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Abstract

Minimization of synaptic area is important in a neu ral network will i a high synapse

to neuron rat io. Consequently one has to optimize the syne psc rat her th' L1 1 thc

neuron. A pulsed analog network with a mplit ud e tnodulation results ill ;\ very

compact and efficient sy napse. Charge summ atio n is used which leads to ,I. s ingle

bus as the summer. Mem brane capacitance has been dis tr ibute d t o the syn iLpM's

allowing the net work to be perfectly scaled . Like t he biclogicalueu ron. l lll' neuron

fires a si ngle o utp ut pulse when the acti vation exceeds the threshold. ;\ diseh;lrgl'

pulse is generated to discharge t he membrane ca pachan ccs via ll isc:lwrgc tmusis ­

tors which have also been distr ibuted to synapses [or scali ng purposes . C irnlil

design a nd de t ailed ana lysis has been incl uded alon g with simulation results. Stan.

derd cells have also been presented. As t he pro posed ar chitectu re behavos quiu­

differen tly from existing architectures, si mulatio n of some of thc stnudnrd exam-

Illes of neura l networks have be en included . Two chill" IHLve also hL'('1I l!l'"ig llt'd

using 3Jlm design rules.
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Chapter 1

Introduction

Research concernin g neural networks can be t reced hack 1\ few deca des. but it

ha~ bee n mostly on the theoretical studies a nd compu ter simulation. Computer

slrnula tion is slow and the real power of the neural network call hcst be ext racted

ollly whe n one gees for specialized ci rcuit s in microelectronics. In t he last te n

Y('iH~ or so, " lo t of lite rAtu re has been pub lished on neu ral circui try and their

implementa tion in silicon (chapter 3). To date . however. most of the net works

repor ted are small in scale. The-cvmpu ling pewee of neural networks liesin t hei r

connect ions. In biological systems . one neuron may be connec ted to t housan ds of

other neurons. So. one has to consider the implications of the scale if one is ever

to app roac h the size of networks present ill our biologiCilI. y.t em.

One neuron is connect ed to " nother neuron lh rllugh a syne pse . If there ;Ire

N neurons in ;I network, then the numbe r of syna pses grows as /lil for a fully

connected network (such 1\5 a.Hopfield net). f rom a circuit poinl of view. it is net

all that easy to connect a large number of synapses together and feed the outp ut

to il neuron. However , for an aulo scaling circuit, the numbe r of synapses per

neuron is not lim ited by allYcirc uit constra int ,

1\11 au la K alillg pulled neural network is presented in thi. t hesis. It leads

to a very compac t synap se whichis highly desirab le in a network where synapses



outnumb er neur ons, It furt her enables cue t o add t ill.' outp ut s of <I l~,rge IIIU1\I, ('T of

synapses together . T he aut o scaling feat ure has also cuabled us to desig n sta ndard

cells whic h can be plugged together to real ize net works of \'arying sizes.

Pulse-stream analog networ ks have already b een repor ted ill the liter atllTl'

(chapter 3). Under this scheme, t he neura l state is represe nted Ly P Ub l'S whose

frequenc y depends on the input acti vation . But the proposed circ u its diffl'l' in

many respects. The scalability has been achie ved by distr lbnrlng t he liIemhrane

rapac it a nces in t he excitat ory sy napses. Synaps es <:<1 11 be either cxeit ..tory IIr in-

hibitory but can not switc h hack and fort h be tween excitation and inhib ition. Ea r h

time the activation voltage goes past the vh rcshold, un output pulse is genera t ed.

At the same time one discharge pu lse is alsu generat e,l to ,lischarge the l1It'mbr;u w

capaci tances (like repclarization in biologica l neur ons ] so th at the d liLl"l!,!' in1.t'g ra.

tion cycle starts all over again. For the scaling pur pose, dischilTgt, ' r ;llI ~i sl. ors arc

al~o distributed in synapses .

T hese neural circuits have been designed, anti sirnulatcll lIsing t he SI,ict, p ro­

gram. Detailed m athemat ical anal ysis has also bL'C1L done . A 1I1llHI,e r or stand a rd

networks like pattern class ifier, conten t add ressable memory. XOIt giLt....~, ll op­

field nets et c. ha ve been simulated to exa mine prope r operatio n of ti ll' des igllcd

circuits. A sta nda rd cell lib rary has also bee n develo ped.

T he thes is has been organised as follows. The second chapter int roduces the

biologica l neuro ns followed by artificial uou ral net works. T WII b lTliing Sdll : lI1t·S

have also been included there. T he next ch apt er deals with the lite ra ture revlnw .

how different as pects oCneural networks ha ve been achieved by differen t people.

T he fourth chapte r gives the des ign philosop hy. Th c proposed neura l archite cture

is also presented there. T he fift h chapter gives t he circuit desig n iUll l anal ysis.

Merhem aucal equations arc also presented which can be used for developing a Cast



simulator. Chapter six deals with the standard cells includ ing the cell des ign phi­

losophy along with layout of sever&! sta nda rd cells . The seventh chap ter descr ibes

slmularlon results of different neural networks. h also includes the schemati c di-

agrll.m And layout of one of the two chip s that would be fabricated. Fina lly, in

t he last chap ter I conclude my presen t work and SllUest some areas where furt her

work can be done .



Chapter 2

Neurons and N eural Networks

2.1 Int r o ducti o n

This chapte r deals wit h 11 brief lntroducrion to biological neurons and arl ilicial

neural netwoks. A brief discussion a ll t he neuron followed by a sim ple descrlprion

on the genera tion of action pot entia l i ~ present ed . Dil£cfI'1I1 ~~~PL'Cts of tn-ura]

networks includin g two popular learning schemes have also been included,

2. 2 Neu ro n

T he neuron is the basic Anatomica1unit of the nervous system. :\ tYI,inll ,,,,ural

cell (figure 2.1 ) has four distinct regions - cel l body, t1clIclrih..,.. axon and lIlt!

presyn apti c te rm inals of the axon. Th e cell body is the source of I'lll"r~' rut 11Jt'

neural inform at ion processing. It gives Tis" 10 " tubula r 11m•.:..."., kuowu it.' Ih.!

axon which ca.n extend over it large distance . Til e aXOIl, ill turn • •livi.k'S into iL

large numbe r of presynaptic terminals. These prcsyneptlc termillab Ctm tad witll

the postsy napt ic term ina ls ( d endrit.:~) of till; othe r neuro ns at t he Syll;ll' lic sill'~.

Th e ne uron int egrates the incom ing sign als Iecm other co nncctlng ucurcns by lhe

capaci tance of t he cell body And fires en out put p ulse (ac tion poten tial) when t he

tolal inp ut activation exceeds some threshold vc.h llg.... SOllie il XO IiS arc ':QVl·n ..1



with an insulating materi al called myelin to reduce the capacitance between the

cytoplasm and t he extracellu lar fluid. T his is essenti al for achieving high speed

couducticn. The myelin sheath is interrupted at reglilar intervals by the nodes of

Ranvier where t he transmitted signals arc periodica lly restored.

Nerve cell, like other cells , has different conccurrations for different Ions across

its memb rane (Koester, s t]. Qnt of the ions, Na+ and ct - concentrations are

lower inside whereas 1\+ and organic A- are lower outs ide. Due 10 the conce ntre ­

tion grndlent, 1( + ions tend to move out across the membrane through diffusion.

Thi.s diffusion leads to sepa ration of charges anti hence a potential difference n·:.. )
which impedes further passage of charge. At a voltage of around ·is mY, A'+

ions rea ch an equilibrium when there is no net now of 1\+ ions. Th is equilib rium

potent ial can be obta ined by the Nernst equatio n:

('l. I)

where C: and ct are the concent rations of ions in the extracellu lar fluid and

inside the cell.

Due to the presence of N aT ions. the cell comes 10 a resting potential of about

-60 mV when t he net influx of Na+ ions is tota lly balanced by the net efflux of

1\'+ ions. In orde r to maintain the ionic gradient . a metabolica lly driven Na-K

pump brings in a steady supply or 1\'" ions while dr iving Na+ ions out of the cell.

If the membrane poten tia l is increased from ·60 mV 10 say -iO mv. the cell is

hypcrpcla rlsed reducing its ability to generate an act ion pote ntial and is ther efore

~<li d to be inhibited ; whereas, if the potential is decr eased. the cell is dcpola riscd

and is said to be excited because it incre ases its abil ity tc generate the action

potential.

If a nerve cel l is depolarised to a small extent . the charge leaks away and the

action polentia l is never initia ted. However, if the cell is depolarised to approxi-
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mate ly -40 m V, an ac tion potenti al is generated even if the vollage is brought ba.ck

to·60 mY. Thi s genera.tion of action potl"T1tia l can be exp lained in te rms of the

v" h&!e depend en t ion channels [Koester. BIA). When t ile cell is depclerised. S a'"

iU li ehannels open lincrea.sing Na+ conductanc e) thereb y increasing inward S lI +

curren t . This furt her dcpola rizes t he e:t:1I ....hich in ru ru opens more Na +channels.

This regenerative process ecnrinues l iII the ecucn potential ;5 generated . How­

ever, al this sta ge, Na'" conductance and hence Na+ cu rrent st arls decreasing

rl'!iull ing in further decrement of ,v ll+ conduct alice. Al the same time. 1\"+ ion

r1Hlnndsope n result ing ill an out ward /\.+ curre nt which eventually repcla eiee the

metnbrene to the tesling pote ntial.

2.3 Neural Network

2.3.1 Ge ner a l Review

Art ilicialncura l net werks are biologically inspired . They l\t<.' net .....orks of simple

prcc•.'ssing elcmcru s c r unils interconnected by weigllu of variahle Slrell SlllS. They

arc neural in the sense thl\t the computa tion is done colil'Cti\"Cly rather than

individu ally. In genera l, in a neu ral network, an amplifier with a non-linear output

characterist ic form s the cell body , wires replace axen s and dendrites. and the

resisters model the synaptic connections or weights among the inte racting units .

When a neuron is act ivated . it evaluates all input s from ot her neuro ns and finds

out the weighte d sum. If the su m or the acrlvaricn goes beyond a predetermined

threshold. the neuron changes its outp ut (figure 2.2).

In math ema ti cal term s. ir OJ represents the set or all neural outp uts. then the

lotal act ivation net ; or the i th neuron is

(2.2)
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where W,! is the strength of connection from unit uJ to un it 11,_ The output of II,

is given by 0; = f( acl;, lhr } where f is a nonlinear or decisi on making func tion

iL lltlt hr is the t hreshold voltage.

The strength of connection between two neurons determ ines t he degree of

interaction between t he t wo. It eMI be eithe r excitato-y or inhib itory, norma lly

represented by positive and negative weights. If t he connection is excitato ry, t hen

the act ivation of the neuron is increased, while t he inhibito ry connect ion tends to

reduce the act ivation.

When a network is activa ted, all the neurons operate in parallel and try to

adjust the ir st ates. In th e synchronous update procedure. t hey simultaneously

update t heir stales at each pulse of a cent ral liming clock; while in asynchronous

update , each of rho neurons. at any instant of t ime. has 1\ fixed probability of

updating its st ate . Since the neurons update thei r sla tes independently. in a very

smalltimeframc only onc neuron can be thought of updating its state. Whatever

t lll~ updat ing procedure, eventually the neurons set tle to a stable ste te represent­

ing some global configuration. Th is is achieved by utilizing the locally available

information and t he massive parallel ism inherent to the system.

Oilferent researcher s have proposed networks employing different units in dif-

Icrcnt configurations [Aerts er . al., 891but 1I10st can be encompassed within t he

stale d framework. The major differences are noted below.

• Conuectivity : Connect ivity varies from single layered network [e.g. Hop-

field nets ) to mul t ilayered networks with hidden units (e.g. backp rop nets ).

Bnckprcpag atlon nets arc also strictly fccdforward and the co nnections are

essentially unidirect ional. lIopfield nel s, OIL the ot her hand, have bidirec­

tional conuoctions . Bot h arc discussed in more detai l below.
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• Neural units : Netwo rks employi ng simple linea r units have a set 'If input

units and II. set of ou tpu t uni ts. It can be shown th a t the rtllllp ulatiu ll dUIIl'

by mult ilayered linea r units can also he done by a network with out 11Ilid, l" ll

layer. T he output of the simp le linear IHoliel is all identi ty fuucuou: th.u is

OJ"" act;. Kohoncn has don e cxtcus ivo sunlics on t his kiud nf notwnrks ;11111

thei r learning [Aarts d. ;11., 891. 011 the uther hand. i ll ll ll! lhu-ar thr es hold

un it , output 0; = I l f thea cti vat io n udj > 0; {where 0, is l h t· l h rt'~ I IU I . 1 1 ;11111

ootherwise. Percep t rons arc /I spl·cial da ss of net works , :ml'l"~'i l lg il .~ i llgl, ·

layer linear thres hold unit s without any f.>.!. lhack . Bur the most ' :0111111 0111

one is t he one utilizing the scmilincar activa tion lun c-t.iouwhere tho " lit put

O. =! (rul, j,! bein g Rrnn ll otollic"I1~·lInll . d , ·creasi lig , litf"n' llli alJ[,! Iunct.ion.

• States : O utp ut s ta tes call either be hinary: i.e.. 0, : (U. II ill wllid l Clls ,' t ill'

function! is ma king a hard decls iou as in tIl<' purceptruu mudd. 11up lid d\

content ad dressable memory. back prupilgiltio lLnetworks; OIl' I,ll!' ulItPllt ..an

lng funct ion as in Hopficld 's ucnral decisiull ncLworks.

• Act ivation : Th e ou tput Iuuerlon or the d.-'cisilJn f ilii nlsu 1)(' "ith"r ,h'IN -

ministic or proba bili stic. The model s c1l1 pluy i1L ~ t lw fonner ;H<: ll"l' lid<l

net s, back propagati on ne ts etc . Whcrt!;IS t h,! Bo )UWlill l nl;wllirll: mllplo)'s a

probab ilis tic respo nse Iunc riou.

• Represen tation: T he overall representat iull I;JlI \ lit' local. ill whid l t ill: s t ;ll,~

of individual uni ts m ay represent somethi ng meaningful. 0 11 the contrary,

in the dist ributed re present ation, t he state of each un it 11M to he illtl!tpr etl:d

in conj unction with all oth er neurons .

It is worthwhile, in t his context, to dis cuss 1I0plidi i ne ts . Ill " lloplid,1 net .



ever-y neuron is connected to eve ry ot her neuron except for itself [l.e. IV,i =0).

The other rest riction is tha t t he weights are symmetric al, that is W;I =: Wj ; . F'or

;1 t wo-state neuron i, the tota l iuput is

( ~.31

where I; is externa l inp ut to the lieuron i and ~ is the output of neuron j. In

the simplest , non-grndcd formu lation, the out put of neuron i is Vi = v? if x, > V,

and I·;Qothe rwise; where V, is t he threshold for the neu ron i, An e nergy function

such as

E = -~ L: L: T;Jt~\~ - L: I,V; +L: U,I~ (2.4)
,t- J ' ,

limy he associated wit h the netwo rk [llcpfleld, 82], Then t he chang e in the energy.

:lE, due to the change in the output of ncuron i is

- IL:T"V, + I, - U,I"V;

-I', -Ud" V; (2.5)

The ahov(! quantity is a lways negative because if X, > V" then ~v; is posit ive:

ot herwise both of t hem are negat ive. Thus an y change in V. lowers t he energy

func t ion. Since E is bounded, th e sys tem eve ntually reaches a stable state when

no mo re out puts chan ge. A simila r exp ression for the energy funct ion can also be

obtulnu d for neurons wit h grade d response [Hopfield, 841.

2.3.2 Learning

Till' information content in a neural ne twork resides in the conn ect ion st rengt h.

Learning is t he process of edjusung the connection st rcngr hs or the weights in

such a way as to prod uce a se t or desired outputs. Learning can be broad ly clas­

sified into supervised and uns u pervised learning. [ II su pervised learn ing , inputs
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are presented along with a set of teach ing inputs. Weights arc allj llst(~1 s1q) by

step under the supervision of the teac hing inputs so 11l'1.t t he networ k will pro-

dnce a correct output pattern whenever the trained input panem is prcsr-nu-d,

In unsupervised learning, there is no teaching input. However, tllt~ 11;' 1work learns

by capturi ng the regularit ies of the input patte rns and responding to nuy s[ll't'iill

feat ure that mny be present in the input pattern s. t\ brief review of the lxu-k

propagation learning scheme (su perv ised learni ng) and competitive ICMlling (lin.

supe rvised learning) follows next. A detailed discussion 0 11 these two I'~;lrnillg

schemes can be found elsewhere [Rumelhart ct . al.. 8.\1 .

Backpropagation neura l net works arc st rictly hierarchica l rl'('dfurll"an l lHulti­

layered net works (figure 2.3). The first layer is Lhe input 1;1.~e r which rl:n' il'l's

exte rnal inp uts and feeds the outpu ts to the next layer or hidden units. Any layl'r

can receive inputs from the layer just before it and can project the OlltPllts tn the

layer immediately after it . There may he more than one hid-len layl:r nnd uur­

out put layer. Hidden and output un its, employing scmlliucar act.ivat.iou mil'S. are

useful for capturing higher order regularities. Besides these units, there may also

be bias units which arc alwa.ys on ami are connected to the hidde n and output

units.

Backpropa gat icn learn ing involves two phases of computation. It basically

minimizes (grad ient descent) the sum squared error over all t he output units and

all the training pat tern s. Inpu ts arc presented ami t he network computes the

outp uts (O"j). T hese out puts a rc then compared to the desired or the teaching

inputs (I"j) to generate the erro r signal 61'J where the suffix l' repr esents any

patte rn p a nd j is any unit. Weights arc the n a,ljustcd for all t hc CO!lllcr;tiuns

feedin g the out put layer accord ing to

("2 .1;)



Inpu t toyer Hidden toyers Out out toye r

Figure 2.3: A typical multi- layered feedforward network.



where tI is the lea rning ra te and O pj is the input to the unit j from tile unit i for

the pattern p. It can be shown t ll11.t for the 011 tPUt unit s

where f' is the de rivative of the acti vation funct ion. 6's are the n computer] fur

the pen ulti mate layer according to

(:uq

where m's are t he uni ts connec ted to the unit k. Thus lhe error is prup;L!;" t" ,1

back one layer. By util izing the recursive Ionuula cf equat iuu (:.!.S), the crrnr ru n

be computed for any units ill a la}'l'r and the wI 'i ~h ts arc a(\justcII ilcturll ing 1( 1

the equa tion (2.6) . It is important to 1I0te 1hat the pat terns Me required to be

presented repeatedly in order to genera te the proper internal ruprescntut.iun.

T he typical activation function emplo yed by the hidden MI d tllC ~ UUlI" l l, units

is given by

(:U l j

Th is is a sigmoid funct ion which is differentiable as well. T ile , l " r i v"t i v, ~ of f, l'

is given by

~«~; , = O,{l - 0 ;) (:.!.!U)

T his derivati ve is maxi mum for OJ = 0.5 and since the cha nge ill weight dcpeuds

on this derivative, weight change will hI! maximum for tll" Ll nil.~ witl! outputs ncar

rho mld -ra ngc.

In t he compe titive learning method, units Me abo organised ill il hicrard,iud

layered fashion. Any unit s can receive input s lrom all the uni ts ;11 rhe layer

immediately be low and can feed the output to all the units i ll t he next upper

layer , throu gh exci tatory connec tions only. All t he units in a layer ..ru grouped
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together into a nu mber of clust e rs. Units in a duster inhibit each other so that

only one unit in a cluster is activ e (~winncr·tllkc·all" strategy ). Each unit has

a fixed amou nt of weight dist ributed over all the inpu t lilies i.e. [ j Wi; = I.

Learning is achieved by shifting weights from the inac tive input lines to t he active

ones. If II. unit wins, then each of t he inpu t lines gives up a propo rtion (1\ ) of its

weight which is redist ributed amon g the active lines. That is

toW;} 0 ifuniti loses

I\'!; - !{W j ) if unit i wins (2. 11)

where LJ = I if the input line from unit j is active and n is the total number of

the active units. However, if the input pa t terns have fell"active comp onents, t hen

some of the linesmay never be on and the corresponding unit may never win. In

order to remove tha t const raint , the weight ca n also be cha nged accord ing to t he

above equation even if the un it loses , but at a much lower proportion . This at

leas t, will enable the un it to be in the com petition. It can also be ach ieved by

c.mnglngthe t hreshold in such a way th aL the uni t becomes more sensitive when

it loses and becomes less sensitive otherwise.

2.4 Concluding remarks

In t his chapter, blologlcal ncurons and neural networks have been dis cussed very

briefly. Simp le mode ls of the artificial neural netwo rks have been presented along

with two learning schemes to int roduce basic ideas about neural network s and t he

releva nt terms th at would be used throughout the rest or the thes is. WitlJ this

done. the next chap ter is devote d to a liter at ure review .



Chapter 3

Literature Review

3.1 Introducti on

Research concerni ng neural networks call be tr aced back as Far a.~ the ]!l·lOs.

Since then (except for a brief period in the end of the tiD'sand tile bcginulug of

the 70's) a lot of work has been do ne 011 neural networks but mostly invol ving

t heoret ica l studies and computer simula tion. Simnlnrlonof l a f !;!' ueuraluetwork is

very slow - most ly because of large COllllcet ivilit.'s ilIlWIl !\ the fOllllt~' li lig d tmll'uts

and sequen tial calcu latio n and updating of neural states. T11I~ actual prnl11isl' II f

neur al netwo rks, howeve r, is in specialized ha rdware . especially in minudec1. ronic

circ u its. Theil one call possibl y exploit t he speed and power or neu ral network

and go for practi cal applications. The major obstacles in realizing uenrulnctworks

in silico n were the lack of available tec hnology til do so a lit] su Hicil~nt kllowl(~,lg"

on st ruct ures and behavior of neurons in nervous system. However. a great deal

of work has already been done on the lWTI'OllS syst em !lnd th.. mln'lIt ilnd rap id

progress of very large scale integ ration [visi) systems has made it possible these

days to real ize large neur al networks in silicon. A num ber or researc hers are

working on the design and imp lementation or ueur al nctwcrks and a large Hum her

of pape rs has already been publish.ad .

16



Reviewing of th is liter ature can be done in a numbe r of ways. One way is to

tackle ea ch of the design issues sepa rately and do a comparative study on different

ap proaches. Alte rnat ively, the designs can be grouped toget her on the basis of

tl ,(' tec hnologies [e.g, digital, analog, mixed analog-digital et c.] and a study

done of each group. Since the proposed circuit s arc analog, st ress will mostly be

Oil different imp lement ation issues of anal og circu it s including mixed or ana log.

digi ta l approach. Some of the majo r proble ms of pure digital desig n and some

clever solutions of these problems will also be present ed .

3. 2 R e vi e w

3 .2 .1 A na log implem en t a t io n

In an a nalog circuit, the sum of the wciglltcd product ca n be im plemented in a

very compact area. T his par ticular aspect has at tracted many des igners to go to

analog circuits . Nevert heless. analog circuits suITerfrom various problems. First

of all noise im munity and immu nity to process variability is very poor. The other

not.able drawback is its compara rlvcly low precision. The latter one is part i<; ula rly

problematic for various learn ing schemes which need weight adjustment in very

sma ll steps. Multiplication is often achieved by t he resistors, which suffer from

several drawbacks. Cur rent summation is usua lly employed which can suffer from

saturatio n problem. On top of that. some of the analog circuits tend to be bulky.

Analog neural net works have been quit e throughly discussed in [G raf ct . al., 891.

The majo r des ign issues one should consldur for the imp lementa tion of analog

neura l net works are :

I) fixed V5. programmab le connectiv ity

:!) realizat ion of coupling st rengt hs

3) volatili ty of connect ion strengths
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4) ty pe of connectio ns

5) size of the neural com ponents

6) ease of fabrica tion.

7) learn ing

F ixed vs, program mable co uue c t.iv ity : T he COlll l'IlLilig powe-r or a ll CUT;,1

network depend s on its connecti vity which in turn depends on the prohlem rho

network is meant to solve. That is why most of the imple!lll.'lIliLlions an' ap pli-

cation specific. T he circuits design ed by Graf cr . ul. [Gref ct. ,II.. S7, S:'] !law

program mable connect ion pauerns. The neur ..1 lIU1.l11ll, insl.l'il.11of fl~'ding snlllf'

other neuron di rectly, co ntrols two switches . TIll) connection is ('ompl l,tt',l througlr

two other switches which are cont rolled by the content of two ram cells . TIll' , 'IJlI'

tent of t he ram determines the type of connection - it ca n he millIe exl'ilatllry,

inhibit ory or lef t unconnected corresponding to a content of +1, -I or U. Thus tlu­

connectivity of t he network can be chnngcd by changiug t he mnll' lll uf thl.' m ills

and hence, differen t configura tions can be moppe d into the S,II11e netwo rk.

Coupling strengths : Reali zat ion of the coupling strcugrh is an impor taut

issue because it determ ines the network's ability to learn. ~I{)sl uf the l'"r1il'f

designs [GraJ ct. al., 87, 881,[El-Leithy d . ul., 871used fixed value resistor-, as

the cou pling elem ents. Although th is is l ile simplest wayto realize networks, thcre

are a few disadvantages to the approach. First, different connection st n~ngl l l.~ IIl'l:,1

differe nt values of resist ors and hence, differenL silicon areas. This prevent. 1Ilf'

network from having 1\ regular structure as will no rmally Ill' achie\'I!d with fixed

size coupling elements (synapses). Then, once fnbncatcd. the rl'sistors cannot he

alte red any mor e, freezi ng the state of t he system so that ka ruing cannot lake

place nor can th e system be rep rogramme d. Since the pa tt erns to hl~ stored are
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oflen no t known a priori. the fixed value resistor approach docs not cover as wide

a range of applicat ions as one would norma lly expect from a neural network. Not

only tha t, resistors are expensive ill terms of silicon area, part icularl y the hig h

value resistors required to keep the overall power consumption of the circuit low.

Graf ct . a]. (Grar ct . aI., 871 have developed a process by which amorphous

silicon ca n be deposited (as resistive elements ) on an othe rwise finished chip. Vlsi

com pat ible high value resistors using thin film have also been report ed [Hubbard

ct . al., 861. These resistors, packed in a chip, ca ll be used ro replace t he resisto r

mat rix in a network; however, the size of t he resistor pack is severly limited by

t he pin co unt of t he chi p. if the precise va lue of the resist or is ne t impo rtant,

d iode connected t ransistors can he used [El-Leithy ct . al., 87 1.

Varia ble coupling s trength has been achi eved in [El-Leithy et. al., 871 by

ad just ing the thres hold voltage \.'J of the input transistor. \.'J depends on a nu mb er

of para meters, most of which are process de pendent (e.g . gate ma tt-ria l. gate

insulation material and it 's th ickness , chan nel doping etc.]. It also de pends on t he

bulk (su bs t rate ) to source potential 1158of th e t rans istor in a non -linear fashion .

By changing VS H • ~~ an d hen ce th e cou pling st rength can be changed. Howeve r ,

this req ui res a variable de bias for each of the connections and is diffic ult to rea lize

e ven for a modest number of neuron s . It ca n be generated on chip, but automa tic

control will require a rather compl ex controlling sc heme.

A ci rcuit has been implemented using i\INOS/CCD prin cip les [Sage et . al., 86}

achievi ng the variable couplin g strength in a very elegan t way. T he circ uit works

uu twu concepts - charge coupled dev ice cont rols the movement of t he cha rge trans­

nutted by a sy nap se and the i\INOS dev ice store s t he synaptic weight ing value.

T he cha rge pack et released by the synap se is modu lated by the trapped cha rge

under the ~INOS gate an d a mete red quant ity is avai lab le a t the neura l ou tp ut
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for generating the activation. By the application of the exte rnal '"011age. variable

amounts of charge can be stored in the nit ride layer of the ~ I NOS structure thus

achieving d ifferent coupling st rengths or weights.

Variable coupling strength call also be achieved ((~Illrra}' ct. ;\1., ~~)lJ, hy

dynamically rto ring the cha rge on a capacitor representing t he weight \'UltlL.'!;t>,

[Brownlow et. al., 901 have used switched capncit or techniques to \"I 'ali1.I'flilly

programmable weights, Wei;l:hts arc stcre.l ill capacito rs 11m] Me switched hy

tra nsistors with speeds determ ined by the incoming pubt' rates . Bilmlilt \\'\'iK ht.~

have been realized in [Schwartz C1. <II. , S!JI by storin g the weights tlilr'~fI~l\ti illly "II

a pair of capacitors. This scheme abo considers weight decay .11111has .n-hicvcd 10

bits of analog depth for the weights.

Programmable bistable switches/resistors based on dilrerent crystalline mate­

rials or Bismut h.oxide have been reported [Spencer. 861" By alJplying plll~cs, llll'

conduct ivity of the mater ial can be increased by several orders or magnlurdc . It

can be brought back to the initial insulating suuc by applying lIegali\'(~ pnlsos.

When electric field is app lied, vacant oxygen sites arc rroa ted which cUlilrilllllc

to the conduct ivity. By suitable biases and apply ing pub t's. rl'sist ivity "r the

required value can be obtaine d and hence can be used as a progrnuuuable COli -

nectl on elements for the neural networks. This scheme seetus to be an illll:rt'.~L i\l~

pro position but requires a lot of improvement Oil the metallurgy or these mau-rials

so that il would be possible to realize a large scale i!Tray wilh identici!.lswitrll illg

cha racte ristics.

A two quadrant multi plier with a digital weighl scheme h...s been descrihed

in {Hollis ct . al., 901. Weight is represented 11)" .1set or parallel binary w,·i~lll. ,·d

(W ILratio varies in binary fashion] current sources .

Floating gat e technology seems to he the most viable wdghL slorage Sc1)l!UlC.
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It has been successfu lly used in the ETANN chip [Video, 91/ and gives 6-8 bits

precision. Under th is schem e ISl e, SI). charge is injected from the siliconacross the

first of the two insula tors and stored in the floaLing gate giving rise to a threshold

vuhage shifl. P rogra m mabil ity i~ cllSily achieved by sto ring diffe rent amount of

charge in the floa ring gat e. MNOS is a similar device but has a differe nt struct ure.

Vola til ity of the conne ctio n st re ngth : Nonvolatility of the connection

st rength is important because once a proper set of weights is learned. it should

be retained for future use. Resistors arc best suited for this purpose. Thi s is

"Iso easil y achieved ill Sage's approach [Sage ct. al., 861. The charge t hat is

t ra ppe d und er the nitride layer has a very high retent ivity at the no rma l operat ing

conditio ns. The nOilting gate appr oac h or FAMOS is also very much sui table

for long term charge storage , ln [Murrey ct . nl., 891, tile cha rge storage being

dynamic , there is steady leakage of charge from the capacitor. Periodic resto ratio n

of charge is done [Brown low ct. al., 90] from off chip ram through a digita l to

analog converter.

Type of co n nections : 1\10st of the pape rs bei ng discussed here use both exci­

tatory and inhibitory sy napses. One common way of rea lizing inhibit ory synapses

([Gra r et . aI., 86, 88), [Tank ct. aI., 86, 8il) is to use the inver ted outp ut of the

neuron. In the paper [Verleyeen et. al., 89], a simple digital co ntrol dr ives all

exci tatory Current through one line and all inh ibitory current through the other

line depen ding 011 the sign of it control line, lnhibitlon in [El-Lelthy et. aI., 8i]

is achieve d by usi ng PMOS transisto rs. Inhibit ion is abo achieved in [Murray et .

al., 8UIhy removing char ge from the capacitance , t he voltage across which repre­

sen ts the activ ity of t he neuron. However, on ly OIlC type , namely t he excitator y

connc crlcn has been achieved in [Sage ct . al. , 86J.

S ize of t h e ne ur al com ponent s ; The a rea of the neural compone nts has



to be small in order to accommod ate a large useful network in a chip. Sinn'

the number of synapses is usua lly much larger than tllM of neurons. OUI' l l;\ ~ to

minimize the size of the synapse. T he ~INOS/CCD circuit is very com par t ;1l111

so arc circuits described in [Brownlow ct . al., 90]. In [Cotl er d . 11.1., SS). fuw

neural building blocks have bee n designed which can he used allt'lln tage()ll~lr tu

realize neura l ne tworks in vlsi. Analog com puters with a. number of vlsi l'hips

in conjunct ion with a host com puler have heen discussed ill [Ebe rhardt d . ;11.,

89], [Mueller ct . al., 89J. A numb er of chips can be connected toge t her to realize

a large net work. Fu nctionally both the schemes are qlLill~ compet ent hut they

require complex control and timi ng and C Il 1\ acconnnodato only ,t small number

of neural components per chip .

Ease of fabricati on : One lia s to I ,,~ rardul about (:!loos ing the basi,' n )l l i '

ponen ts so that they can be fabr i(ated llSing the with-ly al'llilahl ,· fahri,:aliun

processes. Th e circui t in [Sage ct . nl., So) emp loys specia l Iabr lcaucu 1,~dlll il[lI'~

for rea lizing the ~JNOS device. Resistor s 1\["C realized ill [emf cr. al.. Stil hy II

special fabri cation techn ique and also in {Hubbard et. al., S6] altl,,)IIgh il was

claimed to be a vlsi compatible process. l3i,ilab le switches and resist ors [SpI·lln ·t,

86) also requ ire spe cial fabrication proced ures.

Lea rning : Since the work presented ill thi s t hesis docs not cons ider \c;lrllill:\,

learning capability of d ifferent circu its wilt uot he discussed.

Pulsed ana log neur al circu it s Iallundcr the analog category 11I1d arc 0111' of t he

mos t att ract ive candidates for neur al network s. t\ va riety of te chniques such us

pulse widt h mod ulatio n, p ulse height morlulatinn . simple gat ing elr:. C.111 1)('llsed

to multiply the pulse stream by the weight voltage. Pulsed circui ts have h'~I~ll

reviewed quite nicely in {Murra y et . al., !}I]ll nd pulse height fllollillal ilin seems to

be the bes t cand idate for this purpose. Under thls sc heme, anulog wcigllt "oltage



is stored on a capaci to r and incoming pulse is modu lated by this weight voltage

th r011gh a ~IOS trans istor IMurra y ct. al., 891.

3.2 .2 Digital impl em entation

A pure digit,11 app roach to the implementation of .ieural networks suffers from a

few dra wbacks even though it has quite a few positive point s that makes it an

attractive call1Jirlate for vlsl system . Registers arc needed for stor ing the weights.

Digital multipliers anrl adders arc rC<lu in..-d ttl obtain the sum of the weighted

product. Allthese arc expensive in tenns of silicon a rea. T ime sharing is one way

(If taking care of this prohlem hut this calls for a complex contro l scheme and at

the same lime reduces com put ational speed. On the ot her hand digital circuits

arc robust with respec t to noise and process variati ons. Th ey are well suited for

application s where precision is more impo rt ant than the com plexity or the size

and arc pa rt icularly very well su ited for various lear ning schemes.

The Ji gital approac h is problematic for a fully co nnected network and is more

suited for a layered network . Th is is so because at each connection, one needs an

adder and a multiplier and they are expe nsive. However. di[erent approaches can

be taken lo overcome thes e problems. The next few paragrap hs deal with some

(J( the innovative app roaches for realizing the sum of the weighted products.

t\ digita l ncuro-chlp wit h six neurons and eighty four synapses has been de­

scriucd in [Hirai et. al., 891. T he neurons operat e asynchronously and several

chips can be connect ed together to realize net works of any ar bit rary size. Synap­

tic weights are progra mma ble (64 levels) and can be set or monitore d by a host

compuler . The incom ing pulse density is transfor med to a density proport iona l

to the weight by t he rat e multiplier. An up - down coun ter is used to realize exci­

ta tion and inhibiti on and a rate multiplier is used to generate t he outp ut pulses.



This scheme. even thou! h unique in its coeccptioa, is \'l.'ry bul k~·.

A di&ita.l pulse density modu l ~ tiun circuit hils been 11~'5i ~n,-..1 an,l , 1~,,:;rri llt.J

in ffomberll;d . al., 001. £«1. chip can be 1lSl..J itS a lllallll·ill.lne ,It...-ier- or rail

hecascaded to form a larger network. Instead of Ullin! uonnat hitMry ;uil lullMk

numbers, pulsedensity arithnlcticIwhere each hit I I~s ~,Xitl"t l~' ~"I ....I ....-ill;hl) IIlIm·

bcrs have been used resultine:in "si rlll,le control alill aritllllld ir. ·n. i~ 11It.~ \,...·11

achieved at the expense of a t;reater number of hits than is n"'luin·d in norlll;ll

binarj- arithmetic. ~l ult i plicat i "l1 i ~ achit.'l'O'd by ,l"illg x-cr ;11111 ;ul,litiull is I,il ....

rial thlls the computauon lime ls dln-cr.v proportleunl to tIl<'1l11 11l1...r"f ,It'urt,nS

[Icr a fully connected network),

The circuit given in [Bbyo ct, ill.. ~~J l Ii HS realized i' Iullv «muo-n..1 1I t'l \\~Jr k

with s)"Slolic architecture. For ;.: neurons. :!~ ' '' 'ps Hr " I't'(l"ift,!!III .·" tII l"II ,· l l l ~'

sum of the weighted ptcduct , Thept'rrOrlllall(t.'rau hI' illll.rol\l '(ll ,}" illtr..,llIrillr,

pipeJinin! but the approach needs \'cry complex r irc u itr~' 11.11,1controls.

A multilayered neural u d litecturc IIsio.!: rcllular arra.vl !I.u II('('n ~;n"ll in

(Faure et. il.!.•89J. Each arn.y is ccenectcd to it 's four it(ljaCt"lll n~-i&h1 ,..r.I I lln",&11

ci[!:hl bi-direcricnalbuffers. Each cdl consists uf a routinp;part ililfl il proce..~i llr.

part and by loadin[!: appropriate ffil"SS<I.!C). any cdl c all h.: lo~i(ally .....11111.'(1 ... 11.0,

any olhet cell.

In another bit serial approach IBlltler ,.ot. al., .:!!JI. l';IChsYliaptirc1t'IlWlIl a.I,ls

its share or weighted product to the Ililrt ial slim huerunning down the synaptic

column, The output state is ft'$triclt'(l lu .'j ,li l fl'T' ~n t levels and themuhipllcation

by the wei! ht is achieved hy shiftillg the binary weight.

A different approach has beent aken ill (Wcillflc1d,I5!J1where the nellralullt pul

statesare stored in acircularshi rt register \\"li ichc an hesimullalIt'OUSlY IlCCl'S1icd

hy all the neurons. A simultaneous partial potential is thus obtained at each sllirt



lJ('Cratio n of the register (for II. fully connected network). Out the whole neural

circuit as such is very bulky, it includes an adder, comparator, sixty-four 9 bit

weight storage areas de .

3 .3 C oncluding r emarks

Tllis chapter dealt with differelLt circuits and implementat ion techn iques for the

Jl(:'tIral networks. Some circuits have certa in advantages in some of the design

i~'pects but disadvant ages in ot hers. Floating gate technology seems to be the

most suita ble candidate for programma ble. long term analog weight storage. The

synapt ic circuit hall to be compact compared to the neuron in order to achieve

high integrab ility. With these in mind , the next chapte r deals wit h the design phi­

10000phyand the motivat ion behind the dcslg u or th is Ilarti cular kind or circuitry.



Chapter 4

Design Philosophy & Proposed
Architecture

4 .1 Introdu ct ion

In any neural network, whether artificial or biological, the numbe r (If Sy n i1llSl>S

is much higher tha n the number of neurons. In a fully connected ndwork of

/I neurons, the numb er of synapses grows as Il~. When ti lt' lmph-menuulon in

silicon is IlLhand, one has to consider the imp licatlou ' If scale very rnrcfully. '1'110'

number of synap ses per neur on should not be limited by any circuit constreuus.

The pulsed analog ne ural circuits being proposed here. have rlistincLiuJVilll l.ag{'S

over most of the existi ng neura l circuit s.

4. 2 Ob jectives

The main object ives of this design appro ach arc

• La minimize the synaptic area

• to develop an efficient way of add ing a large num ber of synap tic out puts

toget her

26
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• tu design sta ndard cells which ca l l be put togethe r to realize any neura l

d rcuit.s independent or synapse to neuron ratio - i.e. scalability.

4.2 .1 Motivations

~Iillimizlltion or thl.' .~ynnptic area is important because the synapses predomin ate

in any neura l circuit. lIowevl.'t , it is problemat ic to add the outputa of 8. large

numbe r of synaps es togethe r anti t hen feed the sum to the neuron input. Con­

vcurio nal digital and analog circuits suffer from various drawbacks and they have

;llrcady been discussed ill chapter :J.

Puls ed analog circuits seem to be the most effective way of realizing very

oompnct and efflcicnt syuapses [Murray ct. al. 911. Under this scheme, the neura l

slate is represen ted hy a train of digital pllbes the frequency of which depends

UII t ill' input act ivat ion. The height of the incoming pulses is modulated by a

lorall)' stored analog weight voltage. If the width of the pulse is narr ow, the

modulated cu rrent can be thought of as a charge packet and can be dumped on

III a capacito r. If a large number of synapses are connected togeth er, more and

more charge will be dumped on the capacitor thereby increasing the membrane

I'ull age steadily, In order to overcome the saturation, the capacitance has to be

increased ill p roportion to the uumbcrof inputs .

Another advanta ge of this approach is that the infonn nricn content is ill the

frequency of t he neural output pulse, not in its height . So the output can be

routed to a dia tnnt synapse very easily. NUL only t hat , the pulses, being essenti ally

digita l, can 1Jt" resto red by means of digital buffers while being routed over 11large

llislal lf e . The same bulfcr call also be used to handle the lanout problem.

T he other point worth ment ioning here is that the synapt ic circuits a.re eith er

r-xr-itat ory or inhibitory but not bot h. Th at is, they cannot move back and fort h



between exci ta tion and inhibition as they ca ll in mostof the exbting neu ral net ­

work mode ls. So far. this kind of syna pse has never been observed ill bi()I\J~ka l

neurons [Pe reonnaz ct. al., 86l . This bipolarity CUll eas ily bo handled ill digili11

circu its but is problematic in an alog implementations . For instnucc , wlll're a 11111) '

tip lier is used for the weight cir cuit. one needs a four 'luau rant version Illsl,I·,,,1or

a si ngle quadrant if bipolarity is allowed.

Finally the t ransfo rmation of charge packe ts in the syuanso is ;\I·hie\·.,,1 II)'

a pp lying t he pulses to a MOS t ransist o r whose gale is held at t he \\"eight \·oIL"!;,'.

So t he amo un t of t he charge b eing dll mpc.1 on the cnpacuor .1,:pl'lll b U ll tuc r;IL.·

(and width) or incoming pulses and the weight voltage. However , sine" tln- :-'IQS

t ransistor is inherently nonlinear. scaling t ile weight voltage will no t s""I.: LIII'

neu ra l outp ut linearl y. So far , t here is no l'viden ce t ha t liuear ity is lI)<l iula illl,,1in

the biologic al system . Moreover, all t he learn ing: mecha nisms employ s"nl(~ surt

of feedbac k where t he weight is change d till the correct output is ullLaiued . T his

does not demand lineari ty so long as mrmotonici ty is preserved . Even ir i l turns

out that linearityis the rule in biology. it Ill"! be wort hwhile t il allow lIt)Il .1iI I ' ~ iLril.y

in o rde r to achieve a very compact and efficient synapse .

4.3 Proposed Architecture

Figure 4.1 s hows t he basic architecture of the p roposed pulseda M ]og neural 11"1.­

work . For th e reason described later [ chapt er 7), two ,Iifrcrcut ryp cs or 11!~llr"Il S

have been de signed. The first one is the standa rd neuron IISC'] ill tIll' ] d ll d . ~ u ]ity(~r

and th e out.put stage . It consis ts of 11 co mpara tor MI{1 a pair of pulse g, 'n, 'ratms

which emit one pulse each , every time t he input act ivavion goes past the t11n'.;h·

old . T he ot her type is for inpu t neurons which 'I re rate gene rators. Due kim! fin's

at a maximum rate with an inp ut voltage of !) volts awl gradually tl" ' :re1\5"5 t l",
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Figure '1.1: Block diagram orthe proposed auto scaling pulsed neural network.



rate as the input \'oltage goes down. \VhcrCil$.thc input neuron with a .:ird~· at

the input (not shown, please refer to figure i. l) is t he iuvcrung type which Iircs

at the max imum rate when the input is aero and decreases tl1l' ril-Ie,15 the iU]lllL

voltage goes up. T his second type cl neurons exists in the retina which fI'Sp'lII'!

to darkness instead of the light and arc ca lled da rk cells.

The channel resistance of the synaptic rranai .ror is controlled hy tilt' w,~i~ht

voltage, thus contro lling the amount of charge now to and from t ire Ilwmlm'lIe

capacitance. If the synapse is cxchatorv. dl1l.rsc is added to the cupar-itor while

it is removed for the inhibitory synapse . To achlevo sGllability. th,~ 1111'1I111ra1le

capacitance has been distributed over t he SYl11lPS'~S. So, t he total "Illliu:it ance

of the neu ron depends on the number of synapses al tac1letl to the neuron. If tI...

capacita nce were included in the neuron instead. the size of rue cupacitance would

have to be changed depending on the 1I11111bcr of SYllil PSCS in Imler to avoid tire

problem of sat uration. Anothe r advantage is tha t each synapse adds or suhlTill:ts

its own share of cha rge thus avoldlng the problem of curre nt density build-up ,hll'

to simultaneo us arrival of pulses. Since all these capacitors are in l'iHilllcl, t l...

addition essentially turns into a single minimum si~c lint' or' l.us WIJrl 'Sl'nlillg the

inpu t activation or the membrane voltage .

The ot her point to be noted here is that the inhibitory synapSI'>t'[0 not ClJn1.i1ill

any capacitors and the scaling is applied only lu ti lt, excitatory synapses. Sinec tIre

inhibito ry synapse removes charge from the wt,ll membrane capacitnnrc tlwrehy

making it harder for the neuron to overcome the thrcshuld , t here ean he no 1I1~ llrHIIS

with inh ibitory synapses only, They exis t only to inhibit tlw t'xdtlllioJl and this

is achieved by removing the charge, not by increasing the cnpnchnuce. Ho wever .

the scali ng of the inh ibitory synapses is obtai ned in the secondary level in t1r ,~

sense that there must be more Inhibitory synapses as tile number of l~xc ila.lOI·Y
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synapses goes up.

On ce t he neuron fires. the associated syna pt ic capacito rs are discha rged 50

t hat the charge integrat ion cycle can st art once again. Scalability has once agaln

OC~II achieved by distr ibuting the discharge trans istors in ti le synapses. Th ough a

large number of I rlln llis lo n are required, all of t he m ope rate in parallel all a single

wide tr ansistor whose width is scaled up by the number of synapses. W hereas if

A single tra nsistor is used in the neuron, its wid th ha.s to be adjusted according

to On! number of synap ses - thus mltking it imposejble to go for the standard cell

approach. An extra set of connect ions from the neu ron output to th e synapses are

nee ded in order to broadcast the discharge pulse . but t hey can run in par allel to

the wire! carrying the synaptic outputs together to the neuron. Thus. the channel

will be slight ly wider to acccm odate a t wo wire bu s instead of one.

Since t he amOlll1t of charge being du mped on the capacitor depends on the

pulse width, it is required that thc out put pulse be narrow. However, for proper

dlseha rge ope ration, the discharge pulse has to I,e si8nificant ly wider. That is why

two pulse gene rators have been included .

Since there will be n neurons and s synapses where s>n, synapse 5'1 will

receive a discharge pulse from the neuron i and a n output pulse from the neuron

j . Thu s, on an average, output and discharge pulses are to be fed10 almost equal

number of synapses. Since this numbe r can be ve ry large, fanout problems have

to be handled. A digita l buffer has been designed h...ving tILe same height as the

syna pse. Two buffers occupy roughly th e same area. I\S 1\ synapse. Consequently,

the buffers can be inserted in the syna ptic rank s very ceaily , and the signa.ls can

IJt.' routed t hrough the butlers.

T he resister in the synapse represents the leakage for the proper ope ration

of t he neuron. Without it. the neuron integr a tes the incoming pulses indefinitely
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red ucing th e firing rat e along it. layered net work. B}' diilt ributing the leakage along

with the capacitor. the time constant bas been made indcpeudell\ or the scale.

Althoug h some circuits for weight man ipulation have beeu designed, 1I0t IIIlLdl

work has been done on that and consequently it will not beincluded in t he tht'l'i~ .

T he floating gilte technclcgy SCCIJ\S to be the most promising cand idate Icr Ihe

impleme nta tion of t he efficient weight sto rage (chapter 3) and till' ~~'I\;IIJSC IHi~

been designed with that in mind,

4.4 C oncluding r emarks

In this chapter. design philosophy for the auto scaling neural nrchtccturc hus been

presented . Th ere has been significant deviation ill the proposcd erchhect urc Ircrn

the existi ng ones. Membr ane capacitance has been distributel l ill the SYll;lllSI~

for t he purpose or scalabilit}'. T he neu ron fires only oue puisI' when tltl' il1l' lIt

IlCtivation exceeds the thr eshold voltage. A discharge IIul)(.' is abc gClleraktl tu

discharge all the associated synapses so that the c11i1 rge illtL~ riltioll cyril' can stilTt

once again , Scalability has once again been achieved by distrihulill(l;the disdl;H&I'

transistors over the synap~. Thus scabiliry has been achievl.oJ at the l'XP'!IISC " r

a slight increase in t he synaptic area .T wo different inpu t neurons have also 11t.'C1L

pro posed for interfacing networks to the ext ernal illpills. '1'111'l1O!Ur;11 architecture

hav ing been prcpoeed, the next chapte r dcals wit lltllc uL'Sigll 1t 11l11t1l a'y~i~ uf the

individual blocks,



Chapt e r 5

Circuit Design and Analysi s

5.1 In trod uct ion

T his cha pter con tains t he designs for different neural circuits, nam ely t he exci­

t eto ry sy napse , the inhib itory syna pse and t he standard and the input neurons .

Simula t ion of th e circui ts using Spice, and a mathcrnetic el analysis of each of

them has a.lsobeen provided.

5.2 Excitatory Synapse

5.2.1 Ci rcuit Descr ip ti on

Th e excitatory synaptic circui t is shown in figure 5.1. Th e circuit uses two min­

imum size NMOS t ransis tors in ser ies. T he excit at ion volt age \<~.. is applied to

the 1:ate of the first transistor MI and the second t ransistor M2 is gated by the

weight volt age V"". The d rain of MI is pulled high. Th e output of the syna pse is

t he mem brane volt age V... take n across the mem bran e capac itance e... . Transistor

~I:J (minimum size again ) is the discharge tr ansisto r which discha rges e", when­

ever the neural inp ut activation (or the membra ne voltage ] exceeds the t hresho ld

voltage. Transistor M4. is a long tra nsis tor which generates the leakage required

for the proper operation of the s)"napsc.

33
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Figure 5.1: Schemat ic of the excitatory synapse. All transistors haw' W=5.'1/1
and L= 3,1 except for M4 which has L=20,6 'I,



If only one transistor (Ml) were used instead of Ml and M2, the excitatory

signal would have to be applied tc the drain of Mi . Since a neuron may hi!

connected to many synapses, this would require a large driving capability from

the neuron outpu t. Not only that, when the input signal V... is off and V", is

greater than zero, t he dra in becomes the source. Th e gate being pulled to the

weight volt age. the re will be a steady curren t flowing from the capacitor e", to

the ground. Since the gate current is negligible, the above approach takes care of

both prob lems.

T he amount of current flowing through Ml and M2 depends on t he gate voltage

of M2 and the voltage across e",. By controlling the gate voltage V",I. the amount

of charge that would be dumped on the capacitor can be controlled. So the effect of

the excitatory pulse from neuron Ili to neuron u,.through the synapse $ iJ depends

on V",r, V",r, therefore, is the st rength of connection bet ween the two neurons.

Transistor Ml is always in sa tura tion because t he drain is being pulled high,

For most ol the useful weight vollage range (described later ), M2 will be in the lin­

ear region. However. the charging current is somewhat less due to higher threshold

voltage because of non-zero bulk to source potential. T his is not a problem for

tile proper operat ion of the proposed circuit but can be taken care of by tying the

substrate to the source potential ol the trans istors MI and M2. Charging current

can also be increased by increasing the width of Ml an d M2. But minimum sized

translstora arc good enough for th is applicat ion. Minimu m size also reduces the

parasitic capacita nces.

Charge is dumped only during the time V... is high . When VOi' is low, ~H

is cutoff but a small leakage curren t flows th rough the reversed biased diodes

between the source. the drain anJ the substrat e. Thi s leakage cur rent is very

small (::::: JOpA) and can be ignored. Th is is because synapses will operate in



parallel and the amount of incoming charge (=::5/11\ lex cila lorr srnapo<e)will l....•

much more t han t he ehargc lost due to unwanted leakage.

5.2.2 C ircui t Design

If t he leakag e is not incl uded ill the synapse. the neu ron oll l l"ll periOiI is

T=T.l +l~ (' .1)

where T" and T~ are discharge and c1large ti mc respecti vely. If then: ilre " ~'x["i ti\-

lory synapses, and if lu is t he l ime ilvcragl·d cha rge arrival rate , then till' Loud

arrival rate is n l,," , For n syn ,l p ~e5 , t he total membrane cilpllcit<LIlft.· is flC~.. Su

the ill/erage charge t ime is

1~ = IIC"' II~: . =C...t:
where t~ is the th reshold voltag e of the neuron. T he ;Iwrage firillg ratc is

{5.:0

15.:1)

Normaliz ing the aver age firing rate to the maximum firiug rate I I /T.l) and till'

average rate of charge arrival to the averagc maximum arr i\'al ta lc I ....... cue gelS

R I

1 /1~ = I +C••6Q..,4.
l ...u is the theoretical maximum rate aud is glveu by

(.'i ..I )

(.'i) i)

where Q",or is the maximu m ral e of charge transfer hy l\ sirlglc syna pse excited

al t he rate of i tt, and with a weight voltage of .".1 volt s. T In: abo ve cquariou is

plot ted in figure 5,2 and basically re presents the activation function. T Ill: curve

does not ex hibit the t wo decision etetes normally prese nt i ll neu ralnetworks. TIle
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Figure 5.2: Normalized firing rate of the neuron without leakage.
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implication is that a mini mal charg'! arrlva l rate should be mahuained (in order

to overcome the leakage as in the biologicalneuron] to generate an ')1Itp1l1 .

However, if a resistance R1k is added in parallel to the capacitance ,

(.i.li)

The steady state solution is V = 1".R ,k , [ f lo.R1k < VI,the de vice will nc\·.~r fire.

V can be represented by the sta nda rd exponential equation

(a.i}

The charging time T. is the time t aken ttl charge np to I,; , tI ll' thrt·~hol<l \,.,Itagt' ,

So, the output firing rate is

R = 1j, _ IllkC,..:II[1 0;;1 if 1••R1k > t ;

o otherwis e ('l. S)

Normalizing the equation once again. OIW gCl~

II ,

l jTd = 1- rlll ll - d::;1 (.'i.!J)

where T =~ and I, =~ =~. f,;S curr ent threshold which deter.

mines the firing instance. F igurc ,).3 shows il ser jes or plots for 11''''0.:1and vanou,

values of e",(t hat is different values of r ]. It can he seen tha t r influences till: cur­

vat ure of the plots. This activation function clearly shows t wo dcdslon states hut

is not sigmoid. T his type of activation function has been described i ll I Ru lI ll~ l h ;,rl

ct. al., 841.

The capacitor e... , apa rt from t he bulk membrane capacitance, includes Lht'

parasitic capaci ta nces as well. These parasitic capacitances ste m Ircm lIlc hulk to

drain capacitance of transistors M.J ant! ~H and the body to source capacita llce
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of M2. These capaci tan ces arc vol tag e and. geometry depe ndent . The expression

for these capaci tors are given by ([Geiger ct . al., 901l

C CJ. A CJS Vl, P
BD"" [i (VFl¢sl },\/J + [I (1'r!'; Bl],\'J S\y 15. ' 0)

T he minimum size geomet ry is L "" :J/lm and W = 5A/!m . W = SA/lm is chosen

to avoid the dog bone effect at th e dra in and t he source contact points. T he tot a l

parasi tic capaci ta nce comes to aro und 50 to 60 fF. Since this is q uite variabl e

(process as well as operating point depe ndent) , membra ne capacit ance has heel!

chosen to be 100 fF or O.l pF , br inging t he Lola l membr an e capacit a nce Lo ....roulle!

O.15 pF. The incom ing pulse widt h has been set to li.ans so t ll/\l it sluglc synapse

with a weight volta ge of -5volts can ma ke the neur on lire one puls e hut not if the

weight voltage is less than 3,6 volts . T he threshold voltage of the neuro n lias been

chosen to be equal to 1.5 volts which is half way hcLwccn the upp er and lower

values of low and high logic levels. T he useful weight voltage i .~ from V,.I='L5

volt s to 5 volts . The lower vel.te is due to the fact that M2 cond ucts (iguurillg

subthr eshold operation) when VIUI is more t han the neuron th reshold voltage (= I ,,'j

volt s) plus it s own t hreshold.

The maxim um charge that can he delivered to the capacito r by one single

pulse has been simulated to be equal to ·137 rc. T~ was scL La :lOns so th aL tile

maximu m curren t t hat can be provided by a single synapse is 14.6 /111. If R,~ is

chosen to be 500 kl1 the n r =2 ..'j and It=O.'.!1. T his is ill good agre ement because

1"'4r is the upper bound of the current .

Transistor 1\.14 replac es flu, a nd has it const ant gate voltage of 1.5 volts. ~U

will be in sat uration for a ny mem bran e voltage more t han 1.5 . 0.7 (th reshold

volt age] or 0.8 volt . However , when the membr ane voltage is less than 0.8 110Il .

M4 is in the linear region and t he leakage current is less. To compen sate for

thi s fluct uation , II is set 10% higher than was derived and it's absolu te value is



41

0.23 *14.6 p A = 3.4 pA. In saturation

I , = 0..5. k' . 54 . (1.5 - O.i) 2 ts.ru

where 5-1is 'f.- and is the sha pe factor . 5,[ turns out to be equai to 0.26. With

W=.')A p.m, L comes La 20.6 11m.

1\ Spice sim ulation of a sing ll' sy napse with 6.,5ns excitatory pulses and 5 volts

weight voltage is shown in figure 5.4 .

5 .2 .3 C irc uit A nalys is

Referring to the figure 5.1, for 11.weight of 5 volts, transistor Ml will be in SAt­

urat ion and ]\·12 will be in the linea r regio n. The cur rent through MI is given

hy

(5. 12)

and thc cur ren r thrc ugb M2 is

Ncgk'f"Lillg the pi\rasil ic capacitances at the ju nction of Ml and t.12. one can say

111;11 I I = /.,. The thresho ld voltage of 1\11 is gi llen by

where V is the source voltage of ~11. Sim ilarly, t he threshold voltage of M2 is

(5.15)

Solving t he eq uatio n for /1=12 and noting that V,'s can be taken to be constant

Forsm all tim e steps, V call be written as

\," = ~(a + b) ± ~ { (" + (,)2 _ 2[a2+ 2V",b _ V",2])~ (.5.16)
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Figure 5.'1: Simulat ion result of a single synapse witli i\ IVci,l1,ht voJlilW' of!l volts
and 6.5 ns excitatory and discharge pu lses.
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where a:::::v"r -\{l and b=V",I-V11. Th is value of V can be pu t back to the equa­

rlcn 5.13 for /1 to find the inatant encous current th rough ~1 2. If th e ti me steps

/LTC taken to be small enough , then

(5.17)

Figure 5.5 shows the out put of a small C-progra m (along with Spice out put for

a compari son) to comput e the outpu t of a single synapse due to the excitato ry

pulses (width is 7.0n5 and period is aOns). lt agrees quite reasona bly with t he

sim ulation results from Spice. Th e small deviar ieu is due to the fact t hat the

program does not consider the higher order effects which arc present in th e Spice

level ;] sim ulat ion. The other point to be noted here is t hat t he leakage transisto r

has been omit ted.

5.3 Inhibitory Synap se

5.3.1 Circ uit Descrip ti on

T he inhibitory synapse is shown in the figure 5.6. It is almost ident ical to the

excita tory synapse without the transistors M3, M4 and the membrane capacit ance

e.... T he drain of MI is grounded, so it becomes t he source. Since all the syn aptic

out puts will be tied together to constit ute the activation bus for the neuron.

application of the pulses at the gale of Ml will resul t in withdraw al of charge

from the to ta l membrane capacitance. This discha rge current , however depends

on the weight voltage VIOl at the gale of ~12 , Most ofte n a st ronger inhibit ion

(com pared to t he excita tion) is required so t hat the weight voltage will be around

5 volts, T his will make M2 operat e in the linear region. Since t he source of MI is

grounded . Ml will also he in the linear region,
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Figure ,';.5: Act ivation voltage' due 10 on e synapse using (!(l llatioll~ ,S13. ,'i- In IUI II

5.1i . A spice s imulation is given for courparision.
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r igUfl' 5.fl: Schcll1lltic diagram of the inhibitory synapse. L",,:JJI and W= 5.4f/ for
both thr-transistors.



5.3.2 Cir cui t Design

There is no elaborate design procedure for the inhibitory synapse. Both ~I J anti

M2 are minimum sized trans istors, r\ spice simulation of thr ee excitato ry syuapscs

and one inhib itory synapse is given in the figure 5.7,

5.3.3 Circ uit A nalysis

When the inhibitory pulse \1;" is applied to the inhibit ory synapse (Hgur« .,).li )

with a weight volt age V...c of 5 volts . an expression for t he disdl ilrgt· rnr n-nt rnu

be obtained &5 follows : for t he quantitative analysi s, \-;" will Ill' taken to he t he

threshold volt age of the neuron or I }; volts. If V is the dra in voltage 'If ~ I I . tlu-n

the current through MI is

/ 1= ¥TI-{2(1';" - \-iLl- qv

and through M2 is

/, = ¥7}12(V"" - I' - \ ,, ) - (V,\ / - VlllV.1I - II ) (.'U!.l)

where Vu is the lotal membrane voltage of the neuron, Equat ing these t \\'o cur rent

expressions as in the liLllt section, V ran be solved to be

v = h(V;" - \1'; 1+ V"" - \;;1)

± ~J( V;" - V;l + v;"/ - \';d - ·1(11•./ - Kl - , ·'j ~:\ rl ~:\1 (.; .:W)

Here, V;! = VTO and \1';2 is given by

Subst ituting V in the exp ression for /, will give the value of t he dischar ge I ~ U rre ll l ,

Finally, it can be noted tha t if C.\I is the total memb rane capncit ence. then



Figllrt·f,.;; Spice stmulatlon of three excitator y and one inhibitory synapses. First
(our waveforms arc input pulses and the last is the out put when the synapses are
tied toget he r.
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From t he above equa tion, one can find the change ill t he activatiou \'ollagc due

to an inhibi tory pulse.

5.4 Standard N euron

5.4.1 Circuit Description

The standard neuron consists of a compar ator lind two pulse gener ators . WILt'lI-

ever the input activation volt age goes past the neuron thr eshold volta ge. tlu:

comparator outp ut goes high. This posit ive t ransitio n is dell'I'lel! II}' t ill' pll h(~

generators which in turn em it cue 6.5 us ne u ral ou t p ut !lHls,' 111111"111' Ii us wi.lo

discharge pulse. This discharge pulse discharges the membrane Ca pilr i l a llft os au.1

t he comparator outp ut eventu ally goes loll', The schematic .lingrum is .~hCII\· 1 1 ill

figu re 5.8.

5. 4.2 Cir cuit Desi gn

The neu ron circuit is quite st raig htfo rward. A sLalldal'O l ll ·o'Ili lllt ld .l i l rl'f" Il I-ii l t

amp lifier with a p-che nnel currentmi rror IOiH! is IIsed iL~ lhl~ compurntor. A sl'fl md

inve rting stage is added to increase the gain and the uutput swing of tIle iUlIl,liliN.

The output is fed th rough a standard digital buller, thl' " Utll il t or whichf,'Cds l lw

pu lse generat ors . Th is cer tainly limits t he amplifie r IOiLrl an.l In 'lIcI' illlpro\"!S rJu'

comparato r delay. The pu lse genera tors arc pulse edge diffcrcntiut ors IIsinK l h , ~

logic gale delays. Small capacitors (0. 1 pF) have been adde d in lh.~ invorwr dlains

to increase and ac hieve the desired delay . Sp iel' silllula tillil o( the sl aw liln.l IWIlWIl

for a ramp input is given in figure .1.9 (a Spit e in put deck is illd ll, lr'd in Ar rwur1i ,<).
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Figure 5.8: Schematic of the standard neuron.
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Figure 5.9: Spice simulation of the standard neuron. First t wo waveforms ilrt'

input volt age and reference \'oltage. The next om' is the output pulse while lllC'
last one is the discharge pulse.
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5.4.3 Circui t An a lysis

Analysis of the comparator and th e associated delay is well documented (Allen er.

al., 871, (Geiger cl. al.,90j. However, th e relevant portion of the design follows

next.

Comparator

Referring to figure 5.8, under t he bala nced cond ition (Vg l =V g2), h splits equa lly

between MI and M2. So one needs MI and M2 matched and similarly M3 and

Mol matched. 50,51=52 and 53=54 where S (= W/ L) is t he shape factor and

/1 = 12 = h /2. T he drain voltage of M3 and M.J are equal and /1 is mirrored to

M6 by the ratio of M6 to Mol. Simi la rly, /s is mirrored to the out put by the rat io

of M7to MS.

(5.23)

Since the circuit is balanced , h = lr and 12 = I~ =h/2. Therefore, 2£ = ~. In

this particular circuit , 'tt = !ff=~ and ¥i= W= ~. W=~ and

W=~. This leads to if: "" ~.
The propagation delay of the comparato r can be est imated as follows. Since

the delay is different for a rising and a falling output , the total rising delay (Tp+)

is the sum of the falling delay of t he first stage (Tpj) and the rising delay of the

second stage (Tpt). Similarly, the total falling delay (T,,-) is th e sum of the rising

delay of the first stage (Tp~) and the falling delay (Tp"i) of the second stage. Instead

or genin g into the detail ed discussion (which can be found in [Geiger et. al., 901l.

a brief outline is presented below.
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C~ Yom - Va Ll

210;
CI VO"l - VTIIP~

I,
C2 Yom - VOL'1

210;m".,

where VTRPl is the trip point of t he second stage am} is given by \'jJV- 1;6- !iff

and Vall and VOL refer to the output high and low levels . 16 ", ,,., is the maximum

current available to charg e the final load capaci tor (C2) and (' I is the pnrnsitic

capacita nce at the output of the first stage. For t he a bove designed circuit . 'f ~+

and Tp- are found to be -t.sne and Ilns whereas Spice simulation shows them to Ill:

-l.I ns a nd 5.6ns.

Delay in t he pu lse ge ne ra to rs

T he pulse widt hs of t he neural circuit depe nds on the inverte r delays for different

load capacitors. T he delay calculation for t he inverter pair is well documen ted in

t he literatures [Mukherjee , 851.[Geiger e t. al., 90J. The totaltl elay (IJ) is giv"1l

by th e sum of the del ays due to high to low transit ion (I ud and low tu high

trans it ion (tud . T he transistors used in t he chain of invert ers arc of minimum

sizes. tJ can be expressed in te rms of the charac te ristic time constant for the

process (depends only on the geometric al and elect rical parameters hilt 110t 011

any particula r circuit), Tp by the relat ion IJ "'" 8 Tp • Tp is given by

Tp = I\'W(V~D ~,,{~o c e l 5. ~fl)
T he value of Tp ror the parasitic load is 0.2 ns and is 0.52115 for bot h parasit ic and

external capacitor (0.1 pF). So the approximat e del...y or t he pulse wid th or the

neuro n outp ut is (0.2'"4'"4 + .5'"") or 5.2 ns. Similarly th e dischar ge pulse width

is (.2"'4&10 + .5'"4'"3) or H ns. Th e delay due to the final stage nand . inverter

pair is not included in the calculation. Spice simulatio n shows these pulse widths

to be 6.5 and 17ns.
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5.5 Input N eurons

5.5 .1 C irc uit Descript ion

As mentioned earlier, two types of input neurons have been designed. The stan­

dard inpu t neuron fires at its maximum tate with an input of 5 volts and the

inverting input neuron does the same for an input of 0 volt. The circuits are

shown in figure 5.10 and figure 5.11. T he neurvn employs a consta nt current

source and reflects the current to a capacitor t hrough a current mirror . Tra nsistor

MI is the consta nt current source which sinks or sources current depend ing on

th e gate cont rol voltage Vc. This curre nt is mirrored by 1\12 and M3 (and also

by M4 and M5 for inverting input neuron) to the capacitor G,n. The capacitor

out put is connected to t he standard neuron. When the capacitor voltage goes

past the neuron t hreshold, one outp ut pulse is generated. However, the capacitor

is discharged by the buffered comparator out put Instead of t he discharge pulse.

Consequently, the discharge pulse generator portion oCthe sta ndard neuron has

been dropped from the circuit. Th is is required because init ially the capacitor will

he fully charged and the comparator out put will be high. Since t he pulse genera­

tor needs an edge to generat e the pulse, no pulse will he generated. So the high

outpu t of the comparator will discharge t he capacitor initially and subseque ntly,

every time after the pulse is generated . The inherent delay of the comparator

ensures that the capacitor will be fully discharged before the volt age can ra mp up

the capacitor in the next cycle. The width of the discharge trans istor (M61has

been taken to be 12 /Jm so tha t discharge time is very small.



Figure 5.10: Schematic diagram of the slandard input neuron.



r the Inverting input neuron.Fignrt' 5. 11: Sd l('l1la.t ic diag ram 0



5.5 .2 D esign &. Analysis of stan da rd input neuron

It will be assumed that the dr ain of ~ Il is set ttl 1.5 volts. T his will put :-O il ill

the linear region and the cur rCl1llhro\lgh it is gi\·vl1 by

(.'i.:!fi )

whe re VI is th e d rain voltage of :-OIl. ~I:! is ill satu rntinn aud thc rurn-ut i~ ~i \" '11

by

exp ect ed cur rent is then 189 /IA. But S l l in~ lev el :1 simulation shUll'S t his ru rn '1l1

to be l ID JIA. lnv...~t:gil.li ng t h is discropuucy. il 11'".< found ((VI,,,lilll in's,'u d. ,.I..

SOil that Spic ... ill level :1 uses highe r orde r dfects ;\S well as many "lIlpi riral

relat ions whi ch a re ab sent in llie st.a l t' ,1 simplified '~'l ll ill i L)II .'i Surfnrc Illtlllili1.y

modulation by the gal e voltage is given hy

Jl
o 1+ IJ(Il,. v;~)

( 'j .:!Sj

and is 526.14 cm'f\'·s . T his is fu rther reduced by thesut uration "f ll l" IInl "II'r l T\J1 1

veloc ity in t he linear reg ion redu cing rho drect ive lUolJiliLy tu

I',
/Id / = 1 + r:ih::T.FJo

cur rent is g iven by

/.').:m,

which comes to 150 Jl A accounting for o nly half the disc repancy..
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In order to achieve A PUl5Clr ain with a period of ;JOos, the proper value of

tile capaci tor hall lo be chosen . T he pulse:'is generated 1O.2ns ah er the t hreshold

\'...111(' is reached and compar ator out put goes lew 1:3.3ns after the V+ input goo.'S

Illw. So. tile caf>llCi to r has to he chilrge<1 to Li volts in (3().JO.2· 11.1) ns or

in appruxi m;t.tdy 7ns. So. C,. ill fOl:nd 10 he IIOc-6-ic·9j l.:i F or O.·j pF. T he

r-apaci tor will he charg c-dto :I.i S volts when 1I1ecomparato r outp ut goes high . The

,Ii!lf;hargc current is comp uted to be 1..17 ru,\ and it tak es O.S Il S to discha rge the

r-npnritnr . Th e compa rator take" another I;J.:J II ~ to get the out put low. However.

li,t.'tol al t i n ll~ req uired for th e com para tor 10 make t he output hi!\h is i +JO.2 ns

or 17.:? us. Thi s ensures tha t the compara to r out put will go a ll the way to a logic

low. T he cir cuit has been simulated hy l tspice and l ilt.'d ilTerellt per iods obtained

f"r ,Iitf(,rt'nl ront.m l voltag('S 1Ir1.' nul('tl helow . The silllllli!.lion of t ill' above circuit

\·~l l 'olt .•) Period s(ns)
5 ;JO., :J:t
:J "., ss, !:JS
0 "

Tahh~ 5.1: Con tro l vol' agl'S and the periods of the generated pulses for t he st an'
,l,l nl inpu t neuron .

for a cont rol voltage of 1) vcl ts is shown in Jigure .j, 12.

5 ,5.3 Design & An alysis of Inver t in g Inpu t Ne uron

T Ilt' following design prnCl'llu re is fur " control \'ohage of 0 volt. V I will be

,lSS lIlIl erl to be l..'j volts . T IL('II t ransist or :\11 is in linear region and :\12 is in
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figu re 5.12: HSPICC simulation of till' standard 1Il1'Ill neuron. 'I IIf' waveforms
arc for t he rout rol \·ohagl'. \'ollag(~ across tin' ca pacito r and tlw output pu b, -s
respectively.
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saluTAtion. The curren ts through :\11 and :\12are given b)'

I ,

I,

¥SI{v. - l~, _ l~~s )VDS

~S1I~'1 - r " -2 - ,,. (5 .31)

E'l"at illg /1 and 11 and substituting values of all et her parame ters, one gets ~= I.

WI i:li chosen to be 5..1Wna...Il.1 is (i ' l III a nd this leads to W:! = 1O..:Ipm if L:! =
:1/1'11. SJ is taken to be eq UAl to 52. If V2 is set to 1.5 volts. then both ~13 And :\1·\

lire i ll saturation. £qualing the currents res ults in SI = 1.1 and consequently \V-I

= W.') = .'}A /11Il And 1..1 = L.5= · 1.~Jlml. The char ging cu rrent is calculated and

simula ted tc he .lfiIIA. Using thesame logic as in t he previous subsection. C,~ is

f"'lIucIto be 0.22 pF. Most uf the othee dlscusstons f" r the st and ard input neu ron

..tso held here. Ti mc periods of the "lIt pu l I'UISl'Sfor diffl,tl'lIt l:UlllNI voltages are

gin'n I,d ow. T he simulAtion with [lspicc for a contr ol \'Ultll! l' of 0 volt is shown

l ~ l l 'olb l Pcriod stn s]
0 10, :J.I., 1I

"
SO

., StU

.\ cc

Table5.:!: Contro l vchages and the perlo.ls of t ilt.' generated pulses for the invert ­
ilLg iup ut neuron .

inthe figure ;l.I3.

5.6 Concluding remarks

In Ihis dl.lll tcr . lll'>iign procedure orthe neura l circ uits In\ \'c been discussed . De­

lail,,,1 ma tht'ma l ical ana lJsis has illS<) bl'Cll included , E.~ch orthe rircuirs has



Figure 5.13: Hspice simulation of thr-inverting input neuron. TIlt' first waveform
is the control voltage, the n the voltage across tile capacito r and filially t I ll' output
pulses.
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been simulated using Spice and the result has been compared wit h t he thecret­

ieally calculated values. Equations .'U 3. 5.16, .; .Ii, ·5. 19• .5.20 and 5.22 can be

u!R'(!lo de velop a sirnulaLor which is needed for simulat ins A larg'" ne twork. T hi s

is required oc'(ausc Spice is 1I0 t "cry suitable for simula t ing jl lu ge uetwcrk. l n-

~kad uf gcltill& into the dc la ilt..,J ci rcuill.-qu/ltions. thes e t.'CI IUll iollS ca n he used to

ge ller" lc a macro model that (1111 be used very cffl'Cl i\'c1), to simulate 'lull study a

large ucrwork.



Chapter 6

Standard Cells

(1.1 Intr odu cti on

In de veloping a n integra ted circu it . a to p dow n d l'.~ ig ll ;lPIlW..,.h is IIsnally t"k" II.

TIll:' whole circu it cOIJSi ~ tlI or 1\ Iew hig func t iona l hltlcks wllit"h,m' rI"fo mpu,,-d illl "

snb blcc ks in t he next lower level of Ilil.'rarcl.y. T I.i s is n llll illlh',1,mlil tIL.- Ir; ' !lsisl "r

level is reach ed. T he same idcll.;s ll!SQ1I:ot.'U fur t ill' phJ·siCllI.b,i.r;lI . J) irf"rt' llt h l ks

or cells ArC developedwhich lire fUllcl iull;"lIy 11111'1'10' ;Iu.l in ,' n Olllll. ·t ....I I" !l, lwf

to n.·alizethc ful l circuit.

\Varking on the cell level h,"-s several .HhOlll lilgl"; [Lonhc r, ~II . Olin ' "n,' n -II

is des igned. it ca n beused repcatl'tlly in the ""!I ll: (ir r "itl,·;,.li"" In il I,i"h .1.'lV.... •

of regularity or the la)"out . TI,i:! fI.·dUCl'S u."Sil;/1 tim." "'11<1 ,·"rill,",I.iuII "Xl"'"''''

significantly. Once the ce ll is working properl y. it •·..u Iw 1\~·. 1 in "tlll'r ll,,,,,i~lI,(

without any further expe nse. ~ot only rh..t, t he uumlx-r or rumpfln('n (~ wit h

which one has to deal (manually o r o-ing pl.«.· "1ll1 rOllh' rl llHill.ost b 111111·11 l l!~';

compared to the transistor level approach. Fillilll,l' t h(' s\ ,ulflilrd n ,lI ilppruar h

teeds to a very structured dcugn. Functiu ll,l1 dd ,lih <in' lli,I<!('11 ill t il" n~ll <Hl'l

one has to bot her only wit h the il1lJut and out put pins.

Th e stan da rd cells for the IIcutlll d r<:11jts h,t\' c IU'(!l1th~WJl'I l('d usillg Il l" C;l'

"2
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lienee EDGE and is compatible with Canadian :\Iicroelcetronic Corporation's

C~IOS:J D L~I process. This is " 3,ml C~IOS l cchnolo&.v I...ith dou ble metalla yers

a rul II. si ll ~l c poly laye r. The lih rlHY was dl'Si];ut:d us-ill! the gritls even th ough

EDGE can do gridles s rout ing (C'- IC. 89).

All the <limclIsi ons ment jcned in this chapter arc des ign $Cllle micr ons (dslll) .

Thi~ is rela ted to t he actua l or l in.' physica l micron by th e following relation

Physical micron = ~ dl'Sign scale mic ron

6.2 Cell Specifica t ions

• Gr id size : eac h gri d is [(lJUll wide ..vu h 16 subdivisions of o ne mic ron ea ch.

'I' ll(' grid SiZl ' sterns Irom t ht' gall 1111\1 should be maintai ned between two

vias.

• Ce ll dimensions

- Cc.'11hdght : cllrh cell has height of j r;rid.. or 111 tlsnJs . Th e center or
the vdd bus lTlakes tilt.' top hUlllldary whereas t he center of the ground

bus mak es the boUom boundar)-, Pvguard a nd N· well la)'e rs may ex tend

beyond the bouom boundary,

- Cell wid th : rhe cell width ClIlI be an)"lh ing , It has been found that

the EDG E place aUtI route rcutiuo (locos ncr m-ed the cell width 10 be

integral mult iple of grid units, This is t he mosl noticeable deviation

from t he ('1\IC Cl\lOS:JI) L~ l li b riH)' andleads to a compact cell design.

- Cell origin : This is the ld t most center point of the ground bus.

- Cell bou nd a ry : this l:OHl'SPOIlUS to the left am i the right cell hound"

aries hill ill 1.5 dsm above and below t hc lop and the hallam of t he

actual cell .



- Power Buses : vdd a nd Ille grolll,,1 llllk 'li ruu "" ros~ t lit' hlp ami l ilt'

bott om of the cell to IIICfull width. ;\h.·ta1l i:t 1l ~, ..1 fur Ihis 111Irp"""

and till: buses lire 10 dsm wide . ,) ,1,,11I metal is ,'xh ·11I 1...1 Iwyulltl II...

top and th e bottom IIf th l' cd \. T WII lIll'l all pin s tnl, l! and SIul!} an­

placed on th e vdd ant! ll,l' ,;ruu lI< l bUM'li au.l t.h...ir ;n·ft"'s , lin ..·t io ll is

to rhe left and to t he ,i~h t ,

• Input-ou tp ut po rts : 1\ 11 Input-output por ts ar c provid- ..1 wit h 1Ill'lal l·\ ' i;l·

m("t1l12 pads. Thl')" ar ... I I dsm squan- ;011.1 a ...~ pi"...·.! in ti ll' cell at ;111)"

position that was found convuuicut and i11'l'il cllicicnt: l'ons IIr i~ilLalilig

from metal! h:\\'I ' 11ll,tall ,\'i n-1lll'til I2 llill h wlu-rcas t l l(1~ " From pHly h,I\'"

poly-contac t -met all all, l then rnc lal l , \/i" ' IlIL'tfll:1 pa,ls, ~ I."l of l ilt' \' ii~~

ha ve I I dsm mt'l a l:1 pins till top with lop flll.1 I>II11ull1 i1t T , ' SS ,lirt'di"lIs , III

order 10 save area , SOllie of the vias (0 "1.11I.)t h,' Im}l·j,I...1 Wilh frt-c·I, '!' .' Iltl

place with a,) dsm sClllare lllt.'taI2 1,ill al lilt' lip ,

Some of th e cells a re compound cells in lilt' !IO' n!lO' 11"'1 t ill')" .lT " ru m l"""..I ..f

base cells, Some of the ports o r t he base rells whidl <lrt.· nn-aut fur iUto'rlMl

butt ing are provided wit h IlOly-cOllliKt -llwIOlII 1" I' I.~ i l1"lt~..d " r vins. :\ 11 11u-

input and output porl!!' I f the COIIlI .. JIllul "..(1:01 lIa\',· vi.. ruuu ...-ncn.

• Port name: por ts han ' bee n named in sud l a way th;,l till ')' g i~'., ~. "" I

indication about the inccnnug or cutgciug s igliHls {",g. I :, fur ,'xrit 'lr " ry

aignal, DCPULSE for discharge pllb, ' cl c,}.

• l nt eric r of the cl'lls : cxc,~pl for ti le 1..1"".' r 1.1JM!S d l'll run ;.n"s" llw filII

widt h of th e cell . Allllldi\l1 a/ld IIwl;~I:1 wi....-s ;, r~ >ll Il·a.~l :!.:'i ,I~m (rurn t l" ,

Ich and the right boun daries . Pllly wires llIa in lain l lw "a llll: I;ill' ull all fUllr



sides. T he Pcwellcan occu py the lower hair of th e cell a nd ext ends to the full

width of the cell. Th is ena bles a continuous P -.....ell alo ng with th e butt ing

cells. Th e P- ~IIa.rd And the N·well can ext end beyond ti le left, t he bottom

and th e right bou ndaries. N + and P+ layers art: At lea.st 2..; dsm away from

the wmndaries whe reas the X + and P+ diffusions are a t least -I ds m aWA}'

Irorn all four sides. Care hou bee n ta ken so that tile design rule for the gap

between th e Pvwell and the diffusionarc not violated.

6 .3 Cell D escri pt ion

The (ells haw been de signed in snrh a WilY t hal t lley cxn he hu tte d together to

form ,. row of cells and the routi ng chanucl s call he Ionued in between the rows. It

is also possible to st ac k rows togethe r (wit h alternate tows flip ped upside down)

without chann els be tween the m , T his leads to II very comp act layout. ~le1a12

...·ir..'S ru n w rt ica lly up .....ards into t ill! channe ls aud t ile IUcta l l wire'!l ru n horizon-

ta lly. Except for t he compound cells . usc of metal2 wires has been restri cted onl y

en to the vias. For th e COlli pound cells. Ilwtal2 has been used for inte rna l connec-

tio lls (w hen necess ary] bu t tllis rloes not ha mper the \'cr tica l access to the actu al

illl' ut uut put port s.



6.3 .1 Ex cit atory Synapse

The layout o f the excitetcry SYII1\IISe is shown ill figure Ii.l .

Dimensi on : 112 x 96 dsm

Input ports : 1~~ , l-~ ." l-de, I'ik

Out put port : I -~,

!. J

--- -

Figure 6.1: Layout of 1)1{' exe'ita tcry Syllill'M'

·; i
! ,

fill



6. 3.2 Inh ibitor y Synaps e

The Iflyout is shown ill figufC6.2.

Dimension : 112 x 4.8dsm

lnp ut ports : ~~" ' V"'I

Out put port : V",

Figure 6.2: Layout or the inhibitory syna pse
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6. 3.3 Standard Neuron

T he ,tandud neuron is • compound cdl and is ccuiposcd or l lll' ru llo\\'ing h~'<C

cells : comparat or, buffer , delay (capacito r) elements, lnvcrter'J (t wo mluiuuuu

sized inverters in a row) and ill\'e r ter3 (t lll"l.-'C min illlulll sized ill\·(·rh ·n' ). TIll' l il~"

0111 or the neuron is shown ill figure Ii,a . The base cells iln.- shown ;11 Ii~ llf< ' " (i.-!

to 6.9.

Dimension : 112 x 90t dsm

Input pen s : V+ . V-, V.

Output port : NPULSE, OCr ULSE



(j!J

Figun·l,i.:l : L il.\"CHl l of I ll(' ~ t;L1l(l a r{I II (, UI'''' 1I
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Figllff' 6.5: Layout of the buffer
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ve e :

Figure (j.6: Layout or tln- iuvcrtcr.l.
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vee: i,

Figure 6.7: Levour of the inverler2.
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Figure 6.$: Layout of the two input nand gilt t' .

7·1
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Figure6.9: Layoutor the inverter .
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6.3 .4 Inverting inp ut neu ron

The lnvert ing in pu t neuron i~ ,.150 it ( "111 1)0'111,,1 n·11 ;11lt1 i-, ...'1111,.""..1 ..r ill \' 11

In:' lt ar;e depen dent ramp gCIl~'r ;l tor ) . ' "I1l!,;lT;'l "r . I."t r,·r , ,1,·lilY. ill\"'rl l'r:? ;11..1 in­

n' rler :j, Thelayout of in\'O alltl !Ill' inn 'rti ng iuputnvurun M " ~ in 'n i lll. .~lIn · t i, lU

and figure 6,11 .

Dimension : 112 x 595clslll

Input ports : 1 ~ . F - . \ .

Ou tpu t pori : 1\' 00 1.:1'



Figure 6.10; Layout of ramp generator iuNO.



Figure U.J I: Layout of llw illH' l li ul; input tu-uron.



6.3.5 St an dard inp ut neuron

TILe st ...nda rd input neuron is ClIUl POSt.'t1 uf i" NI(\·oltll.gc dependent ramp gener ­

...t" r , li.l;,nc 6.1~ ) . compara tor. hurfer. delay , tnvenerz and i'I\-erler;j. Tile layou !

is ~1 1l )\\" n i ll the figure 6. 13. Dim('lI~ioll: 112 x li(l(klsllI

IlIlIUl pons : \~ . V- ,~

O Ul Plil port : INIGC"



Figur (' (;,12: Layout uf ill~J.
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Figure 6.13: Layout of the standard input neuron.



6.4 Simulation

All the standa rd cells have been ext racted aud the simuhuious have been ,l"n,-

on the extrac ted schematics (using Spice}. Figure G.[·1 a nd flguH· li, I.) show lhl'

simulations of the excit atory S)'II;lpSC and the stnudnrd lieuron fur t.ltc 5,[ 1111' kind

of inputs as in the previous chap ter [i.o. simulation uu tl,l' schcuuuir...). Tlu'

names of the waveforms are shown 011ti le left or each of lilt.' waveforms. It GI ll Ill'

observed that t he result is somewhat {Ii/ferenl (compared to the simulation re-sults

on the schema tics. figure 5..1and .i9 ) due to the p Tl'SCIlCC or parusitic (i11Iac il,II11:I'S

due to act ual laying of di fferent layers and l'Olll ing IWt.WL't'11 cells (i ll t0 l11pu lLlltl

cells) .
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Figure 6.14: Simul11.lion of tile extracted layout of the excit ato ry sy nlll'Sl'.
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1
Figure 6.15: Simulation ou the ext racted schematic of the standa rd ueuron.



Chapter 7

Simulations and R esults

T ile pr op osed pulsed neural architect ure is qui lt· dill crc ut fro m I.IU'"xi~l illg "ill'S

and the refore need s some care ful r.XplllJ'ill. ioll . t\ IllI111h ('f of m-twurks sud, as

pattern classifier s, associative r ucruory. XOH g.ucs . lIopfk ltl lI.-1s l' lT, h"w 1"'('1\

simulated llsing Spice or Hspl; c . Th e 1Il'''1. few secrious ' In.' -l'~\"(l I. ( ·, 1 III ""Ill" !If

t hes e simu lat ion resu lts.

7.1 Pattern Clas si fier

Figure i .l shows a simp le patt e rn c111ssifiN networ k whid l;S h"sintlly" templ 'ltt­

matc he r [Graf c t. al. 881. A numb e r of vectors arc st ore d ill t he net wurk (lIe n '-;

vec to rs nam ely, 00000. 1111\ , 11110, 10101, UlOIO. 00100 and 11011. ('m:h .'"l bits

long ). Input neurons feed ea ch SYUilpse ill it row ill p;lralld and lIll' nut.put of 1111

t ile synapses in a column generate th e nr-tivution \'oltagl: fOT tit. , , :nrn '~p" l!' l illJ4

ne u ron , Whe n a n input vecto r ls presented (00000 ill this eXilluph') . tIll' 11l'1,WlIfk

com par es th e vect or wit h all tlw srore d OlIl'S ill parallel nudgClleT;lks the l/ut l' lll~.

Figure 7.2 a nd 7.3 show the act lvariou a nd the ou tput of al1 seven IIl:ll rUns. It

can be seen t hat th e outpu t firi ng rat e dependsuri hOI\" c1usdy the ~ tl)Tl't1 \·,'dur

mat ches t he in pu t one . Tll us, lhe network Il"t ' )Ill)' lin'b a matd,. hu t "ls"

Indicat es the Ham ming disr anre. III 1.I1 i ~ ,' xmrlp ll', th e netwo rk coul d sur:n'ss rlllly
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Fi~llrl' i , I: Template matc hing example . All weights are 3.6 volts. Stored pattern
(0 or I) is written inside the synapse.



Figure 7.2: Spice simulatio n of the template match ing example . Fir~l two wave­
forms indicate t he outputs of two different input neurons. n( ~~ l of tlu' waveforms
arc the activa tion and output of neurons 1, 2 /lilt! 3.
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Figure ; .3: Spice simulation of the template matching example. The waveforms
show the act ivation and output of neurons 4, 5, 6 and 7.



or one or two, T he network does no t ~polltl to A Illll lt 'f11"way hr" lI amlllill!l

dis tanc e or th ree or more , T h is can bechanged hy c!litnging till' Wl'ilthl mlla!!(' or

the threshold voltage of the ne uron .

by a vector {OllOOI not stored in t he network ilt all. h i ~ ;lllllan 'llt Iha l ,'\·,'u if

t here is no exact match, the net work can classify tllc sLtlrl'tl pa tu-m "("for,I;,,)!;Itl

t hc llammingdistan cc.

In a pa tt ern clas sifier , I and 0 component s uf the st,m~ol '· ,'c'I.Ots an- uonuully

rea lized by excita tory and in hibi tory SYU'\ jl M'S. Th is Sr.!ICl\U'is pm lllt' IIIa l io:fllr l Ilt'

p roposed pulsedneural circuit Ill"CilUSC tIll" rotnl inp ut :1('lil'<lt i" l1"f ,IllY II " II W II is

essentially the number ofones minu s t he number of l.t'r CI!.'l' or 111,' sl u rr't[ l' aUt'TII. If

the nu mber or stored zeroes is mo re t ha n til(' number or slllrt'tloul'S, llll'n ' is II.. 1,..1

ilct h' atio n and henee th e neuron would be 'Iltah l. ' 10 dl'l<'t~t tl ", 1';,It ,'rn . " \..,,t " f

t he neur..1net works [Gra( er. aI., SSI, [Hopfichl, S:!I 1I.'<C an inn .'rIL'tI IIlttp ut uf 111,'

neuron for the inhibitory synapse. Howeve r . t he 1011110g;''al nt'llruns II"'~ l ilt' 'MIllll '

pot llrily signals for bolh exc u xt oey a m i in ll ihitor~' ~Y llil l """I . T llis i ~ t ill' rt .... ."'J11 ru t

(f t:'a tin ,ll: the inverti ng inp ut neuron whicl! fin'S it t .1 Iligll r,, '" fllr au inpu l "f ~,'ru

and therefore works lIS & tero detect or , By IIsing holh uf t lll'St' i ll lll l l ltt'\l rt >lt ~ , " nl'

can store t he patte rns by IIsin,ll:exc ita tory S}'lm\lSL'S ltlll~" ,\11 t l tt~ S}'IH'pSt 'S Wo'rt '

driven by it common weight whicl , was varied f(orop t imum [".' rfOtlllil IlCl'(th .. "ltl~'

form of learning availa ble to us at present] .
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Figu re 7.5; Spice simulation of the tem pla te ma tching example Wlll'll prolJ(~d wit h
01100. Till' same waveforms as in figu re 7.:1 arc shown here.



A content addr""ahle memor)' call be formed by" lempl ale matching network

rullowl!t.l hy a willner-tak c-Illl netwo rk IGrar ct . al.. :I!J]. The lI"mlll ing classifier

or the template matcher find, o lll the overlap bet ween t he input vector and the

~ton...1ulles an.1 the winner-rake-all network ecrne vcs tile pauem with ma ximum

'I,·erlap . Fig' lre ; .ti :'iho\\,' such it. net work wit h l llf' 1I' llire siml1lat ion iT: fi! urc i .i .

TI ,,~ out put uf each or the lieuron inhi bits all the 01her neur one. III the simulation,

tIl" iupnt par tc rn is 01100 which c10srly llliltcl'l'!f (hilt not cxactly ) the six t h stored

vector (00 100). II ca ll heseen tllat t ile network i ~ .,ble to ,Iclcc llhl' store d vector

[neuron (i j ~ firing) properly. TIle firing rete is less due to the Fact tha t the sto red

\'l'<'lor (00 100) does 1101.cxnctly l11ill ch t hp lJl'Ohc,1one (0 1100), This ca ll be t .akeu

n tr('ur by increasing the weight,



Figure 7.6: Content addressable memory formed by 11template rnal1lclll'f fullowl',1
hy a winner-ta ke-all network .



9·1

F i ~llrt· 7.7; Output of 7 neurons (including t he actlvarion or neuron 1 and 6) when
tllt' prcsontod pattern is 01100.



7.2 XOR Gate

Three different lypes of XOR t;a.le:> have been simclatctl all tJr whirh follow lh,'

elessic m inimum XOR l opolo~·. Each vcnioll 11a.~ two illlllll IIl'UnlnN lp.""",iloly

with t he inverted pair ). two hiddenneurons (N I " ntl ~11 an,1 Olll ,.lIIqlll l n...mlll

(:'i3). Input and hidden neurons are connecte d II)' four srn Ol pSt'li and rln- hi,M.'n

and the outp ut neuron are con nected h)" 11.pa ir of li)'nilllS(.·s. Wl'il:hts ha ve- 1M""

indicated in t he synapses and hace been achieved r.noptima l I' I'rfur llli\lU "(' or the

circui t.

The firs~ type vf XOR g,lll' is shown ill the ligllf t' 7.8. Endl neuron ill the

hidden layer receives the input from nn e input neuron and Ircm tile jm't'rlc,l

member of the other input neuron. Thus the hidden neurons either receive 10

or 0 1. welghte have been set to ;1.6volts so tha t NI om" N'! will lite if l...tll

the inputs arc active (th ai is the input is eillwr 0 1 ur 10) /11111 nut if 1I1L1~ of the

inputs is Iuactl ve (w hen the inpu t is ()(J or J II. Thus ~ I ilud :-l:! 1)1.'("010(' 10 ,11 111

01 detectors. Weight for the out put neuron is .j ~'Ollb "'" th at it will /in' if UIII.· ..f

the inputs is active . The simula tion results an: SI,()W/I in figure r.e 11 11 ,1 i .IO.

In the second schem e (figure 7.111. inverted inputneurons lUI' IlOt llSNI. Earll

of th e hidden neuron s receives hoth inputs t hrough c:<cita to r}' arn] inhihitury

synapses. \Veighb ar e sd to -1.0 volts so t hat NI ;\1111 ~l (all lire if the illJlII1 is

10 or 01. Syna pses for N3 have weigills of 5 volts. If the iliPlit is OIL there is IIU

act ivat ion generated and is tota lly inhibited if the input is I I . Sl'icc simu l' ll ioll

results for inputs 01 and II are shown ill figu re 7.12 1111.1 7.1:1.

The thi rd sche me is shown in figure 7.[,1. Til l' weigllts have Ill:<:11 seL in such

a way tha t NI beh aves as a logical O R gat e and ~2 as an ,\N O gate. OUlpu t ur

N2 is fed to N3 by an inhibitory synap se. ir the inpu t is II . bo th ~ I all.1 i\ :! lire
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hut hC(ausc of stro nger luhlblucn at the out put , ~3 will never fire. Simulat ions

f"r inputs of 01 and 11arc shown in figure i .I S and i .16.



! )j

A

B

Figure 7.6: Schema tic of xor circui t wit h the weights ind icated insidethe SY ll IIPM'~

[represented by circles). Invcr tlng input neur ons IN2 and INa are used for 0
detect ion.
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Figure i.9 : Plots for input 00. First two waveforms indicate output of input
neurons (one inverted output) and the rest are the activations and outputs of all
tbrcc ucueons.
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Figure 7.10: Plots for input 01. First two waveforms lndlca te output or input
neurons and the rest are the activations and outputs of all th ree neurons.
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A

B

03

Figure r .H : Schemat ic of xor circuit with the weights indica t ed inside the
synapses. Synapse with a sma ll circle in front is inh ibitory. Nl and N2 11.1'

10 and 01 detectors.
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Figure 7.12: Plots for input 01. First two waveforms indicate o utput of input
neurons and the rest arc the act ivations and outputs of all three ne urons .
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Fig'lr(' i . I:!: Plots for input 11. First two waveforms indicate out put of input
neur ons and til(' fest arc the activations and outputs of all three ne urons.
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Figure 7' ('1: Schematic of xor circu it wilh the weights indicated inside till'
syna pses. S6 is inhibitory synapse. 1\'1 and N2 behave a.~ OJ( and AND ga l(~s .
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Figure ; ,15: Plo t~ COl" input OJ. First two waveforms indicate out put of input
neurons and the T('!It arc the activations and outputs of all t hree neurons.
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Figure 7.1(;: Plots for Input II . First t wo waveforms indicate outptu of input
neurons and the rest arc the actlvations and out puts of a jl rhrec !ICUroIiK.
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7.3 C o oper ative Assignments

III this example [Tank ct . al., 8Tl, the network assigns tasks \0 individ uals for

optimu m per formance. One three by three cooperative or task assignment network

is shown in figure 7.17. Each neuron in a row represents one individual (X, Y. Z)

fur It par t icu lar task (1\, IJ or C) . Performa nce of X, Y and Z ca ll be enco ded in

eit her the input voltage (going to the inpu t neuron ) lhat is the incoming pulse

Tille, Of in the weight. lIere lhl' following weights have bee n generated. Each

lICll TO Ii is connected to all ot her neurons i ll t h... SiI!1U' row nml t he column by

lnhibitory synapses. This enables only one IlCIl TUIl to he act ive in each row and

column ens uring t hat only one individual is assignet] to one task. The Ilspice

silllllialion is sho wn in figu re T.IS. It ran be SL't'1l that the network assign..d t he

tasks properly.

Ta ble 7.1: Weight distr lburion of the :Jx:Jcooperat ive iL~signmenl net .
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7.4 Im pleme nta t ion

Two chips have been designed using 3.um dC$ign niles anti will be fahri ca lL'(1

through Can ad ia n Microelectronics Corporat ion. 0 11(' chi p ('Olltain s allllw s tall'

dard ce lls and has been laid out rnanually, Th is is iar tl':l< t i ng cach c..11indh·i.llIllll y.

The other one con ta ins a netwo rk simila r to figure i .6 ,,·hid . ;s ;t ,'" nll-Ill ,,(I "ff"'~-

able memory. T he outp uts of the neurons a rc gated through ,\ NO ga lt"!! and f,'(1to

the inh ibitory synapses (figure 7.19). Th e a llier inpu ts of th e :\ ND v;al,'!i are- li,',1

together and behave AS a contro l line. If the contrclliucis low, tho network be­

haves like a pattern dll..uifier even though t.hoout put s of excita tory nud inhihi tory

synapses are tie d toget her . T he inhibito ry synap se does not have any CIlIHl.c itancc

but the pa rasit ic capac ita nces (d rain to sub strate Cll.llacit ancc) co me parall el to

the tot a l membr ane capacitance. Tota l me mbrane capaci til.llfC with 5 cxc:itlltory

synapses is 0.75 pF whe reas the parasi t ic capaciranee due to 6 inhibito ry ~)' llilll!;Cll

is less than 0.1 pF. This can be t aken care of by incre ll..'; illg the weig ht vo lt age.

However, when the contr ol line is high, inh ibitor y S)'napses arc co nueeteel arl,1

the netwo rk works a5 a content address able memory. IIspic;r. 5iUlIIlali oli o f the

net work is given in figure i .2O. The la)'out has been done usin~ Cadence EDG E

auto placement and rou t in! soft wa.re. Figu re i .21 sho.....s th e IA}'Ollt (o nly Illc tal2

dra wing layer) of the netw ork.

7.5 C on clud in g R e m ar k s

T his chapter contains simulation results of som e or the ste udard f'x i\ lI1 l' l ,!~ or

neural ne t works. The simulation resu lts show thal networks Ionnc d hy the bi\,~ i c

neural ccmpcnets perform very well. The re ason for develop ing lwo in put neur ons

has also bee n discussed. Schema tic diagram. l lsplce simula tion and t he layou t or

one of the chips has alsobeen presented here .
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FigUH' 7.17: :Jx3 cooperative assignmen t network. The excitato ry synapse is rep­
r('sentN.1by a circle whereas Hie inhibitory synapse has a small circle in the front .
The excitato ry .....eight is as shown in tabl e 7.1 and t he inhibitory weight is 5 volts.
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Figure 7.18: Output. of all 9 neurons of the 3x3 coopera tive assignment network.
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Figure 7.19: Schematic diagram of the controllable patt ern classifier / content
addr essable mCmOT)"



III

Figure 7.20: Hspice simulat ion of the CAM, The weight voltage (or excitatory
synapses is 3.8 volt s. The net work is probed with 01100 end the waveforms an­
t he control signal andoutput of alt the neurons.
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Figure i.21: Layout of the network (only metal2 drawing layer) obtained by auto
place and route routines.



Chapter 8

Conclusions

Pu lsed analog neural netwo rks have been described ill this t llL'sis where l l ll~ heigh t

of the pulse is modu lated by the weight voltage al 1.h.' gate of all NMOS transis tor,

Th e neuron fires one pulse ever y lillie the acti vat ion excee ds the thn-shcld volt uJ;'!'

At the same lime one disch arge pulse is also gcnernu-d to ,Iischitrg'· lll t· nu-mbruue

capacitances. The memb rane capac itanc es and th e discharg e rransisu.rs hitl'c hr"'ll

d istributed in the synapses allowin g the network to liu scaled autoruntically.

The behavior of the networks using the designed circuit ry is (Illite sim ilar to

biological neurons though I am not claiming the circuit s to he ;\11 nccurute ll\o' ld

of the la lt er. It dev iates from mos t of the exis ting neura l circ uits i ll it H' lm ber (If

aspe cts. Synapses arc very compact enabling unc to itnlllc lIWlll ,Llarge network

0 0 a chip.

The design proced ure for th e neura l circuit s have been given all)llg with a

mathematical analy sis. Synapt ic equat ions can he used to develop a simulll.tor

which can be used for simulat ing a large netwo rk. This is impo rtan t becausI: it

is not possible to simulate a large network ill Spice. Tilt! ulltpu t or a small C

program using equa tions !iI3, .5.16 ilIlU.5.17!Lillibeen given ill chapter 5to (·heck

t he validity with respect to Spice simulat ion. T he result is very l:llcouragiog.

A numb er of netwo rks have been deeigucd and sirnuhucd with Spice. The

113
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results are as expect ed. Standard cells have been designed and simulation has

been done on the ext racted schem atics. Two chips have been designed using t he

standard cells and will be fabrica ted in the Fall of 1991.

A number of inte rest ing points have been obser ved in t he cours e of the whole

work. The relative phase of the incom ing pulses have significant effect on the

act ivation voltage of the neuron. Since the neuron has to decide whether to fire

a pulse or not in every cycle, t his effect of phase difference poses an interesting

challenge. Another poi nt is t hat by varying t be membrane capaci tance (or effec­

Lively r ), t he charge integrat ion lime is lengthened. This leads to outp ut pulse

rales which are integral divisor of the incoming pulse rates. It 's effect on a large

network is still not known though one can expect the effect to be averaged over

a large number of connections. The wcighting scheme is non-linear . Whether it

has a ny effect 01 1 the learning is sti ll unclear. T he only form of learnin g used so

far is to change the weight WI proper out puts are obtained. A suitabl e learning

algorithm can also be developed for this kind of networks. If t he network can

learn properly, then synaptic design in many ot her systems can be simplified.
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Appendix

This is a typical input deck rorSpite rreated by Ca,lellccEtl.!:{':.!.1. "Illi~ is th.·

input deck for simulaticn cf standarducurou (fig.i ."; autl.';.!)).

-net 1 e vdd!

• net 0 = gnd!

• net 2 :::: j Vb

wnd 3 = /V.

• net":: IV+

• net a ={la3.0 liT

• nel 6 = /Iol6.0 UT

• net i= / I4i.OUT

• net 8 = / 15i.OUT

• net 9 =/DCPUlSE

• net 10 = /I31.0UT

• net II = /I60.DUT

• net 12 = /152.0 UT

• net 13 = /137.8

• net 14 =jNPULSE

• net 15 = 1123.Vout

• net 18 = /160/ 10.0
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.MO DEL MoocH nmcs level=:1 \·to= .j kp= ·I.e·05 gllmma=1.I phi: .6

+1a.mbda.: .OI pb:::;; .7 cgso:3.e-10 cgdo:::;;3.e-10 cgbo:.; .e- IO rsh=25

+cj:::;; .OO044 mj :::;; .5 cjsw: 4.c-IO mjsw= .3 js= l .c-OSlox= 5.c-OS

+n.~u b=1.7c+16 nss= Onfs=Otpg=l xj=6 .c·07 Id=3.5e·07 1I0= jj."j

+lllr a=O vmax= l.e+ 05 xqc= ..5ll lcla= .13 eta= .05 kappl'l;;;l

Illllos(4) = / 160/ 14

MS#4 I I 180 0 Model4 1=3u w=5.4u

nrnos{5) "" / 160/ 10

MS# S 18 1000 Model4 1=311 w=;,..Iu

.MOOEL ModelS pmos levele .l \"10=-.8 kp= I.2c·05 gamm a = .6 phi= .6

+lambda= .OJ pb= .6 cgso=2 .~·I O q:do= :!.5c-IO cgbo =.'i.e· IO TlIh =SO

+cj =.OOOI 5 mj = .6 cjsw=4.c- IO mjsw: .6j s=1. e-OS tox=5 .e-OS

+nsub=5.e + 15 nss=O nfs=O tpg =1 xj=5 .e-07I d=:!. 5e·07 uo=250

+ul ra""O vmax =70000 xqc= .5 t hela=. !3 eta= .3 kappae l

pmos(6) = {160/ 17

MS# 6 I 18 II I ModelS 1=3u w=5 ..1u

pmos(7) =/ 160/ 11

101$#7 I 10 18 1 Mode15 1",,3u w=5 .4u

net 21 =/ 157/ 10.0

nm05(12) =/ 157/ 104

MS#1 2 8 21 0 0 Model4 1= 3u w= 5Au

nmos(13) = / 157{1O

1\'1$#132150 0 Model.. != 3u w=5 ..1n

pmos( 14) =/ 157/ 17

Mi #l" 1 21 8 1 Model5 1= 3u w= 5.-lu

pmos( 15) =/ 157/ 1l
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1'!3

MS#15 I 52\ I h-lodel5 1= 3u w=5.'Iu

nmos(l6) == / 149/ 10

MS# 16 14 i 0 0 Model4 1= 3u w=5.4u

pmos(l7)=/149/ Il

~IS# 11 I 7 J4 I Model5 1=3u w=IO.Su

nmos(20) = / 148/ 10

M$#20 9 6 00 Model4 1=3u w=.5.4u

pmos(21) = / 148/11

MS# 21 1 69 I Mode151=3u "'= 1O.8u

net 29 = /147/ 11.0

nmos(26) = / 147J(l

M$#26 29 I I 00 ModeJ41=3u w= IO.Su

nmos(27) = / 147/13

MS# 27 7 13290 Model. I= Ju w= IO.Su

pmos(28) =/ 147/ 12

MS#2 8 1 II 7 I Model5 1= 3u w=IO.8u

i pm",(29) = / 14' / 10

I'
MS#29 1 13 7 1 Model51=3u w= IO.Su

net 33 =/146/ll .D

nmos(32) = / 146/11

MS#3233 130 0 Mode14 1=3u w=1O.8u

"m", (33): / 14'/13

MS# 33 6 8 33 0 Model4 1=3u w= IO.Su

pm",(34) = / 146/12

MS#3 4 I 13 6 I Model5 1=3u w::1O.8u

pmos(35) = / 146/ 10



MS#3.'i I 8 6 1 Model5 1=3u 1'0'= IO.8u

capati tor(36) :::: / 159/ 10

CS#36 13a poly . Ipf

capatito r(38) = / 158/ lO

C$#:J8 12 0 poly . Jpf

'-;\IM.d tur('IO):::: / 154/ 10

C$# 40 .'j 0 poly .1pf

capad lor(42) :::: / 143/ 10

(' $# 42 II 0 poly . Ipf

net 38 =/ 13i/flO.O UT

nmos(H ) :::: / 137/ 112/ 10

~ 1 $# '1 4 13 38 0 0 MoJel4 1= 3u w=5Au

pmu~( '1 5 ) = / 1:17/112/ ((

M$#<l5 I 38 13 I Model5 1=3u w= IO.8u

lI mo~ ( '1 8 ) :::: / 137/ !10/ 10

1\1 $# ·18 38 15 0 0 Model4 1=3 u w::::5.4u

pIllM(49) :::: / 13i/ 1I0/ 11

MS# 49 I 1538 I ModelS 1= 3u w:::: l0.Su

llel4i :::: / 153/ 10.0

net,IS-= / 153/ 14.0

umos(58) =/ IS3/ 1l1

r-.lS# 58 5 48 0 0 Model4 t=3 u w=5.4u

IlIllOS(59) =1153/14

~ 1 $#59 ·18 47 0 0 Model4 1=3u w=~Au

nm05(60) = / 153/ 10

124



M$# 60 47 12 0 0 Model.. 1=3u w=5..1u

pm05(61) = / 153/ 110

M5#61 1 48 5 I ModelS 1= 3u w=5Au

pmos(62) = / 153/ 17

MS#62 I 47 48 1 ModelS 1=3u w=5Au

pmos(63) = / 153/1l

MS# 63 I 1247 1 ModelS 1= 3u w:c5.4u

nel SI :c / 152/ 10.0

net 52 = / 152/ 14.0

nmos(70) = / 152/ 111

M5#7 0 12 52 0 0 Model4 1=3u w=5..111

nmos(71) = /152/14

MS#71 5251 0 0 Model4 1=3u \\'=5Au

nmos(72I= / 152/ 1O

MS#7 2 51 11 0 0 Model,II = .1u w=5Au

pmos(73) = / I52/ 1I0

MS# 73 1 52 12 1 Mode15 1=3u w=5..Iu

pm",(74j = / 152/17

M$# 74 1 51 52 1 Model5 1=3u w=5.411

pm05(75) = / 152/ 11

MS#7S I 11 51 1 ModelS 1= 3u w=5..1u

netSS = / 131/ 10.0

net 56 "" / 131/ 14.0

nm",(82) = /131/ 111

MS# 82 10 56 0 0 Model4 1=3u w=.~.4 u

nmos(83) = / 131/ 14
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MS# 83 56 .55 0 0 Model4 1=3 u w=5.4u

nmos(8 4) ::: 1131/10

MS# 84 55 13 00 Model4 1=3u w=5Au

pmos(85):::: / 131/ 110

MS#8.'i I 56 10 I ModelS 1=3u w:::.5Au

pm05(86) _ / 131/ 17

MS# 86 I 55 56 I ModelS 1=3u .....=5.4u

pmO!l(87) "" 1131/11

MS# 87 J 13 55 I Model5 1=3u w:::5.4u

ne t 61 = 1123/10.5

net 62::: 1123/10.0

net 63 = 1123/ 11.0

pm05(90J = 1123/16

M$#90 I 63 15 I Model5 1=3u w=5.4u

pmos (91)::: / 123/ 12

MS#91 I 62 63 I ModelS 1=3 u w=5 .4u

jlmos(92 ) ::::/ 123/ 13

MS# 92 I 62 62 I ModelS 1=3u w=-5.4u

nI\\09(93) = 1123/14

r.. IS#93 6\ 200 Mode14 1=3u w=10.8u

nmos(94) ::: / 123/ 15

MS# 94 15 2 a0 Model4 1:::611 w:::5.4u

nmos(95) = / 123/11

MS# 95 63 -I 61 0 Model.. 1=3u w=5 Au

nm os(96) '" / 123/ 10

MS# 96 62 3 61 0 Model" 1=3u \\'=5.4u

126










	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	008_Abstract
	009_Acknowledgements
	010_Table of Contents
	011_Table of Contents v
	012_Table of Contents vi
	013_List of Figures
	014_List of Figures viii
	015_List of Figures ix
	016_List of Tables
	017_List of Symbols
	018_List of Symbols xii
	019_Chapter 1 - Page 1
	020_Page 2
	021_Page 3
	022_Chapter 2 - Page 4
	023_Page 5
	024_Page 6
	025_Page 7
	026_Page 8
	027_Page 9
	028_Page 10
	029_Page 11
	030_Page 12
	031_Page 13
	032_Page 14
	033_Page 15
	034_Chapter 3 - Page 16
	035_Page 17
	036_Page 18
	037_Page 19
	038_Page 20
	039_Page 21
	040_Page 22
	041_Page 23
	042_Page 24
	043_Page 25
	044_Chapter 4 - Page 26
	045_Page 27
	046_Page 28
	047_Page 29
	048_Page 30
	049_Page 31
	050_Page 32
	051_Chapter 5 - Page 33
	052_Page 34
	053_Page 35
	054_Page 36
	055_Page 37
	056_Page 38
	057_Page 39
	058_Page 40
	059_Page 41
	060_Page 42
	061_Page 43
	062_Page 44
	063_Page 45
	064_Page 46
	065_Page 47
	066_Page 48
	067_Page 49
	068_Page 50
	069_Page 51
	070_Page 52
	071_Page 53
	072_Page 54
	073_Page 55
	074_Page 56
	075_Page 57
	076_Page 58
	077_Page 59
	078_Page 60
	079_Page 61
	080_Chapter 6 - Page 62
	081_Page 63
	082_Page 64
	083_Page 65
	084_Page 66
	085_Page 67
	086_Page 68
	087_Page 69
	088_Page 70
	089_Page 71
	090_Page 72
	091_Page 73
	092_Page 74
	093_Page 75
	094_Page 76
	095_Page 77
	096_Page 78
	097_Page 79
	098_Page 80
	099_Page 81
	100_Page 82
	101_Page 83
	102_Page 84
	103_Chapter 7 - Page 85
	104_Page 86
	105_Page 87
	106_Page 88
	107_Page 89
	108_Page 90
	109_Page 91
	110_Page 92
	111_Page 93
	112_Page 94
	113_Page 95
	114_Page 96
	115_Page 97
	116_Page 98
	117_Page 99
	118_Page 100
	119_Page 101
	120_Page 102
	121_Page 103
	122_Page 104
	123_Page 105
	124_Page 106
	125_Page 107
	126_Page 108
	127_Page 109
	128_Page 110
	129_Page 111
	130_Page 112
	131_Chapter 8 - Page 113
	132_Page 114
	133_Page 115
	134_Page 116
	135_Page 117
	136_Page 118
	137_Page 119
	138_Page 120
	139_Appendix
	140_Page 122
	141_Page 123
	142_Page 124
	143_Page 125
	144_Page 126
	145_Blank Page
	146_Blank Page
	147_Inside Back Cover
	148_Back Cover

