CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

CROBOTS
A CAD Based Robot Simulation Tool

by

© John Joseph O'Leary, B.Eng.

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE
STUDIES IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

Faculty of Engineering and Applied Sci
Memorial University of Newfoundland
St. John’s, Newfoundland

August 1998

O Carada” "
-

services bibliographiques
395 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4.
Canada Canada
Yous . Vo rtence
P
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
1a forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-36159-4

This thesis is dedicated to
my wife
Charlotte
whose persistence and patience
helped me achieve this goal.

Abstract

This thesis proposes a new CAD based tool for robot simulation
(CROBOTS) that can be used in the design, application, and programming

of ed ional and ind ial robots. The is written using the
Aumhsppmammuahnmeemdmmuathndpmawhwmn
inside AutoCAD R14. CROBOTS combines the i b
mpabll.\ty of AutoCAD with custom developed tools for revolute robot
model robot ion cycle planning, and robot 1

imulation. Custom functions enable the i ion of a 3D solid
model representation of robot geometry given dimensions, the teaching of
point positions defining a desired robot traj y, and the 3D hical

imulation of the ipul ’s to d torque plus PID
generated drive torques.

CROBOTS should prove an effective tool in the delivery of robotics

related iculum at both dary and post- dary educational
The time ired to become proficient in the use of
CROBOTSshuuldbeleesthanthatreq\nredmleammndalone
1 k for robot si ion. AutoCAD’s inquiry

tools, for example, may be used to facilitate the teaching of robot design
concepts. Furthermore, CROBOTS can assist with the development of
robot programs offline and should allow for more efficient use of limited
robot | r at educational

Future developments of CROBOTS should allow modeling of

ddi 1 robot mechanical the ding of significant
production data, and a task level programming interface. CROBOTS
should also be tested in both industrial and ed 1 ings to

determine its robustness and to identify needs for additional functionality.

Acknowledgement

I extend my sincere appreciation to Dr. Michael Hinchey, my
eupemsorfur‘hmwmgweryﬂnngaboutmboumandmnh—ol’and.m
for his und of how lenging it is to achieve this
goal when employed full-time.

(P Py, P

L)

n.h,pa-n:x-u?momx
7
[

W

T

Nomenclature
Tool center point position with respect to the
robot base.
Robot base rotation angle [rad].
Robot shoulder rotation angle [rad].
Robot elbow rotation angle [rad].
B + € [rad].
Robot base height [m].
Length of link 1 [m].
Length of link 2 [m].
Wrist position with respect to the robot base.
End effector pitch angle [rad].
End effector roll angle [rad].
End effector yaw angle [rad].
End effector approach vector.
End effector orientation vector.
End effector normal vector
End effector rate [rad/s]
Joint rate [rad/s].
Virtual work [J].
Virtual displacement [m].

Joint load [N.m].

® 2 0 < A2 @8

s

M(q@
Va9
G(@
F@
Td

e(t)

Joint displacement [rad]
Total kinetic energy [J].
Total potential energy [J].
Lagrangian, T -V [J].
Mass [ke]

Base torque [N.m]
Shoulder torque [N.m]
Elbow torque [N.m]

Inertia matrix

Velocity torque matrix
Gravity torque matrix
Friction torque matrix
Disturbance torque [N.m]
Joint tracking error [rad]
Proportional gain [N.m\rad]
Derivative gain [N.m.s\rad

Integral gain [N.m.\rad.s]

Table of Contents

Abstract
Acknowledgement
Nomenclature

1.0 Introduction

1.1 Ind ial Robot Pr ing Tect

12 C ial Offline P; ing S¢

1.3 Related Previous Work
2.0 Development of the Robot Model
2.1 Robot Classifications
2.2 Mathematical Modeling
2.3 Kinematics
2.3.1 Direct Kinematics
2.3.2 Inverse Kinematics
2.4 Singularity
3.0 Dynamical Equations of Motion
3.1 Lagrangian Equations of Motion
3.2 Equations of Motion for the Revolute Robot
4.0 Simulation
4.1 Computed Torque Control

4.2 PID Control

iv

13
14
14
18

22

26

28

32

34

vii

4.3 Zero Order Hold
4.4 Numerical Simulation
5.0 CROBOTS: A CAD Based Tool for Robot Simulation
5.1 Commercial Applications
52 Educational Applications
5.3 CROBOTS Overview
5.4 Overview of AutoCAD Customization
5.4.1 AutoCAD R14
5.4.2 The Template Drawing File
5.4.3 The Modified Menu
5.4.4 The Custom AutoLisp Functions
6.0 Conclusions and Observations
7.0 Recommendations
References
Appendix A. Modified AutoCAD Menu File
Appendix B. Listing of Custom AutoLisp Functions

71

73

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figare 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

List of [llustrations
Cartesian Configuration
Cylindrical Configuration
Spherical Configuration
Revolute Configuration
SCARA Configuration

Co-ordinate Frames for a Two Link Revolute Robot

Robot End Effector Orientation Vectors
Multiple Arm Solutions for a Revolute Robot
General Simulation Block Diagram
Computed Torque Control Block Diagram
Digital Controller

Zero Order Hold

Customized Pull-down Menu for CROBOTS
CROBOTS Main Menu

Image Menu for “Create New Robot Model”
Create New Robot Model

Home Position for the Robot

Teaching the Robot

Trajectory Approximation Using “Teach”
Simulate Controller

Layer Dialogue Box for Revsetup.dwt
Program Flowchart for Simulate Controller

41

47

49

51

52

53

54

57

Chapter 1

1.0 Introduction

In an effort to remain itive in a d, ic global
today’s manufacturers are challenged to reduce the lead-time and cost
required to bring a product from the concept stage to the consumer. Flexible
manufacturing systems (FMS) provide a number of advantages over

diti labor i hni which may help meet this need. FMS
can result in i d productivity, shorter production time for new
d duction of i y parts in the plant, savings in labor cost, and

improved product quality (Biekert, R. et al ,1991).

Industrial robots a major in FMS due to their
capability to be used for a number of different applications. The main
applications of robots include parts handling, assembly, machine loading and
unlcadmg spray painting, weldmg, and inspection (Ryan, D., 1994). The
world's industrial-robot it was esti d at 570,000 units at the end
of 1992. Japan accounted for about 60% of the world's stock operational in
1992. The worldwide stock of industrial robots in 1992 increased only by 8%,
compared with 16% in 1991. Robot orders, however, jumped by 40% in the
record-setting first half of 1993, lead by the auto industry in spot-welding,

coating and material handling. About 48,000 robots are at work in American
factories, the second largest robot user behind Japan. But Japan installs
more robots each year than the total that the U.S. has installed in the past 32
years. It is estimated that the number of industrial robots operating in Japan
will reach 880,000 units by the year 2000 (National Robot Society, 1994).

The expected growth in industrial demand for robotics technology will
invariably lead to a need for more efficient engineering design practices,

d productivity in robot ing, and imp: in

support of and training. This thesis
presents a new (C)AD based tool for (Robot) (S)imulation or CROBOTS that
has been designed to help meet these needs.

A brief review of robotics fundamentals is provided beginning with a

di on industrial robot i Secondly, ional
t are reviewed and the ial ad of offline
programming are discussed. A detailed overview of the requirements for
h ical modeling of robotic follows. This section includes
development of the direct ki ics, inverse ki ics, and d
models for a revolute manipulator. The application of these models in the
devel of ical simulati for robots is then provided. The

capabilities of the CROBOTS soft are then highlighted and a di:

on the development of CROBOTS is presented. This is followed by an
overview of the effectiveness of using this software in robot design and
motion planning. Finally, dations for the future enhancement of
the CROBOTS software are presented.

1.1 Ind ial Robot Pr ing Techni

The reduced time for product changeovers afforded by FMS is due
primarily to the capability to pre-program robots to perform a variety of
different tasks. There are three primary forms of robot programming now
being used in industry: (1) lead-through ing, (2) teach pend
programming, and (3) offline programming (Greenwood, F., 1989). In lead-
through programming the operator sets the robot controller to programming
mode, grasps the manipulator, and leads it through the various point moves
which make up the operation cycle. After the operator pushes a button, the
controller records the positions to which the end effector is moved. During
playback the controller is able to duplicate the defined robot moves.
Alternatively, a hand-held teach pendant which enables real time
programming of the robot is used. Using the pendant, the operator is able to
jog each robot axes to position the end effector where desired. After the
operator pushes a button on the d the points are ded by the
controller. The teach pendant also enables the operator to develop the overall
robot program which, in addition to point moves, may include instructions to
control gripper actuation, conditional logic, instructions for communication
with external sensors and other machines through input/output (I/0)
modules, and most other commands included with the robot control
programming software. Finally, offline ing enables devel of
the preliminary robot control onaPCor k ion without the
requirement to take the robot out of service. During on-line programming
using lead through or teach pendant methods, the robot is not available for
production and manufacturers must incur the cost of this downtime.

ial robots lly provide the with the bility to
develop programs offline using an ASCII text editor and then download the
to the robot In additi ietary is

from commercial robot suppliers which enables debugging of the ASCII form

of the before download. These h ically do not
provide a 3D hical simulation of the ion cycle and the operator is,
therefore, still required to test the robot i ion with its

online. Fortunately, there are a number of third party commercial software
packages available which allow offline programming and 3D graphical

lation of the robot ion cycle. The capital cost of these software
and ing hard: may in some cases exceed the cost of
robot hardware and is, therefore, difficult to ically or dall;
justify for ind ial use. Ed ional and R&D instituti have even more
limited budget funds and 1 of such ial is 11
not feasible.
1.2 C ial Offline Pr ing Soft e

ThereareawldevanetyofSDCADbasedeommemaloﬂme
o ” 1 ilable in the ketol

Workspace (version 3.2), an ind ial robot simulati package, is
a graphic simulation system and a means of off-line programming a robot
cell. The software package will create and simulate robot programs in the
native language of the robot. For example, users of Fanuc robots may write
robot programs in Karel, and ABB robot users may write robot programs in
ARLA.Thexemthemfoxenoneedforposq)meewrsmmslawﬁoma

lation 1 to the robot L the full power of the robot
language is available to the user through off-line programming. It is also
possible to transfer e:nstmg robot programs from the robot controller back

into Work for ization, so off-line ing is a two-way
process. The full structure of the robot L is impl d, includi
i variabl hooi h ines, looping, branching on conditi

signals, and condition handler interrupts. All the main industrial and

di ional robot 1 are i d, and a library of over 140 robot
models is available to the user (though it is also possible for users to create
their own robots).

Robotica is a collection of robotics problem solving functions for the

Math i ft k It has the bility of reading 1
simulation (e.g., SIMNON) output files and displaying the motion of the robot
when subj d to the of joint variak It Math

and X-windows.

Deneb Inc. offers a number of software packages for offline robotics
and simulation including UltraArc - The Simulation and
Programming Tool for Robotic Arc Welding, UltraFinish - The Simulation
and Analysis Tool for Robot Deburring, Grinding, Polishing and Buffing,
UltraPaint - The Simulation and Analysis Tool for Robotic Painting, and
Ul - The Simulation and P; ing Tool for Spot Welding.

Working Model 3D is a PC based software package which allows

)! ic and d, ic simulation of a variety of mechanical systems. The
is not ifically designed for robotics applications but it does
provide the utilities 'y to build and simul: ipul: operation.

In each of these cases, the cost of the software, required hardware, and
related training may be difficult to justify for industry and educational
customers who have already dedicated extensive in-house resources to CAD
software such as AutoCAD.

1.3 Related Previous Work

Development of the CROBOTS soft ired ideration of a
wide array of topics including robotics design fundamentals, direct
ki ics, inverse ki ics, d i deling, inverse d i
1 ller simulation, offline robot ing, and robotics
related CAD applications. Several i h efforts related to these

individual topic areas were identified and sourced in the development of this
thesis.

Development of the direct and inverse kinematics model has been well
documented by a number of sources. The basic parameters used to describe a

1! were first d by Denavit and Hartenberg (1955) and
further detailed by Paul (1981). Pieper (1968) presented a closed form
solution for the inverse ki ics for simple ipul: which Paul

(1981) later expanded and applied to industrial robots such as the Unimate
PUMA.

Devel of control sch have been as well. Whitney
(1969) proposed the use of resolved motion rate control (RMRC) for robots.
Given a desired path of the tool endpoint in i di RRMC
can be dm:gned by relating the joint rates to the tool endpoint rate through
the 1! Jacobian. RRMC, h gives rise to an accumulation in
tracking errors in position since position is established indirectly by taking
an integral over a specified time interval. The Computed Torque model was
originally proposed by Bejczy (1974) and again by Vukobratovic (1982).
Unfortuna'.ely, the Computed Torque varies from the actual torque due to

in the d ics model Iting from unk friction, payload
and inertia Control sch based on li ization of L 's
ions by 1i feedback were by Freund (1982). This

scheme d probl in di i ired and
calculated torques similar to the Computed Torque method. Takegaki and
Arimoto (1981) showed that P ional plus Derivative (PD) 1

can provide stable manipulator control if the gravity term can be carefully
compensated for using counterweights. Alternatively, an integral control
term resulting in a PID scheme may be used to compensate for the gravity
term. This scheme still knowledge of ipul dy ics, which
invariably are inaccurately modeled.

The use of CAD to aid in the design and programming of robots has
been the subject of several research efforts. Wu (1984) proposed a
mathematical formulation that could be used to build a CAD tool which

would imp: the of ki ic models and the development of
offline programs. In this case, calibration of the actual robot hardware is still
necessary online since the -y of the fz d differs

from the CAD model. The robotics facilities of the CAD/CAM CATIA system
were proposed by Borrel, P. et al (1982). This program was developed to run
on computer workstations. Hornick and Ravani (1986) proposed a CAD tool

called STAR (Simulation Tool for A ion and Robotics) for offline robot
motion pl ing and ing. This was developed to run on
computer workstations and relied on for the

model and the dynamics model. Dutt (1991) utilized AutoCAD to generate

11 i ired for offline robot programming. In this case,
BASIC programming was used to extract geometrical information
characterizing the manipulator position from the Drawing Interchange
Format (DXF) file output of AutoCAD. This could only be done one position at
a time. Ryan (1994) proposed the use of AutoCAD for simulation of robotic
and automated systems. AutoCAD is not customized in this case and
essentially this proposal is an overview of native AutoCAD commands that
may be used for a static analysis of position geometry.

Chapter 2

2.0 Development of the Robot Model

The Robot Institute of America defines a robot as:

“A robot is a reprogi bl Itifunctional ipulator designed to move
materials, parts, tools, or specialized devices through variable programmed
motions for the performance of a variety of tasks.”

As this definition implies, robots are available in a wide variety of mechanical
configurations but, in general, may be classified in one of five different
classifications. These include i lindrical, sph 1 1
SCARA (Critchlow, A., 1985).

and

2.1 Robot Classifications

Cartesian Configuration

This configuration characterizes robots that have linear or prismatic
motion capability that can be measured in the familiar XYZ cartesian co-
ordinates as shown in Figure 1. The manipulator can be moved linearly up or
down the vertical Z axis and positioned in the hori plane th h linear

motion along both the X and Y-axes. These robots are easiest to program
because of the complete independence of their joints and there is no coupling
between all axes for a rigid and frictionless structure. This motion defines a
rectangular workspace that is suitable for relatively simple applications such
as machine loading/unloading and i s 3

Figure 1: Cartesian Configuration
Cylindrical Configuration

This configuration applies to robots that combine vertical and radial
prismatic motion capability with the ability to rotate about the vertical axis
as shown in figure 2. These bined ions define a cylindrical work
volume. The cylindrical confi ion is more ile than the it
configuration and it is used for a variety of production applications. Since
there is telescopic radial motion, these units require relatively small space
and reduced dynamics since initial rotation can be executed with the

; d. This confi ion is well suited to the majority of
pick and place ions. One disad: of the cylindrical confi i

is that the manipulator cannot reach below the bed of the structure.
Redundant degrees of freedom at the wrist may be used to overcome this.

Figure2: Cylindrical Configuration

Spherical Configuration

The spherical ion retains the tel ic pri ic radial
motion and the capability for rotation about the vertical axis of the cylindrical
In addition it loys the ability to rotate about a horizontal
axis through the base as shown in figure 3. The resulting motion capability
defines a hemispherical work b ded by an inner and outer

‘hemispt This ion requires more sophisti d control systs

but it is able to service a larger workspace.

Figure 3: Spherical Configuration
Revolute Configuration

The revolute manipulator employs rotary motion capability about the
base, the shoulder and the elbow as shown in figure 4. Three additional
rotational degrees of freedom are normally added at the wrist resulting in a
6-axis ipul for most inds ial units. This i ides the
most d ity but also d ds the most sophisticated llers. Their
small size relative to their workspace capability, ease of installation, high
reliability, and ability to easily work in enclosed spaces make them well
suited for a variety of ind ial licati A disad: of this

is the d ing behavior of the ipul: near the
workspace boundaries. In addition, because the shoulder and elbow axes are
parallel and orthogonal to the waist axis, these units have relatively low
stiffness. This makes them unsuited for many high precision applications.

Figure 4: Revolute Configuration
SCARA Configuration

The SCARA (Selective Compliance Assembly Robot Arm), which is
ifically designed for high isi bly and drilling operations,
the low stiffn blem of the revolute ion but offers
limited mobility. In this configuration shown in figure 5, the shoulder and
elbow axes are parallel to the waist axis. The SCARA has four degrees of
freedom: limited ions about the shoulder and elbow to position the tool,
rotation about the base to locate the shoulder and elbow work and
vertical prismatic motion of the end effector. This motion capability makes it
well suited for the majority of assembly operations in industry.

ﬂ/—j
%

o

Figure 5: SCARA Configuration

2.2 Mathematical Modeling

Industrial robots are basi itioning and handling devices. To
ffecti lete typical jons such as welding, the robot must be
able to control its motion, at a minimum, and, in many cases, the forces it
applies to its environment. Control of the end effector demands an accurate

lysis of the ch istics of the hanical and
sensors. Math ical deli of a robot ipul. iﬂ. h fc a
necessary pre-requisite to developing a successful controller (Canudas de Wit,
1996). Modeling of robot ipul. i ideration of both

kinematics and dynamics.

2.3 Kinematics

K . deli tha description of the
motion with respect to a reference frame without consideration of the forces
and torques that cause the motion of the structure. This formulation of the
kinematic relationship allows study of both direct kinematics and inverse
ki ics. Direct ki ics enables the description of the end effector
motion as a function of joint motion. Inverse kinematics consists of
transforming the desired end effector motion in the workspace into the
corresponding joint motion.

2.3.1 Direct Kinematics

A serial link i consists of a of links d
together by actuated joints. For an n degree of freedom manipulator, there
will be n links and n joints. The relationship between links of a two link

lated robot can be developed after assigni di frames to each
link as shown in figure 6. The tool center point (TCP) can be measured locally
with respect to: (1) moving co-ordinate frame uvw which has its origin at the
wrist, (2) moving co-ordinate frame nmh which has its origin at the elbow, (3)
moving co-ordinate frame pqr which has its origin at the shoulder, (4) moving
co-ordinate frame xyz which has its origin at the base, or (5) fixed world co-
ordinate frame XYZ which also has its origin at the base. The direct
kinematics (DK) solution for this case allows the determination of the
C: ian position and ori ion of the end effector when given the joint co-
ordinates.

Figure 6:

Co-ordinate Frames for a Two Link Revolute Robot

For a locked wrist case, the end effector tool center point (TCP) to base
transformation is (Hinchey, M.J., 1994):

p:| [Ca
P|_ Sa
13 “lo
1 0
where

~Sa 0 0JCB 0 sg 0TCs 0 Se O u
ca 00fo 1 0 olo 1 0 of v
0 10|-580CB G|-Se 0 Ce H|E+w
o o1Jo oo 1Jo oo 1] 1

[¢)]
(Px, Py, P2) is the cartesian position of the TCP with respect to
the base frame X,Y,Z in [m].
(u, v, w) is the cartesian position of the TCP with respect to the
wrist frame uvw in [m].
E is the base height in [m].
G is the length of link 1 in [m].
H is the length of link 2 in [m].
Ca and similar ions are used to abbrevi ine/sine of
respective joint angles in [rad].

At the wrist, u =v=w =0 and the wrist to base transformation is therefore:

pe] [Ca -Sa 0 OJCB 0 SB O Se&£
pe| |S¢ Ca 001 0 1 0 O 0
|0 0 10[|-58 0 cB G|H+CE
1o o o1fo oo 1f 1
@
where (Pxo. Pyo, Pw) represents the position of the wrist or origin of the

end effector frame with respect to the base reference frame.

Matrix multiplication yields:
p=| [Ca -Sa 0 0] CASeE+SP(H +CeE)
pe| |Sa Ca 00 0
p=| | 0 0 1 0|G-SESeE+CB(H +CeE)
1 0 0 01 1
@
From which it follows:

P = Ca(CBSeE + SB(H + CeE))

@
Pro= Sa(CBSeE + SB(H + CeE))

)
Po= G - SBSeE + CB(H + CeE))

Lettingk = B + ¢ these equations reduce to:

Pw= Ca(SkE + SBH)

(v
Pro= S«(SkE + SBH)
®
Pw= G+ CBH+CxE
©)
It should be noted that inspection of geometry yields the same equations.
For a two link revolute robot with a Roll Pitch Yaw (RPY) wrist for end
effector orientation, the tool center point (TCP) to base transformation is:
p| [Ca -Sa 0 OJCB 0 Sp 0 Ce 0 Se 01 0 0 O
p| |Se Ca 0 0f 0 1 0 0j) 0 1 0 00 100
p| |0 0 1 0f-SB 0 CB G|-Se 0 Ce H|O 0 1 E
1J{o o0 01§ 0 0 0 1fO 00 1J0O0O0T1
CRCY -CPSY SP 0fu
CRSY +SRSPCY CRCY -SRSPSY —SRCP 0| v
SRSY ~-CRSPCY SRCY +CRSPSY CRCP Ofw
0 0 0 1
(10)
where P is the pitch angle in [rad].
Y is the yaw angle in [rad].
R is the roll angle in [rad].
Multipl gives an ion of the form:
px| [0r a pm|u u u u
p,'nyo;ayp-v_nolpv_llpv_ v
pe| |m o a po|w| [0 00 1fw| [0 1]w| |w
1 00 0 1]1 1 1 1

a1y

The TCP of the end effector may, therefore, be expressed in terms of
base co-ordinates through a rotation matrix R = [n o a] representing the
orientation of the end effector and a position vector po representing the
position of the wrist. These values are denoted collectively as the arm T
matrix. As shown in figure 7, the approach vector a represents the reach
direction. The ori ion vector o the directi ifying the
orientation of the end effector from fingertip to fingertip. The normal vector n
is chosen to complete the definition of a right-handed co-ordinate system.

Figure 7: Robot End Effector Orientation Vectors

2.3.2 Inverse Kinematics

The DK solution aliows the determination of the TCP position with
respect to the base frame given the wrist position and the end effector

orientation. While this solution is an i part of math, ical
modeling of robots, the inverse kinematics (IK) solution offers more practical
information that can be used in the devel of 1L ies. The

IK solution for the revolute robot is aimed at determining the joint angles

necessary to produce a given position and orientation of the end effector. The
IK solution for the wrist of the revolute robot, previously shown in Figure 1,
allows the determination of the joint angles a, B, and € corresponding to a
given (P, Pyo, Pw) location.

Manipulation of equations (4) and (5) yields:

ProSa = SaCa(SkE + SBH)

(12)
pyoCa = CaSa(SkE + SBH)

(13)
Subtracting equation (13) from (12) gives:

PyoCat - proSa =0

(14
Solving for a implies:

a = atan2(py/Px) and a = atan2(-pyo/-Pxo)

(15)
where atan2isa ion of atan which for the fact
that two possible quadrants provide the same solution for a.

Additional ipulation of i (12) and (13) yields:
PxCa = CaCa(SkE + SBH)
ae)

proSa = SaSa(S«E + SBH)
an

Summation gives:

PwCa + prSa = SkE + SBH

Manipulation of this equation yields:

Sk = (pxoCax +pyoSa - SBH)/E = P + RSB

Manipulation of equation (9) gives:

Ck = (p — G - CBH/E =Q + RCB

Squaring both sides of equations (19) and (20) yields:

SkSk +CxCx = (P + RSB)2 + (Q + RCR)2=1

this gives an ion of the form:

ICB+JSB=K

General analytical inverse kinematics formula can be used to show that:

B=atan2(J /1) +atan2(+VI +J K2 /K

18

19y

(20

@1

(22)

23)

The P, Q, R equations are of the form:

Sk=V and Cx=W

where with a and B known, V and W are also known. V and W can then be
used to determine:

x = atan2(V/W)
(29

(25)

Examination of equations (15), (23), (24) and (25) reveals that the IK solution
is not unique. There are two possible solutions for a. There are in turn, for
each a, two possible solutions for B and e. Thus, there may be four admissible
solutions obtained for the wrist position according to the values of «, B, and €.
These include two elbow-up positions and two elbow-down positions as
illustrated in figure 8.

21

’:\,
&;\/

Figure 8: i Arm Soluti

2.4 Singularity

For certain ions of a ipulator, finite end effector rates
require infinite joint rates. These configurations are said to be singular. Joint
loads d by a ller are usually ive near singul

i To d ine singul ions for the wrist of the

revolute robot, consider the wrist position equations previously developed:

P = Co(SkE + SBH)

()
Pro= Sa(SkE + SBH)

®
p== G+ CBH +CkE

)

Differentiation with respect to time gives:

= —Sa(SKE + SPH & + Ca(CxE + CH) B+ CaCxEé

(26)
o= Ca(SKE + SPH & + Sa(CKE +CPH) p + SaCxEE

@n
Ppro=—(SPH + SKE)p - SKEE

(28)
Solving equation (28) for &:
& =[~pro—(SBH + SKE) B/ SKE

(29)
Substitution into equations (26) and (27) yields:
P =—Sa(SKE +SpH Ya + Ca(CkE +CBH) B +CaCr | Sk|-p=—(SBH + SkE)]

(30)
ro=—Ca(SKE +SPH)&+ Sa(CkE +CBH) B +SaCx | SK{~ =~ (SBH + SKE)]

31)

Manipulation gives:

Sk +CaC o = ~SaSK(SKE + SPH)& +[CaSk(CKE + CBH) - CaCx(SPH +SkE)|f
32)

Skpyo+SaCxpe = ~CaSK(SKE + SPH) +[SaSk(CE + CpH) - SaCx(SBH +SkE)| B
(33)

23

Multiplying equation (32) by Ca and equation (33) by Sa and summing the
results yields:

CaSipe+ CaC i) + Sa(Skiro+ SaCiprs) = CalCaSK(CKE +CAH) - CaCx(SPH + SkE)S
+Sa[SaSK(CKE +CAH) - SaCx(SBH +SkE)f

39
Equation (34) is of the form A = B £. Infinite foccurs when B=0:
CafCaSK(CKE +CBH)~CaCx(SBH +SkE)]
+8a[SaSk(CxE +CBH) - SaCx(SPH + SkE)] =0

(35)
Expansion and simplification gives:
(CaCa + SaSa)Sk(CkE + CBH) - (CaCa + SaSa)Cx(SPH + SkE)=0

(36)
SkCB - CxSB=0
S/Ck = SB/CB
tan(x) = tan(B)

(Y]

Equation (37) has two solutions: x =8 when e =0 and k=B + w when €
= . These angles correspond to the outer and inner limits of the workspace.
At these limits, radial motion is impossible and a degree of freedom is lost.

It should be noted that in general end effector rates, p, and joint’mﬁes. q,
are connected by a Jacobian matrix, J, of derivatives through the equation
p=4J4¢. Manipulation gives ¢ =dJ"! p. It turns out that the singular
configurations occur where the determinant of J is zero because the
determinant appears in the d i of each of J1.

Chapter 3

3.0 Dy ical E i of Moti

Simulations based only on the kinematic model for a robot assume it
will faithfully follow its ded traj -y. In practice, industrial robots
are usually required to move at high speeds to achieve higher productivity
and dynamic effects may begin to dominate. A controller design based solely
on the kinematic model may result in drive saturation. Nonlinear dynamic
coupling and inertial effects can also make the robot deviate significantly
from the design traj 'y, cause i hoot, and destabilize the
system. Finally, the discrete-time and time-delay characteristics of the robot
control computer sometimes interact with the robot dynamics to further
degrade and destabilize the system’s performance.

These problems must be considered in the robot design. The drive
motors and circuits must be sized to produce the desired performance. The
links must be d to minimize the dy ic effects, and the control

s

system must be desi d to ensure d; over the entire
work profile of the robot. In order to accomplish these goals, good analytical
dynamic models or simulations of the robot are required (Andeen, G. et al,
1988).

The first step in loping the ic simulation for a rigid link
robot is to write the equations of motion for the system. Two formulations are
mainly used to derive the d ic model: the L i lation and
the Newton-Euler ion. The L i lation is simpler and
more systematic while the Newton-Euler formulation is considered more
efficient from a computational point of view (Canudas de Wit, S., 1996).

3.1 Lagrangian Equations of Motion

One approach to the dynamics problem is to consider the
instantaneous equilibrium of every part of the system For this, a free body
di; is d ing each body from other parts of the system,
and their influence is substituted by the initially unknown reaction forces.
When a system consists of bodies, h , this technis .
very cumbersome and requires dealing with large systems of equations. In
the d; i lysi hods based on the principle of virtual work, the
constraining effects on a body of other bodies in the system are not

idered by the introduction of unk i Instead, imaginary
infinitesimal displacements which could be given to various parts of the
system without violating the i diti are idered. These
displacements are called virtual displacements.

Virtual work is defined as an increment of work which a force, F,
acting on a particle might perform on a virtual displacement of a particle and
is written as (Rivin, E., 1988):

8W = Faqcosa
38

where 3W is the virtual work
38q is the virtual displacement
a is the angle between directions of force and displacement

It can be shown that:
SeW =0
39)
where Y38W is the sum of virtual works on any virtual displacement of
the system.

This constitutes the principle of virtual work.

The Lagrangian formulation is based on the principle of virtual work
and D’Alembert’s principle which states that reaction loads due to inertia can
be treated as static loads in the virtual work L
of motion for a general multi degree of freedom system are given by (Arimoto,
S., 1996):

d(3L/3¢)/dt-aLIdgqi=n
(40)
where L =T -V is known as the system Lagrangian
T is the total kinetic energy of the system
V is the total potential energy of the system
- i, lized disol

7i represents the generalized loads.

Friction loads can be added to the Lagrangian formulation using the

Dissipation function al it is often easier to consider them
part of the lized load. By definition, the lized load, 7, for a
icul lized displ: q, is equal to the virtual work, 3W, done

by external loads during a virtual displacement, 3q, divided by the virtual
displacement:

W =(j-aj-bsign(g)&

41
T=0W /8= j-ag-bsign(q)

(42)
where jis the joint load and a and b are constants associated with wet

and dry friction respectively.

Joint/link compliance both add to V and this is often modeled using finite
element discretization (Hinchey, M.J., 1994).

3.2 Equations of Motion for the Revolute Robot

Consider a rigid revolute robot structure with a concentrated payload
mass, M, at the wrist. The kinetic energy of M is:

T =MI/[E* + H? +2EHCE]f* + E*&* + 2 E* + EHCs) fé + [HSB + ESkPd?)

(43)
Similarly, the potential energy of M is:
V = Mg[G+HCB+ECk]

(44)

28

For a spherical payload with rotary inertia I, we would add to T:

112(a? +(B+£))
(45)

To simplify the presentation, the payload mass is assumed dominant and the
I contributions to T are ignored. In this case, the Lagrangian is:

L=T-V

L=MI2[E*+H? +2EHCs]f* + E*&* + 2] E* + EHCE)fé + [HSB + ESx'a?)
—Mg[G+ HCB+ ECx]

(46)
The equations of motion are:
d(3L/da)/dt—0L/da=¢

47
d(3L13p)!dt-3LIdB =y

(48)
d(3L/9¢)Idt~dLIds =

(49)

where ¢, ¢, and o are the joint loads. Manipulation of equation (47) gives:

AL/ =0

OL/3a = M(HSB + ESx)*a

d(3L/3c)/dt = M(HSP + ESK)* & +2M(HSP + ESKXHCB + ECx)af
+2M(HSP + ESx)ECxaé

Equation (47) becomes:

6= M(HSp + ESK)é + 2M(HSP + ESKX HCB + ECx)ap + 2M(HSP + ESx)ECxdé
(50)

where @ is the base torque

Note the gyroscopic terms ¢ and @ in equation (50).

Manipulation of equation (48) gives:

OL/3f = Mg(HSP + ESK)+ M(HSB+ ESkXHCP + ECx)a?

3L/3B = M(E* + H +2EHCe) + M(E* + EHCe)é

d(3L/3B)!/dt = M(E* + H? +2EHCe) B+ M(E* + EHCs)é - MEHSeé* - 2MEHSefé
Equation (48) becomes:

@=M(E* + H? +2EHCe)f + M(E? + EHCe)é - MEHSe¢* - 2MEHSefé
~ Mg(HSB + ESK)~ M(HSP + ESKX HCB + ECx)d*

(61)

where @ is the shoulder torque
Note the centrifugal terms £* and & and the Coriolis term £é.

Manipulation of equation (49) gives:

3L13s =~MEHSef* - MEHS&fé + MgESK + M(HSB + ESK)ECxd?

8L/3é=ME* +M(E* + EHCs)B

d(BL/3€)/ dt = ME*& + M(E* + EHCs) B — MEHSsfé

Equation (49) becomes:

»=ME*§+M(E? + EHCe) - MEHSef* — MgESx — M(HSP + ESx)ECxd®
(52)

where o is the elbow torque.

Note the centrifugal terms 4* and &°.

31

Chapter 4

4.0 Simulation

Robot simulation is the solution of the equations of motion of the
manipulator that yields the it locities, and 1 i of the
system elements as functions of time. In some cases, these simulations also
yield the drive forces and torques required to produce motion and the
resulting internal forces in the systems mechanical elements. The drive loads
are important in the design of the system’s actuators and control circuits. The
internal forces are required for the design of the mechanical components of
the i . CAD based simulations enable ion of displays of the
manipulator motions to aid in evaluation and interpretation of system
performance.

In most cases, three levels of simulation are used to study a
manipulator design. The first level, kinematic simulation, assumes the
motion of the ipul: is d ined by the ded joint
displ. The positions and velocities of the ipul are cal d
using standard kinematic models and the dynamics of the manipulator and
its control system are ignored. The second and more complex form of
simulation uses a rigid link dynamic model of the arm. At this level of

lation, the d; ic ch istics of the control sy , drive
actuators, transmissions, and control computer may be considered. In this
case, the equations of motion are coupled sets of nonlinear, algebraic,

diffe ial and di: ions whose soluti ires the use of
1 forward i i hni This form of si: ion is most
useful in designing and luating the ipul 's control systems, which

include its computer and its drive system. In the third and most complex
form of s:mulanon, the distributed mass and flexibility of the manipulator’s

h 1 el are included in the model, in addition to the control and
drive properties contained in the rigid link lysis. Finite el t hod
typically must be used to in order consider the links of the geometric

! found in ind ial ipul. (Andeen, G., 1988).

The basic structure of all three levels of simulation is shown in figure
9. In this structure, the data dq ibing the system and
commands are input and all calculations that are not time dependent are
performed. These data may be obtained directly from CAD models of the
manipulator’s elements. Based on user defined or default initial conditions
for the end effector position vector, p(to), the equations of motion are then
evaluated. The vector p(t)is then i d using dard 1
forward-integration algorithms to obtain the state of the system at t, + At.
This provides the new initial conditions to repeat the process, so the solution

to the equations of motion advances in time in the manner of classical
forward interaction (Korn, G., 1978).

Time Algebraic Integration Time
Invariant Solution Invariant
Parameter 1 Data
Celoulations| | | B®=F@) [[s+=["=enl [poation

Leai=8

Repeated /At tmes

Ift<tons

Figure 9: G 1 Si ion Block D

4.1 Control Torque Control

A basic problem in controlling robots is to make the manipulator follow

a)! d desired traj y. In more ad: d licatis the robot
ller must enable traje Yy ing which involves finding the
prescribed path, collision id; and control of ion. For

point to point position control, there are number of control schemes which
may be used to provide acceptable positioning accuracy (An, C. et al, 1988).

There have been numerous robot control schemes proposed which can
be considered as special cases of the class of Computed Torque Controllers.
To help develop this form of fora lute robot, the L
equations of motion (50), (51) and (52) may be generalized in the following
form (Lewis, F. et al, 1993):

M3 +Vq.9+Glg =7
(53)

where M(qg) is an n x n inertia matrix, q and its derivativesarenx 1
vectors of generalized co-ordinates, and ¥(g.9), G(q) and r aren
x 1 vectors containing velocity-dependent torques, gravity
torques, and input torques respectively.

To account for friction and distrurb this lized robot dy ical
equation becomes:

M@)j§+Vq@y+Gl@)+F(q)+u=1

(54)
Alternatively, this equation may be written as:
M@+ Ng.g)+u=1

(55)
where the nonli terms are d by Na.9)=V(4.9)+G(q)+F(q).
For a desired trajectory, qa(t), an output tracking error may be defined to
ensure trajectory tracking by the joint variable as follows:
e(t) = qa(t) - qt)

(56)

Substituting for § in equation (55) gives:

é=Ga+M ' (N+m-1)

(1)
Defining the control input function as:
u=Ga+ M (N ~-1)

(58)
This feedback li izi fic ion may be inverted to yield:
r=M(Ga—u)+ N

(59)

This is referred to as the Computed Torque Control Law.

The use of the control input, u, has da i d li
controls problem into a simple design for a linear system. The block diagram
for a Computed Torque Control scheme shown in figure 10 illustrates that
this form of control utilizes both an inner control loop and an outer control

loop. The d torque d ds on the i ion of the robot d

and is sometimes called inverse d, ics control. z(t) is d in the
inner loop by substituting §«—u for §in equation (55). If the dynamic model
is exact, the nonli d; ‘bations are exactly canceled and what

is left is a decoupled linear system that can be controlled according to

standard techniques (An, C. et al, 1988). Unfortunately, dynamic models are

never exact and an outer loop feedback signal is therefc ired to
counteract trajectory drift or error growth. Independent joint control using
proportional plus integral plus derivative (PID) control may be used to
compute the corrective torque in the outer loop.

[e

System

Figure 10: Computed Torque Control Block Diagram

37

4.2 PID Control

The outer loop control feedback signal may be generated using PID
control in accordance with the equation:

u=—Kpe— Ké~Ki edt

(60)

where K;, Ky, and K; are the proportional, derivative and integral gains
repsectively.

The proportional control mode produces a change in the controller output
proportional to the error signal. With this mode of control at steady state
there is a residual error due to gravity. This would imply that the
proportional gain should be as high as possible since increasing the gain
should reduce the residual error required to produce a change in the

ller output. [ing the gain, h i the tend: for
oscillation of the manipulator about the position setpoint. To eliminate the
residual error, an integral control term is added. The integral mode changes
the controller output by an amount proportional to the integral of the error
signal. As long as there is an error, the integral mode will change the output
at a rate proportional to the sum of the error over time. The derivative
control mode may be added to limit oscillations. This mode of control changes
the output of the controller proportional to the rate of change of the error
signal. The derivative mode is an attempt to anticipate an error by observing
how fast the error is changing, and using the rate of change to produce a
control action that will reduce the expected error. Derivative control
contributes to the output of the controller only when the error is changing

and is, therefore, always used in ination with the ional, or
proportional plus integral control modes (Bateson, R., 1996).

The PID gains must be selected for each joint of the manipulator

ly since the C« d Torque ller does not result in a
decoupled control strategy in the inner loop. Thus, information on all joint
positions and velocities is needed to compute the control torque for any one
joint. The PID gains may be selected based on the natural frequency of the
manipulator and the desired damping in the system. The PD gains may be
selected as (Lewis, F. et al, 1993):

Kpi = @ni?

(61)
Ko = 2[wn;

(62)

where L is the desired damping ratio.
@i i8 the natural frequency for joint error i in [rad/s].

Since it is undesirable for the robot to exhibit overshoot, the PD gains are
usually selected for critical damping { = 1. In this case:

Kn=2JKn

63)
It can be shown that for closed-loop stability, the integral gain is subject to
the condition:

Kii < KuiKpi
(64)

4.3 Zero Order Hold

While most lers are desi; in i time, they are
! d on robots digitally. In this case, the control signals are updated
at discreet instants of time using a microprocessor. To verify that a controller
will operate as expected, it is highly desi to si it in its digitized
form prior to actual implementation.

A generalized digital control scheme may be represented in simplified
block diagram form as shown in figure 11 (Lewis, F., 1993). The plant or
system to be controlled is a continuous-time system and K(z) is the dynamic
digital controller where z is the Z. iable. The refe input r(t)
is the desired trajectory that y(t) should follow, and ex is the discrete tracking
error.

Figure 11: Digital Controller

The sampler with sample period T is an analog-to-digital (A/D)
converter that takes the samples y(kT) of the output y(t) that are required by
the software controller. In robot control, y(t) might represent the vector
composed of g(t) and §(¢). The hold device is a digital-to-analog (D/A)
converter that converts the discrete control samples ux computed by the

it Ller K(z) unto the i time control u(t) required by the

plant.

Zero-order hold (ZOH) is generally used for controls purposes. For
ZOH, the input ux and the output u(t) are shown in figure 12. Note that u(t)
is held continuous until updated at times kT.

'S ’
1
T T

o T

T 2T 3T 4T ST 6T 7T

Figure 12: Zero Order Hold

41

4.4 Numerical Simulation

The equations of motion (50), (51), and (52) for the revolute robot can
be expressed in matrix form as:

A 4z 03] [B
An An 0 |

where Au=M(E* + H? +2EHCs)
Au=M(E* + EHCe)
An=M(E* + EHCe)
An=ME?
An=M(HSB + ESx)?

Bi=@+M(HSPB + ESKXHCB + ECr)d* + Mg(HSB + ESK)
+2MEHS¢epé + MEHSES?

B:= @+ M(HSp + ESk)ECkd* + MgESx — MEHSef®
Bs=¢-2M(HSP+ESKXHCP + ECx)ap - 2M(HSB + ESk)ECkéé

Multiplication of both sides of the matrix equation by the inverse of the A
matrix gives equations for &, /4, and #:

LB
a=2
An
(©6)
= AzBi= AuB:
Andn— Andn
®n

AuB2- AnBi

3=
AnAzn— AuAn

©68)

Letting & =K1, f=K2, £=K3, a=a, b=f, and c=¢, these become a set of
six first order ordinary differential equations:

a=a
p=b
é=c
a=K1
b=K2
é=K3

Using a simple Euler one step integration scheme gives:

(Gnew — o) | At = ol
(Qnew— Qota)/ At = K 1ot
(Brew— Poid) At = boia
(brew — bota) ! At = K 20
(&oew — Eoia) [At = Cotd

(Coew— Cata)/ At = K 3oid

where subscript old indicates values at the beginning of a time step
and subscript new indicates values at the end of a time step.

Using this i ion scheme, the i of motion can be solved as a
function of time and the manipulator motion can be simulated using the
Computed Torque PID control model.

Chapter 5

5.0 CROBOTS: A CAD Based Tool for Robot Simulation

CROBOTS is a proposed softw: imulation tool that is designed to
assist users in the design, Li
industrial robots. The software is written using the AutoLisp programming
language and runs as a third party application inside AutoCAD R14.

and ing of educational and

CROBOTS combines the i hics capability of AutoCAD with
custom developed tools for robot model creation, operation cycle plannmg
and simulation of robot llers. While the software is primarily d d

as an educational tool for robotics related curricula, it also has potential for
commercial applications.

51 C ial Applicati

In most ind ial icati motion pl ing is d by the
programmer rather than a computer. The actual robot hardware in its work
environment is used to plan a strategy for performing a task. This usually
involves using a teach pendant or a high level programming language to
facillitate the teaching or the ing of the robot. Once the

programming is completed for a task, the robot hardware is used in playback
mode to test the and the ipulation strategy. Debugging is

lished through a teach-playback loop. The robot programmer can use
CROBOTS in conjunction with native AutoCAD functionality to assess
preliminary robot operation cycle designs. This could reduce unproductive
programming of the actual robot hardware.

The robot’s performance in response to various control strategies may
also be graphically simulated using CROBOTS. This may aid designers in the
preliminary stages of controller design.

52 Ed ional Applications

CROBOTS offers a number of potential benefits for educational
institutions who are faced with the challenge of maintaining current and
adequate resources related to the field of robotics with only limited budgets.
Firstly, CROBOTS is written as a third party application for AutoCAD.
AutoCAD has dominated the PC CAD market and is recognized as the
industry standard. Instruction in the use of AutoCAD is a fundamental

of i i hnol and degree programs in many Colleges
and Uni ities both nationally and i ionally. The 1 ing curve for
CROBOTS is insignifi for d and ed who already have skills

in AutoCAD. Robotics instruction utilizing CROBOTS may therefore be
focused on the learning of key concepts and not on how to use the software.

S dly, the ease of ing in AutoLISP should facilitate the
development of additional CROBOTS routines by students and educators.
Students will also benefit from this opportunity to learn AutoLISP
programming since this skill may be important for future related
employment in industry. Furthe: the hical simulati bility of
CROBOTS allows students to actually see the effects of manipulating

d; ic and control on robot This may help

s 1 ol deli 3 and di

using itional lectures. Finally,

the cost of robot hard is often prohibitive for most educational
CROBOTS idy with an offline tool which can be
used to learn basic concepts before moving on to the actual robot hardware.
In addition, since most engineering educational institutions already use

AutoCAD, they should not have to incur the added cost of a graphics engine
as would be the case with commercial offline robotics programming software.

5.3 CROBOTS Overview

CROBOTS includes customized menus and new AutoLisp functions

which provide the user with ialized ds that facilitate the use of
AutoCAD for robot geometric modeling, operation cycle planning, and
controller simulation. These ialized functions are made available through

customization of the AutoCAD menu file as shown in figure 13.

Figure 13: Customized Pull-Down Menu for CROBOTS

The modified menu file presents the user with a CROBOTS pull-down menu
which initially provides only a “Load CROBOTS” option. Selection of this
option loads a second custom menu which then makes all CROBOTS
functions available to the user as shown in figure 14.

47

Flgure 14: CROBOTS Main Menu

The main menu features five menu options including “Create New Robot
Model”, “Home”, “Simulate IK”, Simulate Controller”, and “Unload Robot
Modeler”.

Create New Robot Model

This menu option provides a customized parametric drawing tool
which allows the user to quickly afi ional ic model of the
robot. Selection of this option displays an image box from which the user may
choose the robot configuration desired. The image box includes options for all
five mechanical confj ions of robots includi lute, cartesian,
cylindrical, spherical and SCARA as shown in figure 15.

Figure 15: Image Menu for “Create New Robot Model”

Following selection of the confi ion type, the user is only required to
input the desired robot dimensions. In the case of the revolute robot, for
le, the user is ired to input the base height, the length of link 1,

and the length of link 2. A 3D solid model of the robot geometry is then
automatically generated based on this input as shown in figure 16.

- PO T RSPt R IROORE I 5525l Vi

Figure 16: Create New Robot Model

The home fi i imul a dard capability of industrial robots
to assume a reference or default start-up position. Industrial robots, which
i i 1 optical ders for positi require
this capability to allow reset of counters before programming. In the
CROBOTS program, this function similarly initializes relevant AutoLisp
variables and ically re-positions the robot to its required startup
position as shown in figure 17.

Figure 17: Home Position for the Robot
Simulate IK (Inverse Kinematics)

This menu option provides the user with two submenu options “Teach”
and “Run Cycle”. The “Teach” option allows the user to simulate the

industrial on-line p i ice of hing and recording a series of
points which define the robot traj y. This functi P the inverse
ki i lution for the ipul which then allows automatic re-

positioning of the robot TCP. Following selection of this option, the user
specifies the desired point location by either “cursor picking” a location in the
drawing window or by keyboard entry of the point co-ordinates at the
AutoCAD command prompt. In either case, specification of the desired point
repositions the manipulator TCP as shown in figure 18. The user is also
provided with the option to record the point co-ordinates. Recorded points are

51

stored in an ASCII text file which may be later used in CROBOTS or for
download to industrial robot controllers.

ocetioa: (8.570149 0.
Point (¥A)? B>t
target locatics or (BNTER) to exit:

0682428 -8.32667-016) 3

Figure 18: Teaching the Robot

The function may be used in conjunction with native AutoCAD commands to
simulate path tracking by the robot. For example, if a circular path is
required, AutoCAD can be used to draw the circle and then subdivide it into a
number of segments. The teach function can then be used to approximate
tracking of the circle with point to point moves from the beginning of a
segment to the end of a t. Figure 19 ill a d elliptical
path with segment endpoints displayed. AutoCAD’s object snap options
enable the user to use the “Teach” function to individually record each point
and ition the ipul dingl,

Figure 19: Trajectory Approximation using the “Teach” Function

The “Run Cycle” function enables the user to “playback” the repositioning of
the manipulator defined through the series of points recorded in the ASCIT
text file. In effect, this function allows hical simulation of the PTP
motion of the manipulator along the approximated trajectory.

Simulate Controller

This menu option enabl ical simulation of a d torque
with PID ller and hical simulation of the di
manipulation for PTP motion of the robot. Following selection of this option,
the user is prompted for gain values, cycle time, and command angles as
shown in figure 20. The fi ion then provides a hical simulation of the

1

ip motion in to d based on the modified

53

computed torque model. The overall output torque at each joint is calculated
based on the dynamical equations of motion , the PID control signal, the relay
control signal, and the use of zero order hold, if desired.

Figure 20: Simulate Controller
The user is also provided with a utility which allows automatic generation of
a 3D polyline path which hicall izes the ipul motion for

the given control parameters. This capability may be used to compare the
effects of changing control parameters such as the ZOH sampling rate.

Unload Robot Modeler

This menu option is included to allow the user to unload CROBOTS
and restore the standard AutoCAD menu display.

5.4 Overview of AutoCAD Customization for CROBOTS

The development of CROBOTS involved the modification of the
AutoCAD R14 menu file, the creation of a template drawing file, the creation
of slide files, the creation of blocks, and the creation of new AutoLisp
functions. Two modified menu files were created to provide the CROBOTS
pull-down menu: crobotsl.mnu and crobots2.mnu. Secondly, a template

drawing file with the ired layers and viewport settings was D
Finally, Autolisp functions were created to enable the menu options “Create
New Robot Model”, “Teach”, “Run Cycle”, and “Simulate Controller”.

5.4.1 AutoCAD R14

AutoCAD R14 is a general purpose Computer Aided Design (CAD)

drafting application for the PC. The ides an open archi
that permits the user to customize and extend many AutoCAD features to
suit the particular requirements at hand. This has led to the development of

third party softw lications which are ifically designed to
improve the productivity of CAD drafting in particular technical disciplines
such as Architectural Design. AutoCAD customization capability has
improved with each new release and many past custom user developed
functions have become part of the standard tools offered in following releases
of AutoCAD (AutoDesk, 1997).

AutoCAD customization capability enables users to:

* Develop custom menus
e Program their own dialogue boxes
e Create scripts to it

e Define your own text fonts

* Define your own line types

o Define your own hatch patterns

o Create custom symbols and parts libraries

* Create template drawings with custom default settings

« Export/Import DXF files to share drawing geometry with other

applications

Generate slides or postscript files

e Utilize the Windows OLE capabilities

Use Autolisp, Diesel , and ARX (AutoCAD Runtime Extension)
1 to perform calcul iti

tasks, and create new AutoCAD commands

Generate 3D solid models and extract engineering data

These customization capabilities coupled with the already impressive
graphics creation and editing capabilities of AutoCAD made it well suited for
the development of CROBOTS. In addition, since AutoCAD is the accepted
industry standard for CAD on the PC, the time and cost that students,

di robot desi and robot incur to become proficient
in the use of CROBOTS and relevant AutoCAD commands should be
reduced. Students of robotics should also benefit further since they may
acquire new AutoCAD skills, such as i that ial empl
may desire. In addition, since most students have already used AutoCAD for
Engineering Graphics courses, its use in robotics courses will allow them to

focus on the learning of key robotics concepts and not the learning of a new
graphics software package.

5.4.2 The Template Drawing File

Templates are drawing files with pre-established settings for new

drawings. These files allow users to pre-define defaults for drawing
parameters including layers, text styles, dimension styles, symbol libraries,
and a variety of system variables which control the performance of AutoCAD.
The CROBOTS template, revsetup.dwt, pre-defines the layer structure and
viewport setup as shown in figure 21. This layer setup allows the automatic
lection of the ipulat try in a number of CROBOTS AutoLisp

functions. The viewport setup is pre-defined to automatically provide the user
with a top view display, a front view display, and a 3D view display of the
manipulator.

57

5.4.3 The Modified AutoCAD Menu File

The AutoCAD main menu file, acad.mnu, is an ASCII text file that can
be edited using a suitable text editor to provide custom menu options. The
user is able to develop custom pull-down menus, image menus, menu
toolbars, button menus, and the screen menu by editing the appropriate
section of acad.mnu.

The CROBOTS functions appear as pull-down menu options in a new
pull-down menu that has been created by modifying the standard AutoCAD
menu file. Two modified menu files, crobots1.mnu and crobots2.mnu, were
created to provide the CROBOTS menu interface. A partial listing of the
main CROBOTS menu, drobl.mnu, is din A dix A.

The main CROBOTS menu file, acadrobl.mnu, includes the foll
additions to provide the new pull-down menu option:

+**POP11**™*

ID_CROBOTS [CROBOTS]

ID Create [&Create New Robot Model...]"c"c$I=*ID_Robot
$I=ACAD.image_robot
SI=ACAD.*

1D_Home (&Home]~“c~c"p(if (not home) (load "home")) (home);“p

ID_TEACH [->sSimulate IK]

[sTeach]“c”c*p(if (not ikrevo} (load
"ikrevo4”)) ;ikrevo;“p
[<-&Run Cycle]“c*c”p(if (not playback) (load
"playback”)) (playback) ; "p
ID_Simulate [sSimulate Controller]“c*c”p(if (not rcontrol) (load
"rcontrol")) (rcontrol); “p
1D_Load [~Load CROBOTS]"c"cmenu;acadrobl;*p(if (not lcrobots) (load
“lcrobots”)) (lcrobots) ; *p
ID_Unload [sUnload Robot Modeler]“c”cmenu;crobots2;

The **POP11*** header identifies this menu definition as pull-down menu
number 11 and, accordingly, it appears in this position in AutoCAD.

The [CROBOTS] label is used to identify the pull-down option on the pull-
down menu bar. A similar approach is used to label menu options which
appear when CROBOTS is selected.

The [&Create New Robot Model] listing essentially calls the image menu from
which users select the robot configuration type. The image menu listing
shown below relies on previously created AutoCAD slide files to generate the
robot configuration images which appear to the user.

**image_robot

[Select Robot Type]

[revolute, Revolute] “c*c"p(if (not revcreat) (load
"revcreat™)) (princ); (revcreat) “p;
[~cartesia,Cartesian]

(~cylindri,Cylindrical]

(~spherica, Spherical]

(~scara, Scara]

The [&Home] listing relies on a menu macro to load, if necessary, and activate
the AutoLisp function which executes the homing of the robot. The
conditional statement Gf (not home) (load "home") first checks to see if the
Autolisp function, home.lsp, is loaded with the (not home) AutoLisp expression.
If it is not loaded, the (load “home”) expression loads the function; otherwise
this expression is ignored. Once loading is verified, the function is activated
with the (home) expression. A similar approach is used for the remaining
CROBOTS pull-down menu options.

5.4.4 The Custom AutoLisp Functions

Custom Autolisp functions were created to enable the menu options “Create
New Robot Model”, “Teach”, “Run Cycle”, and “Simulate Controller”. In
addition, other functions were created to aid in system management.

dix B includes a listing of all related AutoLisp functions.

Create New Robot Model

The “Create New Robot Model” function enables the automatic
generation of the geometry of a revolute manipulator following user input of
the base height and the link lengths. The AutoLisp file, revcreat.lsp, was
developed for this purpose. A complete listing of this file is presented as

dix B.0. The functi consists of updating AutoCAD system

iak ing the user, ing the robot model, establishing
rotation axes, and adjusting the viewports display.

Home

The “Home™ ion enables the i itioning of the
manipulator to a pre-defined reference position. This home position is
important for the proper execution of the “Simulate IK” and “Simulate
Controller” menu options. The AutoLisp file, home.lsp, was developed for this
purpose. A complete listing of this file is presented as Appendix B.1. This
function involves updating AutoCAD system variables, selection of the robot
links, establishing rotation axes, defining the home position, computation of
the IK solution, robot repositioning and output of link angles.

Teach

The “Teach” function enables the user to select and record TCP
locations to which the robot is automatically repositioned. The AutoLisp file,
ikrevo.lsp, was developed for this purpose. A complete listing of this file is

din A dix B.2. The functi ists of opening an
ASCII file for output, prompting the user, selection of the robot links,
computation of the IK solution, robot repositioning, and output of link angles.

Run Cycle

The “Run Cycle” function enables the user to simulate the point to
point positioning of the robot th h the series of points previously recorded
using “Teach”. The AutoLisp file, playback.lsp, was developed for this
purpose. A complete listing of this file is presented in Appendix B.3. The

consists of ing the user, opening the “teach” ASCIT

file, robot repositioning, and output of link angles.

Simulate Controller

The “Simulate Controller” function enables the user to simulate a
d torque robot ller that may employ, if desired, an auxiliary
control signal based on PID, Relay and ZOH control modes. The AutoLisp file,
control.lsp, was developed for this purpose. A complete listing of this file is
din A dix B.4. The fu i ion is depicted in flowchart

form in figure 22.

61

F1

P

Figure 22:

Chapter 6

6.0 Conclusions and Observations

The CROBOTS functions “Create New Robot Model”, “Teach”, “Run
Cycle” and “Simulate Controller” are the primary functions which may be

used by robot desi and to aid in the design and
motion planning of robots. It should be noted, however, that proficiency in the
use of the standard AutoCAD tools is a y isite to effectivel

using these custom tools to assist with these tasks.

The “Create New Robot Model” function is a tool which can facilitate
the engineering analysis of robots and improve user productivity. Creating a
model requires only input of the manipulator dimensions and users thereby
avoid the time and cost associated with building the model from basic
AutoCAD entities. Secondly, since the model is constructed from 3D solids,
i i lysis data, such as id location and moments
of inertia, can be easily extracted using the standard AutoCAD inquiry tools.
Finally, the use of AutoCAD blocks enables users to change the geometry of
the model d by simply modifying the d: ing files that
each block.

The “ Teach” function provides users with a tool that can be used to
develop preliminary operation cycle designs before the online programming is
done. A 3D model of the workspace can be created using the standard
AutoCAD toolkit and the robot’s i ion with this envi during
trajectory following can then be tested using this function. In addition, the
TCP position coordinates that are recorded in an ASCII text file can be used
to reduce online programming time since these may be downloadable as a
point array to the actual robot controller hardware. This can reduce the
online programming time by limiting the programmer’s task to fine
positioning adjustments.

The “Run Cycle” function enables users to “playback” the manipulator
repositioning through the series of ded points and, sub ly,

a3D ical si ion for the ion cycle. This can be used

to optimize workspace layout in the field before online programming begins.

The “Simulate Controller” function provides users with a tool that can
be used to test the robot perfc for d ller designs. The
effect of changing controller parameters such as PID gains and sampling
rates can be tested using this function. Similarly, the effect of adding or
removing a particular control mode can be tested. Furthermore, changes in
payload and the resulting effect on robot performance can be assessed using
this function. Perhaps, the most significant benefit of using this function is
that it enables users to visually observe the manipulator response within its
environment. This can reduce the time taken to analyse the proposed
controller’s performance since the time history graphs of torque, error and so
on that are typically used for this purpose are not necessary at the
preliminary analysis stage.

During testing of CROBOTS, the software proved to function as

desi; d. The primary objective of the design was to produce a 3D
graphical simulation tool which would facilitate the design and motion
of robots. A ingly, the ionality of CROBOTS is best

observed through actual use of CROBOTS on a PC.

The overall effectiveness of this software will depend on its application.
Industry, educators and students may all benefit from the use of AutoCAD as
the core program for a number of reasons. Firstly, since AutoCAD is the
industry standard for the PC, a number of users already have access to this

CAD package. AutoCAD is a dard of the hi
curriculum for a number of ed ional institutions and, dingly, the cost
required to implement the use of CROBOTS should be less than that required
for ial E ional insti may impi the delivery

of robotics related curriculum through the use of CROBOTS. Since many
students already have the pre-requisite skills in AutoCAD, they will not be

d to learn new and should, be able to focus on the
1 ing of robotics In addition, CROBOTS can easily be enhanced
through the development of new AutoLisp functions; students should benefit
from the isition of the ing skills ired to achieve this.

Chapter 7

7.0 Recommendations

As previously discussed, CROBOTS offers a number of potential

benefits to users including industry, ed and stud Based on the
observations made throughout the development and testing of the software,
b the followi. dations are made:

(1) CROBOTS should be expanded to include a function which allows
users to specify a variety of end effectors which are typically used in
industry. This will require the expansion of the DK, IK, and dynamics
mathematical models to include the orientation of the end effector. The
dynamics model should also be enhanced to include the link mass and
associated inertia terms;

(2) CROBOTS should be expanded to include an extensive error trapping
routine to “clean up” the user interface and retain system parameters
in the event of a function error;

@

@

)

©)

CROBOTS AutoLisp functions should be optimized from a
programming point of view. That is, similar code which appears in
several ions should be dtoa lized sut ine that
is available to all functions;

CROBOTS should be enhanced to allow the creation of Flics or AVI

files so that hical simulations can be ded and replayed at a
later time. This may be achieved by integrating AutoCAD with an “off
the shelf” software such as HyperCAM which has this capability;

CROBOTS should be expanded to allow modeling of all robot
configuration types. This will again require generalization of the
programming code to ensure programming efficiency;

CROBOTS should be expanded to enable the recording of relevant
duction data such as ion cycle time;

CROBOTS should be enhanced to provide users with a task level
programming interface for robot motion planning that emulates those
typically used in industry;

CROBOTS should be tested in an educational setting to di ine its
robustness and to identify need for additional functionality;

CROBOTS should be enh d to allow improved offiine
tools. This will require determining how the actual robot controller
software may be interfaced with AutoCAD;

References

An, C. et al, 1988, Model Based Control of a Robot Manipulator, MIT Press,
USA.

Andeen, G.B., 1988, Robot Design Handbook, McGraw Hill, New York.

Arimoto, S., 1996, Control Theory of Non-Linear Mechanical Systems,
Clarendon Press, Oxford.

AutoDesk, 1997, AutoCAD R14 User’s Guide, AutoDesk Inc., USA.

Bateson, R., 1996, Introduction to Control System Technology, Prentice Hall,
New Jersey.

Bejezy, A. K., 1974, “Robot Arms Dynamics and Control”, TM:33-69, Jet
Propulsion Laboratory.

Biekert, R. et al, 1991, CIM Technology Fund. ls and licatic The
Goodheart Wilcox Company, Inc.,Illinois.

Borrel, P. et al., 1982, "l‘be Robotms Faal.mes Available in CAD/CAM CATIA
System”, De

Canudas de Wit, C. et al, 1996, Theory of Robot Control, Springer, London.

Critchlow, A., 1985, Introduction to Robotics, MacMillan, New York.

Denavit, J., and Hartenberg, R. B., 1955, “A Kinematic Notation for Lower-
Pair Mechanisms Based on Matrices’, ASME, Journal of Applied Mechanics,
vol. 23, pp. 215-221.

References (Cont.’d)

F‘reund. E., 1982, “Fast Non l.mesr Con!xol mth Arblt:mry Pd&Placement for
1 Robots and M: ournal of

Research, Vol. 1, pp. 65-78.

G d, F., 1988, Introduction to Cc Integrated Mc ing,
HBJ, New York.

Hinchey, M. J., 1994, “Numerical Simulation for the Puma Arm”, Professional
Development Series, CSME, Montreal.

Hornick, M., and Ravani, B., 1986, “Computer Aided Offline Planning and
Programming of Robot Motion”, The Inter ional Journal of Roboti
Research, Vol. 4, pp. 18-31.

Korn, G.A,, 1978, Digital Continuous System Simulation, Prentice Hall,
New Jersey.

Lewis, F. et al, 1993, Control of Robot Manipulators, MacMillan, New York.

National Robot Society, 1994, Annual Statistics

Paul, R. P., 1981, Robot Manipul Math. ics, Prog ing and
Control, Cambridge, MIT Press.

Pieper, D. L., 1968, “The Ki ics of under Cq
Control”, Stanford Artificial Intelligence Project, Stanford, CA, Memo.

Rivin, E., 1988, Mechanical Design of Robots, McGraw Hill, New York.

Ryan, D., 1994, Robotic Simulation, CRC Press, London.

References (Cont.’d)

Sanjib, D., 1991, “Offline Programming of Robots Using CAD for Geometrical
Information”, Thesis, Lamar University — Beaumont.

Takegaki, M., and Arimoto, S., 1981, “An Adaptive Trajectory Control for
Manipulators”, International Journal of Control, Vol. 34, pp. 219-230.

Vuk ic, M., 1982, Scientific Fund. Is of Robotics, Vol. 1 and 2,
Spnnger~Verlag. Berlin.

Whitney, D. E., 1969, “Resolved Motion Rate Control of Manipulators and
Human Prostt ", IEEE Tr ions on Man-Machine Syst: Vol. 10,
pp. 47-53.

Wu, C 1984 “A K.memah: CAD Tool for the Deslgn and Control of a Robot
", The Inter Journal of R h, Vol. 3, pp. 58-

67.

Appendix A

A.1 CROBOTS1.mnu modified menu file

4l

CROBOTS1L.mnu

*++pOPI1
ID_CROBOTS [CROBOTS]
ID Create [&Create New Robot Model...]"c*c$I=*ID_Robot
SISACAD.image_robot SI=ACAD.*
ID_Home [&Home]“c*c*p(if (not home) (load "home")) (home);~p
ID_TEACH [->&Simulate IK]

[sTeach] “c"c"p(if (not ikrevo) (load
"ikrevod"));ikrevo;"p

[<-&Run Cycle]~c”c"p(if (not playback) (load
"playback")) (playback) ; "p
ID Simulate [&Simulate Controller]~c c*p(if (not wilma7) (load
"wilma7")) (wilma7) ; *p
ID_Load [~Load CROBOTS]"c* ;*p(if (not lcrobots) (load
"lcrobots")) (lcrobots) ; *p
ID_Unload [&Unload Robot Modeler]“c"cmenu;acadrob2;

**image_robot

[Select Robot Type]

[revolute,Revolute]“c*c*p (if (not revcreat) (load
"revcreat”)) (princ); (revcreat) “p;
[~cartesia,Cartesian]

[~cylindri,Cylindrical]

[~spherica, Spherical]

[~scara, Scara]

Appendix B

Listing of Custom AutoLisp Functions

B.O
B.1
B2
B3

B4

Revereat.lsp
Home.lsp
Ikrevo.lsp
Playback.lsp

Control.lsp

97

102
106

110

B.0 Revcreat.lsp

(defun revcreat ()

SET SYSTEM VARIABLES

(setq cmdecho (getvar "cmdecho"))
(setvar "cmdecho™

(setq pdmode (getvar "pdmode”))
(setvar "pdmode” 0)

(setq cvport (getvar "cvport"))
(setq isolines (getvar "isolines"))
(setvar "isolines" 20)

(setq facetres (getvar "facetres"))
(setvar "facetres” 2)

INPUT GEQGMETRY

(princ " Input Robot Geometry") (terpri)
(command "layer” "s" "base" ")

(setq ptbase (list 0.0 0.0 0.0))

(setq gg (getdist "Base Height (m): "))
(command "insert” "base" ptbase gg "" "0")

(command "layer” "s" "linkl™ "")
(setq hh (getdist "Length of Link 1 (m): "))
(command "insert” "linkl" ptbase hh "" "Q")

(command "layer” "s" "link2" "")

(setq ee (getdist "Length of Link 2 (m): ™))
(setq ptl2 (list hh 0.0 0.0))

(command "insert” "link2" ptl2 ee "" "Q")
(princ)

(setq tcp (list (+ ee hh) 0.0 0.0))

DRAW CONTROL AXES

(command "layer” "s" "tcp" "")
(command "line” tcp "@0,-0.005" "")
(command "layer"™ "s" "axis2" "")
(command "line" ptbase "€0,-0.005" "")
(command "layer" "s" "axis3" "")
(command "line" ptl2 "@0,-0.005" ")
(command "layer" "s" "0" "")

(command "layer"™ "off" "tcp" "")
(command "layer” "off” "axis2" "")
(command "layer™ "off" "axis3" ")

ADJUST VIEWPORT ZOOMS

(command "zoom" "e")
(command "zoom” "0.75x")
(command "regen")
(setvar "cvport" 3)
(command "zoom" "e")
(command "zoom" "0.75x")

74

(command "regen”)

(command "zoom" "0.75x")
(command "regen")
(setvar "cvport" 2)

INITIALIZE JOINT ANGLES

(setq aold 0.0 bold 0.0 cold 0.0)

RESTORE SYSTEM VARIABLES

(setvar "cmdecho” cmdecho)
(setq “pdmode” pdmode))
(setq “cvport” cvport)
(setq “isolines” isolines)
(setq “facetres” facetres)

(princ)
) ;defun

B.1 Home.lsp
(defun home ()

Initialize functions

(setq cmdecho (getvar "cmdecho”))
(setvar "cmdecho™ 0)
(if (not rotate3d) (arxload "geom3d”))
(princ "\nHoming Robot ...")

i Select links
(setq ssbase (ssget "X" '((8 . "base")))
)
(setq ssll (ssget "X" '((8 . "linkl")))
)
(setq ssl2 (ssget "X" '((8 . "link2")))
)
(setq sstcp (ssget "X" '((8 . "tcp™)))
)
(setq ssgrip (ssget "X" '((8 . "gripper”)))
)

(setq ssaxisl (ssget "X" '((8 . "axisl™)))

)
(setq ssaxis2 (ssget "X" '((8 . "axis2")))
)
(setq ssaxis3 (ssget "X" '((8 . "axis3")))

)

(command "SELECT" ssbase ssll ssl2 ssaxis2 ssaxis3 sstcp "")
(setq ssrobot (ssget "p")

)

(command "SELECT" ssll ssi2 ssaxis3 sstcp "")
(setq sslinks (ssget "p")

)

(command "SELECT" ssl2 sstcp "")
(setq ssl2 (ssget "p")

)

(terpri)

Find Axis Points for Rotation

(setq ax2list (entget (ssname ssaxis2 0))
’(se:q ax3list (entget (ssname ssaxis3 0))
)(setq pl (cdr (assoc 10 ax2list))
y(setq P2 (cdr (assoc 11 ax2list))
'(setq p3 (cdr (assoc 10 ax3list))
’(setq p4 (cdr (assoc 11 ax3list))

)i
i Specify target point location

pwz
) (terpri)

Calculate anew

(if (= pwy 0.0)
(if (= pwx 0.0) (setq arad 0.0)
(if (< pwx 0.0) (setq arad pi) (setq arad 0.0)
)

)
(if (= pwx 0.0)
(1f (< pwy 0.0)
(progn (setq arad (* 1.5 pi)))
(progn (setq arad (/ pi 2)))

)

(if (> pwx 0.0)
(progn (setq arad (atan (/ pwy pwx))))
(progn (setq arad (+ (atan (/ pwy pwx)) pi)))

)
);if2
(setq anew (rtd arad)
)

Calculate bnew

(setq alpha (+ (* (cos arad) pwx) (* (sin arad) pwy))

)
(setq beta (/ (+ (sqr pwz) (sqr alpha) (sqr hh) (- (sqr ee))) (* 2

)

(setq numlbnew (sqrt (+ (sqr pwz) (sqr alpha) (- (sqr beta))))
)

(setq v (/ (+ pwz numlbnew) (+ alpha beta))

)

(setq brad (+ 2 (atan v))

)
(setq bnew (rtd brad)
)

: Calculate cnew
(if (= pwz (+ hh ee)) (setq cnew 0.0)

(progn (setq bcrad (atan (/ (- pwz (* hh (sin brad))) (- alpha (* hh
(cos brad)))))
)

(setq bcnew (rtd bcrad)

)

(setq crad (- bcrad brad)
)

(setq cnew (rtd crad)

)
) sprogn

) ;else for f1
)iifl

Rotate Links

(setq crot (- cnew cold)
)

(setq brot (- bnew bold)

)

(setq arot (- anew aold)

)

(rotate3d ssl2 p3 p4 crot)

(rotate3d sslinks pl p2 brot)

(rotate3d ssrobot "z" "" arot)

(setq sstcplist (entget (ssname sstcp 0))

)

(setq tcp (cdr (assoc 10 sstcplist))

)

(prompt "TCP Location: ") (princ tcp) (terpri)

RESET JOINT ANGLES

(setq aold anew) (princ)
(setq bold bnew) (princ)
(setq cold cnew) (princ)
(prompt "Robot Homed")
(setvar "cmdecho” cmdecho)

Print Output to Screen

(prompt "anew = ") (princ anew) (terpri)
(prompt "bnew = ") (princ bnew) (terpri)
(prompt "cnew = ") (princ cnew) (terpri)

(princ)
) ;defun

B.2 Ikrevo.lsp
(defun c:ikrevo ()

Initialize functions

(setq cmdecho (getvar "cmdecho®))
(setvar "cmdecho” 0)

(if (not rotate3d) (arxload "geom3d"))
(if (not rtd) (load "rtd"))

(if (not dtr) (load "dtr"))

(if (not sqr) (load "sqr"))

(setq countik 0.0)

; OPEN FILE FOR RECORDING

(setq fpik (open "teach.txt™ "w"))

BEGIN TEACH LOOP

; Specify target point location

(setq p (getpoint "Specify target location or <ENTER> to exit: ")
(car p)
pwy (cadr p)
pwz (caddr p)
) (terpri)
(setq countik (+ countik 1))

Select links

(setq ssbase (ssget "X" '((8 . "base")))
)(secq ssll (ssget "X" '((8 . "linkl")))
)(setq ssl2 (ssget "X" '((8 . "link2")))
’(secq sstcp (ssget "X" '((8 . "tcp")))
)(setq ssgrip (ssget "X" '((8 . "gripper")))
)(setq ssaxisl (ssget "X" '((8 . "axisl")))
)(setq ssaxis2 (ssget "X" '((8 . "axis2")))
}(setq ssaxis3 (ssget "X" '((8 . "axis3")))

(command "SELECT" ssbase ssll ssl2 ssaxis2 ssaxis3 sstcp "")
(setq ssrobot (ssget "p")
)

(command "SELECT" ssll ssl2 ssaxis3 sstcp "")
(setq sslinks (ssget "p")

)

(command "SELECT" ssl2 sstcp "")

Jifl

(setq ssl2 (ssget "p")

)(terpri)

Find Axis Points for Rotation

(setq ax2list (entget (ssname ssaxis2 0))
’(setq ax3list (entget (ssname ssaxis3 0))
‘(se[q Pl (cdr (assoc 10 ax2list))

)(setq P2 (cdr (assoc 11 ax2list))

)lsetq p3 (cdr (assoc 10 ax3list))

)

(setq p4 (cdr (assoc 11 ax3list))
)

Establish Constraints on Motion
(setq k (sqrt (+ (sqr pwx) (sqr pwy)))
)

(setq 1 pwz)

(if (> (+ (sqr k) (sqr 1)) (sgr (+ hh ee)

(progn (setq anew aold bnew bold cnew ccm) (alert "Point Outside
Working Range!!"))

(progn

if2

Calculate anew

(if (= pwy 0.0)
(if (= pwx 0.0) (setq arad 0.0)
(if (< pwx 0.0) (setq arad pi) (setq arad 0.0)
)

)
(if (= pwx 0.0)
(if (< pwy 0.0)
(progn (setq arad (* 1.5 pi)))
(progn (setq arad (/ pi 2)))

)
(if (> pwx 0.0)
(progn (setq arad (atan (/ pwy pwx))))
(progn (setq arad (+ (atan (/ pwy pwx)) pi)))
)

)iif2
(setq anew (rtd arad)
)
Calculate bnew

(setq alpha (+ (* (cos arad) pwx) (* (sin arad) pwy))
)

(setq beta (/ (+ (sqr pwz) (sqr alpha) (sqgr hh) (- (sqr ee))) (* 2
hh))

)

(setq numlbnew (sqrt (+ (sqr pwz) (sqr alpha) (- (sqr beta))))
)

(setq v (/ (+ pwz numlbnew) (+ alpha beta))

(setq brad (* 2 (atan v))

)

(setq bnew (rtd brad)
)

i Calculate cnew
(if (= pwz (+ hh ee)) (setq cnew 0.0)

(progn (setq bcrad (atan (/ (- pwz (* hh (sin brad))) (- alpha (* hh
(cos brad)))))

)

(setq bcnew (rtd bcrad)

)

(setq crad (- bcrad brad)

)
(setq cnew (rtd crad)
)

Rotate Links

(setq crot (- cnew cold)
)(setq brot (- bnew bold)
:(set:q arot (- anew aold)

(rotate3d ssl2 p3 p4 crot)

(rotate3d sslinks pl p2 brot)

(rotate3d ssrobot "z" "" arot)

(setq sstcplist (entget (ssname sstcp 0))
¥

(setq tcp (cdr (assoc 10 sstcplist))

)

(prompt "TCP Location: ") (princ tcp) (terpri)
(setq aold anew)

(setq bold bnew)

(setq cold cnew)

i RECORD POINT

(setq reply (strcase (getstring "Record Point (Y/N)? <¥>: ")))
(if (or (= reply "") (= reply "Y")) (progn (princ tcp fpik) (princ
(chr 10) f£pik)))
) swhile
(close fpik)

81

; Print Output to

(prompt "anew =
(prompt “bnew =
(prompt "cnew =

(princ)
) ;defun

Screen

") (princ anew) (terpri)
") (princ bnew) (terpri)
®) (princ cnew) (terpri)

B.3 Playback.lsp

(defun playback ()
(prompt “Rumning Cycle")

Initialize functions

(if (not rotate3d) (arxlcad "geom3d"))

(if (not rtd) (load "rtd"

(if (not dtr) (load "dtr"))

(if (not sqr) (load "sqr"))

(setq delay (* 1000 (getint "Input Delay Time in Seconds: ")))

Start Loop

(setq n 1)

(setq fp (open "teach.txt” "r"))
(while (< n countik)

Select links

’ (setq ssbase (ssget "X" '((8 . "base")))
)(setq ssll (ssget "X" '((8 . "linkl™)))
)(utq ss12 (ssget "X" '((8 . "link2")))
l(sa:q sstcp (ssget "X" '((8 . "tcp")))
l(satq ssgrip (ssget "X" '((8 . "gripper")))
)lsetq ssaxisl (ssget "X" '((8 . "axisl")))
)(sar.q ssaxis2 (ssget "X" '((8 . "axis2")})
)(sel:q ssaxis3 (ssget "X" '((8 . "axis3")))

)
(command "SELECT" ssbase ssll ssl2 ssaxis2 ssaxis3 sstcp "")
(sezq ssrobot (ssget "p")

co-and "SELECT" ssll ssl2 ssaxis3 sstcp "7)
(setq sslinks (ssget "p")

(co-lund "SELECT" ssl2 sstcp
(setq ssl2 (ssget "p")
)

(terpri)

Find Axis Points for Rotation

(setq ax2list (entget (ssname ssaxis2 0))
)
(setq ax3list (entget (ssname ssaxis3 0))

(setq pl (cdr (assoc 10 ax2list))
)

(setq p2 (cdr (assoc 11 ax2list))
)

(setq p3 (cdr (assoc 10 ax3list))
(setq p4 (cdr (assoc 11 ax3list))

Specify target point location

(setq pt (read (read-line fp)))
(princ pt)
(setq pwx (car pt)

pwy (cadr pt)

pwz (caddr pt)

)
(terpri)

(setg n (+ 1 n)
)

(princ)

Establish Constraints on Motion

(setq k (sqrt (+ (sqr pwx) (sqr pwy)))
)

(setq 1 pwz)
ifl
(if (> (+ (sqr k) (sqr 1)) (sqr (+ hh ee)))
(progn (setq anew aold bnew bold cnew cold) (alert "Point Outside
Working Range!!"))
(progn

Calculate anew

(1f (= pwy 0.0)
(if (= pwx 0.0) (setq arad 0.0)
(if (< pwx 0.0) (setq arad pi) (setq arad 0.0)
)

)
(if (= pwx 0.0)
(if (< pwy 0.0)
(progn (setq arad (* 1.5 pi)))
(progn (setq arad (/ pi 2)))

)

(if (> pwx 0.0)
(progn (setq arad (atan (/ pwy pwx))))
(progn (setq arad (+ (atan (/ pwy pwx)) pi)))

)
1;i£2
(setq anew (rtd arad)
)

Calculate brew

(setq alpha (+ (* (cos arad) pwx) (* (sin arad) pwy))

)
(setq beta (/ (+ (sqr pwz) (sqr alpha) (sqr hh)
hh))

(- (sqr ee)))

)
(setq numlbnew (sqrt (+ (sqr pwz) (sqr alpha) (- (sqr beta))))

)
(setq v (/ (+ pwz numlbnew) {+ alpha beta))
)

(setq brad (* 2 (atan v))

)
(setq bnew (rtd brad)
)

i Calculate cnew
«

if (= pwz (+ hh ee)) (setq cnew 0.0)

(progn (setq bcrad (atan (/ (- pwz (* hh (sin brad)))
(cos brad)))))

)(setq benew (rtd becrad)

)(setq crad (- bcrad brad)

)(se:q cnew (rtd crad)
-

1iif
1se for fl
£1

Rotate Links

(setq crot (- cnew cold)
)
(setq brot (- bnew bold)
)
(setq arot (- anew aold)
)

(prompt "alpha =") (princ alpha) (terpri)
(prompt "beta =") (princ beta) (terpri)
(prompt "arot =") (princ arot) (terpri)
(prompt "brot =") (princ brot) (terpri)
(prompt "crot =") (princ crot) (terpri)
(rotate3d ssl2 p3 p4 crot)

(rotate3d sslinks pl p2 bzot)

(rotate3d ssrobot "z "" arot!

(setq sstcplist (entget (ssname sstcp 0))

)
(setq tcp (cdr (assoc 10 sstcplist))
)

(prompt "TCP Location: ") (princ tcp) (terpri)
(setq aold anew) (princ)
(setq bold bnew) (princ)
(setq cold cnew) (princ)
d "delay" delay)

(- alpha (* hh

Print Output to Screen

(prompt "anew = ") (princ anew) (terpri)
(prompt "bnew = ") (princ bnew) (terpri)
(prompt "cnew = ") (princ cnew) (terpri)

) ;while

(close fp)

(princ)

) ;defun

B.4 Controllsp

Numerical Simulation of the revolute manipulator
Based on Lagrangian Energy Method Equations of Motion
Assumes link weights are negligible and payload is

a concentrated mass at wrist joint.

PID + Computed Torque + Relay + ZOH Control is employed to
provide drive torques.;

Written by: John O'Leary

Date: November 23, 1997

Key Program Variables Include:

Old Joint Angles aold, bold, cold
New Joint Angles anew, bnew, cnew
Command Joint Angles acom, bcom, ccom
Old Joint Rates uold, vold, wold
New Joint Rates unew, vnew, wnew
Drive torques at, bt, ct

Data Input Includes:

2 Command Joint Angles acom, bcom,ccom
7 Proportional Gains pgb, pgs, pge
3 Derivative Gains dgb, dgs, dge
7 Integral Gains igb, igs,ige
7 Link Lengths 9g,hh, ee
¥ Number of Cycles nit
> Plot Steps nip
¢ Payload Mass skg
Joint Friction wet, dry
Time step delt

REVOLUTE FUNCTION

(defun control ()

INITIALIZE VALUES

(setq uold 0.0

relayaa 0.0
propb 0.0

derivb 0.0
intb 0.0
relayb 0.0
propbb 0.0
derivbb 0.0
intbb 0.0
relaybb 0.0
propc 0.0
derive 0.0
intc 0.0
relayc 0.0
propce 0.0
derivcc 0.0
intcc 0.0
relaycc 0.0
count 0
plot 0

band 0.034
errsuma 0.0
errsumb 0.0

brotsum 0.0
crotsum 0.0

INPUT PROPORTIONAL GAINS OR ACCEPT DEFAULT

(princ) (terpri)

(if pgb (progn (prompt "\nCurrent Proportional Gains (Base, Shoulder,
Elbow): ")

(princ pgb) (prompt ", ") (princ pgs) (prompt ", ") (princ pge)

(setq progains (strcase (getstring "\nUpdate Proportional Gain?
<Y/N>: "))

)

(progn (setq pgb (getreal "\nInput Proportional Base Gain
(N.m/rad): "))
(setq pgs (getreal "\nInput Proportional Shoulder Gain
(N.m/rad): "))
(setq pge (getreal "\nInput Proportional Elbow Gain
(N.m/rad): "))
) ;progn
Vit
(if (= progains "Y") (progn (setq pgb (getreal "\nInput Proportional
Base Gains (N.m/rad): "))
(setq pgs (getreal "\nInput Proportional
Shoulder Gain (N.m/rad): "))
(setq pge (getreal "\nInput Proportional Elbow
Gain (N.m/rad): "))
) ;progn
Jif

INPUT DERIVATIVE GAINS OR ACCEPT DEFAULT

princ) (terpri)

88

(if dgb (progn (prompt "\nCurrent Derivative Gains (Base, Shoulder,
Elbow): ")
(princ dgb) (prompt ", ") (princ dgs) (prompt ", ") (princ dge}
(setq dergains (strcase (getstring "\nUpdate Derivative Gains?
<Y/N>: "))

)
(progn (setq dgb (getreal "\nInput Derivative Base Gains: "))
(setq dgs (getreal "\nInput Derivative Shoulder Gain: "))
(setq dge (getreal "\nInput Derivative Elbow Gain: "))
) sprogn
)7if
(if (= dergains "Y") (progn (setq dgb (getreal "\ninput Derivative
Base Gain (N.m.s/rad): "))
(setq dgs (getreal "\nInput Derivative Shoulder
Gain (N.m.s/rad): "))
(setq dge (getreal "\nInput Derivative Elbow
Gain(N.m.s/rad) : "))
) sprogn
E

INPUT INTEGRAL GAINS OR ACCEPT DEFAULT

(princ) (terpri)
(if igb (progn (prompt "\nCurrent Integral Gains (Base, Shoulder,
Elbow): ")
(princ igb) (prompt ", ") (princ igs) (prompt ", ") (princ ige)
(setq intgains (strcase (getstring "\nUpdate Integral Gains?
<Y/N>: "))

)
(progn (setq igb (getreal "\nInput Integral Base Gains: "))
(setq igs (getreal "\nInput Integral Shoulder Gain: "))
(setq ige (getreal "\nInput Integral Elbow Gain: "))
) ;progn
)iif
(if (= intgains "Y") (progn (setq igb (getreal "\nInput Integral Base
Gains (N.m/rad): "))
(setq igs (getreal "\nInput Integral Shoulder
Gain (N.m/rad): "))
(setq ige (getreal "\nInput Integral Elbow Gain
(N.m/rad): "))
) ;progn
Viif

i INPUT RELAY GAINS OR ACCEPT DEFAULT

(princ) (terpri)

(if rgb (progn (prompt "\nCurrent Relay Gains (Base, Shoulder, Elbow):
=

(princ rgb) (prompt ", ") (princ rgs) (prompt ", ") (princ rqe)
(setq rgains (strcase (getstring "\nUpdate Relay Gains? <Y/N>:
"N
)
(progn (setq rgb (getreal "\nInput Relay Base Gains: "))
(setq rgs (getreal "\nInput Relay Shoulder Gain: "))
(setq rge (getreal "\nlnput Relay Elbow Gain: "))

) sprogn

(= rgains "Y") (progn (setg rgb (getreal "\nInput Relay Base
Gains (N.m): "))
(setq rgs (getreal "\nInput Relay Shoulder Gain

N.m): "))
(setq rge (getreal "\nInput Relay Elbow Gain
o.m): ™))
) sprogn
Viif
z INPUT ZERO ORDER HOLD OR ACCEPT DEFAULT

(princ) (terpri)

(setq zoh (strcase (getstring "Use Zerc Order Hold? (Y/N): ")))
(if (= zoh "Y")
(progn (if ns (progn (prompt "\nCurrent Rates (Sampling,
Controller): ")
(princ ns) (prompt ", ") (princ nz)
(setq zgains (strcase (getstring "\nUpdate Zero Order Hold
Values? <Y/N>: "))

) ;progn
(progn (setq ns (getreal "Input Sampling Rate: "))
(setq nz (getreal "Input Controller Rate: "))
) ;progn
)iif
(if (= zgains "Y") (progn (setq ns (getreal "\nInput

Sampling Rate: "))
(setq nz (getreal "\nInput Controller Rate: "))
) ;progn
)iif
) ;progn
(progn (setq nz 1) (setq ns 1))
)iif

INPUT FRICTION COEFFICIENTS

setq wet (getreal "\nInput Wet Friction Value (N.m.s/rad): ")
dry (getreal "\nInput Dry Friction Value (N.m.s/rad): ")

)

; INPUT # OF CYCLES, PLOT CONTROL, AND ANGLE STEP

(

setq nit (getreal "\n Input Number of Cycles: ")
delt (getreal "\n Input Cycle Step Angle Increment (rad/s): ")
nip (getreal “\n Input Plot Skip Value: “)

INPUT COMMAND ANGLES

setq acom (getreal "\n Input Commanded Base Angle (degrees): ")
bcom (getreal "\n Input Commanded Shoulder Angle (deqrees))
ccom (getreal "\n Input C Elbow Angle ki

setq skg

PRESET DATA

setq gravity 9.81

tmax 2000.0
btmax 2000.0
ctmax 2000.0

INPUT PAYLOAD

)
: CONVERT ANGLES TO RADIANS
(

setq aold
bold
cold

(setq acom
beom
ccom

(

(der
(dtr
(dtr

(dtr
(dtr
(dtr

aold)
(= 90.0 bold))

=

cold))

acom)

beor
cco

m)
m)

OPEN OUTPUT FILE
(setq fpb (open "c

: thas

while (/= count nit)

(setq id (+ id 1))
(if (= id ns)
(progn (setq erra (- acom aold) errb (- bcom bold) errc (- ccom

cold))

(setq count

)
(setq plot (+ plot 1.0)
)

(getreal “\n Input Payload (kg): “))

e.txt™ "w"))
(setq fps (open "c:tshoulde.txt® "w"))
(setq fpe (open "c:telbow.txt! N

(+ count 1.0)

INTEGRATION LOOP FOR EQUATIONS OF MOTION

(setq sgnu 0.0 sgnv 0.0 sgnw 0.0)

(if (not
(if (not
(if (not

DYNAMICS

(setq one
wo (+

(= w

old 0.0))

(= vold 0.0))

+

S
(*
(

(= wold 0.0))

(* hh (sin bold))
(* hh (cos bold))

skg (+ (*
skg (+ (*
skg (+ (*
skg ee ee)

(progn (setq sgnu (/ uold (abs uold)))))
(progn (setq sgnv (/ vcld (abs vold)))))
(progn (setq sgnw (/ wold (abs wold)))))

ee ee)
ee ee)
ee ee)

(* ee (sin (+ bold cold))))
(* ee (cos (+ bold cold))))

(* hh hh) (* 2.0 ee hh (cos cold))))

(* ee hh (cos cold))))
(* ee hh (cos cold))))

91

akk (* skg one one)
)

; CONTROL TORQUE

(if (= id ns)
tprogn (setq propa (* pgb (- acom aold)))
(setq propb (* pgs (- bcom bold)))
(setq propc (* pge (- ccom cold)))
(setq deriva (* dgb (- uold)))
(setq derivb (* dgs (- wold)))
(setq derivc (* dge (- wold)))
(setq inta (* igb errsuma))
(setq intb (* igs errsumb))
(setq intc (* ige errsumc))
(if (> (- acom aold) band) (progn (setq relaya rgb)))
(if (> (- bcom bold) band) (progn (setq relayb rgs)))
(if (> (- ccom cold) band) (progn (setq relayc rge)))
(if (< (- acom aold) (- band)) (progn (setq relaya (-

rgb))))
(if (< (- bcom bold) (- band)) (progn (setq relayb (-
£gs))))
(if (< (- ccom cold) (- band)) (progn (setq relayc (-
rge))))
) ;progn
)iif
(if (= id nz)
(progn (setq propaa propa)
(setq propbb propb)
(setq propcc propc)
(setq derivaa deriva)
(setq derivbb derivb)
(setq derivce derive)
(setq intaa inta)
(setq intbb intb)
(setq intcc intc)
(setq relayaa relaya)
(setq relaybb relayb)
(setq relaycc relayc)
) ;progn
1iif
(setq at (- (+ propaa derivaa intaa relayaa) (+ (* dry sgnu) (*
wet uold))))
(setq bt (- (+ propbb derivbb intbb relaybb) (+ (* dry sgnv) (*
wet vold))))
(setq ct (- (+ propcc derivec intce relaycc) (+ (* dry sgnw) (%
wet wold))))

OVERALL TORQUE

(setq bi (+ bt (* skg (+ (* 2.0 ee hh (sin cold) wold vold) (* ee
hh (sin cold) wold wold) (* one two uold uold) (* gravity onme))))
j (= ct (* skg (- (* ee hh (sin cold) vold vold) (* gravity
ee (sin (+ bold cold))) (* one ee (cos (+ bold cold)) uold uold))))
bk (- at (* 2.0 skg (+ (* one two uold vold) (* one ee (cos
(+ bold cold)) uold wold))))
)

(while

DETERMINANT

(setq det (- (* aii ajj) (* aij aji)))
(if (> (abs det) 0.1)

(progn (setq ri (/ (- (* ajj bi) (* aij bj)) det)

rj (/ (- (* aii bj) (* aji bi)) det)
rk (/ bk akk)
)

) ;progn
)iif

NEW VALUES

(setq anew (+ aold (* delt uold))
bnew (+ bold (* delt vold))
cnew (+ cold (* delt wold))
unew (+ uold (* delt rk))
vnew (+ vold (* delt ri))
wnew (+ wold (* delt rj))

)

OUTPUT VALUES
(setq crot (- (rtd (- cnew cold)))
yAsev:q brot (rtd (- bnew bold))
y(setq arot (rtd (- anew aold))
)(ser.q arotsum (+ arot arotsum))

(setq brotsum (+ brot brotsum))
(setq crotsum (+ crot crotsum))

{or (eq plot nip) (eq plot 1.0))

(princ "Plot=") (princ plot) (terpri)

(princ "anew=") (princ (rtd anew)) (prompt " ") (terpri)
(princ "aol (princ (rtd aold)) (prompt " ") (terpri)
(princ "bnew=") (princ (rtd bnew)) (prompt " ") (terpri)
(princ "bold=") (princ (rtd bold)) (prompt " ") (terpri)
(princ "cnew=") (princ (rtd cnew)) (prompt " ") (terpri)
(princ "cold=") (princ (rtd cold)) (prompt " ") (terpri)

(princ " ") (terpri)

UPDATE GRAPHIC POSITION DISPLAY

Find Axis Points for Rotation

(setq ax2list (entget (ssname ssaxis2 0))
,(setq ax3list (entget (ssname ssaxis3 0))
(setq pl (cdr (assoc 10 ax2list))

)(setq P2 (cdr (assoc 11 ax2list))

)
(setq p3 (cdr (assoc 10 ax3list))

)
(setq p4 (cdr (assoc 11 ax3list))
)

DETERMINE ROTATION ANGLES

(princ "arot=") (princ arot) (terpri)
(princ "brot=") (princ brot) (terpri)
(princ "crot=") (princ crot) (terpri)

ROTATE MANIPULATOR

(rotate3d ssl2 p3 p4 crotsum)

(rotate3d sslinks pl p2 brotsum)

(rotate3d ssrobot "z" "" arotsum)

(setq plot (+ plot 1.0))

(if (> plot nip) (progn (setq plot 0.0 arotsum 0.0 brotsum 0.0
crotsum 0.0)))
) ;while

; INCREMENT VALUES

(setq aold anew
bold bnew

wold wnew

)

(if (= id nz)

(progn (setq errsuma (+ errsuma (* nz delt erra)))
(setq errsumb (+ errsumb (* nz delt errb)))
(setq errsumc (+ errsumc (* nz delt errc)))

(if (= id nz) (setq id 0))
);while
(setq aold (rtd aold)
bold (~ 90.0 (rtd bold))
cold (rtd (- cold))

(setq sstcplist (entget (ssname sstcp 0))

)

(setq tcp (cdr (assoc 10 sstcplist))

)

(prompt "TCP Location: ") (princ tcp) (terpri)
; (close fp)

(princ)
):; defun

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Blank Page
	0006_Title Page
	0007_Copyright Information
	0008_Dedication
	0009_Abstract
	0010_Acknowledgements
	0011_Nomenclature
	0012_Nomenclature vi
	0013_Table of Contents
	0014_Table of Contents viii
	0015_List of Illustrations
	0016_Chapter 1 - Page 1
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Chapter 2 - Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Chapter 3 - Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Chapter 4 - Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Chapter 5 - Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Chapter 6 - Page 63
	0079_Page 64
	0080_Page 65
	0081_Chapter 7 - Page 66
	0082_Page 67
	0083_References
	0084_Page 69
	0085_Page 70
	0086_Appendix A
	0087_Page 72
	0088_Appendix B
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Blank Page
	0111_Blank Page
	0112_Inside Back Cover
	0113_Back Cover

