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Abstract

1be interaction of icebergs (of glacial origin) and pressure ridge ice keels (formed

from frozen sea water) with the seabed is recognized as an important consideration in the

development of nydrocarbon resources in both the arctic and eastern offshore regions of

Canada. To understand the detrimental effect of a scouring ice mass upon the integrity of

seafloor facilities sucb as weUheads. pipelines and submarine cables. a large amoUIU of

analytical. experimental and phenomenological research into ice keel scour bas been

undertaken.

Concerns rt:lated to the ice keel scour phenomenon are currently being addressed

within a joint industry and government sponsored research program entitled the Pressure

Ridge Ice Scour Experiment (PRISE). The objective of this program is to develop the

expertise and understanding required for the safe and economical engineering of offshore

pipelines in regions prone to k-e keel scour. Under me auspices ot' the PRISE program. a

series of centrifuge modelling tests involving ice ked scour were undertaken. The

centrifuge modelling program involved towing an instrumented model ice keel of set

geomeuy across a model testbed at a set scour depth while under the influence of a

centrifugal force. The objective of the tests was to measure scour-induced stresses and

pore pressures, norizontal and vertical loads and model keeV soil interface pressures.



The results obtained during the experimental program involving ice keel SCOUT in sand

highlighted the importance of the sutic soil "dead wedge" beneath the model ice leeel

with respect to variation in scour loads and SUbscOUT soil displacements. Analysis of the

results seryed to support Been's (1990) shear dragging hypothesis. The results also

suggest that a linear relationship can be used to describe the variation of SCOUT loads with

depth.
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Chapter One

Introduction

1.1 Opening remarks

An ice keel scour is formed when the base of an iceberg or pressure ridge ice keel is

propelled lateral..ly while in contact with the seabed. Scours are typically characterized by an

elongated curvilinear or linear seafloor incision. The ability of an ice keel to scour is

dependent upon a variety of factors including soil resistance. ice strength. keel geometry and

driving force. The latter is a result of a combination of wind. wave. ice and tide action.

Scouring afthe seabed can occur when there are sufficient environmental forces to overcome

soil resistance. The interaction of icebergs (of glacial origin) and pressure ridge ice keels

(fonned from frozen sea warer) with the seabed is recognized as an important consideration

in the development of hydrocarbon resources in both the arctic and eastern offshore regions

of Canada.

1.2 Problem Definition

To help understand the detrimental effect of a scouring ice mass upon the integrity of

seafloor facilities such as wellheads. pipelines and submarine cables. a large amount of



analytical. experimental and phenomenological research into ice keel scour has been

undertaken. From a design perspective. the research has been successful in expanding the

level of understanding of the process of ice keel scour. However. it has also been

insuumental in identifying additional concerns. the potential for large subscour soil

deformations to occur beneath a scouring ice keel being promineoL

Concerns related to the ice keel scour phenomenon are currently being addressed within

ajoint induslIy and government sponsored research program entitled the Pressure Ridge Ice

Scour Experiment (pRISE). The Objective of this program is to develop the expertise and

underslanding required for the safe and economical engineering of offshore pipelines in

regions prone to ice keel scour. The PRISE program consists of five phases. Specific

components include: phenomenological field slUdies. physical and numerical modelling. the

establish.ment of pipeline design criteria and full scale ph.ysical modeUing exercises.

Phase One of PRISE involved initial project planning. as well as a feasibility study of the

Extreme Gouge Dating Project. Phase One was completed in the spring of 1992. Phase Two

involved the implementation of the Extreme Gouge Dating ProjecL This project consisted

of a field program which. was undertaken in the Alaslc.an Beaufort Sea during the summer of

1992. 1he objective of this program was to verify a radiometric dating technique that could

be used to detennine the absolute age of seabed sediments filling deep scours. This

information would aid in the detenninatioo of a return period for exueme scour events.



Phase Three involved both cc:nuifuge and numerical modelling of ice scour. as well as the

development of pipeline design guidelines. Initial centrifuge model tests of ice scour were

undertaken in 1992 on the Cambridge University geotechnical centrifuge. Coincident with

centrifuge modelling. a finite element model of ice/soil interaction was also developed. A

second suite ofcentrifuge modelling exercises examining ice keel scour was undertaken at

the Centre for Cold Ocean Resources Engioeering (C-eORE) centrifuge facili[)'. Designated

Phase 3(a). it consisted of a series of model scour events in which the effect of attack angle.

scour depth. ~el width and seabed material upon ice keel scour as well as possible subscour

soil deformation were examined. The development of an engineering model. calibrated

using the centrifuge modelling and other data. was also undenaken during this time period.

1be development of the engineering model was designated Phase 3(b). Phases Four and Five

will consist of monitoring a full-scale ice scour event and the burial and monitoring of an

experimental pipeline respectively. As pan of Phase 3(a). this thesis presents both the

results of the centrifuge modelling of ice keel scour in sand. as well as an analysis of the

measured scour force..~.

1.3 Thesis Outline

For clarity of presentation this thesis comprises nine chapters. augmented by additional

infonnation presented within an appendix. The remaining chapters are as follows:

ChapterTwo examines the various phenomenological. analytical and elCperimental studies



involving ice scour that have been undertaken by previous n:searcbers. In keeping with the

experimental natu~ of this thesis. emphasis is placed upon the experimental efforts involving

smaU~scale physical modelling of ice scour. Chapter11lree presents the rationale behind the

centrifuge model sand tests as well as the experimental objectives. Chapter Four establishes

the principles of centrifuge modelling. including a discussion of scaling relationships. effect

of lateral acceleration and the use of the method of"rnodelling of models" in the verification

ofresuits. Chapters Five and Six provide a descriptive review oftbe experimental equipment

and facilities and establish the experimental procedure used during the course of the

experiments. Chapters Seven and Eight present experimental ~lts and analysis. TI,.;

analysis involves a comparison of the various data sets. specifically in terms of measured

loads. A discussion of the ~sults and the conclusions reached are presented in the final

chapter.



Chapter Two

Literature Review

1be phenomenon of ice keel scour has been examined through extensive offshore field

studies (Woodworth-Lynas and Barrie. 1985: Woodworth-Lynas et aL. 1991: Hodgson et aL.

1988: Gilben 1990); excavation of relic scours on land (Woodworth Lynas et aL. 1986;

Woodworth-Lynas and Guigne. 1991: Woodworth-Lynas. 1992: Longva and Bakkejord.

1990); physical modelling (Chari. 1975: Green. 1984: Prasad. 1985; Poorooshasb et al. 1989;

Poorooshasb and Clark. 1990: Paulin. 1992: Lach and Clark. 1994): and analytical

approaches (Chari. 1975: FENCO. 1975: Palmcutal.. 1989: Beent'taL, 199Oa).

2.1 Phenomenological (Field) Studies

Offshore phenomenological scour data originating from high resolution sub-bottom

profiling, sidescan sonagraphs and visual inspections using remote operated vehicles

(ROV's) and manned submersibles have provided a wealth of data in tenus of scour

characteristics. including depth. width. orientation. length. frequency and spatial density_

Analysed statistically this infonnation is useful in the selection of pipeline routes which

minimize the probability of scour damage.



A region prone to ice keel scour. the Canadian Beaufort Sea has been the focus of many

offshore field studies (peUetier and Shearer. 1972; Lewis. 1977; Hoatiuk and WrighL 1983:

Gilbert. 1990: Lewis and Blasco. 1990). Associated with pressure ridge ice keels. scours

in this region occur predominantly in water depths ranging from 10 to 40 m. have mean

dimeosionsofO.s m deep [1.1 m maximum). 26 m wide (137S m maximum) and are on the

order of5 to 10 km in length (lewis and Blasco. 1990). Other offshore phenomenological

studies have focused upon the eastem offshore region of Canada. Reported in Woodworth·

Lynas and Barrie (1985): Hodgson traL (1988); Woodworth·Lynas ~taJ. (1991) and Lewis

and Blasco (1990). scours present in this region are associated with icebergs. Typically. such

scours are found in water depths less than 110m. have mean dimensions of 1.3 m deep (S

m maximum) and 2S m wide (100 m maximum) (Lewis and Blasco. 1990).

In addition to offshore studies. field studies have also focused upon the excavation of

relic scours present on land. Scour studies at King William Island. as described by

Woodwnrth-Lynas nal. (1986).eltamined scours in poorly sorted sediments. wherellS scour

studies in the Lake Agassiz basin cy.Ioodworth-Lynas and Guigne. 1991; Woodworth·Lynas

1992) examioed relic ice keel scours preserved in a clayey and silty stratum. Excavation of

the laner identified the existence of visible faults and slip planes beoeatb the scour mark.

The deformation was attributed to bearing capacity failure beneath the scouring ice mass

(poorooshasb and Clark. 1990). The presence of deformation structures identified beneath

the Lalce Agassiz features have also been identified in other regions (Longva and Bakkejord.



1990). In addition to relic scour studies. small-scale field observations have also been used

in the investigation of ice keel scour (poorooshasb and Clark. 1990; Woodworth-Lynas.

1992). These investigations appeac to confirm the potential for subscour soil deformations.

2.2 Experimental Studies oflce Keel Scour

2.2.1 Small-scale Physical ModeUing

Traditionally. small-scaJe physical models have played an integral role in the investigation

of ice keel scour. The investigations range from ice soil interaction as addressed by Chari

(1975). Green (1984) and Prasad (1985). to specific experimental programs aimed at defining

subscour soil movements as reJXlrted by Poorooshasb ~t aL (1989) • Poorooshasb and Clack

(1990) and Paulin (1992). In addition. industty sponsored progrnms as reJXlned in

Abdelnour~taL (1981). Abdelnourand Graham (1984). Dunwoody ~t aL (1984) and Been

~t 01. (199Oa). have also focused on questions associated with ice/soil interaction and

possible failure mechanisms associaled with the soil beneath the ice keel.

As one of the early pioneers in the investigation of ice keel scour. Chari (1975) used a

small·sca1e physical model to investigate iceberg modeVsoil interaction.. The model iceberg.

made from aluminum. was idealised as a rectangular prismatic shape with dimensions 0.23

m (length) x 0.45 m (width) x 0.40 m (height). The experiment consisted of a series ofscour

events into a submerged sloping test-bed constrUcted of potters clay. Visual observations.



facilitated by a glass-sided flume tank. revealed the existence of failure surfaces propagating

from the toe of the model. oriented 25_30 0 to the horizontal. as well as failure planes

extending to the soil surface 0.5 m ahead of the model. Based upon the results. Chari (1975)

attributed soil resistance to a combination of both passive soil deformation in front of the

model and soil movemen[ in fran[ of and below the iceberg model.

Questions surrounding soil model interaction were also addressed by Green (l984). As

pan of the investigation into ice scour in sand. Green (1984) conducted a series of pbysical

model tests in a sloping test-bed constructed of dry coarse masonry sand. Parameters

examined included possible scale effects. [be effect of attack angle and the zone of scour

influence. lbe experimen[ was condocted in a large teC[aQguJar Wlk. wim dimensions of 6

m (width) x 14 m Oength) x I m (depth). The iceberg models consisted of rectangular

prismatic shapes of varying size and shape. Green (1984) concluded mat: (i) the primary

resistance to scour for the horizontal ploughing action of an iceberg is the passive soil

pressure developed on the fron[ face on an iceberg. with the failure mechanism chardC~rized

by a series of successive failure planes: (ii) the frictional component of soil resistance on the

sides and base for me scouring model iceberg in a frictional soil is insignificant compared

to dle rota! soil resistance: and (iii) the shape of the iceberg keel was determined to be an

important factor affecting soil resistance during me scour process. with an inclination of the

keel by 30 0 from vertical resulting in as much as a 35% increase in soil resistance.



In lteeping with the recommendations ofGreen (1984). Prasad (1985) experimemcd with

various ice keel model shapes in a cohesionless medium. measuring both the soil resistance

and the pressures generated upon the face of the iceberg model as it encountered a sloping

model seabed composed of dry sand. Prasad (198.5) concluded that the soil resUtlnce

encountered was dependent on both the inclination of the model from vertical as well as the

shape of the model in plan view.

In an effon to acquire insight into the phenomenon of ice scour. the Arctic Petroleum

Operators Association (APOA) sponsored several small·scale physical modelling

experiments. 1be first. reported by Abdelnour ~t aL (1981) and Abdelnour and

Grabam(1984). involved a series of dry scour events in sand. silt and clay. The objectives

of these experiments included: (i) to gain insight into the effect of shape. soil medium. cut

depth and forward velocity upon the horizontal force required for an ice mass to scour. (li)

measurement of the variation in pressure distribution measured on the front face of the model

as well as in the surrounding soil in both borizontaland ~rtical directions relative to the

model, and (iii) analysing the behaviour of the soil during the scouring process and the scour

profile characteristics behind the ice mass relative to its shape and cut depth. The ice keel

was idealised as either an inverted pyramid. or a Itttaogular prismatic shape. The results

were presented as dimensional and non-dimensional semi-empirical relationships.



A second experimental program reported in Dunwoody (1984) into ice I berm interactinn

was also undertaken under the auspices ofAPOA 1be objective of this experiment involved

an analysis of the fon:es and possible uplift associated with the penetration of a soil berm by

the leading edge of an ice sheet. Parameters examined included: the attack angle. the

geometry of the soil berm. the buoyant specific weight of the soil. the internal angle of

friction and the angle of friction between the soil and ice. The ice sheet was simulated using

an aluminum model with a width of0.50 m and an attack angle which ranged between 30°

to 105 0 degrees to the horizontal. Springs attached to the model enabled stiffness to be

examined. The soil benn was constructed of clean dry quartz sand. with a slope of 5:1.

Dunwoody (1984) makes particular reference to the ability of the model to rise-up as it

penetrates the soil berm. as weD as the formation of failure planes in front of the model.

A series of ice keel scour experimentS using the ice scour facility of the Faculty of

Engineering. at Memorial University of Newfoundland. were undertaken in order to

investigate ice/soil interaction as weD as possible subscour soil defonnations (poorooshasb

I!!t af. 1989: Pooroosltasb and Clark. 1990; Paulin. 1992). The potential for such

displacementS had been previously identified beneath relic scours such as those excavated

in Lake Agassiz soils (Woodworth-Lynas and Guigne. 1990). The initial experiments

involved small-scale modelling of ice scour in a submerged test·bed fiUed with a gravity

consolidated silt. using a model iceberg with a complex prismatic shape. The experimental

program consisted of two scour events. with a scour incision depth of 0.04 m and 0.07 m
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respectively. Distortion of soil laminations present beneath the scour mark confirmed the

potential for subscour soil deformation.

Funher insight into potential subscour soil deformation was acquired through an

additional four ice scour experiments in a dry model test-bed constructed of dense and loose

sand (poorooshasb. 1989). In addition to potential subscour soil displacements. the effect

of attack angle. model width and sand density on scour forces we~ also investigated. Solder

strands were incorporated in the model test-bed in order to document sub-scour

displacements. The attack. angle was varied between ISO and 30° from the borizontal. with

the model width being either 0.430 m or 0.860 m. A scour depth of 0.075 m was used.

Based upon the results. Poorooshasb (1989) concluded that sand density appeared to have

a considerable effect on soil deformations beneath a scouring indentor. It was observed that

both the magnitude and extent of deformations decreased with increasing sand density.

Using the same ice scour facility as Green (1984). Pnsa.d (1985):llld Poorooshasb (1989).

Paulin (1992) conducted four scour experiments in loose sand under dry and saturated

conditions. As in previous efforts the experimental objectives involved measurement and

analysis of subscour soil displacements. magnitude of scour forces as well as the stress

response of the soil beneath the ice keel model. In addition the pore p(USure response of the

submerged soil beneath the scour was also examined. The ice keel was idealised as a

n:ctangular prismatic shape with dimensions of 0.43 m (width) x 1.2 m (length) with an

\I



attack angle of 15° to the horizontal. The model seabed was prepared loose using type 0

silica sand characterized by an internal angle of friction equal to 35°. 1be incision depth for

all of the tests was approximately 0.04 m while the scour width was held constant at 0.430

m. Based upon the results. Paulin (1992) concluded that; (l) the vertical forces were of

sufficient magnitude in some cases to cause general shear bearing capacity failure. and (il)

the successive failure surfaces observed during scour ace believed to ha.ve been caused by

passive earth pressure failure of the soil in front of the model.

Been ~t al. (199Oa) reviewed the results of a series of small indentor tests conducted in

both sand and clay soils. The objective of these experiments was to gain insight into soil

deformations surrounding a scouring indentor. In terms of the indentor tests in sand. Been

(1990) makes reference to (i) the absence of bearing capacity failure and passive failure

planes Leiow the indentor. and (ii) the presence of a static soil wedge. Been (1990)

examined the observed subscour defonnations in terms of (i) rupture surfaces due to passive

or be3ring C:i.pacity failure. or (ii) shear dragging befk:atb the ice keel. In response to a lack

of experimental evidence to support the former. Been (1990) suggested that shear dmgging

was responsible. The scour mechanisms as envisioned by Been (1990) are presented in

Figure 2. 1.

12
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2.2.2 Centrifuge ModeUing of Ice Keel Scour

Centrifuge modelling has been used in the investigation of ice keel scour (e.g. Lach.

1996). The tests. conducted at a nominal acceleration of loog using a 11100 scale model.

were designed to examine the effect of soil suess history. attack angle. keel width and model

buoyant weight upon ice keel scour. including subscour soil defonnations and pore pressure

changes in the soil. The model ice keel was idealised as a rigid body with a defined attack

angle and width. 1be experimental test-bed was formed from a consolidated kaolin clay

sluny. Subscoursoil deformations were documented using a combination ofembedded lead

trails. spaghetti markers and surface markers. Lach and Clack (1994) concluded that the

centtifuge models were capable of replicating physical features observed in both modem and

relic scoun; and provided a better underslaDding of the mechanics of ice scouring.

Centrifuge models also fonn a significant component of the PRISE program. The teSts

were conducted at a nominal acceleration of 150g using a 1/150 scale model. The tests were

designed to examine the effect of soil type. attack angle. keel width and scour depth upon ice

keel scour forces. as wei! as the magnitude and extent of subscour soil defonnations and pore

pressure changes in the soil. The seven cenuifuge modelling tests involving ice keel scour

in sand are the subject of this thesis.
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2.3 Theoretical and Analytical Studies of Ice Keel Scour

Analytical studies have been carried out by various ~bers in an endeavour to predict

various aspects of ice scour. Initial efforts in this area involved either a force balance or

work-energy approach (fENCO. 1975; Chari. 1975). later efforts were associated with the

use of plasticity theory (e.g. Been t!1 ai.. 1990b).

TIle dynamic fOfCe·balance model of FENCO (1975) solved the differential equations of

motion describing the interaction of a block-shaped body encountering a sloping seabed.

The vertical soil reaction can be analysed using either plastic or elastic theory. the former

assuming that the soil reaction is the product of the bearing capacity and effective area

beneath the base of the iceberg while the later involves an estimate of the soil's spring

constanl The horizontal soil resistance is determined based on the assumption that the soil

passive pressure is fuUymobilized. and is calculated using a trial wedge solution with a plane

failure surface. The surcharge is assumed to contribute to the overall passive resLstlllCC. but

is considen=d to have no shear resistance. FENCQ (1975) also proposed a simple energy

balance model to describe the interaction of an iceberg undergoing horizontal translation into

a sloping seabed. The passive soil resistance is assumed to be fuUy mobilized and is given

by Coulomb's earth pressu~ theory. The surcharge is assumed to contribute to the passive

resistance. but is considered to have no strength as it is remoulded. The FENCO model

considers a shear force equal to the active lateral earth pressure multiplied by the soil I ice

IS



friction coefficient to act on the sides of die iceberg.

The work energy model of Chari (1975) equaleS a driving force. idealised as the

momentum possessed by the iceberg as it encounters the seafloor sediment. against the work

done as the soil is displaced. Using this model. theoretical iceberg scour lengths and depths

can be calculated for an assortment of physical criteria. It is noted that while Chari's model

initially ignored the effect of both current and wind. it was subsequently modified to take into

consideration the positive effect of C~nt drag (Chari and Muthukrisknaiah.1978). the

effects of side friction. (Chari and Green. 1981). as well as the effect of nonlinear velocity

experienced by the iceberg during a scouring event (Prasad. 1985).

Been elai. (1990b) presented an incremental force and work balance model which was

based on plasticity theory to predict an ice scour event a.ssociatt:d with a pressure ridge ice

keel. Considerations included uplift of the ice keel. flexural stiffness of the pressure ridge in

relation to the ice sheet. environmentll forces acting upon l1'k: it,:e keeL ice I soil friction and

surcharge. Soil resista.oee was calculated based on passive resistance. determined by the

method of stress characteristics of Sokolovski. (Been et ai.. t990b). The characteristics

method of Sokolovski was modified to take into consideration the fonnation of soil dead

wedges in the failure zone. The results of this model were in agreement with an observed

Beaufort Sea scour. including uplift over an extended distance.

16



As outlined by Palmer et at. (1990). the question of ice I soil! pipeline interaction can be

examined in terms of deformation features. specifically in terms of possible zones of

deformation. As illustrated in Figure 2.2. Palmer (1990) hypothesized three distinct zones

of deformation. These zones are characterized as: Zone 1 - a zone of large deformation in

which the soil is ploughed, entrained into the frontal spoil mound and eventually deposited

laterally forming the side berms: Zone 2 ~ a zone of large deformation in which the soil

deforms plastically and is located beneath the ice keel. and Zone 3 - a zone characterized by

small elastic deformation but which is subject to scour-induced stresses.

A pipeline located in Zone I wiU be subjected to scour loads of sufficient magnitude as

to cause failure whereas a pipeline located in Zone 3 will be safe from scouring action,

(Palmer et aL. 1990). However. a pipeline located in Zone 3 may be uneconomic due to its

depth of buriaL The alternative is to located the pipeline in Zone 2. AJthough conceptual.

it is believed that a pipeline located in Zone 2 would be subject to scour loads as weU as the

effect of soil displacemenL The combination of scour loads and soil displacement may be

of sufficient magnitude to damage a pipeline in this zone. In order to design a pipeline for

such loading conditions it is important to determine the magnitude and extent of large soil

deformations in the region designated as Zone 2.

17



Movement of Ice

Scour

Mound of
Frontal Spoil

Figure 2.2

ZoneJ

Diagram Showing Zones or Ice Scour
Deformation (Palmer. 19'JO)

18



2.4 Closing Remarks

10e varied nature of the analytical. experimental and phenomenological research into ice

keel scour is testimony (0 the significance given to ice keel scour in terms of offshore

development. Understanding of possible scour mechanisms is impeded by difficulties in

observing and documenting actual ice scour events. However. physical and mathematical

modelling have been successful in expanding the level of undemanding in regard to the

process of ice keel scour and have been instrumental in identifying additional concerns. the

porential for subscour soil deformation being promineol The results obtained from research

into ice scour. or ice I soil interaction would suggest mat soil failure in front of the advancing

ice keel can be attributed mainly to passive earth pressure failure. However. there is little

consensus as to the nature of potential subscour soil deformations. Current understanding

has attributed this to either shear dragging beneam. the ice keel. or bearing capacity failure.

or a combination of both. In the absence of understanding of the deformation process. the

ability to predict loading conditions is also the subject of uncertainty.
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Chapter Three

Experimental Scope and Objectives

In reference to the preceding chapter. it is evident that the uoccnainry associated with an

absence of understanding as to the nature of the deformation process as well as the nature

of the imposed loading are impediments to the safe and economical engineering of offshore

pipelines in regions prone to ice keel scour. Small·scale physical modelliog of scour

conducted in Donna! (Ig) gravity conditions as discussed in Chari (1979): Green (1984):

Prasad (1985); Poorooshasb (1989); and Paulin (1992). has offered some insight into the

mechanics governing ice SCOUT. However. the results oftbese modelling exercises vary. in

part due to the idealization of field conditions in terms of the model ice keel geometry, the

degrees of freedom allowed in the model. the soil type and Slate. The rationale behind the

current research stem" in pan from these uncertainties.

3.1 Experimental Scope and Rationale

Although the incentive behind the ~nt researcb stems from uncenainties associated

with the nature of subscour deformation and loading conditions, the rationale behind the

current re.sean:h takes into consideratioo aspects of ice scour such as; the extrapolation of
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results oblained from smaU-scaIe pbysical modelling to full-scale ice scour eveDIS. me nature

of the driving forces beltind a scour event. as well as possible questions associated with the

geometry and structural integrity of the ice keel

Uncertainties associated with the extrapolation of results obtained from small-scale

physical modelling to full-scale ice SCQurevents highlights the important role that effective

stress and stress history of me soil has in regard to soil behaviour. Such uncertainties can be

avoided using centrifuge modelling because it is possible to replicate bam the effective suess

as well as the suess history of a soil. h has also been established that me centrifuge is

capable of replicating various pbysical features observed in both modem and relic scours

(Woodwonh-Lynas I!t aL 1995).

In reference to me present cenuifuge tests involving ice scour in sand. the parameters

wulcr consideration include: soil State. aRack angle. scour depth and scour width. The soil

state includes both loose and medium dense sand. thus enabling the effects of density upon

subscour deformation to be investigated. In order [Q examine the effect of model keel

geometry upon the measured forces and subscour soil deformation. the attack angle of the

model ice kttls was set at 15° and 30° and the scour width was either 15 or 30 m. Finally.

me scour depth was varied from I to 2 m in order to examine me effect of scour depth on me

scour loads. The ice keel was idealised as a rigid body possessing sufficient strength to

withstand the forces developed during scouring. The modelling appararus used in the current
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test series restricted the keel to a single degree of freedom represenration in which the model

ice keel was constrained to translate horizontally at a constant velocity through a horizoDl:al

testbed at a fixed scour depth. lbis approach assumed that the forces driving a scouring ice

mass are sufficient to ensure a continuous forward motion. The approach models steady state

ice scour. during which there an:. DO other translatiooal or rotational keel movements. This

is a reasonable assumption because offshore field data show scour marks characteristically

maintain constant dimensions over long distances_

3.2 Experimental Objectives

£n terms of the ceotrifuge modelling component of PRISE the established experimental

objectives included:

(i) modelling up to 20 scour events usin: ::Iay_ sand and layered sand I clay media.

(ii) describing and quantifying the general cases for each soil type and to highlight the

similarities and differences in the responses of the different soils to the same ice keel loads.

(iii) and the verification of the physical model results against field data from modem and

relic scour marks.

In this thesis emphasis is placed 00 describing and quantifying the nature of ice keel scour

in sand.
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Chapter Four

Centrifuge Modelling

In modelling geolecbnical phenomena. it is known that soil behaviour is governed both

by the applied effective stress as well as the effective stress history of the soil. It is for this

reason that the results of small·scaJe physical modelling exercises under normal gravitational

conditions cannot be easily applied to large scale prototype conditions. The degree of

uncenaimy present with small·scaIe physical modelling can be avoided using a centrifuge

since it pennits stress similarity berwcen lhe model and the prototype. Moreover. if the

external loads are scaled such thaI the resulting stresses in the prototype and model are

similar. the reaction of the model to the external loading will be similar to the prototype

behaviour(poorooshasb. 1990). Centrifuge technology is consi~ a proven and effective

tool when modelling gravity--dependent phenomena (Schofield. 1980).

4.1 Theory of Centrifuge Modelling

Centrifuge modelling utilizes the radial acceleration experienced by an object rotated

around a central axis. The increased radial acceleration is equal to rwJ
• where Co) is the

angular velocity of rotation expressed in radians per second and r is the distance between the
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object and its axis of rotation. The increase in radial acceleration (Ng) experienced by an

object at the end of a rotating arm is determined using:

Ng '" r (0)2

where 'g' is equivalent to eanh's gravitational acceleration.

[4-IJ

As shown in Figure 4.1. the rationale behind centrifuge modelling can be illustrated

clearly in teons of the effective vertical confining stress (0:). expressed as:

0/ ... p g h [4-2J

where p represents mass density, g represents earth's gravitational acceleration and h is the

prototype height. A model which is geometrically inversely proportional to lhe prototype

by a scale factor (n) will have a height of (hIn). The effective vertical confining stress in the

model with the same mass density as the prototype is lin than that experienced by the

prmotype. In order to maintain simihrity of stresses. it is apparent that either the matl:rial

density or the gravitational acceleration must be increased in order to compensate for the

reduction in stress level in the model. Since large variations in density are unrealistic, the

gravitational component 'g' must therefore be increased N times. where N = n. This

relationship is shown in equation 4-3.

o>p N g h (lin) [4-3J
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'The relationship shown in Equation [4-3j implies that the acceleration field experienced

by the model must be N times the acceleration field present in the prototype. An alternative

expression to Equation [4-3} is given in equation (4-4),

[4-4J

where "a" is defined as the gravitation acceleration and the subscripts "m" and .p" are used

in reference to the model and prototype respectively.

4.2 Centrifuge Scaling Relationships

The manner in which centrifuge scaling laws are derived is illustrated with respect to

force (F), Using the inverse relationship between model and prototype length as a swting

point. the volume (V) occupied by the model 01.. ) in relation to the volume of the prototype

01,) is given as:

[4-5]

Since mass is a function of an object's volume and mass density and the mass density is

assumed to remain constant. the model mass is therefore inversely related to the prototype

mass, expressed in equation (4-6J as:
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[4-6]

Combining equations [4-4J and (4-61. the scaling relationship for F, (prototype) and f;.

(model) is given as:

[4-7]

TIle simplified version of Equation [4-7] is;

[4-81

lb:: prototype force is therefore equivalent to the increased acceleration (N) experienced

by the model squared. multiplied by the measured model force.

Other common centrifuge scaling relationships include:

area.

strain.

E... " Ep '

[4-9)

[4-10J
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and unit weighL

y• .:: N Y,,_ [4-11)

The implications of the preceding discussion in reference to the modelling of ice scour

is relatively simple. In terms of geometrical considerations the corresponding dimension of

the model is essentially the increase in acceleration. N. multiplied by the given dimension.

A model ice keel with a width of0.1 m at an acceleration of 150g: would be equivalent to 15

m at equivalent prototype scale. A model with a width of 0.2 m at an acceleration of 15g

would also be equal to 15 m at equivalent prototype scale.

4.3 Lateral Acceleration

A feature of centrifuge modelling which must be taken into consideration is the presence

of a lateml force. commonly referred to as 1ateral g'. It is a geometrical consider:uion arising

from a change in radial distance from the model to the centre ofaxis of rotation. In reference

[0 the model package used in modelling ice scour. the effect of lateral g is illustrated in

Figure 4.2.
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The geometry of the model test package in [t:fen:DCe to the axis of rotation imposes a radial

component of acceleration upon the model ice keel as it is pulled across the model teStbed.

The measured horizontal force is therefore a measure of the soil resistance plus the lateral

component of acceleration. The magnitude of radial acceleration varies with the distance

between the centerline of the strongbox and the centre of mass of the model carriage

assembly. The magnitude of the radial force is given by the following expression:

[4-12J

where To is the initial distance from the carriage centroid to dIe centerline of the strongbox.

dis the displacement of me keel. M~ is the total mass of the model carriage assembly and

U) is the angular velocity of the cennifuge in radians per second (C·CORE. 1995a).

4.4 Modelling of Models

A technique known as "modelling of models" can be used to verify results obtained from

a centrifuge modelling program. Prototype behaviour is predicted from the results of twO or

more tests conducted at different scales. If the observed results are repeatable using

different scale models. the results are considered representative of the behaviour present in

the prototype. As an example of modelling of models. the current centrifuge tests involving

ice scour utilized two scales: In5 and 11150.
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4.5 Closing Remarks

Due to the efforts of many researchers. centrifuge modelling has become a proven and

accepted tool in the investigation of gravity dependent phenomenon. It is used both in

confinnarion of theoretical solutions and in me calibration of numerical and constitutive

models. The versatility of centrifuge modelling is emphasized by the variety of applications

that have been undertaken. These include soil dynamics (Craig el 01., 1988). earthquake

modelling (pilgrim and Zeng. 1994). cold regions studies (Smith. 1991). contaminant

transpon and flow problems (MitcheU and Stratton. 1994). ice mechanics (Lovell and

Schofield. (986), hydrodynamics (ZeLikson. 1995; Poorooshasb. 1990). shallow and deep

foundations (Kutter et of.. 1984) and structural geology (Dixon. 1988: Peltzer and Garnier.

1988). Centrifuge modelling has also been used in the investigation of ice keel scour (Lach

and Clark. 1994; Lach.l996).
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Chapter Five

Experimental Facilities and Equipment

5.1 C-CORE Centrifuge Facility

5.1.1 Acutrooic 680-2 Geotechnical Centrifuge

Described in detail by Phillips tt af. (I994). C-eORE's centrifuge facility is located on

the St. John's campus of Memorial University of Newfoundland. The facility comprises a

circular containment chamber housing an Acuutmic 680-2 geotechnical centrifuge and an

adjacent two-story building containing offices. laboratories. mechanical and elecuical

workshops.

The Acutronic 680-2 geoteehnicaJ centtifuge. illustrated in Figures 5.1 and 5.2. is a beam

cenlrifuge with a r"<ldius of 5.5 m from its axis of rmation to the working base of a pivoting

platfonn. Features of the Acutronic 680-2 geoteebnical centrifuge include twO parallel steel

rubes. a swinging platfonn. an adjustable 20.2 tonne counterweight and a central drive box.

Power is provided by an AC variable speed motor. with power consumption mainly due to

aerodynamic drag within the centrifuge chamber.
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The Acutronic 68(}"2 Geotechnical Centrifuge has a maximum rotational speed of 189

rpm. corresponding to a centripetal acceleration approximately equivalent to 200 gravities

at a radius of 5 m. The paytoad. which is contained within an aerodynamic shroud to reduce

drag. is Limited dimensionally to 1.1 m by 1.4 m in plan and 1.1 m in height. The payload

capacity of the Acutronic 680-2 Centrifuge varies from 2.2 connes at an acceleration of 100

gravities to 0.65 tannes at an acceleration of 200 gravities. the reduction in payload capacity

due to the increased self-weight of the platform.

5.1.2 Ancillary Equipment

Centrifuge models are contained within a rectangular or circular vessel refem:d to as a

'strongbox' or 'tub'. The purpose of this vessel is to contain the model testbed and to

provide a base for securing ancillary experimental equipment. The rectangular strongbox

used in modelling ice keel scour has internal dimensions of L 18 m (length) x 0.94 m (width)

x 0.4 m (height). At an acceleration of 150 gravities. the prototype model testbed has an

equivalent plan area of 141 m x 177 rn. The rectangular strongbox weighs approximately

3.15 kN empty. Channels are machined into the base of die strongbox. These channels form

pan of a system used to maintain a constant water level during the course of a centrifuge test

and to pennit drainage once the leSt has been completed.

As iUustrated in Figure 5.3. the strongbox also serves as a pad for .securing actuator units.
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cone penetrOmeter apparatus. as well as data acquisition apparatus including signal

conditioning boxes and signal leads. cameras and power cables. 1be cone penetration test is

used to obtain a measure of soil strength during the centrifuge test. The cone consists of a

hoUow steel shaft II mm in diameter. the point of which has an angle of 60" and a cross·

sectional area of 100 mml
.

5.2 Experimental (Model) Testbed

5.2.1 Experimental Testbed Soil

Each experimental model testbed was fabricated using approximately 0.2 m l of clean dry

silica sand (fype FllO) supplied by U.S. Silica. The model testbed was prepared by

pluviating the sand from an overhead hopper. The relative density of the model testbed was

contrOlled by varying the elevation of the hopper as well as the mass rate at which the sand

was placed. toe properties of the sand used in constructing the model testbed ace presented

in Table 5.1. The grain size analysis is presented in Figure 5.4. The internal angle of friction

of the sand was determined. from Doth maria! extension and compression tests on loose and

medium dense samples. to be on the order of 36.5" (C..cORE .199Se).
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Figure 5.1 The 680-2 Acutronic Geotechnical Centrifuge At Rest
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Figure 5.2 Schematic or the 68()..2 Acutronic Geotechnical Centrifuee
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Figure 5.3 Schematic of the Model Test Package Used in Centrifuge
Modelling of Ice Keel Scour 4 Plan View
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TableS.1 Sand Properties

Maximwn Dry Density (y_)
Minimum Dry Density (y~
Specific gravity (OJ
Effective Grain Size (d lo)

Mean Grain Size (dso)
Uniformity Coefficient (CJ
Internal Angle of Friction (4)')

1.684g/cm1

1.409 g/cmJ

2.66
0.095 mID

0.13mm
1.47
36.5'

5.2.2 Experimental Testbed lnstnnnentation

In order to investigate lhe pore pressure response beneath the model ice keel. miniature

pore water pressure transducers (PP'T's) and Lebow 4531·150 subminiature p~ure

tran..sducers (TI...C's) were embedded in tbemodel testbed. 1be Druck model PDCR 81 pore

pressure transducers (pITs) have a working range of 0 to approximately 0.7 MPa. They

measure the differential p~ure between the atmospheric p~ure and a fluid pressure.

(KOenig er at., 1994). Each transducer was fined with a sintered bronze stone which

pennined the fluid pressure to act upon the diaphragm. yet resisted the effective stress of the

sand. At least two pore water pressure transducers (PITs) were buried beneath each scour

evenl The Lebow 4531-150 subminiawre pressure transducers have a working range efO

to 3.5 MPa. 1bese aansducetS were used in order to provide a measure of lOW vertical suess

benealh the scouring keel. Due to a difference in stiffness between the instrument and the

soil medium. the interpretation of data associated with these transducers was subject to
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possible errors. For eltample. the difference in stiffness will cause the transducer to

overestimate (stress concentration) or underestimate (arching effect) the acwal stresses

preseot in the soil medium. Passive markers in the form of dyed sand layers and coloured

spaghetti strands were also placed in the model testbed. The coloured sand was obtained by

mixing me model test sand material with a commercially available machinist layout dye. in

liquid form.. The mixture was then air dried and sieved. The spaghetti strands were also

dyed using an aerosol fonn of machinist layout dye.

5.3 Model Test Package

The model test package was designed to investigate various parameters including; the

effect of scour width. scour depth and attack angle upon the scour process. A means of

adjusting the elevation of the model keels was used to vary the incision depth of the scour.

The single degree of freedom criterion imposed upon the model ice keel was an important

feature of the modelling exercise. The model ice keel was constrained to translate

horizontaLly at a fixed scour depth.

5.3.1 Model Ice Keels

The model ice keels were constrUcted from aluminum plate welded together and precision

machined to the required dimensions. Both the attack face and the base of the model ice

keels were knurled in order to ensure that the friction developed at the interface between the
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model keel and the sand was comparable with the angle of internal friction for the sand.

5.3.2 Actuator Units

The assembled test package had provision for two scour events to be conducted per

centrifuge flight. The actuator units. designated DRIVE #1 and DRIVE *2 were designed

such that they provided the required horizontal force necessary to create the SCOUT. as well

as the vertical reaction force to uplift. Design criteria considered these forces to be on the

order of 5 kN and 4 kN respectively (Cunnard. 1993). Each drive unit utilized a brushless

D.C. servo motor connected to a drive shaft and spool assembly. which was in turn

connected to the model keel through steel cables. Rotation of the drive shaft served to

advance the model keel across the testbed at a predetermined velocity of 0.1 m1s. The

carriage holding the model keel. as illustrated in Figure 5.5 was constrained to move along

the guide rails. The speed of the servo motor controller was controlled by a preset analog

control voltage. A scour event was initiated through a switch in the control room which

triggered a series of relays on the centrifuge which in tum energized the servo system. The

displacement of the model keel was measured using a Celesco PTlOl-0050-111-111O

position transducer (SP).
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5.3.3 Model Keel Instrnmentalion

Shown in Figure 5.5. the model keels were instrumented [0 measure total vertical load.

toW horizontal load and contact pressure between the soil and the model ice keel. The

notation Le. TC and PT represent load ceil. lension cell and p~ure transducer.

respectively. Each. model keel was anacbed to the carriage assembly and actuator via three

2.2 kN Seosotee Model 3111432-Q8 tension/compression load cells (lC). one at each comer

afthe rear afme keel and one centred in front afthe model ice keeL These load ceUS have

a woricing range of 0-2.2 kN. Summation of the three load ceU outputs provided a

measurement of the nCl vertical force. Horizootalloads were measured using a tension load

cell (TC) attached to the leading face of the model ice keel. Tow cables attached to the load

cell provided the required force to move the model keel across the testbed. The tension load

cell (Te) recorded the tension force present within each cable. Summation of the forces

present within each cable provided a measurement of the net horizontal force. In order to

compensate for the radial component ofacceleration. ie. 'lateral g'. the measured horizontal

force was manipulated as outlined in Section 4.3. The pressures present on both the base and

leading face of each model ice keel were measured using a flush-mount pressure transducer

(PT) or face pressureceU. These pressure transducen; (SensoleC Model 5/1542-07) have a

working range of 0 to 3.45 Mfa gauge.
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Figure 5.5 A Schematic Diacram of The Model Packace Used 10
Centrifuge Modelling of Ice Ked Scour· Prorile View.
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5.4 Data Acquisition System

The data acquisition system consisted of; (i) a signal conditioning (SIC) sub-system

mounted on the test package. (ii) a slipriog arrangement. (iii) a filter chassis. (iv) a 64

channel multiplexer. (v) an analogic HSDAS-16 (16 bit AID convener). (vi) a ± 15 Volt

lambda power supply and (vii) a 486 DX-40 PC compatible computer ruoning SnapMaster

for Windows. Each signal conditioning box contained dual channel printed circuit cards.

mounted in a 12 card chassis. Each channel had a selectable gain and excitation voltage for

the attached instrumentation. 1be filter chassis was a 48--channcl unit. with a selectable cut

off frequency between I [Q 500 Hz.. The cut-off frequency used during centrifuge tests

involving ice keel scour was 19.12 Hz.. Amplified analogue signals from the various

tr.m.sducers after passing through the signal sliprings were filtered. The signals then entered

the 64-channel multiplexer I ANALOGIC HSDAS- 16 (16 bit AID converter) where they

were digitized and Stored. A thinwire Ethernet enabled the instrument response to be

displayed in the Centrifuge Control Room during the test.

5.5 Laser Profile System

The laser profiling system used to profile the post-scour features of the experimental

testbed consisted ofa Keyence Model LB-70 Controller. a Keyence LB· I 1 Sensor head and

a Celesco PTIOI-<X>50-111-IIIO saing potentiometer. The LB series Keyence laser
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displacement sensor is classified as a Class lIIb laser product. It has a measurement range

of ~40 rom. The horizontal position is defined by a string potentiometer. Using a mobile

PC computer system operating SNAP-MASTER data acquisition package. time.

displacement and vertical displacement data were acquired.

5.6 MisceUaneous Equipment

In addition to the above equipment. other pieces of equipment were used during this

experimental research program. These included a sand hopper. a vacuum system. density

cups and a portable water reservoir. Placement of the sand through pluviation was

accomplished using an overhead cylindrical hopper. The hopper was hoisted using a chain

hoist attached [(l a mobile gantry. As part of the density control. density cups with a volume

of IOOcm) were used.1besecontainers were placed at various locations in the model testbed

during preparation. Once filled. they were levelled. removed and weighed. A density

detennination based upon the weight and the volume was then made. Levelling of the

individual sand layers was accomplished using a vacuum system. consisting of a wide

nozzle. a clamping device. a guide rail assembly and a commercially available wetJdry

vacuum system. The vacuum nozzle was set at the desired elevation. Since control on the

order of :!: I millimetrcs was necessary•.several passes were made across the model testbed.

each pass lower until the required testbed elevation was obtained.
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Chapter Six

ExperhnentalProcedure

Model preparation comprises a major component of the expcrimemal procedure. It

involved the careful preparation of the model testbed. Model preparation was labour

intensive. with test preparation requiring as much as several weeks. The centrifuge test

involved acceleration of the model testbed to a predetermined level, a brief period during

which the instruments were allowed to stabilize. foUowcd by the scour event. A typical

centrifuge test of ice keel scour in sand required approximately two hou~ from start to

completion. Post-test excavation and data reduction was also labour intensive. and was

undertaken over a period of seveml weeks.

6.1 Preparation of Model Testbed

Each model testbed was constructed in a rectlngular strongbox described and illustrated

in Section 5.1.1 and Figure 5.3 ~pectively. In order to prevent the ingress of sand into

drainage channels. the base of the strongbox was covered with a layer of geotexwe fabric.

A dense. 130 mm-thick layer of coarse quartz sand (d lo=O.325 mm) served as a foundation

for the model teStbed. It was used to reduce the quantity of fine silica sand used in
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consuucting the model testbed. 1be model test package was designed such that the actuators

were secured to the top of the strongbox.

As illustrated in Figure 6.1. the model testbed was constructed in a series of layers. (thick

at the base and thin at the top). Each layer was placed by pluviating dryquatU sand from an

overhead hopper. The relative density of the model testbed was controlled by varying the

mass flow rate of the sand. Model tests described as loose or with a low relative density

were formed using a low mass flow rate with an elevation drop of about 0.02 m. Medium

dense model testbeds were constructed using an elevation drop of0.3 to 0.5 m with a higher

flow rate. Verification of the relative density of the model testbed was achieved using density

cups. The individual sand layers were levelled using a vacuum system. and a Eh.i.n layer of

dyed sand spread evenly over the surface. The procedure was repeated until the model

testbed reached an elevation of +300 mm above the base of the strongbox. or ·100 mm from

the top of strongbox. The model testbed had a nominal thickness of 170 mm.

Miniature pore pressure transducers (PPT's) and total stress cells me's) embedded in

me model testbed were incorporated into the model during the assembly process. Electrical

leads from the uansducers were secured to the side of the strongbox in order to prevent

possible displacement of the transducer during model preparation. Horizontal spaghetti

strands oriented perpendicular to me scour mark were also placed during the assembly

process. With the completion of the final sand layer. vertical spaghetti suands along the
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centerline of the scour. as well as perpendicular to the scour. were placed with the aid of a

plexi·glass template.

Saturation of the model testbed with water while under vacuum enabled a high degree of

saturation to be achieved. The saturation process involved placing the model testbed in a

reduced aanosphere. using a 20 mm thick steel plate (vacuum plate) bolted to the top of the

strongbox.. A seal between the suongbox and the plate was formed using silicon sealant. A

closed system between the strongbox and the water reservoir was then established as

illustrated in Figure 6.2. This combined syslem was then connected to a vacuum line and a

vacuum of approximately 70 !cPa applied. Ordinary tap water was siphoned into the

reservoir container where it was allowed to equalize over a period of several hours. 1be

reduced aonosphere served to dc-aerate the water. An arrangement of valves. designated A

through E in Figure 6.2 enabled the strongbox containing the model testbed to be isolated.

while the water reservoir was being filled. Saturation of the model testbed commenced when

a valve connecting the reservoir to the strongbox (ie. valve 0 in Figure 6.2). and valves B

and E. were opened. allowing water 10 flow under the influence of gravity from the reservoir

to the base of the model testbed. Model saturation occurred at a rate of approximately 5

litres per hour. The flow rate was governed by the need to prevent fluidization of the model

testbed during saturation. It was controlled by varying the height of the waler reservoir

relative [0 the height of the strongbox. Once the surface of the model testbed was

submerged. the reduced atmosphere in the strongbo~ was slowly relieved to atmospheric



pressure. The vacuum plate was removed and the strongbox cleaned in preparation for the

installation of the actuator units and other apparatus.

6.2 Ice Keel Model Preparation

Preparation of the ice keel model commenced with the installation of face pressure

tr.utsducers in the base and aaack face of the model ice keel. Each transducer was sealed

with an '0' ring. The model ice keel was attached to the carriage of the drive assembly via

three 2.2 kN tension/compression load ceUS. The horizontal toad ceU was attacbed to the

leading face of the model ice keel. The carriage height was adjusted vertically as required

by the desired scour depth (to within ± 1 mm).
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TIle Coloured Sand Layers
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6.3 Model Assembly

Assembly afme model teSt package involved securing the actuator units to thestroogbox.

along with the cone penetrometer assembly as well as otbe~ apparatus. including camera

mounts. signal conditioning (SIC) plates and boxes. The leads from the transducers were

connectt:d to the appropriate signal conditioning (SIC) box.

6.4 Centrifuge Testing of Ice Scour Models

Prior [0 the cenuifuge test. components of the experimental package were checked in

order to verify operuaao. Upon the successful completion of these checks. the ~I cables

to the individual keels were secured to the horizontal load cell located on the leading face of

the ice keel model. Initially at rest. the centrifuge was accelerated in stages to either 114.3

rpm (75g leSt) or 161.3 rpm (l50g teSt). The acceleration is defined at me base afme model

keel. with the mdius equivalent [Q the dis[Uncc between the base of the model keel and the

axis of rolation. For a 1508 test, this distance was approximately 5.137 ro. Knowing the

required accelCld.tion (Ng) and the distmce from the axis of rotation to the base of the model

keel (r). the rotational speed of the centrifuge was determined in terms of radians per second

(W) according to the following equation.

[6-1J
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Upon completion of the experiment. the cenaifuge was decelerated in stages. During this

time. the excess surface walerwas allowed to drain into the centrifuge chamber mrougb the

solenoid valve located at the base of the strongbox.. 1be centrifuge was then stopped and

data acquisition system balted. Steps outlined in Section 6.3 were undertaken in reverse

order. FoUowing inspection and photographs of the model testbed. the model lest package

was removed from the centrifuge chamber to a secure area for post-test: excavation and

analysis.

6.S Data Acquisition

As indicated previously. the Windows-based PC SNAP-MASTER program was used to

control data acquisition. The program was run from the centrifuge control room. Data

acquisition was subdivided into the following specific tasks: pretest monitoring, swing-up.

scour event # I. cone penetration test. scour test #2 and finally swing down. Individual

components wert: monimred as specific data acquisition files. the purpose being clarity and

simplicity during data processing.

As part of the data acquisition process. the excitation voltage and gain for each transducer.

as well as the sampling mte were determined prior to each ccmrifuge test. The gain was set

for each trolllSducer in anticipation of both static and dynamic loading. A sample rate of 50

Hz was used during the scour events. whereas a sample frequency rate of O. I Hz was used
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for pre~t monitoring, swing-up and swing·down.

Video documenlation ofeach test was accomplished using two ceo cameras mounted

between the drive units opposite the cooe penetrometer assembly. Images from these

cameras were recorded during the centrifuge test using a YHS video tape recorder. Each

scour event was on the order of six (6) seconds duration.

6.6 Post-test Analysis

Post-test analysis consisted of photographic documentation of the surface morphology of

the scour marks. geoeral observations. laser profiling of the scoured surface and finally

excavation of the passive markers and in-situ instrUmentation. Using the laser profiling

system described in Section 5.5, cross-section profiles of the model testbed were conducted

at approximately 25-50 rom intervals along the scour mark. [n addition. a profile along the

centerline of each scour mark was also taken.

A typical post-test ex.cavation of the model test bed was governed by the features that

were of interesL The excavation faces ate shown schematically in Figure 6.3. Initial

excavations bad a vertical face (Line #1) oriented perpendicular to the scour direction. This

provided a cross-section ofOOm scourevents. At approximately Y + 350 rom. the model was

excavated in paralJel to the scour marie. (Line #2). with the infonnation of interest being both

54



the spagbetti maricers along the centerline of the scour and the fearures delineated by the d~d

layers of sand in the frontal spoil berm. In addition. the location of the transducers were

recorded when exposed during the excavation process.

As a means of documenting the observed subscour deformations. soil peels were taken

from the excavated surfaces. The technique involved pressing a transparency that had been

previously coated with a contact cement against the excavated surface. A layer of sand

several grains in thickness adhered to the transparency once it was removed. The

transparency. when dried. was digitized. preserving the observed subscour deformations in

elecuonic fonn for subsequent analysis. The peels were saved for furure reference.
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Chapter Seven

Experimental Results

Centrifuge modelling of ice keel scour proved successful. 'The acquired data. consisting

of seven distinct sets of numerical and semi-qualitative data. rcprc5enl a range of scour

conditions and parameters. A detailed summary of the acquired data set is presented in a

series of individual data reports (C-CORE. 1995a. C-eORE, 1995b; C-eORE. 1995c: C-

CORE. 1995d). The notation used in the identification ofscour events in the data reports has

been modified for use in this document such that the individual scour events are now

n=.presented by the letters A to H. [n order to reduce confusion arising from this change. me

notation used within this thesis along with the corresponding identification used in the data

reports is presented in the following table.

Table 7-1

Scour Event

A
B
C
D
E
F
G
H

Test Identification.

Test Identification

PRISEOIB Drive 1
PRISE018 Drive 2
PRISE01C Drive I
PRISEOIC Drive 2
PRISE 09 Drive I
PRISE 09 Drive 2
PRISE 10 Drive I
PRISE 10 Drive 2

Test Date

01 Dec.. 1994
01 Dec.. 1994
15 Jan.• 1995
15 Jan.• 1995
01 Feb.• 1995
01 Feb.. 1995
23 Feb.• 1995
23 Feb.• 1995
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A test matrix describing the seven teSt configurations as defined by the various scour

conditions and parameters is shown in Table 7.2. An. eighth scour event designated Scour

A was unsuccessful and is therefore omitted from Table 7.2 and subsequent discussions.

Table 7.2 Test Matrix

Scour B C 0 E F IG IH
Sand Description loose Loose loose Dense

De= IDense
Dense

Scour Depth (m) 1.70 0.98 1.10 1.20 2.14 1.16 1.I9
Scour Width (m) 15 15 15 15 15 30 30
Attack Angle (0) W 30· W 15· W 30· W
Acceleration Level ( ) ISO. 75g 75. lSOg ISO. ISO. ISO.

7.1 Post-Test Scour Profiles

As depicted in Figures 7.1 and 7.2. each scour event was characterized topographically

by the formation of a surcharge mound located in front of tlle model ice keel and benns on

each side. The topogmphy of the scoured testbed was profiled in order to detennine the

scour depth and corresponding surcharge height. Profiles taken perpendicular to the length

of the scour were used to determine scour depth. Profiles taken 3.long the scour mark were

used to detennine the height of the frontal surcharge mound. The depth of each scour

expTeSSed in equivalent prototype units and the height of the conesponding surcharge mound

is given in Table 7.3. h was noted that the neight of the surcharge mound expressed in

equivalent prototype scale was approrimately 3.4 m for the 15 m wide scours and 5 m for

the 30 m wide scours. It was concluded that the height of the surcharge mound was therefore
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dependent upon the width of the scour evenL

Table'.3 Profile Data

Scour IB C 10 E IF IG IH
Scour Width (m)

1

15 \5
1\5

\5 1\5 I~19
1

30
Scour Depth (m) 1.70 0.98 1.10 \.20 1 2.\. 1.16
Surchane Height (m) 35 3.\ 3.\ 3.6 3.6 5.0 5.0

7.2 Load Displacement Data

7.2.1 Horizontal Loads

As shown in Figure 7.3. the measured horiwntalload was characterized by an inCtU5e

from zero to an approximate steady state value. The magnitude of the horiwntalload data

expressed in equivalent prototype scale varies from 10 MN to approximately 50 MN. The

peak horizontaiload in equivalent prototype UWlS for each scour event is presented in Table

7.4. Due 10 the configuration of the model testbed rt:lative to the axis of rotation of the

centrifuge. a radial component or lateral acceleration was superimposed upon the measured

horizontal force. In order to compensate for the lateral acceleration. the calculated r"dial

force component has been subtracted from the measured horizontal force. The horiwntaJ

load data presented in Figure 7.3 has been manipulated such thal the radial component of

accelern.tion has been removed. Plots from each scour event illustrating the response of the

horizontal load cell versus both model displacement and time are presented in Appendix A.
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Figure 7.2 Oblique View of Scour C Showing
Surcharge In Front of Scour (Top)
and Side Berms
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Figure 7.3
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7.2.2 Measured Vertical Loads

As shown in Figure 7.4. the total vertical load encountered by the model ice keel as it

scours the model seabed is characterized by an increase from zero to an approximate steady

Slate value. The magnitude of the vertical load displacement data expressed in equivalent

prototype scale varies from 12 MN to approximately 56 MN. TIle peak. equivalent prototype

vertica1load obtained for each scourevcot is tabulated in Table 7.4.

7.2.3 Ratio of Vertical to Horizontal Loads

The ratio between the measured vertical and borizontal load displacement data for each of

tbedocumeotedscourevents presented in Table 7.4 and Figure 7.5. ranged from 1.03 to 1.18.

In comparing the vertical and horizootllload displacement data. it was noted that both data

sets were similar in fonn. For example. the cyclic variation present in the vertical load

displacement data was also evident in the borizontalload displacement data. In addition. it

was also noted that the cyclic response of the measured vertical and horizontal load

displacement plots for each of the scour events were in phase. The close similarity between

lhe vertical and horizontal load displacement plots is iUustrate:d in Figure 7.6.
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Table 7.4 Vertical and Horizontal Load Displacement Data

Scour IB C D E F G H

Sand Description IDense Loose Loose Dense Dense Dense Den""
Scour Depth (m) 1.70 0.98 1.10 1.20 2.14 L19 1.16
Scour Width (m)

1
15 15 15 15 15 30 30

Attack Angle r)

I:~
30· W l5" l5" 30· W

Acceleration Level (g) 75g 75g 150g 150g 150g 150g
F, (MN) 3g.3 10.9 19.9 25.9 49.5 39.4 56.3
F. (MN) 33.8 9.8 16.9 23.6 43.9 3g.3 49.5
F,IF. 1.10 1.I1 Ll8 1.10 1.13 1.03 1.14

7.3 Pressure Transducer Data

A typical pressure transducer response versus model displacement for a pressure

transducer (P1) embedded in the leading face of the model ice keel is snown in Figure 7.7.

Plots from each scour event illustrating the pressure transducer response versus both model

displacement and time are presented in Appendix A. The plots nave been zeroed in order

to reflect the magnirude of the inlerface pn:ssures exerted by the model restbed on the model

ice keel.

The pressure transducers embedded in the leading face of the model ice keel showed a

sharp increase in pressure followed by an approximate sleady stare value. The pressure

transducers embedded in the base of the model ice keel were cnamcterized by a slight

negative response during scouring. From the data presented in Table 7.5. it is noted that the
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peak and mean n:sponse of the pressUR: tranSduce~ embedded in the leading face of the

model ice keel were on the order of 200 to 300 kPa and 100 to 200 kPa respectively. The

negative response of the pressure transducers located in the base of the model keel model

was on the order of -15 to -25 kPa.

Table 7.5 Pressure Transducer Response

Face Pressure Transducer Response
Scour Equivalent Anack Sand (!<Pa)

Scour Angle
Depth(m) (0) Model Ice Model Ice I Model Ice

Keel. Face Keel. Face Keel. Base
(Mean) (pe,",) I (pe,",)

B 1.70 15 Loose 196.1 282.2 -15
C 0.98 30 Loose 170.1 259.6 -20
0 1.I0 15 Loose 152.7 227.5 -15
E 1.20 15 De"se 160.5 312.0 -15
F 2.14 15 Dense 199.5 294.6 -25
G 1.19 30 Deose 185.3 275.3 -20
H 1.16 15 ,Deose 116.8 20l.2 -15

68



Figure 7.7

400r---r--~--~--~--~---,

=-
~ 200

j lOa

-100'------"'--~---'----'---~---'
o tOO 200 300 400 500 600

Displacement (mm)

Scour C • Excess Soil Keel Contact Pressure
Response Versus Model Displacement

69



7.4 Pore Pressure Transducer Response

As shown in Figure 7.8. the typical pore pressure tt'lUlSducer response was limited in

magnitude. 1be plot depieted in FtgUre 7.8 has been zeroed in order to reflect pore pressure

response above hydrostatic. 1be dashed vertical line present in Figure 7.8 rep~nts the

location of the pore pressure transdua:r (PPT) relative to the back of the model ice keeL

Plots from each scour event illusaating the response of the pore pressure transducer versus

both model displacement and time are presented in Appendix A.

In geoeraL the pore pressure response was characterized by a slight positive i.ncr"ea.se as

the model ice keel approached the pore pressure InULSducer feUowed by a negative dip. With

the passage of the model ice keel over the buried pore pressure tranSducer. a zero shift in the

positive direction was observed. The zero shift was on the order of0.5 to 2 kPa.. It is noted

that an increase of this magnitude is representative of a vertical decrease in the elevation of

the pore pressure transducer on the order of several millimetres at model scale. Table 7.6

summarizes the peak positive. peak negative and zero shift values for each of the pore

pressure transducers. The pore pressure data in Table 7.6 are presented along with lhe scour

identification. SCOUt depth and lhe deplh of the pore pressure uansducer relative to the base

oflhe scour.
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Table 7.6 Pore Pressure Transducer Data

Scour Identification Pore Pressure Transducer
Response (kPa)

Scour Equivalent I PPT# I Equivalent Sand I Peak I Peak
Offset

Scour Depth Below I (+ve) (-ve)
DeDth (m) Scour(m)

B 1.70 PPT#7 4.5 Loose 0

I
0 15

C 0.98 PPT##9 1.1 Loose 15 -7.5 05
C 0.98 PPT It 10 3.9 Loose , .<J.7 0.4
0 1.10 PPTIt 11 3.7 Loose 2.3 -2.3 -7.5
0 1.10 PPT'12 2.8 Loose 8.2 0 1.7
E 1.20 PPTIt 12 5.1 Dense 2.0

I
-1.6 05

E 1.20 PPTIt It 1.8 Dense 0 -3.7 1.1
F 2.14 PPT # (Q 4.3 Dense 4.9 0 1.1
F 2.(4 PPT#9 2.7 Dense 1.5 I 0 1.6
G 1.19 PPT#7 1.8 Dense 0

I
0 0.6

G 1.19 PPT# 11 4.8 Dense 0 0 0.4
H 1.16 PPT#S 1.8 Dense 0 0 0.6
H 1.16 PPT# 12 4.8 Dense 0 0 0.3
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7.5 Total Stress Cell Response

A typical response from a tocal stress ceU (Il.,C) is shown in Figure 7.9. The dashed

vertical Line in Figure 7.9 is used to indicate the position of me uansducer relative to the

displacement of the model ice keel. Peak total~ values from eacb scour event are

tabulated in Table 7.7. Plots from each. scour event illustrating the response afthe tolal streSS

cell transducers versus both model displacement and time are presented in Appendix A.

In general. the response of each talal. stress ceUs was similar in shape. It was noted that

as the model ice keel approached the total stress cell. there was a rapid increase in the

rnea.sured total stress up to a peak value foUowed by a return to a steady state condition. A

zero shift in the negative direction was observed for most of the total stress cell (TLC) data.

In reference to Scour D. the zero shift was on me order of 50% of the total response of the

transducer. The observed zero shift was attributed to either a reduction in the effective stress

associated with the removal of overlying material due to the scouring action. or a difference

in stiffness between the model testbed and the total stress cell transducer. The uncertainty

over the total stress data confirms an earlier statement that the response of the total stress

celis beneath the model ice keel was dependent upon the stiffness of the tranSducer relative

to the medium in which it was embedded.
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Table 7.7 Total Stress Cell Data

Scour Identification Total SuessCeU
ResDOnse (kPa)

Sam, ScOUT

I
TI.C# Equivalent Sand P,ak Offset

Depth Depth Below (!<pa) (kPa)
Scour(m)

B 1.70 TI.C#2 2.5 Loose 176.7 -34.8
B 0.98 TI.C#6 4.8 Loose 175.4 -15.5
C 0.98 TI.C#2 3.9 Loose 69.3 -20.8
C 1.10 TI.C#6 0.2 Loose 102.6 5.1
0

I
1.10 TI.C#3 3.8 Loose 111.9 -51.0

E 1.20 TI.C#6 3.3 Dense 299.0 -7.5
F 2.14 TI.C#3 4.2 De"",, 224.5 -26.0
F 2.14 TI.Cn 2.4 Deose 156.3 -27.2
G

I
1.19 TI.C#3 1.8

I
Dense 144.7 -4.2

H 1.19 TI.C#6 4.8 Dense 12L3 0.0
H I 1.19 TI.C#3 1.8 Dense 105.9 30.1

7.6 Cone Penetrometer Test (CPT) Data

The cone penetrometer apparatus was used to obtain an indication of soil strength with

depth. As illustrated in Figure 7.10. the cone penetration test provided an indication of the

relative density of the test bed for each scour event. For example. the loose sand used for

Scours C and 0 was cbaracterized by a lower cone penetration resistance than the medium

dense sand used for Scours E. F. G and H. Mechanical failure of the cone penetrometer

prevented acquiring cooe penetration data for Scour B.
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Figure 7.10
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7.7 Passive Markers

Post-test analysis involved the documentation of both the observed surface features and

subscour defonnatiol\S. TIle identification offea~ beneath the ice keel scour was possible

due to the presence of deformable spaghetti strands and coloured sand layers. Allhough

semi-qualitative. the passive markers incorporated in the model testbed provided insight into

the failure mectlanism associated with the passage of a scouring ice mass. For example. as

shown in Figure 7.11 (a) and (b). the coloured sand layers served to identify the presence of

a static soil "dead wedge", located beneath the inclined portion afthe model ice keel. The

coloured sand layers were also instrumental in defining the presence of distinct rupture

planes in the frontal spoil mound in each of the scour events. Depicted in Figures 7.11 (a)

and (b). 7.12 (a) and (b) and 7.13 (a) and (b). the rupture planes an: identified by short

segments ofcoloured sand projecting upward through the surcharge mound. The low angle

rupture planes are believed [0 be associated with the cyclic nature of the verticaJ and

horiwntalload displacement plots and will be addressed in the following chapter.
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Figure 7.11 (a) Scour G • Surcharge Profile

Surcharge

Static Soil Wedge

Original Testbed
Surface

/

Coloured Sand
Layers

Figure 7.11 (b) Schematic of Figure 7.11 (a) Showing The Presence of a
Static Soil Wedge and Failure Planes in the Frontal
Surcharge Mound
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Figure 7.12 (a) Seoul" G, Low Angle Ruptul"e Plane

Surcharge

Rupture Planes

------- Original Testbed
Surface

PossibleRupture Plane

Scale

Figure 7.12 (b) Schematic of Figure 7.12 (a) Showing A Low Angle
Rupture Plane as Defined by a Distorted Coloul"ed Sand
Layer
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Figure 7.13 (a) Scour G, Subscour Deformation

Original Testbed

Rupture Planes

\
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/$-I- V
Vertical Spaghetti Strands Coloured Sand

Layers

Scour Level

Figure 7.13 (b) Schematic of Figure 7.13 (a) Showing Subscour
Deformation and Horizontal Shear Beneath The
Surcharge Mound



Subscour soil deformations beneath each scour mark were identified by the horizontal

deformation of the vertical spaghetti suands and to a lesser extent by the vertical

compression of the sand layers. The subscour horizontal soil deformation data set consists

of data from Scours B. C. D. E and F. There are no subscour deformatioQ data available

from Scours G and H.. The five scourevems used in the documentation of the subscour soil

deformations represent three test configurations. Le. 15~ dense. l5~ loose and 30° loose.

Analysis of the documented subscour soil deformation was complicated by the variation in

scour depths.

As illustrated in Figure 7.14 (a) and (b). determination of the horizontal soil displacement

involved measuring the horizontal displacement (J) of lhe vertical spaghetti strands placed

along the centerline of the scour with depth below the scour. (d). The acquired data. as

presented in Figure 7.15 and Table 1.10 is semi-qualitative due to possible deviation of the

spaghetti strands from vertical during placement. and therefore subject to uncertainty. The

vertical subscour deformation was documented in terms of the volumeuic reduction of the

individual sand layers versus cumulative depth beneath the scour as shown in Figure 7.16.

11K: percentage of vertical compaction of the individual sand layers was detennined lhrough

a comparison of the average thickness of a sand layer beneath the ice keel scour (b) with the

average thickness of the corresponding sand layer outside of the scour influence (a). The

acquired data is presented in Figure 7.17 and Tables 7.11 through 7.15.
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Figure 7.14 (b)

Schematic Diagram Showing Deronned Spaghetti
Strands
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Schematic Diagram Showing Defonned Strand of
Spaghetti D1ustrating Horizontal Defonnation. j =
Horizontal Displacement, d =Depth Below Scour
Surface
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Table 7.8

0.5 1 1.5 2
Horizontal Displacement (m)

Subsoour DdormatioR Results Obtained For
Scours B Through F Showing Horizontal
Displacement in The Direction of The Scouring
Ice Keel. Scour Influence is Given In Terms of
Depth Below Scour Mark

Lee;end . Subscour SoU Deformation

Scour I Equivalent Attack Initial Soil I Symbol
Scour Depth (m) Angle (0) Stale I

B

I

1.70 15 Loose .
C 0.98 30 Loose +
D 1.10 15 Loose 0

E 1.20 I 15 Dense @

F 2.14 I 15 Dense e
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Figure 7.16 Schematic Diagram Showing Methodology Used In
Quantirying Vertical SUbSCOllr Soil nefonnation
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Table 7.9 Legend - Subscour Soil Deformation

Scour I Equivalent Scour
~:~)I O:~~on I Symbol

Denth(m)

B

I

1.70 15 Ulose

I ·C 0.98 30 Ulose +
0 1.10 15 U>ose 0

E 1.20 15 Dense I ·F 2.14 15 Dense ·
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Table 7.10 Horizontal Subscour Soil DeConnation Data

Scour B Scour C Scour 0 Scour E Scour F

d j d j d j d j d j

0.75 0.42 0.15 0.50 0.75 0.49 0.75 0.62 0.75 0.95
1.50 035 1.I3 0.38 1.13 0.44 1.50 0.35 1.50 0.60
3.00 0.18 L50 0.30 1.50 0.31 3.00 0.12 3.00 0.20
4.50 0.00 2.25 0.17 2.25 0.21 4.50 0.12 4.50 0.00
6.00 0.00 3.00 0.06 3.00 0.14 6.00 0.00 6.00 0.00
7.50 0.00 3.75 0.00 3.75 0.09 7.50 0.00 7.50 0.00
9.00 0.00 4.50 0.00 4.50 0.04 9.00 0.00 9.00 0.00
10.50 0.00 5.25 0.00 5.25 0.00 10.50 0.00 10.50 0.00
12.00 0.00 6.00 0.00 6.00 0.00 12.00 0.00 12.00 0.00
13.50 0.00 6.15 0.00 6.75 0.00 13.50 0.00 13.50 0.00

•• Data plotted in Figure 1. 15. Measurements based on methodology presented in Figure
1.14 (a) and (b). For reference. d = depth below scour mark. j = borizontal displacement.
•• MeasuremenLS expressed in prototype units. (m)

Table 7.11 Vertical Subscour Soil Deronnation Data, Scour B

• b della Vertical Cumulative Depth Below
Reduction (%) Scour(m)

0.75 I 0.38 I 037 I 50 I 0.75
0.95 0.90 0.05 5 1.10
0.45 I 0.42 I 0.03 I 8 I 2.15I
1.65 l.50 0.15 9 I 3.80
0.80 0.68 0.12 16 4.50
1.05 1.13 -0.08 -7 5.66
0.71 0.60 0.11 14 6.35
2.30 2.15 0.15 7 8.66
1.16 1.05 0.11 9 9.80
1.50 1.50 0.00 0 11.33

•• Data plotted in Figure 7.17. Measurements based on methodology presented in Figure
1.16. For reference. a =thickness of sand layer outside scour influence. b=thickness of sand
layer beneath scour mark..
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Table7.U Vertical Subscour Soil Deformation Data. Scour C

a b delta Vertical I Cumulative Depth Below
Reduction(%) Srour(m)

0.38 0.19 0.19 SO

I
0.38

0.38 0.26 0.12 30 0.75
0.38 0.26 0.12 30 1.13
0.38 0.26 0.12 30

I
1.50

0.75 0.68 0.07 10 2.25
0.83 0.68 0.15 20 3.08
1.35 1.43 -0.08 -5

I
4.43

1.43 1.43 0.00 0 5.85
0.98 0.98 0.00 0 6.83
1.58 1.58 0.00 0 8.40

•• Data plotted in Figure 7.17. Measurements based on methodology presented in Figure
7.16. For reference. a = thickness of sand layer outside scour influence. b = thickness of
sand layer beneath scour mark.

Table 7.13 Vertical Subscour Soil Defonnation Data, Scour 0

a b
I

delta Vertical I Cwnulative Depth Below
Reduction (%) Scour(m)

0.38 0.08 I 0.30 I 80 I 0.38
0.38 0.14 I 0.24 I 63 I 0.75
0.38 0.23

1
0.15 40 1.13

0.38 0.35 I 0.03 I 7 I 1.50
0.90 0.80

I

0.10 "

I

2.40
0.75 0.75 0.00 0 3.15
1.43 1.35 0.08 5 4.58
1.50 1.52 -0.02 -I 6.08
l.OS 1.00 0.05 5 7.13
1.50 1.50 0.00 0 8.63

•• Data plotted in Figure 7.17. Measurements based on methodology presented in Figure
7.16. For reference. a = thickness of sand layer outside scour influence. b = thickness of
sand layer beneath scour mark.
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Table 7.14 Vertical Subscour Soil Derormation Data, Scour E. b 1 delta I Vertical Cumulative Depth Below
Reduction(%) Scour(m)

0.45 1.02

I
0.57

I
56 1.02

1.05 1.10 005 3 2.12
0.45 0.83 038 45 2.93
0.75 0.72 -003 5 3.65

•• Data ploned in Figure 1.11. Measurements based on methodology presented in Figure
1.16. For reference. a =thickness of sand layer outside scour influeoce. b =thickness of
sand layer beneath scour mark.

Table 7.15 Vertical Subscour Soil Derormation Data, Scour F. I b I delta I Vertical I Cumulative Depth
Reduction (%) Below Scour (m)

1.35

I
033

I
1.02 I 76

I
1.35

1.00 075 0.25 25 2.36
1.00 105 -0.05 -5 3.36
0.80 080 0.00 0 4.16

•• Data planed in Figure 7.17_ Measurements based on methodology presented in Figure
7.16. For reference. a = thickness of sand layer outside scour influence. b = thickness of
sand layer beneath scour mark.
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Chapter Eight

Analysis and Discussion of Results

Analysis of the acquired data was focused on the measured vertical and horizontal load

displacement data. The analysis involved giving consideration to the magnitude of the scour

loads. the cyclic compooent of the load displacement data and the rntio of vertical to

horizontal Loads. A discussion of the general ueods present in the measured load

displacement data was augmented by a review of the pressure transducer and totalS~ cell

data. The analysis of the data also takes into consideration scour attributes highlighted by

the passive markers incorpornted in the modelrestbcd. Although semi-qualitative. the passive

markers (in the fonn of coloured spaghetti strands and coloured sand layers) provide

meaningful insight into the failure mechanisms operating during the passage of an ice keel

in sand.. It is fei[ that the understanding of ice keel scour gained from these experiments has

important implications in tenns of bearing stress and subscour soil defonnation.
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TableS.l Vertical and Horizontal Scour Loads

&our B C 0 E F G H

Angle(") 15 30 15 15 15 30 15
Scour Depth (m) 1.70 0.98 1.10 1.20 2.14 1.19 1.16
Scour Width (m) 15 15 15 15 15 30 30
Model Testbed Loo", Loose Loo", Deose Deose Den'" Deose

Fv 38.3 10.9 19.9 25.9 49.5 39.4 56.3
F. 33.8 9.8 16.9 23.6 43.9 38.3 49.5

Fv/FR Ratio 1.10 1.11 Ll8 1.10 1.13 1.03 1.I4

8.1 Load Displacement Data

A review of the vertical load displacement data. as presented in Table 7.4, Table 8.1 and

Figure 8.1, was used to iUustrate relationships present in the acquired data set. For example,

the effect of the scour depth in tenns of the measured vertical load was detennined through

a comparison of Scours E and F. As presented in Table 8.1. both scours were created using

a keel configuration with an equivalent prototype scour width of 15 m and an attack angle

of 15" to the horizontal. Scours E and F were also completed in the sam~ modd test~d.

The equivalent prototype scour depths for Scours E and F \vcre 1.20 m and 2.14 m

respectively. The measured peak. vertical load expressed in equivalent scale was 25.9 MN

for Scour E and 49.5 MN for Scour F. The increase in scour depth from 1.20 m to 2.14 m

resulted in an approximate twofold increase in the measured vertical load.
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The effect of scour width on the measured vertical load was observed through a

comparison of Scours E and H. Both scour events were created using a keel configuration

with an attack angle of 15" to the horizootaL Both scours were also created in a model

testbed with similar strength profiles (Figure 7.10). The equivalent scour depth for Scours

E and H were established as 1.20 m and 1.16 m IeSpectively. Scour E with an equivalent

scour widlh of 15 m had an equivalent vertical load of 25.9 MN while Scour H with an

equivalent scour width of30 m had an equivalent vertical load of 56.3 MN. The increase in

scour width from 15 m to 30 m caused an approximate twofold increase in the peak vertical

load.

The effect of varying the attack angle of the model ice keel from 30° to IS'" on the

measured vertical load was observed through a comparison of Scours G and H. Both scours

were created using a model keel with an equivalent prototype scour width of 30 m. The

equivalent scour depths for Scours G and H were established as t.l9 m and 1.16 m

respectively while the measured \'erticallood in equi....alent scale were 39.4 MN" anti 56.3 MN

respectively. The measured vertical load for Scour G with an attack angle of 30" to the

horizontal was approximately 70% that of the measured vertical load obtained for Scour H

with an attack angle of 15" to the horizontal. The effect of varying the attack angle of the

model ice keel from 30" to IS" on the measured vertical load was also observed through a

comparison of Scours C and D. Both scours were created using a model ice keel with an

equivalent scour width of 15 ffi. 1be equivalent scour depths for Scours C and 0 were
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0.98 m and 1.10 m whiJe the measured vertical load in equivalent scale was 10.9 MN and

19.9 MN respectively. The measured vertical load for Scoure with an attack angle of30°

to the horizontal was approximately 55% that of the measured vertical load obtained for

Scour 0 with an attaclc. angIe of 150 to the horizontal. The observed difference in the

percentage of load between Scours G and H (i.e. 70%) and Scours C and 0 (i.e. 55%) is

attributed to the slight increase in the measured scour depth for Scour 0 as compared to

Scoure.

In terms of the relative density used in describing the model testbed. the teSt configuration

used in Scour B was repeated in Scours E and F. However. Scour B was created in loose

sand whereas Scours E and F were created in dense sand. Scour B had an equivalent peak

vertical load of 38.3 MN corresponding to an equivalent scour depth of 1.70 m whereas

Scours E and F had an equivalent peak vertical load of 25.9 MN and 49.5 MN and

corresponding equivalent scour depths of 1.20 m and 2.14 m respectively. Based on the

close similarity between the ratio of equivalent vertical load to equivalent scour depth for

each of these scours, it is concluded that Scour B data is representative of a scour event in

dense not loose sand. {t is difficult to confirm this since there is no record of the soil strength

profile for Scour B due to mechanical difficulties encountered with the cone penetrometer

during the centrifuge test. However. a comparison of the measured peak vertical loads for

Scours B and 0 as presented in Figure 8. I serves to support the above conclusion. Both

scours were created using a model ice keel possessing an equivalent prototype scour width
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of 15 m and an attack angle of 15 0 to the horizontal As shown in Table 8.1. the model

testbed for each scour was initially characterized as loose. Scour B had an equivalent peak

vertica.lload of 38.3 MN and a corresponding equivalent scour depth of 1.70 m while Scour

o had an equivalent peak vertical load of 19.9 MN and a corresponding equivalent scour

depth of 1.10 rn. In comparing the two scour events. it is apparent that the equivalent peak

vertical load for Scour B is approximately 190% that of the equivalent peak: vertical load

obtained for Scour D. It has been observed pn:viously chat an increase in the scour depth

from 1.20 m to 2.14 m resulted in an approximate twofold increase in the measured vertical

load. It is therefore contradictory that an approximate 30% increase in scour depth from I. [

[0 1.7 m should yield a twofold incn:ase in the measured vertical load. This contradiction

also serves to validate the conclusion that Scour B was representative of a scour event in

dense sand.

The "modelling of models" attempt (Scours A and OJ was not successful for the sand rests

due 10 the lack ofdala corresponding to Scour A. However. from the data presented in Table

8. ( and Figure 8.1. insight into possible scale effecls is possible. For example. Scours 0 and

E were created using a model keel with a scour width of 15 m and an attack angle of IS 0 to

the horizonlal. Scour E was completed at an acceleration of l50g in dense sand whHe Scour

D was completed at an acceleration of 75g in a loose sand. Scour E had an equivalent

vertical load of25.9 MN corresponding to an equivalent scour depth of 1.20 m while Scour

D had an equivalent vertical load of 19.9 MN corresponding to an equivalent scour depth of
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1.10 m. The 30% increase in the vertical load for Scour E as compared to Scour 0 is

explained by the slight inc~ in scour depth for Scour E as compared with Scour 0 and

the higher relative density of the model testbed in which Scour E was formed.

The manipulation of the vertical load data such that it is expressed in terms of load per

unit width versus scour depth serves to semi-normalize the effect of scour width. The

manipulated vertical load data is presented in Figure 8.2. Subsequent analysis determined

that it was possible to project a straight line through the points associated with Scours D, E.

F and H. as shown in Figure 8.3. Scours B. E. F and H are representative of a scour event

fanned by a model ice keel with an attack angle of 15 G to the horizontal in dense sand (e.g.

15° dense).
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Figure 8.2
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Figure 8.3
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8.2 Passive Markers

The incorporation of passive markers in the form of coloured spaghetti strands and

coloured sand la)1:rs proved useful. For example. lhe vertical spaghetti suands located along

the centerline of the scour were effective in defining horizontal subscour deformatioD

beneath the scour mark.. In a similar manner, the coloured sand layers were insttumental in

identifying the presence of a static soil wedge beneath the model ice keel as well as the

presence of distinctive rupture planes located in lhe surcharge mound. The coloured sand

layers were also instrumental in defining the magnitude of vertical subscour deformation

beneath the scour mark.

The documented rupture planes identified in the surcharge mound helped to establish the

probable sequence ofevents associated with the passage of an ice keel in sand. 1be feaNres

shown in Figure 8.4. and Figures 8.5 (a) and (b) are interpreted to represent the initiation of

a low angle passive earth pressure failure in front of the model ice keel and subsequent

trunslation of the model ice keel telati ve to the soil being displaced upward along the rupture

plane. The displacement of the soil upward would result in additional loading and the

initiation of a new rupture plane.

The suggested failure mechanism serves to explain the cyclic variation observed in both

the horizontal and vertical load displaccmem plots. For example. the additional resistance
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MODEL ICE KEEL

I

STATIC SOIL WEDGE ~
RUPTUIl£ PLANE

Figure 8.4 Schematic Diagram Showing Proposed. Scour Failure
Mechanism With Loading Superimposed.
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STATIC SOIL WEDGE RUPTURE PLANES

COLOURED SAND LA YERS

Figure 8.5 (b) Schematic of Figure 8.5 (a)
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encountered by the soil body being displaced upward relative to the sun::bacge mound and

the model ice keel is reflected in an increase in the measured vertical load. The increase in

the measured vertical load applied to the rupwre plane results in an increase in the measured

horizootalload.

The interpretation that the cyclic behaviour of the horizontal and vertical load

displacement plots is associated with the formation of a passive earth pressure failwc in front

of the advancing ice keel is confirmed through a comparison of the cyclic variation of the

horizontal load displacement plot as presented in Figure 7.3. with the calculated passive earth

p~ure in front of the advancing model ice keel. The ~ults of this comparison is~ted

in Table 8.2. The passive earth p~ure was determined using Rankine passive earth

p~ure theory. It should be noted that the Rankine passive earth pressure was detennined

assuming a surcharge force as defined by the maximum measured height of the surcharge in

front of the model ice keel. An effective unit weight of 500 kNImJ and 600 kNIml was used

for the loose and dense sand respectively.

From the data presented in Table 8.2. there is good agreement between the calculated

Rankine passive earth pressure in front of the advancing ice keel and the cyclic variation in

the horizontal load displacement plots. The observed correlation is significant because it

provides an experimental measurement of the passive earth pressure in front of the advancing

ice keel.
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Table 8.2 Comparison of Passive Earth Pressure With Cydic Component
of Horizontal Load

Sc0w- S C 0 E IF G H

Estimated Cyclic Component of 4.0 2.0 2.0 4.0 I5.0 6.0 7.0
Ihe Measured Horizontal Load (MN)
Calculated Rankine Passive 3.7 1.7 1.9 2.4 4.7 6.7 6.5
Earth Pressure (MN)

The above discussion is not meant to be a rigorous approach in quantifying the loads

associated with the failure mechanism present in front of the model ice keel. Rather. it is

intended to convey understanding of the failure mechanism as a whole and to assign a

percentage of the measured vertical and horizontal load to the static soil wedge located

beneath the model ice keel. It is emphasized that. irrespective of the actual failure

mechanism, the proportion of the induced scour load associated with passive earth pressure

failure in front of the model ice keel is on the order of 10% to 20% of the total scour loads.

8.3 Soil Failure Mechanisms

In addition to possible shear dragging benealh the model ice keel. it is imponam to take

into consideration the effect of horizonw shear resistance in the vertical plane associated

with the sides of the static soil wedge and model ice keel. shown in figure 8.6 (a). It was also

recognized that the shear resistance along the vertical sides of the static soil wedge and
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Figure 8.6 (a)

Thee DilaealioBal Model Ice Keel

Model Teatbed
Sarlace

. .
:,j:':':~-:~~----~:"A'" U.d" 5totleS.U Wed••

(Borizoalal SIl•• r I. tbe
Rorlzoatal PI••e)

Three Dimensional Schematic Diagram or Ice Keel Scour
Showine Zone or Horizontal Shear in the Vertical Plane at the
Edge or the Scour.
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model ice leeel would be absent from the vertical load displacement plot but would be present

in the horizontal load displacement plot. It is therefore proposed that a more appropriate

measure of the failure mechanism beneath the static soil wedge is possible througb a

reduction of the measured borizootalload equivalent to the horizontal shear resistance in the

vertical plane located at the edges of the scour mark. In order to estimate the magnitude of

this shear resistance. the empirical relationships used in determining the ultimate lateral

resistance of rigid piles is used.

The ultimate lateral resistance per unit width of a rigid pile is greater than that of a

corresponding wall due to the shearing resistance on the vertical sides of the failure wedges

in the soil (ferzagbi. 1943). Moreover. as a means of approximating the ultimate lateral

resistance on a rigid pile.. a shape factor can be used. For example. Broms (1964) proposed

that the lateral earth pressure which develops at failure for a pile is equal to three times the

passive Rankine earth pressure on a walt Brams (1964) also referenced the earlier efforts

of Praskash (1962) who ~uggested that the maximum lateral earth pressure is approximately

2 to 3 times the passive earth pressure as calculated by the Rankine passive earth pressure

theory.

From the profile view of a model ice keel presented in Figure 8.6(b). it can be seen that

the zone of passive earth pressure failure represenlS approximately 10% to 15% of the total

length of the model ice keel due to the influence of the attack ang'e. The extension of the
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empirical relationships used in detennining the ultimate lateral resistance of piles 10 the

pbenomenoo of ice keel scour involved multiplying the shape factor used for rigid piles by

the increase in the corresponding area. As presented in Table 8.3. the borizontal shear

resistance in the vertical plane for a model ice keel wilh an equivalent prototype width of 15

m possessing an attack angle of 15 0 to the horizontal was approximated as 15 times the

lateral passive earth pressure as determined using Rankine passive earth pressure theory. The

horizontal shear resistance in the vertical plane for a 30 m wide keel possessing an attack

angle of 15 0 to the horizontal was approximated as being 20 times the lateral earth pressure

as determined using Rankine passive earth pressure theory. The reduction in the measured

horizontal load corresponding to 15 times the lateral passive earth pressure for the 15 m wide

keels and 20 times the lateral passive earth pressure for the 30 m wide keels resulted in the

calculated F,JFH ratio increasing from approximately I.t to approximately 1.3.

Additional insight into the phenomenon of ice keel scour is provided by the vertical to

horizontal load ratio. This insight is based on the premise that the measured vertic:LI scour

load and the rnea5un:d horizontal scour load (minus the horizontal shear resistance in the

vertical plane discussed above) are analogous to the applied nonnal force (0) and measured

shear force ('r) in a direct shear tesl Using this assumption. it is possible to determine the

internal angle of friction for lJ.'le sand used in construction of the model teStbed. The inverse

tangent of the modified FJFv ratio provides an internal angle of friction of approximately
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Figure 8.6 (b)

Model Tutbcd
Sarraee

Horia.atlll S"ear I.
Tllc Vertical Pine (BSVP)

p ...lva Earth Prea.are
Fall.re (PP)

Schematic Diagram of an Ice Keel Scour Event in
Profile View. The Total Area Of Horizontal Shear In
The Vertical Plane (RSVP) is Equal to 5 to 6 Times The
Area of Horizontal Shear In The Vertical Plane
Associated With The Zone of Passive Earth Pressure
Failure (PP).
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38.0° as shown in Table 8.3. The angle of in~ma1 friction for the quartz sand used in the

cOn$UlIction of the model testbed as determined using undrained uiaxial compression teSts

for loose and dense sand was 36.5°. This comparison is significam in that it supports the

premise that the horizontal to vertical load ratio is din:ctl.y associated with basal shear

beneath the static soil wedge. An association which also serves to validate Been's (I990)

shear dragging hypothesis. The ratio of vertical 10 horizontal fon::e was used by Poorooshasb

(1989) and Paulin (1992) as a measure ofexperimental repeatability.

Table 8.3 Ancte of Internal Friction of the Sand

Scour 8 C I D E F G H

Attadt A.ngle ('") IS JO IS

I
IS IS 30 'S

Scour Depth (m) 1.7 0.98 1.1 1.2 2.14 1.19 1.16
Scour Width (m) IS 'S IS 'S 's 30 30
Initial Soil State Loa'" Loose Loa", De"", De"", De"", De""
Fv(MN) 38.3 10.9 19.9 25.9 49.5 39.4 56.3
FH(MN) 33.8 9.8 16.9 23.6 43.9 38.3 49.5
Horizontal Shear In The I 3.70 1.70

I
1.90 2.40 4.70 4.50 4.30

Vertical P1ane (MN)

I IFR··
1

30
' I 8.' 15.0 21.2 39.2 33.8 45.2

Fv/FR LlO 1.11 Ll8 LlO 1.13 1.03 1.14
F,./Fu ••

! j8~i I 1.35 133 1.22 I 1.26 1.18 1.25
~ = TIUf'(FIl··/ Fv) 36.6 I 37.0 I 39.3 I 38.4 I 40.2 ! 38.8

'. [nterpreted as being representative of a scour in dense sand.
". lndicates modified horizontal fon::e (total horizontal force minus horizontal shear
resistance in the vertical plane).

General acceptance of this conclusion implies that the centrifuge data set involving ice keel

scour in sand was representative of a three dimensional scour mechanism as opposed to a twO

dimensional plane slrain mechanism.
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8.4 Implications

The variation in the measured vertical and horizontal load displacement data with

increasing scour depth and scour width can be explained in tenus of basal shear beneath the

static soil wedge. For cltamplc. it is observed that an increase in the scour width from 15

m to 30 m results in an approximate lWofold increase in the measured vertica1load. It is also

observed that increasing the incision depth of the scour from 1.20 m to 2.14 m results in an

approximate twofold increase in the measured vertical and horizontal loads. In an analogous

manner. doubling the width or length of a direct shear box while maimaining a constant

applied bearing stress would result in an approximate twofold increase in the measured

vertical and horizontal loads.

TIle premise of a constant bearing SbeSS with increasing scour depth was examined in

reference to the static soil wedge identified beneath the inclined portion of the model icc

keel. As shown in Figure 8.7. there is a cOlTCSponding increase in the area under shear due

to the fconation of the static soil wedge with increasing scour depth. The assumption of a

relatively constant bearing stress with increasing scour depth is therefore valid since the

increase in vertical load is offset by an inCR:ase in the area under shear.
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SCORr

Fieure 8.7

T"ue Dimeado••• Model Icc Keel

Three rnmensional Schematic Diagram or Ice Keel Scour
Showing Linear Inc.-ease In Horizontal Area Under Shear (AI,
A2) Beneath The Static Soil Wedge With inc.-easing Scour
Depth (S I, S2).
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Based on the observed linear relationship exhibited by lhose scour events characterized

as 15" dense in Figure 8.3. a series of four Lines designated Lines #1 through #4 was

superimposed on the full centrifuge dataset iovolving sand as shown in Figure 8.8. The four

lioes depicted in Figure 8.8 represent four distinct scour configurations. Line #1 is

representative of a scour event in dense sand formed using a model keel with a 15" attack

angle to the horizontal. Line #2 is representative ofa scour event in loose sand formed using

a model keel with a 15" attack angle to the horizontal. Line #3 is representative of a scour

event i.n dense sand formed using a model keel with a 30" attack angle to the horizontal.

Fmally. Line #4 is representative of a scour event in loose sand formed by a model ice keel

with a 30" attack angle to the horizontal.
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In order to validate the perceived trend in the data as presented in Figures 8.3 and 8.8. a

calculated bearing stress for Scours B. D. E. F and H was detennined based on the meas~d

peak. vertica.lload and the presence ofa static soil wedge beneath the model ice keel shown

schematically in Figure 8.6(a). The geometry oftbe static soil wedge was chosen such that

its base is pacalle! with the base of the keel and its upper boundary is dermed by the original

surface oftbe model testbed. The above rationale was also used by Paulin (1992) to establisb

the worst case scenario for loading. Presented in Table 8.4. the calculated beariog stress

was 330 kPa. 386 kPa. 402 !cPa. 413 kPa and 430 kPa for Scours B. D. E. F and H

respectively.

Table 8.4 Calculated Vertical Bearine Stress, Scours B, D, E, F and H

Scour I 8 I DIE I F I H

Scour Depth (m) 1.70

I
110 II 20 I 2 \4 II 16

Scour Width (m) 15 15 \5 \5 30
Vertical Load (MN) 38.3 199 259 495 563
Bearine Area (ml

) 95.2 6\6 6721119811299
Bearin: Stress (kPa) 402 I 323 I 386 I 413 I .;33

In comparing the calculated vertical bearing stress for Scours E. Band F. it is noted that

the three scour events are represented by a range of 27 kPa.. Scours E and F represent an

increase in scour depth from 1.1 m to 2.14 m and an approximate twofold increase in the

measured vertical load. The 27 !cPa range encompassing Scours B. E and F represents a 7%

increase in the calculated bearing stress for Scour E to Scour F. Such a small change
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supports the conclusion that the bearing stress is insensitive to changes in SCOUT depth. in the

scour depths investigated.

The premise that the bearing stress is insensitive to changes in scour depth is also

supported by the pressure transducer data as presented in Table 7.5. Table 8.5 and in Figure

8.9. For Scours E and F. there was a difference of 39 kPa in the mean response of the

pressure transducer embedded into the sloping face of the model ice keel. The 39 kPa

difference represenrs a 24% increase in the measured contact pressure between the model ice

keel and the model testbed compared to an approximate twofold increase in the measured

vertical load.

TableS.S Pressure Transducer Response Data, Scours B, 0, E, F and H

Scour IEQuivalent Scour Depth em) 1Mean Response (kPa) I Peak Response (kPa)

B I 1.70 I 196.1 I 282.2

~ ::~ I :~; ~~:~
F jl 2.14 I 199.5 il 294.6
H 1.I6 I 116.8 201.2

In tenns of the total stress ceU response as presented in Table 7.7. Table 8.6 and in

Figure 8.10. it should be emphasized that the observed zero shift present in the data has

introduced a degree of uncertainty with respect to the quality of the data. It was therefore

difficult to arrive at a meaningful comparison. An effott was made to compare the peak
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toW StresS ceU ~poose for Scours B. D. E. F and H. with the mean pressure transducer

response for the same scour events. For example. a comparison of the mean response of

the pressure transducer embedded in the leading face of the model ice keel for Scour H

presented in Table 85. with the peak response of the tow suess cells for the same scour

as presented in Table 8.6 would suggest good agreement between the data. However. a

comparison of the mean response of the pressure transducer data with the peak. response

of the total streSS ceU data for Scour E showed large differences. In general. there were

significant differences between the two data sets. The lack: of agreement serves to

SUppOIt the previous observation made regarding the quality of the total stress data.

TableR.6 Total Stress Cell Response, Scours B. D. E., F and H

Scour I Eouivalent Scour Depth (m) Peak Resoonse (kPa) 1Zero Offset (\cPa)

B

I

1.70 176.7

I
-34.8

B 1.70 175.4 -15.5
0 1.10 111.9 -51.0
E 1.18 299.0 I -7.5
F 2.14 224.5 I -26.0
F I 2.14 156.3 I -27.2
H I 1.16 121.3

I
0

H 1.16 105.9 30.1
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Figure 8.9
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8.S Summary

The preceding discussion bas important implications in terms of understanding the

mecbanisms governing ice keel scour in sand. Forexample. it has been shown that the loads

associated with scouring can be analysed in tenns of basal shear beneath the base of the static

soil wedge. Moreover. it is also suggested that the relationship between the horizontal and

vertical scour fon:es is given by lan~. where ~ is the internal angle of friction of the sand.

This correlation requires that the measured horizontal force be manipulated such that the

horizontal shear resislanCe associaled with the venical sides of the static soil wedge is

removed. The removal of the horizontal shear ~tance in the vertical plane is based on an

extension of empirical rules for calculating the ultimate lateral resistance of rigid piles. The

linear relationship between vertical force expressed as load per unit scour width versus scour

depth is also shown to be valid using the analogy of a direct shear box.

In terms of subscour soil displacements. the current test series confums the potential for

significant soil disturbance below the base of the scour. A more important implication arises

from the validation of Been's (1990) shear dragging hypothesis. It is implicit that if the

observed data can be idealised as being representative of a direct shear or direct simple shear

tesL then the free-field subscour displacements can also be interpreted in terms of a direct

simple shear mechanism.
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The observations offered have imponant implications for numerical analysis. particularly

in terms of the prescribed boundary conditions and the idealization of ice keel scour.

Previous ~hers in this area (Lach. 1996; Yang ~t al. 1994: C-eORE. 19950 have

elected to model the complete keel configuration in relation to the model seabed. However.

in recognition of the suggested n:larionship between the horizontal and vertical forces. it is

felt that a more appropriate analysis would resemble that of a din:ct shear or direct simple

shear device. It was noted that various workers (Potts etal. 1987: Budhu and Britto. 1987:

Cividini and Gieda. 1992: Dounias and Potts. 1993) have examined the behaviour of soils

via numerical analysis of sbear devices.
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Chapter Nine

Conclusions and Recommendations

As pan of a larger program examining icc keel scour. the experimental program and

analysis described in this thesis bas yielded a large amOUD[ of quantitative and semi+

quantitative data regarding ice keel SCOUT in sand. The experimental program involved

towing an instrumented model ice keel of set geometry across a model testbed at a set scour

depth while under the influence of a centrifugal force. 1be testbed was constnlcted of silica

sand placed according 10 a predetermined relative density. Transducers embedded in me

model testbed provided information on scour-induced StresSeS and pore pressures.

Instruments positioned on the model ice keel monitored keel displacement. horizontal and

vertical loads and the model keeV soil interface pressures. The experiments investigated the

effect of variations in SCOOT depth. auaek angle. scour ....idth and sand state. Passive markers.

in the form of coloured sand horizons and coloured spaghetti strands. provided infonnation

regarding subscour sand displacements. Based on the teSt results and observations described

in this thesis. the foUowing conclusions and recommendations are offered:

0) The development of a static soil "dead wedge" beneath the model ice keel was

instrumental in defining the observed variation in scour loads and subscour soil defonnation.
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The static soil wedge was identified through observation ofdeformed passive markers placed

in the model testbed.

(ii) The passive soil markers were instrumental in identification of ruprure planes in the

surcharge mound and the documentation of horizontal and vertical subscour soil

deformations. The observed ruptwe planes provided insight into both the failure mechanism

and the cyclic variation in the vertical and horizontal load displacement plots. With respect

to the observed subscour soil deformatioos. the data set confirmed the potential for

significant soil displacement below the base of the scour.

(iii) In assuming that the measured vertical scour load and the measured horizontal scour

load (minus the horizontal shear resistance in the vertical plane) are analogous to the applied

normal force (0) and measured shear force (t) in a direct shear test.. it was determined that

the ratio of vertical to horizontal scour loads is given by tan <p. where 41 is the internal angle

of friction of the sand This finding W35 signific:lO.t since it implies that the ratio of horizontal

to vertical load is a function of shear beneath the model ice keel. A finding which supports

Been's (1990) shear dragging hypothesis.

(iv) lbere is a linear rt:lationship between measured vertical load expressed as load per unit

width and scour depth. This relationship was shown to be valid using the analogy of a direct

shear box and the static soil wedge identified beneath the model ice keel.
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(v) The increase in the area under shear due to the development of the static soil wedge

beneath the model ice keel offset lhe increase in vertical load so that there is little net change.

The bearing suess is therefore insensitive to changes in scour depth within the range of scour

depths under consideration.. The concept of a constant bearing stress and the validation of

Been's (1990) shear dragging hypothesis has an importam implication with respect to the

magnitude and extent of subscour soil defonnations. h is concluded that the observed

subscour soil deformations were in effect direct simple shear. governed by the stress strain

behaviour of the sand.

In recognition of the limited number of data points. it is recommended that further work

be undertaken in order to validate the above observations and conclusions. This may be in

the fonn of further centrifuge modelling involving extreme scour evenlS or through

numerical analysis. With respect to the latter. it is recommended that the problem of ice keel

scour should be approached using the analogy of a direct or direct simple shear device.
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Appendix A

Force and Pressure Data for Scour Events B Through H

The horiwntal load measu~ments. expressed in kN for Scours B through H are shown

in Figures A.I to A.7 respectively. The vertical measurements. expressed in kN for Scours

B through H are shown in Figures A.8 to A.14. The pressure transducer or spot pressure

values. expressed in kPa for Scours B through H ace shown in Figures A.IS to A.ll. 1be

response of the total S~ ceU (fLC) in kPa for Scours B through H are given in Figures

A.21 through A.31. Finally_ the response of the pore pressure transducers. expressed in kPa

for Scours B through H are shown in Figures A.32 (0 A.45.
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Horizontal (TC) Load Displacement Data
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Vertical Load Displacement (LC) Data
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Pressure Transducer (PT) Data
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Total Stress Cell (TLC) Data
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Pore Pressure Transducer (PPT) Data
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