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Abstract

Research over the past decade or so. has found a new application for modal analysis theory

and experi; i It involves 'S fuation, with the primary intent of

detecting and locating structural faults (cracks, voids. etc.) in structures such as off-shore

oil plattorms which are vulnerable to fatigue and other forms of inconspic uous damage.

This current resear " program W

s conducted in an attempt 0 add to the existing body of

knowledge on this subject. It illustrates through analytical and experimental modelling. the

eftect that a simulated crack has on the modal characteristic

ot a simple structure. ie.. a

cantilever plate. with 3 levels of damage.

The a

ssment involved creating a finite ¢

ment model of the structure using an integrated
software package. SPRC - 1-DEAS. to estimate the changes in various modal parameters.

caused by a notch type crack. Additionally

a series of tests were carried out using
response measurement equipment to experimentally determine the effect of the imposed
defect. This was accomplished via measurement of dynamic response. using both

ng [-DEAS

accelerometers and strain gaug

. nd subsequent test data analysis u:

Results obtained from both phases of analysis showed that the crack could be detected.

primarily through observation of reduction in natural frequency for a number of modes.
The analytical model. in particular. provided a useful technique of crack location via
observed inconsistencies in the plots derived from differences in both displacement and
rotation mode shapes for cracked plates, with respect to a reference plate. The
experimentation performed verified the analytical results, and provided additional insight

into changes in damping.

idue. and amplitude of dynamic respanse for frequency values
at. and offset from those associated with the natural modes. This latter phenomena proved

w be very

sitive and correlated well with observed changes in frequency. The
measurement of strain response also proved to be a good indicator of crack existence with

major increases in response magnitude. far exceeding the corresponding acceleration response.
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Chapter 1
Introduction

The ever increasing demand for petroleum products has made it necessary for the world's

population to begin searching under the earth’s ocean floors for what remains of the earth's

untpped oil reserves, Accomplishment of this t has been a true feat of modern

engineering. This is due mainly to the fulfilment of the design requirements for large

structures. with long term durability. which have been designed. built. and installed in the

harsh ocean environment.

This ocean environment is one of the most severe and challenging loading regimes that an
engineer could ever expect to face. This is so. largely because of the cyclic action that is
inheremt in wave. current and wind loading. an action that imposes on structures,

continuous series of load reversals. This results in a phenomena known as fatigue. a
condition caused by cyclic loading of significant magnitude that over time weakens the
material of the structure, reducing its ability to withstand load. If the action continues over
an extended period of time. a point is reached where the material actually ruptures. thus
initiating a crack. This crack will grow over time, as the load reversals continue, and may
reach a point where it poses a threat to the integrity of the structure. To design a structure

that can operate in the ocean regime is a challenge at best. To make the structure immune

to fatigue would seem an impossibility or at the very least would make it extremely

pensive and i ical. As a p ise the designer has to make the structure safe
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for all known loading conditions of short term durauon and attempt to make the structure
serviceable through maintenance and inspection. for its intended life span. Without explicit

de

consideration.

igue cracking is still likely to occur at some point in the life of a

structure.

This fact has been well documented over the years by inspection and monitoring teams as
well as by the many researchers who have studied this phenomena. As a result. all such
structures must be carcfully maintained and monitored so that in the event of the
development of a fatigue crack or any other defect. it can be located and repaired before

it can impair the safety of the structure.

While

fatigue is by far the type of damage most difficult to control. there are other forms

of defects or faults that can be very dangerous. A concise summary of what constitutes a

ardson and Mannan (1991) as ai

of the following occurrences:

. Failure of the Structural Material due to Fatigue. For example. cracking.
breaking. or delamination.

. Loosening of Assembled Parts. For Example loose bolts. rivets. glued
joints or wear out of parts.

. Manufacturing Defects. For example, flaws. voids. or thin spots due 0

asting. moulding or forming operations. Improper assembly of parts.

Structural integrity is of utmost importance in these types of structures which history has
shown to be far from invulnerable. One major component of safety assurance in this regard

is. as alluded to above. a monitoring system (o detect damage wherever it is and despite

"~
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its cause. The evolution of such systems has led to the development of a relatively new
field of research called Non-Destructive Evaluation, whose primary objective is to detect

structural defects. on-site. with facilities that can be located on the structure itself.

This research has resulted in the development of several useful techniques that perform
the desired task of defect detection. Some of the more notable of these techniques include:
Alternating Current Potential Drop (ACPD). Radiography (X-Ray). Magnetic Particle
Inspection. Eddy Current and Ultrasound. While each of these techniques has certain
desirable features they are often difficult to use under the operating conditions of the
structures they are intended to monitor. In addition they usually require the use of divers,
specially trained to carry out inspections. This is obviously a danger to personnel and a

very undesirable aspect of a monitoring system.

An ideal system should be centrally located on the structure and should not be dependant
on the services of divers. It should be operable from a computer control centre and should
be able to function automatically with only a periodic inspection of results by trained
personnel. In an effort to attain this type of system, a new approach has been the focus of
numerous research programs over the past number of years. This approach is the study of
dynamic properties of a system through a technique known as modal analysis. Research to
date, has shown that in its initial state, a structure has several characteristic properties or
modal parameters. These include natural frequencies, damping, dynamic amplitude of
displacement, residue and mode shapes. By observing these parameters and noting changes
it is hoped that a technique can be developed that can correlate specific shifts in one or

more of these parameters with the occurrence of structural defects. It is hoped that such
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a system would not only be able to identify the existence of a defect. but also indicate its
location and extent. through the measurement of global and local response parameters using

permanently autached transducers interacting with a central interpretation centre.

1.1 Scope of Thesis

The main purpose of this course of study is to conduct a series of experiments on a number
of slender cantilever plates with artificial cracks of varying degree. All specimens are
considered identical, except for the extent to which they are cracked. It is hoped that
changes in the measured modal parameters can be correlated to crack depth and in some

waty provide

indication of crack location. Besides actually determining the crack induced
changes the experimentation will compare results using two different types of response
transducers. The main experiment will be carried out using traditional means of response

using LA

will attempt to use strain

wges as response transducers. Results from both types of measurement will be analyzed

independently and compared.

Secondary to the experimental objective is the development of an analytical model using
finite element aralysis. This analytical model will provide a basis for comparison with the
experiment results, and thereby provide reinforcement of its findings. It is also to be used
as an indicator of the appropriateness of the experimental set-up, highlighting experimental

errors and providing insight into the validity of i used in the p of

such models.
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1.2 Objectives

The specific intents of this research can be outlined by the following objectives:

* To develop appropriate procedures for experimental modal analysis as it
applies to response measurement using cracked and uncracked slender
cantilever plates.

*  To identify from test results and by analytical modelling. changes in modal
parameters that can be directly attributable to the existence of a crack.

®  To correlate the trend of observed changes with the extent of the crack.

®  To determine if any aspect of the behaviour of the specimens or their dynamic
response can be indicative of crack location.

*  To determine it ordinary strain gauges are appropriate response transducers
in a dynamic test environment and if so, whether the measurement of strain

would be a useful tool in crack identification.

1.3 Outline of Thesis

The remaining portion of this thesis is divided into five chapters. Chapter 2 reviews some
of the literature published on this topic and attempts to illustrate what is the current state
of the art in this realm of research. Chapter 3 contains a review of relevant theory
concerning the topics of structural dynamics, modal analysis, and selected procedures used
in analysis of experimental results. Chapter 4 discusses the results of the analytical study
condroted as part of this research. Chapter 5 discusses the experimental results and what
was learned from them. Chapter 6 concludes this thesis with a review of its findings and

on some fons for future work.




Chapter 2

Literature Review

It has become i ingly important to the ph associ with vibration

early in the design phase of any structure. When the attempt is made to account for
dynamic response and resonance during the design it often eliminates costly experimentation

and evaluation of problems that may arise after the commissioning of a project. Modal

analysis is particularly imr-rtaw in this phase of a project. It is also a useful tool in the

implementation of structural modification that attempts to modify a structure’s dynamic

behaviour to reduce excessive or otherwise unwanted vibrational characteristics.

In its simplest form the definition of modal analysis is simply:

The process of determining the dvnamic properties of a structure either by

peri i i delling, or through a ination of both.

and lv char izing these ies in terms of the structure’s

modes of vibration.

Modal analysis. an inseparable combination of analytical and experimental evaluation, is
a specific category within the broad realm of structural dynamics. While this is a somewhat
new category. the principles on which it is based have been firmly established for many

years. Early development work on this subject can be attributed in part to pioneers like



Chuprer 2 - Luerature Review

Kennedy and Pancu (1947) whose research on aircraft structures led to the development of
accurate techniques for estimation of natural frequencies and damping. Their work paved

the way for the development of the modern techniques used in modal analysis.

In the 50 years that have transpired since then. the processes of modal ~nalysis have be=n
refined by the combined effort of the many individuals who have worked in this field. One
such individual. noted for his work on this subject. is D. J. Ewins, a professor of Vibration
Engineering at Imperial College of Science and Technology, in London, England. His 1984
book. Modal Testing: Theory and Practice, is probably the most complete single reference
available on this subject. In this book and among his papers [ie.. Ewins (1987)] can be
found invaluable information concerning the proper use of the methods of modal testing and

its associated theory.

Numerous specific applications have been found for the results obtained through the use of
modal analysis. These include the development of modal models of substructure components
that are to be integrated into a structural assembly. This allows prediction of the effects of
the addition, on the overall structural properties. Another application is in the area of force
determination. It is not always possible to measure the applied dynamic force directly but
through evaluation of the system’s response characteristics an inverse type of analysis can
be performed to deduce the force characteristics from the system’s physical properties and
its response characteristics. Yet another, is predicting the effect of structural modifications

such as the addition of stiffencrs on the dynamic behaviour of a system.

Modification of the theory used for this later application led to the development of an

entirely new application, damage detection, the focal point of this thesis. Here the
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structural modification is a passive one and the modal analysis of the structure attempts to

verify the existence of the defect and determinc its location.

The remaining portion of this chapter is divided into threc sections. the first discusses
literature pertaining to various theoretical methods developed for defect detection in
structures. The second discusses the results that have been obtained by various authors who
have studied this topic using experimental modal analysis. The third, relates to the

secondary objective of this research. applications of strain measurement in modal analysis.

2.1 Theoretical Approaches to Defect Detection

Many individuals have atempted to develop a methodology that would analyze the
vibration of structures with embedded defects, In Petyt (1968) the vibration characteristics
of a simplified model of an aircraft fuselage panel containing a fatigue crack were obtained
using the finite element displacement method. This was an attempt to derive a theoretical
method for determining the vibrational characteristics of a simplified physical model that
had been evaluated experimentally by Clarkson (1965). The model was derived by
substituting a rectangular plate under tensile load to simulate the hoop stress of the

fuselage. A crack was centrally located and perpendicular to the direction of the applied

load. It was found that by using finite elements the effect of the crack could be accurately
predicted. The results showed that as the length of the crack grew, the frequency of the
fundamental mode of vibration decreased untii a point was reached when the free edge of

the crack buckled outward permanently, at which point the frequency increased.
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In a later investigation. Roman Solecki of the University of Connecticut, published several
papers that attempted to derive theoretical relationships between the natural frequencies of
a rectangular plate with crack type defects. In one of his earlier papers, Solecki (1980)
supplemented @ previously derived wwvariant expression for the amplitude of the
displacement of homogenous. isotropic. han nically vibrating plates with internal rigid

supports or cracks.

A few years later. Solecki (1983) considered the natural flexural vibration of a simply

supported plate with a sy ically located crack parallel to one edge, as

shown in Figure 2.1, He analyzed the problem using finite Fourier transformation of
discontinuous functions, the unknowns of which were the discontinuities of the
displacement and the slope across the crack. Conditional equations were obtained by
satisfying the boundary conditions at the cracks's edge by differentiating a Fourier series
representing a discontinuous function. He then obtained the characteristic equation in the

form of an infinite determinant and used it in comparison with earlier published results.

|4
L = = -
(a-d)2 d (a-d2
‘ b
— |
Crack e -
BT B

FIGURE 2.1 - SOLECKI'S PLATE
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The results obtained showed that the first two frequencies were greatly influenced by the
length of the crack and its location on the plate. For d/a = 0.5 the frequency factor for
mode | dropped by almost 10% as the ratio e,/« was varied from 0.01 to 0.50. Using the
same range of values the frequency factor for mode 2 fell by 9% for e,/a = 0.20 and
rebounded to a 6% drop for ¢,/a = 0.50. With e,/a held constant the ratio d/a was varied
from 0.1 to 1, the mode | frequency factor dropped by 18% over this range while the

mode 2 value fell by 44 %,

Continuing to explore these phenomena. Solecki (1985) expanded his technique to solve for
an arbitrarily located crack, the first to attempt this complicated problem. Using an
expanded form of the methodology derived for the parallel crack he tested his approach on
a square plate with a diagonal crack of varying length (d/a ranged from 0 to 1.4). His
results for the first three natural frequencies showed significant drops in frequency for each

mode, especially mode two, which fell by 72%.

One of the first efforts to use a theoretical approack to determine the location of defects
is presented by Stubbs (1990). The author applied a first difference to the homogeneous
equations of motion of an undamaged structure to yield expressions for changes in modal
stiffness in terms of modal masses. along with changes in modal damping, natural
frequencies and mode shapes. In addition, expressions relating variations in stiffness of
structural elements to the variations in modal stiffness were generated using matrix
structural analysis. The formulation was tested using an Euler-Bernoulli beam and showed

that for the beam, the method accurately indicated the crack location.
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A more recent study is discussed in Pandey er al. (1991) that considered the effect of
damage on two beam structures. the first. a simply supported beam, ard the second. a
cantilever. Here the authors attempted to devise a technique for locating the point of
damage by closc inspection of the changes in the cunvature mode shapes. It was found that
the absolute changes in the curvature mode shapes are localized in the region of damage
and therefore provided a useful tool for location estimates. The study was carried out using
finite element analysis of bear.. element models. The damage was simulated by reducing
the modulus of elasticity for one of the beam elements. Each element was tirst considered
in turn so as to move the location of the damage and subsequently a single element was
chosen and a variety of levels of damage was evaluated. The results showed that when
plotting the absolute difference in curvature mode shape between the cracked and uncracked

specimens. a notable peak occurred in the vicinity of the crack.

In a more classical approach Richardson and Mannan (1991) derived expressions for
sensitivity functions for mass. stiffness and damping in an attempt to show that it is

possible to detect. locate and quantify structural faults by monitoring only frequency and

damping. The technique used the or for it damped

to derive from i structural dynamics theory, the following stiffness
sensitivity equation:

{6, = do 37 [dK] {6, ~ do} ~2de Y K]{8) + (s }T[KNd8) = o, - @}

(@.1)
Similarly. the damping sensitivity equation:

(6, = do}7ldC] (&, + a0} - 2deyICl{0) + (doT[Chded = 2, - &)
Q2
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And finally the mass sensitivity equation:

(&, = do,}7 [dM] {8, - day} - 2da,} M) {6} - {db} Mo} =

where k = I ... number of modes
For small changes in &,. the mode shape does not change significantly.

(ie.. {dé,} = {0}) and these equations simplify to

{87 [K] {8} = v} - 24
(.7 lC {8} = 2(5, - &) @)
ERUCEIRENE @6

In an example using a 3-DOF structure the author made fourteen changes to various
stiffness parameters to simulate different fault conditions. The method worked well in

verifying the locations of the various changes.

2.1 Experimental Approaches to Defect Detection

Modal analysis is often an inevitable combination of experiment and theory. The preceding
discussion showed that even authors approaching defect detection from a purely analytical
viewpoint often rely on the experiments of others to verify their results. The discussion that

follows, illustrates literature that is far more indicative of the type found in this subject
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area. These are papers that discuss either results obtained from a purely experimental

approach or the results of a combination of analytical and experimental analysis.

There are two main categories within the realm of experimental analysis that are dependant
on the type of structure evaluated. The first category. generally uses simple structures such
as plates or beams. This type of experiment generally strives to develop fundamental
relationships between modal parameters and structural defects or (o test theories pertaining
to these relationships. The primary advantage of this type of experiment is the flexibility

permitted in evaluating modal parameters over a wide range of frequency and for a number

of i operating it They are in a lab environment with little

possibility of outside interference from external sources.

The second type of experiment uses either real structures or large scale models of real
strctures. The objective here is generally to discern whether or not derived relationships
and theories are applicable to real structures. While the ability to strictly control all aspects
of the operating environment is greatly diminished for real structures, this type of
experimentation remains invaluable, since only a real structure will behave like a real
structure and if this course of research ever hop s to develop a functional NDT method it

must be used on a real structure.



Chapter 2 - Laterature Resaen

2.1.1 Experimentation Using Simple Models

One of the earliest successful attempts to develop a relationship between frequency shift and
cracking in cantilever beams is described in Chondros and Dimarogonas (1980). Here the
authors performed a number of experiments using both fixed-free (cantilever) beams as well
as fixed-fixed beams with welded end connections. Cracks were developed by fatiguing and
the progress of the reduction in natural frequency as the crack propagated was monitored.
The results were used to develop nomographs that could be used to determine the crack
depth from the measured frequency drop. The authors went on to propose a method for
implementation of their procedure on real structures suggesting the use of local rather than
global modes in inspection techniques. Given the state of portable computer technology of

the day this work was very advanced in scope.

A unique attempt to model the effect of cracking on beams is given by Ju and Mimovich
(1986) that expands on earlier work by Ju (1982). These authors illustrate how a crack can
be represented as a fracture hinge as shown in Figure 2.2. It is shown that the spring
constant is dependant only on the damage geometry and not on the crack location. In
addition it is illustrated that the changes in frequency can be used to locate the defect on
the beam by determining the inflection points of modes that had little notable frequency
shift. The results showed that the fracture hinge provided betier results than simpler
analytic assumptions due to the action of the crack under cyclic loading. The authors
highlighted the errors attributable to the difficulty in modelling a true fixed support in

addition to the differences between milled "test" cracks and true zero width fatigue cracks.
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L = ~
4 Y
¥ >? % €
b S =
a
Actual Defect Fracture Hinge

Model

FIGURE 2.2 - JU AND MIMOVICH IDEALIZATION

In Mannan and Richardson (1990) additional work was carried out in an attempt to develop
a method for detecting and locating cracks from measured modal parameters as derived
from Frequency Response Functions. These authors believed that FRF measurement, along

with subsequent processing, was the superior method of modal parameter estimation. In

support of this they listed the foll

e A variety of 1ti-inpt i-output FFT Ly are ially

available for making FRF measurements.

e A variety of broad band excitation methods can be used, employing low level

random, sine, or transient signals.

e  Measurement noise can be removed by using frequency domain averaging

methods.

e Non-linear motion (distortion) of the structure can be removed by using

random excitation and averaging.

15
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s Acccleration responses. which are typically measured. are easily converted o
displacement responses without approximations.

e A variety of single and multiple reference estimation techniques are available

for obtaining modal parameters from FRF's.

The computational method employed, involved using the mass. damping. and stiffness
matrices as defined for a lightly damped structure. These matrices are square and of a
dimension equal to the number of DOF's in the system. As such they can be computed
from measured data containing all DOF's and are not dependant on measurement of any
predefined number of modes although a minimum is required to ensure accuracy.
Computation of these matrices from experimental data allowed comparison of a test
specimen before and after the introduction of a defect. It was found that the largest
differences in the matrices were localized in the area of the defects. Another notable result
was the determination that higher modes were found to be beter predictors of crack

existence and location, and governed the structural stiffness.

Another nowble research eam,

AJM. Aradjo Gomes. and J.M. Montalvio e Silva of
Portugal have produced numerous papers that report the findings of their research into
defect detection using mod . analysis. In Aradjo Gomes and Montalvio e Silva (1990).
results are presented that concern the dynamic behaviour of a cracked. free-free straight
beam, with rectangular cross-section. The beams were analyzed theoretically using Ju's
fracture hinge method. and tested experimentally using specimens with both thin (0.2 mm.)
simulated cracks. cut with a milling machine, as well as with real fatigue cracks.

Measurements were carried out for both in-plane, and out-of plane bending. The primary

16
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purpose of this experimentation was simply to show that the effects of cracking could be
accurately and precisely determined from experimental data. This extensive evaluation
looked at four crack depths ranging from 1/8 the beam depth to 1/2 the beam depth in
increments of 1/8. in each of four different locations (from Fig. 2.2, L'/L = 1/8, 1/4. 3/8
& 1/2). In addition a series of beams were fatigued sufficiently to develop real cracks and
these were tested as weil. The results clearly showed that the change in natural frequency
was highly dependant on both the location of the crack and the particular mode being
considered. It also showed that the effect of a milled crack was indeed representative of the

effect of a real crack.

These authors continued to expand on their work and in Aradjo Gomes and Montalvio ¢
Silva (1991) presented the findings of an extensive experimental and analytical evaluation
that observed the effects of real fatigue cracks on 0.8 m long free-free beams with three
different square cross-sections. In total 60 beams were tested in both planes of bending to
determine the effect of cracking in each of 5 different crack locations (L'/L = 1/10. 1/5,
3/10. 2/5 & 1/2) with four levels of crack depth ratios (1/6, 1/3, 1/2, 2/3). Additionally
these authors presented a detailed derivation of the torsional spring model showing how it
could be used to determine from theory the natural frequencies of a cracked beam. The

spring constant k. alluded to previously, was shown to be

2EI*

Tha(1 - ) J;P[f [%szp



Chapter 2 - Literaure Resien

where
= Young's Modulus

I = Moment of Inertia of Cracked Section

h = width of beam

d = depth of beam

p = depth of crack

» = Poisson’s Ratio
and

s f .
fl%} =122 - 1.40l%] -733[5] - l308[%] - 14.00‘5] 2.8

The authors used this expression along with their formulation to derive theoretical values
for each of the tested beams. The results showed reasonable correlation between

experimental and icti In addition it was shown that the

natural frequencies of larger beams were affected more by cracking than were smaller
beams. For all beams, both theory and experiment showed that the sensitivity of the change
in frequency to crack depth increased for the larger cracks and additionally that as the crack

depth increased. some modes became more sensitive than others.

The most current work by these authors is presented in Araijo Gomes and Montalvio e
Silva (1992) and Montalvio e Silva and Araiijo Gomes (1992). Here the authors shift their

attention to the analysis of cantilever, rather than free-free, beams. These papers present

the results of their atempt to modify their previously for

use on a cantilever with a lumped end mass and an axial load. Additionally they present for
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comparison. their findings of experimentation on this type of specimen, which they tested
both in air and immersed in water. This latter experiment was performed tu determine the
extent of change that could be expected from water immersion alone and additionally to
determine how the effect of cracking in beams is moderated by immersion. The results of
this program showed that the existence of a crack in a cantilever caused its frequencies to
change in a way that could be easily measured even when the crack was close to the free
end. The addition of the end mass. however, tended to decrease the sensitivity to cracking
especially for cracks near the free end. Additionally, it was determined from these results
that while immersion in water does tend to decrease the natural frequencies, the effect is
small and tends to disappear when the end mass is large. The authors attributed this small

effect to the stiffness of their beams.

2.1.2 Experimentation Using Real Structures

Analysis of real structures is often very different from that of simple structures. Simply
determining the modes of real structure can be a forbidding task due to the vast number of
modes that exist. A typical structure is in reality made up from simple structures (ie.
beams, plates, etc.) and as such all the modes of these simple structures also become local
modes of the real structure. There are, in addition to these local modes, global modes
where the motion involves the entire structure. It is these global modes that are generally
considered to be of primary importance to this type of experimentation but the task of
distinguishing them from the numerous local modes can often be a challenge, one that must

be carefully performed to ensure the applicability of results. The following discussion
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highlights a representative selection of literature that has been produced as a result of

experimentation on real structures'.

Tlustration of the usefulness of testing a scaled model of a real structure was presented in
Shahrivar and Bouwkamp (1985). The model used for this research was a 1/50th scale

plastic model that represented the structural system of a typical full scale tower in 66m of

water. This experi ion sought to ine the effects of severance of diagonal
bracing members on selected vibration frequencies and mode shape parameters. To
illustrate the distinctiveness of the parameter shifts resulting from damage, additional tests
were carried out to determine and compare the parameter changes resulting from the
addition in deck mass. jacket mass. and deck mass eccentricity. The procedure used finite
element analysis in combination with test results and found the two to correlate quite well.
Significant useful observations were made from the results of the program: in abbreviated

format. these are as follows:

*  Damage in the structure is from surface only. ie., no

underwater instrumentation was necessary.

e The most significant indicator of damage was deck displacement (ie. mode
shape) which proved much more sensitive to damage than did the observed
frequency shifts.

e The characteristics of the damage induced changes were insensitive to deck

loading and loading eccentricity.

U Included in the definition of real structures are large scale models of real structures since they generally

represent as much complexity as their prototypes.
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e The changes observed as a result of damage were easily distinguishable from
those resulting from changes in loading conditions. Observations showed that
while displacement differences could be similar, corresponding frequency

shifts were not. ly i at the deck extremes

showed distinct differences.

Successful results using model structures were also obtained by Debao et al. (1992). They
presented a method that not only detected, but also located, a defect using only one row and
one column of the FRF matrix. The procedure used a successively deduced least squares
method to determine stiffness changes using data at the half-power points of FRF's for a
given mode. In testing the theory on test results from a 1/30 scale jacket type structure, it
was shown that performing the iterative method on various structural elements quickly

deduced the defective member.

It is of obvious importance in this domain of research to be able to perform these
experiments on actual structures. One of the most difficult aspects of performing modal
analysis on a real structure is the ability to provide controlled excitation of sufficient
magnitude to excite a response in the structure. Notwithstanding the difficulty involved,
various programs of research have successtully accomplished this feat. In Chiarito and
Milakar (1984), for instance, a concrete gravity dam was exited by inertial force provided
by a 17000 Ib mass attached to a hydraulic actuator. In Haynes (1986) a step unloading
excitation was used to test a concrete light-pier by plucking the structure with a winched
cable attached to the structure through a v-notched bolt of known strength. Loading the

structure until the bolt failed in tension provided the impetus for dynamic motion. Using
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this technique provided static loads of up to 450 kN at the break point of the bolt. Another
example is given in Ohlsson (1986) when a suspension bridge with a 366 m span was
tested. Here the exciter was a motor/gear driven eccentric wheel that moved a 3 ton mass

up and down as it rotated.

Other authors have approached this matter differently in that they did not use any form of
physical excitation. In White and Pardoen (1987) for instance one of the towers of the
Golden Gate Bridge was analyzed using traditional FRF analysis. The input selected for
analysis was actually the output of one of the deck mounted accelerometers. The method.

while not perfect, did produce usable results.

Another example of non-forced experimentation is given in Kopff (1987). Here an attempt
was made to test a 130m tall, 30000 ton, cooling tower. The method used here was the
Random Decrement Signature Analysis [this theory is presented in Cole (1973) and further
elaborated upon in Li-Chung (1985)] that allows the determination of direct or cross
frequency response functions. This author illustrated the use of this method and highlighted
it potential for defect detection through the accurate determination of modal parameters for

this huge structure.

As the methodology of modal analysis for crack detection in real structures is refined, there
is a growing realization that the use of this method relies on an accurate theoretical
prediction for comparison purposes. In this regard, no other analytical tool has proved as
powerful as the finite element method in predicting structural behaviour. Numerous authors

have focused their research solely on improving correlation between test and finite element
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results. In Stimpson and Griffith (1982) as well as in Blakely (1982) the result of
experimentation was used to improve an analytical model by refining boundary conditions.
Ramsey and Firmin (1982} compared results from experiment and finite element analysis
and showed that it could be accomplished using a desktop computer. In Dobson (1984) and
in Sidhu and Ewins (1984) validation studies were carried out to improved correlation by

rsing modal parameters to modify finite element matrices.

While this type of work was considered useful in the earlier days of this investigation
(during wie mid to late 19807). newer work began to look specifically at this partnership
in light of damage detection. Springer er al. (1990) conducted an extensive set of
experiments with analytical comparison using a boxbeam structure. Here the strictural
response was measured at 40 different locations to define the effects of multiple damage
levels at six locations. The work showed that the finitle element method was a valid

predictor of experimental results.

Extensive work was also carried out by Lopes and Raposo (1991) who used data from an
operating offshore structure to improve their model’s prediction of modal changes resuiting
from fatigue damage. The method used a computer algorithm based on Bayesian Parameter
Identification to obtain better numerical representation. The authors were able to obtain
some promising results in the detection of fatigue damage. but admitted that additional work

was still necessary.

Experimental and analytical prediction of damage detection using classical modal analysis

is now a very large part of modal analysis research. Literature on this subject is increasing
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at an exponential rate, primarily as a result of the International Modal Analysis Conferences
that are held on a yearly basis. Continued exploration of this literature could fill many
volumes equal in size to this thesis. In the effort of space conservation, the literaure
presented thus far will suffice as a representation of the current state of work in this field.
‘The remaining scction of this chapter is devoted to reviewing a limited selection of papers

dealing with the measurement of strain as a response parameter in modal analysis.

2.3 Modal Testing Utilizing Strain Measurements

Tn recent studies a number of researchers have attempted to use dynamic measurement of

strain in the i of modal pa . Obviously, the of frequency
and damping are not affected, but the amplitude of the measured signal, however. used in
determining the mode shapes, is a completely independent variable that behaves very

differently from displacement or acceleration.

An early exploration of the uses of strain measurement in modal analysis is described by
Zhang et al. (1986). These authors used cantilever beams with notches cut near the fixed
end. to compare results obtained through the classical method of acceleration measurement
and those obtained through strain measurement. The results of the experimentation clearly
showed that good results could be obtained using strain gauges. The discussion of changes
in the measured parameters as a result of cracking was limited to frequency drop and
changes in mode shape. The results from both sets of measurements showed significant

changes in mode shape, both from di: and strain
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A very useful application of modal analysis with both strain and acceleration measurements

for solving a repetitive defect problem is reported by Powel and Goldberger (1990). These

authors reported on a inuing problem with a ®nned-tube heat that

cracks around weld points. Here the analysis was not used to find the defect, but rather 0
determine why it was occurring and to recommend remedial measures. The results from
both sets of transducers confirmed that excitation caused by vortex shedding of fluid. in the
exchanger. excited the primary mode of the structure resulting in extremely high dynamic

stress levels. While the problem was subsequently solved as a result of the test, it also

the icability of strain in modal analysis.

A modelling approach based on experimental strain measurements is presented in Tsang
(1990). This author approached the development of an analytical procedure entirely from
the strain measurement aspect. The theory focused on deriving a set of governing system
matrices from experimental measurements. The author first derived proposed methodology
through finite element modelling followed by a computer simulation experiment and a

practical test using real data. The method proved quite reliable in a number of cases

although the author admits a more rigorous proof. bined with

research. is necessary.

Recent research in damage detection was reported in Swamidas and Chen (1992). These

authors conducted modal testing on a 9m tall, 1/50th scale model of a tripod tower platform

(TTP). The measured included i i (using LVDT's),
along with strain, at numerous sites on the structure. The primary focus of this test was to

determine the effect of simulated damage on the modal parameters of the structure and to
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compare the various modes of response measurement. Typical results were obtained in

terms of frequency changes, and iti it was that the of

strain was an appropriate measurement parameter and particularly useful when the

measurement site was close to the site of damage.

The work by these and other authors in strain based modal analysis has increased interest
in this form of response measurement. It is likely that the volume of liwerature on this
subject will increase over the next few years as larger numbers of current researchers look

into this relatively new field of testing.
2.4 Summary

This concludes the literature review portion of this thesis. This presentation, while only a
sample of the existing body of literature. is thought to contain an adequate overview of
aspects of current and past research into modal analysis and its applications in defect
detection in structures, Chapter 3. which follows, precedes the discussion of results
obtained by this author. with an overview of applicable theory concer.iing modal analysis

and selected topics from structural dynamics.
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Review of Theory

The theoretical approach to vibrational analysis is conducted in three stages. These must

be evaluated in order to characterize p the ies of a vibrati system

First. the system must be described in terms of its physical characteristics. The three
primary characteristics. important to all vibrational analysis. are: mass, stiffness. and
damping. Each of these must be defined according to the physical geometry of the system
in order to determine its vibrauonal characteristics. This level of characterization leads to

the definition of the spatial model for the system.

The second stage involves performing a numerical analysis to determine the fundamental

vibrational characteristics of the system. This leads to a description in terms of its natural

of vibration, mode shapes and damping factors. The system as
described in this manner is called a modal model. and is used to illustrate the various
normal modes. which characterize the structure during free vibration, ie., vibration without

the application of external force.

The third stage is the determination of the response characteristics of the system to an

applied force. Here the system in analyzed to ine the various

amplitudes and deformation characteristics that will occur as a result of the application
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of a time varying force. defined in terms of its magnitude and frequency. The system is
thereby described in terms of a response model. There are of coarse an infinite number of
response models due to the infinite number of variations that can be made to the forcing
function. The function chosen must illustrate the particular type of analysis that is to be
undertaken. A broad multi-frequency force might be useful to find the frequency response
functions (FRFs) over a range covering several natural modes. or a more refined function
may be used to simulate the vibrational characteristics due to the service loads that the

physical system may be exposed to.

The theoretical analysis of the current research was carried out using the finiie element
module of the integrated analysis program, I-DEAS™. produced and marketed by Structural
Dynamics Research Corporation (SDRC), of Milford. Ohio. Likewise, the experimental

data manipulation and analy

is was carried out by the test data analysis module of the same
program. The data acquisition. performed during the experimental phase of this research,

was

omplished using a loc:

¢ written program which interacted with the acquisition
hardware. A second locally written program manipulated the data into a format compatible

with the 1-D

S software. Using these tools, this research investigated a number of

phenomena relating to the use of modal ana

ysis in crack detection. In an atempt o
provide an insight into the subsequent presentation of these analytical and experimental
results. several topics concerning vibr ional theory. relevant to issues at hand. are

dise

ssed in the following sections of this chapter. These sections emphasize topics

specifically related to modal analysis both from analytical and experimental viewpoints.
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3.1 General Analysis of Spring-Mass-Damper Systems

In a typical system consisting of multiple degrees of freedom, there is one equation of
motion for each degree of freedom. of which there are an equal number of normal modes.
These equations are expressed in a matrix format that separates the various components of

mass. stiffness. and damping. Using this format the basic equation of motion is

M1} = [CH{} = K1) = {) @0
Here (M1, [C]. and [K] refer to the mass. damping and stiffness matrices respectively,
and {i}. {¥}. and {x} refer to the column vectors for acceleration. velocity. and
displacement, respectively. The term { f } is the column vector of forces acting on the
system. While this expression describes the general behaviour of a complete system, the
first step in MDOF analysis is to find the natural frequencies and mode shapes of the

system. This is it by finding the eigenvalues and eij of an

free vibration system expressed in matrix format. To do this, it is necessary to derive the
general solution to the MDOF system as given by Equation (3.1). The equation for

undamped, unforced. motion is

1M1{} + (K)fx} =0 @2
The most general solution of the equation is to assume that the displacement of any given
mass is comprised of a time varying unit function (which is common to all coordinates)

multiplied by an amplitude scale factor (which varies from location to location). This is

written as

x(M=dq, i=12,.n (3.3)
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where
b, = a constant applicable to coordinate i.
qty = a time function common to all coordinates
If the ratio of two di: i X, and x; is ined. the result shows that

the defiection shape is independent of time. In other words all coordinates have
synchronous motion and during single mode oscillation. while the amplitude of
displacement varies with time. the pattern or shape of deformation does not. This
cffectively defines the mode shape of a system as being comprised of a vector of time

invariant amplitudes. written as

fel =1 - LR

Substituting Equation (3.3) into Equation (3.2) yields

1M1l - (Klfslg =0 G

Which can be written in scalar form as n separate equations:

m,s, @:6)

40y + [E k,,é,\ g0 =0, i=12..n
=
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From which we obtain

n 3.7

Considering this result. ** is obvious that the left hand side is independent of the coordinate

i (a length parameter). while the right hand side is independent of time. Both sides.

therefore. must be equal to a constant that is taken as «*. Equation (3.7) can then be
rewriten as
Gj(ry + w*qtty = 0 (3.8)

for the left hand side. and for the right hand side as

g(ku-@‘m,)q:o. i=12.....n 3.9
or using matrix notation as
(K] - FIMD {6} = {0} G0
In order for this equation to hold true either ([K] - «*[M | ) or {¢} must be zero. The

solution that has all the ¢ values set to zero will satisfy the equation but it will yield no

usable resuhs Therefore. for non-trivial solution the following expression, must hold true,

Ii€1 - o] < 0 Gl

Which states that the determinant of the matrix resulting from the difference must cqual
zero. The solution of this expression will yield the eigenvalues (ie., the natural frequencies.

w,) of the system. The {¢} vector (ie., the mode shapes or eigenvectors) cannot be solved
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for uniquely due to the singularity of the ( [K] - «'[M]) matrix. As a result. the
eigenvectors are derived by setting one of the mode shape constants (usually {é,},) equal

to 1 and solving for the others in terms of it.

For the general case where , # w,. it can be shown that the modal vectors {¢}, and {6},

are orthogonal with respect to both mass and stiffness. ie..
lofvifel, = {0} . i=j )

(el 1K1 el, = G

of , i%j
In the case where «, = w,. substitution into Equations (3.12) and (3.13) results in the

formulation of the generalized mass and stifiness coefficients of the i® mode

i =lellimlel, . =120 G149
K=l 1Klel, . i=12. .. (.15

The modal matrix. [] is often mass normalized such that
3.16)

where [ /] is the identity matrix. In this case. the mass normalized stiffness matrix becomes
i

(3.17)

@,
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In future reference to distinguish this special ase. [¢] will refer to an un-normalized modal

matrix and [¢] will refer to a mass normalized modal matrix.

For most general cases the mass and stiffness matrix are non-diagonal and have non-zero
terms in locations other than along their diagonals. This indicates that the system’s modes
are coupled and cannot be treated independently. It is said to have inertial coupling if the
mass mairix is non-diagonal and dvnamic coupling if the stiffness matrix is non-diagonal.
Previous liscussion showed how orthogonality is used to diagonalize both the system

matrices for an unforced syste... but did not treat the more general case of forced systems.

Consider first that the mode shape vectors (eigenvectors) of a system are linearly

due to the ity condition. In other words. no eigenvector of the

system can be obtained by a linear combination of the others. Hence. they form a basis in
n-dimensional space. This means that any other vector in the n-dimensional space can be

made up of a linear ination of n linearly i vectors. Consider an arbitrary

vector {x} in n-dimensional space, expressed .5
e} =3 cfo, 318
I

where ¢, are constant scale factors. whose values can be determined by pre-multiplying this

equation by the transpose of the modal vectors;

L Lot (efTol)

A 131200 (3.19)
{6l v{s),
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i

where M, is the generalized mass of the /™ normal mode. In the case where the modal

vectors are mass normalized the previous equation can be written as

¢, = i/ imilx} (3.20)

VM,

This represents what is known as the expansion theorem. a useful device in determining

system response to arbitrary forcing conditions.

Consider then the case of an undamped system which has external forces acting on it. The

equations of motion can be written as

(e} + (KM} = {r G20

where { f} is a vector of arbitrary external forces.

Solving the eigenvalue problem will result it the ination of n natural fr

(. @y, w,) and a series of 7 modal vectors {¢}, which are subsequently compiled into

a modal matrix (of size n x n). Using the expansion theorem. the solution of the system

can be written as a linear combination of the normal mode vectors:

9,(t)

“ (3.22)
ol =loflgol  where gl = -

4.0

where g, (t)...q,(t) are time dependant generalized coordinates. called modal participation

Jfactors.
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Since we know that the modal matrix is independent of time. the second time derivative
of displacement must equal the second derivative of the time dependant participation factors

multiplied by the modal matrix. The equations of motion can then be written as

1M1ts g}« (Ksilq} = {1} en)
Pre-multiplying by the transpose of the modal matrix [6]". and assuming the modal matrix

1o be mass normalized yields the general equation of motion in the form

law}+ (1ot = {ow! 3.2

where {Q(1)} is the vector of generalized forces (Y|"{F}.

The equations of motion have now been uncoupled. resulting in a set of n independent

SDOF equations:

Gneeiqm=0m i=12...n (3.25)

3.2 The Effect of Damping on Structural Response

The analysis as presented thus far is applicable only to systems which are undamped. This
type of analysis is used quite ofien since in many cases damping values are small enough
that their inclusion can be considered negligible. I+ other cases, however, if the system
response is required for long periods of time with respect to the natural periods of the
system, the effect of damping must be included. In addition the effect of damping becomes
vitally important when considering system response to dynamic forces with a frequency

close to one of the natural frequencies of the system.
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There are in general two types of damping, the first of which is called viscous damping,
and the second, Aysteretic or structural damping. The first of these is the standard type of
damping usually considered in dynamic problems; it is defined as being linearly
proportional to velocity and is typical of the type of damping that would be provided by
a dashpot. The second type of damping, hysteretic, is somewhat different and is more
dependant upon the material properties of the structural members. It is defined as the
dissipation of energy due to cyclic stress that through a given cycle traces a hysteresis loop.
‘While both are slightly different the analysis which includes damping is derived in a similar

manner; hence, for illustration purposes. only viscous damping will be dealt with here.

The general expression for a viscously damped system with external excitation was given
in Equation (3.1). To introduce this topic we will first .. all assume that the damping
matrix [C] specifies a special type of damping known as proportional damping, a situation

where the damping matrix is linearly proportional to the mass and or stiffness matrix.
This is generally wriiten as

€1 = alM] + BIK] 626
Where the terms « and § are constants.
The equations of motion can then be rewritten as

et + [ot] + &I} + Kk = {r) @2n

If as before, we express the solution vector {x(1)} as a linear combination of the modal

vectors of the system, Equation (3.27) can be written as
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MG} + [ald] + BIKT (Mg} + KTLoNg)} = {70} G2

Pre-multiplication of this result by the mass normalized modal matrix will then yield

(11{geo} (et 11 + 1 g} + [ oo} = {Qe0) 62
which can be written as a system of independent equations as
40 o+ wiB)g 0+ wig0 = QMO i=12....n (3.30
If the following substitution is made:
o+ W'f = 280, (3.31)
Equation (3.30) can be rewritten as
G0+ 2w,40 +@ig®=QM  i=12.....n (3.32)
It is therefore seen that for this special case of damping, the uncoupling of the matrices is

possible. Here. as before. the n equations can be treated independently and solved as

damped SDOF systems.

As is often the case for real systems, the damping matrix is not proportional and cannot

be diagonalized as shown in the above derivation. The of prop
damping generally results in eigenvaliics which are either negative real, or complex with
negative real parts. In the latter case both the eigenvectors and the eigenvalues exist as

conjugate pairs. In handling cases like this a common procedure is to transform n coupled

second order di ial equations into 2n first order equations.
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3.3 Frequency Response Function Analysis

The theories presented thus far are typically concerned with finding the modal parameters
of an analytical system. In modal analysis a common objective is to verify analytical
models using results from experimentation. A common link between the theoretical solution
to a system and results obtained through experimentation is called the Transfer Function.
otherwise known as the Frequency Response Function (FRF). The fundamental description
of the FRF is the complex frequency domain ratio of response output to force input. To
help bridge the gap between theory and experimentation it is appropriate to discuss this

topic and to develop a general expression for the FRF of a MDOF system.
Consider the expression for an undamped system:

M)+ (K = {F) £.93)

The transformation of this equation into the Laplace domain yields

[+ KX = {Fs)l B34y

where s is the Laplace variable which can be shown to be equal (0 iw.
If we let [B(s)] = [s'[M] + [K]] then the equation becomes

BENX) = Fo)} 339
where [B(s)] is sometimes referred to as the system impedance matrix. If we now

pre-multiply the latter equation by [B(s)]' we obtain
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BI{F®)} = X} (3.36)
and by letting [H(s)] = [B(s)]"
[HOWFS)} = (X0} (3.37)

where [H(s)] is referred to as the Transfer Function Matrix.

To further illustrate the components of this matrix consider the expression for a two degree

of freedom system:

M, M, |5 K, K, J.\‘, E; (3.38)
5] " k) o]

In the Laplace domain this becomes
M, My K, Ky X(s) F\(s) (3.39)
My )"k & | | x0)] T Ao

thus the matrix [B] is defined as

{B]: M, 5Ky MsteK, (3.40)
Mysieky, MysieKy,

and the Transfer Matrix [H] as

Ms*+Ky,  -(Mys*+Ky)
~(M 4K, M stk 3.4

O, ) 0L, 5 Kog) =~ (57K ) M 7K )

[H(s)] =
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The numerator of this equation is the adjoint of the [B] matrix, while the denominator is
the determinant of the [B] matrix, from which the system's characteristic equation is

derived. Therefore Equation (3.41) can be written as

Adj[B(s)|
1B(s)]

[H$)] = (3.42)

This highlights the fact that the modal frequencies (usually complex, designated as \) are
global properties of the system since s, appears in every term of [H(s)]. This characteristic
equation can alternately be expressed as a product of its roots:

1BO)] = E(s = ) (s = N (5= N (5= \) (3.43)

where |B(s)| is the determinant of the [B] matrix expressed by constant £ and the four

roots \, through \,.

In general the roots form complex conjugate pairs such that \, = \,". and Ay = \;". The

equations of motion can then be written as

MustRy  -(Mys™Ky)
{Xl(x)}= -(M,s2 Ky MK
X4 E-N) G-N) (S-A -7

F(» 3240)
Fy(s)

Hence the transfer matrix for this 2 ['OF system can be expressed as

H,\(s) H(s) (3.45)
(4] = [11”(:) Hoys)

If this expression for the transfer function is ther substituted back into the equation of

motion the result is two equations, one for X, and the other for X,.
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Written as:
H(OF(8) + H($)FAs) = X,(5) (3.460)
Ho($)F(s) + H(OF(s) = X5 (3.46b)

If Fi(s) is set to zero we can write

H ($)F(5) = X(5) (3.470)
Hy(9F () = X,(5) (3.47b)
or

H,(s) = X6 (3.482)

F(s)

X.(s)
Hy ()= 2 (3.48b)

S 6]

which can be expressed in general format as

X(s)
H(s)= = (3.49)
,(5) o)

where 7 is the coordinate at which the response is determined and j is the coordinate at

which the force is applied.

This generalized expression shows that to measure a column of the transfer matrix the
location of the force input does not need to vary, only the location at which response is
measured needs to vary. Alternately, to measure a row of the matrix, the response location

is fixed while the force input location is varied.
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To derive the general expression for the transter function between two points consider an
element of the transfer matrix. Recalling that in general. the roots of the characteristic

equation appear as complex conjugates, the expression for A, can be written as

‘LH

CEGAIN )G AT)

This expression can be expanded by partial fractions and writien as

Values of the constants ¢, can be evaluated by equating the previous (wo equations.

multiplying by (s - \) and evaluating the result at s = A,. For ¢, this manipulation yields

- M\ K.

5
I

i
S
i
b

and similarly for ¢,

MRy e (3.53)
EON =N =M =N)

The term A is used here to denote what is called the modal residue. or as some call it the
modal constant, associated with the pole N,. The preceding result can also be applied to ¢;

and c,, yielding A,/ and 4,,"".
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Equation (3.51) can then be expressed as

A Ay

X Ay
"TE® oh) GoA) A AD

H,

Expanding this derivation to an n degree of freedom system it can be shown that the most

general expression for the transter function is written as

"=y A (3.55)
oSN
where the s and A, can be equated as
5§ =lw (3.56)
and
(3.57)

ey

3.4 Experimental Curve-Fitting Procedures

The discussion thus far has dealt with modal analysis theory, purely from an analytical
approach. While understanding this theory is important it must be realized that many of the
variables used in the formulations are only obtainable from experimental results, through

The ination of these is, therefore, of vital

importance if the dynamic behaviour of a structure is to be correctly modelled.
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The ultimate objective of any modal test is to derive the modal parameters of the system
being tested. It is in this phase of the analysis that the objective is achieved. The term
Curve Finting is, as implied a process by which a theoretical function is derived that fits
the measured data. With this derivation the modal parameters are obtained by subsequent
evaluation of the fitted curve. the FRE thus derived. is used to obtain the fundamental
modal parameters in a three stage process. First. the natural frequencies of the system are
determined by locating the frequency values at which peaks in the FRF occur. Secondly.
damping parameters are determined from the shape of the resonant peaks. Thirdly, mode
shapes are determined from the ampiitude of the peaks occurring in the various FRFs,
derived from numerous locations on the structure. As with the other phases of modal
testing, there are a number of methods available to perform this task. In a general sense.
the variou nethods use three fundamental procedures to derive the fitted curve. In order
of increasing complexity these three fundamenal procedures can be described as: i) curve
fitting a part of a single FRF (SDOF techniques): ii) curve fitting a complete FRF (MDOF
techniques): and iii) curve fitting a number of FRF curves derived from the same structure
(Multi-Curve Technique). The method chosen for a given test is dependant on the specific

objectives of the experiment and the final application to which the results will be applied.

3.4.1 SDOF Curve Fitting Techniques

The discussion of curve fitting techniques should logically commence with the simplest
methods, the SDOF methods. These methods fall into the first category of curve fitting

methods. That is. they attempt to fit a curve through only a part of the derived FRE. The
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term SDOF is applicable to these methods since they share the common assumption that
in the vicinity of a resonant peak the system response is dominated by the contribution of
a single mode whose natural frequency is the frequency at the peak. The variations between
the SDOF methods. occur in the extent to which they make this underlying assumption.

While some methods assume all of the response is due to that one mode, others assume that

other modes are present and are for by simple

Two common SDOF methods that will be discussed in this section are:

. The Peak Amplitude Method

. The Circle Fit Method

3.4.1.1 The Peak Amplitude Method

Probably the simplest parameter extraction technique is the peak amplitude method. This
method is not actually a curve fit technique since it only relies on a small number of points
surrounding each resonant peak. It is most applicable to FRFs which have well separated
peaks indicating that the modes of the structure are only lightly coupled. In addition the
method does not work well with structures thet are very lightly or very heavily damped.
This effectively limits the usefulness of the method but due to its easc of use and simplicity

it is still appropriate for initial estimates before proceeding with the more detailed methods.

The procedural steps of this method, in association with Figure 3.1, are given as follows:
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. Locate the individual peaks on the FRF plot and note the frequency at which
the maximum amplitude is found (w,). These values are then indicative of
the systems natural frequencies.

. Concentrating on one peak at a time, note the maximum amplitude | o |
and determine the frequency bandwidth at that peak by locating on both

sides of the peak points which have an amplitude value of 2 times that of

the peak i The idth is desi| as Aw and is bounded by

w, on the lower side and w, on the upper side (ie.. Aw = w, - w).

. The damping for the particular mode in question is determined from
2 D AD 3.58)
o, 70,
. An cstimate for the residue of the particular mode is obtained from
A, =2alwit (3.59)
' i
y! ¥
: &
'
| !
| oz
Lo ;
\ i 5 .
/ .
g CRECCN %
Frequency Frequency

FIGURE 3.1 - THE PEAK AMPLITUDE METHOD
This method is generally easy to apply and gives quick results, but it must be noted that

there are several limitations to the method which makes it less than ideal for accurate

46



Chapter 3 - Resiew of Theory

measurements. First, the accuracy of results obtained is highly dependant upon the
accuracy of the measured peak amplitude. Since it is very difficult o obtain accurate
amplitude values the accuracy of the method must also be questioned. The second problem
arises as a result of the single mode assumption which is not strictly applicable. Even with
well separated modes, contributions from other modes is significant and cannot generally
be neglected. It was to overcome this problem that the circle fit method was developed.

This method is discussed as follows, in Section 3.4.1.2.

In general the Peak Amplitude Method is not reliable and should only be used for

preliminary checks or very i ion of the modal

3.4.1.2 The Circle Fit Method

The Circle Fit Method is a popular curve fit method that generally results in a better
approximation of the modal parameters than the methods previously discussed. The method
utilizes a plot format commonly referred to as the Nyquist or Argand plot. Essentially this
format is arrived at by plotting FRF data on a coordinate grid that has real components as
the ordinate axis and imaginary components as the abscissa axis. In order to fully illustrate
this technique it is necessary to backtrack and review an alternate solution of the basic
SDOF equation of motion given as Equation 3.1. If we consider a solution for x of the
form Xe and a forcing function of the form Fe', the basic equation of motion can be

written as
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(= + iwe +k) Xe®! = Fetst (3.60)

If the ratio of X to F is taken as a form or frequency response function, then this ratio.

designated as H(w), the can be written as

H(w) = N S— (3.61)

{k - w*m) + ilwc)
Using this formulation, and the relationship between velocity and displacement (ie., v =

X = iwXe“") the following velocity form of the FRF (designated as Y(w)) can be written as

¥io) = iwbluy = — 0. wrerivlk - o) 3.62)
(k - w'm) + dlac) (k- wm) + (we)

The real and imaginary parts can now easily be separated as

Re¥Y(w)s — = - (3.63)

k- wtm) + lwe)
I ¥y = el (3.64)

(k= w'm)” +(wel”

Letting U = (Re Y- L) and V = (Im ), yields
ey o o] (1) (.65
i g 2 2c
4c~[(k-w-m) + (el

which describes the a circie with radius . . centred at Re = &, Im = 0.

An advantage of this method is that it can be extended to the multi-degree of freedom case

to account for the effect of adjacent modes. Consider a general solution for the FRF
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designated as H, (which indicates that the FRF is derived for location i with respect to j.

or vice verse due to reciprocity) given as follows:

«

& A
Hq * —*ﬁy.;“
e fo - o157
where A = the modal constant (or residue) for mode k linking

locations i and j
= loo)

Iy = the viscous damping factor

(3.66)

If for a particular peak at mode r we assume that the majority of the response is due the

effects of this mode the contribution of modes other than the r” mode can be accounted

for by writing Equation (3.66) as

Al ) a
(P SN Y | ) S SE—
. i F e % .
i+ G, -,y 1-¢3 i+ G, - fwyl-

which is equivalent to

A

v+ G, - iw,

(3.68)

where the first part of the equation is representative of the contribution of the ™ mode

while the second term is representative of the contribution from all other modes. Thus,

when plotted the circle can be considered to have all of the basic properties of the SDOF
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circle for the particular mode but displaced from the origin by an amount determined from
the contribution of the other modes.
Properties of the Circle

Considering the circle shown in Figure 3.2 the various modal properties can be determined

as follows:

Natural Frequency:

The natural frequency is found by locating the point of maximum sweep rate on the

circle. This is fc by i ing radial lines between

points and ining the angle. The frequ at which a
maximum is reached is indicative of the natural frequency. During the computations
an estimate of damping can be obtained from the measured angles. Alternate
methods of determining natural frequency include: i) the point of maximum
amplitude (ie., the circle location furthest from the origin). ii) the point at which
the circle meets the imaginary axis (furthest from the origin), iii) the point on the
circle furthest from the real axis. While results vary from method to method all are

generally close to the true value of natural frequency.

Damping:
Using any two points on the circle 6, and 6, the value of the viscous damping factor

can be determined from the following;
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(3.69)

Imaginary

— Real

FIGURE 3.2 - PROPERTIES OF THE MODAL CIRCLE

Note that if both 6, and 0, are taken as 90° (ie.. the half-power points) the above reduces

to the expression

r= a (3.70)

Iviodal Constant (or residue): Derived from the circle diameter using
Ay =2Ddlt, G
where D is the circle diameter.
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3.4.2 MDOF Curve Fitting Techniques

As implied from the discussion of the SDOF methods all have the restriction of being
applicable to well separated modes that are not strongly coupled. In real situations.
however, modal coupling occurs quite frequently and neglecting its effect or simply
approximating it will result in poor quality curve fits and subsequent parameter estimation,
It was for this reason that MDOF methods were developed. These methods. while each
having particular strengths, generally result in better curve fits and more accurate
estimation of modal parameters than the simpler SDOF methods. The following list
contains the names of methods. available in I-DEAS, which fall into the category of MDOF
curve fitting:

. The Complex Exponential Method

. The Direct Parameter Method

. The Polyreference Methed

. The Orthogonal Polyreference Method

In the interest of space conservation only the method which was actually used in the
subsequent experimental analysis is reviewed in the following section. The first of the
preceding list, the Complex Exponential Technique, is therefore chosen for illustration of

the MDOF methodology*.

The names given for these methods, while shared by many authors may be found under different names
in various references.
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3.4.2.1 The Complex Exponential Technique

This technique varies from most others in that it is performed in the time domain rather
than in the frequency domain. It was chosen for this research due to its desirable
combination of flexibility and efficiency in deriving modal parameters. There are variations

of this method which differ in i iency; the di: ion which follows.

however, outlines the fundamental principles comuion to all.

As a result of the use of time domain data. the method is only applicable to systems which

are viscously damped (as opposed to hysteretically damped). Therefore, to begin discussion

consider once again, the general ion for the FRF i of a viscously

damped MDOF system, previously given in Equation (3.55).
If the complex conjugate term is considered independent the FRF (dropping the subscripts)
can be rewritten as

v
H(w) = 4 3.72)

7 S-N,

Note that 4,., = 4, and A,., = A", where r = 1,3,5,7...

The time domain representation of this function (called the Impulse Response Function) is

found by taking the inverse Fourier transform of H(w), and is written as

w
W=y 4,e (3.73)
=
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If the original FRF was derived from digitized then it is

defined in terms of 2N evenly spaced frequency increments. Likewise x(r) is defined by the
same number of points spaced at time intervals of At (= 1/Af). The function value of x(t)

at the k™ subinterval can then be written as

2 2
Xy =Y A=Y AU (3.74)
= =

where & is valid anywhere in the range 0 to 2V (the number of degrees of freedom, and

hence modes. in the system model) and Ar is as described above.

It then follows logically that;

X)) =

()

1

Xty
(3.75)

AUT + AUS + AU+

()

for the full set of 21 samples.

If N=n then there are 2n +1 rows in the previous expression. There must then, exist a

polynomial of order 2# that satisfies the expression

U+ aqUn +a,U @y, U +a, =0 (3.76)
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the roots of which can be designated as U,, U., U, etc. If the rows of Equation (3.75) are then

by the i in ing order from 27 to O (ie.. a, X row 1. a,,, X row

2, ... @, X row 2n), the result is:

a., x(1,) = A (A, + A+ A, + L + Ay)
PRR) = Gy, (AU, + AU+ AU + ...+ AU
Az 2 X(1) = CarWUF + AT+ AUF + L+ AU
(377
ayx(ty,) = @ AU" AU+ AU+ + AU
Adding the equations yields
2n bl " " 2n
T ts0)-F [z AU =Y 4, [):ah.ku: ean
= = - = =

Recalling that Uy, Us, ... Us, are roots (which will yield the natural frequencies of the system)

of the polynomial given previously as Equation (3.76), it follows that

P

Y a,,Ut=0 (3.79)
and subsequently

(3.80)

™My

,,%(0) =0

where the value of a, is set equal to 1;
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If the series is now incremented by a value of Az and the procedure repeated, then a second
set of 2n equations can be generated starting with the second equation of the previous set. The
number of repetitions that must be performed is 2n-1 resulting in a complete series of

equations that can be written as

Xtz + AX() + Ax, )+ + A,xt,) =0
Xy )+ AN + X)L Ayalr) = 0
Xy, )+ AN, )+ AX() + + Ayt =0
(3.81)
Klgy) + AXs) + Aty )+ o Xty ) =0
or in matrix form as
D Xy ) e X(0) A )
SYCAN R ({ I [ x(t,) A, X, )
o ' : o (3.82)
Xy, ) Xy ) s x(ty,.,) As, Xy, )

which is given the representation [x]{a} = -[x']. The unknown coefficient matrix can the be

soived for simply as [a] = -[x]'[x"].

At this point the coefficients are known and the system parameters can be determined from

Equation (3.76) by solving for U}, U, ... U,, and using the relationship
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v, - et il oy 1 (3.83)
Finally the modal constants (or residues) are determined from
( 1 L 1 RUA]
v U U, )
v <4 (3.8
...... ' Ay At )

To employ this method one might follow the steps outlined below:

Make an init{al estimate of the number of degrees ot {reedom and carry out an

initial analysis using the above procedure.

When complete the modal properties are used in Equation (3.55) o compute
the first fitted approximation to the measured FRE. The generated curve is
compared with the measurement derived curve to determine the deviation or

error between the two.

Choose an improved estimate for the number of degrees of freedom and repeat
the whole procedure. The error between the two curves will reduce as the
approximation gets better. If the estimate is higher than the true number then
there will result fictitious modes in the generated FRE. These are generally
easy to identify as those which have unusually high damping factors or very

low modal constants.
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3.5 Summary

“This concludes the review of the relevant portion of the theory associated with analytical and
experimental modal analysis. There are. obviously, manv topics associated with modal
amalysis and structural dynamics which could not be presented here in greater detail. The
interested reader might look to any of a number of references available for additional

information on this subject: seveial are listed in the final section of this document.

Chapter 4. which follows. discusses the resuits of the finite ¢lement analysis. prepared as part
of this research, This analysis models several cantilever plates to determine the effect of

notched cracks on the various modal properties of the plates.



Chapter 4

Analytical Results

The concept of using modal analysis as a tool in monitoring structural integrity. is at best
in its early stages of development. due primarily to the relatively small amount of research
that has been performed in this area. Because of this, it was decided that the main focus
of this course of study would be to show through experimentation the effect of crack type
defects on the modal properties of a typical structure. Before commencing with
experimentation, however, it was necessary to develop a method of prediction to be used

as a comparison for results obtained from the i and to provide verification of

the adequacy and applicability of the experimental set-up. This was accomplished by
developing a finite eclement model of each of the plates and performing an
eigenvector/eigenvalue solution to obtain an analytical estimate of their natural frequencies
and mode shapes. These results were additionally used to illustrate a crack locating
technique that compared the mode shapes of cracked plates to those of the reference plate.
As with we test result evaluation, the software used for this analysis was the integrated

design package I-DEAS, produced and marketed by SDRC.

4.1 Description of Model

The finite element evaluation and experimentation discussed in this thesis are based on a
cantilever plate, used as a typical structure. The prototype of the plate is illustrated
schematically in Figure 4.1.
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v 64 mm
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FIGURE 4.1 - SCHEMATIC DI\GRAM OF ANALYZED CANTILEVER PLATE

The physical characteristics of the prototype are given as follows:

Material Properties:

Material: Mild Steel
Mass Density: 7850 ke/m'
Elastic Modulus: 200.0 x 10" Pa
Shear Modulus: 77.0 x 10" Pa
Dimensions:

Width: 50.0 mm
Depth: 6.35 mm
Overall Length: 564 mm
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Calculated Values (uncracked):

Total Volume: 1.7907 x 10* m*
Total Mass: 1.4057 kg

Mass per unit length: 2.4924 kg/m
Moment of Inertia y-y: 1.0669 x 10* m*
Moment of Inertia z-z: 6.6146 x 10* m*

In order to simulate naturally occurring fatigue cracks. a rectangular notch 4 mm wide was
cut into each of the 4 prototypes. used for experimentation. The crack location and crack
cross-sections are illustrated in Figure 4.2, The analytical models used to describe these

prototypes are discussed in the following section.

141 mm
| T
|
i
079 mm ~ 2.381 mm
. T ‘ ,
1/8 Depth Crack 3/8 Depth Crack
- 1588 mm [ 3175 mm
B3 T b4 |
1/4 Depth Crack 1/2 Depth Crack

FIGURE 4.2 - CRACK LOCATION AND CRACK DEPTH CASES CONSIDERED
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4.2 Development of the Finite Element Model

The procedures followed in the development of a model to be solved by a particular finite
clement software package, is somewhat dependant on the particular package being used.
The differences between programs. however. are generally limited to specific input syntax
as required by the software. The fundamentals of model development are the same
regardless of the software being used. and can be summarized by the following list.

. Considering the geometry of the prototype, and the objectives of the

finite element evaluation. choose basic parameters such as coordinate

system. element type, and discretization procedures.

yout the geometry of the system to be evaluated and determine the
coordinates of the nodes to be used in the model. Ensure that at
minimum, nodes are placed wherever geometric. physical. or material
inconsistencies occur.

. Define all elements in the model according to standard finite element
procedure for the specific element type being used. For example ensure
that two dimensional elements such as plates have width to height ratios
which fall into the range of 0.5 to 2.

. Define all physical element properties required for the type of solution
to be performed. The properties required are dependant upon the
element type used, plate elements require a thickness specification,
while beam elements require moments of inertia, area, etc,

. Define all material properties for each material used in the structure.

The parameters required include density, modulus of elasticity, shear
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modulus, etc. These parameters are not dependant upon element type
and must be specified for all element cases.

. Define boundary conditions for the model which are representative of
actual physical restraints. Make use of the ability to restrain redundant

degrees of freedom to reduce model size and improve solution times.

. Input data in the format specified by the particular software package
being used.
. Run the model solution and interpret the results.

The solution of the eigenvector/eienvalue problem of concern here, was attempted by

consi ‘ering a model made up of plate like (thin shell) elements. This model was deemed
appropriate due to the flat/slender geometry of the cantilever plate considered here (see

Figure 4.1).

The basic finite element model is shown in Figurc 4.3. It is made up of a series of nodes
which define the boundaries of its elements. 1'r this analysis. a parabolic thin (shallow)
shell element was chosen due to its favourable combination of simplicity and effectiveness.
The node arrangement associated with these types of elements are shown in Figure 4.4,
Using this element, the effects of crack depth could be simulated by setting the thickness
of the smaller rectangular elements (shown in Figure 4.3) to values equal to the remaining
material thickness under the notched crack. All others are set equal to the original thickness

of the plate. Table 4.1 lists information pertinent to the model used in this analysis.
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FIGURE 4.3 - FINITE ELEMENT MESH OF CANTILEVER PLATE

TABLE 4. 1: FINITE ELEMENT MODEL INFORMATION

No. of Nodes 689
No. of Ele 216
Plate Thickness 6.3500 mm
(uncracked)
Thickness of 0 6.3500
Crack Elements
8 5.5563
(defined as fraction of 7
original plate tLickness) L 42628
38 39688
1 31750
No. of Materials 1
(per case)
No. of Properties 2
(per case)
. 3
) H s H
. .
re P o
. . . o .
' \ # )
Parabolic Quadkilateral Parabolic Triangular
Thin Shell Element Thin Shell Element

FIGURE 4.4 - THIN SHELL ELEMENTS
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4.3 Results of Finite Element Analysis

The solution of the finite element model yielded the first 20 mode shapes and natural
frequencies of each of the plates considered. Those of primary imporiance, were the
hending modes about the weaker axis (y-y), whose frequencies were less than 1000 Hz.
This limitation was set as a practical upper limit for the experimental analysis (discussed

in Chapter 5) and was. therefore. used for the analytical results as well.

Considering first, the uncracked (reference) plate, the modes that occurred below 1000 Hz
are listed in Table 4.2, For completeness, all the modes are listed along with an indication
of the mode type. Shown as well, for comparison, are frequency values derived from the

Euler beam equation (see Thomson (1981) Chapter 7).

TABLE 4.2 - FIRST 9 FREQUENCIES OF UNCRACKED CANTILEVER TEST PLATE

Mode & Type? Finite Element Euler Beam Equation |  Percent Discrepancy
Frequency Frequency (w.ct. FE. Values)
(Hz) (H2)
1B 16.04 16.28 1.50
2B 100.36 102.00 1.64
IH 127.48 128.15 0.53
3B 280.78 285.64 1.73
LT 323.10 na. na.
4B 549.62 559.75 1.84
2H 769.98 803.17 4.31
5B 906.86 925.21 2.02
2T 973,99 na. n.a.

3 Mode types are uesignated as; B =Bending about y-y (vertical plane), H =Bending about z-2 (horizontal planc),
and T=Torsion about x-x.
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Similar data for the cracked plates is shown in Table 4.3, along with an indication of the

degree to which the frequency dropped.

TABLE 4.3 - FIRST 9 FREQUENCIES OF CRACKED CANTILEVER TEST PLATES

Mode & Type | 1/8 Depth Crack | 1/4 Depth Crack | 3/8 Depth Crack | 1/2 Depth Crack
Frequency % Frequency % Frequency % Frequency %

(Hz) | Change! (Ha) Charge M2 | Change | win) Change
) 1599 -031] 1591 081 1575 -L8I| 1543
28 100.38] 0.02| 10039| 003 10039] 003| 100.34
LH 12738 -008| 12723 020 12703 -035| 126.74
3B 28041 | 03| 279.62| 101 277.94| -101| 274.18
1T 32235 -0.23| 321.52| -0.76| 32065| -0.76| 319.76
4B 548.66| -0.7| 54677 -1.20| 543.01( -1.20| 535.26
2H 770.15|  0.02| 77030 005 77040| 0.05| 77045
5B 906.55| -0.03| 905.96| 0.22| 904.82| -0.22 902.53
27 974.07| 001| 974.07| 001 | 97402| 000 973.94

As shown, within the range of 0 to 1000 Hz, there exists for this structure 5 primary
hending modes, two transverse bending modes, and two torsion modes. In addition to the
natural frequencies. the analysis produced rnde shapes for each of these modes. A multi-
view graphical representation of the nine modes listed in the preceding tables, is given in
Appendix A. For discussion here, Figure 4.5 <hows a normalized representation of the first

five vertical displacement bending modes of the plate.

The term mode shape is used almost exclusively when referring to the deformation pattern
of a structure as it vibrates at it resonant frequencies. In other words, it is the time
invariant displacement pattern of the vibrating structure. There are, however, other
definitions which differ from the classical definition in that they consider response

parameters other than displacement.

4 % Change is always with respect (o the uncracked plate.
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FIGURE 4.5 - FIRS: FIVE DISPLACEMENT MODE SHAPES OF CANTILEVER PLATE
BENDING ABOUT THE PRIMARY AXIS)

These include slope and curvature mode shapes and while not a true representation of the
deformed structure, they are represented in a similar manner and help to describe more
completely, the actions of the structure being analyzed. These too, can be derived from the
results of a finite element analysis, as illustrated in Figure 4.6, which shows the first five

slope mode shapes derived from rotation data.

Results of the eigensalue analysis, presented in Tables 4.2 and 4.3, clearly show that the
depth of the crack strongly influences several of the natural frequencies of the plate. The
differing degree to which various modes were affected can be attributed to the curvature

of the corresponding mode shape at the crack location.
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FIGURE 4.6 - FIRST FIVE ROTATION (SLOPE) MODE SHAPES OF CANTILEVER PLATE

It appears. then. that observing natural frequency is a useful procedure for the
determination of crack existence. Further discussion of these phenomena is reserved for

Chapter 5, where the results are compared with those obtained through experimentation.

The knowledge of crack existence, while fundamentally important is nct extremely useful
without having some idea of where the crack is located. One very useful ability of finite
element analysis is the ability to discretize a structure into many small elements, thereby
enabling close observation of very small segments. Changes in calculated quantities such
as modal displacement which may on a global scale be invisible, can be extracted to yield

very clear indications of the location of a crack or structural fault.
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Such was the case in this analysis. where it was found that by observing the response of
a strip of 90 nodes along one edge of the plate, it was possible to derive differences in
mode shape patterns for the cracked versus the uncracked plates. While the observations
should parallel the true structural response. the arrangement of measurement points on the
experii-ental plates was not conducive to this type of detailed analysis and thus it can only

be shown from results of the analytical solutions.

The basic premise of the method. is that for the cracked model, there will occur at the
crack location an inconsistency in mode shape that does not occur in the uncracked model.
As the depth of the crack increases. the inconsistency becomes more pronounced. even for
modes that exhibited little, if any, frequency shift. To illustrate, both the displacement
mode shapes (of Figure 4.5) and the rotation (slope)* mode shapes (of Figure 4.6) for the
cracked models. were compared with their coresponding uncracked model. Figures 4.7
through 4.16 illustrate the difference (i€.. @uuies - Dretemsee) iN NOrMalized units® for the

first five primary bending mode shapes, for both displacement. znd rotation.

3 Node rotation is an output parameter of the finite element analysis. Since slope is derived from rotation simply
by taking its tangent and since for small angles, fan(a) =, little error is inteoduced by considering the two
10 be equivalent.

® Mode shapes are normalized by scaling the output parameter to allow the maximum value to be equal 10 1.
This allows comparison of differemtial between modes on an equal basis. In all cases shown here, the value
of displacement/rotation at the free-end of the plate is the local maximum and ence is given a value of unity.
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These plots show that this technique. of closely observing changes in the slope and
displacement mode shapes. is a clear indicator of crack location. It is seen that for the
lower modes the discontinuity of the plot of mode shape difference. at the location of the
crack. is distinct and of a much larger magnitude than at any other location on the plate.
The higher modes tend to lose the magnitude aspect since crack induced differences at
other plate locations. tend to approach and surpass the magnitude of those at the crack. The
qualitative aspect of the plot. however, remains distinctive due to the sharpness of the peak
at the crack focation. Other local maxima along the plate length, are much more gently

curved and are easily distinguished from the crack maxima.

This method is a clear indicator of crack location for the structure evaluated here. namely.
a cantilever plate. Its applicability to real structures, however. with their inherent
complexity. is not necessarily assured. and remains to he determined. Additionally. the
usefulness of this method. from an experimental aspect. is questionable due to the high

degree of refinement that is required.

While the results of the method are notable, significant research remains to be conducted,
in order to determine how to most appropriately apply the method to the development of

the ultimate objective. that of a non-destructive evaluation scheme, using modal analysis.
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4.4 Summary

There is a strong link between analytical and physical models in modal analysis and in
general they must be used in conjunction with each other to form a valid system of
prediction, modelling and testing. The analytical evaluation performed here, illustrated a
number of useful phenomena, that might not have been observed from experimentation

alone. It

50 provided a basis for comparison and verification of experimental results.

The analysis/prediction procedure is often iterative and requires consistent attention to

results obtained both through analysis and experis

tation. [n an auempt to illustrate this
link. this research considered both forms of analysis. the analytical. presented here. and

the experimental. presented as follows. in Chapter 5.



Chapter 5

Experimental Results

A major part of the research conducted during this course of study invoived

experimentation to determine what effect. if any. the presence of a crack has on the modal

properties of a typical vibrating structure. The structure of concern here. is of course, the

cantilever plate that has been described in the previous section.

The experiments conducted for this study are grouped into two categories as determined
by the type of output transducer used (ie.. the type of response parameter measured). The
first of these groups used accelerometers as the output transducers and is discussed in
Section 5.1. The second used strain gauges as transducers and is discussed in Section 5.2.
While cach set of results was analyzed independently to determinc how each could be put
10 effective use. a second underlying objective was to compare the relative merits of each

type of for response

In reality a structure that is subject to a cyclic loading regime of sufficient magnitude will
develop fatigue cracks at points of extreme stress. In this initial experimentation schieme,
it was deemed too complicated to develop fatigue cracks in the test specimens. so in its
place. a number of specimens were manufactured with simulated cracks. To simulate these
naturally occurring fatigue cracks, a rectangular notch was cut across the entire width of

each plate with a milling machine. Five specimens were used for the accelerometer testing,
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one without any notch, and four with notches of varying depth cut at the 1/4 span location
of each, ie.. 141 mm from the fixed end. The notch depths that were used varied from a
minimum of 1/8 the plate thickness (0.794 mm) to a maximum of 1/2 the plate thickness
(3.175 mm), in increments equal to 1/8 the plate thickness. An 2dditional two specimens
were used in the strain gauge testing, both with 1/2 depth cracks, one cut at the 1/2 spa~
point (282 mm from the fixed end), and the other at the 2/3 span point (376 mm from the

fixed end).

It was decided that to adequately determine the global response of the plate, response

using would be at 18 nodes on the plate. These
response nodes are shown diagrammatically in Figure 5.1. Due to equipment limitations,
however, it was not possible to measure all 18 nodes simultaneously. As a compromise the
test was conducted by measuring 3 response nodes at a time. This meant that for a given
plate it was necessary to move the accelerometers to 6 different locations. The mode of
measurement was to move the accelerometers along the length cf the plate, keeping them
in line. The first test, therefore. measured the response at nodes 1, 2, and 3, the second
at nodes 4, 5 and 6, and so on along the plate to test 6 which measured the response at
nodes 16, 17, and 18. To ensure that the mass of the accelerometeis (in the order of 10
grams each) would not affect the modal parameters as they were moved along the plate.
small weights of similar mass to that of the accelerometers, were placed at all measurement
points except the three occupied by the accelerometers. This ensured that there was no

relative change in added masses for different locations from one test to the next.
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FIGURE 5.1 - LOCATION OF RESPONSE NODES ON TEST PLATES

It was found that it was imp given the ion of the data isi system
(DAC). to adequately measure response over a large frequency band. This was due to the
fact that as with all similar systems, the data acquisition input voltage ws limited to a
relatively small value. To ensure that this value was not exceeded, it was necessary to
adjust the input level so that the peak output from the accelerometer amplifiers was less
than that permitted by the DAC. This in turn meant that the response level at the most
dominant resonant frequency was the governing factor in determining the input level and
gain factors. As a result the very low output signal at off-peak frequencies often fell beiow
the level noise in the system and was undistinguishable from it. As a result, the
transformed frequency domain functions were then very noisy at anti-resonance locations.
To overcome this problem, the test was divided into seven frequency bands. This permitted
the input level to be adjusted higher for low output regions thus giving a strong clean signal
well above the level of noise. Each band was analyzed individually, and the global response
function over the entire frequency range was created by assembling pieces from each of

the individual tests. Table 5.1 lists these seven frequency bands, and the type of excitation

input used for each.
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TABLE 5.1 - TEST FREQUENCY RANGES

Band Freauency Type of

Number B (Hz) Excitation
1 1-100 Log Sweep
2 35 - 350 Log Sweep
3 280 - 420 Lincar Sweep
4 380 - 520 Linear Sweep
5 480 - 770 Linear Sweep
6 730 - 890 Linear Sweep
7 /70 - 1020 Linear Sweep

The individual tests recorded five seconds of response and excitation data at a sampling
frequency of 4000 Hz. As a result each channel of input collected 20000 time history data
points. Performing the tests over the seven frequency bands, for each of 24 channels per
plate (18 response & 6 input) for the 5 plates. produced 16.8 million data points. for
subsequent analysis. Appendix B contains plots of several typical time histories recorded

during the course of this experiment.

All data acquisition was performed using a Keithley 570 data acquisition system mated to
a 386 (25 MHz) persoral computer. running a control program developed at Memorial
University. After acquisition the raw ascii data was converted to universal files” using an
author written program and transferred to a VAX 8530 computer for processing using the
test data analysis module of the software package I-DEAS, Each of the time history data
sets were analyzed individually to generate frequency response functions (FRF's), valid
over the frequency range of the excitation force used during the test. These small band

FRF's were then assembled to create a single FRF for each node. valid over a frequency

Universal files are special format ascii files used by I-DEAS for inputting data generated outside
the program.
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range from O to 1000 Hz. These calculations used the Fast Fourier Transform algorithms
and as such the resulting frequency domain functions are restricted in terms of data

resolution (Acw) and maximum frequency (w..,), to values determined from the expressions

o, 2
Agn 2 552 .
G i

(5.2)

where
w, = the sampling frequency

N = the number of data points
‘The FRF's for this experiment, were generated using 12000 point averaging ensembles,
recorded using a 4000 Hz sampling rate. As a result the frequency resolution of the FRF
data from Equation 5.1 is 0.333 Hz, and the valid maximum frequency from Equation 5.2

is 2000 Hz (twice the desired range of consideration).

The entire set of FRF's (90 in all) generated from the test data is included at the end of this

document in Appendix C.

5.1 Discussion of Accelerometer Results

The task of FRF generation from time history data, while computationally intensive, is
considered only to be primary processing. The procedure does not yield results which are
in any way indicative of the modal parameters of the system. These are determined via a
second phase of processing, one which uses as input the results of the primary processing,

ie., the frequency response functions. This secondary processing is the modal analysis
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phase. where the objective is to evaluate the modal parameters of the system from the

frequency domain data previously derived. The modal parameters include: natural

of the system (ei ), their i mode shapes A

structural damping associated with these modes, and amplitudes of vibration in terms of

the output parameter measured (ie. ion, velocity or di ). It is these

values which are of primary interest to this experimentation,

5.1.1 Frequancy Shifts Resulting from Cracks in The Plates

The successful development of a monitoring system which uses dynamic response as an
indicator of loss of structural integrity, will rely heavily on its ability to monitor the natural
frequencies of the structural system. This investigation attempted to reveal how the imposed
structural defects affected the natural modes of a vibrating cantilever plate. From the
analysis discussed in Chapter 4, and from the closed form solution of a cantilever beam.
the theoretical modes of the plate being considered were well known prior to
commencement of testing. It was decided that considering the frequency range from 0 to
1000 Hz. would be sufficient to illustrate the potentizi changes in modal parameters. In this
frequency range there are 5 primary bending modes (which are of primary interest here),
two torsional modes, and two transverse bending modes. Due to the orientation of the
response transducers, only the primary bending and torsion modes could be measured from
experimentation. The transverse bending modes were not expected to show much change

due to the orientation of the crack and were. therefore, not considered in the analysis.
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The initial phase of this investigation simply focused on determining the natural frequencics
of each of the five plates. This is of course one of the output parameters associated with
curve fitting (to be discussed later in this section) but can most accurately be determined
from a glohal perspective through the generation of Mode Indicator Functions (MIF's).
There are two primary types of MIFs. both of which are intended to visually locate
freor :ncies associated with the natural modes of the system. They do not, however, give
any indication as to the other parameters of the system (ie., damping and amplitude). The
first type of MIF is called the Normal Mode Indicator Function. This function has a
maximum value of unity and a number of local valleys where structural modes exist, The
function is the ratio of the sum of the products of the real part of a se~*ss of irequency
response functions and their magnitudes to the sum of the squares of the magnitudes of

these functions. This is written in equation form as

X (1% || H1)
THP)

The second type of MIF is called the Power Spectra Mode Indicator Function, and is

(5.3)

simply a conjugate summation of selected functions derived by multiplying each function
by its complex conjugate and summing the result. This type of MIF calculates peaks where

structural modes exist. rather than valleys. In equation form this is written as follows:

Y (uu) 5.4
This author found that after comparing the two, the second type of function, ie., the power

spectra, provided the clearest indication of where the modes were located.
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Mode indicator functions were generated for each of the five plates uscd in the
accelerometer testing. The input included all 18 FRF's for each plate to ensure that average
values vere obtained. The resulting functions are shown in Figures 5.2 through 5.6. Table

5.2 lists the results obtained from these functions.

TABLE 5.2 - NATURAL FREC

ENCIES FROM MODAL TEST (Hz)

Made Relerence 1/8 Depth 1/4 Depth 3/8 Depth 112 Depth
Plate Crack Crack Crack Crack
1B 15.67 15.55 15.53 15.45 14.60
28 97.00 97.16 96.33 97.00 97.96
3B 272,67 7.8 269.16 267.66 258.18
T 334.67 332.67 230.34 329.99
4B 541.67 539.06 532.95 529.95
5B 889.00 886.71 880.67 884.95
2T 990.67 989.83 987.29 990.79
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It appears from perusing these results that for specific modes. there is a downward shift

in frequency

ociated with an increasing crack depth. To fully illustrate this effect on

resonant Irequencies the following discussion will consider each mode individually.

The shift in frequency for mode | shows a clear dov nward trend as the depth of the crack
increases. The results, however, do not show as smooth a downward trend as expected

from the results of the finite element anal

is. Additionally. the net downward shift for the
largest crack is 6.8 percent. a value larger than expected. since the finite element model
results showed only a 3.8 percent drop. This can probably be attributed to experimental
error. mesh limitations in modelling the crack for the finite clement analysis. and
limitations in the experimental test equipment. These are further elaborated upon in the

following paragraphs

The aforemertioned equipment limitations concerned the accelerometers that were used for

the testing. These were very light so as not to affect the true modes of the plate to any

arge extent. This. however. compromised the usable lower frequency limit, since light
accelerometers are not suitable for measurement of low frequencies. These particular
accelerometers were found to produce a readable signal at around 10 Hz. a value not far
removed Trom the first natral frequency. The results for mode 1 are. therefore, suspect

since they i

¢ located just barely inside this lower frequency limit.

The errors alluded to concerning the finite element results deal with the manner in which

the cracl

cction was modelled. The method adopted for this investigation, as described

in Chapter +. consisted of reducing the element thickness at the crack location and

87



Chapter 5 - Experimental Revars

considering the crack as a set of separate elements. This method would tend to produce a

somewhat stiffer response. resulting in frequency values higher than those derived from

experimentation. Nowwithstanding the discrepancy, the shift is quite obvious. and in the

direction expected

The shift in frequency for mode 2 was random and of no significant magnitude. he values
show Dboth upward and downward movement for various crack depths. This is not

considered an error. however. since no trend was evident for this mode from the finite

element analysis either. Considering the location of the crack with respect o the mode
shape for this frequency. as shown in Figure 5.7, it is obvious that the crack will have little
effect since it lies almost directly on a point of inflection (zero bending moment) of the
deformed plate. The shifts that did occur were of little consequence and can be attribuied
10 experimental inconsistencies. Of more importance in these observations. is the lack of

a notable trend in the frequency shifts.
/ '
____ Undeformed Plate

|

Location of Crack \

Deformed Plate
Mode 2

FIGURE 5.7 - MODE SHAPE FOR SECOND MODE

The shift in mode 3 is very obvious from 272.67 Hz for the uncracked specimen to 258.18

Hz for the 1/2 depth crack specimen, a 5.31 percent shift. The results are similar to that
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expected from the analytical results. but are in fact more severe. The predicted shift was

only 2.35 percent. This discrepancy, is most likely attributable to the modelling

characteristics of the mesh used in the finite element analysis. as previously explained for
mode . The extent of the decrease is not surprising considering the fact that this
frequency’s associated mode shape. exhibits a high degree of curvature in the region of the

crack. The obvious loss of sti

in this r

ion has resulted in the significant drop in “i¢

frequency. observed for this mode.

The next mode is the first torsional mode of the plate. This mode would not be expected
to be affected by the presence of a crack to the same degree that & bending mode would.

This is duc larg

¢ 10 its dependence on the torsional stiffness of the section rather than the
bending stiffness. Since the existence of a crack would not significantly change the

torsional stiffness

it would likewise not significantly change a torsional naturai frequency

o any large extent. Notwi ing this ation, there was a noti shift in

frequen

of the first torsion mode. The frequency shifted by 1.69 rercent over the range
of crack depths. This correlates quite well with the results of the analytical model. which
predicted « 1.03 percent shift for this mode. It is noteworthy that the finite element results
tended to overpredict the frequencies for the bending modes, but was conservative on its

prediction of the torsional modes frequencies.

The fourth bending mode like the third. showed a significant downward shift as a result
of the crack. Here, the frequency shifted from a high of 541.67 Hz to a low of 518.12 Hz.
A shift of 435 percent, Once again the shift is expected due to the high degree of

curvature in the vicinity of the crack. Analytical results correlated quite well, predicting
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a downward trend. but of lesser magnitude. The predicted shift was only 2.61 percent.

The fifth bending mode did not produce results which closely reflected those derived from
the analytical model. The overall shift wz+ downward but the trend was not consistent due
to a shift for the 1/4 depth plate, which was larger than that observed for either the 3/8
depth plate or the 1/2 depth plate. The trend is apparent, however, if the data for this
specimen is not included. The analytical model did not predict a large shift, only in the
order of 0.5 percent. In comparison. the experimental frequency shifted by 0.85 percent.
This lack of significant shift. combined with high frequency sensitivity to experimental

error would more than account for a single outlier in the resuits.

The final mode, the second torsion mode. showed no trend and very little shift, either up
or down. Once 2gain the torsion modes would not be expected to be significantly affected.
due to the type of defect imposed. This prediction was shared by the analytical model.

which likewise showed little in the way of frequency shift.

Additional illustration of the preceding discussion is provided in Figure 5.8 through 5.14
which show graphically the results of Table 5.2. For comparisc.. as in the text. the results

of the finite element analysis are inciuded in these figures.

For a detailed graphical comparison of the shifts in frequency along with & visuai
representation of the effects of changes in the other modal parametits, the reader is
referred to Appendix D. The figures there, were obtained by comparing FRF's for each
of the center-line nodes (ie. 2, 5, 8, 11, 15 and 17). Data is given for each of the 5 plates

over a limited frequency range centred on the 5 bending mode frequencies.
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5.1.2 Damping Changes Resulting from Cracks in Plates

The task of modal parameter estimation. also known as modal curvefitting. was alluded to
at the start of the previous section. While it may not be the only method for estimating
frequencies it is necessary for the calculation of damping values as well as modal residues.
This task attempts to construct a mathematical model of vibration properties and physical
deformations which represent the behaviour of a tested structure. For insight into the
mathematical theory behind several popular parameter estimation techniques, the reader is
referred to Chapter 3. The discussion which follows illustrates the modal curvefitting

procedure generally followed in the analysis of experimental results.
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Due to the similarity of results between nodes on a given plate, it was deemed unnecessary
to perform parameter estimation for more than a representative number of nodes. Three
nodes were chosen: 2, 11, and 17. along the center-line of the plate. Center-line nodes
were chosen so as to eliminate the torsion modes from the FRF's. since torsion modes

were not to be considered in this phase of the analysis.

The program [-DEAS by SDRC. was used to perform the task of modal curvefitting. From
the perspective of this program, the general process of modal curve fitting and mode shape

generation can best be described diagrammatically as shown in Figure 5.15.

Select o
Function
T “Try other functions.

e Suppress roos that arc in error
| ey | - Generate analytic curve, compare with test
i [ | - Add residual values f necessary
L. —ml  Check Root
Quality

)
L_A Move Roats to

Parameter Table

I p—
Mode Shapes

|
FIGURE 5.15 - MODAL CURVEFITTING PROCESS
From this diagram it is apparent that this is an iterative procedure which can require a

number of adjustments before a suitable fit is achieved. Often, even after adjustment a good

fit cannot be achieved and a compromise must be accepted. To accelerate the process this
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author developed a procedure which used in conjunction with I-DEAS produced as close

a fit as could be expected in a short period of time. Considering one peak at a time, this

procedure simply produced a single degree of freedom analytical curve from the general

expression for a FRF, written as

e 1
wor- (1 »
P ks
1 - - i2¢ P
which zan be writien in the form a + ib as:
k() = LB - 268 (5.6)

where

Y=L dg - g e
g2
@,

User input was requested for frequency and damping and inserted in the above equation.
‘The generated curve was automatically scaled (in effect adjusting 1/k) so that the amplitude
at the peak matched that of the experimentally derived function. Overlaying the two
functions produced a visual indication of the correctness of the assumed values. These
values could then be modified and another analytical curve generated until a reasonable fit
was achieved. I-DEAS was then invoked to evaluate the analytical curve using its Circle

Fit algorithm®, to derive any missing parameters (ie., modal residue). A. a final
g g P

® While the Circle Fit Technique was used predominantly for this purpose, the Complex Exponential Method
was also used on occasion for verification of results and for cvaluation of coupled modes.
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comparison. an analytic curve was generated by 1-DEAS and compared o the test curve

to indicate the curve fit quality.

In this manner. the damping values. along with the other modal parameters. were derived

for the fint five bending modes of the three selected nodes on each of the five plates.

These values are listed in Table 5.3. and compared graphically in Figures 35.16

through 5.20.

TABLE 5.3 - DAMPING VALUES (%) TOR SELECTED NODES

Maode Node Reference 18 Depth 14 Depth 3.8 Depth 1.2 Depth

Plae Crack Crack Crack Crack

2 2 0.731 0.600 2.200

1 " S 0,680 0.660 2.700
17 a; 0.700 0.900 2.800

3 0.500 0.450 0.550 0.630

2 n 0.380 0.500 0.550 0.650
17 0420 0.500 0.600 0.800

3 0.630 0456 0.496 0.542 1.319

3 1" 0.600 0.400 0.500 0.542 1100
17 0.650 0.520 0.600 0.600 1.000

g 0.704 0.600 0422 0.300 0.300

4 n 0.300 0.340 0.350 0.360 0.310
17 0.400 0.390 0.3% 0.380 0.350

2 0.491 0.545 0.550 0371 0.380

5 1" 0.450 0.400 0.470 0.390 0.420
17 0.550 0.500 0.500 0.500 0.540
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FIGURE 5.20 - DAMPING VARIATION WITH INCREASING CRACK DEPTH FOR BENDING

The trends for damping are not quite as obvious as those discovered for frequency. There
is some evidence. however. that seems to indicate a causal relationship. Of the five bending
modes considered two appear to show an upward trend. Consider. for instance. the change
in damping for mode 2. There is a drop in damping for the initial crack but a consistent
increase for each of the others. The overall trend appears to show an increase in damping
associated with an increase in crack depth. It is interesting to note, though, that this mode
was little affected in terms of frequency shift. Mode 3. as well, shows a distinct upward
trend correlated with increased crack depth. Here, though, a major frequency shift

accompanies the increased damping.
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Evidence of a trend is not apparent in the drmping plots for the other three modes. In
actuality there is probably no physical phenomena here to cause it. One investigation
presented in Sanliturk and Imregun (1991), showed that for fatigue cracks a mathematical
relationship could be derived to predict damping increases due to fatigue cracks. The
principle action of concern here, is the friction between the surfaces in the crack. In this
experiment. however, the cracks are simulated by rectangular notches and as such have a
relatively wide separation between the sides of the crack. As a result, friction is definitely

not a factor.

A definitive statement concerning damping cannot be made with the evidence presented
here. Further research is necessary in this area, encompassing many more modes and
considering a greater variety of cracks. In addition natural fatigue cracks should be used

as the failure mode to insure realistic effects on daraping.

5.1.3 Amplitude Changes Resulting from Cracks in Plates

The consideration of amplitude as it applies to vibrating structures is at times a confusing
issue as a result of the various definitions that can be placed on this term. The classical
denhnition of amplitude for a harmonically excited single degree of freedom system is

generally calculated by the following non-dimensional expression:
S 6.7
o : 5 4
Vi - g« (28
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and its phase by:
6 = tant l 8
where
B = wlw,.
X = dynamic displacement (m)
k = spring stiffness (N/m)
F dynamic force (N)

This is the expression for a SDOF frequency response function, that yields the output
displacernent per unit of force input. It is apparent from the numerator of the right side
of Equation 5.7. that the damping ratio {, strongly influences the output value in the

vicinity of w=aw,.

In a test situation it is very difficult to measure displacements directly. As a result, the
output response typically measured is acceleration due to the reliability and versatility of
the ubiquitous accelerometer. If desired there are methods that can be used to transform
the output into displacement. one of which is to electrically alter the measured signal by
filtering it through one or two capacitors and applying a calibrated resistance. This method
in effect performs numerical integration on the analogue response signal before recording
it through data acquisition. A second method is to record strictly acceleration data, generate
acceleration frequency response functions, and subsequently perform a double numerical
integration to obtain a displacement frequency response function. While these methods
work they are not typically used due to increased computational effort resulting from
diminishing numerical values, and lack of beneficial output. In general the response

used is i ial since one is to another and changes that occur

in one will similarly occur in the others. In addition the procedures involved introduce
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additional sources of error into the results. In the first of the methods mentioned above,
this error is caused by the introduction of additional circuitry and the inherent noise
associated with it, and in the second method, by computational errors as a result of the

rounding off of very small numters®

The results of this experi ion express i in terms of i The

accelerometer output was calibrated and recorded using the standard unit, meters per

second squared (m/s*). All subsequent analysis used this unit for amplitude calculations.

In Chapter 3. the theory of modal analysis was discussed and a term known as the modal
constant or residue was mentioned. This term is sometimes referred to as the amplitude and
for this reason, the issue becomes somewhat confused. The analysis software I-DEAS. used
in this analysis. is one such example. To avoid confusion in the following discussion, the
term amplitude will only be used when referring to FRF amplitude (ie., physical amplitude)

and the term residue will be used in reference to the modal factor described in Chapter 3.

The value of residue for a specific mode at a given location on the structure. along with

damping and frequency. is one of the output modal parameters derived from the parameter

To begin di; ion of the topic of amplitude, the residue values of

the three nodes considered in the parameter estimati will be The
calculated residues for the three nodes analyzed (2, 11 and 17) are given in Table 5.4. As
before, the discussion values have been plotted for further illustration, These plots are

given in Figures 5.21 through 5.25.

9 Most digital computers are capable of performing calculations on double precision level, ie., to 14 decimal
places. Amplitude of displacement in vibrating structures can be very small, often in the order of 107 or
smaller (for this experiment at least). At this magnitude round off errors can become significant even at
double precision.
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TABLE 5.4 - RESIDUE VALUES FOR SELECTED NODES

Mode Node Reference 1/8 Depth 114 Depth 3/8 Depth 1/2 Depth
Plae Crack Crack Crack Crack
2 0.050 0.197 0.211 0.146 0.080
1 1 L7 1.302 1.351 1.087 1.097
17 X379, 2.561 2.369 2221 2.193
% 12,547 12,544 12.362 12.313 12.902
2 u 20.677 18.244 18.849 20.491 19.700
17 45.000 46.214 69 46.247 53.413
2 76.077 68.711 67.737 68.629 100.030
3 1 97.915 87.461 86.899 84.121 105.710
17 132.760 129.110 118.340 124.070 143.890
2 57.708 43.846 38.453 34.094 22.976
<4 [ 12.09 12.70 10.19 11.05 7.88
17 60.503 55.211 44.406 46.566 32.535
2 274.330 296.140 307.300 283.860 285.600
5 1 184.160 176.070 190.980 184.790 200.910
17 269.410 359.400 344.660 342.500 359.410
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The preceding results would seem to suggest that there is little evidence of an observable
trend associated with modal residue as crack depth increases. The patterns of these figures
show that changes that did occur were marginal and behaved in a random fashion. This is
not entirely unexpected considering the dependence of this parameter on the other two.
From theory the gencral expression for a frequency response function at node & due to

excitation at node i is given as

e

0 o
Hi =Y L E N ER )

e Sw, el - 8 o s G, +juyl - 8

This expression shows that modal residue. denoted by A. is inversely related to both

damping and frequency. If it is then assumed that for increas

crack depth, there will be
a general decrease in frequency, combined with a smaller increase in damping, then it is
logical to assume that modal residue will be affected very little if the FRF peak values are

not significantly changed.

This logically leads to a question concerning change in FRF amplitudes, which. although
related to change in residue, varies independently and may or may not follow the residue
trend (ie.. no trend at all). In observing the various FRF peaks shown in Appendix D it
was noted that in many cases there appeared to be a decrease in the magnitude of the peak
values as the crack depth increased. The shift, however, was small and not a global
observation. In fact, some peaks showed almost no shift, while others did, but did not

follow a trend.
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Further observations reveal a more significant trend in the magnitude of the FRF at

frequencies whose abscissa values are slightly offset from the peak value. The pattern of

decreasing magnitude at these locations, is much more obvious and consistent than at the

peaks. To further illusirate this phenomena consider a comparison of function magnitudes

for node 17 at points offset above and below the FRF peak frequencies for each of the 5

bending modes.

The offset frequency values used for this comparison along with their associated FRF

amplitudes (at node 17) for each of the tested plates s listed in Table 5.5. Additional

illustration is provided by the graphical representation of this data in Figures 5.26

through 5.35.

TABLE 5.5 - COMPARISON OF OFF-PEAK FRF AMPLITUDES

Bending | Hi/ Low FRF Magnitude at Hi and Low Offset
Mode | Frequency
Offsel | Rejerence | 1/8 Depth | 1/4 Depth | 3/8 Depth | 1/2 Depth
Valiiss Plae Crack Crack Crack Crack
Low| 12 005413 | 005859 | 006001 | 0.06439 | 0.07581
' Wil 17 02955 | 02024 | 02574 | 0253 | 0.1871
Low| 90 08478 | 09963 1.082 0.9078 L
: Wil 103 1478 1.636 1509 1.605 1442
Low| 250 1024 1119 1271 1407 2,446
3 wi| 277 4.357 3712 2.362 2 1218
Low| 513 05098 | 04786 | 04956 | 0.5773 | 09993
i ui| 550 1.038 06392 | 02508 | 0.2195 | 0.02858
Low| 875 2.802 4.901 9.657 4749 7.885
} ui| 893 6.714 618 3.991 6.219 4328
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The trend in this data is quite obvious, even for mode 1 where the frequency shift was
difficult to see. and for mode 5 which had non-conforming data for the 1/4 crack specimen.
Amplitude values increase consistently and by significant amounts at the low frequency
offset. Similarly with inverted trend the values decrease at the high frequency offset. One
possible reason why this trend is more obvious here than at peak location may be that the
effect of damping on amplitudes is moderated greatly at values away from the peaks. At
the peaks. even the slightest change in damping, which may or may not be attributable to
defects (je.. possibly attributable to system inconsistencies) can cause unexpected changes
in amplitudes. This phenomena can be illustrated by considering a plot of SDOF response

given as Equations (5.7) and (5.8). shown in Figures 5.36 and 5.37.

Damping Factor |

Atbutrary Duplasement Units

Frequency Ratio

FIGURE 5.36 - CHANGES IN SDOF RESPONSE AMPLITUDE RESULTING FROM DAMPING VARIATION
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Figure 5.36 shows that the effect of damping on peak amplitude is much more pronounced
at peak locations than at off-peak locations. So while the variation in peak amplitude is
noteworthy. it would seem that a much more reliable indicator is the amplitude changes

associated with off-peak frequencies.

To illustrate this theory further consider the expression used to derive Figure 5.36.
Equation (5.7). If a range of frequency ratios are considered, grouped around the unity
value and a random damping factor (in the range from 0.13 to 0.18) is applied to the
various ranges, the result is a plot similar to that shown in Figure 5.38. As can be clearly

seen, the peak values vary randomly due to the random damping changes. but on either
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FIGURE 5.38 - AMPLITUDE VARIATION FOR SYNTHESIZED FRF
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side of the peak. the amplitude returns to the trend scen in the experimental results. viz..
clear amplitude ranking. directly corresponding to frequency ranking. Ilustration of this
trend is provided by plotting the amplitudes from both sides of the peak for cach of the
cur s shown in Figure 5.38. The results, given in Figures 5.39 and 5.40, show that the

trend at positive and negative offsets is far more consistent than at the peaks.

It must be noted that the amplitude trends observed. would not have occurred without an
associated frequency shift. It seems then. that the application of these observations would
best be suited to complimenting observed frequency changes. The amplitude trends.
however, appear to be more sensitive to increasing crack depth than does the trend in
frequency. and therefore, appear to be a better indicator than the frequency shifts alone.
Used in conjunction with each other, they are quite conclusive in indicating the loss of

structural integrity associated with the imposed cracks of the tested specimens.

116



Chapter 5 - Expermental Revilrs

FRF Trace

FIGURE 5.39 - AMPLITUDE VARIATION AT LOWER OFFSET OF SYNTHESIZED FRF (F.R

0.6

FRF Trace
FIGURE 5.40 - AMPLI ©

'ARIATION AT UPPER OFFSET OF SYNTHESIZED FRF (F.R. = 1.4)

17



Chapter 5 - Experumental Resuls

The results discussed thus far have shown that modal analysis using accelerometers does
provide a number of techniques which can be used to indicate the existence of surface
defects such as cracks. As discussed earlier a second phase of experimentation was
performed to determine if strain gauges were suitable response transducers for performing
modal analysis 2~ if so what observations can be made from the results. This topic will

form the focus of discussion in the next section.

5.2 Discussion of Strain Gauge Results

It the past the vast majority of vibrati experi ion has used the to
determine structural response. As pointed out in Chapter 2, a number of modern
researchers have begun to look at the strain gauge as an alternative response transducer in

the field of modal analysis.

There are some advantages and disadvantages in using the strain gauge over the

accelerometer. The primary disadvantages are listed as follows:

. Installation is more difficult than the accelerometer and cannot be
performed in a short period of time (ie., mounting fluids need time to
dry). Once mounted, the strain gauge cannot be moved, or easily

removed.

. More electronic apparatus is required to obtain a readable voltage signal that
can be correlated with surface strain. This adds noise to the measured signal

and complexity to the experimental set-up.
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. The output signal diminishes rapidly with increasing frequency requiring
special care to distinguish the signal from the system noise during high
frequency measurements (a task not always achievable).

. The results of modal testing using strain gauges cannot be used to plot
displacement mode shapes. often a useful tool in verifying proper
experimental procedure,

. Since strain is a local phenomena rather than a global one. strain gauges must

be located close to the suspected location of a defect in order to be effective.

There are, however, some advantages to using strain gauges as response transducers. The

ificant of these are listed as follows:

. The strain gauge is light enough to be considered of negligible mass. This
allows the measurement of true structural properties. rather than the modified
properties which result after the added mass of the accelerometers has been
considered.

. There is little possibility of a strain gauge coming loose after it has been

mounted. This effectively removes a common source of error associated with

accelerometers (ie., mounting variations and associated limitations).

In this experimentation four different plates were used in the strain gauge phase of testing.
One of the plates was the reference plate (uncracked) that was used for the first phase of
testing. The other three plates had simulated cracks, all of equal depth (1/2 the plate
thickness), but in three different locations as illustrated iu Figure 5.41. The first location

was at 1/4 the plate span, the second at 1/2 span and the third at 2/3 span. On each of the
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cracked plates a strain gauge was mounted directly under the crack and for comparison on
the reference plate three strain gauges were mounted at similar locations so that direct

comparisons could be madz between the cracked and uncracked plates.

S
> Stin Gauge
7

11

Quarter Span Crack
2
| H | 3
1 4

um
Half Span Crack
b
Two-Third Span Crack

FIGURE 5.41 - LOCATIONS OF STRAIN GAUGES AND CRACKS FOR SECOND PHASE OF EXPERIMENT

The primary objective of this phase of testing was to determine the effect that a crack has
on the strain properties of the cantilever plates. Ideally a series of crack depths would have
been investigated to determine the trend but due to time and equipment restrictions it was
decided that only the worst degree of cracking would be investigated. Considering the

action taking place as a crack appears in a flexed plate the trend of strain changes could
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be logically predicted. The questions here concerned the magnitude of the change and to
what dynamic limits the results could be accurately measured. In other words how well do
strain gauges perform in a high frequency test environment and assuming adequate

response, to what degree is dynamic strain increased by the presence of a crack.

The parameters of a modal test using strain gauges are similar to those obtained with
accelerometers except that here the FRF amplitudes are in strain units. The other
parameters, damping and frequency, should be directly comparable to the accelerometer

results. A

a result other than listing their values as derived from the strain measurements,

these latter two will not be discussed here.

.1 Parameter Changes as Derived from Strain Gauge Results

After completing the installation of strain gauges and all associated hardware, the
methodology of acquiring data from a dynamic test using strain gauges is very similar to
that used in accelerometer testing. Likewise. generation of frequency response functions
and performing modal parameter estimation is accomplished in a similar manner. The
interpretation of the results. however, is a different matter altogether as will be illustrated

in the following discussion.

The results obtained through the typical modal parameter estimation procedures on strain
gauge data are given below in Tables 5.6 through 5.8, and are separated according to the

location of the crack and its associated gauges. For further illustration of the results, the
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full band FRF's (0 to 1000 Hz). derived from strain time histories. are shown in

igures 5.42 through 5.44.

The results clearly show that there is a dramatic increase in the measured strain level of
the cracked plate as comp ed 1o the uncracked plate. The most significant increase in
strain level (as given by the amplitudes of the FRF peaks) was achieved in the 1/2 span
crack where for the first mode, the strain level increased by a factor of almost 13.
Additionally, several of the other peaks showed considerable increases. with factors rangirg
from 3 to 7. These results seem 10 indicate rather convincingly that the measurement of
strain is a very good indicator of crack existence and that strain gauges are indeed

appropriate and useful in a dynamic test environment.

TABLE 5.6 - STRAIN PARAMETERS FOR PLATE WITH 1/4 SPAN CRACK

Uncracked Plate Cracked Plate

Mode| Frequency | Damping | Residue | FRF Peak | Frequency | Damping | Residue | FRF Peak
(Hz) (%) Amplitude | (Hz) (%) Amplitude

1 15.35 2.40 69.47 29.96 14.33 2.50 231.96 | 104.24

98.92 0.80 65.33 132 98.35 0.80 173.91 35.59

3| 21341 0.55 192.12 20.39 257.76 1.00 619.77 38.37
4 541.93 0.26 41.37 4.68 518.25 0.30 59.51 6.26
5 88%.35 0.47 35.97 1.37 880.68 0.50 151.18 5.48
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TABLE 5.7 - STRAIN PARAMETERS FOR PLATE WITH 1/2 SPA} 'RACK

Uncracked Plate Cracked Plate

Mode| Frequency | Damping | Residue | FRF Peak | Frequency | Damping | Residue | FRF Peak

(Hz) (%) Amplitude | (Hz) (%) Amplitude
) 15.48 "' i 15.85 15.31 0.90 177.40 | 203.43
2 | 99.08 " " 839 | 90.22 0.80 772.83 | 170.59
3| w31 " " 112 27110 075 70.22 5.46
L.x 542.76 bl 4.86 505.53 0.50 454 12.85
5 | s8s.32 " 0.38 882.23 0.48 64.09 2,40

TABLE 5.8 - STRAIN PARAMETERS FOR PLATE WITH 2/3 SPAN CRACK

Uneracked Plate Cracked Plate
Mode| Frequency | Damping | Residue | FRF Peak | Frequency | Damping | Residue | FRF Peak
(Hz) (%) Amplitude (Hz) (%) Amplitude

1| 1550 240 19.52 8.35 15.49 .00 94.67 | 4854

2 | 98.80 0.85 19160 | 3652 | 9186 080 | 607.23 | 13261

3| 2333 | oes | 2882 | 23 | 25484 | o0 | 74906 | 5239

4| 523 | 035 18.14 152 | 53977 | 040 2045 1.51

5 889.62 043 161.98 0.62 851.52 0.48 446.96 pu 0

While these results are remarkable. it must be remembered that a major factor in the

magnitude of strain level increase is the position of the strain gauge with respect to the

Having the gauge placed directly under the crack is the ideal location and will yield
the most notable results. The amount of change would decrease rapidly if the gauge were

moved away from the crack.

L) Tt was not possible to calculate these parameters due 0 a loss of time-history data from a storage

tape.
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Chapter S - Expermmental Resuls

This imposes a restriction on the usefulness of strain measurement as a tool in structural
integrity monitoring. An effective system would require that many gauges be used. placed
adjacent to all areas that cracks would be likely to initiate. These areas would include; all
high stress welds. bends in structural members, member intersections and rigid connections
among others. This is not meant to imply that such a system would be impractical to

construct; only that as compared to the measurement of global parameters

(ie. displacement. acceleration etc.) the initial system installation would be more
complicated and the system itself would be more complex. Considering the sensitivity of

strain measurements, however. the added complexity might be worth while.

5.3 Errors in Experimental Data

Any program of research which uses experimentally derived data must concede that no
matter how much attention is paid to the setup of the experiment, there will always be
sources of error which are not found in corresponding analytical models. The
experimentation performed here, was an early atempt at modal analysis research in this
faculty and as such is a little more prone to errors, since it is only through experience that
many of the finer points of dynamic testing become apparent. While the data presented in

this chapter does illustrate a number of useful some of the ined or

unexpected results could certainly be attributable to experimental error. In the context of
this and other similar test environments, the following points highlight some of the problem

areas of experimentation.
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The assumption of fixity at the clamped end can never truly be made,
especially without making a very concerted effort to achieve this result.
Through the course of this experiment numerous modifications were made to
improve clamp fixation but in the end it still remained as the most likely

source of error in the experimental data,

Improperly attached transducers can lead to errors in measured data.
Accelerometer mounting can be achieved through the use of wax (used here).
magnets. or studs. Each has its own characteristics and downfalls. Wax in
particular is not considered ideal, but given the large number of measurement

points, it was the only acceptable alternative for this experiment.

Attachment of the excitation device can change loading conditions if it is not
carefully monitored. Here, the exciter was suspended above the specimen by
using elastic cords. Relaxation of these elastic cords could result in application
of a pre-load at the point of attachment. Care was taken, however. to ensure
that at the beginning of each test the elastics were adjusted so that contact was

made without imposing load.

Electrical noise and interference can at times over-ride the true signal. This
can be a problem for low level signals as was evident in the strain
measurement. [f care is taken, however. to calibrate devices and to use error

reducing filters and procedures, this type of error can be minimized.

The digitizing of analogue signals can result in aliasing and leakage errors if
care is not taken to avoid them, These type of errors have become well
defined and are fairly easy to resolve. Generally, the use of anti-aliasing

filters, the wi ing of data before jon into frequency dumain,

and averaging of results, are the remedies used here.
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. All the specimens used here. were manufactured from 2 single mill order.
There were, however, inevitable variations from one plate to the next which

could not be controlled. As insignificant as these might be. they could have

affected the dynamic behaviour, and caused otherwise unexplained
discrepancies. Additionally, the mounting and dismounting of specimens,
while carefully performed. could never be exact, thus resulting in changes in
dynamic properties simply as a result of geometric changes. The ideal solution
to this type of error would be to mount a single specimen, fatigue it to
develop "real” cracks. and perform all tesis on it over a period of time

without removing it from its mount.

Errors are an inherent part of experimentation but if a systematic approach is taken in
performing experiments and a great deal of care and attention is given to the construction
of the experimental model. these errors -an be minimized to a level of relative
insignificance. Drawing on the experience of others who have performed similar work is
also very helpful since many of these problem areas only present themselves after many

fong hours have already been spent in set-up and calibration.

5.4 Summary

This i ion of the experi i during this course of study.
While noteworthy, the results are only to be considered a small part of the research
necessary to fully understand the interaction between the modal properties of a structural
system, and system integrity, or lack thereof. Chapter 6. which follows, concludes ihis

thesis by summarizing its contents and making recommendations for further research.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions Based on Results

Based on the results of the research presented in this thesis. the following conclusions have

been mad.

The use of modal analysis in the development of an structural integrity
monitoring system, with the objective of early unaided detection of structural
faults, is still in its initial development stage. Research conducted to date.
though, has showed that methods developed using modal analysis are showing
merit. With continued development and refinement. it is expected that the
many branches of this work will begin to assemble into a unified methodology

that will greatly modify non-destructive evaluation as it now exists.

The use of analytical modelling through finite element analysis is an
invaluable tool which is an integral part of modal analysis, specifically in the
realm of crack detection. Analytical results of a refined finite element model
predict with a high degree of accuracy the effects of structural faults o the
natural frequencies and mode shapes of a real structure. It was found that the
existence and severity of the crack, could be determined by observing
frequency reduction, and its location on the structure, through inspection of

mode shape variation,
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Results from analytical and experimental analysis showed that for a cantilever
plate, the existence of a crack caused a reduction in the natural frequency for

a number of modes. especially for those modes whose mode shapes exhibited

a high dcgree of curvature in the vicinity of the crack. The extent of the drop
was found to correlate well with the crack depth, showing that it could be

used as an effective indicator of crack extent.

A notable method for determining the crack location was derived from the
analytical results. Observing changes in the displacement and slope mode
shapes illustrated that a significant discontinuity occurs in the plot of mode
shape difference. at the crack location, for all analyzed modes. The method
clearly shows the crack location for the cantilever plate, but its effectiveness

for real structures is somewhat questionable.

Observation of modal parameters derived through experin entation showed
that while crack induced frequency changes could be easily observed. noted
changes in damping, and residue were not conclusive, and showed little in the

way of trend.

Subsequent investigation of the experimental FRF's showed that the
comparing of off-peak amplitudes resulted in a clear trend, indicative of crack
existence. The results appeared quite sensitive and provided more consistent
results than did the observation of frequency shift alone.

Investigation into the usefulness of strain gauges as a dynamic response
transducer showed that while the signals were more prone to noise, they were
still quite usable. It was found that the peak magnitudes of the resulting FRF's
were very sensitive to cracking. These were observed to shift by more that a

full order of magnitude in some cases.
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6.2 Recommendations for Future Investigations

The investigation conducted here have illustrated a number of useful phenomena: it is,

however, only a small part of what is needed to signifi contribute to the

of theory leading to a modal analysis based, non-destructive evaluation technique. The next

generation of research might consider the following recommendations when deciding on

the course of investigation into crack detection;

The is a need for more research focusing on real structures or models of real
structures. While simple structures yield useful information, only a complex
structure will truly represent the actions of those for which this technique is

intended.

Any work on simple structures should implement a technique of creating real
fatigue cracks, rather than artificial ones. Limitations in cutting devices would
never allow the milling or cutting of notches to truly represent the action of

a fatigue crack.

of ive support itions is of utmost importance, and

probably the most likely part of any model to introduce error. An

into support limitati ‘might produce i ing and
useful results.

An intensive investigation into methods of analytical modelling is necessary

to ine the most

ppli modelling p for this type of
analysis. It is clear, that there is much room for refinement of analytical
results, by as yet there appears to be little consensus on how to best achieve

this outcome.
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There are many other aspects of crack detection using modal analysis which could greatly
benefit from additional investigation. Since this area of research has attracted much
attention over the past few years, it is likely that these and other topics will not have to
wait long before being investigated. Much progress is being made in this area of research
and it appears likely that before long a workable method of defect detection will result

from efforts now being made.
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Appendix A

First Nine Mode Shapes for Cantilever Plate
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Finite Element Mode Shape: Mode 1T
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Appendix B
Sample Time Histories from Experiment

Note:  [n the following plots, the units for the ordinate quantities are not included with the axis label. The units.

for acceleration are meters per second squared (m/s), and the units for force are newtons (N).
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Note*

Appendix C
FRF’s for All 18 Nodes on 5 Plates

Lo determune thie particular point of analysi for ach FRE, observe e second o last line of the caption
under each figure. The numeric value to the right of this fine is the response node evaluated. the term
o the lett, indicates the particular plate on which the mde is located: reference, indicates the zero crack

plate. all vthers are mdicated by 3 Q vr g followed by the crack depth ratio teg . g1-8 22 = Node 2 on

plate with 1 8 depth crack). The ardinate kabel of an FRF is usually indicative of the response parameter
measured and dovs ot include its umit. bor these FRF'S the magnitude of the FRF is a ratio of

acceleration output @ force mput and hence, has the unit [(mA'eN].
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Frequency response function
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Frequency response function
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Note:

Appendix D
Zoomed View of FRF Peaks for Centerline Nodes on All Plates

For these FRE', ax with those in Appendix C. the mag the FRF is a ratio of

1o force wput and hence, has the wnit [im): N
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Appendix E

Photos of Experimental Set-up
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