Bi T E and EiTU . H.vector is decomposed into orthogonally polarized

H vectors HiTE and HiT"" . EiTE and HiTMlie perpendicular to the plane of
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to

Figure 4.1: Scattering geometry for a system of two uniformly lou y dielectric
prolate spheroids ingeneral configuration with arbitrary incidence and polarization
of & plane elec tro magnet ic wave.
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incidence whereas E;TM and H ;TE lie in the plane of incidence. Thus t he polar-

izati on angle "fp (the angle which the incident electric field makes with the normal

to t he plane of incidence (:t-.: plane)) is such that for TE polar ization "fp =0 and

for T M polarization "fp == 11" / 2. The elect ric field of unit amplitude incident on

spheroid A is given aa 120} and [151

EiA = f: f: ip:..M~~I ) +P;..M';~l )1 (4.1)
.'.... - ... " · 1"' 1

wher e

(4.2)

NI...I..(h1 ) is the normalization factor given by (2.32); Sj"'I..(h1,.co. 9i ) is the prolate

angle function (defined in Chapter 2). hi = (27f/),)FA • which is real. All the M.
veetcr e in t he above equat ion are evaluated with respect to hi '

If t he expansion of Ei A is arranged in tjl-sequence (O)tjl, (±1)tjl,(± 2); , . .. , then

the sen e. expansion in equation (4.1) can be given at :

EOA = M!~)T[A (4.3)

where

[ MOO ]
I A = [ : : ]

.. Mil
(4.4)

M iA = ~i2 ;

where

M~ [M~~I)T Mi(l )Tj (4.5)

M~ [M:~\)T M;~VT; M~!~~) M:~~~)j , i7 ~1 (4.6)
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with

Alro

with

[p:[pjTj

!P;:IP;;I P~~+I 1 p:f.-I,l, rr ~ I

(4.8)

(4.9)

(4.10)

The limiting expressions for P:'.. when 'Yp =0 and B__w/2 are given in [7] (also

refer section 3.6.1).

E·fie ld incident on spheroid B is given in t erms of primed Ulordinate Iystem

u [27),

E.8 = e-,4,.l E EIp:·..M:~r + p;;.~M;,~1' + p::"M::~I)1 (4.11)
...·-- ..·""1

where,

, 2j - 1 , -imf:[ .
P:..... N (hi)S .....(hl ,col s:)e Cu.'lln'Y,

+ {

C..,:::;:1,'rJ B; except when 1p =0, B; -0 i
(4.13)

COl'Y, ] •
-c••' .inB; (or '1, =0, B; -0 '2
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where f. = -ko(zsin 8; + i cos B;). AU the £i '-vectors are evaluated with re

spect to h~ (= 27:FB! ),), which is real. In (4.12) and (4.13) 0:,41: respectively

are the spherical angulu and uimut~ al coordinat es of the direction of inci

dent monochromatic plane wave with respect to the primed coordinate .y. tem.

c"""cGtI ,~~, , (a:::: 2:, y, :) are the direction cosines tbat relate the unit vectors

z,y,i a.nd~',Y', ;' by

• = Cu ,~, +Call Y' +Ca,';', a = z,y,i

where

C",,' cosacospcos 'Y - sina . in..,

<.v - (cosacospsin1 +sinacos1 )

cosa sin{3

",' sinacos fJcos'Y+cOBasiu1

'W cosacos 1- ·ina cosp.in'Y

",' sinasin {3

-sin{3cos..,

<'v sin{3sin..,

e.. , cos{3

(4.14)

(U')

QJJ, 'Yare the three Euler eeglee. If the expansion of BiB is arranged in the

4I'.sequence, (O)¢!, (± 1)¢',( ±2),', .. then we get in the ma.trix form

(U6)



where

(4.17)

with

M:~ [M~pYT M~(IJ'T M~'(I)TJ (4.18)

M2' [M:~~)'T M;W'T M; '(I)T M~!~~i, M:~;~i) M~~I)T 1' rr? t4. 19)

Also

M~'(I)T

[M;'I~r M:'!~I~l M:~?~~ . ·1
[M::I~I' M::I~II~l M::1~1~2 ...J

(4.20)

(4.21)

with

"Po

"p.

[p!? pj 'T p~' T I

[P::1 P;:1 p;'TP!;;+l) P:{;_I) p~; J, rr 2:1

(4.22)

(4.23)

'"P.

,"P.

[P~;" I P;';..I+l P;'~1+2 J

Ip~:I" 1 P~:I" I+I P~:["I+2 J

(4.24)

(4.25)

The exp one ntial factor in the expression for Is is necessary since r' = ;:- 1,and

the global reference point for the incident WAVe is the center 0 of Ipheroid A. If

the spheroids are identical and Euler IUIglesQ ...... O°,{J ...... 0· ,.., ...... 0° (i.e . the

spheroids are p&l"IIJl~1 to eecb other), it is obvious Is :;;; IAe- ik;.i .
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4.3 Expansion of the Scattered Electric Field
in terms of Normalized Prolate Spheroidal
Vector Wave Functions

According t o (20] the scat tered E·field from Iphf~roid A can be expanded in the

form:

~ ~ ~

i .A f o..~Q~nM~~4l +a:"+I ,..M;.(:t .+fQ~lnM~f~) +Q~M~4)

+ fon~a:m..M:~~ +Q~(",+ I )...M:~~+ I )... (4.26)

where all ii-vectors in the above equation are evaluate d wit h respect to h t which

is real. 0 +" ,0. - " and a'-, are t he unknown expansion coefficienh corresponding

to the series expansion of sca.tte red E·ficld from spheroid A that have to be

evaluated.

If lame tP·sequence of azimuth al har monics used for the incident field i. used

in this case, then the scattered field from the spheroid can he writte n in the

generalized column vector product similar to that for E; . [201:

(4.2'1)

where

with

IM:~4)T M;(4)Tj

IM:~~}T M:(4)T M:~:~) M~~)T] . tT?: I

(' .28)

(' .29)

('.3 0)



with M: <4' defined in (4.7) for i = 4, and

('.31)

AJ.o

or :: lo~r0 0'1') (4.32)

0; !O:~I o~'I' 0:[.-1)0~~ 1 , (f ;;:: 1 (4.33)

with

O;T = [0;" ..10;'1..,+1 o;' I..IU . •.J

o~T = {0~, 1 " 1 Q~.I"I +I Q~,I"lu ••• J

(4.3' )

(4.35)

In presence of epbercid B there will be & non-plane wave type of field that will

be incident on aphercld A, which is the E·field Icattered Crom ephercid B. The

seattered E·field from spheroid B can be expended in term s of primed coordinatel

in a man ner sim ilar to th at Cor Icattered E ·field (rom Ipheroid A. The scattered

field E.s ach u a secondary incident field (or the spheroid A. Thus we have

i .s f o..~P:'..M:'i4r+P:,,+,..M;'W..+~P~I..Mj:)·+JJ;.. JJ;'..(4)

+ f o..~P:.....M:J:!+P~(_+l )...M~l':')+ I)'" (4.36)

where all M'.vectors in t he above equat ion are evaluated with reaped to k~ which

j, real. 13+·', 13--1and 13··' are the unknown expan lion coefficientl corresponding

to the series expansion of sca.tt ered E·field from spheroid B th at have to be

evaluated.

Thil Icatt ered field from spheroid B can be writt en in the generalized column

vector product shni l&rto t hat for spheroid A as

(' .37)
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We can use a sequence of <p'·harmonicsfor spheroid B similar to that used in cue

of spheroid A, and form the following column mat rices for the .cat tered E·field

from spheroid B :

(4.38)

in which the various sub-vectors M:~ and fJ~ are anelogcua to those for ephercld

A, but with the vector wave functione evaluated with respect to primed ccordi.

nates.

To impose the boundary conditions on the surface of epheroid A, the field

in primed coordinates has to be expressed in terms of vector wave function. of

first kind in unpr imed coordinates. Since the spheroids are arbit rar ily oriented,

it is necessary to invoke the rot at ional·tr anslational addition theorem. [24J-(261,

which tra nsform each outgoing normalized spheroidal vector wave functions in

primed coordinates into a series of incoming normalized spheroida l vector wave

functions in unprimed coordinat es for r :s; d [271 :

Utilizing (4.37) and (4 .39) we can have:

E.B A = M~1T Iff /3

(4.39)

(4.•0)

The elements of matr ix (f! are the rotational· translational addition fieldexpan·

sion coefficients given in '24)- (26) (also refer Appendix E). The column vector

MBA is such that

('.'1 )

(4.42)
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where

M~".o [ryt~l jT M~( I )T M~( l )T] (4.43 )

M~",,, {M;:\)TM;~~)T M:(l)TM~!~~) M:f~~) M:~)TJ . (72: 1(4.44)

with

M;(ljT= [M;'I~r' M;'I~I~ M;,~iZ: J

M:(ljT= [M:,)~lT M:,(~~~, M:.\~l~z J

(4.45)

(4.46)

where all A1-vecton in the above equation are evaluated with respect to hi which

is real. Abo in the presence of spheroid A there will he a non-plane wave typ e

of field incident on spheroid B. which is the E-field scatte red from spheroid A.

Thi. Icattere d field from spheroid A hlUl been shown to be of the form ;

(4.47)

To impose the boundary conditions on the lurface of spheroid B, th il field in

unprimed coordinate. baa to be expreued in termsof vector wave function . of firs t

kind in primed coordinates . By utilizing the rotationa.!-tranlla tiona.! Addition

'I'heoreme each outgoing normalized spheroidal vector wave functions in unprimed

coordinates il transformed into a series of incoming normalized spheroidal vector

wave funct ions in primed coordinates for r' :5Ii [27}:

(4.4S)

Utilizing (4.47), (4.48) we can have;

(4.49)

The clements of matrix [I"] arc the rotat ional-tranl lat:onal addition field expan

sion coefficients given in (241- [26) (also refer Appendix E). M~1 has the eem e
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form as that of M~~ but with vector wave funct ions evaluated with respect to

primed coordinat es.

4.4 Expansion of t he Transmitted Electric Field
in terms of N ormalized Prolate Sphero idal
Vect or Wave Functions

Since the spheroids are composed of dielectric material , there will be transmitted

component of E-field inside the spheroids which is non-plane wave type. Thus

the tr ansmit ted E-field iaelde spheroid A can be expanded in terms of normalized

prolate spheroidal vector wave [unction" given by [231:

,,(+- 5, "( - -5 and "(~ - s are the unk nown expansion coefficients corresponding to the

series expansion of t ransmitted E-field that beve to be evaluated . All the M
vectors in the equat ion (4.50) are evaluated with respect to h,= (21rFA IJ.).ji;A.

If the above expansion for EM is alto arranged in , -sequence (0)" (±l);,

(± 2)!j!I" . then E' A can be written in the matrix form

(4.51)

where, in terms of unprimed coordinate .ystem of spheroid A, MW i. a column

vector whcse elements are th e normalized spheroidal vector wave function. of first

kind evaluated with respect to h, which is complex, and "( represents a column
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vector whole elements are the correspond ing unknown expansion coefficienh .

where

[M~\llT M:1}Tl
[M:£VTM~( 1 )T M:~~~) M:(~IT] , u ?:1

with M;(i)defined in (4.7) for i = 1, and

Also

['Y!f'YcT]

/'Y:~I 'Y~T 'Y:T.-I)'Y~~ J , u?: 1

with

'Y;T = ['Y;" ..11;'1..1+I1;'1t'1 +~ •• •J

'Y;T = [-7:.1..11:.1"1+1":, 1"1+3 •••J

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.5' )

(4.59)

The tran.mitted E·li.eld inside sphe roid B can be expressed in term. of normali zed

prolate spheroidal vector wave funct ions . imilar to that {or epbereld A.
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T hus in ma.trix form we can write

(4.61)

where, in terms of primed coordi nate system of spheroid B, M~~ is A column

vect or whose elements are the normalized spheroidal vector WAve functions of

first kind evaluated with respect to h~ (= (2'l1"FBI.\) ..fi;B) which is complex, and

6 represents 1Iocolumn vector whose elements are the corresponding unknown

expan eicn coefficients.

(4.62)

in which the various sub-vectors M:~ a.nd 6~ are analogous to those for spheroid

A, but with vector wave functions evaluated in primed coordinates.

4.5 Expansion of Incident, Scattered and Trans
mitted Magnetic Fields in terms of Nor
malized Prolate Spheroidal Vector Wave
Functions

Using the MllXwell 's equation

(4.63)

where k is the wavenumber (or propagation con. tant ), E and '" are the permit.

tivi ty and permeability of the medium respe ctively, we can obtain exp anlions of

the different H·fields inside and outside the sta.tterers in terms of appropr iate

normalize d spheroidal vector wave functions from those of the con esponding E·

fields. We do this by replacing M by N and multiplying each exp&n8ion by the

62



ap propria.te value of j (tl p)l /J. Assuming media outside and inside the Icatt erers

a re non-ferromagnetic, we can write for sph eroid A:

HiA j (tdPo)1/2 N!~7' IA (4.64)

ii.sA j ( tdJJo)ln N~~T [rf iJ (4.65)

n.. j( t1/JJo) 1 / 2 N~1:r0' (4.66)

HOA j ( tA/PO)1/2 Nl~JT.., (4.67)

where £1 and tA are the permitt iviti es ofthe media outside and inside the scatte rer

A respect ively, IJo is permeability of free spac e.

Similarly for spheroid B we have

H;B j «(I /~o)1/2 r'i!~T IB (4.68)

ii.AB j « (l /p~)1/2 N~f [r'IT {J (4.69)

ii.B j «(dpO)l/2 N~~T 0' (4.70)

HI B j «(s /Jlo)1/2N!W.., (4.71)

in which t ) and (8 are the permit t ivities of the media outside and inside the

scetterer B respectively.

4 .6 Application of Boundary Conditions

From the analysis shown in the previous l ections we find that the tot al E-field

outside the spheroid A in the Iyste m of unprim ed spheroidal coordinates can be

given"

and the total E-field inside the sp heroid A is given as

ECA=M~~T ..,
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The total H_field outside and inside the spheroid A in the system of unprim ed

sp heroidal coordinates can be respect ively given u

an d

(1.75)

Similarly total E-field outsid e and inside the spheroid B in the system of primed

spheroidal coordinates can be respect ively given as

end

(4.77)

T h e tota l H-field outside and inside the spheroid B in the system of primed

spheroidal coordinates can be respectively given as

H B = iiis + H.AB +n.B = j(fdlJ-o)l/~ (NWT IS +N~1Tlr'f a +N~~T IJ)
(4.78)

and

(4.79)

B oundar y conditions require that acre.. the surface of each ephereid the tangen

ti a.lcomp onents (" and tP) ofth e E-fi eld and at well u tho.eof H-field (uluming

DO .uriaee current ) mUlt be coutin uou8.

Sp heroid A:
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Let us first ccmider spheroid A. App lication of the bo undary conditions on

equations (4. 72)-(4.75) yields:

( Ml~)T IA + M~lT [rjT13 +M~~T 0: X lll" (A

(N!~)T IA + N~~T IrjT 13 +N~t 0:) x lll"(A

M~~T "f x i 1(=(.. ( 4.80)

('A)l/f ~"' (I )T •
;;- .... tA "f x e1(:: (.1

(4 .81)

Following the procedures developed in [151, both sidesof (4.80),(4.81)are scalar

multi plied by the vecto r functioll'

{ :: Z}Slml.lrnl+Nei::i(...±I }; , N ""0, 1, 2, .. .

And t he produ cts are integrated overthe surface of the spheroid A with re spect

to both " (-1 ~ 1/ :S: 1) and ¢ (0 ~ ~:s: 211'), whe re

I" = j2FA(e~ - '1~ )l lf

I. = 2FA(e~ - '12
)

for equation (4.80) and

l" = 2F1U~-'13)'/3/ (e~-1)1/3

I; ;: j2Fl(e~ -I'JJlI<e~ - 1)

for equation (4.81). Uliog the orthogonality pr operties of angle functions and

comp lex expon entials , we obtai n the following set ofcoupl ed algebraic equ a tions

of tbe form:

(PM,I , + [0)6+ [QM' )Q + (RMBAJlrl' ~

[P.,I , + (016+ [Q.,I Q + [RNBAJlrl' ~
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where the elemenh of [PUA], [QMAI, [RMBAI, [PNAJ, [QNAJ, [RNsA]. (RAul an d

(RNA] are defined in Appendix B.

Spheroid B :

For spheroid B by applying bounda ry conditiolls an d performingsub sequent 11-

int egration and tj-i ntegration in a manner similar to that of spher oid A. we

ob tain the followingset of coupled algebra ic equat ions:

[01, + IP• •16 + [R. , sJlr' jTa + (q. o] ~ = [RMS! [ls i (4.84)

[01 , + WHO! 6 +[R.,sllr 'I' a + [qNO]~ =IRNsl [Is] (4.85)

where th e elements of [PMS],[Qu s},IRuAs], [PHS], IQNB), [RNASj, IRMs)an d

[RNsJar e defined in Appe ndix B.

4. 7 System M atr ix [G]

Combining (4.82). (4.83) , (4.84) a.nd (4.85) we can write:

Eq uation (4.86) can be written in the form

S = [G]I (4.87)

where

S= [~] (4.88)
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1 = [:; ] (4.89)

::1 1
IRMB] j
{RN8]

(4.90)

[GJ is the generalized system matr ix which is independent of the direction and

polarizat ion of the incident wave. Solution in the form S ;;: (G]I eliminat es t he

procen of repe atedly solving a new set of equatioz:s for new augJe of inci dence,

which is a gI ca ;. advant age in numerical computat ion.

4.8 Far-F ield Expansion s and Scatter ing Cross
sections

Let the dista Lce. from the centers cf sphe roids A and B to th e point of observa.t ion

P be denoted by rand f' respecti vely. Of practical interest is the scatt ered field In

t he far zone of the A-B system for Ir l _ 00. To calculate the fer-field " aUer ing

crces sect ions we have to evaluate the asymptotic values of hie , h~(' , 'I. 11, 'I'

a.nd ~'. T he asympto t ic forms of spheroid al vector funct ions are obtained by

neglecting r 2 and ib higher Ieveese power lenni. According to [201:

h,1

"I, cOle

; _ - 9
;4.91)

h~e'
_ kr'

"
_ COl 6'

;' _ - e'
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Also as r -> 00 it can be shown t hat [20]:

R!:~(hlt {) _ j fl+l q;:.

R!.:((h;,(' )

Jf.R!.:(h;,(' )

where

leo (:i:sin 9cos r/J +Ysin 9sin r/J +i 1,.05 9)

(' .92)

('.93)

l = d(:i:sin9. cosr/Jo +y sin 9osinr/Jo+ icos 8o) (4.94)

hI = 271: FA !),and 11; = 271: Fs / )'. k. is the k·vector ofthe far-scattered field where

spheroidal coordinates are asymptotic to spherical coordinate s. Thus in th e far

zone the scattered E·field with respect to t he origin 0 of spheroid A, which is

chosen to be the global origin, is given by [20) and [27J:

E. e.,+ E.s

e~:" [F,,o\(S,r/J )S+F'-A (9 , r/J ) ~ +F,'s(8',!j.' )(I' + F.'s (9' , IjI' ) ~ '1

e ~:" [Fu( S, r/J )S+ F. A(9,,p)¢ +F,'s(8\4l){91S+92¢}

+F~8(6', " ){9,i+ 9.~) ]

'~~ [F.(6,.) i+ F.(6 , .) ~] ('.9, )

where

FIA(S,IjI)+y,F,'s(9', 41')+93F.,S(9',r/i')

F'A(9,iIJ)+y,F,·s(S', iIJ') + 9.F.,s(S', 41' )
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[gl g~f Inuc j[cos8'COI tP' COI8'.i.a.' _.i.a8'IT (4.98)

[g, 9. )7 1011011- .'• •' "" . ' 0]7 (4.99)

F.(I , ' ) - E,.~r· [S~· {(a~. -a;;').",,(m + I)'

+ ; (0:' .. + o;;...). •in(m + l )tP} + ~O!l"] (4.100)

FlI(S,;) fc ,,~j" [~'lS...,,{(o: .. +0:'..)co. (m + Ih6

+ j (o:.. - Q;,,,).ill(m +1),p}

- HS...H ,.. {(O~+l ,..+ Q~I...+l l ,") co. (m + l )tP

+ ;(Q~+l,.. - o~I"'H),:) .in(m + l) tP }

+ ~"SI..Q!I" -HSo..a~] (4.101)

(n] [C OS9cot f cot hiu; - .~u9 ] (4.102)- .in; cot;

[ ~- ~ ~-]1° ] = c;.' Cn' r.,r (4.103)
e.... c r,/ e.~

T he expressio ns {or Frs (', ;') &lidF.-a(" ,¢'; u-eobtain ed {rom thOle of F'A(',;)

and F. A( 9, tP)respe ct ively by repl&cing 0·. by {J•• and multiplying each exp ression

by aD overall pbue fac tor e:p[j k,.cil to account for tbe vector di.pl&Cemen t l from

tbe global ori gin O. Ah o th e function& in primed vari able. SO, ¢l are expre eeed in

term. of unprimed varia.ble. ' ,; u follow•. T he dire cti on o{ the .r ut ered wave

vecto r k: in t he Ier -field wit h re.p ed to pr imed coor din ate .y . tern i. give n by
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Subst itu ting ~, y,i in (4.93) in terms of ~',Y',;' (refer to (4.14» we get Ircm

(4.93) and (4.104) the following set of relations, from which knowing 8,.pand th e

direction cosines c..,.. ,c..u',c...' (Q= :t:,yor z) (refer to (4.15)), we can determine

8' and ¢/:

lun O'col¢/ = CU"ID ()co . ~+e;,,,, .m 8 SID¢i+ CU' COS 8 }

ImO'sJn¢/ = Czw,sJn8cos¢i+ew 'Jn8 'Jn¢i +c,,~,cosO

cos 8' c".,slfi(JcosrP+e;,••sIfiBsm,p +Cu ' cOB8

The expressions needed for calculati ons of bistatic and monosta tie radar cross

sections in the far field are given by equations (3.63) - (3.65).
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4.9 Results of Numerical Computation

Num erical result. axe presented in the form of normalized bist atic and monostatic

(backscatt ering) radar cross sections in the far field for It. system of two uniformly

louy dielectric prolate spheroids in arbit rary orientation, each with axial ratio

alb = 2 and 10, and with different values of complex relative permit tivity (ft.),

Euler angles (0,/3,"1) and displacement of their ceatera specified by (d,90' th).

Since the series expa nsion. of the E and H-fields in terms of the sphe roidal

vector wave funct ions are infinite in extent, all the matrices of (4.86) have infinite

size. Thus to obtain numerical results of desired accura cy one bas to truncate th e

series and matric es accordingly. The truDcat ion procedu re discussed in Chapter

3 is followed here. Since F, and F~ in equations (4.100) and (4.101) respectively

are true for m ~ 0, we compute the radar cross sections (or m =0, 1.

At this point it i. pertinent to mention about the limitation on the diltance

between the spheroids for lome non-axially displaced cases while using rotetional.

t ranslat ional addition theorems. For a distance d of separation between two

spheroids (as shown in Fig. 4.1) the rotat ional-translational addition theorems

for spheroidal vector wave functions, employed to transform t he outgoing wave

from spheroid B into th e incoming wave at spheroid A, are valid st rictly within

t he region enclosed by a sphere of radius d and having cente r at global origin O.

Th us rotatio nal-tr/lns lational addition theorem. can hold good for all point. on

spheroid A only when IIA :::; a, where tl A is t he eemi-majc r axis length of spheroid

A and d i. th e radius of the sphere of convergence. Similar argume nt. are tru e

for spheroid B.

In order to study the scattering characteris tics in the resonan ce region, where
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the wavelength of the incident radiation i8comparable to the length of semi-major

axis of each spheroid, we choose a" "" as = a "" >./4 . This restrith the value of d

to d ?: >./ 4. So since k1a = 11' / 2, in order to truncat e the series and matrices all the

results in this thesis ha ve been obtained with n = Iml, lml+l,lmj+2" ··Iml+ 5

for each value of m corresponding to the above ./l-bArmonica, and N "" 0, 1,2, · · 5.

Fig. 4.2(a) shows t he computed normalized biatatie ero se section 1ff1(8)/>"

as a function of scattering angle 6 corresponding to the axial excitat ion (8; = 0)

of incident wave for t wo ident ical uniformly louy dielectr ic spheroids each of

semimajor axis length of ),,/ 4, complex relative permittivity being f~" = (~B ""

2 - j O.5, and axially displaced (center of spheroid B lying on the axis of sym

metr y of spheroid A i.e. e-eds} by d = >./2 Fig. 4.2(b) presents the nOi"mal-

ieed bistatic ClOSS section for the lame spheroids and excit ation but with their

centers separat ed by a distance d = l along a-axis . In Fig. 4.3 we present

the normalized bistatic cross section by choosing complex relat ive permittivity

(,A = ( ,B = 4 - j O.5. In both Fig. 4,2 and Fig. 4.3 we consider the Euler angles

to be Q "" 30°,,8 ""45°,, = 60°,

From Fig. 4.2 and Fig. 4.3 we observe that u t he axi&1 ratio changes from 2

to 10 there i8 a decrease in magn itude of bistat ic cros. section in bot h E-plan e

and H -plaae. This is due to the reduction in the available . catter ing area for the

thin spheroid with axial ratio 10. Also with he increase of d = >./2 to d = >.we

observe that E-pl ane and a -plane bistat ic cron .e ctions .how more oscillat ionl ,

which is due to more pronounced effect of multiple Icat tering. Also t he ebeeeee

of perfect nulls may he attrib ut ed to multiple sCdtering,

Fig. 4.4(a) Ihows the computed normalized mcnoete tlc crou section 'll"0"(8i ,O)/ )"J

as a function of aspect angle 8, in terms of TE and TM polarization of incident
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wave for two identi cal uniformly lossy dielectric spheroids each of sem imajor &Xis

length of ),/4 , comple x relati ve permittivity being 4A = 48 = 2 - j O.5, and

ax ially displaced (cent er of sphe roid B lying on the &Xis of sym metr y of spheroid

A Le. z.axi,) by ),,12. Fig, 4.4lb) present! the normalized monostatic cros s sec

tion for the same spheroids and excit ation bu t with their cente ra eepar ated by a

distance)" along l.axis. In F ig. 4.5 we present the normalized monostatic croll

section by choosing complex relative pe rmittivity 4 A = f:~B = 4 - jO.5. In both

Fig. 4.4 and Fig. 4.5 we consider the Euler angles to be Q =30°, /3=45·,"'(= 60· .

From each of the four figures in Fig. 4.4 and Fig. 4.5 resp ect ively, we find

t hat the minima of monos t atic croll section correspon din g to T E polar izat ion of

incid ent field and that correspon ding to T M polarization of incident field occur at

almos t same value of 9j • However, since t he spheroids ar e u bitrari ly oriented , at

(Ii = O· the value of hackscattering cross section correspond ing to TE polariza tion

of incident excit at ion is differ ent from that correspo ndin g to TM poluizat ion of

incide nt wave, unlike wha t we have observed in [201, [23] an d 143J. The same

observatio n holds good for 9. = 180°. We can alec notice th at minima occur at

almo st at t he same p osit ions AS in Fig. 4.2 and Fig. 4.3, and also AS d inc reases

monostatic croll seetic n, corresponding to both TE and T M p olarization of

incident wave, show mor e oscillati ons which is due t o more pronoun ced effect of

multipl~ scattering.

F ig. 4.6 gives the plots of normalized backecattering cron sect ion for broad

side displacement of two ident ical sphe roids .eparated by d == ),/ 2 in the direction

of x·axis (90 = wo , ~ =0°), with Euler angle. a =30°, ,8 = 45°,'1 =60· and

complex relative permittivity : (a) 4 A = i,S = 2 - j O.5; (b) 4A =frB = 4 - j O.5.

From this figure we find that that for ax ial ratio al b= 10 of the spheroid., there
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is a significant difference in the value of monostatic crOBB section at 9; =0° for

T E and T M polarization or incident waveunlike what has been explained in (201,

{' 3J u d [43J.

In Fig, 4.7 the variation of monostatic cress section as function of aepect

angle is presented for two spheroids of different values of axial rat io and complex

relat ive permittivi ty. The center 0' of spheroid B has spherical coordinates:

d = >" / 2,90 =60°, tPo =20° with respect to Oa:yz••yetem; the Euler anglu are

chosen to be a = 30°, ,8 = 45°,1' = 60°: (a) f.A = 2 - jO.5, f.B = 3 - j O.5,

(6) f.A = 3 - j O.5, f.S = 4 - jO.5, (c) (.A = 2 - j O.I, f.S = 3 - jO.l , (d)

f.A =3 - jO.l ,f.8 = 4 - j O.l.

In Fig , 4.8 the variation of monostatic crosl section as function of ILBpect

angle is presented for two spheroids of different value. of axial rat io and complex

relative permitti vity. Complex relative permitt ivity of the spheroids are chosen

to be f.A =3 - j O.5, (.8 = 4 - jO.5. The center 0' of spheroid B has spherical

coordinates: d = >../2,90 = 60°, tPc = 20° with reepect to Oa:yz-Iystem. In Fig.

4.8(a) Euler angles are chosen to be a =0°,,8 = 45°,1' =0°, whereas in Fig.

4.8(b) we take Euler angles to be a =30' ,,8 = 60', l' = 90' ,

It is to be noted , while obtaining results for monostatic crcse section we have to

consider the variation of aspect angle (9.) from 0° to 180° (unlike what have been

shown in (201, [23] and 143]) because of the spatial u ymmetry of the arbi trarily

oriented spheroids.
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Chapter 5
."' ..

Electromagnetic Plane Wave
Scattering by a System of Two
Parallel Uniformly Lossy
Dielectric Prolate Spheroids

5 .1 Introdu ct ion

By mean s of modal series expansions of electrom agnetic fields in t erms of pro

late spheroidal vecto r wave functio ns (following t he pro cedures sbown in chap-

ter 4), an exact solution is obtained for the electroma gnetic scattering by two

uniformly louy dielectric prolate spheroids in parallel orientation . Since the

two spheroids are in parallel configuration, the Euler angles «(1,.8,7) used in

rotational-translational addition theorems [24]-[26] are, in t he present cu c, given

by a _ 0· , p -+ 0° and 'Y -0 0°. Thus translational addit ion theorem. (191can be

considered u a special CUI! of rot ation al-t ranslational addit ion t heorems when

a .....0°, {3-+ O· and.., _ 0· , Numerical results in t he form of curves for normal 

ized bistat ic and monostatic radar cro8llections are given in the reecnence region

for a variety of two-body syst em of uniformly louy dielect ric prolate !pheroids in

parallel orientation ha.ving different dieteace e of separa tion.
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Figure 5.1: Scatteri ng geometry for a system of two parallel uniformly 105ly die lec
tr ic prolate spheroids with arbitrary incidence and polarizat ion of a plane elect ro
magnetic wave.
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5.2 Formulation of the Problem

Conside r a system of two parallel uniformly lossy dielectri c prolate sphero ids as

shown in Fig. 5.1. Unpri med coordinates refer to spher oid A and primed coordi

nates refer to spheroid B. The center !Y of spheroid B has spherical coordinates

( d, 8o. ~o) with respe ct to Oxyz. A point P has spheroidal coordinates ({ ,I'/t r/J)

and «',,,',tti') with respec t to (x, y, z)-system and (x ' ,y' ,z ')-sy. lem respec tively .

Let us consider a monochromatic plane electromag net ic:wave of wavelength ).

and of un it amplitude propaga t ing in free space. Thi s WAve is propagating in the

x - z plan e (1Ii =0) at an angle 6;($ 1(/2) mad e witlJ the a-axis , and is incide nt

on A - B system . T he me dia ou ts ide and inside the seatt erers are assumed to b e

non-ferromagnetic.

Let the electric field Ei of th e incident plane wave be linearl y polariz ed in

an arb it rary direction . T his can be decemp esed into two orthogonally polarized

Evect ors EiT E and E;TM . H i vector is decomposed into or thogon all y polarized

ii vectors H;7£ and HiTAI . T hus the polarizat ion angle "Y,( the lJ:z!e which

the incident electric field makes with the normal to the plane of incidence (:I: - Z

plane)) is such that for T E polarizati on "Y, =0 and for TM polar izat ion "Yp = 11'/ 2.

The incident electric field in unprimed coordinate Iystem can be expres sed in

generalized mat rix product [20]

(5.1)

In (5.1) a boldface char act er means a column vector and T indicat es the tran spose

of a matrix. T he elements of M!~) are th e normalized apheroida1 vect or wave

functio ns corresponding to rad ial funct ion of first kind evaluated wit h respect to

hi (= 21fFA/ ), ) which is real. Th e elements of I A arc the known incident field
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expansion coefficients given in [20j (also refer to (4.2)) . The limit ing expressions

for the elements of I A when 1'p =0 and 9; ..... -,;{2 are given in {7J (a lso refer

equation (3_39)).

In the presence of spheroid B there will be a non-plane wave type of field

incident on spheroid At which is the E-field scattered from spheroid B. This

scatt ered field from spheroid B ean be writt en in the generali:zed column vector

product [201

(5.2)

where, in terms of primed coordinate system of epbeeoid B,M~~T i. 110column

vector whose elements are the outgoing normalized spheroidal vector wave Iunc.

tions corresponding to radial function off ourt b kind evaluated with respect to h1

and fJrepresents a column vector whose elements are the corresponding unknown

expansion coefficients.

Now for boundary conditions to hold geed , this field in primed coordinates

has to he expressed in term s of vector wave functions of firat kind in unprimed

coordinates. At this point it is necessary to invoke the Tu nalat ion&! Addition

Theorems [19] which transform each outgoing normalized spheroidal vector wave

functions in primed coordinates into a series of incoming normalized spheroidal

vector wave functions in unprime d coordinates for r S d. Thus following the

analysis shown in (20J, we can write :

(5.3)

The e1ementl of matrix (Ts Al are the trllOslationaladdition field expanlion coef

ficients given in [19J and [20](also refer Appendix E). Also the elements of the

column vectorM~~ are defined in Appendix I of [201 [else refer Chapter 4).
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In response to the incident plane wave and the field scatt ered from .pberoid

8 , the total field scattered by epberoid A is given as [201:

(5.4)

where, in terms of unprimed coord inate system of spheroid A, Mi1 is a column

vector whcee elements are the out going normalized spheroidal vector wave func-

tionl corresponding to radial funct ion of fourth kind evaluated with respect to hI

and Q' rep resents a column vector whose elements are the corr esponding unknown

expansion coefficienh.

Since the spheroid is composed of dielectric mate rial there will be a t rans-

mitted component or E-field inside the spheroid A. which can be expanded as

(5.5)

where, in terms of unprimed coordinate sy. tem of spheroid AI Ml~ i. a column

vector whose clements are the normalized spheroidal vector wave funct ions of

first kind evaluated with respect to h2 which is complex. h2 = ( 2 f(FAI>,)~j

I!:A = I!:A - jaA/w. where to i. permi ttivity of free space, and conduct ivity (ooA ) of

the medium inside the spheroid A is not equal to zero. fo.A = 'A/~ is complex

relative permittivity of the medium inside spheroid A. "y represents a column

vector whose clement. are the corr esponding unknown expans ion coefficients.

U.ing the Ma.xweU's equat ion

(5.6)

where Iei. the wavenumber (or propagation constut), e end ~ are the permit 

t ivity and permeability of the medium respectively, we can obtain expansions
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of the different H·fields inside and outside the IcaUerer in te rms of appropriate

normalized spheroidal vector wave functions from those of th e corresponding E·

fields. We do this by replacing M by N and multiplying each expansion by the

appropria te value of j ( f/ }J ) I/~ .

The total E· field and H·field outside the spheroid B can be expanded in a

manner identical to that for spheroid A but with respect to ac rmeliaed spheroidal

vector wave funct ions &Bsociated with primed spheroidal coordinates .

5.3 Application of Boundary Conditions

Boundary conditions require that across the surface of each spheroid th e tangen·

tial ccm pcnents (I) and 41) of the E-fieldand as well as those of H·field (usuming

no surface current) must be continuous.

Applying the boundary condit ions on the surface (e = (A) of spheroid A, we

get:

( M!~T I A +M~f [TBA]T(3+M~1T a ) x i If=f..

( N~~JT IA +N~f [TsAf 13 +N~1T a) x {l("'f..

M!~T '""I x {If=f.. (5.7)

(EA/EI)1 /3 NI~T '""I x {I e=f..

(5.8)

Both sides of (5,7), (5.8)are scaler multiplied by the vector functions

{
111.q }S :I:j(,dl}. N 012I. ¢ 11n1,1",j+N e ,= , , ,. ..

and the products are integrated over the surface of the spheroid A with respect

to both I}(- 1 S I}:51) and ;(0:5; :52'11"), where

III j2FA(e~ _ 1}2)1/3

1.. 2FA({~ _1}2)

87



for equati on (S.7) and

I.. 2Fl{{~ - '71 )1 /1/{€~ _1 )1/2

I. i2Fl(e~ - 'l2)/((~ - 1)

for equa tion (5.8) u given in 123). Utilizinl the ortbolo nality propertiel of com

plex expone ntial. and &.!lgle funct ions 111. we obtain the foUolt'ing .et of coupled

algebraic equation. of the form:

[PM')1 + to! ~ + IQM'] Q + [RMS.IITs. !TP

[p..! 1 +10! ~ + (Q..J Q + [RN..IITs. !TP

IRM'] 11.1 (5.;)

(RN.I [I.] (5.10)

(QM' )
(QN']

(R...el[T.S!T
IRNAB1ITAB]T

where the clements of IPM.d,IQMAI. IRMBA],[PNA ], [QNAJ . IRNBAI. [RAuJ and

[RNAJ are defined in \201and [23J(also refer Appendi x B).

By applying tbe boundary conditions on the l un&Ce {( ::::: ( 8 ) of epheroid B.

aud performing subsequent '7- and ~-integratioDI we obtain the it. .e t of coupled

algebraic equat ionl in a manner . imila.r to that of Ipheroid A.

[0! 1 + IP.. s) ~ + IRM. sIIT••)T Q + (Q...IP~ IR...) II. ) (5.11)

(0) 1 + (PNsl s+ IR..sIIT..]T Q + IQNS)P = IRNSI[l s I (5.I2)

where the element s of IP"lB].I QMBI. IRIoIAB]. [PHB],IQNBI. IRNABI.I RAlBJand

{RNBI are defined in Append ix B. Tb e elements of [lBI, the knolt'n expan lion

coefficientJ correlpondi ng to lerics expansion of E·fie1d and H ·field incident on

Ipheroid B, are given by -'quation (4.2). but evaluated with reapect to primed

ccordinetes. Thul according to [231,we tinally get

(RM"J[TBAi'] [ 1 ] [[R...II.}[RNBAJ[TS. !T ~ = (RN' ] I. 5.13)
(QAts) Q IR..slIs
IQNs] p IRNs)Is
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Equation (5.13) can be written in the form

S = (Gil

where

(5.14)

(5.15)

(5.16)

10J
(OJ

(PMS!
(PNsl

{O) ]10j
IRMsl
(RNSI

(5.17)

All the elemeete of matrix IGl are defined in Appendix B. [OJ i . the leneral.

teed system mat rix which il independent of the direction and polarizat ion of the

incident wave. Solution in the form 5 = IGJ I eliminatu the proccu of repeat.

edly solvinl a new set of equation. for new angle of incidence, which i. a great

advantage in numerial computation .

5.4 Far-Field Expansions and Scatte r in g C ro ss
sections

Of praetleel interelt il the Icatt ered field in the far zoneof the Iy. tem for Irl _ 00 .

The u ymptotic forml of Ipheroidal vector functionl are obtained by neglecting

(-1 aa d ih higher inverse power terms. Thus in tbe rar scae the eeeuered E·field

with respect to the origin 0 of Ipheroid A, which il cholen to be the , Iobal origin,
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is given by [20J:

where

E. E'A+E.s
.~.~ [F.(S,,, )8+F.(S,¢)~I

FOA (S,¢) + F•• (S," )

F..(S,,,)+F•• (S,")

(5.18)

(5.19)

where Fu (8,¢) , F. A(8,41), F, s(8, 41 ) and F.s(8, 41) are defined in [20J.

The expressions needed for calculation of bistatic and monostatic radar cross

sections in the far field are given by equations (3.63) - (3.65).

5.5 Results of Numerical Computation

Numerical results are presented in the form of normalized bistat ic and monostatic

(backscatt ering) radar eroes sections in the far field tor a system of two paralle l

uniformly lossy dielectric prolat e spheroids, each with axial ratio alb = 2 end 10,

and with different values of complex relative permittiv ity (£,o ), an d displacement

of their centers specified by (d,So,q,o). Since the series expansions of the E and

l{·fields in terms of the spheroidal vector wave functions are infinite in extent,

one has to t runcate accordingly the matrices given in (5.13). The trun cation

scheme used here, is the one that was dieeuaeed in previous chap terl. For each

m, N in St...I.I...I+N can be given as N = 0, 1,2 , . • . , Rl - 1. Also it is found that

q,·harmonics (O)q" (±l)q,, (±2)41 give at least two significant digit accuracy in the

computed reeulta of the radar erose sections. In order to study the ,c lLttering

char lLcteristics in the resonance region we choose (l,A = li S ~ )./4 .
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Fig. 5.2 shows the computed normalized bil ta tic croll section corresponding

to axial excitatio n (8; = 0) of two identic al uniformly lou y dielectric spheroids

with i~A =i~8 = 2 - ; 0.5, each of semimajor exie length of ),/4 placed in cont act

with each other end to end, th e centers of two spheroids being separated along

z-axis by: (a) ),/ 2, (b) A. In Fig. 5.3 the normalized biltatic croll section il

shown for t"~A = f~B =4- j O.5. From Fig. 5.2 and Fig. 5.3 weobserve tha t &I the

axial rat io changes from 2 to 10 there is a decrease in magnitude of bist atic erose

section in both E-plane and H ·plane. T his is due to the reduction in the available

scat ter ing area for the thin spheroid (al b = 10). Also due to more pronounced

effect of mult iple scatte dng , as d increases E·pl ane and n -plane Lista tic croll

sections sbow more oscillations.

Fig. 5.4 represents the plots of normalized monoetat ic croll sect ion in term. of

TE an d TM pola rizations of incident field for two identical Iceey ephercids with

ir A = i~B =2 - j O.5, in contact end to end with their centers separa ted along

a-axis by: (0) d = >./2, (b) d =),. In Fig. 5.5 shcwe t he plota of normal ized

monost at ic cross section for i~A = i~1J =4 - ; 0.5. From Fig. 5.4 and Fig . 5.5 we

observe t hat minima occur at almcst at the u me positionl as in Fig. 5.2 and Fig.

5.3, and abo as d increases we observe that monostatic eross eecticn ccrreepcndl ng

to both TE and T M polarizations of incident wave shew more oecillatione, which

is due to more pronounced effect of multiple scatt ering. We also notice that

at 8, = 00
• the magnit ude of monostatic radar croll section correlp onding to

T E polarization of incident excitat ion is equal to that corresponding to TM

polariza tion of incident wave, unlike what we have observed in Fig. 4.4 and Fig.

4.5.

Whe n the two spheroid. are displaced along the 2:·axi. specified by the cocrdi-
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nates d = ),,/2 , 80 ::: 90', ~ :::0· , u shown in Fig. 5.6(a) and Fig. 5.6(b), we find

that for fat spheroid (4/. =2) there is it. difference in magnitudes of monodatic

ere.. .ectiea for T E and TM polarizat iotll of incident wave, hut these magni

tudes arc almost nrnefor the thin spheroid (0/ . ::: 10) - this behavior il lam e u

that explained in [201and (23). When the two . pheroid. wereubitrarily oriented

(refer Fig. 4.6) there wat a significant difference in the value of monostatie ero..

•ection at', =O' for TE and TM polarization of incident wave.

In Fig. 5.7 the variation of rnonoatatic Croll section aI function of aapect

angle is presented (or two epberoidaof different nluel of axial rat io and complex

relat ive permitt ivity. The center 0 ' o( ephercld B haa .pherical coordinatel

d = A/2,fJo = 60" ;0 = 20' with respect to OZY:- IYllem: (a) f . A = 2 - i O.5,

t .B = 3-iO.5; (. ) f .A "" 2- j 0.1,t",B= 3-iO.l ; (e) €,oA = 3- j O.5,frB =4-j O.5;

(d) t.A = 3 - iO.l, ~B ::: 4 - j O.l.

It i. to be noted, while obtaining resulh {or monOitatic cross section we

consider the vuiation of 8. {rom 0" to 90"'becaule the spheroids arc in paral lel

orienta tion "nth resped to eachother.
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Chapter 6

Conclusion

Exact analyt ical solut ions for the problem of electromagnet ic srattering by a sin

gle un iformly lossy dielect ric prolate spheroid, a system of two uniformly lossy di

elect ric prolate spheroids in arbi trary configuration, and ee a special CMe a system

of two paralJel uni formly lossy dielectr ic prolate epheroida have been obtained.

Num erical resultl in the form of curv es for normalized bi.tatic and mon ostet ic

radar cross sect ions are given for a variety of uniformly )OIlY diel ectric prolat e

spheroids in the resonanc e region. Also for two-body scatt ering, differen t arbi-

trary configurati ons and par allel configurati ons of the ephereids hav ing di fferent

distan ces of sepa ration have been considered by using rob.lional·translational

addition theorems and trans lati ooal additi on theorem s respectivel y. Since 00 Ire-

quenc y approximati on ill involved in our present aoalyaill, the solution obtained

is valid for &11 frequencie s.

By choosing Euler angles Q = 0° I {J = 0°, l' = O· for acatt ering by a eyetem of

two lossy dielectric spheroida in general orientatiODChapter 4, [411, [42], relults

obtained were found to be identical with that ohtain ed for a Iyat ern of t wo louy

spheroids in parall el configuration (C hapter 5 of the present th esia) which em

ployed only tranalational Mdition theorems {igl. Some of the resulh of Chap ter
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5 were presented in [43]. Also result. were crces checked and were found to he

in agreement with that of [20], [27], [23Jand [29Jby choosing appr opriate values

of rela tive permitt ivity of the medium inside the spheroid, f,. and Euler angles

It wu Ihown that the sy. tem matrix [G], in the equation S = IGJ I, is inde

pendent of the direction and polar ization of the incident wave. Solut ion in the

form S = [G]I eliminate. the prceees of repeatedly solving a new set of equations

for new angle of incidence, which is II. great advantage in numerical computati on.

Also since rotational-tr anslational addition theorems and t ran. lational addi-

tion theo rems assume the simplest forms for normalized vector wave funct ions

because they tr anslate like scalar wave functions, formulat ion of the two body

scatt ering problem is simplified. However, because of the limita tion in the .ize of

the region within which the rotat ional-translat ional addit ion theorems and tree s-

lationa l addition theorems available in liter ature are valid, the center to center

distance between the spheroids for some non-axially displaced cases is restr icted

to d 2::: e, where a is length of semi-major axis of the spheroid. If th is restrict ion

can be eliminated, then it will be possible to solve the problem of acattering by

a system of two closely spaced sphe roids {or all non-axially displaced cases with

distance of leparation d < 4 .

Although I pecifically prolate spheroids have been eoueldered, it is possible to

obtain the solution for scat tering by oblate spheroids by mak ing lui table tr ans·

format ionl in prolate spheroidal vector wave functions (I).

The present study finds applications in electromagnet ic scattering {rom air

crafts and missiles [401, rain drops, ice cryl tals, biological part icles e.g. bact erial

cell. (13) and in biomedical engineering such &I tumors in human bodies [30}.
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Appendix A

Computation of Complex Eigen
Values

Since th e dielectr ic med ium of the ecatterer is of complex relative permittivity,

complezeigen values ~ .....(h), where n = Iml,lml+l, 11711 + 2" " , and m i. any P OI -

itive integer including zero, are evaluated for the sphercidel ecalar wavefunct ions

correspondi ng to transmitted components of E-fidd and H·field expansions.

Oguchi has calculat ed the eigen values of spheroidal wavefunct ions (or com

plex values of propagat ion constantl in [311.Zimmer &1'0 hu computed complex

eigeDvalues for spheroidal wave functions auuming e-jwl timeverieticn of time

harmonicelectromagnet icfield [30). Thus in [30] th e complexvalue of propagat ion

constant is given by

Sebak and Sinha have calculated complex d gen values correlponding to prolate

spl::eroidal funct ions in order to .tudy the .tattering by a conducting spheroidal

object with louy dielectr ic coatin g at axia l incidence [32].

In t hi. tbeei a we consider eiwl time variation of tim e-harmonic electromagnetic
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field. So t he comp lex value of propagation constant is given by

In the present work, the algorith m developed in [33], [6] for real eigen value

compu ta tion has been used to calculate complex eigen valu es. In thi s appendix

we present th e code for calculatio n of complex eigen values required for angle

functions and radial functio ns computat ion. We also present tables of eigenvalues

~.....(h), m= 0,1, 2,3, n = Iml,lml+ 1, Iml+ 2. · · · , lml + 5 corresponding to

prolate radial and angle functions for axial ratio of length alb = 2 and alb = 10,

and different values of complex relative permi tti vity of the medium inside the

spheroid . The comput ed eigen values are in excellent agreement '" it h those given

in 130).

Now from {lJwe know that

FI (A.I )

6 = F~ (A.2)

from which we find t hat

I =
(a/6)

(A.3)
..)(,/6)' -1

Utilizing the relation h == ~.(kI4Je) , where fr = fIfo - ju /(W£o) and .l:1a =
2n/ ~ being the relet ive size of the spheroid , we can find t he complex value of h.
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/ - In Uae,~It~wing e~4e Uae 'O"'J'III Ali~n ~J e~mJ'/tz eif~n ulllu Jor
pl'1l/.lIe.pAel'1l idal walle /Ilne liolU eOITe.pon4inf 10 e~ ,..plfZ valllll aJ

J'1'1IJ'agali o.. ,,,,..,Ianl U J'rflenl~". r ia jIlTlelio.., .", t 4 lor a/gdra of
eomp/u ,lIalllili e. (4ed art.d 6dolll) art. n~ 1 "efi,.~4 in tAe J'rt.. t TlI
e~"t. _/

tJP edd.truct{
dO\l.b1,re1 :

double re 2 :

c"'lOp1e%;

cOlOp1uX '{
O. ,O .};

cOllp1uJ '{
0 . , to} ;

ill tlll. ,n:

cOlllp1uhe :
cOllp1uE2e .E3c:,Ec:,Uphac:[60],Bat ac:[60].a.....c:[60].
Jc:[60].CAc:[5 0] .dSallc (60) [601:

co.plu cpov(collpl u .1Dt ); / _ rdll l"lU(eomplu)u (inltger) _/

, olllplu clIlu1t(co.pl u, colllp1u ); /. rt.lllrnI (eomple.)_(inttftr ) ./
COllpleX ra1l.1t(double . collple z}: /_ rd llrnl (401l&lt)_(inh ger) _/

cOllphz c:.ua( co.plu .co.pl u}; / _ ""11l1"IU (eom,Iea)+(inte,tr) . /

cOllplex cdh( collple z. collple z}; / _ rdlll"lU (eom, Iea)!(inleger) _/
co.pl u c.ub(collpl ex.co. plez}; / _ ...,llIr.II (com, lt.).(inltgt r) _/

cOllpl ex c:uc:.cpovpo. ( eoaplu ,compl ex); / . rd ll,...., (com,ltl;._(,~.ilille intel t r) _/

cOllp1ex cuc.cpovu'S(c:o .p1u , cOllpln:); / _ rt.l\l,...., (compfe';'_(nt flll ilit integcr) ./

llai D() {

hlthl.clI.t1.c:lt2;

Il~O:

t or (cnt1'l;ea.t1~ t6:ca.tlH>{

£2e=l:

E.3cII X:
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" 01' (c at2.1;CD.\2S tli ;(.JlU u){

b .O;

11 « .-.)13 ;to) b ." 1;
J,:t (1Ic . r . 2 ; 0 . ) call ..co...i , ,,1l0;

bt r. l .1 .cIlU . 1'l a , :

coapl..: l1 c .lc. Yc. Zc .d" ltac :

11' ( Il-.)X2nO) 1 · 0;

, 1.. 11 ',. - . )X2 'j11!O) 1. 1 :

1:t (1Ic . r.l 'jll!O. ) cal1..cutact or (l)j

11' (c ab, (hc » 4 .0 ) Ec. ... ...(!1 c. E3c.) ;

U (a"".) ! c·l;

dd t ao;.:ra l .0 . OO1:

dduc . r,2· 0 . 001 :

11' ( 1I.0;. n 2 .. 0 . ) d,ltac .n2 . 0. ;

it (lIc . r ' I;O. ) Xc. c&ll ..cc*J,tsnt io ,.( l ) :

1'1a, · 0 ;

t or (c.U . l ; cllt 3S1 OO; CIlU ++)

i f ( 1'1al;0) coaU~ll' :

El c·E c :

!e-Xe :

tc · ... u (Ec.ddtac) ;

it (lI.e.r&1; O.) l eacall.coa1u:ratill ll(1 ) :

%ea lc ;

11' , tab" cab , (Te ) -call.. (Zc ) ) S 0. 0000001 )

{
/ . (''16== 0) E> com,ulofiet" etl CiiUI.IIIlIlU ",rft"et"li", h ,.. lIIIilll t-flC• • /
/ . (''16==1) => cetm,lIll1filifl 01 ciim IIIl.u ClIrft' Jlofll ifll . , 1If1l le /U"C. _/
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pr illtt ("AlGLE M CTt CI EtGEI ViLUE,l u bda_{Xd Xd} t or he.X it :

)\t\D" ,

if «D ...) aa (e ab ,,(he»4.0» (

E3e .:nl=2 . • (Ee. rd- •••):

E3e .ra2~2 .• {Ec. re2 - •• &I):

)
if ((II"a) aa (e "b"{hc)"4 . 0» £)c -c aub( Ee, E2c) ;

if (cab,, (hc » 4. \l) E2c" Ec;

it «hc. r d;l!D.) U:( n"l » /. An'/f /unclion ei,e n va/uu./
pr111t1' ( "hllbd._ {~d Y.<1} . rl " ~I, lUlW._{~d );,4} . iD - X&\u",
&I, II, Ec .rl l , _ , a , Ec. ra2);

i f ({ hc . rd¢O . )tt{....O» / . RA4iAIjv llclioll ei,e " VAlliu . /

prillt1'(" l&lllb4a_{Xd Xd}.re . 1.1 , lUlW.-< Xd ',(d} . i D. XI\II",

D , 11., [ c . r d , &I, II, Ec.ra2)j

l c· call.c:ol&ltera t l oll(l) j

flal"l:

d .. {

Ee· e lll.ll{c4h(emuh(delhc,Ye) ,club{Yc,Ze)), Elc);

le=ea ll..eoaitarat ioll(l) :

4tltac=cdiv(cault(lc, ddtlc) , :lI1b(Yc, Zc»j

r atuJ11;

_1' ,,0:
f or (r·l ;r~40; r+Il 2) {

if (r>l) at lll ;
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1zI.ti, X':

cOlllpl .. lc :

11 «n- II)X2==O) {

'c [O),nl-1. :

' c[ OJ .n2"1 . :
U(hc, re 2- =O. ) . c[O] . re2 :0 .:

'c [a - 1I+2'l]=K :

)
it « n - .)X2¢O) {

1c[I],rl1=1. :

I c [1] .,..2:1 . :

if (hc, n2nO.) 'c[1] .rI2=0. ;

' c{D- .+25) "JCj

) ;
f or (X'-1 : r :5(n-.)+2:r+=2) C&lC..(Olillplt l X'ata(r) :

'pc-'c{Jl-.t2] ;

i-II - II+22:

it ((1I-.1X2¢0) iu:

1011' ( r-1 ;X'S20+1 ;X'+-2) calc_coQolrDltar ata(i, r) ;

I lLc_. c{D_ .t2] ;

Xcac . lib( 'pc, l nc ):

n tlinl(Xc);

"aid calc..(o..lpha.Jl.tI_G.....( iJl.t u , il:lt Il')

{
it (.. -. Il{ I • ... /Of'Allglej1all.eti o1l .. .. . . 1

Upb& c[r)-nult«(2 ••nt2 •• rt3. ) .C2 ••• t2 . •r+5 . ) 1

(d oubh)«2•••rt2 j.(2 ••tX'+I» ).cpowCbc._2» :

BIUc[r] - cl'll.(n.ult (-(.tr).(.+r+l) , ellUl t(J , J» .

I'IIUlt «2. (.t:r). (.+X'+I )-2••••- I)1
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(doubh ) «(~.1II+2 . r- l ) .(2 •••2.r.3» ) . ~po.. (h ~ . 2» ) ;
G....,..f;(r ),. rII\11t(-« r .( r- l ) . (2•• + 2 . r+3) .(~ •• + ~ . r+ r.)

I (doubl ,) « 2.,. +2. r - 3) . ( 2•• +~.r- l)' (2' . +r +2) .(2••+r+ 1) ) )

. (d oubl.) (.t», t..ut(J. J» ;

)
it ( 1'8' "" 0) { I • .•. /or R;di ...l ftllletigll ... .. . 1

Alphlf;[r)~rIIuh (- « (2. ..+2.r+3h (:z•• +2.r+S)) / ((r+2 . ). (r+t.) )).epo. (he . -2) ;

B. tae [r ]""'WII( l'1Iul 't{ -(a +r) o(.+r+l) .cault(J. J) .

nnlt « «2~r'ro:Z.r. (2 •• +1)+2 • • -1)

/(doubl .)«{2 •• • +2 . •r-l .) .(2 2 . • ro 3 . »)) ) .cpo . {he . 2))) ;

G.,."..e [r )= rll lIlt (-({{(r +2...-1 ). (r+2 ) . ( :Z••+2.r+3)o (2 • • +:Z. r +Ii»)

/(doub le ) ({ (2 .•1II+2••e-a. r' (2 .0.+2 . • r -1 . ) 0( 1'+2 . ) o( r+1.») )

. (d oubh) (.. t )). e.wlt {J , J )) ;

.,o l d eale. eolllupititaUUllt r )

le[r+2] "~OUb (~ IIUlt (l.lph...e[r] . e.ub(E~ .B.tac: [rl » . ~dh(G....e(r] . 1., [rJ » ;

tatum;

vo id ealc: .~ olldomit, ro.t . (int i . l l1t r )

\le(1-r] ~edi"{G IlJrIIII..~(i-r) .tlUb( e"11lt( .uph.~ [i-r). ~.ub (Ec: .B.tae(1-r] » .1~(i-r+ :Z]» ) ;

113



alb = I. }
It. a :::: .,;/ 2 h ': 2.2272S-j O.274187
( 1' ",,:2 - j O.S

I Ulbda..{O O}.re • 1.34384, laabda.{O O}.im • - 0 . 2718 9
l ambda.{O l} .n • 4 .77309, lUbela.{O t} . b • - 0 . 640738
lubdL{O 2}.re • 8 .7385 9 , l Ulbda..{O :z} .i.III• -0 .718 595
IlJllbda.{O 3} . re • 14 . 5753 , IlJllbda _{O 3 } . b1 • -0 . 667017
lUlbda .{O 4}. re • 22 .5148 , 1U1M • .{D 4} .!. • - 0. 64047 7
l ambda.{O 5} .re • 32.489 , l U bda.{O S}.b • -0 .6 2952

l u bda.{ l l} .ro. 2 . 88658, lambd a.{ t i} . 1ft . -0 . 1990 15
lambd a.{t 2} .n • 8 .0 083 5, l ubda.{l 2} . ia • - 0 .478564
lambda .!t 3} , re • 14. 3, IlI.IlIbdll..{l 3} .illl • -0 .677297
lambd a.{t 4} . ra • 22 . 3727 , lambd ll.{l 4 }.illl • -0 . 699691
IUlbda.{l 5}.re . 32.3997 , IUbda .{ t 5} . 11l1. -0 .6 05346
lubda.{l G}. rI! • 44.4132 , l ambda.!t G} . llD. • - 0.607484

I llJD.bda.{2 2} . re • 6 .65765, l ubd&.{2 2} . i lD. • -0.154081
l ambda .{2 3} .re • 13.5795 , lUlbda _{2 3} . i ll. . -0 .38 145 5
l Ulbda.{2 4}.n • 21.9594, lubda .{2 4} .ill. • - 0. 486818
l U bd t..{2 5}. n • 32 .1 343 , l ubda.{2 5} . i a . - 0 .534555
I _ bd a.{2 6}.n • 44 .2281 , l lUlbda.{2 6} . i a • -0.558966
lUbda_{2 7} .n • 58 .28 43 , 1..bdL{2 7}. b • - 0. 5731

I Ubda.{3 3} .n . 12.5217 , I Ulbd a. {3 3} . ill . -0 .12 48 52
la.lll.bda.{3 4}.re • 21.3021 . I Ulbda_{3 4} . ia • - 0 .317 195
l Ulbda.{3 5}.re • 31. 7002, l ubda.{3 S} . i ll • - 0 .4214 25
lUbda.{ 3 6} .re • 43 .9 221, l Ulbda.{3 6} .111 • -0 .479 637
l aJllbda.{3 7}. re • 58. 0573 , la.lll.bda .{3 7}.ia • - 0 .5 1463
lubda _{3 8} . n . 74 .1457 , lambda.{ 3 b} .ill . -0 .637195
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al b C 10 }
&Ia C fl / 2 h :::: 3.13192 - jO.194986
fl' = 4 - j O.5

lubda _{O O} . n - 2 .2 734 5 , l ambda.{O O}.i• • - 0 . 202386
lubda .(O 1} .n - 7 .19 015 , l ubdl_{O 1} . b • - 0 .562536
lI'llbda_{O 2}.re • 11. 6549, lubda_{O 2} . b • - 0 .7 2961 4
l u bda _{O 3} .n. 17. 3297, IUbdL{ O 3} . b . -0. 708674
lubda.{ O 4} . re • 25 . 1235, lambda _CO 4} . b - - 0 .664279
lhlllbcla.{ O 5}.n • 35 .035 , lambda.{ O 5}.ia • - 0 .643592

lambda _{1 1} .re • 3 .61559 , h. lllbda..{1 1}.b. • -0 . 166357
lambda .{1 2} . re . 9 .83907 , l ambda.{1 2} . i ll . ··0 . 437745
l ambda .{1 3} .re. 16 .6007 , l ambda_{1 3} .iII . - 0 .570878
lambda .{t 4}.re · 24 .7913 , lambda .{1 4} . iII. -0 . 606676
l ambda .{1 5} .re • 34. 8406 , lambda.{1 5} .1m • - 0.614908
l Ulbda .{1 6} .re • 46 .8586, lambda .{1 6}. b • -0 . 615189

lu.bcIa .{2 2} .re. 7 .24066 , lambda .{2 2} . ia . - 0 . 138349
lamlxta .{2 3} .re . 15 . 0577 , l ambda.{2 3} .iII . - 0 .358157
lambda.{2 4} .re . 23 .6 907 , l u bda .{2 4} .iII. -0 .478232
lubda.{2 5}. re • 34 . 2738, lallbda_{2 S} . iII . - 0 . 534787
lubda .{ 2 6} . re • 46 .4 703, l aabda.{ 2 6} . ia • - 0 .561997
lubda.{ 2 7} . re • 60 . 583 9 , l Ulbdl.{2 7}.ill • - 0 . 576 646

lubda.{ 3 3} .re. 13 . 0024, 1..1x!a_{3 3}.ia . - 0 .115839
l ubda.{3 4} . re • 22 .5411, l aa bda_{3 4} . ia. - 0 . 302595
1Il..lllbda .{3 S} .re • 33 . 3709 , lll.llbda.{3 S}.ill • - 0 .413737
lubda.{3 6} . re • 45 . 8362 , l_bdl .{3 6} .ill • -0. 477229
lubda .{3 7} .re • 60 . 1163 , lUbcia.{3 1} . i ll • - 0 .514193
lI.ll bda.{3 8} . re . 76 . 291 , l ambda_{3 8} .iII . - 0 .538439



a/b = 2 }
kl a :: w/2 h "" 1.93857- jO.2386 49
t~ = 2 - j O.5

lubd&M{O O}. re '" 1.06377 , lambda.{O O} . 1m " -0 . 22527
IMlbde.~{O l} .re .. 4 .13042, IlJllbda .{O i} .1m. - 0 .506446
lambda.{O 2} .re II 8 .0484 , lambda_tO 2}.im .. -0.535578
I_bela.{O 3} . re .. 13. 9361 , lambda .{O 3}.b" - 0 .4 9717 2
lamb da .tO 4} . re .. 21.8977 , lubda_{O 4} . i lll • - 0 .4 8 107 9
lambda_tO 5} .re .. 31.8809 , I llJlbda.{O 5} .111l" - 0 .4 74385

l ambda.{ II} . r e .. 2.58628. l ambda.{ II} . 1m .. - 0. 151901
l u bda .{ l 2} ,re '" 7 .53693 , lambda .{! 2} .im .. - 0 . 370553
l ambda .{ ! 3} .re .. 13 .74 01, IlJllbda.{ l 3} .11ll" - 0 .4 37 124
lambd a. {! 4}.ra ;; 21.7931 , lUbda.{l 4}.1m .. - 0 . 452182
lambd a.{! 5}.re .. 31.B 144 , lambda.{! S} .1m .. - 0 . 4 66744
lambda.{! 6} . r e .. 43 .8255, I n,1.ldll.{l S} .ill .. - 0 . 4 5877 6

lambda.{2 2}. re .. 6.50519, lUbdll..{2 2} . illl .. - 0 . 120 115
l ambda.{2 3} ,re • 13 , 2054 , l ambdll_{2 3} . ill • -0 .293536
Illlllbda_{2 4 } .re • 21. 486 1, l Ulbd a .{2 4} .ill • - 0 . 36 9997
lalllbda_{2 5} .re • 31.6162 , l Ulbda_{2 5} .ill • -0 . 4046 98
lambd a_{2 6} .re • 43 .6866 , l llJD.bdll_{2 6} .ill • - 0 .4228 11
lllJD.bda_{2 7}.re. 57 .7292, lambda.{2 7}.illl . -0 . 433 477

l ambda.i3 3} . re • 12 . 3989, lambda_i3 3}. illl. - 0. 096 44 08
l ambda. i3 4}. r e • 20.9919 , l ambda_{3 4} . im .. - 0 . 2431 3 1
l ambda .{3 5} . re .. 31.2903 , l ambda_{3 5} .illl • -0 .320558
l ambda.{3 6}.re • 43.4567, l ambda_{3 6} .im • -0 .363701
l ambda _{3 7} .re . 57 .5583 , lambdll_{3 7} .im . '- 0 . 389183
l ambda_{3 8} .re • 73 .625, lUlbda_{3 8} .illl • - 0 .4 06706
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alb = 2 }
k ill = rrj2 h = 2.72599- jO.169714
tr = 4- jO.5

lambda..{O O}.re" 1.85301, lambda_{O O}. 1m " -0 .174734
l u bda.{O l} .re .. 6 .05629, l ambda .{ O i} .1111 .. - 0 .4 56712
lubda.{O 2} .re .. 10 .2368 , l ambda.{O :I} . 1m .. - 0. 5530 12

h Jllbda.{O 3}.re .. 15 .9755 , l ambda. {O 3}.lm .. -0 .522249
lubda.{O 4} .re .. 23 .6481, lambda.{O 4} .ilD. .. -0 .494313
l u bda.{O 5}.re .. 33 .7943 , :"ambdll.{O S}.lm .. -0 .482347

lambda.{t l}.re .. 3 .27 521 , l ambda .{t i} .im .. -0 .137771
lambda.{t 2} . re .. 8.96967 . l ubda .{l :I}.1m .. -0 .3 46202
lambda.{t 3} .re .. 15 .4882 , hll\bdll.{ t 3} .1m .. - 0. 435784
lambdiL{l 4} .re .. 23.6146, lalllbda.{t 4} .im .. - 0.458211
lambda.{t 5}.re .. 33.6528, l ambda .{ t 5} .im .. -0 .462409
lambda.{t G}.re .. 45.6695, l ambda.{ t 6} .1 m .. - 0, 463242

lUbda.{2 2} .re .. 6 . 96509, lambda.{2 2} . l m .. - 0 . 110234
lambdll_{2 3} . no .. 14 .3514, l u bdll_{2 3} . lm .. - 0 . 279673
l ambda_{2 4}.re .. 22.9581, lambda.{2 4} .lm .. - 0 . 3657 12
lambd ll_{2 5} .re .. 33 .2364, l ambdll.{2 5} .im .. - 0 . 405231
lubda.{2 6} . re .. 45.3818, lubda.{2 6} . i m .. -0.424715
l u bda_{2 7} .re .. 59 .4674, lambdll.{2 7} .1m .. -0.435581

l ubdll_{3 3} .re .. 12 .7734, l ambdll_{3 3}.ill " -0 .0909213
lubda .{3 4} . ra .. 21.9469 , l u bdll_{3 4} . i m .. -0 .234486
Illlllbd ll_{3 5} .re .. 32 .5643 , lubdll_{3 5} .illl .. - 0 . 31 6341

lambdll _{3 15} .re .. 44 . 9092 , lubdll_{3 15} . i lll .. -0 .3 625
lam bd a.{3 7} . re .. 59 .11 79 , I lllD.bda _{3 7} . im .. -0 .38998

IlllD.bdll.{3 8} .re .. 75 .2534, lambdll._{3 E}.lm .. - 0 .407476
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b =3,95 - j O,626

lambda .{O O},re • 3, 1235 9, lalllbda _{O 0} .1m • -0. 6452
l ambdll,.{O l } . re • 9 .63 126 , l ambda_{O l},lm • - 1.93797
l ambda_{O 2}. r e • 14 . 924, l U brta.{O 2} . lm "' -2 . 8564 4
lambda _{O 3} .re • 20 . 5276 , lambd a.{O 3} . lm • -3. 01137
Illlllbda_{O 4} .ro • 28.0 948 , lambda.{O 4} .im • - 2. 80456
lll.lllbda.{ O S},re • 37 ,9083 , l ambd ll._{O 5} . i m • - 2, 67226

l ambda. {l l}.re • 4.34254 , l ambdll._{l l} .lm • - 0 . 5828 03
lamb da_{l 2} .re · 11.7608 , 1Il.lllbdll..{1 2} .im . - 1. 60812
lamb da .{ l 3} .re · 19. 144 , lambda.{1 3} . 1m "' -2 . 24785

l ambda .{1 4} . r e • 27 ,5 121 , lam bdll.{ 1 4} .1m • - 2 . 48663
l Ulbda.{l 5} .re . 37 .586, lamb dll..{l 6} . lm . - 2 . 5287

lll/llbdll._{1 6} . re • 49 .6 032 , 1Il.lll.bdll._{1 6} . l m • - 2 .5 2473

lamb dll..{2 2}.re. 7 .84581, 1 Il.lllbda .{2 2} .im . - 0.60345
lambda.{2 3} .re - 16 ,6 376, lambda.{2 3} .111l. -1.35478
1Il.lllbda.{2 4} . r e • 26 ,0172, 1Il.lD.bdll..{2 4} .1111· -1. 88779
l ambdll..{2 5} . re • 36 . 6576, l ambdll..{2 5}.lm • -2 . 16872
l ambdll..{2 6} .re • 48 .97 59 , l ambda.{2 6} . lm . -2 .28586
Illlllbdll._{2 7} .re • 63 .1646 , l ambd a. {2 7}. 111l • -2 .34946

lambdll..{3 3} .re • 13 . 5122 , 1Il..lllbd&.{3 3} .lm • -0 . 434438
l ambda.{3 4} .re • 23 .8795 , 1 Il.lll.bda.{3 4} .1m .. - 1. 1644 7
lambd a.{3 5} . re · 35 ,2 097 , l ambda...{3 5} . 1m. - 1.63756
lUbdll..{3 6} .re . 47 .96 11 , 1Il.lll.bdll._{3 6} .1m. - 1.91809
1Il.lll.bda_{3 7} .re • 62.4 097 , laJllbda.{3 7} . i m • -2 .0 83 13
lubdll..{3 8} .re • 78 . 69 61 , 1Il.lll.bda.{3 8}.11l • -2 .1846 9

Th e above eigen values are in good agreement wh h thoee obtain ed in [30j.
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h = 7.61 - j2 .47

lambda_{ O O} . r e . 6 .83423, la.mbda.{O O}.i• • -2.4805

lambdiL{ O 1} .re· 20 .9442 , lambda.{ O 1} . im . - 7 . 47411
lambd a_{O 2} .re • 33 .8823 , lambda .{O 2} . 1m • -12 .6123
lambda_{O 3}. re. 45 .4058 , lllllbda_{O 3} .b, - -18 .4051
lambda_{ O 4} , r e • 52 .7882, lambda_{O 4} . 1m • - 24 .4264
laJllbda_{O 5} .re • 58 .4144 , lubda_{O 5}. ilD. • -25.2591

lamb da _{1 1} .re · 7 .90493 , lubda_{1 1} .1m . -2 .45073
lam bda_{1 2} .re· 22 .18 05, l llllbda_{l 2} .im· -7 . 3456
lamb da _{l 3} .re . 35 .295, lambd a.{l 3} .ilD. . -12 .20 5
lambda_{l 4} .re . 46 .9838, l ambda_{ l 4} .1111· - 16 . 726

lll.lllbda_{l 5} . re. 57. 5356 , lambda _{l 5}. im . -19 . 7899
l ambda_{ l 6} . re· 68. 7774 , lubda_{ l 6} . illl· -20 .1089

lambda .{ 2 2} .re . 11.1155, lamb da_{2 2} .lm· -2 .368 03
Ill.lllbda_{2 3} .re . 25 .9056 , 1III1lbda_{2 3}.im· -7 .00485
lll.lllbda_{2 4} .re '" 39 .8 299 , Ill.lllbda_{2 4} . im • - 11. 3073
lll.lllbda_{2 5} .re • 53 . 0915 , lam.bda_{2 5} .lm • -14 .8562
Ill.lllbda_{2 6} .re = 66.4108, laJll.bda_{2 6}. im· -17 .1825
lambda_{2 7} .re • 80 .8356 , la.mbda.{2 7} .illl • -18 .3154

lambda.{3 3} .re • 16 .45 8 , l a.mbda _{3 3} .im • -2 .24938
lambda_{3 4} .re • 32 . 0822, lambda.{3 4}.111 • -6.55074
lll.1llbda.{3 5} .re. 47 .2 496, IlJl.bda_{3 5} .illl· -10 .3554
lambda.{3 5} .re • 52 .3653, lambda_{3 5} .ill • -13 .3476
lambda_{3 7}.re • 78 . 079, lubda_{3 7} .illl • -15 .3914

lam bda_{3 8}.rt! • 95. 0396, lambdll_{3 S} .illl • -16 .5281

The above elgen values are in good agreement with those obtained in [301.
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Appendix B

Definition of Elements of [G]

By applying the appropriate boundary condition. and performing the '1 and ¢

integra tions on t he lurface. of the ephercide A and B we obtain t he Ifltern

equat ion S ::: IOJI, i!l which elements of [GJ given by equat ion. (3,56), (4.90)

and (5.11) are quui·diagonal m &tricel.

It i. to be noted that in Chapter 4 the ,ize of the mat rix [RMa) or (RNB)

i. different from that of IR......] or [RNA]; whereu in Chapter 5 the , ize of the

ma.trix [Ru BI or IRNsl i. lam e &S that of (RMAlor (RNA)' Alto in Chapte r 3,

the matrices (PM). IQul. (RAll. IPHJ,IQNJand IR",) arc relpe ctively identi cal to

(P,,,I. (Q,,,I.I R" AI. (PNAI. IQNAI end (RNAI.

T he diagonal lub m&tricel of IPAl..) or (PIU ) are Biven by (PIoIA). or (PIolAl...

respectivd y (m =0, 1,2" " I,LCd the off-diagonal lubmatricel are null matricci .

Tbul from Appendix IlJ of 120J:

(B.l )
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['lY':~~) 1 I.Y~" '] {OJ [O{

(.y':~~J l I· Y~" ) ] [O{ [OJ
[P,,{ = , m ;?;l (B.2)

[OJ [OJ I,Y:,~~,,] I,Y~~'I

[OJ [OJ I.Y:,~~" I I.Y~~']

C Ie M or N a.ccording a.3 Y i3normalized spheroidalvector wave Iuuctlca M or

N respectively,evaluated with respect to h~ .

The diagonal .ubmatrices of [QuAI is given by

[
I,xcl"] l,x;"'I]

[Q<A~ = -

I.Xcl"] I.X;'·')
(B.3)

l,x~"I] I,X~" ] [O{ [OJ

l.x~~1 1 I.X;!·'] [OJ [a)
[Q<A{ =- ,m?: l (B .4)

[OJ [O{ I,x:!:,.'-,,] I,x~\:' ]

{O{ [O{ I.x:,':!_,,! l.x~\:'1

K,; is M or N according ill! X is normalized spheroidalvector wave function M or

N respectively, evaluated with respect to ht.

For [RMAI or [RNA] we can similarly write its submatricel u :

(B.5)
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1.,x:~1 1 l.x;WI (0] 1°]

[.x':~ll [.x;WI (oJ [oJ
[Rc.J = I m~l (B.6)

{oJ [oJ [.X'!.:!."I I,X:I.:!_.,!
{O{ [01 !.x~f,:!+I)l [.x:[.:!_.,1

K: it M or N according &I X it Mor N respectively, evaluated with relpect to

h, .

For (R,wBAI or [RNBAI used in Chapter 4 the lubmatricet ue

[ I.x:!" ! [.X,'·'! I,x~" ] 1
(R.cBAlo =- (B.7)

l.x:!·'1 !.x,"') l.x~" 1

[,x:~lj l,x;Wj l.x~"1 1°] [0] 1°!

[.x':~l] [.x,:Slj [.x~"j [0] [O! (O!
IRu Al= - , m~ l

(0] (OJ (OJ I~X::~+1 , 1 ["X::~-l)l I.x~\;' j

{O] [OJ [0) [.x:f2+J») [.X::~_l)J l·x~)

(B.8)

K: i. M or N according as X i. M Of N retpeetivc)y, evaluated with m peet to

hr-

FOt [RUB"] or IRNBAJu.ed in Chapter5 the .ubmatricc. are

[
I,X:n I,X;" 'j I,x""j]

IRJCBAlo = -
[.X:I" ! [.X;'·'j [.X,-'·']
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I,x':;~i l [01 I,x~" ] [OJ I~x~wl [01

[.x':;~1 1 [01 [.x~" ] [0] [.x,;Slj [01
[Rn AI= - I m ~ 1

[0] ["x~t~tll] [01 [,X:~J [OJ [,X:/.:I_"I
[0] [.X~:~+lll {OJ I.X:~J [0] [.X:!.:I_,,]

(B.10)

JC is M or N accord ing as X is M or N respe ct ively, e valuate d with respect to

h,.

The su bmat rices IX",! ar e of the: general Corm:

(B.11)

where:the elements. of mat ri x in (B.ll) arc:evaluated with respect to h\ . The:

eubmerricee IY",!.wit h eleme nts evaluated with respect t o 11 2, have the same form

as those of IX...I. The elem ents of th e:lubmll.tr ices IX...] and (Y",J lite:defined in

Appendix C.

In Chapter 5, the .ubmat rim [PMB], [Qu s]' [RUBI. [RAU B], [PHS]. (Qlo:3) ,

[RNS), [RNAB)have t he lame forms as thOle of (P£Al , (Qu], (RICA), IR,uAI, but

wit h corrcs ponding elemen t s being evaluated with respect to pr imed coord inate

system attached to spheroid B. In Chapter 4, the eub metrice e [PMS], IQMS],

IRMAS), [PHS}, IQNB], [RNAS! have the same fonn. aa thoae of (Pu l, (Q.ul.

{Ru ], [RJCBA],but with corre sponding elementl being evaluated with respect to

primed coordi nate syatem attached to Ipheroid S , However the mat rice.IRMB]

an d {RNB] are different from [RMA] and [RNA]. Thu. in Chapte r 4, for (RAIBI or
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{RNBJwe can write:

[ l,x~I"1 [,x.-"'I I,x;""] ]
(Ru lo = (B.12)

[.xej·'j [.X.-'·'j [.x;'("j

[,X:~r] [,X;~r] l.x~(· ') [OJ (0] [0)

'.X:~ln [.X.:~n I.X~{" j 1°] [0] 101
(R<.I = I m:2:1

[0] (OJ 101 l~x~t2:,») l,x:I.:!:,,] [,x~·l,:.'- ,,]

[01 [01 [0] I_x~l~: , ) l [.x:I.:!:,,) l·x~(\:!_, ,1

(B.13)

JC il M or N according as X il M or N relpectively, evaluated with respect to

hi. IX..I b.. the IIlme (orm as that given by equation (B.ll ).



Appendix C

Definition of [T/Q~(il] , [T/Q; %] ,

[T/Q~~1]' [<pQ~( i l], [<pQ;~2]' [<pQ~~1]

In this appendix we define the elementl or [Q",I. where Q is equ al to X when the

field un der consideration is E·field aod is equal to Y when the field is H·fi eld .

The sub matrices of {Q...] are c.ft he general form:

(C.l )

cis equal to (2:rrFIA) OIl (2wF.ji;/A), where F and e, are eem i-interfocal diet ence

and complex relati ve permittivity of the spheroid respectlvcly, according a.a the

medium under consideration is outsid e or inside th e spheroid.

The elements of the matrix in (C .l) Cor Q equal to X are given by th e integrals

in [201and [151:

(: )x.;~;~..(c) ~f~L:1

(:: ) . ( : ) J,;~l( cj r )
5...,,,",'H(C, l'/) e-j(... :t:I~ d'l d¢J (C.2)

( : ) X~2t,I ,"(C) ~ f·L:t

( ;: ) • ( : ) J:.!~l,..{Ci r )

5....I...I+I (C.'1) e-J(m+l~ dl'/d; (C.3)
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wbere

z.. j2FW - ,,' )1/'

I. 2F{e -,,' }

(C,,)

(C.S)

witb J is the respect ive componcnt of M; f =0,1,2 " "; r being the .ph eroidal

coordinate triad U. ", ; ).

The . ubma.trice.IY...] have tbe same Iorm u tbose of IX...) with elements given

( : )Y~~L...(c)

(C.,)

(C.2)

..,here J i. th e respecti ve componcn t of H;1 =0,1,2 , ·· ·, and

I, 2F2({' _ ,,' )5/2/«(' _1 )1/2

j 2F'( /, -,')/( /' -1)

(C.,)

(C.,)

Explicit exprell ion. of X ,...(c) Are givcn in (7)And [15}. Explicit expres.ion. of

Y•. 1... (c) are given belo .

For n = Iml,lml+ 1,Iml +2" " and N =0,1,2 , · · . we bave t he following

exprcllion . (or Y...N...(c):

,Y";.~.•(c) [(Ii-1) f, R1:im••(C,OI +/, ~R1:im..(c,( )1 ]
~ .~,.... (=~o

[(Ii - 1)/' mH. + l" mH. ]

+ I,~R1:im..(c,nl 1(1, -1)/'mH. + IUmH. + 21,......1
.... ~=~
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- Ri::~......(c.n l(=(. [llkN.. - {/~ I /U...N..]

~ (m ± I) R!.2 (c.n!(=" [W -I)/ I"'N ..+ 2/ 4..."..+ (~ ~ 1/1$,","''']

- m(m ± I)~~ (c.{}lc=("[(~ -1)/H ... N.. + 2/Joo.N .. + {g~ 1114"'''''']

(C.IO)

't Y:i1.H,,,(c} [({~ - 1)~R!.?-t2 '''' .''+2 (C, { ) 1 +{o~~1.2 '''' fft+2 (c, {) 1 ]
( "'( 0 ( = (0

[({~ - 1)l ....N" +119m ,..,, ]

+ eo4-~)-t2 ''''.''+2 (CI e)1 [(eo-1)/....N.. + l ,o...N"+ 211\,,,,,..,,1
..... ( =( 0

- R!.?+2,,,,. ,,., (c,el[(=« (IU"'N" - e/~ 11, o...N..]

~ (m + 2 ± I) ~IH,.... "-t2(c.e)I(.(,, [w - 1)/u ...N ,,+21"",....

+ -(. 1 1 1_N"1- (m + 2)(m +2 ± 1 ) R!:',,~+",,('.() 1
0 - C"'(o

[(e~ -I )/2Z"'N ..+ 2I"'N"+ {g ~I /I""N"] (C.l I)

"Y:':'1.N...(cl 2 [(t: _1)3/' ~n£:!.I (c.C)LCo (I_N.. - I ....N..)

+ (~- 1)1/2 4-R!:'~I , -tI(c.e)1 (IU...N.. - I n.,,N..).... ( -(.

- Mt: - 1)1/2~~.I."'.".I (c.{)1 I(e~ - 1)I IP1ON.. + l'I", N ..l
.... ( .(0

,; R!:' ( ll 2(1 1- dl -tl ..... ,,+1 c,C (=(0 ({g _ 1)1/2 n ....N"

+ ~~~ g~ ~l." ",.".,(c,() l( _(. [«~ -1 )'/,_N..+ 2(e~ -1)l l ... N"

+ In",N..J+ (e~ ~e; )ljJ ~~" ...+.....(cl{)I(. b ],4....N..] (C.12)
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,Y,:l:~(c) 2 [W - I)'/' ~Rl:llc. (t. M -l )J".N. + I .........}

- (.W - I){W- l )/ ._N. + I, ........} f, Rl:llC,()!.... ( ..( ,

I" 1)' " d D(;) ( ')1 {(C' )I 1 13(: - I)}
- \0- dj''O'. c,,, (..(0 '00 - 1 lOott.N.. + '1taN" {(~ _ 1)

+ W~I)'I' Rl:~ (C, OI,.,. I".N.] (C.16)

(C.17)

The integrals l.,...N.., p =1,2", ", 33 have beendefinedin Appendix D.
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In all t he above expressions for Y....N...(C), *~~......(C,{) is evaluated utiliz

ing tbe equation (2.28):

';;'~~......(CI{) ({ .\ - C3e+( 3~ l }~......(CI{)

- 2(~R!;~ ("Ol f(1'- 1) (C.l8)

Using the computed values of .\..........(c), ~~...... (C,t) and ~R!:.~"'.n (CI { ) we

C3.ncalculat e~R$:.~...t n(C, ( ) from (C.18).
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Appendix D

Definition of Integrals

The integral s J"...N ... P = 1, 2. · · · ,33 resulting out of J1"matching are eval uated

by using the recurrence relati ons of asso ciated Legendre functions from p. 401

[37] and the integral.

l ', P; (. )F;"(. )d. = _ 2_(. +m )'6 (D.I )
(2fl+ l ) (fl -m)! JIM

..d lsj

0,

2 (fl+ m)!
- (2. + IH. -m - 2)!'

-'em+1) ~("+_~~! (I+(-1>-1, v <.

(D.2)

where 6,.., i. Kronecker delta fuoction. The evaluat ion of integral . 1~... p =::

1.2, , ·· , 11 i• •hown in 17/; here the resu lt. of integraI. I"".N... P = 12,13, "' ,33

Ate included. It i, to be acted th at orthog onal ity proper ty of complex exp onen

tial. i. used for ;'matching. AI,o for simplicity. the expreuion t!';" hu been

used in place of 4';''' (c). c i. equal to 2ffF/>. or 27tF';;;/ l , accordi ng u the

propagation coDstant of the medium under consideration i, real or com plex.
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For m ~ 0, we have

11 ~...N.. L:1I(1 - '1J)!/ 3~So.. SI. t+N d'l

2f: ' !!!..:!:.!1d!"[~(~_ ('l-2 )('l-3)d;~tN}
, =0,1 (29+ 1) f (2q- 3)(2q -l) 2q+3 2,- 5

,+, ( Q+l )Jejl.1+N ('l + 3)(1/+4 ldl,I+N} ]
+ 2q +5~- (2Qt 3){2, ,:;j , (nt N) u en

0, (n + N) odd (D.3)

113",N.. L:(1 - '1a)3/ 2~Sg" 5I ,1+N <I,/

2 f: ' _ 1 _ .1" [ i!-+ I){9 + 2)(9 t 3) (~ -~}
,=0,1 (29+ 1) I (2,+ 3)(29+5) 2q+ 3 2,+7

_ 2(q - l )q('1+ 1)(9+ 2) { d;~:''' _ d:.I+N}
(2, - 1)(2q+3) 2,- 1 2q+ 3

+ q{q t l )(qt2)(qt 3) {~ _ ~}] {n t N) tveu
(2q -3)(2'1- I) 2q- 5 2q - l '

0, (n tN) odd (0. 4)

114","" / 1'1{1- " 3)S...,....,, 5.......+1'1<1'1

2f:'~iC'''''''
,=0,1 (2m+ 2q+ l)q ! I

[
(2m +q + 1)(2m+9 +2 ) ( .t:'..i +N d'i"i'+N}

(2m+ ' 9 + 3)(2", + 2'1+ 5) 2m +29+ 3 - 2m + 2, +7

(2m+ l )q(2m+9 + 1)3 (dj..:j tH di'..:i +N
}

+ (2m+ 2q - l )(2m+ 2q t l) (2m + 2q + 3) 2m + 29-1 -2m + 29+3

q(q- l ){q-2 ) ( dj..:,;,+N dj.:i+
N

} ] (nt N)odd
- (2m t2q - 3)(2m + 2q - l ) 2m + 2q- S-'m +2,-3 '

0, (n +N ) even (D.5)

lu "' N" L:( l _ IJJ)J ~S..,..... 5...,.... N dlJ

2 f: ,j (2m + 2~2':lT(;~ ~);ll + 3)1l11f,"·...· " [(2m + , + 2ld;'+~·",=1.0
{

(m+ f +2)(2m+ II+ 1)(2m + 2, + !O) + (m + , + 1)(, + 2)(2m+ 2, + 1) 1
(2m + 2,+ 1)(2m + 2.,+ 3)(2m+29 + 5)
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+ Cm+.+2)(, -1)• .r,'+i- _ (1'JI+ f + 4)(Zm+ . + 2)(2m+ f +3)dH.i - j
(2""+ 2,- 1)(2"'+29+ I) (2m+ 2.t+ 5)(2m +2t +7)

_ 2 f:. [Cm + , )(2m + . + 2)(2rn + f + 3) { r,'+~+li _ .r,,;;-.'" }
,_0.1 2", + , + 5 2",+2,+ 3 2",+2, + 7

+ {(m... .... 1)(2"' + ')( 2"'+ 2, + 3) + (", + , )(, + ))(2"' + 24- Il }
(2m+ 2t - I)(2m + 2,+ 1)(2m +29 + 3)

,~~+NJ (2':;::::~~;:",2:~,1 ~ 3)' (n+ ....)odd

0, (n +N) n eD (D .e)

I ,_ N.. i ll (1- ~I)I"I ~s...,...+.. 5....,...+N dq

1,...",.. - 111",,.,..

l l r...N.. l:(1~ ,,' ) 5........... S...,.... N dIJ

f: '('.. +. )1..,..• •• [r:...+' f: '-:'"j
, . 0,1 m..,t f , +1 • • t. '

+ 2 f: I ( 2:':lrll~+N f. 'or.""'.\ (n +N) odd
~. I.' ,.'+1

0, (n+ N),n n

[ I _ II .. l: ~s....-+.. s..-+"'df/

- f. ' { 2"'~ ')I .r:-"'+" [.r;.;.';' +N + 2 t ' ~+111
, " 0.1 , • • , +1

... :z E 'd;"-+1I f: . ~...... ( 2m ~')I. (,,+Nlodd
• • 1,0 , _ + 1 ,

0, (n"'}")",n

11_ ",,, L:'7(1- ,,' IS"'+I,"' . " +15...,...+* d'l

2f: ·~lf."+1."'+"+I
, .0,1 (2m+2,+ 5),1 I

[ • {...!l~·ttN 2 0-:..'; +'" }
(2m +2 t+ 1)(2m+ 2f +3) 2m+""'29'=1 - 2m+ 2f +6

+ (2m+,+5) { .r:"~+N -2 .t:'..,;+N }
(2m+ 2f + S)(2m + 29 + 7) 2m + 29 + 3 2m + 29+ 1
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+ __' _ { (2m+ f t S)dj'.;.,;,tN
2,.,.,+2,+1 (2m+2q+ I)(2m+2q +U)

,,r,,." !J
+ (2m + 2q + ~)(2rn + 2q + 5) , (n + N) odd

0, (n tH) even (0,10 )

130..."''' [II{I _ "J)J ~5"'H''''+''+I S...,...+N 11"

2f~I ' (~~m++2: : : l~ t~,...t ..

[
qim + q+3) {~i'tN 2·di.;.';'+.... }

(2m +2, + 1)(2m+ 29 + 3) 2m +2,- 1 - 2mt 2'1+5

(2m t f + S)(m +q+2) {dj+~+N 2.~;'+N }
- (2m+2q+5 )(2m +2,+7) 2m +29 +3 -2m +2q + '

, { (m +q +3)~';'+N

- 2m + 2, +7 (211\+29+3 )(2m + 2, +5)

{m ., .2HZ"'.,. S)lf,".;,;,+N}]
- (2m+2,+9)(2m+2q+ll ) 1 (n t N}odd

0, (n t N) even (0.11)

hi ...",.. [', (1- '1J)J'lJ~S"H''''+''+ 2 5.......+NII'/

"" I_N"-lao...,.... (0,12)

[JIm"'" [II (1 ~'l2)S"'+1."'+"H S...,...t N d"

- f. '2(2m+If~ 2)1{(2m+q _ 1}(2m + f ) I(v+2>""'';'1'+1'1
, =0,1 1

+ (2m +2, + 3) 21+3'rr:+HI~ ' c(" +I,m.....+2

- 2m[q~i'+N +('lm+2q -l)~~I 'If;" MNl

E ' (2m+2t+3).E 'o;'+l,m...+1! . (ntN)odd
,., . at

0, (n tH) evee (0.13)
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_t..2(2",+,' - 2)1{(2mtq -l)(2mtd [- ,(mt, + l )cr,"+" ...• .. tJ
1 ~ I,O ,

+ (m +2)(2",+2,+3) f: . d;"+l....t l\H ] f: 'tl';',...+1{

U I+I . " , +2

+ 2m(2m+ 2' - 1 ) ~' [-tern + t+l)a;:~3,"'+"H t(m+ 2)(2m t 2t + 3)

.~I· d;"+""+"+2] ~ 'r.""'+N }. (n.+N}odd

0, (n+ N)even (D.14)

IH ...N" 1: Il(l - J)' )II'~ S"'+ I''''+''+1 S",,"'tN d'l

2 t, (2mt9 + 2)1e+ 1..... ..+!

,,,,o,1 (2m t 2q+3}f1'

[
(m+ q +2) { '(II - l)'."~'i't"

(2m+2,+I) (2mt2q- 3)(2m+ 2q-l)

(2m +l}cIf"·...t N (2m +,+2lcr,'..,;tH }
+ (2m+ 2q -l)(2m + 2q+3 ) - (2m+2 q+3)(2m+2q+ 5)

(2m+,+3)(m+ 9 + 1) { (,+l)d!'·"'tN
- (2m+2,+ 5) (2m + 2,+ 1)(2m+ 2,t3)

(2m +1).r;'.;.,; +N (2m + q+4)dri,:,tN } ]
+ (2m+2qt 3)(2m+2t+ 7) - (2m+29 +1 )(2m +2g+ 9) I (ntN)mn

0, (nt N )odd (D.IS)

131... N.. l ',(I -"2l' /1s",tl .......t , S +Ndl1

2 t · (2mt ,+2)l C+l, t"tl

, d ,1 (2m+'lQ+3)ql f

[
(2m + 9 + 3)(2m t , + 4) { df·...+N

(2 m +29+5) (2m+2 9 + 1)(Zm+2q t3)

+ dj+,;,+N _ 21,"+;'+.... }
(2m+29+7)(2m+Zqtll) (Zm+ 29 +3)(2 m+Zq+ 7)

_ -!!!.::..!L. { cr,'..:,;+N
(2m+ 2q+ l) (2m+Zq - 3)(2m+ 2q - l )

I;.;+N 2dj'...+....}] .
+ (2m+2V +3)(2m+Zq+ 5) - (2m+2q-I){2m+ZH3) , ( ~ + N) e ell
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1»woN.. 11 'l's...+),... . .. .aS...... . " d'l

-2 '~l ' (~~m++2: : ~~!~+J~_+J

[
(2m + 9 + 2)(2m + , + 3) ( Cf +:t)cr,'.;';'+" + (2rn+ f + 4>cO::-"''' }

(2"' + 9 +7) (21'1+ 2,+ 5) (2"' + 24+ 1)

( 2m +' + 4)q (f+I~N (2"'+'+2~';'+ 1i' }1
+ (2m +2, + 3) (2"'+ 24+ 1) + (2"' + 29 + 5)

+ 2 f:. ' (m+ IX2m+ r)!a;""'.N E, [(f + 1)(2m +2f+ I)
n ' ; ,1 (2m+ 2,.+ I) ,.! ,.. (2",+ 2, + $)

+ (2m+ f+ f) ' j r H ....h ...'+2 f: ' (m+ I)(2m + , )' r H ..... .NH
(2m +2q + 5) I , =0 ,1 (2m +2, +5 ),1 I

[
(2", + 9 + 2)(2", + 2, + Ilr:...+N+~d':."''''+Nl

(2", + 2, + 5) , +1 (2m+ 2, + I) f

+ 2 f. I (m+ I)( 2m + ,,)10:,."' ....... f ,[(2m + , + I )(2m +2 11 + 4)
. ..t.1 (2m+ 2,.+ 1),.1 ,,,. +1 (2m+2, + 5)

+~1 4':"+l''''+''H {n + N) evCll
(2m+ 2'1+ 6) ' '
0, (.. + N) odd (D.21)

lu _ * .. [ II ,,~S"'+I ,"'"+J 5.......+11d'l

-,t.: 2(2".:!,-2)1{£2m(;~ ~~~{~)+d [- ' (m+ , + I>4:+I....•..+I

+ (m + 2)(2m + 2' + 3 l '~I 't;."H."'_.' ] {(, + 2~+N

+ (2m+ 29 + 3) f: -c-...."]-m [,¢i+N
+ (2m+ 2t- l) f: 'c-"'."]

. .. , +J •• ,.1
~' I_ &(," + &+ l~~J ."'+"H

+ (m + 2)(2m + 2t+ 3) .~t 'o("+ J''''+''H] } , (n+ N) evell

0, (n+ N)odd (D.22)
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(D.23)

- f: .2(2"' + 1'-2)1{ <2m+ f- I)(2m + f )(2m + 2'+3)I:'oI;'+1....... H
, zO, l f • • ,

i: .~...+N - 2m(2m +24'- I}f:4';"",+1#
"'1+ 1 .~,

[f:.('m. 2< . 'jf:.<;'...-....]}.(••N) ....
1.=, •••

O. (n + N) odd

1u...J(.. l:(l - ~)~s..+I +ls.......+Nd'l

Un ..."... +{m + 2)11n "... - )""+1....+..+11,...,,... + hIlI_ ii.. (D.24)

In all the exprenion . of l,.,..N..,p = 1,2 . · · · ,33 , prolate Il>beroidal expansior,

coefficient. rt:" are real or complex accordingly the propagat ion conata.nt of the

medium i. real or complex.
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Appendix E

Rotational-Translational
Coefficients

E .! T he Euler A ngles

Let us first define th e Euler angles before defining tbe rotational ·translational

coefficients. An arbit rary rotation of a system of coordinates (2:',l/ ',z ') with

respec;t to a . ystcm of coordinates (2:, 11 ,.1') i l uniquely determined by three

par ameters - t he th ree Euler angles (a , P,,,,) 139J. Since we are using car tesian

coordinate system, which is a right-handed eystem of coordinates, a positive

dire ct ion of rot at ion is one that corresponds to the moti on of right -handed eerew.

Let initially the (:c',y', z' ) -axes coincide with the (: , lI,z) -axee: position K .

The Euler angles (0:, fl, ,.) arc: defined by three ccaeeeutive rotations throug h

which the set of (:e' , lI', %')·axes goes {rom the position K to the final position

K' . These three rota tioD' are performed all follow. (refer to Fig. E.l ):

(a) a rctencn over an angle a (0 5 a 5 2'1l" ) around the z-axi. change.

the syst em of axe. to t he pceltion Kt(:r:l ,YhZt).

(b) a rotation over an Ingle 13 (0 :s; 13 :s; 2'11') around the new !II

axis change. the IYltem of axes from t he position Kt to th e position
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K2(Z2.V3. Z2)'

(e) a rotation overan engle 1 (0 51 S 211') around tbe %2-axi. which

is '&me AS the.t'-AXi. cbangeethe .y.tem of &XaI lromthe poeitionK 2

to the finalposition K'.

~
"

.....-- --...
/ "( 0 I

z y,

%\ -----"

FigureE.l: The Euler Anglee.

E.2 Ro tational-Translat ional Coefficients

Theelements of the matrices (rl and (1"'] defined in (281a.re&8 follow•.

with

[
m.. WI"

Irl _ WI.. WI"
- II'].. WI"

WI,," ' ]WI,,'"
Win '" (E.))

139



(E.')

[ Ir.t: : (rJJ;~: [r,t- ' If,I:!;H) [r,l:j~-,j [r r-' ]
[I']••

[r.t _. ,or.):.l [r.t Ir,I:""l ['r,I_!' _'1 [r:I:::
(·r r ,·-,j (-r,);1;-11 ['r,C" ->l (·rJ J:~:~ ,J ,-r'!:l:::' l' r,J~- ' 1
rr.~:~l (or.I;;, Ir.c· (r.I:j'.+I) ror .!:('.._ l ) Ir.I:;

r ~ 1, 11 ~ 1

(E.5)

The ,ubmatricet [r o]; and [or.];. where 'T, a "" . , ' ,-3, - 2, - 1,0, 1, 2,3 , , " and

i ::: 1,2 ,3 , . ,5, are given bye: (f/; &ltd orIf /; re.p ectively, where ctare defined

ulollow. :

Ci ::: !<l + co.,B)(co.(a + 7) - j .in(a + 7)! }
c; ~ -11(1- "" PlI<O.(O- l l+i .iD(O- l l]
~ = -J.inP(COI "1- j . in "1)
co: = linp(COt o - j.ina)
c: - co./J

cr i. the complex conjugate of C:,and

('}Q:.tl {')Q;" I~ I ''''a'' j\rl: (4)Q:.~t+ 1 (')Q:'~~11 (4)Q"",Io"I+I •••
"."1+2

( 4lQ:'~IH 1 4lQ:'~~i ('}Q:'~~: ' "

(E.' )

(E.?)

.....here (4)Q:; " are rotati onal·tranllational expR.ion coefficienb given below.

The elements of matrix [I "],given in equation (4.84), can be obtain ed from

the corre.ponding elemenh of [r l by replacing (4JQ::" (given t ..'e ..,) by (4.) Q;:."
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and replacing OJ by Oi, where 0; are given &I :

Ot = i(1+ to.,8)( cos{a+ 7) +;.in(0+..,)! }
0 3 = -l{l - co. ,8)[co,(o -..,) + ; lin(a - ..,)]
0] = ~si [\. ,B (cosa + ; .in a)

O. = -sin,O(cos.., t ; . in ..,)
Os = cos,8

0t is the complex conjugate of Ci •

(E.• )

Consider the tr an. lat ion from the coordinate .ystem O':c'y'z' to the IYltem

O%IIYIIZII followed by the rotat ion of the .y.tem O.:tllYlI%lI about the origin 0

through the Euler angles (-..,,-,O , -0). The rotational-transliltional coefficients

(4)Q~;" needed for the expansion of spheroidal wavefunction. in primed coordi

nates expressed in term. of function! in unprimed (global) coordinate! are given

f: 'd';"(h' ) f: 'jl"'H,-""' ..-"' I-r .~""'ir ~(h)
, _0 ,1 r=O.1 ~( )

(1..I+r)
E R;;,liJI~: ( -.., , -,B. -a) (·)b~~~:'(d) (E.9)

~--l1..l+rl

where

(- 1)' E (- lr;'''- ·(21+ 1 ).(m' ' I - " l l p) ~~~,,(d)
p = ... ",, + t

(E.lO)

in which a(m, J I- c, l IP) are the linearization expeneicn coefficienh [191,Po i. the

lower limit of p = J -f 1,,,+1 -2, " ', 1,,- 11if l,, - II2: Im-cl· If Is - II < 1m- el,

Poi! replaced by 1m- e]or 1m - el+ 1 according U J +I+1m - e] i! even or odd.

The upper limit of p i. given by J t I, and
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where Ji~·J(kd) = h~2J(kd) i. the .phericai Hankel function of eeccad kind IUlQ

p....-C(co. S.) it the u lociated Legendre function of the tint kind. tJ;"(h')and

d;"(h)are the .pberoidal exp an.ion coefli.cienh and N,... (h) i. the normalization

factor [IJ. Also in (E.g) the following notation- are used:

2 (I+ m)!
12T+Ti (I - m)!

A 1/2
Hr'-' [A':::,] .....".J.;\.({3 )......

[
(I + m')! (1- m')!] ." ("" ~).,+.
(l+ m)!( I - m)! 2

(
. {3)"-' "" ,-. ,. " , )( {3)

lin '2 " I- m' COl

(E.l2)

(E.13)

(E.14)

where pLm~~m,m'+m)(COl p) , the Jacobi polynomial of argument co.fl, is evaluated

in the present work u.i ng the explicit expression [35J:

Likewise, rotational-translational ccefficiente in the expansion of Icalar spheroidal

wave functiona ill unprimed coordinates eepreaeed in terms of functions in primed

coordinate. (or r' ~ d is give n by:

"" (1...1+t)
(·'Q: :(a, p.7 jd) = L '~"(h) E R;i~~~V(a,fl.7)

V:O,I ""-(lml+9)

f: 'jl "'I+9·-n+..-b.l - r. ~'I"(~;)~(h') ' (·)4~\:i~r9(d)
n 'O.l ,...

(E,16)

where

(- I.)' ~ (-I)·jl+·-·(21+ 1)'.(" ' I -",llp)II'I~~(d)
' '''PlIoPJ+I

(E.17)
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E .3 Special Case: Tr ansla tional Coefficients

Tran slational Addition Theorem. can be obtained ILl & . pecial case of Rctatioual

Transl a.tional Theorems when Q ..... 0, fJ--. 0 &I1d..,.....O. Th us from (E.13) we

find tha t

R;:l,(o,0,0) = 6m m • (E.lS)

where Omm' is Kronecker delta funct ion. Aho when a _ 0, (J _ 0 and .., - 0,

the direct ion cosines c.~,c...~ ,c..•••(o =:l:,y,z ) ere ell equal to zero, except C: a' ,

Cw' and Cu ' which are equal to unity. Translational coefficients, deduced from

rotational-tr anslat ional coefficienh in pp. 159·160, [261. arc exactly lam e u the

tr anslat ional coefficient! presented in [19].
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