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Abstract

Minimization of synaptic area is important in a neural network with a ligh synapse
to neuron ratio. Consequently one has to optimize the synapse rather than the
neuron. A pulsed analog network with amplitude modulation results in a very
compact and efficient synapse. Charge summation is used which leads to a single
bus as the summer. Membrane capacitance has been distributed to the synapses
allowing the network to be perfectly scaled. Like the biological neuron, the neuron
fires a single output pulse when the activation exceeds the threshold. A discharge
pulse is generated to discharge the membrane capacitances via discharge transis-

tors which have also been distributed to synapses for scaling purposes. Circuit

design and detailed analysis has been included along with simulation results. Stan-

dard cells have also been presented. As the proposed architecture behaves quite

di ly from existing archi imul of some of the standard exam-

ples of neural networks have been included. Two chips have also been designed

using 3um design rules.
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Chapter 1

Introduction

Rescarch concerning neural networks can be traced back a few decades, but it
has been mostly on the theoretical studies and computer simulation. Computer

simulation is slow and the real power of the neural network can best be extracted

only when one goes for ialized circuits in 1 In the last ten

years or so, a lot of literature has been published on neural circuitry and their
implementation in silicon (chapter 3). To date, however, most of the networks
reported are small in scale. The computing powe: of neural networks lies in their
connections. In biological systems, one neuron may be connected to thousands of
other neurons. So, one has to consider the implications of the scale if one is ever
to approach the size of networks present in our biological system.

One neuron is connected to another neuron through a synapse. If there are
N neurons in a network, then the number of synapses grows as N? for a fully
connected network (such as a Hopfield net). From a circuit point of view, it is not
all that casy to connect a large number of synapses together and feed the output
to a neuron. However, for an auto scaling circuit, the number of synapses per
neuron is not limited by any circuit constraint.

An auto scaling pulsed neural network is presented in this thesis. It leads

to a very compact synapse which is highly desirable in a network where synapses




outnumber neurons. It further enables one to add the outputs of a large number of
synapses together. The auto scaling feature has also enabled us to Jesign staudard
cells which can be plugged together to realize networks of varying sizes.
Pulse-stream analog networks have already been reported in the literature
(chapter 3). Under this scheme, the neural state is represented by pulses whose
frequency depends on the input activation. But the proposed circuits differ in
many respects. The scalability has been achieved by distributing the membrane
capacitances in the excitatory synapses. Synapses can be cither excitatory or in-
hibitory but cannot switch back and forth between excitation and inhibition. Each
time the activation voltage goes past the vhreshold, an output pulse is generated,

At the same time one discharge pulse is also generated to discharge the membrane

it (like repolarization in biological neurons) so that the charge integra-
tion cycle starts all over again. For the scaling purpose, discharge transistors are
also distributed in synapses.

These neural circuits have been designed, and simulated using the Spice pro-
gram. Detailed mathematical analysis has also been done. A number of standard
networks like pattern classifier, content addressable memory, XOR gates, Hop-
field nets etc. have been simulated to examine proper operation of the designed
circuits. A standard cell library has also been developed.

The thesis has been organized as follows. The sccond chapter introduces the

biological neurons followed by artificial neural networks. Two loarning scl

s

have also been included there. The next chapter deals with the literature review -
hiow different aspects of neural networks have heen achieved by different people.
The fourth chapter gives the design philosophy. The proposed neural architecture

is also presented there. The ifth chapter gives the circuit design and anal

Matt ical jons are also 1 which can be used for developing a fast




simulator. Chapter six deals with the standard cells including the cell design phi-
losophy along with layout of several standard cells. The seventh chapter describes
simulation results of different neural networks. It also includes the schematic di-
agram and layout of one of the two chips that would be fabricated. Finally, in
the last chapter [ conclude my present work and suggest some areas where further

work can be done.



Chapter 2

Neurons and Neural Networks

2.1 Introduction

This chapter deals with a brief introduction to biological neurons and artificial
neural netwoks. A brief discussion on the neuron followed by a simple description
on the generation of action potential is presented. Dilferent aspects of neural

networks including two popular learning schemnes have also been included.
2.2 Neuron

The neuron is the basic anatomical unit of the nervous system. A typical nenral
cell (figure 2.1) has four distinct regions - cell body, dendrites, axon and the

presynaptic terminals of the axon. The cell body is the source of encrgy for the

neural information processing. It gives rise to a tubular process known as the
axon which can extend over a large distance. The axon, in turn, divides into a
large number of presynaptic terminals. These presynaptic terminals contact with
the postsynaptic terminals (dendrites) of the other neurons at the synaptic sites.
The neuron integrates the incoming signals from other connecting neurons by the
capacitance of the cell body and fires an output pulse (action potential) when the

total input activation exceeds some threshold voltage. Some axons are covered



with an insulating material called myelin to reduce the capacitance between the
cytoplasm and the extracellular fluid. This is essential for achieving high speed
conduction. The myelin sheath is interrupted at regular intervals by the nodes of
Ranvier where the transmitted signals are periodically restored.

Nerve cell, like other cells, has different concentrations for different ions across
its membrane (Koester, 81). Out of the ions, Na* and Cl~ concentrations are
lower inside whereas K* and organic A~ are lower outside. Due to the concentra-
tion gradient, K'* ions tend to move out across the membrane through diffusion.
This diffusion leads to separation of charges and hence a potential difference (Vi)
which impedes further passage of charge. At a voltage of around -75 mV, K+
ions reach an equilibrium when there is no net flow of iK'+ ions. This equilibrium
potential can be obtained by the Nernst equation :

RT [C*],

7T @

where C} and C}t are the concentrations of ions in the extracellular fluid and
o i

inside the cell.

Due to the presence of Na™ ions, the cell comes to a resting potential of about
-60 mV when the net influx of Na* ions is totally balanced by the net efflux of
K* jons. In order to maintain the ionic gradient, a metabolically driven Na-K
pump brings in a steady supply of K+ ions while driving Na* ions out of the cell.
If the membrane potential is increased from -60 mV to say -70 mV, the cell is
hyperpolarised reducing its ability to generate an action potential and is therefore
said to be inhibited; whereas, if the potential is decreased. the cell is depolarised
and is said to be excited because it increases its ability to generate the action
potential.

If a nerve cell is depolarised to a small extent, the charge leaks away and the

action potential is never initiated. However, if the cell is depolarised to approxi-
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Figure 2.1: Structure of a classical neuron (adapted from [Mead. 89]).



mately -40 mV, an action potential is generated even if the voltage is brought back
1o -60 mV. This generation of action potential can be explained in terms of the
voltage dependent ion channels [Koester, 81A]. When the cell is depolarised. Na*

ion channels open (i ing Na* d thereby i ing inward Na*

current. This further depolarizes the cell whicl in turn opens niore Na* channels.
This regenerative process continues till the action potential is generated. How-
ever, at this stage, Na* conductance and hence NVa* current starts decreasing
resulting in further decrement of Va* conductance. At the same time, A'* ion
channels open resulting in an outward A+ current which eventually repolarize the

membrane to the resting potential,

2.3 Neural Network
2.3.1 General Review

Artificial neural networks are biologically inspired. They are networks of simple

I Ls or units i d by weights of variable strengths. They

are neural in the sense that the computation is done collectively rather than

dividually. In general, in a neural network, an amplifier with a non-linear output

characteristic forms the cell body, wires replace axons and dendrites. and the
resistors model the synaptic connections or weights among the interacting units.
When a neuron is activated, it evaluates all inputs from other neurons and finds
out the weighted sum. If the sum or the activation goes beyond a predetermined
threshold, the neuron changes its output (figure 2.2).

In mathematical terms, if O; represents the set of all neural outputs, then the

total activation act; of the ith neuron is

act, = Y 1¥,0, (22)
7




Figure 2.2: Block diagram of a typical artificial neuron.



where W,, is the strength of conncction from unit u, Lo unit u,. The output of u;
is given by O; = f(act;, thr) where [ is a nonlinear or decision making function
and thr is the threshold voltage.

The strength of connection between two neurons determines the degree of
interaction between the two. It can be ecither excitatory or inhibitory, normally
represented by positive and negative weights. If the connectinn is excitatory, then
the activation of the neuron is increased, while the inhibitory connection tends to
reduce the activation.

When a network is activated, all the ncurons operate in parallel and try to
adjust their states. In the synchronous update procedure, they simultaneously
update their states at each pulsz of a central Liming clock; while in asynchronous
update, cach of the neurons. at any instant of time, has a fixed probability of
updating its state. Since the ncurons update their states independently, in a very
small timeframe only one neuron can be thought of updating its state. Whatever
the updating procedure, eventually the ncurons settle to a stable stale represent-
ing some global configuration. This is achieved by utilizing the lozally available
information and the massive parallelism inherent to the system.

Different researchers have proposed networks employing different units in dif-
ferent configurations [Aarts et. al., 89] but most can be encompassed within the

stated framework. The major differences are noted below.

o Connectivity : Connectivity varies from single layered network (e.g. Hop-
field nets) to multilayered networks with hidden units (e.g. backprop nets).
Backpropagation nets are also strictly feedforward and the connections are
essentially unidirectional. Hopfield nets, on the other hand, have bidirec-

tional connections. Both are discussed in more detail below.
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o Neural units : Networks employing simple linear nnits have a set of input
units and a set of output units. It can be shown that the computation done

by multilayered linear units can also be done by a network withont a hidden

layer. The output of the simple lincar model

[¢]

an identity function; that is

act;. Kohonen has done extensive studies on this kind of networks and

their learning [Aarts et. al.. 83]. On the other hand, in the linear threshold

unit, output O; = 1 if the activation act; > 0; (where 0, is the threshold) and

0 otherwise. Perceptrons are a special class of networks employing a single
laer linear threshold units without any feedback. But the most common

one is the one utilizing the semilinear activation flunction where the output

0, = f(act,), f being a monotonically non-decreasing differentiable function.

o States: Output states can cither be binary; i.e., O, : {0, 1} in which case the
function fis making a hard decision as in the perceptron model, Hopfield's
content addressable memory, back propagation networks; or the output can

be a continuous value in which case fis a non-linear, monotonically incr

ing function as in Hopfield's neural decision networks.

o Activation : The output function or the decision can also be vither deter-
ministic or probabilistic. The models employing the former are Hopficld
nets, back propagation nets cte. whereas the Boltzman machine employs a

probabilistic response function,

. ion : The overall can be local, in which the state

of individual units may represent something meaningful. On the contr

in the distributed representation, the state of cach unit has to be interpreted

in conjunction with all other neurons,

It is worthwhile, in this context, to discuss Hoplicld nets. In a Hopficld net.



every neuron is connected to every other neuron cxcept for itself (ie. Wi = 0).
The other restriction is that the weights are symmetrical, that is ¥, = Wj;. For

a two-state neuron i, the total input is
2= T+ I (2.3)
¥

where [i is external input to the neuron i and V, is the output of neuron j. In
the simplest, non-graded formulation, the output of neuron i is V; = V' if z, > U,
and V;? otherwise; where U, is the threshold for the neuron i. An energy function
such as

E=_%z§'r.,mg-;l.v.+;m (24)
may be associated with the network [Hopfield, 82]. Then the change in the energy,

AFE, due to the change in the output of neuron i is

AE = (YT + L-UlAY
= —[s - VJAV; (2.3)

‘The above quantity is always negative because if x, > U,, then AV, is positive;
otherwise both of them are negative. Thus any change in V, lowers the energy
function. Since £ is bounded, the system eventually reaches a stable state when
1o more outputs change. A similar expression for the energy function can also be

obtained for neurons with graded response (llopfield, 84].

2.3.2 Learning

‘The information content in a neural network resides in the connection strength.
Learning is the process of adjusting the connection strengths or the weights in
such a way as to produce a set of desired outputs. Learning can be broadly clas-

sified into supervised and unsupervised learning. In supervised learning, inputs

5
|
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are presented along with a set of teaching inputs. Weights arc adjusted step by
step under the supervision of the teaching inputs so that the network will pro-
duce a correct output pattern whenever the trained input pattern is presented.
In unsupervised learning, there is no teaching input. However, the notwork lears
by capturing the regularities of the input patterns and responding to any special
feature that may be present in the input patierns. A brief review of the back
propagation learning scheme (supervised learning) and competitive learning (nn-
supervised learning) follows next. A detailed discussion on these two learning
schemes can be found elsewhere [Rumelhart ct. al., $4].

Backpropagation neural networks are strictly hicrarchical feedforward multi-

layered networks (figure 2.3). The first layer is the input layer which receive
external inputs and feeds the outputs to the next layer of hidden units. Any layer
can receive inputs from the layer just before it and can project the outputs to the
layer immediately after it. There may be more than one hidden layer and one

output layer. Hidden and output units, employing semilinear acti

ion rules, are
useful for capturing higher order regularities. Besides these units, there may also
be bias units which are always on and are connected to the hidden and output
units.

Backpropagation learning involves two phases of computation. It basically
minimizes (gradient descent) the sum squared crror over all the output units and
all the training patterns. Inputs are presented and the network computes the
outputs (Op;). These outputs are then compared to the desired or the teaching

inputs (L,;) to generate the error signal §,, where the suflix p repr

sents any
pattern p and j is any unit. Weights ar then adjusted for all the connections

feeding the output layer according to

AW

163,00 (26)



Output

Input layer Hidden layers

Outout layer

Figure 2.3: A typical nulti-layered feedforward network.
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where 7 is the learning rate and Oy is the input to the unit j from the unit i for

the pattern p. It can be shown that for the output units

833 = (ty = Op)fifact,) (27)

where f’ is the derivative of the activation [unction. &’s arc then computed for

the penultimate layer according to

buic = [ilacti) 3= 8y Wi (2.8)

where m's are the units connected to the unit k. Thus the error is propagated
back one layer. By utilizing the recursive lormula of equation (2.8), the error can

be computed for any units in a layer and the weights are adjusted a

ording to

the equation (2

6). It is important to note that the patterns are req to be
presented repeatedly in order to generate the proper internal representation.
The typical activation function employed by the hidden and the output units

is given by

Tre (29

This is a sigmoid function which is differentiable as well. The derivative of I, f*
is given by
20;
— =0l - 0; 2.
dact, Ot ) 210}

This derivative is maximum for O; =

.5 and since the change in weight depends
on this derivative, weight change will be maximum for the units with outputs near
the mid-range.

In the competitive learning method, units are also organised in a hierarchical
layered fashion. Any units can receive inputs from all the units in the layer
immediately below and can feed the output to all the units in the next upper

layer, through excitatory connections only. All the units in a layer are grouped
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together into a number of clusters. Units in a cluster inhibit cach other so that
only one unit in a cluster is active (“winner-take-all” strategy). Each unit has
a fixed amount of weight distributed over all the input lines ie. ¥;W; = L.
Learning is achieved by shifting weights from the inactive input lines to the active
ones. If a unit wins, then each of the input lines gives up a proportion (K) of its

weight which is redistributed among the active lines. That is

AWy = 0 if unit i loses
= kL kw, ituniti wins (211)
n.

where L, = 1 if the input line from unit j is active and n is the total number of
the active units. However, if the input patterns have few active components, then
some of the lines may never be on and the corresponding unit may never win. In
order to remove that constraint, the weight can also be changed according to the
above equation even if the unit loses, but at a much lower proportion. This at
least, will enable the unit to be in the competition. It can also be achieved by
changing the threshold in such a way that the unit becomes more sensitive when

it loses and becomes less sensitive otherwise.
2.4 Concluding remarks

In this chapter, biological neurons and neural networks have been discussed very
briefly. Simple models of the artificial neural networks have been presented along
with two learning schemes to introduce basic ideas about neural networks and the
relevant terms that would be used throughout the rest of the thesis. With this

done. the next chapter is devoted to a litcrature review.



Chapter 3

Literature Review

3.1 Introduction

Research concerning neural networks can be traced back as far as the 1940s.

Since then (except for a brief period in the end of the 60s and the heginning of
the 70%s) a lot of work has been done on neural networks but mostly involving
theoretical studies and computer simulation. Simulation of large neural network is

very slow - mostly because of large connectivities among the connecting clements

and sequential calculation and updating of neural states. The actual promise of

ialized hardware, especially in microclectronic

neural networks, however, is in
circuits. Then one can possibly exploit the speed and power of neural network
and go for practical applications. The major obstacles in realizing neural networks
in silicon were the lack of available technology to do so and sufficient knowledge
on structures and behavior of neurons in nervous system. lowever, a great deal

of work has already been done on the nervons system and the advent and rapid

progress of very large scale integration (vlsi) systems has made it possible these
days to realize large neural networks in silicon. A number of rescarchers are
working on the design and implementation of neural networks and a large number

of papers has alrcady been published.
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Reviewing of this literature can be done in a number of ways. One way is to
tackle each of the design issues separately and do a comparative study on different
approaches. Alternatively, the designs can be grouped together on the basis of
the technologies (e.g. digital, analog, mixed analog-digital etc.) and a study
done of cach group. Since the proposed circuits arc analog, stress will mostly be
on different. implementation issues of analog circuits including mixed or analog-
digital approach. Some of the major problems of pure digital design and some

clever solutions of these problems will also be presented.

3.2 Review
3.2.1 Analog implementation

In an analog circuit, the sum of the weighted product can be implemented in a
very compact area. This particular aspect has attracted many designers to go to
analog circuits. Nevertheless, analog circuits suffer from various problems. First

of all noise i ity and i ity to process is very poor. The other

notable drawback is its comparatively low precision. The latter one is particularly

problematic for various learning schemes which need weight adjustment in very

small steps. Multiplication is often achieved by the resistors, which suffer from

several drawbacks. Current ion is usually employed which can suffer from

saturation problem. On top of that, some of the analog circuits tend to be bulky.

Analog neural networks have been quite throughly discussed in [Graf et. al., 89].
The major design issues one should consider for the implementation of analog

ncural networks are :

1) fixed vs. programmable connectivity

2) realization of coupling strengths

3) volatility of connection strengths



4) type of connections
5) size of the neural components
6) ease of fabrication.

7) learning

Fixed vs. p ity : The computing power of a neural
network depends on its connectivity which in turn depends on the problem the
network is meant to solve. That is why most of the implementations are appli-
cation specific. The circuits designed by Graf ct. al. [Graf et. al.. 87, 88] have
programmable connection patterns. The neural output, instead of fecding some
other neuron directly, controls two switches. The connection is completed through
two other switches which are controlled by the content of two ram cells, The con-
tent of the ram determines the type of connection - it can be made excitatory,
inhibitory or left unconnected corresponding to a content of +1. -1 or 0. Thus the
connectivity of the network can be changed by changing the content of the rams
and hence, different configurations can be mapped into the same network.
Coupling strengths : Realization of the coupling strength is an important

issue because it determines the network’s ability to learn. Most of the carlier

designs (Graf et. al., 87, 8], [El-Leithy et. al., 87) used fixed value

stors as
the coupling elements. Although this is the simplest way to realize networks, there

are a few disadvantages to the approach. First, different connection strengths need

different values of resistors and hence, different silicon areas. This prevents the
network from having a regular structure as will normally be achieved with fixed
size coupling elements (synapses). Then, once fabricated, the resistors cannot. he
altered any more, frcezing the state of the system so that learning cannot take

place nor can the system be reprogrammed. Since the patterns to be stored are
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often not known a priori, the fixed value resistor approach does not cover as wide
a range of applications as one would normally expect from a neural network. Not
only that, resistors are expensive in terms of silicon area, particularly the high
value resistors required to keep the overall power consumption of the circuit low.

Graf et. al. [Graf et. al., 87 have developed a process by which amorphous
silicon can be deposited (as resistive elements) on an otherwise finished chip. Vlsi
compatible high value resistors using thin film have also been reported {Hubbard
ct. al., 86]. These resistors, packed in a chip, can be used to replace the resistor
matrix in a nctwork; however, the size of the resistor pack is severly limited by
the pin count of the chip. if the precise value of the resistor is not important,
diode connected transistors can be used [El-Leithy et. al., 87 ].

Variable coupling strength has been achieved in [El-Leithy et. al., 87] by
adjusting the threshold voltage V; of the input transistor. V; depends on a number
of parameters, most of which are process dependent (e.g. gate matcrial, gate
insulation material and it’s thickness, channel doping etc.). It also depends on the
bulk (substrate) to source potential Vsg of the transistor in a non-linear fashion.
By changing Vs, V; and hence the coupling strength can be changed. However,
this requires a variable dc bias for each of the connections and is difficult to realize
even for a modest number of neurons. It can be generated on chip, but automatic
control will require a rather complex controlling scheme.

A circuit has been implemented using MNOS/CCD principles [Sage et. al., 86]
achieving the variable coupling strength in a very elegant way. The circuit works
on Lwo concepts - charge coupled device controls the movement of the charge trans-
mitted by a synapse and the MNOS device stores the synaptic weighting value.
The charge packet released by the synapse is modulated by the trapped charge

under the MNOS gate and a metered quantity is available at the neural output
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for generating the activation. By the application of the external voltage, variable
amounts of charge can be stored in the nitride layer of the MNOS structure thus
achieving different coupling strengths or weights.

Variable coupling strength can also be achieved ([(Murray et. al., $9]). by
dynamically ¢toring the charge on a capacitor representing the weight voltage.
[Brownlow et. al., 90] have used switched capacitor techniques to realize fully
programmable weights. Weights are stored i capacitors and ate swilched by

transistors with speeds determined by the incoming pulse rates. Bipolar weights

have been realized in [Schwartz el. al., 89] by storing the weights dilferentially on

a pair of capacitors. This scheme also considers weight d wid has achieved 10

bits of analog depth for the weights.

Programmable bistable switches/resistors based on different erystalline mate-
rials of Bismuth oxide have been reported [Spencer, 86]. By applying pulses, the
conductivity of the material can be increased by several orders of magnitude. It
can be brought back to the initial insulating state by applying negative pulses.
When electric field is applied, vacant oxygen sites are created which contribute

to the conductivity. By suitable biases and applying pulscs

resistivity of the
required value can be obtained and hence can be used as a programmable con-
nection elements for the neural networks. This scheme seems to be an interesting
proposition but requires a lot of improvement on the metallurgy of these materials
so that it would be possible to realize a large scale array with identical switching
characteristics.

A two quadrant multiplier with a digital weight scheme has been described
in [Hollis et. al., 90]. Weight is represented by a set of parallel binary weighted
(W/L ratio varies in binary fashion) current sources.

Floating gate technology seems to be the most viable weight storage scheme.
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It has been successfully used in the ETANN chip [Video, 91] and gives 6-8 bits
precision. Under this scheme [Sze, 81, charge is injected from the silicon across the
first of the two insulators and stored in the floating gate giving rise to a threshold
voltage shift. Programmability is casily achieved by storing different amount of

charge in the floating gate. MNOS is a similar device but has a different structure.

latility of the ion strength : ility of the connection
strength is important because once a proper sct of weights is learned, it should
be retained for future use. Resistors are best suited for this purpose. This is
also easily achieved in Sage’s approach [Sage et. al., 86]. The charge that is
trapped under the nitride layer has a very high retentivity at the normal operating
conditions. The floating gate approach or FAMOS is also very much suitable
for long term charge storage. In [Murray ct. al., 89], the charge storage being
dynamic, there s steady leakage of charge from the capacitor. Periodic restoration
of charge is done [Brownlow et. al., 90] from off chip ram through a digital to
analog converter.

Type of connections : Most of the papers being discussed here use both exci-
tatory and inhibitory synapses. One common way of realizing inhibitory synapses
([Graf et. al., 86, 88], Tank et. al., 86, 87]) is to use the inverted output of the
neuron. In the paper [Verleysen et. al., 89], a simple digital control drives all
excitatory current through one line and all inhibitory current through the other
line depending on the sign of a control line. Inhibition in [El-Leithy et. al., 87]
is achieved by using PMOS transistors. Inhibition is also achieved in [Murray et.
al., 89] by removing charge from the capacitance, the voltage across which repre-
sents the activity of the neuron. However, only one type, namely the excitatory
connection has been achieved in [Sage et. al., 86].

Size of the neural components : The area of the neural components has




to be small in order to accommodate a large uscful network in a chip. Since
the number of synapses is usually much larger than that of ncurons, one has to
minimize the size of the synapse. The MNOS/CCD circuit is very compact and
so are circuits described in [Brownlow et. al., 90]. In [Cotter ct. al.. 88], fow
neural building blocks have been designed which can be used advantageously 10
realize neural networks in visi. Analog computers with a number of visi chips

in conjunction with a host computer have been discussed in [Eberhardt et. al

89], [Mueller et. al., 89]. A number of chips can be connected together to realize
a large network. Functionally both the schemes are quite competent but they
require complex control and timing and can accommnodate only a small number
of neural components per chip.

Ease of fabrication : One has to be careflul about chaosing the basic com-
ponents so that they can be fabricated using the widely available fabrication

processes. The circuit in [Sage ct. al., 36] employs special fabrication techniques

for realizing the MNOS device. Resistors are realized in [Graf et. al.. 86] by a

special fabrication technique and also in [Hubbard ct. al., $6] although it was

claimed to be a visi compatible process. Bistable switches and r

istors [Spencer,
86] also require special fabrication procedures.

Learning : Since the work presented in this thesis does not consider learning,
learning capability of different circuits will not be discussed.

Pulsed analog neural circuits fall under the analog category and are one of the
most attractive candidates for neural networks. A varicty of techniques such as
pulse width modulation, pulse height modulation. simple gating ete. can be used
to multiply the pulse stream by the weight voltage. Pulsed circuits have been
reviewed quite nicely in {Murray et. al., 91] and pulse height modulation seems to

be the best candidate for this purpose. Under this scheme, analog weight voltage
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is stored on a capacitor and incoming pulse is modulated by this weight voltage

through a MOS transistor [Murray ct. al., $9].
3.2.2 Digital implementation

A pure digital approach to the implementation of ..cural networks suffers from a
few drawbacks even though it has quite a few positive points that makes it an
attractive candidate for visi system. Registers arc needed for storing the weights.
Digital multiplicrs and adders are required to obtain the sum of the weighted
product. All these are expensive in terins of silicon area. Time sharing is one way
of taking care of this problem but this calls for a complex control scheme and at
the same time reduces computational speed. On the other hand digital circuits
are robust with respect to noise and process variations. They are well suited for
applications where precision is more important than the complexity or the size
and are particularly very well suited for various learning schemes.

The digital approach is problematic for a fully connected network and is mare
suited for a layered network. This is so because at each connection, one needs an
adder and a multiplier and they are expensive. However. different approaches can
be taken Lo overcome these problems. The next few paragraphs deal with some
of the innovative approaches for realizing the sum of the weighted products.

A digital neuro-chip with six neurons and eighty four synapses has been de-
scribed in [Hirai et. al., 89]. The neurons operate asynchronously and several
chips can be connected together to realize networks of any arbitrary size. Synap-
tic weights are programmable (64 levels) and can be set or monitored by a host
computer. The incoming pulse density is transformed to a density proportional
to the weight by the rate multiplier. An up - down counter is used to realize exci-

tation and inhibition and a rate multiplier is used to generate the output pulses.
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This scheme, even though unique in its conception, is very bulky.

A digital puise density modulation circuit has been designed and described
in [Tomberg et. al., 90]. Each chip can be used as a stand-alone device or can
be cascaded to form a larger network. Instead of nsing normal binary arithmetic
numbers, pulse density arithmetic (where cach bit has exactly equal weight) num-
bers have been used resulting in a simple control and arithmetic. This has been
achieved at the expense of a greater number of bits than is required in normal
binary arithmetic. Multiplication is achieved by duing x-or and addition is bit se-
rial thus the computation time is direct.y proportional to the number of neurons

(for a fully connected network).

The circuit given in [Blayo et. al.. 89] has a Tully conneeted network

alized
with systolic architecture. For N neurons, 2N steps are required (o compute the
sum of the weighted product. The performance can be improved by introducing
pipelining but the approach nceds very complex circuitry and controls.

A multilayered neural architecture using cellular arrays has been given in
[Faure et. al., 89]. Each array is connected Lo it's four adjacent neighbors trough
cight bi-directional buffers. Each cell consists of a routing part and a processing

part and by loading appropriate messages, any cell can he logically connected Lo

any other cell.

In another bit serial approach [Butler et. al., 9. each synaptic element adds
its share of weighted product to the partial sum line running down the synaptic
column. The output state is restricted to 3 dilferent levels and the multiplication
by the weight is achieved by shifting the binary weight.

A different approach has been taken in [Weinfield, 89) where the neural ontput
states are stored in a circular shift register which can be simultancously accessed

by all the neurons. A simultaneous partial potential is thus obtained at cach shift
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operation of the register (for a fully connected network). But the whole neural

circuit as such is very bulky, it includes an adder, comparator, sixty-four 9 bit

i s e abints A A & T

weight storage areas elc.

3.3 Concluding remarks

This chapter dealt with different circuits and implementation techniques for the
neural networks. Some circuits have certain advantages in some of the design
aspects but disadvantages in others. Floating gate technology seems to be the
most suitable candidate for programmable. long Lerm analog weight storage. The
synaptic circuit has Lo be compact compared to the neuron in order to achieve
high integrability. With thesc in mind, the next chapter deals with the design phi-

losophy and the motivation behiud the desigu of this particular kind of circuitry.

S



Chapter 4

Design Philosophy & Proposed
Architecture

4.1 Introduction

In any neural network, whether artificial or biological, the number of synapses
is much higher than the number of neurons. In a fully connccted network of
n neurons, the number of synapses grows as n%. When the implementation in
silicon is at hand, one has to consider the implication of scale very carclully. The
number of synapses per neuron should not be limited by any circuit constraints.

The pulsed analog neural circuits being proposed here.

have distinet advantages

over most of the existing neural circuits.

4.2 Objectives

The main objectives of this design approach are
o to minimize the synaptic arca

o to develop an eficient way of adding a large number of synaptic outputs

together



® to design standard cells which can be put together to realize any neural

circuits independent of synapse Lo neuron ratio ~ i.c. scalability.

4.2.1 Motivations

Minirnization of the synaptic arca is important because the synapses predominate
in any neural circuit. However, it is problematic to add the outputs of a large
number of synapses together and then feed the sum to the neuron input. Con-
ventional digital and analog circuits suffer from various drawbacks and they have
already been discussed in chapter 3.

Pulsed analog circuits scem to be the most effective way of realizing very
compact and efficient synapses [Murray et. al. 91]. Under this scheme, the neural
state is represented by a rain of digital pulses the frequency of which depends
on the input activation. The height of the incoming pulses is modulated by a
locally stored analog weight voltage. If the width of the pulse is narrow, the
modulated current can be thought of as a charge packet and can be dumped on
1o a capacitor. If a large number of synapses are connected together, more and
wore charge will be dumped on the capacitor thereby increasing the membrane
voltage steadily. In order Lo overcome the saturation, the capacitance has to be
increased i proportion to the number of inputs.

Ancther advantage of this approach is that the information content is in the
frequency of the neural output pulse, not in its height. So the output can be
routed to a distant synapse very casily. Not only that, the pulses, being essentially
digital, can be restored by means of digital buffers while being routed over a large
distance, The same buffer can also be used to handle the fanout problem.

The other point worth mentioning here is that the synaptic circuits are either

excitatory or inhibitory but not both. That is, they cannot move back and forth
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between excitation and inhibition as they can in most of the

isting neural net-
work models. So far, this kind of synapse has never been observed in hiological
neurons (Personnaz et. al., 86]. This bipolarity can casily be handled in digital

circuits but is

icin analog i ations. For instance, where a mul-

tiplier is used for the weight circuit, one needs a four quadrant version instend of

a single quadrant if bipolarity is allowed.

Finally the transformation of charge packets in the synanse is achieved by
applying the pulses to a MOS transistor whose gate is held at the weight voltage.
So the amount of the charge being dumped on the capacitor depends on the rate
(and width) of incoming pulses and the weight voltage. However, since the MOS
transistor is inherently nonlinear, scaling the weight voltage will not scale the
neural output linearly. So far, there is no evidence that lincarity is maintained in
the biological system. Moreover, all the learning mechanisms employ some sort
of feedback where the weight is changed till the correct output is ubtained. This

en il it turns

does not demand lincarity so long as monotonicity is prescrved.
out that linearity is the rule in biology. it may be worthwhile to allow non-lincarity

in order to achieve a very compact and efficient synapse.
4.3 Proposed Architecture

Figure 4.1 shows the basic architecture of the proposed pulsed analog neneal net-

work. For the reason described later (chapter T), two difforent Lypes of nenrons

have been designed. The first one is the standard ne

ron used in the hidden layer
and the output stage. It consists of a comparator and a pair of pulse gencrators
which emit one pulse each, every time the input activation goes past the thresh-
old. The other type is for input neurons which are rate generators. One kind fires

at a maximum rate with an input voltage of 5 volts and gradually decreases the



discharge pulse

Figure 4.1: Block diagram of the proposed auto scaling pulsed neural network.



rate as the input voltage goes down. Whereas, the input neuron with a circle

the input (not shown, please refer Lo figure 7.1) is the inverting type which fires
at the maximum rate when the input is zero and decreases the rate as the input
voltage goes up. This second type of neurons exists in the retina which respond
to darkness instead of the light and are called dark cells.

The channel resistance of the synaptic transistor is controlled by the weight
voltage, thus controlling the amount of charge flow to and from the membrane
capacitance. If the synapse is excitatory. charge is added to the capacitor while

it is removed for the inhibitory synapse. To achicve scalability, the membrane

capacitance has been distributed over the synap: So, the total capacitance

of the neuron depends on the number of synapses attached to the neuron. If the

capacitance were included in the neuron instead. the size of the

pacitance would
have to be changed depending on the number of synapses in order to avoid the
problem of saturation. Another advantage is that each synapse adds or subtracts

its own share of charge thus avoiding the problem of current den

ity build-up due

to simultaneous arrival of pulses. Since all these capacitors are in parallel, the
addition essentially turns into a single minimum size line or bus representing the
input activation or the membrane voltage.

The other point to be noted here is that the inhibitory synapses do not contain
any capacitors and the scaling is applicd only tv the excitatory synapses. Since the
inhibitory synapse removes charge from the total membrane capacitance thereby
making it harder for the neuron to overcome the threshold, there can be no neurons

citation and this

with inhibitory synapses only. They cxist only to inhibit the e
is achieved by removing the charge, not by increasing the capacitance. However,
the scaling of the inhibitory synapses is oblained in the secondary level in the

sense that there must be more inhibitory synapses as the number of excitatory
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synapses goes up.

Once the neuron fires, the associated synaptic capacitors are di o

that the charge integration cycle can start once again. Scalability has once again
been achieved by distributing the discharge transistors in the synapses. Though a
large number of transistors are required, all of them operate in parallel as a single
wide transistor whose width is scaled up by the number of synapses. Whereas if
a single transistor is used in the neuron, its width has to be adjusted according
to the number of synapses - thus making it impossible to go for the standard cell
approach. An extra set of connections from the neuron output to the synapses are
needed in order to broadcast the discharge pulse, but they can run in parallel to
the wires carrying the synaptic outputs together to the neuron. Thus, the channel
will be slightly wider to accomodate a two wire bus instead of one.

Since the amount of charge being dumped on the capacitor depends on the
pulse width, it is required that the output pulse be narrow. However, for proper
discharge operation, the discharge pulse has to be significantly wider. That is why
two pulse generators have been included.

Since there will be n neurons and s synapses where s3»n, synapse S;; will
reccive a discharge pulse from the neuron i and an output pulse from the neuron
J- Thus, on an average, output and discharge pulses are to be fed to almost equal
number of synapses. Since this number can be very large, fanout problems have
to be handled. A digital buffer has been designed having the same height as the
synapse. Two buffers occupy roughly the same area as a synapse. Consequently,
the buffers can be inserted in the synaptic ranks very casily, and the signals can
be routed through the buffers.

The resistor in the synapse represents the leakage for the proper operation

of the neuron. Without it, the neuron integrates the incoming pulses indefinitely
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reducing the firing rate along a layered network. By distributing the leakage along
with the capacitor, the time constant has been made independent of the scale.
Although some circuits for weight manipulation have been designed, not much
work has been done on that and consequently it will not be included in the thesis.
The floating gate technology seems to be the most promising candidate for the
implementation of the efficient weight storage (chapter 3) and the synapse has

been designed with that in mind.

4.4 Concluding remarks

In this chapter, design philosophy for the auto scaling neural archiccture has been

presented. There has been significant deviation in the proposed architecture from

the existing ones. Memt has been distrib

| in the synapses
for the purpose of scalability. The neuron fires only one pulse when the input
activation exceeds the threshold voltage. A discharge pulse is also generated to
discharge all the associated synapses so that the charge integration cycle can start
once again. Scalability has once again been achieved by distributing the discharge
transistors over the synapses. Thus scability has been achieved at the expense of
a slight increase in the synaptic area. Two differcnt input neurons have also heen
proposed for interfacing networks to the external inputs. The neural architecture
having been proposed, the next chapter deals with the design and analysis of the

individual blocks.



Chapter 5

Circuit Design and Analysis

5.1 Introduction

This chapter contains the designs for different neural circuits, namely the exci-
tatory synapse, the inhibitory synapse and the standard and the input neurons.
Simulation of the circuits using Spice, and a mathematical analysis of each of

them has also been provided.

5.2 Excitatory Synapse
5.2.1 Circuit Description

The excitatory synaptic circuit is shown in figure 5.1. The circuit uses two min-
imum size NMOS transistors in series. The excitation voltage V.. is applied to
the gate of the first transistor M1 and the second transistor M2 is gated by the
weight voltage V. The drain of M1 is pulled high. The output of the synapse is
the membrane voltage V,, taken across the membrane capacitance Cp,. Transistor
M3 (minimum size again) is the discharge transistor which discharges Cr when-
cver the neural input activation (or the membrane voltage) exceeds the threshold
vollage. Transistor Md is a long transistor which gencrates the leakage required

for the proper operation of the synapse.
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Figure 5.1: Schematic of the excitatory synapse. All transistors have W=5.4
and L=3p except for M4 which has L=20.6u.
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If only one transistor (M1) were used instead of M1 and M2, the excitatory
signal would have to be applied to the drain of M1. Since a neuron may be
connected to many synapses, this would require a large driving capability from
the neuron output. Not only that, when the input signal V. is off and Vi, is
greater than zero, the drain becomes the source. The gate being pulled to the
weight voltage, there will be a steady current flowing from the capacitor Cy to
the ground. Since the gate current is negligible, the above approach Lakes care of
both problems.

The amount of current flowing through M1 and M2 depends on the gate voltage
of M2 and the voltage across Cyn. By controlling the gate voltage Vi, the amount
of charge that would be dumped on the capacitor can be controlled. So the effect of
the excitatory pulse from neuron u; to neuron u; through the synapse Si; depends
on Vat. Vi, therefore, is the strength of connection between the two neurons.

Transistor M1 is always in saturation because the drain is being pulled high.
For most of the useful weight voltage range (described later), M2 will be in the lin-
car region. However, the charging current is somewhat less due to higher threshold
voltage because of non-zero bulk to source potential. This is not a problem for
the proper operation of the proposed circuit but can be taken care of by tying the
substrate to the source potential of the transistors M1 and M2. Charging current
can also be increased by increasing the width of M1 and M2. But minimum sized
transistors are good enough for this application. Minimum size also reduces the
parasitic capacitances.

Charge is dumped only during the time V.. is high. When V,; is low, M1
is cutoff but a small leakage current flows through the reversed biased diodes
between the source, the drain and the substrate. This leakage current is very

small (= 10pA) and can be ignored. This is because synapses will operate in
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parallel and the amount of incoming charge (= 5uA /excitatory synapse) will be
much more than the charge lost due to unwanted leakage.

5.2.2 Circuit Design

If the leakage is not included in the synapse, the neuron outpnt period is
T=T+T. .0

where T; and T, are discharge and charge time respectively. If there are n excita-
tory synapses, and if [, is the time averaged charge arrival rate, then the total
arrival rate is nly,. For n synapses, the total membrane capacitance is nC,,. So
the average charge time is

\

=

Tt

_— 5.2
P 52
where V;is the threshold voltage of the neuron. The average firing rate is
| |
Bkt 53
T oy

Normalizing the average firing rate to the maximum firing rate (1/T2) and the
average rate of charge arrival to the average maximum arrival rate /. one gets
R

T T+ oo

Imaz is the theoretical maximum rate and is given by

where Qo is the maximum rate of charge transfer by a single synapse cxcited
at the rate of 1/Ty and with a weight voltage of 5 volts. The above cquation is
plotted in figure 5.2 and basically represents the activation function. The curve

does not exhibit the two decision states normally present in neural networks. The
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Figure 5.2: Normalized firing rate of the neuron without leakage.
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implication is that a minimal charge arrival rate should be maintained (in order
to overcome the leakage as in the biological neuron) to generate an output.

However, if a resistance Ry is added in parallel to the capacitance,

fay =

V. o
o Cnr (5.6)

The steady state solution is V = loyRpt. If Iy Rie < V4, the device will never fire.

V can be d by the standard exponential equation
V= Lo Ru(l — e aow) )

The charging time T, is the time taken to charge up to Vi, the threshold voltage.

So, the output firing rate is

1
R= 00— il 14
Ta = RuCulnl - 5] R 1Y
= 0 otherwise (5.8)

Normalizing the equation once again. one gets

R !
[ SRR, g i
UTi = U=l = ] (39)

where 7 = 848m and [ = 4 = Ml [ is current threshold which deter-
mines the firing instance. Figure 5.3 shows a series of plots for /=03 and various
values of Cy (that is different values of 7). It can be seen that 7 influenices the cur-

vature of the plots. This activation function clearly shows two de

on states but,
is not sigmoid. This type of activation function has been described in [Rumelhart
et. al., 84].

The capacitor Cpn, apart from the bulk membrane capacitance, includes the

parasitic capacitances as well. These parasitic capacitances stem from the bulk to

drain capacitance of transistors M3 and Md and the body to source capacitance
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of M2. These capacitances are voltuge and geometry dependent. The expression
for these capacitors are given by ([Geiger ct. al., 90])
_ CJA 4 CJswp

(L= (Ve/dal™ ™ [1 = (Ve/g)"
The minimum size geometry is L = 3um and W =5.4um. W = 5.4m is chosen

Csp

to avoid the dog bone effect at the drain and the source contact points. The total
parasitic capacitance comes to around 50 to 60 {F. Since this is quile variable

(process as well as ing point d dent), membrane capacitance has been

chosen to be 100 {F or 0.1 pF, bringing the total membrane capacitance to around
0.15pF. The incoming pulse width has been set to 6.5ns so that a single synapse
with a weight voltage of 5 volts can make the ncuron firc one pulse but not if the
weight voltage is less than 3,6 volts. The threshold voltage of the ncuron has been
chosen to be equal to 1.5 volts which is half way between the upper and lower
values of low and high logic levels. The useful weight voltage is from V,,=2.5
volts to 5 volts. The lower valie is due to the fact that M2 conducts (ignoring
subthreshold operation) when V. is more than the neuron threshold voltage (=1.5
volts) plus its own threshold.

The maximum charge that can be delivered to the capacitor by one single
pulse has been simulated to be equal to 437 [C. T; was set Lo 30ns so that the
maximum current that can be provided by a single synapse is 14.6 pA. If Ry is

chosen to be 500 kS then 7=

. This is in good agreement because
Iimaz is the upper bound of the current.

Transistor M4 replaces Ry and has a constant gate voltage of 1.5 volts. M1
will be in saturation for any membrane voltage more than 1.5 - 0.7 (threshold
voltage) or 0.8 volt. However, when the membrane voltage is less than 0.8 volt.
M4 is in the linear region and the leakage current is less. To compensate for

this fluctuation, /; is set 10% higher than was derived and it's absolute value is
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0.23%14.6 pA = 3.4 pA. In saturation

Ii=05+Kk«S4+(1.5—0.7) (5.11)

where S4 is ¥4 and is the shape factor. S1 turns out to be equal to 0.26. With
W=5.4 um, L comes Lo 20.6 pm.
A Spice simulation of a single synapse with 6.5ns excitatory pulses and 5 volts

weight voltage is shown in figure 5.4.
5.2.3 Circuit Analysis

Referring to the figure 5.1, for a weight of 5 volts, transistor M1 will be in sat-

uration and M2 will be in the linear region. The current through M1 is given

by
(3.12)
and the current through M2 is
K2'w2
fo= S UV = Vo = V) = (V= VoAV = V) (313)

Negleeting the parasitic capacitances at the junction of M1 and M2, one can say

that [, =1

The threshold voltage of M1 is given by
Vi = Vro+7(//6 + V - \/8) (5.14)

where V s the source voltage of M1. Similarly, the threshold voltage of M2 is

Vi = Vo + 18 + Vi = /3) (5.15)

Solving the equation for Iy = I, and noting that Vs can be taken Lo be constant

for small time steps, V can be written as

Hat by St 07 = 2fa? 4 20— vt (5.16)
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where a=V,:-Viy and b=V,,-Vip. This value of V can be put back to the equa-
tion 5.13 for I to find the instantancous current through M2. If the time steps
are taken to be small enough, then

AV

h=Cn g

(5.17)

Figure 5.5 shows the output of a small C-program (along with Spice output for
a comparison) to compute the output of a single synapse due to the excitatory
pulses (width is 7.0ns and period is 30ns). It agrees quite reasonably with the
simulation results from Spice. The small deviation is due to the fact that the
program does not consider the higher order effects which are present in the Spice
level 3 simulation. The other point to be noted here is that the leakage transistor

has been omitted.

5.3 Inhibitory Synapse
5.3.1 Circuit Description

The inhibitory synapse is shown in the figure 5.6. It is almost identical to the
excitalory synapse without the transistors M3, M4 and the membrane capacitance
Cy. The drain of M1 is grounded, so it becomes the source. Since all the synaptic
outputs will be tied together to constitute the activation bus for the neuron,
application of the pulses at the gate of M1 will result in withdrawal of charge
from the total membrane capacitance. This discharge current, however depends
on the weight voltage Vi, at the gate of M2. Most often a stronger inhibition
(compared to the excitation) is required so that the weight voltage will be around
5 volts. This will make M2 operate in the linear region. Since the source of M1 is

grounded, M1 will also be in the linear region.
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Figure 5.6: Schematic diagram of the inhibitory synapse. L=3y and W=5.4 for
both the transistors.



5.3.2 Circuit Design

There is no elaborate design procedure for the inhibitory synapse. Both M1 and
M2 are minimum sized transistors. A spice simulation of three excitatory synapses

and one inhibitory synapse is given in the figure 5.7.
5.3.3 Circuit Analysis

When the inhibitory pulse Vi, is applied to the inhibitory synapse (figure 5.6)
with a weight voltage Vi of 5 volts, an expression for the discharge current can
be obtained as follows : for the quantitative analysis, V. will be taken to be the
threshold voltage of the neuron or 1.5 volts. If V is the drain voltage of M1, then
the current through M1 is

KUWL o s
h= =l - V) - VIV (5.18)

and through M2 is

2(Var =V = Vi) = (Vi = V)}(Var = V) (5.19)

where Vs is the total membrane voltage of the neuron. Fquating these two current

expressions as in the last section, V can be solved to be

1 .
Vo= (Vi = Vi + Vi = V)

1 Tt P e %
£ (Vo= Vot V= V) = Vi = Via = SVl (3:20)
Here, Viy = Vig and Vj, is given by

Vo = Vio 4 4(/a + V = /3) (5.21)

Substituting V in the expression for [ will give the value of the discharge current.
Finally, it can be noted that if C'yy is the total membrane capacitance, then

AVy
At

Iy=Cy (5.22)
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From the above equation, one can find the change in the activation voltage due

to an inhibitory pulse.

5.4 Standard Neuron
5.4.1 Circuit Description

The standard neuron consists of a comparator and two pulse generators. \When-
ever the input activation voltage goes past the neuron threshold voltage, the
comparator output goes high. This positive transition is detected by the pulse
generators which in turn emit one 6.5 ns neural output pulse and one 17 ns wide

disch |

ge pulse. This disch pulse discl the capacitances and

the output iy goes low, Fheschematic:disgumyis dows i

figure 5.8.
5.4.2 Circuit Design

The neuron circuit is quite straightforward. A standard n-channel differential
amplifier with a p-channel current mirror load is used as the comparator. A second
inverting stage is added to increase the gain and the output swing of the amplificr.
The output is fed through a standard digital buffer, the output of which feeds the
pulse generators. This certainly limits the amplifier load and hence improves the
comparator delay. The pulse generators are pulse edge differentiators using the
logic gate delays. Small capacitors (0.1 pF) have been added in the inverter chains
to increase and achieve the desired delay. Spice simulation of the standard nenron

for a ramp input is given in figure 5.9 (a Spice input deck is included in Appendix).
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Figure 5.8: Schematic of the standard neuron.
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Figure 5.9: Spice simulation of the standard neuron. First two waveforms are
input voltage and reference voltage. The next one is the output pulse while the
last one is the discharge pulse.



5.4.3 Circuit Analysis

Analysis of the and the associated delay is well d [Allen et.
al., 87), [Geiger et. al., 90]. However, the relevant portion of the design follows
next.

Comparator

Referring to figure 5.8, under the balanced condition (Vg1=Vg2), s splits equally
between M1 and M2. So one needs M1 and M2 matched and similarly M3 and
M4 matched. So, S1=52 and $3=84 where S (=W/L) is the shape factor and
Iy = I = Is/2. The drain voltage of M3 and M are equal and I, is mirrored Lo
M6 by the ratio of M6 to M. Similarly, Is is mirrored to the output by the ratio

of M7 to M5.
ST
ho=leg
S6
= - .23
Is Legg (5.23)

i H ircuit, W1 Sadum W4 _ 108um WI _ Sdum
this particular circuit, =3 = I = sdum gnd

Ws _ 108um i W6 _ s.aum
Is = S+ This leads to 73 = 500,

The p ion delay of the can be esti d as follows. Since

the delay is different for a rising and a falling output, the total rising delay (T¥)
is the sum of the falling delay of the first stage (Tj;) and the rising delay of the
second stage (T3%). Similarly, the total falling delay (") is the sum of the rising
delay of the first stage (T;) and the falling delay (T3) of the second stage. Instead
of getting into the detailed discussion (which can be found in [Geiger et. al., 90]),

a brief outline is presented below.

Vrre2 = You
1 = crfimmctou
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where Vigpy is the trip point of the second stage and is given by Vipp —

=

and Vou and Vo, refer to the output high and low levels. /g, is the maximum

current available to charge the final load capacitor (C2) and C1 is the parasitic
capacitance at the output of the first stage. For the above designed circuit, 7,
and 7T are found to be 4.5ns and Bns whereas Spice simulation shows them to be
+.Tns and 5.6ns.

Delay in the pulse generators

The pulse widths of the neural circuit depends on the inverter delays for different
load capacitors. The delay calculation for the inverter pair is well documented in
the literatures [Mukherjee, 85], (Geiger et. al., 90). The total delay (t4) is given
by the sum of the delays due to high to low transition (ty1) and low to high
transition (tzz7). The transistors used in the chain of inverters are of minimum
sizes. t4 can be expressed in terms of the characteristic time constant for the
process (depends only on the geometrical and clectrical parameters but not on
any particular circuit), 7, by the relation ¢y = 87,. 7, is given by

= mﬁm (5.25)
The value of 7, for the parasitic load is 0.2 ns and is 0.52ns for both parasitic and
external capacitor (0.1 pF). So the approximate delay or the pulse width of the
neuron output is (0.2*4*4 + .5*4) or 5.2 ns. Similarly the discharge pulse width
is (.2*4*10 + .5*4*3) or l4ns. The delay due to the final stage nand - inverter
pair is not included in the calculation. Spice simulation shows these pulse widths

to be 6.5 and 17ns.



5.5 Input Neurons
5.5.1 Circuit Description

As mentioned earlier, two types of input neurons have been designed. The stan-
dard input neuron fires at its maximum rate with an input of 5 volts and the
inverting input neuron does the same for an input of 0 volt. The circuits are
shown in figure 5.10 and figure 5.11. The neuron employs a constant current
source and reflects the current to a capacitor through a current mirror. Transistor
M1 is the constant current source which sinks or sources current depending on
the gate control voltage Vc. This current is mirrored by M2 and M3 (and also
by Md and M5 for inverting input neuron) to the capacitor Ci,. The capacitor
output is connected to the standard neuron. When the capacitor voltage goes
past the neuron threshold, one output pulse is generated. However, the capacitor
is discharged by the buffered comparator output instead of the discharge pulse.

Consequently, the discharge pulse generator portion of the standard neuron has

been dropped from the circuit. This is required because initially the capacitor will
be fully charged and the comparator output will be high. Since the pulse genera-
tor needs an edge to generate the pulse, no pulse will be generated. So the high
output of the comparator will discharge the capacitor initially and subsequently,
every time after the pulse is generated. The inherent delay of the comparator
ensures that the capacitor will be fully discharged before the voltage can ramp up

the capacitor in the next cycle. The width of the discharge transistor (M6) has

been taken to be 12 um so that discharge time is very small.



Figure 5.10: Schematic diagram of the standard input ncuron.
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Figure 5.11: Schematic diagram of the inverting input neuron.



5.5.2 Design & Analysis of standard input neuron

It will be assumed that the drain of M1 is st to L3 volts. This will put MI in

the linear region and the current through it is given by
:,:%”51[2(\'(--\1.)-\'”\'1 (5.26)

where V1 is the drain voltage of M1. M2is in saturation and the current is given

by

V= Von = Vo)

Solving for /y = I3 it can be observed that to achieve V1=

1.87.

5 volts. 3

Setting W1 = 5.dum, L1 = Gum and L2 = 3pum one gots W2 = 13, The
expected current is then 189 uA. But Spice level 3 simulation shows this current
10 be 110 uA. Investigating this discrepancy. it was found ([Vladimirescu et al..
80]) that Spice in level 3 uses higher order cffects as well as many empirical
relations which are absent in the stated simplified cquations. Surface mobility
modulation by the gate voltage is given by
I
T+ 0(Vyy = Vin)

He =

and is 526.14 cm?/v-s. This is further reduced by the saturation of the hot clectron
velucity in the linear region reducing the effective mobility to

b a0
Hepp = e (5.20)
1+ itz

which is 465 em?/v-s. 3 = (W/L)jtesy Cor and is 289 E=5 AJV, Finally the drain

current is given by

L+ Iy

las = BVys = Vin = )

Vis)Vias (5.30)

which comes to 150 A accounting for only half the discrepancy..



In order to achieve a pulse train with a period of 30ns, the proper value of
the capacitor has Lo be chosen. The pulse is generated 10.2ns after the threshold
value is reached and comparator output goes low 13.3ns after the V+ input goes
low. So, the capacitor has to be charged to 1.5 volts in (30-10.2-13.3) us or

in approximately 7ns. So. Cy is found to be 110¢-6*7¢-9/1.5 F or 0.5 pF. The

capacitor will be charged to 3.78 volts when the comparator output goes high. The
discharge current is computed to be 1417 mA and it takes 0.8 ns to discharge the
capacitor. The comparator takes another 13.3 ns to get the output low. However.
the total time required for the comparator to make the output high is 7+10.2 ns
or 17.2 ns. This ensures that the comparator output will go all the way to a logic

low. The circuit has been simulated by Hspice and the different periods obtained

for different control voltages are noted below. The simulation of the above circuit

V.(volts) | Periods(ns)
5 30
4 33
3 41
2 68
1 333
0 x

Table 5.1: Control vol'ages and the periods of the generated pulses for the stan-
dard input neuron.

for a control voltage of 5 volts is shown in figure 5
5.5.3 Design & Analysis of Inverting Input Neuron

The following design procedure is for a control voltage of 0 volt. V1 will be

assumed to be 1.5 volts. Then transistor Ml is in linear region and M2 is in
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Figure 5.12: Hspice simulation of the standard input neuron. The waveforms
are for the control voltage, voltage across the capacitor and the output pulses
respectively.




saturation. The currents through M1 and M2 are given by
- "
L= SV =V - =22 )Vos
K :
L= FSAVI-V) (3.31)

52

Equating I and / and substituting values of all other parameters, one gets Z=1.

W1 is chosen to be 5.4um and L1 is 6um and this leads to W2 = 10.8um if L2 =
Bpm. S3 is taken to be equal to S2. If V2is set to 1.5 volts. then both M3 and M+t
are in saturation. Equating the currents results in S1 = 1.1 and consequently W4

=W5=

Aum and L4 = L5 = 4.9m. The charging current is calculated and
simulated to be 46uA. Using the same logic as in the previous subsection. Ciy is
found to be 0.22 pF. Most of the other discussions for the standard input neuron
also hold here, Time periods of the output pulses for different control voltages are

given below. The simulation with Ilspice for a control voltage of 0 volt is shown

V.(volts) | Periods(ns)
0 30
1 34
2 A
3 80
4 863
5 <

“Table 5.2: Control voltages and the periods of the generated pulses for the invert-
ing input neuron.

i the figure 5.13.
5.6 Concluding remarks

In this chapter. design procedure of the nenral circuits have been discussed. De-

tailed mathematical analysis has also been included. Each of the circuits has
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heen simulated using Spice and the result has been compared with the theoret-
ically calculated values. Equations 5.13, 5.16, 3.17, 5.19, 5.20 and 5.22 can be
used to develop a simulator which is needed for simulating a large network. This
is required because Spice is not very suitable for simulating a large network. In-
stead of getting into the detailed circuit equations, these equations can be used to
generate a macro model that can be used very effectively to simulate and study a

large network.

e



Chapter 6
Standard Cells

6.1 Introduction

In developing an integrated circuit. a top down design approach is nsually taken.
The whole circuit consists of a few big functional blocks which are decomposed into

subblocks in the next lower level of hierarchy. This is continued until the transistor

levelis reached. The same idea is also used for the physical design. Dilferent b

imected together

or cells are developed which are functionally unique and are
to realize the full circuit.
Working on the cell level has several advantages [Lauther. 83). Once one cell

is designed. it can be used repeatedly in the same eirenit leading to a high degree

and

of regularity of the layout. This reduces design t ilication expe
significantly. Once the cell is working properly. it can be used in other designs
without any further expense. Not only that. the number of components with
which one has to deal (manually or using place and route rontines) is much less

compared to the transistor level approach. Finally the standard ccll approa

cell and

leads to a very structured design. Functional details are hidden in the
one has to bother only with the input and ontput pins.

The standard cells for the neural circuits have heen developed using the Ca-

62
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dence EDGE and is ible with Canadian Microel ic Co ion’s

CMOS3 DLM process. This is a 3jum CMOS technology with double metal layers
and a single poly layer. The library was designed using the grids even though
EDGE can do gridless routing [CMC. 89].

All the dimensions mentioned in this chapter are design scale microns (dsm).

“This is related to the actual or the physical micron by the following relation

Physical micron = 2 design scale micron

6.2 Cell Specifications

o Grid size : each grid is 16pm wide with 16 subdivisions of one micron each.
The grid size stems from the gap that should be maintained between two

vias.
o Cell dimensions

~ Cell height : each cell has height of 7 grids or 112 dsms. The center of
the vdd bus makes the top boundary whereas the center of the ground
bus makes the bottom boundary. P-guard and N-well layers may exteud
beyond the bottom boundary.

— Cell width : the cell width can be anything. It has been found that
the EDGE place and route routine does not need the cell width to be
integral multiple of grid units. This is the most noticeable deviation
from the CMC CMOS3DLM library and leads to a compact cell design.

~ Cell origin : This is the left most center point of the ground bus.

— Cell boundary : this cortesponds to the left and the right cell bound-
aries but is 2.5 dsm above and below the top and the bottom of the

actual cell.

g
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— Power Buses : vdd and the ground buses run across the top and the
bottom of the cell to the full width. Metall is used for this purpose

and the buses are 10 dsm wide. 5 dsm metal is

stended heyond the

top and the bottom of the cell. Two metall pins (vdd! and gnd!) are

placed on the vdd and the ground buses and their a

to the left and to the right.

o Input-output ports : All input-output ports are provided with metall-via-

metal2 pads. They are 11 dsm square and are placed in the cell at any

position that was found convenient and area ellicient, Ports originating

from metall have metall-via-metal2 pads whereas thos

from poly b

poly-contact-metall and then metall-via-metal2 pads.  Most of the vias

s dlirections. In

have 11 dsm metal2 pins on top with top and bottom ace

order to save area, some of the vias could not he provided with free top and

hottom access. In that cas been drawn o a con

lace with a 3 dsm square metal2 pin at the tip.
p ! ¥ ¥

Some of the cells are compound cells in the seuse that they are composed of

base cells. Some of the ports of the base cells which are meant for internal

butting are provided with poly-contact-metall pads instead of vias. All the

input and output ports of the compound cells have via co

Port name : ports have heen named in such a way that they give good
indication about the incoming or vutgoing signals (c.g. V7, for excitatory

signal, DCPULSE for discharge pulse etc.).

» Interior of the cells : except for the power buses that rn across the full

width of the cell, all metall and metal2 wires are at least 2.5 dsm from the

left and the right boundarics. Poly wires maintain the same gap on all four
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sides. The P-well can occupy the lower half of the cell and extends to the full
width of the cell. This enables a continuous P-well along with the butting
cells. The P-guard and the N-well can extend beyond the left, the bottom
and the right boundaries. N+ and P+ layers are at least 2.5 dsm away from
the boundaries whereas the N+ and P+ diffusions are at least 4 dsm away
from all four sides. Care has been taken so that the design rule for the gap

between the P-well and the diffusion are not violated.

6.3 Cell Description

The cells have been designed in such a way that they can be butted together to
form a row of cells and the routing channels can he formed in between the rows. It
is also possible to stack rows together (with alternate rows flipped upside down)
without channels between them. This leads to a very compact layout. Metal2
wires run vertically upwards into the channels and the metall wires run horizon-
tally. Except for the compound cells, use of metal2 wires has been restricted only
on to the vias. For the compound cells. metal2 has been used for internal connec-
tions (when necessary) but this does not hamper the vertical access to the actual

input output ports.
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6.3.1 Excitatory Synapse
The layout of the excitatory synapse is shown in figure 6.1.
Dimension : 112 x 96 dsm
Input ports : Ver, Vi, Ve, Vik

Output port : ¥,

Figure 6.1: Layout of the excitatory synapse



6.3.2 Inhibitory Synapse

“Phe layout is shown in figure 6.2.
Dismension : 112 x 48 dsm
Input ports : Vin, Viu

Output port : Vp,

Figure 6.2: Layout of the inhibitory synapse



6.3.3 Standard Neuron

The standard neuron is a compound cell and is composed of the following base

cells : comparator, buffer, delay (capacitor) elements, inverter? (two minimum

sized inverters in a row) and inverter3 (three minimum

d inverters). The
out of the neuron is shown in figure 6.3. The basc cells are shown in figures 6.4
to 6.9.

Dimension : 112 x 901 dsm

Input ports : V4, V-, 1

Output port : NPULSE, DCPULSE
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Layout of the standard neuron
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Figure 6.5: Layout of the buffer
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Figure 6.6: Layout of the inverter3.
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Figure 6.7: Layout of the inverter2.



Figure 6.8: Layout of the two input nand gate.



K6}

gre

TFigure 6.9: Layout of the inverter.



6
6.3.4 Inverting input neuron

The inverting input neuron is also a compound cell and is composed of inN0

(voltage dependent ramp generator). comparator. huffer, defay. inverter2 and in-

verterd, The layout of inNO and the inverting input nenron are given in Lgure 6.10
and figure 611 .
Dimension : 112 x 595dsm

Input ports : -%

Output port : INOOUT



NO.

Figure 6.10: Layout of ramp generator in



=z

Figure 6.11: Layout of the inverting input neuron
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6.3.5 Standard input neuron

The standard input neuron is d of inN1 (voltage d

ramp gener-
ator, figure 6.12), comparator, buffer, delay. inverter2 and inverter3. The layout
is shown in the figure 6.13. Dimension : 112 x 600dsm

Input ports : V., V=V,

Output port : INIOUT



S0

Figure 6.12: Layout of inN1.
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Figure 6.13: Layout of the standard input neuron.



6.4 Simulation

All the standard cells have been extracted and the simulations have been done

on the extracted schematics (using Spice). Figure 6.14 and figure 6.

show the
simulations of the excitatory synapse and the standard neuron for the same kind
of inputs as in the previous chapter (i.c. simulation on the schematics). The
names of the waveforms are shown on the left of cach of the waveforms. 1t can he

observed that the result is somewhat different (

pared to the simulation results
on the schematics, figure 5.4 and 5.9) duc to the presence of parasitic capacitances
due to actual laying of different layers and routing between cells (in componnd

cells).



Figure 6.14: Simulation of the extracted layout of the excitatory synapse.
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Chapter 7

Simulations and Results

The proposed pulsed neural arclitecture is quite different from the existing oues
and therefore needs some careful exploration. A number of networks such as
pattern classifiers, associative meniory, XOR gates. Hopfield nets ete. have been
simulated using Spice or Hspive. The next fow sections are devoted to some of

these simulation results.
7.1 Pattern Classifier

Figure 7.1 shows a simple pattern classifier network which is basically a template
matcher [Graf et. al. 88]. A number of vectors are stored in the network (here 7
vectors namely, 00000, 11111, 11110, 10101, 01010, 00100 and 11011, cach 5 bits
long). Input neurons feed each synapse in a row in paralicl and the output of all
the synapses in a column generate the activation voltage for the corresponding
neuron. When an input vector is presented (00000 in this example), the netwark
compares the vector with all the stored ones in parallel and generates the outputs,
Figure 7.2 and 7.3 show the activation and the output of all seven nenrons. It
can be seen that the output firing rate depends on how closely the stored veetor
matches the input one. Thus, the network not only finds a match, but also

indicates the Hamimning distance. In this example, the network could suceessfully

o
%



g&

0

S EEEE
SREEE
EEEE

PIEEEEE
RN IEAR

ﬂ
_<1]
]
<
’

z
z
S
z
IS
z
&
z
=)

Figure 7.1: Template matching example. All weights are 3.6 volts. Stored pattern
(0 or 1) is written inside the synapse.
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classify patterns which are perfectly matched or away by a llamming distance
of one or two. The network does not respond to a pattern away by a Hamming
distance of three or more. This can be changed by changing the weight voltage or
the threshold voltage of the ncuron.

Figure 7.4 and 7.5 also give the si

lation results of the network when probed
by a vector (01100) not stored in the network at all. It is apparent that even i
there is no exact match, the network can classify the stored pattern according to
the Hamming distance.

In a pattern classifier, | and 0 components of the stored vectors are normally
realized by excitatory and inhibitory synapses. This seheme is problematic for e
proposed pulsed neural circuit because the total input activation of any nenron is
essentially the number of ones minus the number of zeroes of the stored pattern. If
the number of stored zerocs is more than the number of stored ones. there is no net

activation and hence the neuron would be unable to detect the pattern. Most of

the neural networks [Graf et. al., 38], [llopficld, 82] use an inverted output of the

neuron for the inhibitory synapse. [owever. the biological neurons use the same

polarity signals for both excitatory

and inhibitory

napses. This is the reason for
creating the inverting input neuron which fires at a high rate for an input of zero
and therefore works as a zero detector. By using both of these input newrons, vne
can store the patterns by using excitatory synapses only. All the synapses were

driven by a common weight which was varied for optimum performance (the only

form of learning available to us at present).
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A content addressable memory can be formed by a template matching network
followed by a winner-take-all network (Graf ct. al.. 89]. The Hamming classifier
or the template matcher finds ont the overlap between the input vector and the
stored ones and the winner-take-all network retrieves the pattern with maximum
wverlap. Figure 7.6 shows such a network with the [Ispice simulation ir: figure 7.7
“T'he output of cach of the neuron inhibits all the other neurons. In the simulation,
the input pattern is 01100 which closely matches (but not exactly) the sixth stored
vector (00100). It can be seen that the network is able to detect the stored vector
(newron 6 is firing) properly. The firing rate is less due to the fact that the stored
veetor (00100) does not. exactly match the probed one (01100). This can be taken

care of by increasing the weight.
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7.2 XOR Gate

Three differcnt types of XOR gates have been simulated all of which follow the
classic minimum XOR topology. Each version has two input ueurons (possibly
with the inverted pair), two hidden nenrons (N1 and N2) and one output nenron

(N3). Input and hidden neurons are connected by four synapses and the hidden

and the output neuron are connected by a pair of synapses. Weights have heen
indicated in the synapses and have been achicved for optimal performance of the
circuit.

The first type of XOR gate is shown in the ligure 7.8, Each neuron in the
hidden layer receives the input from onc input neuron and from the inverted
member of the other input neuron. Thus the hidden neurons either receive 10
or 01. Weighte have been set to 3.6 volts so that N1 and N2 will fire if both
the inputs are active (that is the input is cither 01 or 10) and not if one of the
inputs is inactive (when the input is 00 or 11). Thus N1 and N2 become 10 and
01 detectors. Weight for the output neuron is 5 volts so that it will fire if one of

the inputs is active. The simulation results are shown in figure 7.9 and 7.10.

In the second scheme (figure 7.11), inverted input neurons are not nsed. Fach
of the hidden neurons receives hoth inputs through excitatory and inhibitory
synapses. Weights are set to 4.0 volts so that NI and N2 can lire if the input is
10 or 01. Synapses for N3 have weights of 5 volts. If the input is 00, there is no
activation generated and is totally inhibited if the input is 11. Spice simulation

results for inputs 01 and 11 are shown in figure 7.12 and 7.

The third scheme is shown in figure 7.1:1. The weights have been set in such
a way that N1 behaves as a logical OR gate and N2 as an AND gate. Qutput of

N2 is fed to N3 by an inhibitory synapse. if the input is 11, both NI and N2 fire
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but because of stronger inhibition at the output, N3 will never fire. Simulations

for inputs of 01 and 11 are shown in figure 7.15 and 7.16.



Figure 7.8: Schematicof xor circuit with the weights indicated inside the synapses
(represented by circles). Inverting input neurons IN2 and IN3 are used for 0
detection.
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Figure 7.11: Schematic of xor circuit with the weights indicated inside the
synapses. Synapse with a small circle in front is inhibitory. N1 and N2 ar
10 and 01 detectors.
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Figure 7.14: Schematic of xor circuit with the weights indicated inside the
synapses. S6 is inhibitory synapse. NI and N2 behave as OR and AND gates.



104

SPICE TEMPLATE TORTROL FICE T i e —unisT

e /I\;* vout:
4
2
3
o— /2w
4
3
2|
3
p— 75Tl
K
3
2|
N I N
0— /N in eIt
5
4
3
2]
1
p— /IMZM
4
3|
2
1
o
p— e
4
3
2]
)
l‘=
p— /63 fmn vy
4
3|
2|
)
Bt
p— M3
/NS
4
3
2
)
ol

Figure 7.15: Plots for input 01, First two waveforms indicate output of input
neurons and the rest are the activations and outputs of all three neurons.



FICE TEWPCATE CONTRO FILE T3 T e -ontaT

1 \ '
| L
Volis
;
:
3
2
,
e /Iiaz /m_in_volls
;
:
-
/A Y O WY A W A
B /N\=n volis. =
3 A
3
2|
:
]
B— /KSHS m_in_volts
;
3
2|
! AR
. _
{0—— /NZ_in voil:
.
3
2]
.
o— AE{ /m_in_volls.
;
3
2]
: N N AN
4 1L -
= mad /N}sn olL:
.
3]
2]
:
< |

Figure 7.16: Plots for input 11.

it two waveforms indicale output of input

neurons and the rest are the activations and outputs of all three neurons.



106

7.3 Cooperative Assignments

In this example [Tank et. al., 87], the network assigns tasks to individuals for
optimum performance. One three by three cooperative or task assignment network
is shown in figure 7.17. Each neuron in a row represents one individual (X, Y. Z)
for a particular task (A, B or C). Performance of X, Y and Z can be encoded in

cither the input voltage (going to the input neuron) that is the incoming pulse
Each

rate, or in the weight. llere the following weights have been generated.
neuron is connected to all other neurons in the same row and the column by
inhibitory synapses. This cnables only one neuron to be active in each row and
column ensuring that only one individual is assigned to one task. The Hspice

simulation is shown in figure 7.18. It can be scen that the network assigned the

tasks properly.

Xy lz
A13.0[40|25
B 352530
Cl30[30[40

<3 cooperative assignment net.

Table 7.1: Weight distribution of the :
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7.4 Implementation

Two chips have been designed using 3um design rules and will be fabricated
through Canadian Microelectronics Corporation. One chip contains all the stan-
dard cells and has been laid out manually. This is for testing cach cell individually.
The other one contains a network similar to figure 7.6 which is a content address-
able memory. The outputs of the neurons are gated through AND gates and fed Lo
the inhibitory synapses (figure 7.19). The other inputs of the AND gates are tied
together and behave as a control line. If the control linc is low, the network be-
haves like a pattern classifier even though the outputs of excitatory and inhibitory
synapses are tied together. The inhibitory synapse does not have any capacitance

but the parasitic i drain to sub i come parallel to
P P

the total b i Toral b capacitance with 3 excitatory

synapses is 0.75 pF whereas the parasitic capacitance due to 6 inhibitory synapses
is less than 0.1 pF. This can be taken care of by increasing the weight voltage.
However, when the control line is high, inhibitory synapses are connected and
the network works as a content addressable memory. Hspice simulation of the
network is given in figure 7.20. The layout has been done using Cadence EDGE
auto placement and routing software. Figure .21 shows the layout. (only metal2

drawing layer) of the network.

7.5 Concluding Remarks

This chapter contains simulation results of some of the standard examples of
neural networks. The simulation results show that networks formed by the basic
neural componets perform very well. The reason {or developing two inpul neurons
has also been discussed. Schematic diagram, Hspice simulation and the layout of

one of the chips has also been presented here.
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Figure 7.21: Layout of the network (only metal2 drawing layer) obtained by auto
place and route routines.



Chapter 8

Conclusions

Pulsed analog neural networks have been described in this thesis where the height
of the pulse is modulated by the weight voltage at the gate of an NMOS transistor.
The neuron fires one pulse every time the activation exceeds the threshold voltage.
At the same time one discharge pulse is also generated to discharge the membrane
capacitances. The membrane capacitances and the discharge Lransistors have been
distributed in the synapses allowing the network to be scaled automatically.

The hehavior of the networks using the designed circuitry is quite similar to
biological neurons though [ am not claiming the circuits o be an acenrate model
of the latter. It deviates from most of the existing neural circuits in a number of
aspects. Synapses are very compact enabling one to implement a large network
on a chip.

The design procedure for the neural circuits have been given along with a
mathematical analysis. Synaptic equations can he used to develop a simulator
which can be used for simulating a large network. This is important because it
is not possible to simulate a large network in Spice. The ontput of a small ¢
program using equations 5.13, 5.16 and 5.17 has been given in chapter 5 to check
the validity with respect to Spice simulation. The result is very encouraging,

A number of networks have been designed and simulated with S

e. The

13
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results are as expected. Standard cells have been designed and simulation has
been done on the extracted schematics. Two chips have been designed using the
standard cells and will be fabricated in the Fall of 1991,

A number of interesting points have been observed in the course of the whole
work. The relative phase of the incoming pulses have significant effect on the
activation voltage of the neuron. Since the neuron has to decide whether to fire
a pulse or not in every cycle, this effect of phase difference poses an interesting
challenge. Another point is that by varying the membrane capacitance (or effec-
Lively 7), the charge integration time is longthened. This leads to output pulse
rates which are integral divisor of the incoming pulse rates. It’s effect on a large
network is still not known though one can expect the effect to be averaged over
a large number of connections. The weighting scheme is non-linear. Whether it
has any effect on the learning is still unclear. The only form of learning used so
far is to change the weight till proper outputs are obtained. A suitable learning
algorithm can also be developed for this kind of networks. If the network can

learn properly, then synaptic design in many other systems can be simplified.
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Appendix

This is a typical input deck for Spice created by Cadence Edge 2.1, This is the

input deck for simulation of standard neuron (fig 5.8 and 5.9).

« net | = vdd!

* net 0 = gnd!
«net2=/Vh

«net 3 =/V-
enetd = /V4+

* net 5 = /I33.0UT
+net 6 = /146.0UT
=net 7= /l47.0UT
= net 8 = /I57.0UT
+net 9 = /DCPULSE
+ net 10 = /BLOUT
* net 11 = /I60.0UT
* net 12 = /I152.0UT
«net 13 = /I37.B

+ net 14 = /NPULSE
* net 15 = /123.Vout,
* net 18 = /160/10.D
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_MODEL Model4 nmos level=3 vto=.7 kp=1.e-05 gamma=1.1 phi=.6
+lambda=.01 pb=.7 cgso=3.¢-10 cgdo=3.¢-10 cgbo=3.c-10 rsh=25

+¢j=.00044 mj=.5 cjsw=4.c-10 mjsw=.3 js=1.c-05 tox=5.c-08

+nsub=1.Te+16 nss=0 nfs=0 tpg=1 xj=6.c-07 1d=3.5e-07 uo=775
+utra=0 vmax=1.e+05 xqc=.5 theta=.13 eta=.05 kappa=1
nmos(4) = /160/14

MS$#4 11 18 0 0 Model4 1=3u w=5.4u
nmos(5) = /160/10

M$#5 18 10 0 0 Modeld 1=3u w=3.4u
-MODEL Model5 pmos level=3 vto=-.8 kp=

2¢-05 gamma=.6 phi=6

+lambda=.03 pb=.6 cgso=2.5¢-10 cgdo=2.5¢-10 cgho=5.¢-10 rsh=80
+¢j=.00015 mj=.6 cjsw=4.¢-10 mjsw=.6 js=1.e-05 tox=>5.e-08
+nsub=5.e+15 nss=0 nfs=0 tpg=1 xj=5.e-07 ld=2.5e-07 uo=250
+utra=0 vmax=70000 xqc=.5 theta=.13 eta=.3 kappa=1

pmos(6) = /160/17

M$#6 1 18 11 1 Model5 I=3u w=5.4u

pmos(7) = /160/11

MS#7 1 10 18 1 Model5 I=3u w=>5.4u

net 21 = /157/10.D

nmos(12) = /157/14

MS$#12 8 21 0 0 Modeld 1=3u w=5.4u

nmos(13) = /157/10

M$#13 21 50 0 Modeld 1=3u w=5.4u

pmos(14) = /I57/I7 \
M8#14 121 8 1 Model5 1=3u w=5.4u
pmos(15) = /I57/I1




[BX]

MS$#15 1 5 21 1 Model5 1=3u w=5.4u
nmos(16) = /149/10

MS#16 14 70 0 Modeld I=3u w=>5.4u
pmos(17) = /149/11

MS#17 1 7 14 1 Model5 I=3u w=10.8u
nmos(20) = /148/10

MS$#20 9 6 0 0 Modeld 1=3u w=5.4u
pmos(21) = /I48/11

M$#21 169 1 Model5 |=3u w=10.8u
net 29 = /l47/IL.D

nmos(26) = /I47/11

M$#26 29 11 0 0 Model4 1=3u w=10.8u
nmos(27) = /147/13

MS#27 7 13 29 0 Model4 1=3u w=10.8u
pmos(28) = /147/12

M$#28 1 11 7 | Model5 1=3u w=10.8u
pmos(29) = /147/10

M3$#29 113 7 1 Model5 I=3u w=10.8u
net 33 = /146/11.D

nmos(32) = /146/11

MS#32 33 13 0 0 Modeld 1=3u w=10.8u
nmos(33) = /146/13

M$433 6 8 33 0 Modeld |=3u w=10.8u
pmos(34) = /146/12

M$#34 113 6 | Model5 I=3u w=10.8u
pmos(35) = /146/10
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MS$#35 1 8 6 1 Model5 I=3u w=10.8u
capacitor(36) = /159/10

C$#36 13 0 poly .1pf

capacitor(38) = /158/10

C$#38 12 0 poly .1pl

capacitor(10) = /154/10

C$#40 5 0 poly .1pf

capacitor(42) = /143/10

CS#42 11 0 poly .1pf

net 38 = /I37/110.0UT

nmos(44) = /I37/112/10

M$#44 13 38 0 0 Model4 1=3u w=5.1u
pmos(45) = /137/112/11

M$#45 1 38 13 1 Model5 I=3u w=10.8u
nmos(48) = /137/110/10

M$#48 38 15 0 0 Model4 1=3u w=5.4u
pmos(49) = /I37/110/11

MS#49 1 15 38 1 Model5 1=3u w=10.8u
net 47 = /153/10.D

net 48°= /153/14.D

nmos(58) = /153/111

M$#58 548 0 0 Model4 |=3u w=>5.4u
nmos(59) = /153/14

M$#59 48 47 0 0 Modeld |=3u w=5.4u
amos(60) = /153/10



MS$#60 47 12 0 0 Modeld 1=3u w=5.4u
pmos(61) = /153/110

MS#61 1 48 5 1 Model5 1=3u w=5.4u
pmos(62) = /153/17

MS$#62 1 47 48 1 Model5 I=3u w=3.4u
pmos(63) = /153/11

MS#63 1 12 47 1 Model5 1=3u w=5.4u
net 51 = /152/10.D

net 52 = /152/14.D

nmos(70) = /152/111

MS$#70 12 52 0 0 Modeld 1=3u w=5.4u
nmos(71) = /152/14

MS#71 52 51 0 0 Model4 1=3u w=3.4u
nmos(72) = /152/10

M$#72 51 11 0 0 Modelt 1=3u w=3.4u
pmos(73) = /152/110

MS$#73 1 52 12 1 Model5 1=3u w=5.4u
pmos(74) = /152/17

MS$#74 1 51 52 1 Model5 1=3u w=5.4u
pmos(75) = /152/11

MS#75 1 11 51 1 Model5 1=3u w=3.4u
net 55 = /131/10.D

net 56 = /I131/14.D

nmos(82) = /I31/111

MS$#82 10 56 0 0 Model4 1=3u w=5.4u
nmos(83) = /I31/14



M$#83 56 55 0 0 Modeld 1=3u w=5.4u
nmos(84) = /131/10

MS$#84 55 13 0 0 Modeld 1=3u w=5.4u
pmos(85) = /I31/110

M$#85 1 56 10 | Model5 1=3u w=5.4u
pmos(86) = /I31/17

M$#86 155 56 1 Model5 |=3u w=5.4u
pmos(87) = /I31/11

MS$#87 1 13 55 1 Model5 I=3u w=5.4u
uet 61 = /123/10.5

net 62 = /123/10.D

net 63 = /123/11.D

pmos(90) = /123/16

M$#90 1 63 15 | Model5 I=3u w=>5.4u
pmos(91) = /123/12

M$#091 1 62 63 | Model5 I=3u w=5.4u
pmos(92) = /123/13

M$#92 1 62 62 1 Model5 1=3u w=5.4u
nmos(93) = /123/14

M$#93 61 2 0 0 Modeld I=3u w=10.8u
nmos(94) = /123/15

M$#94 15 2 0 0 Model4 |=6u w=5.4u

nmos(95) = /123/11

MS$#95 63 4 61 0 Modeld 1=3u w=5.4u
nmos(96) = /123/10

M$#96 62 3 61 0 Modeld 1=3u w=5.4u
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