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Abstract

This thesis presents a method of left ventricular (LV) volume estimation that is an
improvement over existing methods. The author has developed a method of left ventric-
ular volume estimation using an ellipsoidal model. It is shown, in this thesis, that the
volume of an ellipsoid can be estimated from three planar projections (radionuclide im-
ages). Thus, this method can be applied to estimate the volume of the left ventricle from
three radionuclide images, taken at different angles. Left ventricular radionuclide images
are formed when a radioactive source is injected into a patient. Generally, a patient's red
blood cells are labelled with technetium %™Tc which will emit gamma (v) rays during

radioactive decay.

Two methods have been developed to estimate left ventricular volumes from these
radionuclide images. Count based methods use the principle that the number of v rays
detected over a surface is proportional to the volume of the source located under that
surface. Geometric methods rely on the outline of the left ventricle and the accuracy

heavily depends upon how well the geometric model fits the left ventricle.

To test the accuracy of using this geometric method, hollow ellipsoidal models were
constructed. A total of 20 trials were performed in which the models were arbitrarily lo-
cated relative to a fixed reference frame. Each image from the 7 camera (elliptic in shape)
was then analyzed to determine the axes lengths and angle of rotation. The estimated vol-
umes were compared with the theoretical volume and the percentage discrepancies ranged

in magnitude from 0.7% to 13.9%.



One problem is that it may be difficult to determine the exact location of the left

di. from other

ventricular projection border because of ing, i of
organs, and pixel size (resolution of 6.13 mm/pixel). This problem can be minimized by
selecting a certain count threshold to help determine where the left ventricular border is
located. Another problem of using a geometric method of volume estimation is how well
the geometric model fits the actual organ. For most cases, an ellipsoidal model does seem
to be a relatively accurate model but abnormalities in the left ventricle will affect the
accuracy.

It was discovered that self attenuation caused the observed counts to differ by as
much as 33.7% for images within the same trial. If a count based left ventricular volume
estimation method was performed on this same set of images, then there would be a
relatively large discrepancy among the volume estimates. Because of so many factors such

as ion, self i dioactive decay, ing, and interference from other

organs, it would appear as though count based methods would not be able to estimate

accurately the volume of the left ventricle.
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Chapter 1:
Introduction and Literature Review

This chapter will present an introduction to this thesis. Background information about

the heart is presented followed by a description of how radionuclide images are formed.

Different methods of left i volume estimation will be di: d. AL

lining the variations of these hods will be d. This should give an

review
understanding of what has been done in the area of left ventricular volume estimation from
radionuclide images. Due to the large quantity of papers that has been published in this
area, only selected papers are discussed. An analysis of these papers and how the methods

can be improved is also presented.



1.1 Introduction

The human heart is made up of four chambers: left and right atrium along with the
left and right ventricle (Figure 1). During the cardiac cycle. the heart undergoes various
phases which relate to the volume of the left ventricle (LV). During the contraction phase
(systole), the ventricle ejects the blood. At the end of this phase, the left ventricular volume
is minimal. The next phase is a relaxation phase (diastole) during which the ventricle fills.

At the end of diastole, the left ventricular volume is maximum (Figure 2).

Figure 1: Interior view of the cardiac chambers (Phillips and Feeney, 1990).
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Figure 2: Left ventricular volume during the cardiac cycle (Sherwood, 1993).
Preliminary data suggest that left ventricular volume provide progn

tic information for patient survival. Various methods exist to obtain an estimate of the
left ventricular volume, but many methods are not acceptable because of their inaccuracies
and/or their invasive nature. Existing methods, within the area of nuclear medicine, are
becoming popular because of their non-invasive nature.

Radionuclide images are formed when a radioactive source is injected into a patient
(Figure 3). Generally, a patient’s red blood cells are labelled with technetium %*™Tc
which will emit gamma (7) rays during radioactive decay. The v rays are detected with a
v camera and the position of the v ray, energy, and timing relative to the cardiac cycle are
all used in the formation of images. Multiple images will then form a series representing
the entire cardiac cycle. In order to obtain more accurate images of the organ, a parallel
hole collimator is used with the camera. This device helps reduce the amount of scattering
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by allowing only rays that are approximately parallel to enter the camera. Due to a finite
hole diameter and length, each hole will have an acceptance angle which is usually only
several degrees. After imaging has been completed. the images are processed using various
analytical techniques. Two methods have been developed to estimate LV volumes from
these radionuclide images. Count based methods use the actual number of + rays (counts)

whereas geometric methods rely on the outline of the left ventricle.

Figure 3: Radionuclide image of the heart.

Count based methods use the principle that the number of v rays detected over a
surface is proportional to the volume of the source located under that surface. In theory, the

number of counts is directly proportional to the volume if 1) the source is emitting v rays at

a constant rate, 2) the source is h 3) the ion is over the entire

surface, and 4) the distribution of background activity is constant over the entire surface.
In reality, none of the above conditions hold, but in practice conditions 1) and 2) can be
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assumed. The issue of attenuation has been studied by several authors. Their findings
suggest that attenuation corrected data leads to more reliable estimates of LV volumes than
using data without attenuation correction. The amount of background activity is another
important aspect of count based methods because most studies have taken approximately

half of the total number of counts to be back d. The large of counts

due to background raises serious concerns of how accurate this radionuclide method of
left ventricular volume estimation could be. It should be noted that several papers have
discussed background counts but there has been no concensus on how to determine the
amount of background.

Geometric methods do not have the probl of ion and back d determi-

nation. However, the background activity does make it difficult to locate the left ventricular
border. The accuracy of this method heavily depends upon how well the geometric model
fits the left ventricle. Even with simplistic models such as a sphere or a prolate spheroid.

results have been relatively accurate (Greene et al. 1967 and Massardo et al. 1990).
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1.2 Literature Review

This section presents a review of methods used to estimate LV volumes. Several
authors (Rackley 1976, Ashburn et al. 1978, Strauss et al. 1979. Massie et al 1982,
Slutsky 1983, Al-Khawaja et al. 1988, Clements et al 1990, Aurigemma et al. 1995)
have reviewed much of the research performed in this area. This section shall elaborate

on these papers while reviewing the work of other researchers. The papers are presented

in chronological order which should show the ion of hods. A di: ion of the
various problems associated with these methods are presented at the end of this chapter.

This will reduce the ition of ing the same iated with many papers.

Also, it will be shown how this earlier work will be improved upon in the method developed

in this thesis.

Dodge et al. (1960) studied the use of biplane angi di hy for the

of LV volume. Using an ellipsoidal model. LV volume can be estimated by determining
the three axis dimensions. They correctly point out that unless a given axis is parallel
to the filming plane, it cannot be measured directly. They point out that a minor axis
length can be calculated from the formula for the area for an ellipse since the projection
of an ellipsoid is an ellipse (Arvidsson, 1958). They obtained excellent correlations for the

various methods tested (spatial, longest d length, three d lengths, area

product, and Simpson’s rule). Kennedy et al. (1970) compared anteroposterior (AP)
and right anterior oblique (RAO) methods with biplane angiocardiograms to determine
LV volumes. For the single plane methods, they used the method described by Dodge
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et al. (1960) for an ellipsoidal model in which the short axis dimension was derived

from the area and length. Both AP and RAO methods had the same correlation results

with biplane values ( lati fici r =0.97, dard error of estimate SEE =
24 mL) but RAO volumes substantially overestimated the biplane values (y = 0.81z +1.9).

Hillis et al. (1984) assessed the accuracy and reliability of the i i of

Kennedy et al. (1970) and Wynne et al. (1978) as applied to LV volume estimates using

Lo dilution d oot

the method described by Dodge et al. (1960).

volumes correlated well with the Kennedy regression (r = 0.95. SEE = 8.1 mL, y = 0.99z)

and the Wynne regression (r = 0.95, SEE = 9.8 mL, y = 1.17z —5.3).

to the

Davila and S (1966) analyzed the fit of math ical models appli
measurement of LV volume. Postmortem hearts from 23 normal adults were studied. The
correlation coefficients were good for all models (0.908 — 0.983) for both photographs and
radiographs. The best results were obtained with models that divided the left ventricle

into many cylindrical sections and also with ellipsoidal models in which the minor axis

dimensions were estimated from the area. M of all three di i for an

ellipsoidal model gave less accurate results.

Greene et al. (1967) d single plane ci: i hy to estimate LV volumes.

They simplified the method of Arvidsson (1958) by assuming that the two minor axis
lengths were equal (prolate spheroid model). The two unknown dimensions could then be
measured from one view if the major axis was parallel to the filming plane. With the use
of biplane measurements. they found that the two minor axis lengths differed by only a
small amount in most cases (r = 0.993, y = 0.993z —0.305) with the extreme ratios of 0.79
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and 1.02. The mean of the ratios was 0.93. Their method overestimated LV volumes in

lide LV volumes

postmortem heasts. Sullivan et al. (1971)
to contrast angiographic results by using the method described by Greene et al. (1967) for
an ellipsoid model (V = 7LD?/6) on radionuclide and contrast images. They obtained a

good correlation between methods (r = 0.9, y = 0.917z — 1.729).

Slutsky et al. (1979) described a count based method to determine LV end diastolic
(ED) and end systolic (ES) volumes from gated equilibrium studies. Several equations were
used to express volumes in nondimensional units and in milliliters. The administered dose

and

dioactive decay were d for in some of these equations. In this study, the

effects of attenuation and decay were not signil with the pt ( 1 model
of the left ventricle) data. Patient studies were used to compare this count based method

by applying a r i ion (r =0.90, y = 0.14z +3.12).

with contrast

Maurer et al. (1983) showed that the ion can vary si from one patient

to another. Thus, using a regression analysis will not be as accurate as using individual

since a will correct for the average attenuation

of the study group.
Slutsky et al. (1980) eval a method of obtaining LV volume esti from
gated equilibri dionuclide studies by ing the blood sample 7 rays with the scin-

tillation camera. They compared this counting method to using a well counter. The
volume estimates correlated well with contrast angiographic results for both well counting
(rep = 0.94, rgs = 0.95) and for camera counting (rgp = 0.93, rgs = 0.94). A test
tube containing the blood sample was placed upright over the camera so that there was
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self ion. Also, ion analysis was used to convert the radionuclide

volume units to absolute units.

Dehmer et al. (1980) estimated LV volumes using 2 nongeometric method applied to

Back

gated equilibrium blood pool scans. d activity was ined by

of horizontal count profiles at three levels through the LV in the end diastolic frame. The
point where the three curves intersect outside the LV was taken as the background activity.

d with contrast to convert the attenuated

A ion analysis was
radionuclide units to absolute volume units at end diastole (r = 0.985, SEE = 16.2 mL,
y = 6.08z — 23.3) and at end systole (r = 0.988, SEE = 14.7 mL, y = 6.24z — 10.13).

Using an average i ion (. i lysis) will be less accurate than

using individual attenuation correction because of the variation in attenuation from patient

to patient.

Dehmer et al. (1981) calculated LV volumes from gated equilibrium blood pool studies

using the method described by Dehmer et al. (1980) with a modification in the determi-

nation of background. A previously determined i ion (y = 4.98z + 6.9)

developed by Lewis et al (1979) was used to compensate for decreased counts due to

The back d image was d ined by i ions of the end di: it
frame. A rectangle was drawn over the heart so that all cardiac chambers were included.
Along each row of the rectangle, each pixel was reset to a weighted average (relative to
distance) of the three pixel average to the left and right of the rectangle. Correlation was
made with angiogram results at end diastole (r = 0.86, SEE = 2.7 mL, y = 0.78z + 26)
and at end systole (r = 0.73, SEE = 7.2 mL. y = 0.57z +18). Dependence on a regression

9



limits the accuracy and reliability of this method which could account for the relatively

poor correlation with angiography.

Clements et al. (1981) estimated LV volumes by using a pre-determined regression
equation. A background region of interest (ROI) was selected from an area posterior
and lateral to the LV at end systole. LV borders were found by a semiautomated edge
detection program. They assumed that attenuation was constant and independent of the
patient. A regression equation (y = 3.54 x 104z —45.6) was used to relate counts to contrast

volumes. Correlations were good at end diastole (r = 0.87) and at end systole

(r = 0.95). This regression equation was then used in other studies. The correlations with

contrast results were excellent but the slopes were far from identity (0.60 for end diastole

and 0.66 for end systole). Because ion can vary signi between i

(Maurer et al., 1983), the use of a regression equation will introduce errors. This may

explain why the lation with contrast i hic volumes did not yield slopes close
to unity.

Hutton et al. (1981) presented a method to determine LV volumes by considering a
bolus. It is assumed that the complete bolus passes only once through the ventricle and
that perfect mixing of tracer occurs in both the left ventricle and the atrium. The area

under the first pass count rate versus time curve will be proportional to the activity and

the mean residual time. The constant of ionality will the
factor.
Iskandrian et al. (1981) d radi lide and ion LV volume mea-

surements. They used the geometric method of Dodge et al. (1962) for an ellipse of
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revolution to estimate the radionuclide LV end diastolic volume. There was good correla-

tion between the methods for estimating end diastolic volumes (r = 0.94, y = 0.81x + 46).

Parrish et al. (1982) assessed radionuclide ventriculography for right and left ventric-
ular volume estimation in children. Count based and geometric methods were used to de-
termine ventricular volumes and the results were compared with cineangiographic results.

The chest wall thick was calculated from a ion line since it was too inaccurate to

measure it using a technetium marker. An attenuation coefficient of 0.1 cm ™" was assumed.
An area-length method was used for the left ventricle (Graham et al., 1971) while Simpson’s
rule was applied to the right ventricle (Graham et al., 1973). Correlations were excellent
at end diastole for the geometric method (r = 0.97, SEE =23 mL, y = 1.1z — 14.3) and
for the attenuation correction method (r = 0.93, SEE = 25.4 mL, y = 0.79z). Correlation

was poor without attenuation correction (r = 0.86, SEE = 128 mL. y = 0.28z + 6.2).

They d four i i for count based and geometric methods applied

to the left and right ventricles.

Massie et al. (1982) compared geometric and count based methods using data from
first pass and equilibrium blood pool scintigraphy. Both methods had good correlations
with contrast angiography but count based was better because of 2 smaller variance. Var-
ious geometric methods were studied. Using the count based method, they found that
the 95% confidence limits of the measurements were narrow enough to reliably discrimi-
nate between small, normal and enlarged ventricles. They also found that self attenuation
within the blood pool was not important which agreed with some findings (Slutsky et al.
1980 and Dehmer et al. 1980) but disagreed with others (Strauss et al., 1979).
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Nickel et al. (1982) found a relatic ip between the total count rate

(total count rate divided by the maximum count density) and the volume. Using balloons

of various sizes located at different distances from the collimator. they found a linear

lationship between the lized total count rate and the volume. For patient studies.
they applied back d sub ion and then esti d LV depth to LV volumes
using their d ined ionship. Back d was modelled as a linear relation to the
measured lung distribution. LV depth was estimated using an i lly derived

formula that related depth to projection angle, weight and height. They obtained good
correlation with angiographic volumes (r = 0.95. y = 1.04z - 3.13). Some error may result
from determining the relationship while imaging balloons with the major axis parallel to
the image plane. The major axis of the LV will be approximately perpendicular to the

image plane in the left anterior oblique (LAO) view.

Links et al. (1982) measured LV volume from gated blood pool studies and compared
the results with single-plane contrast ventriculography. The ratio of attenuation corrected
counts to the counts per milliliter from a blood sample yielded the LV volume. The
attenuation correction factor, e#¢ was estimated by using 4 = 0.15 cm ™! (narrow beam
attenuation coefficient for water) and using a skin marker to measure d, the distance from
the center of the LV. They imaged the blood samples using a test tube and a petri dish

to show the effect of self attenuation. The petri dish samples averaged approximately 20%

more counts than the test tube samples. Semi. ic ROI's were d over the

second derivative and count threshold algori The back d

LV using a
ROI was automatically generated lateral and inferior to the LV in the end diastolic frame,
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five pixels wide and two pixels from the LV edge. After generation of a time activity curve,
the end diastolic, end systolic and background ROI's were manually drawn. These regions
were purposely drawn large especially near the free wall but care was taken to exclude
the left atrium. right ventricle and other major vascular structures. The gross LV end
diastolic counts averaged 93 counts/pixel while the background averaged 45 counts/pixel.
They correctly point out that not accounting for the effect of self attenuation introduces
a very small error for a prolate spheroid with its major axis perpendicular to the viewing
direction and with a minor axis of 5 cm or less. But for views that are not perpendicular to
the major axis. the error will be more significant. In fact. the larger the angle between the
major axis and the plane of the camera face, the larger the error due to self attenuation. For
larger angles, there will not only be significant self attenuation but also body attenuation of
various amounts because of different distances between volume elements of blood and the

chest wall. They obtained very good i for both ph and patient studies.

They obtained better results with i i d to using a

equation. They found that a change in the depth of 0.36 cm (one pixel) caused a change
in volume of 5%. Melin et al (1985) used the method descibed by Links et al. (1982) to
compare radionuclide and Fick cardiac output measurements. There was some correlation
of the cardiac outputs (r = 0.904, SEE = 1.77 mL, y = 0.70z + 1.43) and the stroke
volumes (r = 0.642, SEE = 13.88, y = 0.51z + 33) but the radionuclide values were
significantly lower than the Fick measurements. Burow et al. (1982) assessed the ability
to determine stroke volumes by using the method described by Links et al. (1982). They

also studied the effect of i ion. The ion with th dilution was




better with attenuation correction (r = 0.96. SEE =6 mL. y = 0.99z + 1.2) than without

(r =080, SEE = 12 mL, y = 2.31z + 18).

Seldin et ol (1983) d a i d ic method to obtain LV

volumes from gated blood pool studies. An end diastolic ROI was drawn by a semi-

ic edge d i Igorithm from which a larger ROI was then created since such

regions have been shown to under estimate the true chamber borders as described by Links
et al. (1982). [mages were taken in the LAO projection and foreshortening of the major
axis was minimized by a caudal tilt. Volumes were then calculated by the formula of

Sandler and Dodge (1968), V =842 / (3xL). Correlation with contrast

was moderate at end diastole (r = 0.93, SEE = 36 mL) and at end systole (r = 0.95,
SEE = 35mL). Having the major axis not parallel to the image plane can cause significant

errors since it will decrease both A and L.

Burns et ol (1983) examined the repeatability of LV volume estimates from blood

pool counts. They studied i ient and i i iability of the in vivo half life

of *¥™T¢ labelled red blood cells. They found 2 mean in vivo half life of 4.1 hours which
is quite different to the physical half life of 6 hours. Their results also indicate significant
interpatient (0.9 + 0.8 hours) and intrapatient (1.0 £ 0.9 hours) variability which agreed
with previous findings (Eckelman et al. 1975 and Ryo et al. 1976). This variation in half
life can affect the results of gated equilibrium studies performed over a long period of time

especially if blood sample counts are corrected for decay.

Maurer et al. (1983) estimated LV volumes from gated blood pool images using an

in vivo point source to correct for i A capsule ining a calik d dose
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of *™Tc was attached to a thread and imaged behind a phantom to avoid saturation.
The capsule was then swallowed by the patient and imaged as it descended the esophageal
tube. Increased attenuation and a 40 cm mark on the thread were used to indicate when
the capsule was behind the LV. When the capsule reached the stomach. the patient's
red blood cells were labelled with **™Tc. They obtained good correlations with contrast
ventriculography using both Simpson’s rule and the area-length method. The attenuation

factors ranged from 0.11 to 0.35 with an average of 0.21. These factors represent the

reciprocal of the slope for the i ion of each i | patient. R

data from Slutsky et al. (1979), Dehmer et al. (1981), and Links et al. (1982) yielded
attenuation factors of 0.13, 0.16, and 0.29, respectively. But these values represent the
average attenuation factors of the patient group. The wide range of values will certainly

toan volume estis if an average attenuation factor is used instead

of individual ones. This may account for why Links et al. (1982) obtained better results

with individual i ion as d to using a ion equation.

Harpen et al. (1983) determined LV volumes by analyzing the first pass kinetics
of labelled red blood cells. They obtained a relationship between the total amount of
bolus activity, ejection fraction and total counts. The attenuation factor can then be
calculated by dividing the total activity of the bolus by the total activity injected into the
patient. Manual ROI's were drawn over the LV with the background area drawn on the
end systolic frame. They obtained excellent correlation with contrast ventriculographic

volumes (r = 0.98, y = 0.987z + 1.76).

Thomsen et al. (1983) calculated LV volumes by using two dimensional echocardiog-
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raphy to estimate LV depth. Automatic ROI's were generated and a Fourier phase image

was used to avoid excluding LV counts. A i ic back d ROI was

at end systole. The background ROI consisted of an area two pixels wide and covered
an arc of 60deg. The lowest mean counts per pixel for background ROI's between one
and seven o’clock was chosen. They obtained excellent correlation with contrast volumes
for end diastole (r = 0.94. Sy; = 20.6 mL, y = 0.92z + 18.1) and end systole (r = 0.95.
Sy: = 16.6 mL, y = 0.98z — 4.5). Using only the depth from the geometric center of the

LV will result in an imation of the

Seiderer et al. (1983) studied the infl of back d and ab

on LV end diastolic volume quantification. Thoracic and heart wall absorption, self ab-

sorption, and back d were all idered in ing counts to millili Three

background models (uniform, bolic, and no back d) were i i d. In the
parabolic model of background, the counts ranged from zero to the level in the back-
ground ROL To calculate the amount of self absorption, they assumed that the LV depth
was 1.5 times the maximum ventricular width vertical to the major axis in the end di-
astolic ROL They chose a ratio of 1.5 instead of 2.0 for the heart model of the Medical
Internal Radiation Dose Committee (Coffey et al., 1981) since it would be less sensitive to

the jection angle and enlarged i A smaller ratio of axes would also be needed

if the LV was not viewed directly along the major axis but it is difficult to quantify the

exact ratio since it is dependant upon the angle between the major axis and the view

directi They obtained the best lation and line of identity as compared to single

bolic back o

plage ci iculography when using
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Nickoloff et al. (1984) studied the attenuation of v rays by body tissue that is relevant

in LV volume estimation. They esti i the i fficient for the 40° LAO view

to be about 0.13 cm ™! from computed tomography scans.

Hoilund-Carlsen et al. (1984) determined LV volumes by estimating individual at-
tenuation factors. They placed two radioactive markers exactly 9 crn apart over the left
ventricle. The depth of the left ventricle was determined and compared with the depth
measured by echocardiography. There was no statistical difference between the depths
measured by these two methods. The attenuation coefficient for ball shaped phantoms
immersed in water at various depths was determined to be approximately 0.156 cm~!
with little variation for different sized balls (36.7 mL - 192.4 mL). The background ROI

was defined from the mean activity in an area near the LV with minimal activity over

three successive systolic frames. They obtained 1 lation with th dil
at end diastole (r = 0.96, SEE = 27 mL, y = 1.06z — 14) and at end systole (r = 0.98.
SEE =20 mL. y = 1.05z — 6). Using the depth from the chest wall to the geometric cen-

ter will not 1 the ion depth when the LV major axis is almost

perpendicular to the image plane.

Siegel et al. (1984) obtained absolute LV volumes by using an iterative build-up factor
analysis. The build-up factor accounts for the increased counts due to a broad beam ge-
ometry when using a narrow beam attenuation coefficient. Images were acquired from two

views 180° apart: LAO and right posterior oblique (RPO). They derive a relationship be-

tween the measured counts, build-up factor, d counts, depth ion, and

self i Once the d count rate is solved for by an iterative method,
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absolute volumes are calculated by comparing it to a blood sample count rate. An end
diastolic ROI was generated on the LAO image using a second derivative and count thresh-
old algorithm. Background was chosen in an area next to the ventricle in the end diastolic
frame. A manual ROI was drawn on the RPO image at end diastole with the aid of first

with hic results

pass images to identify the LV. They obtained good
at end diastole (r = 0.97, SEE = 17.1 mL, y = 0.94z + 3.7). The use of constant back-
ground subtraction and discrepancies between the LV outline on both views may introduce

some error.

Rabinovitch et al. (1984) analyzed the inherent errors of LV volume measurement

from gated ilibri: blood pool scinti hy. They used d regions

of interest for the LV and background. Some modification was necessary to prevent selec-

tion of the aorta and spleen in the background ROI which was drawn on the end systolic

frame. Counts were for dead-time losses and i The average back-

ground counts were approximately 50% of the average raw counts for end diastole and end

o

systole. Various () were eval The highest correlation and

smallest standard error of estimate were obtained when 4 = 0.10 cm~" for end diastole
second derivative edge

and g = 0.12 cm™! for end systole. The count
detection program used in this study excluded some LV counts. Attenuation correction

only i i the ion with contrast volumes but relying on a regression

equation can produce poorer results as demonstrated by Dehmer et al. (1981).

Schwaiger et al. (1984) used a bolus to estimate the amount of attenuation and then
used the result to determine LV stroke volumes from gated pool studies. A cresent shaped
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region was drawn at end diastole to determine the background activity. In comparing

stoke volumes obtained by ther and their i d count based
method, they found that using individual attenuation correction (r = 0.92, SEE = 6.1 mL.
y = 09z + 4.4) was significantly better than using the mean attenuation factor (r =
0.52, SEE = 14.8 mL, y = 0.57z + 25.8). They also found a correlation between both

body weight and body surface area to the measured attenuation factor. The use of an

invasive method to determine individual attenuation factors limits the acceptability of this

approach.
Petru et al. (1984) evaluated icular function estimation by
d radionuclide angiography with contrast angiography and the Fick technique. The

distance between the center of the LV and the chest wall was measured using the same
technique as that of Links et al. (1982). They used uniform background subtraction and
assumed that the attenuation coefficient was 0.16 cm™!. Fluoroscopy was used to verify
the ventricular depth calculations in some patients. Cardiac outputs determined by the

by radi lid . L with

Fick technique correlated well with those d
and without attenuation correction. There was some correlation between radionuclide
and contrast angiographic LV volumes but the standard error of estimate was high and

ly the radi Lid, hni seemed to be overestimating the volume. This

overestimation occurred mainly in patients with abnormal wall motion.

Nichols et al. (1984) estimated LV volumes without the need of measuring LV depth

or regression equations. By viewing the LV at two different views 90° apart, a relation

1

between counts and voxels (volume ) can be calculated. A back d ROI, two
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pixels beyond the border was drawn between the three and five o'clock positions on the end
systolic frame. They obtained excellent results with phantoms (r =0.999. SEE = 15 mL.
y = 0.96 +7.9) and with patients for end diastole (r = 0.96. SEE = 14 mL. y = 0.97c +8)
and for end systole (r = 0.98, SEE =11 mL, y = 1.05z — 1) with thermodilution as the

reference. They showed that the effect of self ion for a sphere produces a small

error. This error may be larger though for an ellipsoid or prolate spheroid which is 2 more
representative model of the left ventricle. Calculating the count density from counts in
only one pixel could also cause some error because of the statistical nature of the v ray

count distribution.

Starling et al. (1984a) used a simple geometric attenuation correction to obtain accu-
rate estimates of absolute LV volumes from radionuclide count data. They determined the
distance from the center of the LV to the chest wall by placement of a technetium marker
based on anatomic landmarks on two separate views (Berman et al., 1975). An attenuation
coefficient of 0.15 cm™! was assumed. They found that semi-automated ROI's were too
small and thus under estimated LV volumes at end diastole (r = 0.96, SEE = 31 mL,

y =095z — 21) and at end systole (r =097, SEE = 24 mL, y = 1.03z).

Starling et al. (1984b) ined the imp: of i ion for esti-

mating LV volumes by equilibrium radionuclide angi A d and
corrected results were compared with biplane contrast cineangiography LV estimates. At-

was perfc d as described by Starling et al. (1984a). Attenuation

corrected results (rgp = 0.96, rgs = 0.98) correlated better than the attenuated estimates
(rep = 0.74, rgs = 0.87). Individual correction is much better than using an average at-
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tenuation correction (regression equation) because the amount of attenuation can vary

significantly from one patient to another as shown by Maurer et al. (1983).

Burns et al. (1985) estimated LV volumes from attenuation corrected counts by using

a modification of the triangulation method of Links et al. (1982). ROI's were determined

with a semi i second derivative edge detection algorithm. An average attenuation

coefficient (4 = 0.163 cm™") was independently d ined from thermodilution volumes

and radionuclide counts in eight other patients. There was good correlation with contrast
volumes (r = 0.96, SEE = 15.8 mL, y = 1.3z — 39.8). Volume estimates from patients
with normal wall motion were better than results from patients with abnormal wall motion.

Inaccuracies from the depth i fhici and the effect of self

attenuation are potential sources of error.

Fearnow et al. (1985) examined factors that affect ventricular volume determination
from a count based equilibrium method. Using a spherical source in an elliptical torso
phantom, they analyzed the effect of source depth, ROI size, background concentration,
and source shape on volumes determined by using an attenuation correction count based

method described by Jaszczak et al. (1980) and Links et al. (1982). They found that the

estimated volume of the 96 cm® source d linearly as the b
increased (r = 0.97, y = —5.3z + 95). However, if the volume of the source is taken into

during b d sub ion then the esti d volume remains constant
at about 95 cm®. Imaging cylindrical sources resulted in accurate volume estimations but
the cone shaped sources resulted in significant errors especially when using the depth to the
linear center instead of the geometric center. Their results indicate that there are many
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possible sources of error in determining count based ventricular volumes. Of particular

importance is the effect of back d sub since back d can account for about

half of LV counts.

Verani et al (1985) estimated LV volumes using an attenuation coefficient derived for

a broad beam ic model. Using ph i d in water at different depths.

they found that the attenuation coefficient was 0.144 cm~!. The radionuclide volumes were

higher than the true balloon volumes, particularly for larger volumes. This is probably due

to using an average depth which over esti the ion and thus over
the true volume. They measured LV depth by imaging a radioactive marker in a different
view. They obtained good correlation with contrast volumes for end diastole (r = 0.98,

SEE =16.4mL, y = 1.009z) and for end systole (r = 0.95, SEE = 17.1 mL, y = 1.037z).

They also showed that changing the value of the back d level caused significant changes

in the volume estimates.
Simon et al. (1985) studied the effect of self attenuation on left and right ventricular

volume estimation using realistic cardiac phantoms. Using four different sized phantoms,

they found excellent lation between scinti hi i and the true volume. Cor-

relation between angiographic volumes and the true volumes were also excellent. They im-

aged the phantoms in the LAO view, perpendicular to the inter i septum. Their
results showed that the effect of self attenuation can be ignored for **™Tc studies in the
volume range encountered clinically. But they did not study the effect of viewing the
LV with the major axis tilted towards or away from the camera. This will increase the

ifi of self ion and the i of non-uniform attenuation because of




varying distances from the chest wall.

Koral et al. (1985) examined the effects of various parameters on LV volume estima-

tion using a radionuclide count based method. They studied two methods of calculating

LV depth, the use of one or two i fHci imization of ion coeffi-
cient(s), and an d program for ion of the ROI Depths were determined by
the di from the midpoint between the mitral valve plane and the apex of

the LV to the chest marker and also by a count weighted formula. They had the smallest
scatter with ¢z = 0.10 cm ™! for end diastole and x = 0.12 cm ™! for end systole. The reason
why optimization appears to be occuring at different values of  is probably because of the

tant back d subtraction. Perhaps a better model of background such as that used

Frci

by Seiderer et al. (1983) would provide a better estimate of the

Keller et al. (1987) studied the attenuation of °*™T'c photons from a known source
located at various sites within the heart. They found that for 36 patients, the regression

line indi i an i fficient of 0.12 cm™! with a correlation of 0.93. The

calculated values ranged from 0.8 cm ™! (for the LV apex) to 0.13 cm~! (for the inferior
vena caval/right atrial junction). However, there was no significant difference in the values
of the attenuation coefficient from the four intracardiac sites. These results agree with
the findings of other researchers such as Fearnow et al (1985), Nickoloff et al. (1984)
and Harris et al. (1984). If these findings are accurate, this would explain why several
researchers have presented methods which over estimate LV volumes.

k d activ-

Bostrom et al. (1987) studied the effects of d radiation and b
ity on radionuclide LV volume estimation using patients and phantoms. Using phantoms
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without back d activity, they firmed that the depth correction factor decreased

with respect to that expected for narrow beam geometry as used by Links et al. (1982).
But with the addition of background having 10% of the activity of the phantoms. the
depth correction factor increased. The overall effect caused the depth correction factor for
a phantom with background activity to closely match that for narrow beam geometry. The
absolute background counts depend on the activity and the depth of the background area.
Thus, many combinations can simulate realistic background count. but each variation
in background activity and depth causes the depth correction factor to change since the
amount of background activity displaced by the LV will change. Perhaps a more realistic
model of the background will reflect actual conditions and thus provide a better estimate
of the depth correction factor. Rabinovitch et al. (1984) reported smaller attenuation

coefficients.

Massardo et al. (1990) estimate absolute left ventricular volume using a count based
ratio method applied to gated equilibrium studies. They assumed that the LV is spherical
and derived a relationship between the volume, pixel area and ratio of total counts to
maximum pixel count. They claimed that this relationship is valid for a chamber of any
shape. This is obviously not true since one can consider a prolate spheriod and a sphere.
each of the same volume. Viewing the spheriod along its long axis, the pixel area and
total counts will be the same as that for the sphere but the maximum pixel count will
be larger indicating a different volume. Their derivation did not consider the problems of

and back d which can certainly vary from pixel to pixel thus introducing

more error.
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fahmarian et al. (1991) di the interp ion of changes in the left ventricular

ejection fraction and cardiac volumes as assessed by rest and exercise gated radionuclide

with

angiography. They tried to quantify the sources of

di lide i hi A lead marker was used to determine LV depth

and thus the attenuation correction factor. All cardiac output and volume measurements

hi L d sub

and b

were indexed to the body surface area. Nine point
was performed as described by Verani et al (1985). With a probability < 0.05 that the
observed change was due to random variation, they found that a change was significant in
rest studies for > 7% units for LV ejection fraction, > 45 mL/m? for end diastolic volume,
> 35 mL/m? for end systolic volume, > 20 mL/m? for stroke volume and > 1.25 L/min
per m? for cardiac index. They also determined significant values in exercise studies. A
larger population (> 39) of patients would certainly increase the reliability of the results
but it might not be valid to use these results at other institutions where there are many
different factors such as inherent system errors, variation in the count based technique,

etc.

Sapin et al. (1993) compared three dimensi hocardiography, two di

h di hy, and ci icul hy for the purpose of measuring LV volume. Ex-

cised hearts were prepared with an internal latex lining that could be filled with a known
volume of liquid. LV volumes were calculated from 15 hearts at 25 volumes ranging from 50
to 280 mL. All methods tended to underestimate the true volume. There was a significant
correlation between bias magnitude and volume size for the two dimensional echocardiog-

raphy. The bias for the three di: ional ech di hy was fairly tant over the
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range of volumes. When bias was accounted for, the results indicated that two dimen-

sional eck di hy was signifi ly less precise than the other two methods tested in

terms of percent error (two dimensional echocardiography 15.3 +11.9%. three dimensional

echocardiography 3.9  3.4%. and cineventriculography 5.6 + 5.7%).

Pattynama it et al. (1994) evals d the perfc of using
imaging (MRI) to determine cardiac function. The accuracy of MRI has been established
by imaging a ventricular model of known volume (Longmore et al., 1985) but in vivo MRI

have been validated in only a limited number of studies. A major problem

is the choice of a gold dard. MRI of icular volumes have been

1 h

lidated only with imul! ly perf d contrast
Chin et al. (1997) determined LV volume with tomographic gated equilibrium blood-
pool scintigraphy (TMUGA) and compared it to MRI and conventional planar scintigraphy.
The volume was calculated using a modified Simpson's rule which assumes that the LV
has a shape similar to that of an ellipse of rotation. This method of volume determination
showed good correlation with MRI (r = 0.96, slope = 0.88, SEE = 18.2). Further studies

are needed to validate this method.
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Table 1: y of various ch istics for different left ventricular volume methods.

Author t 3 bf Reference SEE | y=mx+b
(reference) Method (mL) (m.b)
Dodge et al. (1960) G 0.98 NA Postmortem

Davila & Sanmarco (1966) G| o9t | Na

Kennedy et al. (1970) G 0.97 NA Biplane Angio. 24 081, 1.9
Sullivan et al. (1971) G 0.90 NA Contr. Angio. 092, -1.7
Slutsky et al. (1979) Cc | oso Contr. Angio 0.14,3.12
Slutsky et al. (1980) C | o9 Contr. Angio.

Dehmer et al. (1980) C | 099 | ED | Comtr. Angio. 162 | 6.1.-233
Dehmer et al. (1981) -] 0.86 ED Contr. Angio. 2.7 0.78. 26

Clements et al. (1981) C 0.87 ES Contr. Angio.

Iskandrian et al. (1981) G | 094 | NA Catheter. 0381, 46
Links et al. (1982) C | 095 | ED | Contr. Angio. 36 097,3
Parrish et al. (1982) G | 097 [ Na Cineangio. 23 11,-14.3
Nickel et al. (1982) C | o095 Contr. Angio. 1.04,-3.13
Maurer et al. (1983) C | 096 | ES | Contr. Angio. 212 | 099, 1.32
Seldin et al. (1983) G 0.93 NA 36
Harpen et al. (1983) [ 0.98 ES 3 0.99, 1.8

Thomsen et al. (1983) C 0.94 ES Contr. Angio. 20.6 0.92, 18.1

Hoilund-Carlsen et al. (1984) C 0.96 ‘Thermodil. 27 1.06, -14
Hillis et al. (1984) G | 095 | Na Thermodil. 8.1 0.99
Siegel et al. (1984) C | 097 | ED | Contr. Angio. 17.1 094,37
Petru et al. (1984) [ 0.80 Contr. Angio. 1.24,-3.5
Nichols ¢t al. (1984) C 0.96 ES ‘Thermodil. 14 0.97, 8

Starling et al. (1984a) c | oss - Contr. Angio. 31 095, -21
Burns et al. (1985) (] 0.96 - Contr. Angio. 15.8 1.3,-39.8
Verani et al (1985) [ 0.98 Contr. Angio. 16.4 1.009

Massardo et al. (1990) C | 095 | ES | Contr. Angio. 23 094,13
Sapin ct al. (1993) G | 0995 | NA | 3D Echocard. 7.1 1.02, 3.65
Chin et al. (1997) G 0.96 NA | Tomo. Gat. Sc. 18.2 0.88, 14.1

1. *t' indicates the type of analysis where
G - geometric.
C - count based.
2. is the correlation coefficient.
3. 'bf’ stands for the background frame where
ED - end diastolic ES - end systolic NA - not applicable
* - more than one background frame used.
4. 'SEE’ stands for the standard error of estimate.




Many methods of LV volume estimation have been developed over the past several
decades. Most of these methods have inherent problems which should be addressed before
using any of these methods. All of the previous methods can be grouped into the catagories
of count based and geometric as indicated in Table 1. The problems of most of these

methods can be di: d ding to the inherent with each catagory.

All count based methods have the problem of significant background activity. Some

reseachers (e.g. Links et al. 1982) were able to develop a way of removing the background

hniques introduced Sub an equal back d count

counts but these errors.
from the entire ROI assumes that the background is uniform. Studies have not been
performed to validate this assumption. There are also the problems of scattering and

which can signi ly affect the counts in the ROI which directly influence

the volume estimate. Links et al. (1982) also accounted for the attenuation and their

method was accepted by many as the gold standard. This gold standard still ined
inherent flaws which are associated with count based methods.

The i hods have several probl iated with them. Some researchers

have used an ellipse of rotation or even a sphere (Massardo et al., 1990) to model the LV.
These geometric models are too simplified and an ellipsoid is more appropriate as shown
by Davilla and Sanmarco (1966). Another problem is the border detection. Manually
drawn borders have been effective but software programs have been developed to provide
more consistency. If the LV is abnormal in shape, then even the ellipsoid model may not
be accurate. Perhaps a hybrid of the geometric and count based methods can account for

abnormalities and still provide a reasonably accurate estimate of the LV volume.
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1.3 Thesis Objective

The objective of this research was to determine a method of estimating the volume
of the left ventricle from radionuclide images. Several factors had to be taken into consid-
eration while solving this problem of volume estimation. This method must be accurate.
Cardiac volumes are used by medical doctors for prognosis of patients. This method must

also be practical since it may be implemented in the future. In order to minimize the

discomfort of the patient, this method should also be i ive. With id

of the iously described hods, a ic method using an ellipsoidal model was

chosen for several reasons. A geometric method avoids the problems associated with count
based methods. Also, the structure of the left ventricle resembles the shape of an ellip-
soid (Davilla and Sanmarco, 1966). An ellipse of rotation (two axes lengths) would over
simplify the left ventricle and would result in more error.

To determine the volume of an ellipsoid, it was necessary to study the projection of an
ellipsoid onto a two dimensional plane. This projection would be similar to the radionuclide
images formed during imaging of the left ventricle. If the volume of an ellipsoid can be

lar volumes can be estimated.

d ined from these projecti then left

The next chapter will present the theory of this proposed method of volume estimation
based on an ellipsoidal model. The experimentation along with results and discussion
are then presented in chapter three. This chapter also discusses the importance of self

attenuation, one of the main factors that limits the accuracy of count based methods.

Finally. lusions and dations are p d in chapters four and five.
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Chapter 2:
Ellipsoidal Model for the Estimation of
Left Ventricular Volume

This chapter will present the theory of determining the volume of an ellipsoid from

planar projecti It is first n Yy to ine the projection of an ellipsoid onto a two

plane. This projection, which has been shown to be an ellipse, will be similar

to the radionuclide images obtained during imaging of the left ventricle. Measurements
of the major and minor axes along with the angle of rotation can be made from each
projection. Several projections are required to provide the necessary equations needed to
solve for the lengths of the ellipsoidal axes. These lengths can then be used to calculate the
volume. The majority of the mathematical analysis performed in this chapter is original

work done by the author.



2.1 Formulation of the Ellipsoidal Model

Consider an ellipsoid that is centered at the origin of a ryz cartesian coordinate system
(Figure 4). The projection of the ellipsoid onto any two dimensional plane will depend
on three independent angular rotations. Without loss of generality, we can use the ry

plane as the projection plane. The orientation of any ellipsoid situated at the origin. with

respect to the ryz coordinate system. can be d ined by three independ,

about the z, y, and z axes.

Figure 4: Ellipsoid centered at the origin without any rotation.

To accommodate these angular rotations, let us first rotate the z and y axes about
the z axis (counter clockwise as viewed looking towards the origin in the direction of the
positive z axis) by v radians to form the new coordinate system ZjZ, so the Z axis is
the same as the z axis. Next, we shall rotate the # and # axes about the § axis (counter
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clockwise) by J radians to form the new coordinate system :y:. Finally. we shall rotate the
7 and £ axes about the I axis (counter clockwise) by a radians to form the new coordinate
system zy;z; (we can choose a. 3. and ¥ such that the axes of any ellipsoid centered at
the origin. with an arbitrary orientation, will lie along the r y,z, axes). See Figure 5 for

an arbitrarily rotated ellipsoid.

s 5
Figure 5: Ellipsoid arbitrarily rotated while centered at the origin.
A relationship between the z,y;2z; coordinate system and the zyz coordinate system
can be found by considering how the new system was obtained from the original system.

Using the following matrix definitions,

(1)

(2)
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where

1 0 0 cosd 0 —sind
A=|0 cosa sina . B= 0 1 0
0 -sina cosa sind 0 cosd

cosy siny 0
C=|[-siny cosy 0) . (3)
] 0 1
Therefore, we find that
x, = ABCx . (4)

The equation of an ellipsoid, centered at the origin with its three axes (lengths 2a, 25

and 2¢) located on the zy, y, and z, axes, would be

° oar
oe-o

(Kx:)T(Kx;) =1 where x=(

a0 o
~——
&

Using (4), we can rewrite (3) as
(KABCx)" (KABCx) =1 . (6)

For a spherical polar coordinate system using r (radius), # (angle measured from the
positive z direction), and o (angle measured in the zy plane from the positive z direction),

we have

sin 6 cos ¢
x=ri where f=( sinfsino | . )

cos

‘We can rewrite (6), in spherical polar form, as
r3(VTV) =1 where V =KABCP . (8)

We can solve (8) for r as a function of 8 and o, thereby describing the surface of the
ellipsoid.
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2.1.1 Ellipsoidal Projection onto the zy Plane

In order to d ine the ellipsoi jection onto a two dimensional plane say

the ry plane, consider a cross sectional plane through the center of the ellipsoid and
perpendicular to the ry plane. for some arbitrary angle o (where o is measured from the

positive r direction in the ry plane to the cross sectional plane).
¥

. 3 2 -1 o 1 2 3 z
Figure 6: Cross sectional view of the ellipsoid taken perpendicular to the zy plane.
The projection points are found by maximizing rsin 8 with respect to 8 (Figure 6).

That is, we must solve the equation,
a%(rsina) —0 . )

This will yield the value of 6 (say 6p) at which rsiné is equal to the distance from the
origin to the projection point, in the zy plane. Note that 8 will be a function of ¢. The
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projection points will then be given by
p1(8) =r(6o(0).0)sin(8o(0) . (10)

where p;(9) is the distance from the origin to the projection point. at angle ¢ in the zy
plane (péz cylindrical coordinate system).
From (9), we have

%sin@+rcos0=0 : (11)

Using (8), we can find an expression for 25,

o _d 1 )
36 ~ 26 ((VTVJIIz
=1 avh) oV
=2(V7V)m[ a 'tV 5 ] § G2

For any matrix M, the op. ions of diffe iation and ition are

(ice. 237 — (24)7). Also, for any column matrices of the same dimension, say & and
¥, we have 87% = (87¥)” since 87 W is a 1 x 1 matrix. Therefore, we have the following

result,

any (%'
56 V= 2 v
r \T
- (%))
a6
av
=VvT=—
=V - (13)
Substituting (8), (12), and (13) into (11), we have after simplifying, the following string
of equalities,
—vf‘%'sinu VTVeosf =0
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vT [Vcosa - = smsl
(KABCH)T {KABCi-cnst? -KABC; sma]

£7(KABC)T(KABC) [rcosﬂ - ——~sm9
#7(KABC)T(KABC) (o) =0 . (14)
1

where we use the cartesian representation = (sin 8 cos ¢,sinésin o, cos§).

If we let 2; = (KABC)T(KABC), we have
wir Wiz Wiz
Q=|wn wyn wy
w31 w3z Wiz

cos? Beos? y +

where

= [smnzsinjcos‘y — cosasinv|?

+ :—,[cosasinﬁcos-, +sinasing? |

1
wiz -—cos Bcosysiny

1 % : 2 . P
+ ﬁ{smnsmﬁsmy + cos a cos 7][sin asin 3 cos ¥ — cos asinv]
1 . A P .
+c—z[ccsasnﬂcosv+smosm‘y][cosasm.?smv—smacos-y] 5
1 2 Lo i 5 =
wyy =— a—zcosﬁsmﬂcosv + g sina cos B[sin a sin B cos y — cos asinv]

+ c%cosacosﬂ[cosasinﬁcosv +sinasiny]
w =wiz
w2 =;12- cos? @sin’ ¥ + blz[sinasin_ﬁsin'y + cos acos ]?
+ JleosasinBsiny ~ smacosl? (15)

1 . . 1 . N : i
wyy = — a—zcosﬂsmﬂsm'y + ﬁsmacosﬂ[smasmﬂsm-y + cosacosy|
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1 % X .
+a cos a cos J[cos asin I sin ¥ — sina cos ]
w3 =3
w3z =3 0
disg =alzsin2 3+ bl,sin’amsz 3+ cizcosz acas’s

We can now rewrite (8) as,

r?=vTvV
= (KABC#)T(KABC#)

=iTQf

Using 2,

(KABC)T(KABC), we can rewrite (14) as

0
o, (o) =0 ,
1

w3
that is T ws | =0
w33z

or wi3sind cos @ + w3 sinfsin ¢ + wyzcosd =0

From (17), we can find solve for sin8 or cos®,

" w33z
sinf =

—w13 €os § —wr3sing

S T R T
[w2; + (w13 cos & + wag sin ¢)?]?

= s
[w2; + (w13 cos & +wa3sing)?]?

(16)

n

(18)

Note that (18) ensures that sin@ > 0, which must be the case since 0 < § < 7. We now

effectively have r in terms of ¢ (through (16) and (18)) and 8 in terms of ¢ (through (18)).
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Thus we can rewrite (10) as

1 .
o ={ o [cos? 6 (wirwss —wizws1) +sin? 0 (wapwss — waswsz)

-1
3

+ cos 65in 6 (wizwss +warwss — wiawsz — waswa )] } (19)
If we substitute (15) into (19), we arrive at 2 cylindrical ion of the elli; dal
projection,
o1 = (B2 sin? B + a?c? sin? a cos? 3 + 0% cos® acos? 3)
x {cmw(az[m’asinzﬂ + b[sin @ sin A siny + cos a cos 7|2
+ c*[cosasin fsiny — sinacosv]’)
+ sin? ¢(a’[cos’ Bcos? y] + b*[sinasin Jcosy — coaasin'y]z)
+ c*[cosasin B cos ¥ + sinasiny]?
4 ms¢sino(2)(—a’[oos23'lsin7l
— b?[sinasin 3siny + cos a cos 7][sinasin 3 cos ¥ — cos asin7]
—?[u.mm‘xzamn+simsin~:][zxsin.asi:.w—sinams«,])}~1r (20)

Recall that p; (cylindrical coordinate parameter) is the distance from the origin to a point

on the projection curve of an origin centered ellipsoid projected onto the zy plane. Now

we have an equation for p;, as a function of the angle ¢ measured from the positive z

axis. This equation represents the ellipsoidal projection onto the zy plane, in terms of the

ellipsoidal axes lengths (2a, 25, and 2c) and the original angles of rotation (a, 4, and 7).

The cross section of an ellipsoid has been shown to be an ellipse (Albert, 1949). It is

intuitive that the projection of an ellipsoid onto an arbitrary plane can be obtained from
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a cross section of the ellipsoid. Thus, the ellipsoidal projection is an ellipse. In order to

solve for the ellipsoidal volume, it is to d ine a ionship between the

ellipsoidal parameters and the ellipse parameters (major axis length. minor axis length,

and angle of rotation).

For an ellipse, centered at the origin with its major and minor axes of lengths 2(; and

2§, along the z and y axes, respectively, we have
o0
(Zy)T(8y) =1 where 3-_-(3 L) and y=(’) 5 (21)
&

If the ellipse is rotated counter clockwise (Figure 7), say by &; radians, (21) becomes

= T = . _ [ cosé sin§,
(EAy)T(EAy) =1 where A-(_s.m;‘ mE:) . (22)
which can also be d in cylindrical coordinates by
_[ a2, (cos?é sin’s,) " (cos A sin’s,)
"“{“"‘( d g ‘\Tg ta
ot
+cos¢sin¢(2cos5.sin6‘ [—,_—,]) ; (23)
a &
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Figure 7: Ellipse in the zy plane, rotated by 6; radians.

First of all we shall determine a relationship with &y, the angle at which p, is maximum.

To find 6;, we can differentiate (20) with respect to ¢ and set it to zero. Let us rewrite

(20) as

p1 = [Ar cos? 6 + py sin? 6 + vy cos dsino] "t

where

Ay = (bc?sin? 8 + a** sin? acos? 3 + a?b? cos? arcos® )

x (a=[cos’ Bsin? 7] + b%(sin e sin G sin v + cos a cos 7|2
+c*[cosasinBsiny —sina cos‘y]z) "

1 = (bc? sin? B + a?c? sin? arcos? 3 + a?b? cos? arcos? B)

x (a?[cos? B cos? 9] + §¥[sin asin S cos y — cos asin1|?
+c?[cosasin B cosy +sinasin 712) "

40
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w = (bc* sin? 3 + a?c? sin? a cos? 3 + a?b cos? a cos? 3)
x (2)(~a2{cus2 3cosysin 7]

— b*[sin a'sin 3sin 7 + cos a cos 7][sinasin I cos 7 — cos asin ]
~ ?[cos asin B cos v + sin asin v][cos asin I sin v — sin @ cos -.@)
From (24), we have

% ~ 2
x [—2A; cos ¢siné + 2u; cos 6sin 6 + vy cos’e — vy sin’ o]

9, 1 : z
L [A1 cos? 0 + py sin? 6 + vy cos osino] ~F

If we set (25) equal to zero and set ¢ = &, we have
—2A; cos §y sin by + 2u, cos 6y sindy + v cos? §y — vy sin? 6, = 0
2cos 6y sin 6y [u1 — A1] = —v[cos? 6, — sin? &y
sin(26;) (i1 = M) = vy cos(26,)

tan(26;) = —2—
=Xy

We can then find cos(26;) and sin(26,) to be

- B =M

e and  cos(26;) =

sin(26,) =

Using trigonometric identities we also have

.

202 +(u — M)
1 HL=A
cos’ﬂ;:v(l+——)
2 v} +(m —/\\)QIQ

sin?6) = % (1_ L‘*)
[ + (- M)

41
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(2 + (a1 = )2

(25)

(26)

(27)
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We can substitute (28) into (24) and simplify to get the following extremum value for
Pr.

i
o= {3 (nrm- et} (29)

To d ine another we should ider (26). Strictly speaking, in (26),

tan(26,) should be tan(26; +nw) (where n is an integer) since the tan() function is periodic
with period 7. Therefore, we see that another value of §; that will satisfy (26) is 6, + /2.

1F we replace §; with 8 + /2, we get
{10 =)V 30
= E(l+“l+[l (#l—l)]) . (30)

We now see that (29) gives us an expression for the maximum of p; and (30) gives us an
expression for the minimum of p;.
Let us equate ¢ and &, (the half lengths of the major and minor axes) with (29) and

(30), respectively, to get
1 =k
a={3(urm-prrom-2h}
En={%('\|+m+["f+(ux-4\n)’]*)}_§ : )
If we substitute (28) and (31) into (23) and show that the resulting equation is identical

to (24), then we will have venfied that an ellipsoidal projection is always an ellipse. More

we will have i for the major and minor axes lengths, 2¢; and 2¢,

respectively, and the angle of rotation (§;) for the ellipse.
Let us first consider the cos? ¢ coefficient in equation (23). From (28) and (31), we
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get

L4 —m=h L1— —=h
cos?(61) _ sin®(81) : ( ¥ et f) : (1 [vi+wi=20? *)
w8 _sin(8) I . Z;
% g =1 =
o ST R ¥ B A W L I (e SR e L

1 s 2 -2
= ('_u, RPN L —-—‘“—‘——r)
b + (e =277

2_ 52
+ % (ZA. + [} + (e —A,)’}* - #H)
(vF + (11 = )27
=\ . (32)

Similarly, we can show that

cos®(éy) | sin’(61) _
= + e (33)
and
2cns(5,)sin(.5,)(i— Lo . (34)
G &

We can also use (27) to find 6; as

4 =4 if - >0 ;
BSSRS ((vi*«(m—m'] ) v Rzl (35)
_1 =& i

3 arccos ([u.’+(m—a\.)’] ) , if-n<0

Thus. (23) can be rewritten as (24) using (32), (33), and (34). We have now verified that

&=

the projection of an ellipsoid onto the zy plane (represented by (24)) can be expressed in a
form identical to (23), representing a rotated ellipse in the zy plane. We can thus express

the ellipsoidal projection in matrix form as

(2ax)T (2Ax) =1
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where Z and A. originally defined in (21) and (22). are now given by

&;(a\x-m —[uf‘v-(m——\n)’]#)x 0

0 7‘;(A.+u|+[u.‘+(m—m’]*)§

i

N &= (1 + m) 1 7z (1 = [,la+(,|.-Ax.)’]‘)
5 (1) (i )

with Ay, g, and v, defined in (24). It should be noted that even though we have found

(36)

3
H

only one projection of this ellipsoid. namely in the zy plane, all other projections can be
found by further rotations of the zyz axes such that the new zy plane is parallel to the
desired projection plane . This will result in a new matrix €2, which will then give us new
expressions for A, x4, and v, in (24). Thus, we have verified that the projection of an
ellipsoid, with arbitrary orientation, is always an ellipse and we can find an expression for
the equation of this ellipse for every possible planar projection.

For each projection (which is an ellipse) we can write expressions for the major axis
length, minor axis length. and the angle of rotation (between the major axis and the
horizontal axis of the projection), each as a function of a, b, ¢, @, 4, and  (six unknowns).
Note that the major axis length, minor axis length, and the angle of rotation are considered
to be known values since they can be measured from the projection images. We now have
three equations (expressions for Ay, s, and v from (24)) in six unknowns. We need to
find another three equations in the same six unknowns in order to have six equations in

six unknowns.



2.1.2 Ellipsoidal Projection onto the =y Plane

Let us now consider finding the projection onto the zy plane. for the same ellipsoid
that was described by (5) with associated angles of «, 3. and 7. If we initially rotated the
Iz axes about the y axis by x/2 radians (counter clockwise), then the z axis becomes the
—z axis. the y axis remains the y axis. and z axis becomes the r axis. Now the new zy
projection is the zy projection in the original coordinate system. One way of performing

this axes rotation is to express (4) as

x; = ABCD;x (37)

The equation of the ellipsoid becomes
(KABCD,x)T (KABCD;x) =1 . (38)

To find the projection of this ellipsoid in the new zyz coordinate system, we can use

the previous analysis. Equation (17) would become

0
0, (o) =0 , (39)
1

where 2; = (KABCD;)T(KABCD,). We can express §2; (containing elements w,,) as
Wi Wiy Wiy w33 —wzz Wiz
Q= |why why why|=|-wn w2z w2 ) (40)
wh Wy Wi —wiz wiz Wi
with wam being defined in (15).
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The equation of the projection in the new ry plane ' which is the original =y plane)

would be given as (cf. (19))

1

- 2 I v .2 u g o

2 —{ —— [cos? 6 (wi wis — wiswhy) + sin® 0 (whwly — whswhs)
“i3

<
H

+ cos 05in 0wyt + whihs ~ hahs —«;,ua.n} ; (@1)

If we substitute (40) into (41) and simplify, we arrive at the following cylindrical represen-

tation of the ellipsoidal projection in the zy plane (cf. (24)),
p2 = [M2cos? 6 + ppsin® 6 + vy cososing]~F | (42)
where

Az =(b%¢? cos? 3 cos? v + a?c*[sin a sin B cos ¥ — cos arsin y]?
+ a?$[cosasin Bcosy +sinasiny]?) T
x (a[cos? 9sin? 9] + ¥[sin a sin Bsin 7 + cosa coso[?
+c*cosasin 3siny — sinncos-y]z) .

2 =(82¢? cos? 3 cos? v + a*c?[sin e sin B cos ¥ — cos asin 7|
+ a*[cosasinBcosy + sinasiny]?) ™
x (a? sin? 8 + ¥ sin? acos® 3 + c? cost acast 3)

vy =(82c? cos? B cos® v + a?c?[sin e sin B cos ¥ — cos arsinv]?
+a?b*[cosasin fcosy + sinasinq?) "
x (2)(—a2[cosﬂsinﬁsin7 + b%sin a cos B(sin & sin B sin ¥ + cos @ cos 7]
+ ¢? cos a cos Blcos arsin Bsiny — sinacos‘y]) p
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We can now use (31) to express the major (2(2) and minor (2£;) axes of this elliptical

projection as.
1 w1t
= {3 (irm - B3+ um -]}
5
sz={%(Az+m+[v%+(m—xz)‘]*)} : )

‘We also have the angle of rotation (between the major axis and the negative = axis of the

orignal ryz coordinate system) expressed as,

zuccas(—&—:ﬂ) -m>0 ;
[+ (na1s

3+ (ua

—}arccos (—E‘—‘—;) . if -2 <0
[v3+(na—22?]

by =
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2.1.3 Determination of the Ellipsoidal Parameters

Using from both projecti we can write six equations in six unknowns

Gy &1, &1, G2 &, and & as functions of a. b, ¢. @, 3, and 7). In order to solve these

some ions have to be multiplied together to obtain simpler equations. It

can be shown through simplification that
A1(2€? =a®[cos? 3sin® ] + b*[sinasin I sin v + cos & cos v]?
+c[cos asin Isiny - sinacos 7]%)
=%Ge - (45)

This relationship was discovered while trying to solve these six equations in six unknowns.

This shows that one of the simpli ions from the first projection plane is the same as

one of the simplified equations from the second projection plane. Thus, these six equations

are not independent. A unique solution cannot be obtained for a, b, ¢, a. 3. and 7.

We can also i dependence among these equations by considering the foll

specific case. Suppose that we have an ellipsoid oriented such that a =0, 3 = 7/4, and
v = 0. Using definitions for A1, 41, and v from equation (24) along with equations (31)
and (35), we can substitute these values of @, 3, and ¥ to get the following results. In the
zy plane, we have that § = 7/2, (; = b. and & = ([a® + ¢*]/2)"/? if b > ([a? + c?]/2)'/?
or 8 =0, ¢ = ([a® +c2]/2)V/2, and & = b if b < ([a® + ¢?]/2)!/2. Similarly, we can
use equations (42), (43), and (44) along with the previous values of a, 3, and 7 to obtain
results in the other projection plane. In the zy projection plane, we have &, = &, (z = (1,
and & = £ (identical to the zy plane projection). Note that it is impossible to solve for a
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or c. individually. If we look along the y axis. we see that a famaly of ellipsoids will result

in the identical projection onto the ry and :y planes (Figure 8).

z

% « E) © 2 0 .

Figure 8: Family of ellipsoids satisfying the special case of @ =0, 8 = #/4, and v = 0.

In order to solve for the six unknowns, another equation will be required, from another
projection plane. An obvious choice would be to choose the zz projection plane but, prac-
tically, it would be difficult to obtain three orthogonal projections of the left ventricle. It is
difficult to position the camera in three orthogonal directions without having interference
(radiation) from other organs. A more practical choice of the third projection plane is to
use the r = —z plane. Thus, if the camera was initially viewing the first projection plane
(zy plane), then the camera would have to be rotated 45° to view the third projection
plane (r = —z plane) and rotated another 45° (in the same direction as the first 45°

rotation) to view the second projection plane (zy plane).
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2.1.4 Ellipsoidal Projection onto the z = —z Plane

= —z plane. for the same

Let us now consider finding the projection onto the r

ellipsoid that was arbitrarily situated in zyz space with associated angles of a. 3. and 7.

We can perform the necessary axes rotation by expressing (4) as.
x3 = ABCD3x (46)
where L
0
i ( ¥ W)
=L g 4
a Vi
The equation of the ellipsoid becomes
(KABCD;x)T (KABCDsx) = 1 (47)
To find the projection of this ellipsoid in the new zyz coordinate system, we can use
the previous analysis. Equation (17) would become,
(48)

0
(0] =0 ,
1

where ;3 = (KABCD;)T(KABCD;). We can express 23 as
oty ol
A
7

Q=
i
wiz Wi

"
W31

where
1

wiy =2—1;‘(cos.3cos“l +sing)® + 357 (sinasin Beosy — cosasiny — sinacos§)?

1 3 ; i
+ ?(cosasmacusv +sinasiny — cosa z:asﬁ)z .
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—2c0535in'g(CD‘53cos7 +sinJd)

(sinasin Isiny + cosa cos v) (sinasin 3cos v — cosasiny — sina cos J)

1
v

1 2 % - B . .
+ T (cosasin Isiny — sin a cos v) (cos a sin Jcos v + sinasin v — cos a cos 3)
. L (einas s i o
wty —-—(cns 3cos? ~ —sin® 3) + 55 ([sinasin 3cos 7 — cos asin 7}? — sin? a cos? 3)
+—([cosasmjcosv+smasm7]z—coszacos 3
. "
“ =iz .
1,

cos? @sin®y + —[smasm.?sm‘y + cos @ cos 7]?

+ Clz[ccsasin.isin'y —sinacosy? , (49)
no__1 ; ;
wiy =\/.Tcnsﬁs1n7(casﬁcosv —sin §)

(sinasin Bsinv + cos a cos v) (sin a sin B cos y — cos asin v + sin & cos 3)

\/_ b2
.
V2ct

-
w31 TWhg o

+ (cosasin Bsiny — sina cosy) (cosasin fcosy + sinasiny + cosacos 3)

wip =wyy
w3y =—(cosﬁcos-y - smﬂ) + —(smasmﬂc057 - cosasm7+slnacos3)

+ ﬁ(cosasin.’icos-y +sinasiny + cosa cos §)°

The equation of the projection in the new zy plane (which is the original z = —z

plane) would now be given by (cf. (19)),
P3 ={ [cos? ¢ (wijwhis — wizwsy) +sin® ¢ (wipwih —wisws;)

-4
+ cos psin 6 (wipwly +whwhs — wisws — wiiws)] } . (50)
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If we substitute (49) into (30) and simplify, we arrive at the following cylindrical represen-
tation of the ellipsoidal projection onto the z = —z plane (cf. (24)).
p3 = [Aacos?o + pysin®o + vy cososing] "t . (51)
where
A3 =2(b%c*[cos 3 cos v — sin 3]? + a?c?[sin asin I cos ¥ — cos asin ¥ + sin & cos 3|?
+a?b?[cos asin 3 cos v + sinasin v + cos acos [2) '
x (a’[ccszﬁsinz 4] + b*[sin a sin 3 sin v + cos & cos v]?
+ c?[cosasin Isiny — siuacos-y]‘)
#a =(b%c*[cos Beos v —sin B]? + a?c?[sinasin 3 cosy — cos asin vy + sin & cos 8]*
+a?b2[cos asin B cos ¥ + sin asiny + cos a cos B]7) ™
x (a=[cosucos~, +sin ]2 + b%[sin asin § cosy — cos asiny — sin acos J|?
+ c*[cosasin Jcos y +sinasiny — cosacosﬁ]’) \
vy =2v2(b2c*[cos 3 cos 1 — sin B2 + a’c?[sinasin § cos y — cos a siny + sin a cos 3]
+ a?b*[cos asin B cos ¥ + sin asin v + cos & cos ]2) 7
x (—a’ cos @ sinysin 8 + cos 3 cos 7]
— b?[sin e sin Bsiny + cos a cos v|[sinasin 3 cos ¥ — cosasiny — sin a cos 3]
— lcosasin fsiny — sin @ cos 7][cosasin fcosy + sinarsiny — cos acos J])
We can now use (31) to express the major (2¢;) and minor (2£;) axes of this elliptical
projection as,
G= {% (/\: +p3 = [ +(ps —Aa)zlg)}_§ ,
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¥
a={Y0, PR 7 SR W . (52)
2

We also have the angle of rotation (between the major axis and the horizontal axis of the

camera image ) expressed as,

L arccos (—ﬂ'—‘i——) , if-m>0
% [vi+ma—2rart]}

—%nccos(—ﬂ"—"‘—;) . if -3 <0
[v3+(ua=2377]

= (53)



2.1.5 Determination of the Volume of the Ellipsoidal Model

From the three projections, we have nine equations in six unknowns. We shall see

that only six of these i are inds ds Instead of ing these
using (a, £, and 8, directly, it is much simpler to express them using \a. g.. and v,,
where these parameters are defined in (24), (42), and (51). Note that A, ga. and v, are
functions of (a. £, and 8, which are measured values from each projection. To further
simplify these equations, note that,
10"
Q= (ham-2) (54)
which gives us;
(26} =(*c*sin? 3 + a*c?sin? a cos? 3 + a*b? cos’ acos? 3)
(362 =(b*c* cos? Jcos? ¥ + a*c*[sinasin Bcos ¥ — cosa sin7]?
+a’t[cosasinBcosy +sinasing]?) (35)
ae =%(bzc’[cos3ms'y—sinﬂ]’ +a’c*[sinasin 3cosy — cosasiny + sina cos 3|?

+ a?b?[cos asin B cos y + sin asiny + cos a cos 3]?)

We can now simplify (eliminate the denominator terms in) our nine equations (given
within (24), (42), and (51)) by expressing them as An(2€2, un(2€2, and va(2€2. We thus

have,
A¢i€} =a*[cos® Bsin? v] + b2[sin a sin B sin y + cos @ cos 7]

+ c[cosasin Bsiny —sinacosy]?
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mcied

2
wigiet

PRt

n2363

va(36;

xed

e

2¢2
va3&3

=a[cos® J cos? v] + b?[sin a sin Jcos 7 — cos a sin 7]?
+ c¥[cos asin Jcos ¥ + sinassin 72
=2(-a*{cos® 3cos vsin ]
— b%isin asin 3sin v + cos a cos 7[sin asin 3 cos ¥ — cos arsin 7]
— c*cosasin Jcos v + sin asin 7][cos asin I sin v — sin & cos 7])
=a?[cos? I sin?® 7] + b*[sin a sin I siny + cos a cos 7|?
+ P[cosasin Isiny —sinacosy|®
=a?sin? 3 + b?sin’ acos? 3 + ccos’acos’ B, (56)
=2(-a?[cos I sin 3sin 7] + b sina cos 3[sin a sin 3sin v + cos & cos 7]
+ *cosacos Bcos asin Bsiny —sinacos]) .
=a?[cos? Bsin? 7] + b[sin asin S siny + cos a cos ]2
+ *[cosasinBsiny —sinacosy]® |
1 s gar. . . "
=§(a [cos 3 cos y + sin B]? + b[sinasin 3 cos ¥ — cos asin v — sin a cos 8]
+ c*cos asin Jcos v + sinasiny — cosacos 3]?)
=v/2(-a? cos Bsiny[sin 8 + cos B cos )
— b?[sinasin Asiny + cos a cos y][sinasin B cos y — cosasiny — sin a cos 3]

— c*cos asin Bsiny — sin a cos 7][cos asin B cos v + sin & sin y — cos & cos J])

Note that we have the following relations,

el =hGig
glel =xgied | (57
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d d

This allows us to reduce our set of nine i to six indep in six

unknowns. To help simplify the analysis. we shall also use the equations defined in (54)
with our six remaining equations. Note that we are not adding extra independent equations

to our ion set since the ions in (54) are functions of An, pn. and va. Thus, the

task is now to solve the following equations for a. b, and c.

1 =M (€} = a?[cos? Isin® 4] + b¥[sinesin G sin ¥ + cos & cos 7]*
+ c*[cosasin Bsiny —sinacosy)®

=, (36} = a*[cos? 3 cos? 7] + b?[sinasin B cos y — cosasin 9|?

&

+ c?[cosasingcosy +sinasinqy]®
3 =01 (}E} = 2(—a[cos® I cos ysinv]
— b?[sin arsin Asin v + cos a cos ][sin asin 3 cos ¥ — cos asin ]

— c*[cosasin B cos 7 + sin arsin v][cos asin Bsiny — sinacosy]) .

“

-« =C2€% = (8*c*sin? 3 + ac? sin? acos? 3 + a2b? cos® acos® 3)

5 =pa(3€} = a?sin? 3 + b sin acos’  + P cos? acos’ 3, (58)
76 =v2(3€2 = 2(—a?[cos Bsin Bsiny + b sin a cos I[sin a sin 3 siny + cosacos 7]

+ ¢? cosacos Blcos asin Bsiny —sinacosy])

e =¢2€2 = (b*c? cos? B cos® v + a*c*[sinasin B cos y — cos asin]?

+ a?b*[cosasin Fcos v +sinasing]?)

1

a*[cos A cos v + sin 3] + b?[sin a:sin f cos ¥ — cos asiny — sina cos B]*

s =paCiEl =
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+ c*[cosasin d cos v + sinasiny — cos a cos 3]*)
ro =(3€% = 5(62¢*(cos Jcos 7 — sin 3|? + a’c?[sin a sin I cos ¥ — cosasin 7 + sina cos IJ?
+ a?b?[cos asin I cos v + sinasin v + cos a cos 3]*)

Since only the ellipsoid axes lengths are needed to calculate the volume. we must first
eliminate the unknowns a. 3. and v from our equation set. With the use of trigonometric

identities, it can be shown that.

KL =T+ T TS

=a® + b2 +c* . (39)
It can also be shown that,
1 2 1,
Ky =15(T1 +72) = i (278 =75 = 72)" + 74 — i
=b%c* + a®c +a’b® . (60)
We now need one more equation involving the variables a, b, and ¢. Consider

(219 — s = 11)

= — b2c?[cos Asin J cos ] + a®c? (sin a cos B(sin a sin 3 cos y — cos arsiny)
+a?b? (cosa cos Blcosasin Bcos ¥ +sinasiny]) . (61)
It can then be shown that,
i
Ky =T — E(r, +7s)
=a®[cos Bsin B cos 7] — b (sin & cos B[sin a sin B cos y — cos arsin ¥)

—c? (cosacos flcosasin Bcos y + sinasiny]) . (62)
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We can use (61) and (62) to show that,

(a®kq — x3)? = (a® — 6?)%(a® — c?)? cos? I sin? Jcos?

63)

We now need expressions for cos? 3, sin? 3, and cos? ¥ in terms of a. b. c. and known

values. An expression for sin’ 3 can be found using similarities found in the equations of

(38):
re—d¥(n + ) =(a* ~ ¥*)(a® - &*)sin’ § - a*
Sl
We can use cos? 3 = 1 —sin? 3 to find an expression for cos? 3 as,

(@ =)@ =) = [a* = a¥(ry +12) + 7]
cos’ = (az-m(az-a)' =

We can also use 71, T2, and 74 to show that,

~(a? — A)b* — B¥(ry + a) + 7]
(82 — ) {(a? - 8?)(a? ~ ?) — [a* — a¥(ry + 72) + 7]}

sina =

and
(a? =B?)[c* — A(r +72) + 7]

N
A= FE ) (@ - P)a? - @) - [a* —a¥(rs +72) + 7}
The previous four equations can then be used to show that,

@+ B ==
@ =)@ =)~ (@ — @ + ) + 7l

sin®y = .
and
2. _ a’r, —a?h? —a?F + 1
T @B @ - ) - [a* - @ + ) + 74l
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(63)

(66)

(67)

(68)
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We can now substitute (64), (65). and (69) into (63), and simplify to get

(a%x4 = 53)? = [a* = a¥(y + 1) + rlla?my — a%6? — a?c? + 7]

This ion can be ded and i as a quartic in a? using (59).

@+’ (n—m) +at(mr =kl —mm e =T bR )

+a¥(2k3mq = T\ Tr = a7 + 1Ty — Tyky) + TeTr — K3 =0

Using (54) and (37). it can be shown that

1.
m=nm-gd

171, 1,
y=T1 =7\ 5T 376 576
ro=rims = 7 (578 + 7T + 5

We can now re-express 3 in (61) as

* = (2 = =)

1 1 1
=TITe = TR = ZTITS < TaTe

2 2

1
=TiKq — TaTs

4

If we use (59) and (73) to substitute for x; and &3 in (71), we have,

@® +a8(=2ry — 7 — 75) +a*(rr = K 4 7 4 TiTy +TiTs FToms +74)

1

+a*(2ryaf — 3TaTeRy = TiTr =T = 271 = Ty = Tats)
22, 1 122

+TaTr - TR+ Er;rnrsn—ﬁr,q =0
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Using (72) we have

1 1 a5 i 2
Ty = TimaTs — I,-,m-,? - N+ ﬁr,‘.—; : (73)
If we substitute { 73) into (74) and factor. we arrive at.
(a® —my) (a® +a’[—mi] +a’mz +55) =0 . (76)

where
.
Ks = T\ TaTs — TaTr — ToTs + Ty Rg — Er,r‘x.
In general. a? will not always be equal to 7y, thus,
a® +at—ri| +a’ky + k5 =0 . (77)

It turns out that the three roots of this cubic equation in a? yield the quantities of a?,
5%, and c? where a, b, and c are the semi-axes lengths of the ellipsoid. It is impossible to
determine which is a®. b2, or ¢? since we arbitrarily placed 2a along the z axis. 25 along
the y axis, and 2c along the z axis in the original ellipsoid.

‘With the use of (59) and (60), it can also be shown that (77) can be expressed as,

b + x5 =0

whence B = —xs . (78)

Since the volume of an ellipsoid is given as $wabc, we can now estimate the volume of the
left ventricle using (78). Note that ks can be written in terms of measurable quantities (n,
£n, and §,, through the use of (76), (58), and the generalized versions of (32). (33), and

(34).



Chapter 3:
Results and Discussion

To test the uracy of using this ellisoidal model for left volume estima-

tion, two identical hollow ellipsoidal models were constructed. The inner dimensions of
each axis (9.2cm, 5.8cm, and 3.6cm) were chosen so that the axes ratios would be similar
to those found in a left ventricle. A ®*™Tc solution was injected into the models which
were then placed under a gamma (7) camera.

Counts were recorded for a period of two minutes to ensure a relatively clear image of
each model (Figure 9). The camera was then rotated 45° and a new image was recorded.
Finally, the camera was rotated another 45° along the same arc as the first rotation to
obtain an image in the third viewing direction. A total of 20 trials (10 trials with two
models imaged in each trial) were performed in which the models were arbitrarily located
relative to a fixed reference frame. Trials 1 and 2 were performed on separate occasions
using a different concentration of radionuclide, thus causing a different number of counts.
Also, the odd numbered trials between 3 and 19 (inclusive) were performed with one model
while the even numbered trials between 4 and 20 (inclusive) were performed with the other

model.
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Figure 9: Radionuclide images of the two models.

Each image from the v camera (elliptic in shape) was then analyzed to determine the
major axis length ((a), minor axis length (£,), and angle of rotation for the major axis
from the horizontal base of the image (8, ). For each trial, there were three images analyzed
in this fashion (zy, zy, and z = —z planes). The measurements are given in Table 2.
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Table 2: Measurements of axes lengths ((, and £, in cm) and angle of rotation (4, in °)

taken from each image.

Trial 2 G & & ¢ & b2 G ¥ 8 8
1 414 | 198 | 67 | 361 | 227 | 65 | 293 | 240 | 39
2 424 | 277 | 48 | 382 | 224 | 41 | 338 | 221 | 14
3 416 | 262 | 32 | a1a | 218 | 23 | s01 | 215 | 12
4 407 | 238 | 6 | s11 | 199 | 9 | s11 | 248 | 9
5 4.05 277 86 3.71 2.81 82 2.88 2.10 3
6 4.14 275 67 3.83 2.61 35 3.22 2.06 20
7 409 | 266 | 60 | 368 | 277 | 59 | 322 | 213 | 12
8 4.20 2.12 84 3.92 2.02 76 3.15 1.99 61
9 407 | 277 | 84 | 356 | 281 | 83 | 287 | 198 | 0
10 4.31 1.98 66 3.84 1.99 63 3.22 2.32 59
11 426 | 204 | 68 | 385 | 221 | 67 | 281 | 235 | 19
12 4.07 1.97 -84 3.82 2.12 -88 288 2.10 87
13 4.19 2.80 36 4.02 2.62 24 3.91 2.09 0
14 428 | 221 | 50 | 382 | 258 | 49 | 351 | 268 | 31
15 4.26 221 -68 3.80 2.04 60 2.97 2.53 -33
16 417 235 90 3.73 2.25 80 3.07 2.04 34
17 4.06 2.81 -70 3.90 268 -65 317 2.15 -23
18 418 | 209 | 88 | 381 | 210 | 84 | 298 | 210 | 68
19 414 | 282 | -67 | 394 | 258 | 56 | 339 | 210 | 21
20 428 1.96 40 4.19 235 36 358 2.81 9

The measurements given in Table 2 were obtained by using an image processing soft-
ware application program to view and analyze each image. Manually drawn borders were
drawn over each image. The major and minor axes lengths were estimated by manually
measuring the lengths using pixels with a conversion factor of 6.13 mm/pixel. The coordi-
nates of the endpoints for each axes were also recorded and the angle of rotation was then

estimated from these coordinates.

The nine measurements from each trial were then substituted into equation (78) using
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equations (76), (62), and (38). The volume estimate and percentage discrepancy for each
trial are given in Table 3. The percentage discrepancy was calculated by subtracting the
actual volume from the estimated volume and then dividing by the actual volume. The
actual volume was calculated using V = jmabc where a = 4.6 cm, b = 2.9 cm, and

c=18cm.

Table 3: Volume estimation using Table 2 measurements. Actual volume is 100.6 cm3.

Trial # Estimated _ | Percentage
Volume (cm?) Discrepancy
1 99.9 -0.7
2 105.8 5.2
3 101.6 1.0
4 95.2 5.3
5 95.5 -5.0
6 104.8 4.2
(4 94.1 -6.4
8 108.3 T3
9 92.5 -8.1
10 105.3 4.7
11 94.3 -6.2
12 99.5 -1.1
13 106.5 5.8
14 113.8 132
15 114.5 13.9
16 108.6 8.0
17 104.3 3
18 108.4 78
19 113.1 12.4
20 101.4 0.8

From Table 3, it can be seen that this method can be used to estimate the left
ventricular volume (using an ellipsoid model). One problem that should be noted is that
it may be difficult to determine the exact location of the left ventricular projection border
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because of scattering and the pixel size (resolution of 6.13 mm/pixel). This will. of course,
affect the volume estimates. This problem can be minimized by selecting a certain count
threshold to help determine where the left ventricular border is located.

Another problem associated with the left ventricular border location is the interference
of radiation from other organs. But, it must be kept in mind that the entire border outline
is not needed. Only the endpoints of the major and minor axes are required for this
volume estimation method. Any interference from radiation from other organs will have a
much greater impact on any count based method of volume estimation, as opposed to our
geometric method.

The total counts observed for each elliptical image were also recorded (Table 4). Since
the counts were recorded for a period of two minutes for each image, they should be
approximately equal. Because of self attenuation, the counts were observed to differ by as
much as 33.7% for images within the same trial. Note that the counts decreased from trial
to trial because of its decay rate. *™Tc has a half life of six hours while the elapsed time
from trial 3 to trial 20 was approximately one hour and twenty minutes. Trials 1 and 2
were performed on a separate occasion using a different concentration of radionuclide, thus
a different count rate. Also, the odd numbered trials between 3 and 19 (inclusive) were

performed with one model while the even numbered trials between 4 and 20 (inclusive)

were performed with the other model, ining a different



Table +: Total counts under each elliptical image without any adjustment for radioactive

decay.

Trial # [mage | Image 2 Image 3 Maximum
% Increase
1 259714 252095 231387 12.2
2 471028 413820 398161 18.3
3 . 316445 288374 278726 135
4 | 325422 300030 304599 8.5
5 308332 298598 237378 299
6 322348 311866 264528 21.9
T 300896 291368 246196 222
8 298124 284618 |- 246128 21.1
9 298542 284655 223315 33.7
10 287302 271971 254767 12.8
11 266867 256722 233307 144
12 276079 263858 235043 17.5
13 287380 277053 248297 15.7
14 280115 285915 276856 3.3
15 261447 240377 230727 133
16 281608 268655 225830 24.7
17 273940 266471 218320 25.5
18 270438 256222 220341 22.7
19 268446 260362 217265 23.6
20 259883 266432 277537 6.8

If a count based left ventricular volume estimation method was performed on this
same set of images, then there would be a relatively large discrepancy among the volume
estimates. To perform a count based procedure, a thin walled (for minimal self attenuation)
test sample would also have to be imaged under the gamma camera for the same period of
time as the images. By measuring the volume of this sample, a factor of volume/count can
be estimated and then applied to the data of Table 4 to obtain volume estimates. Because
the counts varied for images within the same trial, then the volume estimates from each of
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the three images within the same trial would also vary by the same percentages. Thus. the

percentages given in the last column of Table 4 would rep the di ¥
among the volume estimates using a count based method. These percentages would be
even higher if the decay rate of ¥™Tc was not taken into consideration properly. This
confirms that self attentuation can be a major problem in count based methods.

In a more practical situation. there would also be attenuation due to other organs and
bones. Thus, the volume estimates from a count based method would also have inherent
errors due to these factors as well. Because of so many factors such as attenuation, self

di ive decay, ing, and i from other organs, it would

appear as though count based methods would not be able to estimate accurately the
volume of the left ventricle.

The major problem of using a geometric method of volume estimation is how well
the geometric model fits the actual organ. For most cases, an ellipsoidal model does

seem to be a relatively accurate model (Davila and 1966) but ab lities in

the left ventricle will affect the accuracy of this method. The extent of this error would
depend upon how the abnormality affects the overall left ventricular volume and shape of
the images. Another problem associated with geometric methods is the estimation of the
left ventricular border (actually, only the location of the major and minor axes endpoints
need to be known). The impact of this problem can be minimized by using a threshold
count to help determine the border location. Also, a scaling factor can be determined

experimentally to reduce the effect of scattering.
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Chapter 4:

Conclusions

Using measurements taken from three images has been shown to be an effective method
of volume estimation for an ellipsoidal model. Data from only two projections is not always
sufficient. There are several shortcomings associated with this method. First of all, if the
left ventricle is abnormal in shape. then an ellipsoidal model may not be an accurate
representation. In this case, a count based method may be more accurate since it does not
take into consideration the shape of the imaged object. But, it must be kept in mind that
the problems of using a count based method still have to be overcome in order to obtain
acceptably accurate results.

b lipsoidal h

model is that care must be

Another of using the
taken to determine the left ventricular border in each image. Any error in estimating the

location of the border will result directly in an error in the volume estimate.

It should be mentioned that this method of volume estimation has not yet been applied
to humans. Some problems that may arise include camera location and interference from
other organs. This method relies on the camera being located in a fixed arbitrary reference
coordinate system. After the first image is complete, the camera should be rotated 45°
to obtain the image in the third projection plane (z = —z plane). Finally, the camera
must be rotated by another 45° in the same direction as the first 45° rotation. to obtain
the image in the second projection plane (zy plane). Obviously, any error in the rotation
direction or rotation angle will cause an error in the volume estimate. The impact of this
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problem can be minimized by ensuring that the camera location is carefully monitored and
checked to ensure accurate camera placement.

Another problem that may arise is the possible interference from other organs. It may
be difficult to find three views, separated by 45° each, that show the left ventricle without
any overlap of radiation from other organs. Of course. if the left ventricle is not abnormal
in shape, then the border can still be estimated if there is only a small portion of overlap
(extrapolate the border location) or if the counts from another organ are sufficiently small
allowing the border to be easily recognizable. If a count based method were used, any
overlap would not be acceptable since the extra counts would directly affect the accuracy
of the volume estimate.

Once the three images have been formed and processed then another problem arises
which is inherent to all methods. The true volume is not known and thus the accuracy of
this method would also be unknown. Of course, there are other methods of left ventric-

ular volume estimation available but there would be some uncertainty about using these

estimates as the true volume. The most method, as d by most ph
could be used as a reference but it must be kept in mind that the reference method will
have some degree of error associated with it.

Even though this ellipsoidal method of volume estimation was developed for human
hearts, it was good to test initially this method using an ellipsoidal model. Knowing the
true volume helped give a better indication of the accuracy of this method. Also, the

effects of self attenuation have been shown to be considerable.
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Chapter 5:

Recommendations

There are several recommendations that could improve the approach discussed in
this thesis. To account for any systematic errors in estimating the location of the left
ventricular border. a correction scaling factor or an improved border location technique
could be implemented. A more accurate location of the left ventricular border can also
be determined by either having a more skilled analyst process the images or by using a

computer algorithm to detect the border.

This ellipsoidal model method can be improved by using the counts in addition to the
measurements of axes lengths and angle of rotation. The nine measurements from each
trial can be used to estimate the dimensions of each axis (a, b, and c) and the angles of
rotation (a, 3, and 7). From this information, the depth and volume underneath each
pixel can be calculated. Next, the self attenuation can be accounted for and an estimate
of the counts, underneath each pixel. can be calculated. This theoretical estimate can

be compared to the actual d value. This it can then be used to alter

the volume estimate to account for ab lities. Thus, a bination of the

and count based methods may be the best alternative to estimate the volume of the left
ventricle.
It is also recommended that the effects of self attenuation should be more closely

examined. By placing the model in a known orientation (@, 3, and v are known), then

the exact volume under each pixel can be calculated and d with the d
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result. From this. a more accurate ion (from a ical perspective) of self
attenuation can be obtained which can then be used to improve this method or even count

based methods.
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Glossary

angiocardiography
The roentgenographic visualization of the heart and its blood vessels after injection
of a radiopaque substance.

caudal tilt
A tilt towards the hind part of the body or object.

cineangiography
A series of roentgenographic images of the blood vessels after injection of a radiopaque
substance.

echocardiography
The recording of an ultrasound image of the heart. A transducer, usually placed
on the chest wall, transmits very high frequency waves that are reflected from tissue
interfaces.

Fick technique
A technique developed by Adolf Fick to calculate the cardiac output from the mea-
surement of the minute volume of oxygen consumption.

first pass kinetics
The study of a radioisotope as it passes through an organ for the first time.

fluoroscopy
The observation of an opaque object (organ) by the means of the shadow cast by the
object onto a fluorescent screen with a radioisotope source placed behind the object.
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gated equilibrium studies
A series of images created by the measurement of counts separated within the cardiac
cycle.

radiopaque
Being opaque to X rays or other forms of radiation.

roentgenographic
Photography made with X rays (radiograph).

scintigraphy
A diagnostic technique in which a two dimensional picture of a bodily radiation source
is obtained by the use of radioisotopes.

thermodilution
A technique for measuring blood flow by the introduction of a relatively cold fluid

of known quantity into a ci i By ing the fall in by a

themistor. the volume in which the cold fluid has been diluted can be calculated.

ventriculography

The art of making an X ray ph h of the icles made after withdrawing fluid

and replacing it with air or a radiopaque substance.
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